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PREFACE.

THE present treatise is a condensed edition of the Astronomy of
the American Science Series. The book has not been shortened by
leaving out anything that was essential, but by omitting some of the
details of practical astronomy, thus giving to the descriptive por-
tions a greater relative extension.

The most marked feature of this condensation is, perhaps, the
omission of most of the mathematical formul® of the larger treatise.
The present work requires for i‘s understanding only a fair acquaint-
ance with the principles of algebra and geometry and a slight
knowledge of elementary physics. Thespace which has been gained
by these omissions has been utilized in giving a fuller discussion of
the more elementary parts of the subject, and in treating the funda-
mental principles from various points of view.

A familiar and secure knowledge of these is essential to the
students’ real progress. The full index makes the work of value as
a reference-book to a student who has studied it and put it aside.

As in the larger work, the matter is given in two sizes of type. It
will be found that the larger type contains a course practically com-
plete in itself, and that the matter of the smaller type is chiefly ex-
planatory of the former. It is highly desirable, however, that the
book should be read as a whole, while the actual class-work may be
confined to the subjects treated in the larger type, if the class is
pressed for time. A celestial globe, and a set of star-maps (Proc-
ToR’s ‘‘ Half-Hours with the Stars” is as good as any), will be found
to be of use in connection with the study ; and if the class has access
to a small telescope, even, much can be learned in this way. A mere
opera-glass will suffice to give a correct notion of the general features
of the moon’s surface, and a very small telescope, if properly used,
will do the same for the larger planets,
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ASTRONOMY.

INTRODUCTION.

Astronomy Defined. —Astronomy (aor7po—a star, and
vouos—a law) is the science which has to do with the
heavenly bodies, their appearances, their nature, and the
laws governing their real and their apparent motions.

In approaching the study of this the oldest of the
sciences depending upon observation, it must be borne in
mind that its progress is most intimately connected with
that of the race, it having always been the basis of geog-
raphy and navigation, and the soul of chronology. Some
of the chief advances and discoveries in abstract mathe-
matics have been made in its service, and the methods
both of observation and analysis once peculiar to its prac-
tice-now furnish the firm bases upon which rest that great
group of exact sciences which we call Physics.

It is more important to the student that he should be-
come penetrated with the spirit of the methods of astron-
omy than that he should recollect its minutie ; and it is
most important that the knowledge which he may gain
from this or other books should be referred by him to its
true sources. For example, it will often be necessary to
speak of certain planes or circles, the ecliptic, the equa-
tor, the meridian, etc., and of the relation of the appa-
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rent positions of stars and planets to them; but his labor
will be useless if it has not succeeded in giving him a pre-
cise notion of these circles and planes as they exist in the
sky, and not merely in the figures of his text-book. Above
all, the study of this science, in which not a single step
could have been taken without careful and painstaking
observation of the heavens, should lead its student himself
to attentively regard the phenomena daily and hourly pre-
sented to him by the heavens.

Does the sun set daily in the same point of the horizon?
Does a change of his own station affect this and other
aspects of the sky? At what time does the full moon rise?
Which way arc the horns of the young moon pointed?
These and a thousand other questions are alrecady answered
by the observant eyesof the ancients, who discovered not
only the cxistence, but the motions, of the various planets,
and gave special names to no less than fourscore stars.
The modern pupil is more richly equipped for observation
than the ancient philosopher. If one could have put a
mere opera-glass in the hands of HippArcHUS the world
need not have waited two thousand years to know the
nature of that early mystery, the Milky Way, nor would it
have required a GALILEO to discover the phases of Venus
and the spots on the sun.

Astronomy furnishes the principles and the methods by
means of which thousands of ships are navigated with
safety and certainty from port to port; by which the
dimensions of the earth itself are fixed with high precision;
by which the distances of. the sun, the planets, and the
brighter stars are measured and determined. The details
of these methods cannot be given in an elementary work ;
but the general principles and even the spirit of the special
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methods can be entirely mastered by the faithful student.
All the attention which he can bring will be richly reward-
ed by the insight he will gain into the noblest of the physi-
cal sciences.

How to Study Astronomy.—There are a few principles
of Mathematics, of Geography, of Physics, which must be
clearly understood by the student commencing astronomy,
so that he may go on with advantage. They are all quite
simple, but they must be entirely fixed in the mind, in
order that the attention may be directed to the astronomical
principle and not diverted by an attempt to recollect a fact
from another science. Any patience and concentration
which the student may bestow upon them at the outset
should be rewarded by the facility with which they will
enable him to grasp the more interesting portions of the
subject. The few definitions which are given in italics
should be memorized in the words of the text. In all other
cases it is preferable that the student should give his own
explanations in his own words.

First we will go briefly over some of the essential mathe-
matical principles alluded to.

Angles: their Measurement.—An angle is the amount
of divergence of two right lines. For example, the angle
between the two right lines S'Z and
S*E is the amount of divergence of
these lines. The angle S*ZS"*is the
amount of divergence of the two lines
S*E and S*E. The eye sees at once
that the angle S*£S* in the figure is
greater than the angle S'ES? and
that the angle S*ES*® is greater than Fia. 1.
either of them.
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In order to compare them and to obtain their numerical
ratio, we must have a unit-angle.

The unit angle is obtained in this way: The circumfer-
ence of any circle is divided into 360 equal parts. The
points of division are joined with the centre. The angles
between any two adjacent radii are called degrees. In the
figure, S'£S*is about 12°, S*ES"is about 22°, S*HS* is
about 30°, and S'ES*is about 64°. The vertex of the
angle is at the centre £ : the measure éf the angle is on
the circumference §'S*S°S"*, or on any other circumference
drawn from Z as a centre.

In this way we have come to speak of the length of one
three-hundred-and-sixtieth part of any circumference as a
degree, because radii drawn from the ends of this part
make an angle of 1°.

For convenience in expressing the ratios of different
angles we have subdivided the degree into minutes and
seconds. The degree is too large a unit for some of the
purposes of astronomy, just as the metre is too large a unit
for use in the machine-shop, where fine work is concerned.

360° = 21600’ = 1296000”
60’ =360
60"

One circumference
10
1I

When we wish to express smaller angles than seconds,
we use decimals of a second. Thus one-quarter of a second
is 0".25; one quarter of a minute is 15",

The Radius of the Circle in Angular Measure.—If R is
the radius of a circle, we know from geometry that 1 cir-
cumference = 2 = R, where # = 3.1416. That 1s,

- 2m R = 360° = 21600 = 1296000"
or R = 57°.3 = 34377 = 206264".8.
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> By this we mean that if a flexible cord equal in length
to the radius of any circle were laid round the circumfer-
ence of that circle, and if two radii were then drawn to the
ends of this cord, the angle of these radii would be 57°.3,
3137".7, or 206264".8.

It is important that this should be perfectly clear to the
student.

For instance, how far off must you place a foot-rule in
order that it may subtend an angle of 1° at your eye?

>fAVhy, 57.3 feet away. How far must it be in order to sub-
tend an angle of a minute ? 3437.7 feet. How far for a
second ? 206264.8 feet, or over 39 miles.

Again, if an object subtends an angle of 1° at the eye,
we know that its diameter must be 71 3 8 great as its dis-
tance from us. If it subtends an angle of 17, its distance
from us is over 200,000 times as great as its diameter.

The instruments employed in astronomy may be used to
measure the angles subtended at the eye by the diameters of
the heavenly bodies. In other ways we determine their dis-
tance from us in miles. A combination of these data will
give us the actual dimensions of these bodies in miles.
For example, the sun is about 93,000,000 miles from the
earth. The angle subtended by the sun’s diameter at this
distance is 1922”. What is the diameter of the sun in miles

An idea of angular dimensions in the sky may be had by
remembering that the angular diameters of the moon and
of the sun are about 80’. It is 180° from the west point to
the east point counting through the point immediately
overhead. How many moons placed edge to edge would it
take to reach from horizon to horizon ? The student may
guess at the answer first and then compute it.

(% _ ! 5 fey oY A, 1
v s
© Fev T 50 73
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ting the sphere into two hemispheres. It will intersect the
surface of the sphere in a circle A ZBF which is called a
great circle of the sphere. A great circle of the sphere is
one cut from the surface by a plane passing through the
centre of the sphere. Suppose a right line POP’ perpen-
dicular to this plane. The points P and P’ in which it
intersects the surface of the sphere are everywhere 90°
from the circle A ZBF. They are the poles of that circle.
The poles of the great circle CEDF are ¢ and ¢'.

The following relations exist between the angles made
in the figure: ‘

I. The angle P 0@ between the poles is equal to the in-
clination of the planes to each other.

II. The arc BD which measures the greatest distance
between the two circles is equal to the arc P¢ which
measures the angle 20Q.

III. The points Z and F, in which the two great cir-
cles intersect each other, are the poles of the great circle
PQACP’'Q'BD which passes through the poles of the first
two circles.

The Spherical Triangle.—In the last figure there are
several spherical triangles, as DB, FAC, ECP’Q'B, etc.
In astronomy we need consider only those whose sides
are formed by arcs of great circles. The angles of the
triangle are angles between twoarcs of great circles; or what
is the same thing, they are angles between the two planes
which cut the two ares from the surface of the sphere.

In spherical triangles, as in plane, there are six parts,
three angles and three sides. Having any three parts the
other three can be constructed.

The sides as well as the angles of spherical triangles are
expressed in degrees, minutes, and seconds, If the student
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has a globe before him, let him mark on it the triangle
whose angles are
4 128° 44’ 45".1,
B 33° 11’ 12".0,
C- 18° 35731515
and whose sides are (« is opposite to 4, b to B, ¢ to C.)
a = 10°%, b =17, 3 chi=Msa

Power of the Eye to see Small Objects,.—When a round
object subtends an angle of 1’ (that is, when it is about
3437 of its own diameters away), it is just at the limit of
visibility, under ordinary circumstances. At the Transit of
Venus in 1874, the planet Venus was between the earth
and the sun, and appeared as a small black spot, just visi-
ble to the nuked eye, projected on the sun’s face. It was
67" in diameter.

If two such discs are nearer together than 1’ 127, few
eyes can distingunish them as two distinet objects. If a
body is long and narrow, its angular dimensions (width)
may be reduced to 10” or 15" before it is indistinguishable
to the eye. For example, a spider line hanging in the air.

If an object is very much brighter than the background
on which it is seen, there is no limit below which it is néec-
essarily invisible. Its visibility depends, in such a case,
only on its brightness. It is probable that the diameters
of the brightest stars subtend an angle no greater than
0".01.

Latitude and Longitude of a Place on the Earth’s Surface.
Geography teaches us that the earth is a spheroid. Posi-
tions on its surface are defined by giving their latitude and
longitude. According to geography, {he latitude of a place
on the eartl’s surface is its angular distance north or south
qf the equator,
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The longitude of a place on the earth’s surface is iis
angular distance east or west of a given first meridian.

If Pin the figure is the north pole of the earth, the
latitude of the point B is 60° north; of Z it is 30° north;
of 7 it is 27°} south. All places having the same latitude
are situated on the same parallel of latifude. In the figure
the parallels of latitude are represented by straight lines.

All places having the same longitude are situated on the

same meridian. We shall give the astronomical definitions
of these terms further on.

It is found convenient in astronomy to modify the geo-
graphical definition of longitude. In geography we say
that Washington is 77° west of Greenwich, and that Syd-
ney (Australia) is 151° east of Greenwich. For astro-
nomical purposes it is found more convenient to count the
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longitude of a place from the first meridian (usually
Greenwich) always towards the west. Thus Sydney is 209°
west of Greenwich. 360°—151°=209°,

The earth turns on its axis once in 24 hours. In this
time a point on its surface moves through 360 degrees, or
such a point moves af the rate of 15° per hour. 360 divided
by 24 is 15.

Hence we may express the longitude of a place either in
time or arc. Washington is 5" 8™ west of Greenwich, and
Sydney is 13" 56™ west of Greenwich.

It is also indifferent which first meridian we choose.
‘We may refer all longitudes to Paris, to Berlin, or to Wash-
ington. Sydney is 8" 48™ west of Washington, and Green-
wich is 18" 52™ west of Washington.

In the figure, suppose # to be west of the first meridian.
All the places on the straight line P@Q have a longitude of
15° or 1 hour; all on the curve P5"Q have a longitude
of 75° or 5 hours; and so on.

The difference of longitude of any two places on the earth
s the angular distance between the terrestrial meridians
passing through the two places.

Thus Washington is 77° west of Greenwich, and Sydney
is 209° west of Greenwich. Hence Sydney is 132° west of
Washington, and this is the difference of longitude of the
two places.









CHAPTER 1.
THE RELATION OF THE EARTH TO THE HEAVENS.
THE EARTH'S SHAPE AND DIMENSIONS,

The earth is a globe whose dimensions are gigantic
when compared with our ordinary and daily ideas of size.

Its shape is nearly a sphere, as has been abundantly
proved by the accurate geodetic surveys which have been
made by various nations.

Of its size we may get a rough idea by remembering
that at the present time it requires about three months to
travel completely around it.

To these familiar facts we may add two propositions
which are fundamental in astronomy.

L. The earth is completely isolated in space. The most
obvious proof of this is that men have visited nearly every
part of the earth’s surface without finding anything to the
contrary.

II. The earth is one of a vast number of globular bodies,
Samiliarly known as stars and planets, moving according
to certain laws and separated by distances so immense that
the magnitudes of the bodies themselves are insignificant in
comparison to these distances. 'The first conception which
the student of astronomy has to form is that of living on
the surface of a spherical earth which, although it seems of
immense size to him, is really but a point in comparison
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with the distances which separate him from the stars which
he nightly sees in the sky.

THE CELESTIAL SPHERE.

When we look at a star at night we seem to see it set
against the dark surface of a hollow sphere in whose centre
we are.

All the stars seem to be at the same distance from us.
When we stop to consider, we see that it is quite possible
that some one of the many stars visible may be nearer
than some other, but as we have no immediate method
of knowing which of two stars is the nearer, we are driven
to speak of their apparent positions just as if they were
bright points studded over the inner surface of a large
hollow globe, and all at the same distance from us. The
radius of this globe is unknown. We do not, howe;a','
think of any of the stars as beyond the surface and
shining through it. We therefore suppose the radius of
the sphere to be equal to or greater than the distance of
the remotest star. ’ '

Students generally fail at the outset to realize two very
important facts in relation to the celestial sphere. First,
that for all the purposes of our present knowledge the
relative positions of the stars on its surface do not vary.
Maps were made of these positions centuries ago which are
as correct now as old maps of portions of the earth. The
motions of the earth present different portions of the celes-
tial sphere to our observation at different times, and one
who has not thought at all of the subject might by that
fact be led to suppose that changes are taking place in the
relative positions of the stars themselves. Most people,
however, know that they can find the same groups of stars
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—*¢¢ constellations,” as they are called—in different direc-

tions from the observer’s location on the earth, night after
night; the difference in the directions being due to the
earth’s motions. Reflection on the foregoing will help the
student to realize the second important fact alluded toin the
beginning of this paragraph—that for most practical pur-
poses of astronomy the earth may be regarded as a point

in the centre of a hollow globe whose inside surface is
spotted over with the stars, that hollow globe corresponding
to the celestial sphere. In fact ingenious instruments to
illustrate some of the truths of astronomy have been made
of large globes of glass or other transparent substances,
with the stars painted in their unvarying positions on the
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inside surface, and the earth suspended at the centre by
supports rendered as nearly invisible as possible.

Suppose an observer at the point O in the figure. If he
sees a star at the point @ it is clear that the real star may
be anywhere in space on the line 0@, as at ¢ for example,
and still appear to be at @.

Again, stars which appear to be at the points P, ¥, U,
T, S, R, may in fact be anywhere on the lines O P, OV,
OU, 0T, 0S8, OR. Thus, if there were three stars along
the line O 7, they would all be projected at the point 7' of
the celestial sphere, and would appear as one star.

The celestial sphere is the surface upon which we tm-
agine the stars to be projected.

The projection of a body upon the celestial sphere is the
point in which this body appears to be, when seen from
the earth. This point is also called the apparent position
of the body. Thus to an observer at 0, T is the apparent
position of any of the stars whose true positions are ¢, ¢, &
Hence it follows that positions on the celestial sphere re-
present the directions of the heavenly bodies from the 0b-
server, but have no necessary relation to their distances.

If the observer changes his position, the apparent posi-
tions of the stars will also change.

We need some method of describing the apparent posi
tions of stars on the celestial sphere; to do this we im-
agine a number of great circles to be drawn on its surface,
and to these circles we refer the apparent positions of the
stars,

A consideration of Fig. 2 will show the correctness of
the following propositions, which it is necessary should be
clearly understood:

L. Every straight line through the observer, when pro-
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duced indefinitely, intersects the celestial sphere in two
opposite points.

II. Every plane through the observer intersects the
sphere in a great circle. ‘

II1. For every such plane there is one line through the
observer’s position which intersects the plane at right
angles. This line meets the sphere at the poles of the
great circle which is cut from the sphere by the plane.

Example: P P’, Fig. 2, is a line through O perpendicular
to the plane 4 B. P, P’ are the poles of 4 B.

IV. Every line through the centre has one plane perpen-
dicular to it, which plane cuts the sphere in a great circle
whose poles are the intersection of the line with the
sphere.

Example: The line @ @’ has one plane C'D through O
perpendicular to it, and only this one.

THE HORIZON.

L~ 4 level plane touching the spherical earth at the point
where an observer stands is called the horizon of that
observer.

This plane cuts the celestial sphere in a great circle,
which is called the celestial horizon. The celestial horizon
is therefore the boundary between the visible and the in-
visible hemispheres to that observer.

The Vertical Line.—The vertical line of any observer is
the direction of a plumb-line where he stands. This line
is perpendicular to his horizen. It intersects the celestial
sphere in two points, called the zenith and the nadir of
that observer.

The zenith of an observer is the point where his vertical
line cuts the celestial sphere above his head.
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The nadir of an observer s the point where his vertical
line cuts the celestial sphere below his feet.

The zenith and nadir are the poles of the horizon.

Vertical Planes and Circles.—A vertical plane with re-
spect to any observer is a plane which contains his vertical
line. It must pass through his zenith and nadir and must
be perpendicular to his horizon.

A vertical plane cuts the celestial sphere in a werfical
circle.

As soon as we imagine an observer to be at any point on
the earth’s surface his horizon
is at once fixed; lis zenith
and nadir are also fixed. From
his zenith radiate a number
of vertical circles which cut the
celestial horizon perpendicu-
larly, and unite again at his
nadir. This is a system of
lines and circles which every

Fia. 5. person carries about with
him, as it were, and which may serve him for lines to
which to refer the apparent position of every star which he
sees.

Some one of these vertical circles will pass through any
and every star visible to this observer.
' The altitude of a heavenly body is its elevation above the

- plane of the horizon measured on a vertical cirele through

the star.

The zenith distance of a star is its angular distance from
the zenith measured on a vertical circle.

In the figure, Z S is the zenith distance (8) of S, and
H S (a) is its altitude. Z .S H is an arc of a great circle;
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the vertical circle through the star. ZS8 H =a + 4= 90°,
and g = 90° — aora = 90° — 4.

The altitude of a star in the zenith is 90°; half way from
the zenith to the horizon it is 45°; in the horizon it is 0°.

_k The azimuth of astar is the angular distance from the point

where the vertical circle through it meets the horizon, to the
north (or south) point of the horizon.

In the figure, N H is the azimuth of S. The azimuth
of a star in the east or west is 90°.

The prime vertical of an observer is that one of his verti-
cal circles which passes through his east and west points.

Co-ordinates of a Star.—The apparent position of a heav-
enly body is completely fixed by means of its altitude and
azimuth. If we know the altitude and azimuth of a star
we can point to it.

If, for example, its azimuth is 20° from north towards
the west and if its altitude is 30°, we can point to the star by
measuring an angle of 20° from the north point towards
the west, which will fix the foot of a vertical circle through
the star. The star itself will be on the vertical circle, 30°
above the horizon.

This point, and this alone, will correspond to the posi-
tion of the star as determined by its altitude and azimuth.

Numbers (or quantities) which exactly define the position
of a body are called its co-ordinates.

Hence altitude and azimuth form a pair of co-ordinates
which fix the apparent position of a star on the celestial
sphere.

It must be remembered that these two co-ordinates give
only the position of the projection of the star on the celes-
tial sphere, and give no knowledge of its distance from the
observer. The body may be any where on the line defined
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by the position on the celestial sphere and the place of the
observer. (See Fig. 4.)

If we also know the distance of the star from the obser-
ver, we know every possible fact as to its place in space.

Thus, three co-ordinates suffice to fix the absolute position
of @ body in space ; two co-ordinates suffice to determine its
apparent position on the celestial sphere.

These propositibns suppose the place of the observer to
be fixed, since the altitude and azimuth refer to an obser-
ver in some one definite position. If the observer should
change his place, the star remaining fixed, the apparent
position of the star on the celestial sphere would change to
him, owing to his own motion. The numbers which ex-
press this apparent position—the altitude and azimuth of
the star—would also change.

But wherever the observer is, if he has these two co-
ordinates for a star, the apparent place of the star is fixed
for him.

The Horizon.—Since the earth is spherical in form, and
the horizon is a plane touching this sphere, every different
place must have a different horizon. Wherever an observer
goes on the earth’s surface he carries an horizon, a zenith,
and a nadir with him, and a set of vertical circles to which
he can refer the positions of all the stars he sees. 1f he
stays at a fixed point on the earth’s surface his horizon is
always fixed with relation to his vertical line. But the
earth on which he stands is turning round its axis, and his
horizon being tangent to the earth is moving also, and the
vertical line moves with it. The stars stay in the same abso-
lute places from year to year. The earth on which the
observer stands is turning round from west to east. His
horizon is thus brought successively to the east of the various
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stars, which thus appear to rise higher and higher above
it. (See Fig. 12a.)

The earth continues its motion, and the plane of his ho-
rizon finally approaches the same stars from the west and
they set below it, only to repeat this phenomenon with
every rotation of the earth.

The horizon appears to each observer to be the stable
thing, and the motion is referred to the stars. As a matter
of fact it is the stars that stand still and the horizon which
moves below them, causing them to appear to rise, and then
above them, causing them to appear to set.

THE DIURNAL MOTION.

The diurnal motion isthat apparent motion of the sun,
moon, and stars from east to west in consequence of which
they rise and set.

We call it the diurnal motion because it repeats itself
from day to day. The diurnal motion is caused by a daily
rotation of the earth on an axis passing through its centre
called the awis of the earth.

This axis intersects the earth’s surface in two opposite
points called the north and south poles of the earth. 1f the
earth’s axis be prolonged in both directions, it meets the
celestial sphere in two points which are called the poles of
the celestial sphere or the celestial poles. 'The north celes-
tial pole corresponds to the north end of the earth’s axis;
the south celestial pole to the sonth end.

The plane of the equator is that plane which passes
through the earth’s centre perpendicular to its azis. This
plane intersects the earth’s surface in a great circle of the
earth’s sphere which is called the earth’s equator (eq in
Fig. 6).
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This plane intersects the celestial sphere in a great circle
of this sphere which is called the celestial equator or equi-
noctial (EQ in Fig. 6).

The celestial equator is everywhere half way between the
two celestial poles and thus 90° from each. The celestial
poles are thus the poles of the celestial equator.

Apparent Diurnal Motion of the Celestial Sphere.—The

Fia. 6.

observer on the earth is unconscious of its rotation, and
the celestial sphere appears to him to revolve from east to
west around the earth, while the earth appears to remain
at rest. The case is much the same as if he was ona
steamer which is turning round, and as if he saw the har-
bor-shores, the ships, and the houses apparently turning in
an opposite direction,

~



RELATION OF THE EARTH TO THE HEAVENS. 93

So far as appearances are concerned, it is quite the same
thing whether we conceive the earth to be at rest and the
heavens to turn about it, or whether we conceive the stars
to remain at rest and the earth to move on its axis. We
can explain all the phenomena of the diurnal motion in
either way. We must, however, remember that it really is
the earth which turns on its axis and successively presents
to the observer different parts of the celestial sphere. The
parts to his east are just coming into view (rising above his
horizon). The parts to his west are about to disappear,
(setting below his horizon).

Since the diurnal motion is an apparent rotation of the
celestial sphere about a fixed axis, it follows that there
must be two points of this sphere that remain at rest;
namely, the two celestial poles. Moreover, since the celes-
tial poles are opposite points, one pole must be above the
horizon and therefore a visible point of this sphere, and
the other pole must be below the horizon and therefore in-
visible.

The celestial pole visible to observers in the northern
hemisphere is the north pole. To locate its place in the
sky let the student look at the northern sky on any clear
evening.

He will see the stars somewhat as they are represented in
the figure.

In fact Fig. 7. shows the stars as they will appear to
an observer in the month of August in the early hours of
the evening. But the configurations of the stars can be
recognized at any other time.

The first star to be identified is Polaris, or the Pole Star.
It may be found by means of the Pointers, two stars in the
constellation Urse Major, familiarly known as the Great
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The following laws of the diurnal motion will now be
clear:

1. Every star in the heavens appears to describe a circle
around the pole as a centre in consequence of the diurnal
motion.

II. The greater the star’s north-polar distance the larger
1s the circle.

II1. AUl the stars describe their diurnal orbits in the
same interval of time, which is the time required for the
earth to turn once on its axis.

The circle which a star appears to describe in the sky in
consequence of the diurnal motion of the earth is called the
diurnal orbit of that star. :

These laws can be proved by observation. Ths student
can satisfy himself of their correctness in any clear night.

If the star’s north-polar distance is less than the altitude
of the pole, the circle which the star describes will not
meet the horizon at all, and the star will therefore neither
rise nor set, but will simply perform an apparent diurnal
revolution round the pole. Such stars are shown in the
figure. The apparent diurnal motion of the stars is in the
direction shown by the arrows in the cut. Below the
pole the stars appear to move from left to right, west to
cast ; above the pole they appear to move from east to
west.

The circle within which the stars neither rise nor set is
called the circle of perpetual apparition. The radius of
this circle is equal to the altitude of the pole above the
horizon, or to the north polar distance of the north point
of the horizon.

As a result of this apparent motion each mdmdual con-
stellation changes its configuration with respect to the
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days and nights are of equal length. This is why the
celestial equator was formerly called the equinoctial.

Looking further south at the celestial sphere, we shall
see stars which rise a little to the east of the south point of
the horizon and set a little to the west of this point, being
above the horizon but a short time. The south pole is as
far below the horizon of any place as the north pole is above
it. Hence stars near the south pole never rise in our
latitudes. The circle within which stars never rise is called
the circle of perpetual occultation.

It is clear that the positions of the circles of perpetual
apparition and occultation depend upon the position of the
observer upon the earth, and hence that they will change
their positions as the observer changes his.

By going to Florida we may sée groups of stars which
are not visible in the latitude of New York.

The Meridian.—The plane of the meridian of an observer
1s that one of his vertical planes which contains the earth’s
azis. Being a vertical plane it must contain the zenith
and nadir of the observer; as it contains the earth’s axis
it must contain the north and south celestial poles.

Different observers have different meridian planes, since
they have different zeniths.

[AThe ferrestrial meridian of an observer is the line in
which the plane of his meridian intersects the surface of
the earth. It is his north and south line.

It follows that if several observers are due north and
south of each other, they have the same terrestrial meridian.
v The celestial meridian of an observer is the great circle
cut from the celestial sphere by the plane of that observer’s
meridian. Persons on the same terrestrial meridian have
the sme celestial meridian. _
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Terrestrial meridians are considered as belonging to the
places through which they pass. For example, we speak
of the meridian of Greenwich or of the meridian of Wash-
ington, and by this we mean the (terrestrial or celestial)
meridian lines cut out by the meridian plane of the Royal
Observatory at Greenwich or the Naval Observatory at
Washington.

THE DIVRNAL MOTION IN DIFFERENT LATITUDES.

As we have seen, the celestial horizon of an observer will
change its place on the celestial sphere as the observer travels

Fi1a. 9. THE PARALLEL SPHERE,

from place to place on the surface of the earth. If he
moves directly toward the north his zenith will approach the
north pole; but as the zenith is not a visible point, the
motion will be naturally attributed to the pole, which will
seem to approach the point overhead. The new apparent
position of the pole will change the aspect of the observer’s
sky, as the higher the pole appears above the horizon the
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greater the circle of perpetual apparition, and therefore the
greater the number of stars which never set.

If the observer is at the north pole his zenith and the
pole itself will coincide : half of the stars only will be vis-
ible, and these will never rise or set, but appear to move
around in circles parallel to the horizon. The horizon and
the celestial equator will coincide. The meridian will be
indeterminate since Z and P coincide; there will be no east
and west line, and no direction but south. The sphere in
this case is called a parallel sphere. (See Fig. 9.)

F16. 10.—THE RIGHT SPHERE.

1f instead of travelling to the north the observer should
go toward the equator, the north pole would seem to ap-
proach his horizon. When he reached the equator both
poles would be in the horizon, one north and the other
south. All the stars in succession would then be visible,
and each would be an equal time above and below the
horizon. (See Fig. 10.)

The sphere in this case is called a right sphere, because
the diurnal motion is at right angles to the horizon. If
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now the observer travels southward from the equator, the
south pole will become elevated above his horizon, and in
the southern hemisphere appearances- will be reproduced
which we have already described for the northern, except
that the direction of the motion will, in one respect, be
different. The heavenly bodies will still rise in the east
and set in the west, but those near the equator will pass
north of the zenith instead of south of it, as in our lati-
tudes. The sun, instead of moving from left to right,
there moves from right to left. The bounding line be-
tween the two directions of motion is the equator, where
the sun culminates north of the zenith from March till
September, and south of it from September till March.

If the observer travels west or east of his first station,
his zenith will still remain at the same angular distance
from the north pole as before, and as the phenomena
caused by the earth’s diurnal motion at any place depend
only upon the altitude of the elevated pole at that place,
these will not be changed except as to the times of their
occurrence. A star which appears to pass through the
zenith of his first station will also appear to pass through
the zenith of the second (since each star remains at a con-
stant angular distance from the pole), but later in time,
since it has to pass through the zenith of every place be-
tween the two stations. The horizons of the two stations
will intercept different portions of the celestial sphere at
any one instant, but the earth’s rotation will present the
same portions successively, and in the same order, at both.
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CORRESPONDENCE OF THE TERRESTRIAL AND CELESTIAL
SPHERES.

We have seen that the altitude of the pole above the
horizon of any observer changes as the observer changes
his place on the earth’s surface. The exact relation of the
altitude of the pole and the horizon of any -observer is
expressed in the following THEOREM: The altitude of the
celestial pole above the horizon of any place on the earth’s
surface is equal to the lati-
tude of that place.

Let L be a place on the
earth PEp Q, Pp being
the earth’s axis and # Q its
equator. Z is the zenith of
the place, and H R its hori-
zon. L O @ is the latitude
of L according to ordinary
geographical definitions; i.e.,
it is the angular distance of
L from the equator. Pro- .
long O P indefinitely to P’ Frc. 11. 0y
and draw L P’ parallel to it. P’ and P” are points on
the celestial sphere infinitely distant from Z. In fact
they appear as one point since the diménsions of the earth
are vanishingly small compared with the radius of the
celestial sphere, which may be taken as large as we please.
We have then to prove that LOQ = P"LH. P 0O¢Q
and Z L H are right angles, and therefore equal. Z L P’
= Z 0P’ by construction. Hence ZLH — ZLP" =
P OQ — ZOP, or the latitude of the point Z is meas-
ured by either of the equal angles . 0 Q Ugr FLHE,
*a'ﬂ"’ OLarrorry ‘-/)lmlr)‘ A U RS
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If we denote the latitude by ¢ it follows that the N. P.D.
(north-polar distance) of Zis 90° — @. As an observer
moves to various parts of the earth, his zenith changes
position with him. In every position the N.P.D. of his
zenith is 90° — @. If he is at the equator his @ is 0° and
his zenith is 90° from the north pole, which must there-
fore be in his horizon. If he is at the north pole, ¢ = +
90° and the N.P.D. of his zenith is 0°, or his zenith co-
incides with the north pole. If he is at the south pole
(p = — 90°) the N.P.D. of his zenith is 90° — (— 90°)
or 180°. That is, his zenith is 180° from the north pole,
or it must coincide with the south pole; and so in other
cases.

All this has just been shown (pages 28-30) in another
way, but it is of the first importance that it should be not
only clear but familiar to the student. 'When he sees any
astronomical diagram in which the north pole and the hori-
zon are laid down he can at once tell for what latitude this
diagram is constructed. The elevation of the pole above
the horizon measures the latitude of the observer, to whose
station this particular diagram applies.

Change of the Position of the Zenith of an Observer by
the Diurnal Motion.—In Fig. 12 suppose nesq to repre-
gent the carth and NV Z S @ the celestial sphere. The earth,
as we know, is rotating on the axis ;V'S. We have now to
inquire what are the real circumstances of this motion.
The apparent phenomena bave been previously described.
Remember that the vertical line of an observer is (practi-
cally) that of a radius of the earth passing throngh his
station. If the observer is at » his zenith is at IV P,
If he is at s his zenith is at §P. If the observer
is in 45° north latitude, he is carried round by the
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rotation of the earth in a small circle of the earth’s surface
whose plane is perpendicular to the earth’s axis. This is
the parallel of 45°, so called, and is indicated in the figure.
His zenith is always directly above him, and therefore his
zenith must describe each day a circle M L on the celestial
sphere corresponding to this parallel on the earth; that is,

Fia. 12,

a circle half way between the celestial pole and the celestial
equator. Now, suppose the observer to be on the equator
eq. His zenith will then be 90° from either pole. As the
earth revolves on its axis his zenith will describe a great
circle E @ on the celestial sphere. This circleis the celestial
equator. An observer at 45° south latitude will have a

1]
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parallel S O marked out on the celestial sphere by the
motion of his zenith due to the earth’s rotation, and so on.
Thus, for each parallel of latitude on the earth we have a
corresponding circle on the celestial sphere, and each of
these latter circles has its poles at the celestial poles.

Not only are there circles of the celestial sphere which
correspond to parallels of latitude on the earth, but there
are also celestial meridians corresponding to the various
terrestrial meridians. The plane of the meridian of any
place contains the zenith of that place and the two celestial
poles. It cuts from the earth’s surface the terrestrial
meridian and from the celestial sphere that great circle
which we have defined as the celestial meridian. To fix
the ideas let us suppose an observer ‘at some one point of
the earth’s surface. A north and south line on the earth
at that point is the visible representative of his terrestrial
meridian. A plane through the centre of the earth and
that line contains his zenith, and cuts from the celestial
sphere the celestial meridian. As the earth rotates on its
axis his zenith moves around the celestial sphere in a
parallel as Z L in the last figure. Suppose that the east
point is in front of the picture, the west point being be-
hind it. Then as the earth rotates the zenith Z will move
along the line Z L from Z towards L. The celestial meri-
dian always contains the celestial poles and the point Z,
wherever it may be. Hence the arcs of great circles join-
ing N.P. and S.P. in the figure are representatives of the
celestial meridian of this observer, at different times dur-
ing the period of the earth’s rotation. They have been
drawn to represent the places of the meridian at intervals
of 1 hour. That is, 12 of them are drawn to represent
12 consecutive positions of the meridian during a semi-
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revolution of the earth. In this time Z moves from Z to
L. 1In the next semi-revolution Z moves from L to Z,
along the other half of the parallel ZZ. In 24 hours
the zenith Z of the observer has moved from Zto L and
from L back to Z again. The celestial meridian has also
swept across the heavens from the position N.P., Z, Q, S,
8. P. through every intermediate position to N.P., L, E, O,
S.P., and from this last position back to N.P., Z, Q, S,
S.P. The terrestrial meridian of the observer has been
under it all the time. This real revolution of the celestial
meridian is incessantly repeated with every revolution of
the earth. The sky is studded with stars all over the
sphere. The celestial meridian of any place approaches
these various stars from the west, passes them, and leaves
them. Thisis the real state of things. Apparently the
observer is fixed. His terrestrial and celestial meridians
seem to him to be fixed, not only with reference to himself,
as they are, but to be fixed in space. The stars appear to
him to approach his celestial meridian from the east, to
pass it, and to move away from it towards: the west.
When a star crosses the celestial meridian it is said to
culminate. 'The passage of the star across the meridian is
called the fransit of that star. This phenomenon takes
place successively for each observer on the earth. Suppose
two observers, A and B, A being one hour (15°) east of
B in longitude. This means that the angular distance of
their terrestrial meridians is 15° (sce page 10). From what
we have just learned it follows that their celestial meri-
dians are also 15° apart. When B’s meridian is N.P.,
Z, Q, R, S.P., A’s will be the first one (in the figure)
beyond it; when B’s meridian has moved to this first posi-
tion, A’s will be in the second, and so on, always 15°






CHAPTER II.

THE RELATION OF THE EARTH TO THE HEAVENS—
(Continued.)

THE CELESTIAL SPHERE,

Systems of Co-ordinates.—Any great circlesof the celestial
sphere which pass through the two celestial poles are called
hour-circles. Each hour-circle is the celestial meridian of
‘some place on the earth.

The hour-circle of any particular star is that one which
passes through the star at the time. As the earth revolves,
different hour-circles, or celestial meridians, come to the
star.

In Fig. 18 let O be the position of the earth in the centre of
the celestial sphere V.Z S D. Let Zbe the zenith of the ob-
server at a given instant, and P, p, the celestial poles. By
definition P ZSpn NP is his celestial meridian. (Each
of these points has a name; let the student give the names
in order.) V8 is the horizon of the observer at the instant
chosen. PO N is his latitude. If P is the north pole, he
is in latitude 34° north. (See page 31.)

ECWD is the celestial equator; Z and W are the east
and west points. The earth is turning from W to Z. That
is, the celestial meridian which at the instant chosen in the
picture contains P Zp was in the position P D R p twelve
hours earlier.
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PC(C, PB, PV, PD are parts of hour-circles. If 4 is
a star, P B is the hour-circle of that star. As the earth
turns P B turns with it, and directly P B will have moved
away from A towards the top of the picture and soon PV
will pass through the star 4, which stands still. When it
does, PV will be the hour-circle of 4. At the instant
chosen P B is the hour-circle of 4. The stars inside the
circle VK are always above the observer’s horizon. /m is

Fia. 13,

half of the diurnal orbit of one of the north stars. All the
stars inside the circle SR are perpetually invisible to the
observer. orishalf of the orbit of one of these southern
stars. 'The north-polar distance of all those stars perpetu-
ally above the horizon is less than or equal to P N; the
south-polar distance of all the stars perpetually invisible is
less than or equal to p S, which is equal to P N. (= ¢.)
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Altitude and Azimuth.—Z @ is the vertical circle of the
star 4 at the instant chosen for making the picture. In
a few moments Z will have moved eastwards and a new
vertical circle will have to be drawn. G4 1is the altitude
of A at the instant; in a few moments it will be less. For
as Z moves towards the eastward, NV W S, the western hori-
zon of the observer, will move upwards (in the drawing)
and come nearer to 4, which stands still. Therefore the
altitude of A will diminish progressively. It is now G'4.

The azimuth of A is now N @, counted from the north
point. It will change as Z changes. Having the altitude
and azimuth of 4 at the instant, the observer at O can find
it in the sky. (See page 18.)

North-Polar Distance and Hour-Angle.—The north-polar
distance of 4 is PA. This will serve as one of a pair of
co-ordinates to point out the apparent position of 4 in the
sky.

The hour-angle of a star is the angular distance between
the celestial meridian of the place and the hour-circle of
that star. The hour-angle is counted from the meridian
towards the west from 0° to 360°, or from 0" to 24*. The
hour-angle of 4, at this instant, is ZP B. The hour-
angle of a star A is 0°.

The hour-angle is measured by the arc of the equator
between the celestial meridian and the foot of the hour-
circle through the star. The arc C' B measures the hour-
angle of 4 at the instant. Directly, Z will have moved away
to the east and C will move away also along the dotted part
of the line representing the equator, W C £ D.

Having the two co-ordinates P4 and C B, the observer
at 0 can find the star 4. It will be noticed that these two
co-ordinates, polar distance and hour-angle, differ in one
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respect from the two co-ordinates altitude and azimuth.
Both the latter change as the earth revolves on its axis. Of
the former only one changes; viz., the hour-angle. The
polar distance of a star remains the same, since it is the dis-
tance from a fixed point, the pole, to a fixed point, the star.

Right Ascension and North-Polar Distance—We can
devise a pair of co-ordinates neither of which shall change
as the earth revolves. This will clearly be convenient, for
this pair of co-ordinates will be the same for every observer
and for every hour of the day, whereas the others vary with
the time, and with the situation of the observer.

To select such a pair we have simply to use fixed points
in the celestial sphere to count from. The north pole will
do for one of these, and the north-polar distance of the star
will serve for one co-ordinate. This is measured, for the
star 4, on the hour-circle P B. Let us choose some fixed
point 7 on the equator to measure our other co-ordinate
from, and let us always measure it on the equator towards
the east from 0° to 360° (from O to 24"). That is, from
V through B, C, E, D, W, successively.

V B is the right ascension of A. The right ascension of
a star is the angular distance of the foot of the hour-circle
through the star from the vernal equinox, measured on the
celestial equator, towards the east.

Exactly what the vernal equinox is we shall find out
later on; for the present it is sufficient to define it as a
certain fixed point on the celestial equator.

If we have the right ascension and north-polar distance
of a star, we can point it out. Thus V' B and P4 define
the position of 4. Aslong as the pole, the star, and the
vernal equinox do mnot move relatively to each other these
two co-ordinates fix the position of the star, Their relative
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‘positions are not affected by the rotation of the earth, nor

by the position of the observer upon its surface. He may
be in any latitude or any longitude, and his zenith may be
anywhere in the whole sky, but the right ascension and
the north-polar distance of each star remain the same nev-
ertheless.

The right ascension of the star X is V'C. Of a star at E
itis VCE; of a star at D it is VOE D ; of a star at W
it is VCEDW,and so on.

Right Ascension and Declination.—Sometimes in place
of the north-polar distance of a star it is convenient to
use its declination.

The declination of a star is 1ts angular distance north or
south of the celestial equator.

The declination of 4 is BA, which is 90° minus PA.

The relation between N. P. D. and ¢ is

N.P.D.=90°—=6; 6=90°—N.P.D.

North declinations are 4; South declinations are —.

The declination of Zis CZ. (CZ is equal to P IV, since
each is equal to 90° — PZ. PN measures the latitude of
the observer whose zenith is Z. (See page 31.)

The latitude of a place on the earth’s surface is measured
by the declination of 1ts zenith.

This is the definition of the latitude which is used in
astronomy.

Co-ordinates of a Star.—In what has gone before we have
seen that there are various ways of expressing the apparent
positions of stars on the surface of the celestial sphere.
That one most commonly used in astronomy is to give the
right ascension and north-polar distznce (or declination) of
the star. 'The apparent position of the star is fixed by these



42 ASTRONOMY.

two co-ordinates. If we know its distance also, the abso-
lute position of the star in space is fixed by the three co-
ordinates. Thus we have a complete method of describing
the positions of the heavenly bodies.

Co-ordinates of an Observer.—To describe the position of
an observer on the surface of the earth we have to give his
latitude and longitude. His latitude is the declination of
his zenith; his longitude is the fixed angle between his
celestial meridian and the celestial meridian of Greenwich
(or Washington). Declination in the sky is analogous to
Latitude on the earth. Right ascension in the sky is anal-
ogous to Longitade on the earth, Both of these co- -ordi-
nates depend upon the position of his zenith, since his
longitude is nothing but the angular distance of his zenith
west of the zenith of Greenwich.

All this is extremely simple, but if it is clearly under-
stood the student has it in his power to answer a great
many interesting questions for himself.

‘We know, for example, that the sun is in the equator and at the
vernal equinox on March 21st of each year.

The student can determine for himself what appearances will be
presented on that day next year. He may proceed in this way: Draw
a circle to represent the celestial sphere. Take a point, P, of it to
be the position of the north pole in the sky. If the observer lives
in a place whose latitude is @ degrees north, his zenith will be
90° — @ from the north pole measured towards the south. Measure
off 90° — @ on the circle from P. The end of that arc is the zenith
of that observer, Z. PZ is an arc of his celestial meridian. Meas-
ure from P through Z 90°, and the end of that arc is on the equator,
@ say. Join P with the centre, 0, of the circle. This line is the
direction of the celestial pole. Join 0 and @, and this line (perpen-
dicular to P 0) is the direction of that point of the equator which is
highest above his horizon. Draw the line Z O; this is the vertical
line. Through O draw NV O 8 perpendicular to Z 0. Thisis the north
and south line of his horizon. Draw the ovals which represent (in
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perspective) the circles of the equator and of the horizon, Assume
a point, ¥, of the celestial equator. On March 21st of each year the
sun is there. When the sun is at the highest point @ of the equator
it is noon to this observer. The sun is on his meridian. Six hours
before this time the sun will rise to himj six hours after he will
set. It requires twenty-four hours for the point ¥ to be apparently
carried all round the equator, and the sun appears to go with the
point. Three months later the sun is about 90° of right ascension
and has a north-polar distance of 664°. The student can determine
in the same way the circumstances under which the sun will appear
to him to move on the 21st of next June when its north-polar distance
is 664°, or on December 21st, when its N. P. D. is 118}°.

The example that is here given is not for the purpose of teaching
the student what the motion of the sun is; that will be considered in
its proper order in this book. But it isto show him that if he wishes
_ to know about it he can find out for himself.

When he reads about the midnight sun that is visible in the Arctic
regions he can verify the facts for himself. Let him construct the
diagram we have described for a place whose latitude is 80° north
and see what sort of a diurnal orbit the sun will describe on the 21st
of June when its N. P. D. is 663°.

RELATION oF TIME TO THE SPHERE.

Sidereal Time.—The earth rotates uniformly on its axis;
that is, it turns through equal angles in equal intervals of
time.

This rotation can be used to measure any intervals of
time when once a unit of time is agreed upon. The most
natural and convenient unit is a day. There are various
kinds of days, and we have to take them as they are.

A sidereal day is the interval of time required for the
earth to rotate once on its azis. Or what is the same thing,
it is the interval of time between two consecutive tran-
sits of any star over the same celestial meridian. The
sidereal day is divided into 24 sidereal hours; each hour is
divided into 60 minutes; each minute into 60 seconds. In
making one revolution the earth turns through 360°, so that
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24 hours = 360°; also,
1 hour = 15°; 1° = 4 minutes.
1 minute = 15’; 1’ = 4 seconds.
1 second = 15"; 1" = 0.066 second.

When a star is on the celestial meridian of any place its
hour-angle is zero, by definition (see page 39). It is then
at its transit or culmination.

As the earth rotates, the meridian moves away (east-
wardly) from this star, whose hour-angle continually in-
creases from 0° to 860° or from 0 hours to 24 hours.
Sidereal time can then be directly measured by the honr-
angle of any star in the heavens which is on the meridian
at an instant we agree to call sidereal 0 hours. When this
star has an hour-angle of 90°, the sidereal time is 6 hours;
when the star has an hour-angle of 180° (and is again on
the meridian, but invisible unless it is a circumpolar star), it
is 12 hours ; when its hour-angle is 270°, the sidereal time
is 18 hoars; and, finally, when the star reaches the upper
meridian again, it is 24 hours or 0 hours. (See Fig. 13,
where £ C WD is the apparent diurnal path of a star in
the equator. It is on the meridian at C.)

Instead of choosing a sfar as the determining point
whose transit marks sidereal 0 hours, it is found more con-
venient to select that point in the sky from which the right
ascensions of stars are counted—the vernal equinox—the
point V in the figure. The fundamental theorem of si-
dereal time is: T%e hour-angle of the vernal equinox, or the
sidereal time, 1is equal to the right ascension of the meri-
dian; thatis, CV=VC. )

To avoid continual reference to the stars, we set a clock
80 that its hands shall mark 0 hours 0 minutes 0 scconds
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at the transit of the vernal equinox, and regulate it so that
its hour-hand revolves once in 24 sidereal hours. Such a
clock is called a sidereal clock.

Solar Time.—Time measured by the hour-angle of the
sun is called frue or apparent solar time. An apparent
solar day is the inferval of time between two consecutive
transits of the sun over the upper meridian. The instant
of the transit of the sun over the meridian of any place
is the apparent noon of that place, or local apparent noon.

When the sun’s hour-angle is 12 hours or 180°, it is
local apparent midnight.

The ordinary sun-dial marks apparent solar time. As
a matter of fact, apparent solar days are not equal. The
reason for this will be fully explained later. Hence our
clocks are not made to keep this kind of time, for if once
set right they would sometimes lose and sometimes gain
on such time.

Mean Solar Time.—A modified kind of solar time is
therefore used, called mean solar time. This is the time
kept by ordinary watches and clocks. It is sometimes
called civil time. Mean solar lime is measured by the hour-,
angle of the mean sun, a fictitious body which is imagined!
to move uniformly in the equator. The law according to
which the mean sun is supposed to move enables us to com-
pute its exact position in the heavens at any instant, and to
define this position by the two co-ordinates right ascension
and declination. Thus we know the position of this imagi-
nary body just as we know the position of a star whose
co-ordinates are given, and we may speak of its transit as

"if it were a bright material point in the sky. A mean
solar day 1is the interval of time between two consecutive
transits of the mean sun over the wpper meridian. Mean
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noon at any place on the earth is the instant of the mean
sun’s transit over the meridian of that place. Twelve hours
after local mean noon is local mean midnight. The mean
solar day is divided into 24 hours of 60 minutes each. Each
minute of mean time contains 60 mean solar seconds.
Astronomers begin the mean solar day at noon, W}llch 150
hours, and count round to 24 hours.

‘We have thus three kinds of time. They are alike in one point:
each is measured by the hour-angle of some body, real or assumed.
The body chosen determines the kind of time, and the absolute length
of the unit—the day. The simplest unit is that determined by the
uniformly rotating earth—the sidereal day; the most natural unit is
that determined by the sun itself—the apparent solar day, which,
however, is a variable unit; the most convenient unit is the mean
solar day, and this is the one chosen for use in our daily life.

Comparative Lengths of the Mean Solar and Sidereal
Day.—As a fact of observation, it is found that the sun
appears to move from west to east among the stars, about
1° daily, making a complete revolution around the sphere
in a year. It requires 365} days to move through 360°.

Hence an apparent solar day will be longer than a side-
real day. For suppose the sun to be at the vernal equinox
exactly at sidereal noon (0 hours) of Washington time on
March 21st; that is, the vernal equinox and the sun are

' both on the meridian of Washington at the same instant.
' In 24 sidereal hours the vernal equinox will again be on the

same meridian, but the sun will have moved eastwardly by
about a degree, and the earth will have to turn through
this angle and a little more in order that the sun shall
again be on the Washington meridian, or in order that it
may be apparent noon on March 22d. For the meridian
to overtake the sun requires about 4 minutes of sidereal
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time. The true sun does not move, as we have said, uni-
formly. The mean sun is supposed to move uniformly,
and to make the circuit of the heavens in the same time as
the real sun. Hence a mean solar day will also be longer
than a sidereal day, for the same reason that the apparent
solar day is longer. The exact relation is:

1 sidereal day =  0-997 mean solar day,

24 sidereal hours = 232 56™ 4°.091 mean solar time,
~=w= 1 mean solar day =  1.003 sidereal days,
" == 24 mean solar hours = 24h 8m 562555 sidereal time,

and
36624222 sidereal days = 36524222 mean solar days.

Local Time.—When the mean sun is on the meridian of
a place, as Boston, it is mean noon at Boston. When the
mean sun is on the meridian of St. Louis, it is mean noon
at St. Louis. St. Louis being west of Boston, and the
earth rotating from west to east, the local noon of Boston
occurs before the local noon at St. Louis. In the same
way the local sidereal time at Boston at any given instant
is expressed by a larger number than the local sidereal time
of St. Louis at that instant. =

The sidereal time of mean noon is given in the astro-
nomical ephemeris for every day of the year. It can be
found within ten or twelve minutes at any time by remem-
bering that on March 21st it is sidereal 0 hours about
noon, on April 21st it is about two hours sidereal time at
noon, and so on through the year. Thus, by adding two
hours for each month, and four minutes for each day after
the 21st day last preceding, we have the sidereal time at
the noon we require. Adding to it the number of hours
since noon, and one minute more for every fourth of a day
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on account of the constant gain of the clock (4™ daily), we
have the sidereal time at any moment.

Ezample.—Find the sidereal time on-July 4th, 1881, at 4 o’clock
AM. We have:

A m

June 21st, 3 months after March 21st; to be X 2, 6 0
July 8d, 12 days after June 21st; X 4, 0 48
4 A.M., 16 hours after noon, nearly £ of a day, 16 3
22 51

This result is within a minute of the exact value.

Relation of Time and Longitude.—Considering our civil
time which depends on the sun, it will be seen that it is
noon at any and every place on the earth when the sun
crosses the meridian of that place, or, to speak with more
precision, when the meridian of the place passes under the
sun. In the lapse of 24 hours the rotation of the earth on
its axis brings all its meridians under the snn in succession,
or, which is the same thing, the sun appears to pass in suc-
cession over all the meridians of the earth. Ilence noon
continually travels westward at the rate of 15° in an hour,
making the circuit of the earth in 24 hours. The differ-
ence between the time of day, or the local time asg it is called,
at any two places will be in proportion to their difference
of longitude, amounting to one hour for every 15 degrees of
longitude, four minutes for every degree, and so on.  Vice
versa, if at the same real moment of time we can determine
the local times at two different places,* the difference of these
times multiplied by 15 will give the difference of longitude.

The longitudes of places are determined astronomically
on this principle. Astronomers are, however, in the habit
of expressing the longitude of places on the earth like the

* Aud compare the two, by telegraph for example,
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right ascensions of the heavenly bodies, not in degrees, but
in hours. For instance, instead of saying that Washington
is 77° 3’ west of Greenwich, we commonly say that it is 5
hours 8 minutes 12 seconds west, meaning that when it is
noon at Washington it is & hours 8 minutes 12 seconds
after noon at Greenwich, This course is adopted to prevent
the trouble and confusion which might arise from constantly
having to change hours into degrees and the reverse.

Where does the Day Change?—A question frequently
asked in this connection is, Where does the day change?
It is, we will suppose, Sunduy noon at Washington. That
noon travels all the way round the carth, and when it gets
back to Washington again it is Monday. Where or when
did it change from Sunday to Monday? We answer,
wherever people choose to make the change. Navigators
make the change occur in longitude 180° from Greenwich.
As this meridian lies in the Pacific Ocean, and meets
scarcely any land through its course, it is very convenient for
this purpose. If its use were universal, the day in question
would be Sunday to all the inhabitants east of this line, and
Monday to every one west of it. But in practice there have
been some deviations. As a general rale, on those islands
of the Pacific which were settled by men travelling east the
day would at first be called Monday, even though they
might cross the meridian of 180°. Indeed the Russian
settlers carried their count into Alaska, so that when our
people took possession of that territory they found that
the inhabitants called the day Monday when they them-
selves called it Sunday. These deviations have, however,
almost entirely disappeared, and with few exceptions the
day is changed by common consent in longitude 180° from
Greenwich.
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DETERMINATIONS OF TERRESTRIAL LONGITUDES.

Owing to the rotation of the earth, there isno such fixed
correspondence between meridians on the earth and among
the stars as there is between latitude on the earth and de-
clination in the heavens. The observer can always deter-
mine his latitude by finding the declination of his zenith,
but he cannot find his longitude from the right ascension
of his zenith with the same facility, because that right as-
cension is constantly changing. To determine the longi-
tude of a place, the element of time as measured by the
diurnal motion of the earth necessarily comes in. Con-
sider the plane of the meridian of a place extended out to
the celestial sphere so as to mark out on the latter the
celestial meridian of the place. Take two such places,
Washington and San Francisco for example; then there
will be two such celestial meridians cutting the celes-
tial sphere so as to make an angle of about forty-five de-
grees with each other in this case. Let the observer imagine
himself at San Francisco. . Then he may conceive the
meridian of Washington to be visible on the celestial sphere, -
and .to extend from the pole over toward his south-east
horizon so as to pass at a distance of about forty-five degrees
east of his own meridian. It would appear to him to be at
rest, although really both his own meridian and that of
Washington are moving in consequence of the earth’s rota-
tion. Apparently the stars in their course will first pass
the meridian of Washington, and about three hours later
will pass his own meridian. Now it is evident that if he
can determine the interval which the star requires to pass
from the meridian of Washington to that of his own place,
he will at once have the difference of longitude of the tweo
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places by simply turning the interval in time into degrees
at the rate of fifteen degrees to each hour.

The difference of longitude between any two places de-
pends upon the angular distance of the terrestrial (or celes-
tial) meridians of these two places and not upon the motion
of the star or sun which is used to determine this angular
difference, and hence the longitude of a place is the same
whether expressed as the difference of two sidereal or of
two solar times. The longitude of Washington west from
Greenwich is 5* 8= or 77°, and this is in fact the ratio of
the ‘ahgular distance of the meridian of Washington from
that of Greenwich, to 24 hours or 360°. The angle between
the two meridians is 447 of 24 hours, or of a whole circum-
ference.
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It is thus plain that the difference of longitude of any two
places is the same as the difference of their simultaneous
local times; and this whether the local times spoken of
are both sidereal or both solar.

METHODS OF DETERMINING THE DIFFERENCE OF LONGI-
TUDE OF Two PLACES ON THE EARTH,

Every purely astronomical method depends upon the
principle we have just laid down,

It is of vital importance to seamen to be able to deter-
mine the longitude of their vessels. The voyage from Liv-
erpool to New York is made weekly by scores of steamers,
and the safety of the voyage depends upon the certainty
with which the captain can mark the longitude and lati-
tude of his vessel upon the chart.

The method used by a sailor is this: with a sextant (see
Chapter IIL.) the local time of the ship’s position is deter-
mined by an observation of the sun. That is, on a given
day he can set his watch so that its hands point to twelve
hours when the sun is on his meridian on that day. He
carries a chronometer (which is merely a very fine watch)
whose hands point always to Greenwich time. Suppose
that when the ship’s time is 0® or noon the Greenwich
time is 3% 20=. Evidently he is west of Greenwich 3t 20™,
since that is the difference of the simultaneous local times,
and since the Greenwich time is later. Hence he is some-
where on the meridian of 50° west. If he has determined
the altitude of the pole or the declination of his zenith in
any way, then he hag his latitude also. - If this should be
45° north, the ship is in the regular track between New
York and Liverpool, and he can go on with safety.
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‘When the steamer Faraday was laying the direct cable she got her
longitude every day by comparing her ship’s time (found by obser-
vation on board) with the Greenwich time telegraphed along the cable
and received at the end of it which she had on her deck. Longitudes
may be determined in the same way on shore.

From an observatory, as Washington, the beats of a clock are sent
out by telegraph along the lines of railway; at every railway station
and telegraph office the telegraph sounder beats the seconds of the
Washington clock. Any one who can set his watch to the local time
of his station and who can compare it with the signals of the Wash-
ington clock (which are sent at Washington noon, daily cxcept Sun.
day) can determine for himself the difference of the simultaneous
local times of Washington and of his station, and thus his own longi-
tude east or west from Washington.

METHODS OF DETERMINING THE LATITUDE OF A PLACE
ON THE EARTH.

Latitude from Circumpolar Stars.—In the figure sup-
pose Z to be the zenith of the observer, H Z £ N his me-

Fia. 15.

ridian, P the north pole, H R his horizon. Suppose Sand
& to be the two points where a circumpolar star crosses
the meridian, as it moves around the pole in its apparent
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diurnal orbit. P S= P§ is the star’s north-polar dis-
tance, and P H = @ = the observer’s latitude.
'’

IS4 _ gp_ oo _ g
zZ8+ zZs
—= :
We can measure Z S and ZS’, the zenith distances of the
star in the two positions, by the meridian circle or by the
sextant, as will be explained in the next chapter. Hence
having these zenith distances we have the latitude of the
place.

Latitude by the Meridian’Altitude of the Sun or a Star.
—In the figure let Z be the observer’s zenith, P the pole,
and @ the intersection of
the celestial equator with the
meridian # Z H, The alti-
tude of the star S is meas-
ured when the star is on the
meridian. It is known to
be on the meridian when we
find its altitude to be a max-

Fie. 18. imum. From the measored
altitude of the star S we deduce its zenith distance Z.8 =&
=90°— H 8. Its declination is taken from a catalogue of
stars if it is a star, or from the Nautical Almanac if it is
the sun. In either case the declination Q S is known.

ZQ=Q8+28;
= 06 434
If the body culminates north of the zenith at &,
ZQ=Q8 —28';
¢ ) 6 e av

Therefore @ = 90° —
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This is the method uniformly employed at sea, where the
altitude of the sun at apparent noon is daily measured.

PARALLAXES AND SEMIDIAMETERS OF THE HEAVENLY
Bob1ESs.

The apparent position of a body on the celestial sphere
remains the same as long as the observer is fixed, as has
been shown (see page 20). If the observer changes his
place and the star remains in the same position, the ap-

Fia. 17,

parent position of the star will change. To show this let
CH’ be the earth, C' being its centre. S and §” are the
places of two observers on the surface. Z’ and Z” are
their zemiths in the celestial sphere H’P". P is a star.
&’ will see P in the apparent position P’. S’ will see P
in the apparent position P’. That is, two different ob-
servers see the same object in two different apparent
positions. If the observer &’ moves along the surface
directly to §’, the apparent position of P on the celes-
tial sphere will appear to move from P’ to P".
L~  This change is due to the parallaz of P,
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The parallax of a body due to a change in the position
of the observer, is the alteration in the apparent position
of the body caused by that change.

If the observer at S’ could move to the centre of the
earth along the line §’C, the apparent position of P would
move from P’ to P,. If the observer at §” could move
from 8" to C along §"C, the apparent position of P would
move from P’ to P,.

In the triangle P 8" C the following parts are known:

C P = 4 = the geocentric distance of P,
08 = p’ = the radius of the earth at §,

and the angle 8"PC = P’P P, is the parallaz of P.

For the change of apparent position of P from P’ to P,
is due to the change of the point of observation from §’ to
C.

Similarly the angle S"PC = P"PP, is the parallax of P
relative to a change of the observer from §” to C.

Horizontal Parallax.—Clearly the parallax of P differs
for observers differently situated on the earth, and it is
necessary to take some standard parallax for each observer.
Such a standard is the korizontal parallaz.  Suppose P
to be in the horizon of the observer &§’; then Z’S"P
will be 90°, as will also the angle PS’C. In the triangle
S’ P(C three parts will then be known and the horizontal
parallax (the angle at P when P is in the horizon) can be
found. It will be the same for the observer at §”. When
P isin the horizon of S’, Z"S"P is aright angle, as is also
PS"C. CP and C'S" are known and thus the horizontal
parallax of P ig determined.

If C P, the distance of P, increases, other things remain-
ing the same, the parallax of P will diminish.
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The student can prove this for himself by drawing the
figure on the same scale as here given, making C' P larger.

The angles at P (the parallaxes) will become smaller and
smaller the larger O P is taken. Hence the magnitude of
the parallax of a star or a planet depends upon its distance
from us.

Suppose an observer at the point P looking at the earth’s
radius 8’C. The angle subtended by that semidiameter
is the same as the parallax of P. Hence we may say that
the parallax of a body with reference to an observer on the
earth is measured byntlze angle subtended at _the body by
that semidiameter of the earth which passes through the
observer’s station.

As the point P is carried further and further away from
the earth, the angle subtended by 8’ C, for example, becomes
less and less. If P were at the distance of the moon, this
angle would be about 57’; if at the distance of the sun,
it would be about 84". §'C' is roughly 4000 miles; it
subtends an angle of 57" at the distance of the moon. 70
miles (57 X 70 = 3990) would subtend an angle of about
1/, and 3437’ would be about 240,000 miles. This is the
distance of the moon from the earth. (See pages 4, 5.)

Again, 4000 m-les subtends an angle of 8”.5 at the distance
of the sun. 470.7 miles (470.7 X 85 = 4000. +) would
subtend an angle of 1%, and 206,264".8 would be 97,000,000
miles, and this is about the distance of thesun. By taking
the exact values of the radius of the earth and of the solar
parallax, this distance is found to be about 93,000,000 miles.

The example shows the method of calculating the sun’s
distance when we have two things accurately given : first,
the dimensions of the earth; and second, the parallax of
the sun,
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Annual Parallax.—We have seen that for the moon the
parallax is about 1°; for the sun it is only 8”; for some of
the more distant planets it is considerably less.

For Jupiter it is about 2"; for Saturn less than 1'; for
Neptune about 0".3.

Let us remember what this means. It means that 4000
miles, the earth’s radius, would subtend at the distance of
Neptune an angle of only 3; of a single second of are.

The parallax of the moon is determined by observation,
and the observation consists in measuring the angle which
the radius of the earth would subtend if viewed from the
moon’s centre. 57’ is an angle large enough to be deter-
mined quite accurately in this way. There would be but a
small per cent of error. Even8’, thesun’s parallax, can be
measured so as to have an error of not more than 2 or 3
per cent.

But this method will not do to measure anything much
smaller than 8". The parallax of a fixed star, for example,
is not g5o%555 part as large as the sun’s parallax: and this
is too minute a quantity to be deduced by these methods.
We therefore use for distant bodies a parallax which does
not depend on the radius of the earth, but upon the radius
of the earth’s ordi¢ around the sun.

The annual parallax of a body ts the angle subtended at
the body by the radius of the earth’s orbit seen at right
angles.

For example, in Fig. 18 suppose that €' now represents
the sun, around which the earth S’ moves in the nearly
circular orbit 8’S"H’. S§’Cis no longer 4000 miles as in
the last example, but it is 93,000,000 miles. Suppose P to
be, again, a body whose annual parallaz is S’ P C (suppos-
ing PS’C to be a right angle).
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Some of the nearest fixed stars have an annual parallax
of nearly 1. Hence the nearest of them are not nearer
than 206,264 times 93,000,000 miles. The greater number
of them have a parallax of not more than ;.

Hence their distances cannot be less than

10 X 206,264 X 93,000,000 miles.

To the student who has understood the simple rules given
on pages 4 and 5 these deductions will be plain.

Fia. 18.

Semidiameters of the Heavenly Bodies.—The angular
semidiameter of the sun as seen from the earth is 961"
Hence its diameter is 1922”". Its real diameter in miles is
therefore about 880,000, as its distance is 93,000,000 miles.

The angular semidiameter of the moon as seen from the
earth isabout 153’. Hence its real diameter is about 2000
miles, its distance being about 240,000 miles.

In the same way, knowing the distance of any planet and
measuring its angular semidiameter, we can compute its
dimensions in miles,



CHAPTER IIIL

ASTRONOMICAL INSTRUMENTS.

General Account.—In a general way we may divide the
instruments of astronomy into two classes, seeing instru-
ments and measuring instruments.

The seeing instruments are telescopes; they have for
their object either to enable the observer to see faint objects
as comets or small stars, or to enable him to see brighter
stars with greater precision than he could otherwise do.
How they accomplish this we shall shortly explain. The
measuring instruments are of two classes. The first class
measures tntervals of fime. The second measures angles.
A clock is a familiar example of the first class; a divided
circle of the second.

Let us take these in the order named.

The Refracting Telescope.—The refracting telescope is
composed of two essential parts, tlie object-glass or objec-
tive and the eye-piece.

The object-glass is for the sole purpose of collecting the
rays of light which emanate from the thing looked at, and
for making an ¢mage of this thing at a point which is called
the focus of the objective.

The eye-piece has for its sole object to magnify the image
so that the angular dimensions of the thing looked at will
appear greater when the telescope is used thau when it is
not,
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For example, in the figure suppose B[ to
be a luminous surface. Every point of it is
throwing off rays of light in straight lines in
every possible direction. Let us consider the
point 1. The rays from [/ proceed in every
direction in which we can draw a straight line
through I.  Suppose all such straight lines
drawn. Let OO’ be the objective of a tele-
scope pointed towards BI. All the rays from
I which fall on 00’ lie between the lines 10,
and JO’. No others can reach the objective,
and all others which proceed from I are
wasted so far as seeing / with this particu-
lar telescope is concerned.

The action of the convex lens 00’ is to
bend every ray which passes through it to-
wards its axis B4. IO is bent down to OF;
10’ is bent up to O'I’; and so for every
other ray except the ray from 7 through the
centre of OO’ which is bent neither up nor
down, but which goes straight on to I’ and
beyond. o g

Every one of the rays of light sent out by
1 between the limits 70 and 10’ finally passes
through 7. I is a point of light, and so is
I’. 'The point I’ is the focus of 00’ with
respect to 7.

Similarly B sends out light in every direc-
tion. Only those rays which chance to fall
between BO and B’ are useful for seeing
B with this particular telescope. Every one
of this bundle of rays comes to a focus on the

.
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intersection of the lines I”..... and B4. Inthe same way
every point of the object BI has a corresponding image on
the line I"...... somewhere between I’ and the axis BA.
Jl o omnBe is the focal plane of the objective with respect to
the object B, and the image of BI lies in this focal plane.
The objective has now done all it can; it has gathered
every possible ray from ‘the object BI and presents every
one of these rays concentrated in an image of this object
in the focal plane at I’......

Notice two things: first, the ¢mage is inverted with re-
spect to the object; I is above B; the image of I is below
the image of Bj; second, the rays from B...... I do not
stopat I’...... , but go on indefinitely to the left, always
diverging from the image.

The Eye-piece.—The eye-piece is essentially a microscope
which is simply to magnify the angular dimensions of the
ob]ec{'a‘s'it is seen in the telescope; that is, to magmfy the
image. To see well with a microscope it must be close to
the thing magnified. It cannot be placed near to BI in
general, for BI may be a mile or ten millions of miles
away. So the place to put it is near to the image of BI, a
little above the focal plane I”...... in the figure.

The eye must be placed a little further above still,
at such a position as to see well with the eye-piece. That
is, close to it. Now fix an objective in one end of a tube
and an eye-piece in the other end and you have a refracting
telescope. The more powerful the microscope used as an
eye-piece the higher the magnifying power of the combina-
tion. We increase the magnifying power of any telescope
by changing the eye-piece.

The Objective.—As a matter of fact the objective is usu-
ally made of two glasses like the figure, where the arrow
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shows the direction in which the rays come to it from the
object. If we use a tingle ob-

jective we find that the image of v
the object is colored ; that is, of __CGrown.
different colors from its natural :

tints. We find that by using a ' Fhnt.

double objective made of two Fia. 20.

different klnds of glass this can be corrected. This is ex-
plained in Optics under the head of Achromatism or Chro-
matic Aberration.

Light-gathering Power.—It is not merely by magnifying
that the telescope assists the vision, but also by increasing
the quantity of light which reaches the eye from the object
at_which we look. Indeed, should we view an object
thrm an instrument which magnified but did not in-
crease the amount of light received by the eye, it is evident
that the brilliancy would be diminished in proportion as
the surface of the image was enlarged, since a constant
amount of light would be spread over an increased surface;
and thus, unless the light were very bright, the object might
become so darkened as to be less plainly seen than with the
naked eye. How the telescope increases the quantity of
light will be seen by considering that when the unaided
eye looks at any object, the retina can only receive so many
rays as fall upon the pupil of the eye. By.theuse of the
telescope it is evident that as many rays can be brought to
the retina as fall on the entire object-glass. The pupil of
the human eye, in its normal state, has a diameter of about
one fifth of an inch, and by the use of the telescope it is
virtnally increased in surface in the ratio of the square of
the diameter of the objective to the square of one fifth of
an inch; that is, in the ratio of the surface of the objective
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to the surface of the pupil of the eye. Thus, with a two-
inch aperture to our telescope, the number of rays collected
is one hundred times as great as the number collected with
the naked eye.

With a 5-inch obJect glass the ratiois 625to 1

“ 10 ¢« “  2500to1
6« 15 ¢ 6 “« & 5,625 to 1
« 20 ¢ € “«© “« 10'000 to 1
‘6 26 ‘"’ € X3 ‘“ 16'900 to 1
6 36 € € 6 u 32’400 to 1

When a minute object, like a small star, is viewed, it is
necessary that a certain number of rays should fall on the
retina in order that the star may be visible at all. It is
therefore plain that the use of the telescope enables an
observer to see much fainter stars than he could detect with.
the naked eye, and also to see faint objects much better
than by unaided vision alone. Thus, with a 26-inch tele-
scope we may sce stars so minute that it would require the
collective light of many thousands to be visible to the
unaided eye. :

Eye-piece.—In the skeleton form of telescope before de-
seribed the eye-piece as well as the objective was considered
as consisting of but a single lens. But with such an eye-
piece vision is imperfect, except in the centre of the ficld,
from the fact that the image does not throw rays in every
direction, but only in straight lines awayfrom the objec-
tive. Hence the rays from ncar the edges of the focal
image fall on or near the edge of the eye-piece, whence
arises distortion of the image formed on the retina, and loss
of light. To remedy this diffieulty a lens is inserted at or
very near the place where the focal i ;mage is formed, for the
purpose of throwing the different pencxls of rays which
emanate from the several parts of the image, toward the
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axis of the telescope, so that they shall all pass nearly
through the centre of the eye-lens proper. These twe
lenses are together called the eye-piece.

There are some small differences of detail in the con-
struction of eye-pieces, but the general principle is the
same in all.

The figure shows an eye-piece drawn accurately to scale. OI is
one of the converzing pencils from the object-glass which forms one
point (I) of the focal image Ta. This image is viewed by the field-
lens I of the eye-piece as if it were areal object, and the shaded pencil
between # and E shows the course of these rays after deviation by 7.
1f there were no eye-lens B, an eye properly placed beyond F would
see an image at I'a’. The eye-lens Ereceives the pencil of rays, and
deviates it to the observer’s eye placed at such a point that the whole
incident pencil will pass through the pupil and fall on the retina, and
thus be effective. As we saw in the figure of the refracting telescope,

Fia. 21,

every point of the object produces a pencil similar to O, and the
whole surfaces of the lenses #'and E are covered with rays. All of
these pencils passing through the pupil go to make up the retinal
image. This image is referred by the mind to the distance of distinct
vision (about ten inches), and the image AI" represents the dimen-
sion of the final image relative to the imagze al as formed by the ob-

"

jective, andAI is evidently the magnifying power of this particular

al
eye-piece used in combination with this particular objective. AE =
10 in.
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Reflecting Telescopes.—As we have seen, one essential part of a
refracting telescope is the objective, which brings all the incident rays
from an object to one focus, forming there an image of that object.
In reflecting telescopes (reflectors) the objective is a mirror of specu-
Jum metal or silvered glass ground to the shape of a paraboloid. The
ficure shows the action of such a mirroron a bundle of parallel rays,
which, after impinging on it, are brought by reflection to one focus
F. The image formed at this focus may be viewed with an eye-
piece, as in the case of the refracting telescope.

The eye-pieces used with such a mirror dre of the kind already
described. In the figure the eye-piece would have to be placed to

Fia. 22.

the right of the point F, and the observer’s head would thus interfere
with the incident light. Various devices have been proposed to rem-
edy this inconvenience, of which the most simple is to interpose a
small plane mirror, which is inclined 45° to the line AC, just to the
left of #. This mirror will reflect the rays which are moving towards
the focus # down (in the figure) to another focus outside of the main
beam of rays. At this second focus the eye-piece is placed and the
observer looks into it in a direction perpendicular to AC.

The Telescope in Measurement.—A telescope is generally
thought of only as an instrument to assist the eye by its
magnifying and light-gathering power in the manner we
have described. But it has a very important additional
function in astronomical measurements by enabling the
astronomer to point at a celestial object with a certainty
and accuracy otherwise unattainakle. This function of
the telescope was not recognized for more than half a cen-
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tury after itsinvention, and after a long and rather acri-
monious contest between two schools of astrcnomers.
Until the middle of the seventeenth century, when an
astronomer wished to determine the altitude of a celestial
object, or to measure the angular distance between two
stars, he was obliged to point his sextant or other meas-
uring instrument at the object by means of ‘‘ pinnules.”
These served the same purpose as the sights on a rifle. In
using them, however, a difficulty arose. It was impossille
for the observer to have distinet vision both of the object
and of the pinnules at the same time, because when the
eye was focused on either pinnule, or on the object, it was
necessarily out of focus for the others. The only way to
diminish this difficulty was to lengthen the arm on which
the pinnunles were fastened so that the latter should be ag
far apart as possible. Thus TycHo BRAHE, before the
year 1600, had measuring instruments very much larger
than any in use at the present time. But this plan only
diminished the difficulty and could not entirely obviate it,
because to be manageable the instrument must not be very
large.

About 1670 the English and French astronomers found
that by simply inserting fine threads or wires exactly in
the focus of the object-glass, and then pointing it at the
object, the image of that object formed in the focus could
be made to coincide with the threads, so that the observer
could see the two exactly superimposed upon each other.
When thus brought into coincidence, it was obvious that
the point of the object on which the wires were set was in
a straight line passing through the wires, and through the
centre of the object-glass. So exactly could such a point-
ing be made, that if the telescope did not magnify at all
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(the eye-piece and object-glass being of equal focal length),
a very important advance would still be made in the ac-
curacy of astronomical measurements. This line, passing
centrally through the telescope, we call the line of colit-
mation of the telescope, 4 B in Fig. 19. If we have any
way of determining it, it is as if we had an indefinitely long
pencil extended from the earth to the sky. If the observer
simply sets his telescope in a fixed position, looks through
it and notices what stars pass along the threads in the eye-
piece, he knows that all those stars lie in the axis of col-
limation of his telescope at that instant,

By the diurnal motion a pencil-mark, as it were, is thus
drawn on the surface of the celestial sphere among the
stars, and the direction of this pencil-mark can be deter-
mined with far greater precision by the telescope than with
the naked eye.

CHRONOMETERS AND CLOCKS.

We have seen that it is important for various purposes
that an observer should be able to determine his local time
(see page 52). This local time is determined most accu-
rately by observing the transits of stars over the celestial
meridian of the place where the observer is. In order to
determine the moment of transit with all required accuracy,
it is necessary that the time-pieces by which it is measured
shall go with the greatest possible precision. There is no
great difficulty in making astronomical measures to a sec-
ond of are, and a star, by its diurnal motion, passes over
this space in one fifteenth of a second of time (see page
44). It is therefore desirable that the astronomical clock
shall not vary from a uniform: rate more than a few
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hundredths of a second in the course of a day. It is
not, however, necessary that it should always be perfectly
correct; it may go too fast or too slow without detracting
from its character for accuracy, if the intervals of time
which it tells off—hours, minutes, or seconds—are always
of exactly the saume length, or, in other words, if it gains
or loses exactly the same amount every hour and every
day.

The time-pieces used in astronomical observation are the
chronometer and the clock.

The chronometer is merely a very perfect watch with
a balance-wheel so constructed that changes of tempera-
ture have the least possible effect upon the time of its
oscillation. Such a balance is called a compensation bal-
ance.

The ordinary house-clock goes faster in cold than in
warm weather, because the pendulum-rod shortens under
the influence of cold. This effect is such that the clock
will gain about one second a day for every fall of 3° Cent.
(5°.4 Fahr.) in the temperature, supposing the pendalum-
rod to be of iron. Such changes of rate would be entirely
inadmissible in a clock used for astronomical purposes.
The astronomical clock is therefore provided with a com-
pensation pendulum, by which the disturbing effects of
changes of temperature are avoided.

The correction of a clock is the quantity which it is necessary to
add to the indications of the hands to obtain the true time. Thus if
the correction of a sidereal clock is - 1™ 105.07 and the hands point
to 21t 13= 142,50, the correct sidereal time is 21t 14™ 24°.57.

The rate of a clock is the daily change of its correction; i.¢., what
it gains or loses daily.
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Tt consists essentially of a telescope I'T mounted on an axis V'V
at right angles to it. The ends of this axis terminate in accurately
cylindrical pivots which rest in metallic bearings V'V which are
shaped like the letter Y, and hence called the Y’s.

These are fastened to two pillars of stone, brick, or iron. Two
counterpoises W W are connected with the axis as in the plate, so as
to take a Jarge portion of the weight of the axis and telescope from
the Y’s, and thus to diminish the friction upon these and to render
the rotation about ¥ ¥V more easy and regular. In the ordinary use
of tire transit; the line V' ¥ is placed accurately level and also perpen-
dicular to the meridian, or in the east and west line. To effect this
‘“adjustment ” there are two sets of adjusting screws, by which the
ends of ¥ Vin the Y’s may be moved either up and down, or north
and south. The plate gives the form of transit used in permanent
observatories, and shows the observing chair C, the reversing carriage
R, and the level L. The arms of the latter have Y’s, which can be
placed over the pivots V' V.

The line of collimation of the transit telescope is the line drawn
through the centre of the objective perpendicular to the rofation
azis V'V.

The reticle is a network of fine spider-lines placed in the focus of
the objective.

In Fig. 24 the circle represents the field of view of a transit as seen
through the eye-piece. The seven vertical
lines, I, IT, III, IV, V, VI, VII, are seven
fine spider-lines tightly stretched across a
hole in a metal plate, and so adjusted as
to be perpendicular to the direction of a |
star’s apparent diurnal motion. The hori-
zontal wires, guide-wires, a and b, mark the
centre of the field. The field is illuminated |
at night by a lamp at the end of the axis |
which shines through the hollow interior of
the latter, and causes the field to appear
bright. The wires are dark against a bright
ground. The Une of sight is a line joining the centre of the objective
and the central one, IV, of the seven vertical wires.

The whole transit is in adjustment when, first, the axis V¥V is
horizontal; second, when it lies east and west; and third, when the
line of sight and the line of collimation coincide. When these condi-
tions are fulfilled the line of sight intersects the celestial sphere in the
meridian of the place, and when 7'7 is rotated about ¥ ¥ the line of
sight marks out the celestial meridian of the place on the sphere.

F1e. 4.
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The clock stands near the transit instrument. The times
when a star passes the wires I-VII are noted. The average
of these is the time when the star was on the middle thread,
or, what is the same thing, on the celestial meridian. At
that instant its hour-angle is zero. (See page 39.)

The sidereal time at that instant is the hour-angle of the
vernal equinox (see page 44). This is measured from the
meridian towards the west. ‘The right ascension of the
star which is observed is the same quantity, measured from
the vernal equinox towards the east. As the star is on
the meridian, the two are equal. Suppose we know the
right ascension of the star and that it is @. Suppose the
clock time of transit is 7. It should have been a if the
clock were correct. The correction of the clock at this
instant is thus a — T

This is the use we make of stars of Znown right ascen-
gions. By observing any one of them we can get a value of
the clock correction.

Suppose the clock to be correct, and suppose we note that
a star whose right ascension is unknown is on the wire IV
at the time @’ by the clock. a’ is then the right ascension
of that star. In this way the positions of stars, or of the
sun and planets (in right ascension only), are determined.

THE MERIDIAN CIRCLE.

The meridian circle is a combination of the transit in-
strument with a graduated circle fastened to its axis and
moving with it. A meridian circle is shown i Fig. 25.
It has two circles finely divided on their sides. The grad-
uation of each circle is viewed by four microscopes. The
microscopes are 90° apart. The cut shows also the hang-
ing level by which the errvor of level of the axis is found.
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The instrument can be used as a transit to determine
right ascensions, as before described. It can be also used
to measure declinations in the following way: If the
telescope is pointed to the nadir, a certain division of

the circles, as &, is under the first microscope.* We can
make the nadir a visible point by placing a basin of quick-
silver below the telescope and looking in it through the tel-
escope. We shall see the wires of the reticle and also their

* Or opposite to & stationary pointer fixed to the pier.
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reflected images in the quicksilver. When these coincide,
the telescope points to the nadir. If it is then pointed to
the pole, the reading will change by the angular distance
between the nadir and the pole, or by 90° 4 @, @ being the
latitude of the place (supposed to be known). The polar
reading P of the circle is thus known when the nadir
reading NV is found. If the telescope is then pomnted to
various stars of unknown polar distances, p’, p’’, p’”, etc.,
as they successively cross the meridian, and if the circle
readings for these stars are P’, P’/, P'", etc., it follows
that p'=P'—P; p'’ = P""— P; p'"" = P’"" — P; ete.
Thus the meridian circle serves to determine by observa-
tion doth co-ordinates of the apparent position of a body.

THE EQUATORIAL.

An equatorial telescope is one mounted in such a way that
a star may be followed through itg diurnal orbit by turning
the telescope about one axis only. The equatorial mount-
ing consists essentially of a pair of azes at right angles
to each other. One of these SV (the polar axzis) is direct-
ed toward the elevated pole of the heavens, and it there-
fore makes an angle with the horizon equal to the latitude
of the place (p. 31). Thisaxis can be turned about its own
axial line. On one extremity it carries another axis LD
(the declination axis), which is fixed at right angles to it,
but which can again be rotated about ifs axial line.

To this last axis a telescope is attached, which may either
be a reflector or a refractor. It is plain that such a tele-
scope may be directed to any point of the heavens; for we
can rotate the declination axis until the telescope points to
any given polar distance or declination. Then, keeping
the telescope fixed in respect to the declination axis, we can
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rotate the whole instrument as one mass about the polar
axis until the telescope points to any portion of the parallel
of declination defined by the givgn right ascension or hour-
angle.

If we point such a telescope to a star when it is rising (doing this
by rotating the telescope first about its declination axis and then
about the polar axis), and fix the telescope in this position, we can,
by simply rotating the whole apparatus on the polar axis, cause the
telescope to trace out on the celestial sphere the apparent diurnal
path which this star will appear to follow from rising to setting. In
such telescopes a driving-clock is so arranged that it can turn the
telescope round the polar axis at the same rate at which the earth it-
self turns about its own axis of rotation, but in a contrary direction.
Hence such a telescope ence pointed at a star will continue to point
at it as long as the driving-clock is in operation, thus enabling the
astronomer to make such an examination or observation of it as is
required. If we place a photographic plate in the focus of a suitable
objective, we can obtain a permanent picture of the star-groups to
which it is pointed.

THE SEXTANT.

The sextant is a portable instrument by which the altitudes of
celestial bodies or the angular distances between them may be
measured. It is used chiefly by navigators for determining the lati-
tude and the local time of the position of the ship. Knowing the
local time, and comparing it with a chronometer regulated on Green-
wich time, the longitude becomes known and the ship’s place is
fixed. (See page 52.)

It consists of an arc of a divided circle usually 60° in extent,
whence the name. This arc isin fact divided into 120 equal parts,
eack marked as a degree, and these are again divided into smaller
spaces, so that by means of the vernier at the end of the index-arm
M S an arc of 10" (usually) may be read.

The index-arm M S carries Lh?t*/;nde:bglass M, which is a silvered

lane mirror set perpendicular to the plane of the divided are. The
ﬁon‘zon—glass m is also a plane mirror fixed perpendicular to the plane
of the divided circle,

This last glass is fixed ia position. while the first revolves with the
index-arm. The horizon-glass is divided into two parts, of which
the lower one is silvered, the upper half being transparent. X is a
telescope of low power pointed toward the horizon glass; By it any
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object to which it is directly pointed can be seen through the unsilvered
half of the horizon-glass. Any other object in the same plane can be
brought into the same field by rotating the index-arm (and the index-
glass with it), so that a beam of light from this second object shall
strike the index-glass at the proper angle, there to be reflected to the
horizon-glass, and again reflected down the telescope Z. Thus the
images of any two objects in the plane of the sextant may be brought
together in the telescope by viewing one directly and the other by

reflection.
ek
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This instrument is used daily at sea to determine the
ship’s position by measuring the altitude of the sun. This
is done by pointing the telescope, Z B, to the sea-horizon,
H in the figure, which appears like a line in the field of the
telescope, and by moving the index-arm till the image of
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the sun, S, coincides with the horizon. The arc read from
the sextant at this time is the sun’s altitude. From the
altitude of the sun on the meridian the ship’s latitude is
known (see page 54). From its altitude at another hour

Horvzon

Fie. 8.

the local time can be computed. The difference between
the local time and the Greenwich time, as shown by the
ship’s chronometer, gives the ship’s longitude. By means
of this simple instrument the place of a vessel can be found
within a mile or so.

The above are the instruments of astronomy which best
illustrate the principles of astronomical observations.

Practical Astronomy is the science which teaches the
theory of these instruments and of their application to ob-
servation, and it includes the arf of so combining the
observations and so using the appliances as to get the best
results,
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THE ASTRONOMICAL EPHEMERIS, OR NAUTICAL ALMANAC,

The Astronomical Ephemeris, or, as it is more commonly called,
the Nautical Almanac, is a work in which celestial phenomena and
the positions of the heaveuly bodies are computed in advance.

The usefulness of such a work, especially to the navigator, de-
pends upon its regular appearance on a uniform plan and upon the
fulness and accuracy of its data; it was therefore necessary that its
issue should be taken up as a government work. An astronomical
ephemeris or nautical almanac is now published annually by each of
the governments of Germany, Spain, Portugal, France, Great Britain,
and the United States. They are printed three years or more be-
forehand, in order that navigators going on long voyages may supply
themselves in advance.

The Ephemeris furnishes the fundamental data from which all our
household almanacs are calculated.

The principal quantities given in the American Ephemeris for
each year are as follows:

The positions (R. A. and 6) of the sun and the principal large
planets for Greenwich noon of every day.in each year.

The right ascension and declination of the moon’s centre for every
Greenwich liour in the year.

The distance of the moon from certain bright stars and planets for
every third Greenwich hour of the year.

The right ascensions and declinations of upward of two hundred
of the brighter fixed stars, corrected for precession, nulation, and
aberration, for every ten days.

The positions of the principal planets at every visible transit over
the meridian of Washington.

Complete elements of all the eclipses of the sun and moon, with
maps showing the passage of the moon’s shadow or penumbra over
those regions of the earth where the eclipses will be visible, and
tables whereby the phases of the eclipses can be accurately computed
for any place.

Tables for predicting the occultations of stars by the moon.

Eclipses of Jupiter’s satellites and miscellaneous phenomena.

Catalogues of Stars.—Of the same general nature with the Ephe-
meris are catalogues of the fixed stars. The object of such a cata-
logue is to give the right ascension and declination of a number of
stars for some epoch, the beginning of the year 1875 for instance,
with the data by which the position of each star can be found at any
other epoch.
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To give the student a still further idea of the Ephemeris, we present
a small portion of one of its pages for the year 1882:

FEBRUARY, 1882—AT GREENWICH MEAN NoON.

’ 2 THE SUN'S }ﬁ “ﬁg‘g“ ,E Sidereal
Dt}y =¥ | to - time

o El | subtracted| &5 | orright
w‘eeek »§| Apparent ' Diff. Apparent | DI | from-| %/ ascension
=] right | forl) o on, | forl| mean Y | mean sun
ascension. hour. « | hour, time. a 0

H M. 8 | 8. O g @ 9 M. s, s. (B M s
Wed.| 1121 0 13.0410.175/S17 2 22.4|442.82 13 51.34 10.318/20 46 21.70
Thur.| 2 (21 4 16.8410.141| 16 45 5.4| 43.57| 13 58.58 [0.284(20 50 18.26
Frid. | 8 |21 8 19.8210.107| 16 27 380.9| 44.30| 14 5.01 [0.25020 54 14.81
Sat. 4121 12 21.98‘10.073 16 9 89.2/444.99| 14 10.61 |0.21620 58 11.37
Sun. 5|21 16 23.3310.040) 15 51 30.8] 45.69| 14 15.41 10.18321 2 7.92
Mon. | 6 |21 20 23‘88‘10.007 15 33 6.1| 46.36) 14 19.40 |0.15021 6 4.48
Tues.| 7|21 24 23.63 9.974) 15 14 25.4{447.03| 14 22.60 [0.117]21 10 1.03
Wed.| 8 (21 28 22.60 9.941| 14 55 29.1| 47.66| 14 25.01 |0.084/21 13 57.59
Thur.| 9 (21 32 20.79 9.909] 14 36 17.7| 48.28/ 14 26.65 [0.05221 17 54.14
Frid. | 10 |21 36 18.21) 9.877] 14 16 51.6| 48.88| 14 R7.51 {0.020/21 21 50.70
Sat. | 11 |21 40 14.88| 9.846/ 13 57 11.2| 49.4%) 14 27.63 }0.011\21 25 47.25
Sun. | 12 (21 44 10.80 9.815] 183 37 16.9] 50.03) 14 26.99 0.042]21 29 43.8
Mon. | 13 |21 48 5.98 9.7 13 17 9.1/450.59 14 25.63 04073|21 33 40 35
Tues.| 14 21 52 0.43] 9.7 12 56 48 3| 51.12| 14 23.52 [0.10421 87 36.91
Wed. | 15 |21 55 54.16) 9.723] 12 36 14.9| 51.65 14 R0.70 [0.13421 41 33.46
Thur.| 16 (21 59 47.17| 9.693| 12 15 29.3(452.14| 14 17.15 [0.164'21 45 30.02
Frid. | 17 |22 8 89.47) 9.664| 11 54 382.1] 52.62| 14 12.90 [0.19321 49 26.57
Sat. 18 22 7 81.07 9.635] 11 83 23.6| 53.07| 14 7.94 0.222|21 53 28.13

The third column shows the R. A. of the sun’s centre at Green-
wich mean noon of each day. The fourth eolumn shows the hourly
change of this quantity (9.815 on Feb. 12). At Greenwich 0 hours
the sun’s R. A. was 21k 44m 10.80. Washington is 5 8m (58.13)
west of Greenwich. At Washington mean noon, on the 12th, the
Greenwich mean time was 5% 13, 9.815 X 5.18 is 50°.85. Thisisto
be added, since the R. A. is increasing. The sun’s R. A. at Wash-
ington mean noon is therefore 21k 45m 1,15, A similar process will
give the sun’s declination for Washington mean noon. In the same
manner, the R. A. and Dec. of the sun for any place whose longitude
is known can be found.

The column ‘“ Equation of Time” gives the quantity to be sub-
tracted from the Greenwich mean solar time to obtain the Green-
wich apparent solar time (see page 188). Thus, for Feb. 1, the
Greenwich mean time of Greenwich mean noon is Qb 0= 0*. The
true sun crossed the Greenwich meridian (apparent noon) at 23 46=
08°.66 on the preceding day; i.e., Jan, 31,

When it was 0k 0= 0¢ of Greenwich mean time on Feb. 13, it was
also 21% 33= 40°.85 of Greenwich local sidereal time (see the last
columnu of the table).



CHAPTER IV.
MOTION OF THE EARTH.

ANCIENT IDEAS OF THE PLANETS.

It was observed by the ancients that while the great
mass of the stars maintained their positions relatively to
each other month after month and year after year, there
were visible to them seven heavenly bodies which changed
their positions relatively to the stars and to each other.
These they called planets or wandering stars. It wasfound
that the seven planets performed a very slow revolution
around the celestial sphere. from west to east, in periods
ranging from one month in the case of the moon to thirty
years in that of Saturn.

The idea of the fixed stars being set in a solid sphere was
in perfect accord with their diurnal revolution as observed
by the naked eye. But it was not so with the planets.
The latter, after continued observation, were found to
move sometimes backward and sometimes forward; and it
was quite evident that at certain periods they were nearer
the earth than at other periods. These motions were en-
tirely inconsistent with the theory that they were fixed in
solid spheres.

These planets (which are visible to the naked eye),
together with the earth, and a number of other bodies
which the telescope has made known to us, form a family
or system by themselves, the dimensions of which, although
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inconceivably greater than any which we have to deal with
at the surface of the earth, are quite insignificant when
compared with the distance which separates us from the
fixed stars. The sun bheing the great central body of this
system, it is called the Solar System. There are eight
large planets, of which the earth is the third in the order of
distance from the sun, and these bodies all perform a regular
revolution around the sun. Mercury, the nearest, performs
its revolution in three months; Nepfune, the farthest, in
164 years.

ANNUAL REVOLUTION OF THE EARTH.

To an observer on the earth the sun seems to perform
an annual revolution among the stars, a fact which has
been known from early ages. This motion is due to the
annual revolution of the earth round the snn.

In Fig. 29 let S represent the sun, ABCD the orbit
of the earth around it, and £ # G H the sphere of the
fixed stars. This sphere, being supposed infinitely distant,
must be considered as infinitely larger than the circle
ABCD. Suppose now that 1, 2, 3, 4, 5, 6 are a number
of consecutive positions of the earth in its orbit. The line
18 drawn from the sun to the earth in any given position is
called the radius-vector of the earth. Suppose this line
extended infinitely so as to meet the celestial sphere in the
point 1. It is evident that to an observer on the earth at
1 the sun will appear projected on the sphere in the direc-
tion of 1’; when the earth reaches 2 it will appear in the
direction of 2/, and so on. In other words, as the earth
revolves around the sun, the latter will seem to perform a
revolution among the fixed stars, which are immensely
more distant than itself. The points 1/, 2/, etc., can be
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fixed by their relations to the various fixed stars, whose
places are known.

It is also evident that the point in which the earth would
be projected if viewed from the sun is always exactly
opposite that in which the sun appears as projected from
the earth. Moreover, if the earth moves more rapidly in

Fig. 29.—REVOLUTION OF THE EARTH.

some points of its orbit than in others, it is evident that
the sun will also appear to move more rapidly among the
stars, and that the two motions must always accurately
correspond to each other.

The radius-vector of the earth in its annual course de-
scribes a plane, which in the figure may be represented by
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that of the paper. This plane continued to infinity in
every direction will cut the celestial sphere in a great cir-
cle; and it is clear that the sun will always appear to
move in this circle. The plane and the circle are indiffer-
ently termed ¢he ecliptic. 'The plane of the ecliptic is gen-
erally taken as the fundamental one, to which the positions .
of all the bodies in the solar system are referred. It
divides the celestial sphere into two equal parts. In think-
ing of the celestial motions, it is convenient to conceive of
this plane as horizontal. Then if we draw a vertical line
through the sun at right angles to this plane (perpendicular
to the plane of the paper on which the figure is represent-
ed), the point at which this line intersects the celestial
sphere will be the pole of the ecliptic.

Let us now study the apparent annual revolution of the
sun produced by the real revolution of the earth in its oraiz.

When the earth is at 1 in the figure the sun will appear
to be at 1’, near some star, as drawn. Now by the diurnal
motion of the earth the sun is made to rise, to culminate,
and to set successively for each meridian on the globe. This
star being near the sun rises, culminates, and sets with it ;
it is on the meridian of any place at the local noon of that
place (and is therefore not visible except in a telescope). The
star on the right-hand side of the figure near the line €'S1
prolonged is nearly opposite to the sun. When the sun is
rising at any place, that star will be setting; when the sun
is on the meridian of the place, this star is on the lower
meridian; when the sun is setting, this star is rising. It
is about 180° from the sun. Now suppose the earth to
move to 2. The sun will be seen at 2’, near the star there
marked. 2’ is east of 1’; the sun appears to move among
the stars (in consequence of the earth’s amnual motion)
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from west to east. The star near 2’ will rise, culminate,
and set with the sun at every place on the earth. The star
near 1’ being wes¢ of 2’ will rise before the sun, culminate
before him, and set before he does.

If, for example, the star 1’ is near the equator when the
sun is 15° east of 1/, the star will rise about 1 hour earlier
than the sun. When the sun is 30° east of 1’ (at 8/, for
example), the star will rise 2 hours before the sun. When
the sun is 90° east of 1/, the star will rise 6 hours before the
sun, and so on. That is, when the sun is rising at any
Pplace, this star will be on the meridian of the place. When
the sun appears in the line 1’C'S 1 prolonged to the right
in the figure, the star 1’ will be on the meridian at mid-
night, and isthen said to be ¢# opposition to the sun. It
is 180° from it. When the sun appears to be near H, the
star 1/ will be about 45° or 3 hours eas? of the sun. The
sun will rise first to any place on the earth, and the star
will rise 8 hours later, say at 9 A.». _ Finally the sun will
come back to the same star again and they will rise, culmi-
nate, and set together.

We know that this cycle is about 365 days in length.
In this time the sun moves 360°, or about 1° daily.* This
cycle is perpetually repeated. Itslength is a sidereal year;
that is, the interval of time required for the sun to move in
the sky from one star back to the same star again, or for the
earth to make one revolution in its orbit among the stars.

The ancients were familiar with this phenomenon. They
knew most of the brighter stars by name. The Aeliacal
rising of a bright star (its rising with Helios, the sun)
marked the beginning of a cycle. At the end of it, seasons
and crops and the periodical floods of the Nile had repeat-

* 1° is twice the sun’s apparent diameter,
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ed themselves. It was in this way that the first accurate
notions of the year arose.

The apparent position of a body as seen from the earth
is called its, geocentric place. 'The apparent position of a
body as seen from the sun is called its Leliocentric place.

In the last figure, suppose the sun to be at S, and the
earth at 4. 4’ is the geocentric place of the sun, and @ is
the heliocentric place of the earth.

THE SUN'S APPARENT PATH.

It is evident that if the apparent path of the sun lay in
the equator, it would, during the entire year, rise exactly
in the east and set in the west, and would always cross the
meridian at the same altitude. The days would always be
twelve hours long, for the same reason that a star in the
equator is always twelve hours above the horizon and twelve
hours below it. But we know that this is not the case, the
sun being sometimes north of the equator and sometimes
south of it, and therefore. it has a motion in declination.
To understand this motion, suppose that on March 19th,
1879, the sun had been observed with a meridian circle and a
sidercal clock at the moment of transit over the meridian of
Washington. Its position would have been found to be this:

Right Ascension, 23" 55™ 23 ; Declination, 0° 30" south.
Had the observation been repeated on the 20th and fol-
lowing days, the results would have been:
March 20, R. Ascen. 23" 59 2¢; Dec. 0° 6’ South.
21, £ 08 :2m 408 ;5 ¢4 505817 Nerth.
22, £& 08 | 6me10s.c lecs e i T Niarthe
If we lay these positions down on a chart, we shall find
them to be as in Fig. 30, the centre of the sun being south
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of the equator in the first two positions, and north of it in
the last two. Joining the successive positions by a line, we
shall have a representation of a small portion of the appa-
rent path of the sun on the celestial sphere, or of the ecliptic.

It is clear from the observations and the figure that the
sun crossed the equator between six and seven o’clock on
the afternoon of March 20th, and therefore that the equa-
tor and ecliptic intersect at the point where the sun was at
that hour. This point is called the wvernal equinoz, the
first word indicating the season, while the second expresses

F1¢. 30.—THE SUN CROSSING THE EQUATOR.

the equality of the nights and days which occurs when the
sun is on the equator. It will be remembered that this
equinox is the point from which right ascensions are count-
ed in the heavens, in the same way that we count longi-
tudes on the earth from Greenwich or Washington. A
gidereal clock at any plac'e is therefore so set that the hands
shall read 0 hours 0 minutes 0 seconds at the moment
when the vernal equinox crosses the meridian of the place.

Continuing our observations of the sun’s apparent course
for six months from March 20th till September 23d, we
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should find it to be as in Fig. 31. Tt will be seen that Fig.
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F16. 81.—THE SUN’S APPARENT PATH IN SUMMER.

30 corresponds to the right-
hand end of 81, but is on a
much larger scale. The sun,
moving along the great circle
of the ecliptic, will reach its
greatest northern declination
about June 21st. This point
is indicated on the figure as
90° from the vernal equinox,
and is called the summer sol-
stice. 'The sun’s right ascen-
sion is then six hours, and its
declination 233° north. The
student should complete the
figure by drawing the half not
given here.

The course of the sun now
inclines toward the south, and
it again crosses the equator
about September 22d at a point
diametrically opposite the ver-
nal equinox. All great circles
intersect each other in two op-
posite points, and the ecliptic
and equator intersect at the two
opposite equinoxes. The equi-
nox which the sun crosses on
September 22d is called the
autumnal equinoz.

During the six months from
September to March the sun’s
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course is a counterpart of that from March to Septem-
ber, except that it lies south of the equator. It attains
its greatest south declination about December 22d, in
right ascension 18 hours and south declination 23° 30’.
This point is called the winter solstice. It then begins to
incline its course toward the north, reaching the vernal
equinox again on March 20th, 1880.

The two equinoxes and the two solstices may be re-
garded as the four cardinal points of the sun’s apparent
annual circuit around the heavens. Its passage through
these points is determined by measuring its altitude or de-
clination from day to day with a meridian circle. Sincein
our latitude greater altitudes correspond to greater declina-
tions, it follows that the summer solstice occurs on the day
when the altitude of the sun is greatest, and the winter
solstice on that when it is least. The mean of these alti-
tudes is that of the equator, and may therefore be found
by subtracting the latitude of the place from 90°. The
time when the sun reaches this altitude going north, marks
the vernal equinox, and that when it reaches it going south
marks the autumnal equinox.

These passages of the sun through the cardinal points have been
the subjects of astronomical observation from the earliest ages on
account of their relations to the change of the seasons. An ingeni-
ous method of finding the time when the sun reached the equinoxes
was used by the astronomers of Alexandria about the beginning of
our era. In the great Alexandrian Museum, a large ring or wheel
was set up parallel to the plane of the equator; in other words, it
was so fixed that a star at the pole would shine perpendicularly on
the wheel. Evidently its plane if extended must have passed through
the east and west points of the horizon, while its inclination to the
vertical was equal to the latitude of the place, which was not far
from 30°. When the sun reached the equator going north or south,
and shone upon this wheel, its lower edge would be exactly'c'overed
by the shadow of the upper edge; whereas in any other position the
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1ld shine upon the lower inner edge. Thus the time at which

reached the equinox could be determined, at least to a frac-
tion of a day. By the more exact methods of modern limes it can
be determined within less than a minute.

It will be seen that this method of determining the annual appar-
ent course of the sun by its declination or altitude is entirely inde-
pendent of its relation to the fixed stars; and it could be equally well
applied if no stars were ever visible. There are, therefore, two en-
tirely distinct ways of finding when the sun or the earth has completed
its apparent circuit around the celestial sphere; the one by the transit
instrument and sidereal clock, which show when the sun returns to
the same position among the stars, the other by the measurement of
altitude, which shows when it returns to the same equinoxr. By the
former method, already described, we conclude that it has completed
an annual circuit when it returns to the same star; by the latter when
it returns to the same equinox. These two methods will give slightly
different results for the length of the year, for a reason to be here-
after described.

The Zodiac and its Divisions.,—The zodiac is a belt in the heavens,
commonly considered as extending some 8° on each side of the
ecliptic, and therefore about 16° wide. The planets known to the
ancients are always seen within this belt. At a very early day the
zodiac was mapped out into twelve signs known as the signs of the ~
zodiac, the names of which have been handed down to the present
time. Each of these signs was supposed to be the seat of a constella-
tion after which it was called. Commencing at the vernal equinox,
the first thirty degrees through which the sun passed, or the region
among the stars'in which it was found during the month following,
was called the sign Aries. The next thirty degrees was called
Taurus. The names of all the twelve signs in their proper order,
with the approximate time of the sun’s entering upon each, are as
follows:

Anries, the Ram,
Taurus, the Bull,
@emini, the Twins,
Cancer, the Crab,

Leo, the Lion,

Virgo, the Virgin,
Libra, the Balance,
Scorpius, the Scorpion,
Sagittarius, the Archer
Capricornus, the Goat,
Agquarius, the Waler-beurer,
Pisces, the Fishes,

March 20.
April 20.
May 20.

June 21.

July 22.
August 22.
September 22.
October 23.
November 23,
December 21.
January 20.
February 19.
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Each of these signs coincides roughly with a constellation in the
heavens; and thus there are twelve constellations called by the
names of these signs, but the signs and the constellations no longer
correspond. Although the sun now crosses the equator and enters
the sign Aries on the 20th of March, he does not reach the constella-
tion Aries until nearly a month later. This arises from the preces-
sion of the equinoxes, to be explained hereafter.

OBLIQUITY OF THE ECLIPTIC.

‘We have already stated that when the sun is at the sum-
mer solstice it is about 234° north of the equator, and when
at the winter solstice, about 233° south. This shows that
the ecliptic and equator make an angle of about 234° with
each other. This angle is called the obliquity of the eclip-
tic, and its determination is very simple. It is only neces-
sary to find by repeated observation the sun’s greatest north
declination at the summer solstice, and its greatest south
declination at the winter solstice. Either of these declina-
tions, which must be equal if the observations are accurate-
ly made, will give the obliquity of the ecliptic. It hasbeen
continually diminishing from the earliest ages at a rate of
about half a second a year, or, more exactly, about 47" in
a century. This diminution is due to the gravitating
forces of the planets, and will continue for several thousand
years to come. It will not, however, go on indefinitely,
but the obliquity will only oscillate between comparatively
narrow limits.

In the preceding paragraphs we have explained the
apparent annual circuit of the sun relative to the equator,
and shown how the seasons are related to this course. In
order that the student may clearly grasp the entire subject,
it is necessary to show the relation oi these apparent move-
ments to the actual movement of the earth around the
sun.
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To understand the relation of the equator to the ecliptic, we must
remember that the celestial pole and the celestial equator have really
no reference whatever to the heavens, but depend solely on the direc-
tion of the earth’s axis of rotation.* The pole of the heavens is noth-
ing more than that point of the celestial sphere toward which the
earth’s axis happens to point. If the direction of this axis changes, the
position of the celestial pole among the stars will change also; though
to an observer on the earth, unconscious of the change, it would
seem as if the starry sphere moved while the pole remained at rest.
Again, the celestial equator being mercly the great circle in which
the plane of the earth's equator, extended out to infinity in every
direction, cuts the celestial sphere, any change in the direction of the
pole of the earth would necessarily change the position of the equator
among the stars. Now the positions of the celestial pole and the
celestial equator among the stars seem to remain unchanged through-
out the year. (There is, indeed, a minute change, but it does not
affect our present reasoning.) This shows that, as the earth revolves
around the sun, its axis is constantly directed toward nearly the
same point of the celestial sphere.

THE SEASONS.

The conclusions to which we are thus led respecting the
real revolution of the earth are shown in Fig. 32. Here §
represents the sun, with the orbit of the earth surrounding it,
but viewed nearly edgeways so as to be much foreshortened.
A B O D are the four cardinal positions of the earth which
correspond to the cardinal points of the apparent path of the
sun already described. In each figure of the earth & §'is
the axis, V being its north and § its south pole. Since
this axis points in the same direction relative to the stars
during an entire year, it follows that the different lines &/ §
are all parallel. Again, since the equator does not coincide
with the ecliptic, these lines are not perpendicular to the
ecliptic, but are inclined from this perpendicular by 234°.

When the earth isat 4 the sun’s north-polar distance (the

* Just as the horizon and zenith depend only on the situation of the observer,
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. ange dme centre gf the earth at A between the hnes to
the north pole and to the sun) is 1134°; at B it is 90°; at
C it is 663°; at D it is again 90°, and between 66} and
1134° the north-polar distance continually varies. This
may be plainer if the student draws the lines S4, SB,
S§C, SD, and prolongs the lines V'S at each position of
the earth.

Now the sun shines on only one half of the earth; viz,
that hemisphere turned toward him. This hemisphere is
left bright in each of the figures of the earth at 4, B, C, D.

Fic. 32.—CAUSES OF THE SEASONS.

Consider the diagram at 4, and remember that the earth
is turning round so that every observer is carried round
his parallel of latitude every 24 hours. The parallels are
drawn in the cut, and it is plain that a person near ¥ will
remain in darkness all the 24 hours ; any one in the north-
ern hemisphere is less than half the time in the light—that
is, the sun is less than half the time above his horizor—
and a person in the southern hemisphere is more than half
the time in the light. At the equator the days and nights
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are always equal. At the south pole it is perpetunal day.
The spectator near the south pole is carried round in a
parallel of latitude which is perpetually shined upon.
This is the winter solstice (midwinter in the northern
hemisphere, midsummer in the southern).

Next suppose the earth at B: B is 90° from 4 ; that is,
3 months later. The sun’s rays just graze the north and
south poles; cach parallel of latitude is half light and half
dark ; the days and nights are equal. This is the equinox
of spring—the vernal equinox. The sun’s north-polar dis-
tance is 90°. At O we have the summer solstice (summer
in the northern hemisphere, winter in the southern).
Here is perpetual day at the north pole, perpetual night at
the south; long days to all the northern hemisphere, long
nights in the southern. Three months later we have the
° autumnal equinoz at D.

This change of the scasons depends upon. the change of
the sun’s north-polar distance. ¢* sme, a/ i KA. ,eW y A

The exact phenomena at each place may be studied by
constructing a diagram for the latitude of that place (see
page 42) and assuming the sun’s north-polar distance as
follows :

March 21, N.P.D. 90° Vernal Equinox.
June 20, N.P.D. 664, Summer Solstice.
September 21, N.P.D. 90, Autumnal Equinox.
December 21, N.P.D. 113}, Winter Solstice.

Two such diagrams are given in the text-book (page 28)
The student should be able to prove that the sun isalways
in the zenith of some place in the torrid zone.
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CELESTIAL LATITUDE AND LONGITUDE,

To describe the positions of the sun and planets in space
we need two new co-ordinates.

The Celestial Latitude of a star is its angular distance
north or south of the ecliptic.

The Celestial Longitude of a star is its angular distance
from the vernal equinox measured on the ecliptic from
west to east. Having the right ascension and declination
of a body (which can be had by observation), we can com-
pute its celestial latitude and longitude. These co-ordinates
are no longer observed (as they were by the ancients), but
deduced from observations of right ascension and declina-
tion. In Fig. 14, page 51, £ F is the equator, I.J is the
ecliptic if P £ Q F is the celestial sphere. The student
should mark on this figure the pole of the ecliptic (call
this point X, for example) and draw a system of secondary
circles through X perpendicular to 7. The latitudes of
stars are measured on these secondaries. Their longitudes
are measured from the vernal equinox (0" in the figure)
eastward to the points where the secondaries through the
stars intersect the ecliptic.



CHAPTER V.
THE PLANETARY MOTIONS.
APPARENT AND REAL MOTIONS OF THE PLANETS,

Definitions.—The solar system comprises a number of
bodies of various orders of magnitude and distance, sub-
jected to many complex motions. Our attention will be
particularly directed to the motions of the great planets.
These bodies may, with respect to their apparent motions,
be divided into three classes.

Speaking, for the present, of the sun as a planet, the
first class comprises the sun and moon. We have seen that
if, upon a star chart, we mark down the positions of the
sun day by day, they will all fall into a regular circle which
marks out the ecliptic. The monthly conrse of the moon
is found to be of the same nature; and although its motion
is by no means uniform in a month, it is always toward the
east, and always along or very near a certain great circle.

V= The second class comprises Venus and Mercury. The
apparent motion of these bodies is an oscillating one on
each side of the sun. If we watch for the appearance of
one of these planets after sunset from evening to evening,
we shall find it to appear above the western horizon. Night
after night it will be farther and farther from the sun until
it attains a certain maximum distance; then it will appear
to return towards the sun again, and for a while to be lost
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in its rays. A few days later it will reappear to the west
of the sun, and thereafter be visible in the eastern horizon
before sunrise. In the case of Mercury the time required
for one complete oscillation back and forth is about four
months; and in the case of Venus it is more than a year
and a half.

The third class comprises Mars, Jupiter, and Saturn, as
well as a great number of planets not visible to the naked
eye. The general or average motion of these planets is
toward the east, a complete revolution in the celestial
sphere being performed in times ranging from two years in
the case of Mars to 164 years in that of Neptune. But,
instead of moving uniformly forward, they seem to have a
swinging motion; first, they move forward or toward the
east through a pretty long arc, then backward or westward
through a short one, then forward through a longer one,
ete. It is by the excess of the longer arcs over the shorter
ones that the circuit of the heavens is made.

The general motion of the sun, moon, and planets among
the stars being toward the east, motion in this direction is
called direct; motions toward the west are called retrograde.
During the periods between direct and retrograde motion
the planets will for a short time appear stationary.

The planets Venus and Mercury are said to be at greatest
elongation when at their greatest angular distance from the
san. The elongation which occurs with the planet east of
the sun, and therefore visible in the western horizon after
sunset, is called the eastern elongation, the other the west-
ern one.

A planet is said to be in conjunction with the sun when /) /
it is in the same direction as seen from the earth, or when,¥*'/t o
as it seems to pass by the sun, it approaches nearest to it.

\
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It is said to be in opposition to the sun when exactly in the
opposite direction—rising when the sun sets, and wice
versa.* If, when a planet is in conjunction, it is between
the earth and the sun, the conjunction is said to be an
inferior one; if beyond the sun, it is said to be superior.

ovbit of Jwpi lep

F16. 33.—ORBITS OF THE PLANETS.

Arrangements and Motions of the Planets.—The sun is
the real centre of the solar system, and the planets proper
revolve around it as the centre of motion. The order of
the five innermost large planets, or the relative position of

* A planet is in conjunction with the sun when it has the same
geocentric longitude; in opposition when the longitudes differ 180°.

N
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their orbits, is shown in Fig. 83. These orbits are all
nearly, but not exactly, in the same plane. The planets
Mercury and Venus which, as seen from the earth, never
appear to recede very far from the sun, are in reality those
which revolve inside the orbit of the earth. The planets
of the third class, which perform their circuits at all dis-
tances from the sun, are what we call the superior planets,
and are more distant from the sun than the earth is. Of
these the orbits of Mars, Jupiter, and a swarm of telescopic
planets are shown in the figure; next outside of Jupiter
comes Saturn, the farthest planet readily visible to the
naked eye, and then Uranus and Neplune, telescopic plan-
ets. On the scale of Fig. 33 the orbit of Neptune would
be more than two feet in diameter. Finally, the moon is
a small planet revolving around the earth as its centre, and
carried with the latter as it moves around the sun.

Inferior planets are those whose orbits lie inside that of
the earth, as Mercury and Venus.

Superior planets are those whose orbits lie outside that
of the earth, as Mars, Jupiter, Saturn, etc.

The farther a planet is situated from the sun the slower
is its orbital motion. Therefore, as we go from the sun,
the periods of revolution are longer, for the double reason
that the planet has a larger orbit to describe and moves
more slowly in its orbit. It is to this slower motion of the
outer planets that the occasional apparent retrograde mo-
tion of the planets is due, as may be seen by studying Fig.
34, The apparent position of a planct, as seen from the
earth, is determined by the line joining the earth and
planet. Supposing this line to be continued so as to inter-
sect the celestial sphere, the apparent motion of the planet
will be defined by the motion of the point in which the line
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intersects the sphere. If this motion is toward the east, it
is direct ; if toward the west, retrograde.

The Apparent Motion of a Superior Planet.—In the figure
let S be the sun, ABCDE F the orbit of the earth, and
HIKLMN the orbit of a superior planet, as Mars.
When the earth is at 4 suppose Mars to be at H, and let
Band I, Cand K, D and L, £ and M, F and N be corre-
sponding positions. As the earth moves faster than Mars

Fie. 34.

the arecs A B, BC, ete., correspond to greater angles at the
centre than H I, I K, etc.

When the earth is at 4, Mars will be seen on the celestial
sphere at the apparent position 0. When the earth is at
B, Mars will be seen at P. As the earth describes 4B,
Mars will appear to describe OP moving in the same diree-
tion as the earth’s orbital motion; 7.e., direct. When the
earth is at €, Mars is at K (in opposition to the sun), and
its motion i8 refrograde along the small arc beyond QP in
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the figure. When the earth reaches D the planet has fin-
. ished its retrograde arc. As the earth moves from D to £
the planet moves from L to M, and the lines joining earth
and planet are parallel and correspond to a fixed direction
in the celestial sphere. The planet is at a station. Asthe
earth moves from ¥ to # the apparent motion of Mars is
direct from @ to B; and in the same way the apparent
motion of any outer planet can be determined by drawing
its orbit outside of the earth’s orbit A BC'D E F and laying
off on this orbit positions which correspond to the points
ABCD EF and joining the corresponding positions. It
will be found that all outer planets have a retrograde mo-
tion at opposition, ete. ‘

‘The Apparent Motion of an Inferior Planet,.—To deter-
mine the corresponding phenomena for an inferior planet
the same figure may be used. Suppose HIK L M to be
the orbit of the earth, and 4 B C D E F the orbit of Mer-
cury, and suppose H and A4, Iand B, ete., to be corre-
sponding positions. Suppose H 4 to be tangent to Mer-
cury’s orbit. The angle 4 H S is the elongation of Mer-
cury, and it is the greatest elongation it can ever have.

Let the student construct the apparent positions of Mer-
cury as seen from the earth from the data given in the
figure. From the apparent positions he can determine the
apparent motions. As Mercury moves from 4 B its ap-
parent motion is direct. On both sides of the inferior con-
junction C'its motion is retrogzade.v From D to £ it is
stationary. Also let him construct the apparent positions
of the sun at different times by drawing the lines H S, IS,
K 8, etc., towards the right. The angles between the ap-
parent. positions of Mercury and the sun will be the elonga-
tions of Mercury at various times,
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Theory of Epicycles.—Complicated as the apparent motions of the
planets were, it was seen by the ancient astronomers that they could
be represented by a combination of two motions. First, a small circle
or epicycle was supposed to move around the earth (not the sun)
with a regular, though not unifornm, forward motion, and then the
planet was supposed to move around the circumference of this circle.
The relation of this theory to the true one was this: The regular
forward motion of the epicycle represents the real motion of the
planet around the sun, while the motion of the planet around the
circumference of the epicycle is an apparent one arising from the
revolution of the earth around the
sun. To explain this we must under-’
stand some of the laws of relative mo-
tion.

It is familiarly known that if an
observer in unconscious motion looks
upon an object at rest, the object will
appear to him to move in a direction
opposite that in which he moves. As
a result of this law, if the observer 1s
uuconsciously describing a circle, an
object at rest will appear to him to
describe a circle of equal size. This
is shown by the following figure. Let
S represent the sun, and A BCDEF
the orbit of the earth. Let us sup-
pose the observer on the earth carried
arouud in this orbit, but imagining
himself at rest at S, the centre of mo-
tion. Suppose he keeps observing the
direction and distance of the planet P,
which for the present we suppose to
be at rest, since it is only the relative

F1a. 35. motion that we shall have to consider.

When the observer is at 4 he really

sees the planet in a direction and distance A P, but imagining himself
at She thinks he seesthe planetat the point @ determined by drawing
a line Sa parallel and equal to A P. As he passes from A4 to B the
planet will seem to him to move in the opposite direction from a to
b, the point & being determined by drawing S equal and parallel
to BP. As he recedes from the planet through the arc B ¢'D, the
planet scems to recede from him through d¢d; and while he moves
from left to right through DE the planet seems to move from right
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to left through de. Finally, as he approaches the planet through
the arc  F A the planet seems to approach him through efa, and
when he returns to A the planet will appear at @, as.in the begin-
ning, Thus the planet, though really at rest, would seem to him to
move over the circle abcdef corresponding to that in which the
observer himself was carried around the sun.

The planet being really in motion, it is evident that the combined
effect of the real motion of the planet and the apparent motion
around the circle abcdef will be represented by carrying the centre
of this circle P along the true orbit of the planet. The motion of
the earth being more rapid than that of an outer planet, it follows
that the apparent motion of the planet through a b is more rapid
than the real motion of P along the orbit. Hence in this part of the
orbit the movement of the planet will be retrograde. In every other
part it will be direct, because the progressive motion of P will at
least overcome, sometimes be added to, the apparent motion around
the circle.

In the ancient astronomy the apparent small circle abcdef was
called the epicycle.

In the case of the inner plancts Mercury and Venus the relation of
the epicycle to the true orbit is reversed. llere the epicyclic motion
is that of the planet round its real orbit; that is, the true orbit of the
planct around the sun was itsclf taken for the epicycle, while the
forward motion was really due to the apparent revolution of the sun
produced by the annual motion of the earth.

In Fig. 29 the sun would successively appear to be at 1, 2,8, 4,
&', and at each of these points the inferior planet would really revolve
about 1', 2, 8', 4, &',

Although the observations of two thousand years ago
could be tolerably well explained by these epicycles, yet
with every increase of accuracy in observation new compli-
cations had to be introduced, until at the time of CoPER-
Nicus (1542) the confusion was very great.

The Copernican System of the World. —COPERNICUS re-
vived a belief taught by some of the ancients that the sun
was the centre of the system, and that the earth and plan-
ets moved about him in circular orbits. While this was a
step, and a great step, forward, purely circular orbits for
the planets would not explain all the facts,
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From the time of CoPERNICUS (1542) till that of KEp-
LER and GALILEO (1600 to 1630) the whole question of the
true system of the universe was in debate. The circular
orbits introduced by COPERNICUS also required a complex
system of epicycles to account for some of the observed
motions of the planets, and with every increase in accuracy
of observation new devices had to be introduced into the
system to account for the new phenomena observed. In
short, the system of CoPERNICUS accounted for so many
facts (as the stations and retrogradations of the planets)
that it could not be rejected, and had so many difficulties
that without modification it could not be accepted. '

KEPLER'S LAWS OF PLANETARY MOTION.

Kepler and Galileo.—KEPLER (born 1571, d. 1630) was
a genius of the first order. He had a thorough acquaint-
ance with the old systems of astronomy and a thorough be-
lief in the essential accuracy of the Copernican system,
whose fundamental theorem was that the sun and not the
earth was the centre of our system. He lived at the same
time with GALILEO, who was the first person to observe the
heavenly bodies with a telescope of his own invention, and
he had the benefit of accurate observations of the planets
made by Tycmo Braug. The opportunity for determin-
ing the true laws of the motions of the planets existed then
as it never had before; and fortunately he was able,
through labors of which it is difficult to form an idea to-
day, to reach a true solution.

The Periodic Time of a Planet.—The time of revolution
of a planet in its orbit round the sun (its periodic fime)
can be learned by continuous observations of the planet’s
course among the stars,
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From ancient times the geocentric positions of the
planets had been observed. These positions were referred
to the places of the brightest fixed stars, and the relative
places of these stars had been fixed with a tolerable ac-
curacy. The time required for a planet to move from one
star to the same star again was the time of revolution of
the planet referred to the earth.

The real motion of the earth was known from cbhserva-
tions of the apparent motion of the sun. By calculation
it was possible to refer the motions as observed (i.e., with
reference to the earth) to the real motions (.e., those about
the sun).

It was thus found that the periodic times of the known
planets were:

For Mercury about 88 days. For Mars about 687 days.
Venus SO RITR Jupiter ¢ 4,333 ¢
Earth “ 365 . Saturn ¢ 10,759 ¢

These values were known to the predecessors of COPER-
N1cus. He also showed (what is evident when we examine
Fig. 34) that to an observer on the sun the motions of
the planets would be always direct, and that no stations or
retrogradations of the planets would be seen from the sun.

We may determine the relative distances of a planet and
the sun from each other by the method illustrated in Fig.
36. S is the sun, # the earth, and M the planet when the
planet is in opposition to the sun. The time at which the
planet is in opposition is known by noting the date when it
is on the meridian at midnight. After a certain period,
say one hundred days, the planet will have moved to #”
and the earth to Z’. Since we know the periodic times

of the earth and planet, we can calculate the angles M" S
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of the shape of the planet’s orbit, drawn to scale. This
shape is not that of a circle, but it is an ellipse, and the
sun, S, is not at the centre but at a focus of the ellipse.

An ellipse is a curve such that the sum of the distances
of every point of the curve from two fixed points (the foci)
1s a constant quantity.

Fia. 88.

The Ellipse.—A D C Pis an ellipse; S and 8 are the foci. By the
definition of an ellipse SP+ PS= A C, and this is true for every
point. Sis the focus occupied by the sun, ‘ the filled focus.” A48
is the least distance of the planet from the sun, its perikelion distance;
and A is the perikelion, that point nearest the sun. . C is the aphelion,
the point farthest from the sun. S A, SD, 8SC, SB, SP are radii-
vectores at different parts of the orbit. A Cis the major axis
of the orbit = 2a. This major axis of the orbit is twice the mean
distance of the planet from the sun, a. B D is the minor axis, 2b.
The ratio of OS to O A is the eccentricity of the ellipse. By the
definition of the ellipse, again, BS+BS8=AC; and BS= BS=a.
B8 =B0"+08,0or08= ¥a' =1 and the eccentricity of the

08 V& —p

ellipse is T i

Kepler's Laws.—By computations based on the observa-
tiong of Mars made by TycHo BRAHE, KEPLER deduced
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his first two laws of motion in the solar system. The first
law of KEPLER is—

I Each planet moves around the sun in an ellipse, hav-
ing the sun at one of its foci. To understand Law II:

Suppose the planet to be at the points P, P,, P,, P,, P,,
ete., at the times 7, 7T, T,. T, T',, ete. (Fig. 37).

Suppose the times T'\— T, T',— T,, T,— T, to be equal.
KEpPLER computed the areas of the surfaces P S P, P,S P,,
P, S P, and found that these areas were equal also, and
that this was true for each planet. The second law of KEp-
LER is—

II. The radius-vector of each planet describes equal areas

SS— . .
in equal times.

These two laws are true for each planet moving in its
own ellipse about the sun.

For a long time KEPLER sought for some law which
should connect the motion of one planet in ifs cllipse with
the motion of another planet in ¢fs ellipse. Finally he
found such a relation between the mean distances of the
different planets (sce table on page 107) and their periodic
times (see table on p. 105).

His third law is:

II1. The squares of the periodic times of the planets are
proportional to the cubes of their mean distances from the
sun.

That is, if 7, 77, 7,, etc., are the periodic times of the
different planets whose mean distances are a,, a,, a,, etc.,
then

711’ : 7"22 = al’ : aﬁs;
TS gy sl e

ete. ete.
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If T, and a, are the periodic time and the mean distance
of the earth, and if 7, (= 1 year) is taken as the unit of
time and e, as the unit of distance, then we shall have

Trs Eli=lg: > Fior i =1lor Z"—:1;

a’ al
Y3 =S 3 VO T—ﬂ:lor—ﬂzl;
a, a}

and so on.

The data which KEPLER had were not quite so accurate
as those which we have given, and the table below shows
the very figures on which KEPLER’S conclusion was based:

PLANET. at ¥ T+ al
Mercury....coouuunn.. 0.2378 0.2408 years 1.013
2 0.6104 0.6151 1.008
I3 00 00600006 6040 G 1.0000 1.0000 1.000
IR 0006060000850 300 1.8740 1.8810 1.004
Jupiter ......cooov.n. 11.914 11.8764 0.996
SIUTRS - oo oo ole eicte shes 28.058 29.4605 1.050

Although the numbers in the third column were not
strictly the same, their differences were no greater than
might easily have been produced by the errors of the obser-
vations which KEPLER used; and on the evidenece here
given he advanced his third law. The order of discovery
of the true theory of the solar system was, then—

I. To prove that the earth moved in space;
II. To prove that the centre of this motion was the sun;

III. To establish the three laws of KEPLER, which gave
the cirenmstances of this motion.

By means of the first two laws of KEPLER the motions of each
planet in its own ellipse became known; that is, the position of the
planet at any future time could be predicted. For example, if the
planet was at P at a time 7, and the question was as to its place at a
subsequent time 77, this could be solved by computing, first, how
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large an area would be described by the radius-vector in the interval
T — T, and sccond, what the angle at § of the sector having this
area would be. Then drawing a line through § making this angle
with the line S P (say S P), and laying off the length of the radius-
vector S P, the position of the planet became known.

From the third law the relative values of the mean distances
@y, @, a4, as, ete., could be determined with great and increasing ac-
curacy.

Al .
From the equahon; =1, a could be determined so soon as T was

known. With each revolution of the planet 7' became known more
accurately, as did also a.

These laws are the foundations of our present theory of the solar
system. They were based on observation pure and simple. We may
anticipate a little to say that these laws have been compared with
the most precise observations we can make at the present time, and
discussed in all their consequences by processes unknown to Kep-
LER, and that they are strictly true if we make the following modifi-
cations.

If there were only one planct revolving abont the sun, then it
would revolve in a perfect ellipse, and obey the second law exactly.
In a system composed of the sun and more than one planet each
planet disturbs the motion of every other slightly, by attracting it
from the orbit which it would otherwise follow.

Thus neither the first nor the second law can be precisely true of
any planet, although they are very nearly so. In the same way the
relation between the orbits of any two planets as expressed in the
third law is not precise, although it is a very close approximation.

Elements of a Planet’s Orbit.— When we know « and & for any orbit,
the shape and size of the orbit is known.

Knowing & we also know 7, the periodic time; in fact a is found
from 7 by KEPLER’S law 1IL

_If we know the planet’s celestial longitude (L) at a given epoch,
say December 31st, 1850, we have all the elements necessary for
finding the place of the planet in 4ts ordit at any time, as has been
explained (page 110).

The orbit lies in a certain plane; this plane intersects the plane of
the ecliptic at a certain angle, which we call the inclination i. Know-
ing 7, the plane of the planet’s orbit is fixed. The plane of the
orbit intersects the plane of the ecliptic in a line, the line of the nodes.
Half of the planet’s orbit lies below (south of) the plane of the
ecliptic and half above. As the planet moves in its orbit it must
pass through the plane of the ecliptic twice for every revolution
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The point where it passes through the ecliptic going from the south
half to the north half of its orbit is the ascending node; the point
where it passes through the ecliptic going from north to south is
the descending node of the planet’s orbit. If we have only the #n-
clination given, the orbit of the planet may lie anywhere in the plane
whose angle with the ecliptic is 7. If we fix the place of the nodes,
or of one of them, the orbit is thus fixed in its plane. This we do
by giving the (celestial) longitude of the ascending node Q.

Now everything is known except the relation of the planet’s orbit
to the sun. This is fixed by the longitude of the perihelion, or P.

Thus the efements of a planet’s orbit are:

1, the inclination to the ecliptic, which fixes the plane of the planet’s
orbit;

0, the longitude of the node, which fixes the position of the line of
intersection of the orbit and the ecliptic;

P, the longitude of the perihelion, which fixes the position of the
major axis of the planet’s orbit with relation to the sun, and hence
in space;

a and e, the mean distance and eccentricity of the orbit, which fix
the shape and size of the orbit;

T and M, the periodic time and the longitude at epoch, which enable
the place of the planet in its orbit, and hence in space, to be fixed at
any future or past time,

The elements of the older planets of the solar system are now
known with great accuracy, and their positions for two or three cen-
turies past or future can be predicted with a close approximation to the
accuracy with which these positions can be observed.

See page 353, note to page 112.



CHAPTER VI
UNIVERSAL GRAVITATION.

NEwWTON'S LAWS OF MOTION

THE establishment of the theory of universal gravitation
furnishes one of the best examples of scientific method
which is to be found. 'We shall describe its leading features,
less for the purpose of making known to the reader the
technical nature of the process than for illustrating the
true theory of scientific investigation, and showing that such
investigation has for its object the discovery of what we
may call generalized facts. The real test of progress is
found in our constantly increased ability to foresee either
the course of nature or the effects of any accidental or arti-
ficial combination of causes. So long as prediction is not
possible, the desires of the investigator remain unsatisfied.
When certainty of prediction is once attained, and the
laws on which the prediction is founded are stated in their
simplest form, the work of science is complete.

To the pre-Newtonian astronomers the phenomena of
the geometrical laws of planetary motion, which we have
just described, formed a group of facts having no connection
with anything on the earth’s surface. The epicycles of
Hrpparcuus and PTOLEMY were a truly scientific concep-
tion, in that they explained the seemingly erratic motions
of the planets by a single simple law. In the heliocentric



114 ASTRONOMY. )

theory of CoPERNICUS this Jaw was still further simplified
by dispensing in great part with the epicycle, and replacing
the latter by a motion of the earth around the sun, of the
same nature with the motions of the planets. But Coprrr-
NIcUs had no way of accounting for, or even of describing
with rigorous accuracy, the small deviations in the motions
of the planets around the sun. In this respect he made no
real advance npon the ideas of the ancients.

KEPLER, in his discoveries, made a great advance in rep-
resenting the motions of all the planets by a single set of
simple and easily understood geometrical laws. Had the
planets followed his laws exactly, the theory of planetary
motion would have been substantially complete. Still,
further progress was desired for two reasons. In the first
place, the laws of KEPLER did not perfectly represent all
the planetary motions. When observations of the greatest
accuracy were made, it was found that the planets deviated
by small amounts from the ellipse of KEPLER. Some small
emendations to the motions computed on the elliptic theory
were therefore necessary. Had this requirement been ful-
filled, still another step would have been desirable; namely,
that of connecting the motions of the planets with motions
upon the earth, and reducing them to the same laws.

Notwithstanding the great step which KEPLER made in
describing the celestial motions, he unveiled none of the
great mystery in which they were enshrouded. When KEp-
LER said that obscrvation showed the law of planetary mo-
tion to be that around the circumference of an ellipse, as
asserted in his law, he said all that it seemed possible to
learn, supposing the statement perfectly exact. And it
was all that could be learned from the mere study of the
planetary motions. In order to connect these motions with
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those on the earth, the next step was to study the laws of
force and motion here around us. Singular though it may
appear, the ideas of the ancients on this subject were far
more erroneous than their conceptions of the motions of
the planets. We might almost say that before the time of
GALILEO scarcely a single correct idea of thelaws of motion
was generally entertained by men of learning. Among
those who, before the time of NEWTON, prepared the way
for the theory in question, GariLEo, HuYGHENS, and
HooxE are entitled to especial mention. The general laws
of motion laid down by NEwTON were three in number.

Law First: Every body preserves its state of rest or of
uniform motion in a right line, unless it is compelled to
change that state by forces impressed thereon.

1t was formerly supposed that a body acted on by no force tended
to come to rest. Here lay one of the greatest difliculties which the
predecessors of NEwToN found, in accounting for the motion of the
planets. The idea that the sun in some way caused these motions
was entertained from the earliest times. Even ProLEMY had a vague
idea of a force which was always directed toward the centre of the
earth, or, which was to him the same thing, toward the centre of the
universe, and which not only caused heavy bodies to fall, but bound
the whole universe together. KEPLER, again, distinctly affirms the
existence of a gravitating force by which the sun acts on the planets;
but he supposed that the sun must also exercise an impulsive forward
force to keep the planets in motion. The reason of this incorrect
idea was, of course, that all bodies in motion on the surface of the
earth had practically come to rest. But what was not clearly seen
before the time of NEWTON, or at least before GALILEO, was that
this arose from the inevitable resisting forces which act upon all
moving bodies upon the earth.

Law Second: The alferation of motion is ever propor-
tional to the moving force vmpressed, and is made in the
direction of the right line in which that force acts.
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The first law might be considered as a particular case of this see-
ond one which arises.when the force is supposed to vanish. The ac-
curacy of both laws can be proved only by very carefully conducted
experiments. They are now considered as conclusively proved.

Law Third: 70 every action there is always opposed an
equal reaction ; or the mutual actions of two bodies upon
each other are always equal, and in opposite directions.

That is, if a body 4 acts in any way upon a body B, B will exert
a force exactly equal on A in the opposite direction.

These laws once established, it became possible to calculate the mo-
tion of any body or system of bodies when once the forces which act
on them were known, and, vice zersa, to define what forces were re-
quisite to produce any given motion. The question which presented
itself to the mind of NEwToN and his contemporaries was this: Under
what law of force will planets move round the sun in uccordance with
KEPLER'S laws ?

Supposing a body to move around in a circle, and putting R the
radius of the circle, 7' the period of revolution, HuvyerENs had shown
that the centrifugal force of the body, or, which is the same thing,
the attractive force toward the centre which would keep it in the
;,i But by KEPLER's third law I* is pro-
portional to R%. Therefore this centripetal force is proportional to

circle, was proportional to

R“’ that is, to—R—2 Thus it followed immediately from KEPLER'S

third law that the central force which would keep the planets in their
orbits was inversely as the square of the distance from the sun, sup-
posing each orbit to be circular. The first law of motion once com-
pletely understood, it was evident that the planet needed no force
impelling it forward to keep up its motion, but that, onee started, it
would keep on forever. (See note on page 122.)

The next step was to solve the problem, What law of force will
make a planet describe an ellipse around the sun, having the latter
in one of its foci? Or, supposing a planet to move round the sun,
the latter attracting it with a force inversely as the square of the dis-
tance; what will be the form of the orbit of the planet if it is not cir-
cular? A solution of either of these problems was beyond the power
of mathematicians before the time of NEwToN; and it thus remained
uncertain whether the planets moving under the influence of the
sun’s gravitation would or would not describe ellipses. Unable, at
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first, to reach a satisfactory solution, NEwTON attacked the problem
in another direction, starting from the gravitation, not of the sun,
but of the earth, as explained in the following section.

"GRAVITATION IN THE HEAVENS.

The reader is probably familiar with the story of NEw-
ToN and the falling apple. Although it has no anthorita-
tive foundation, it is strikingly illustrative of the method
by which NEwToN must have reached a solution of the
problem. The course of reasoning by which he ascended
from gravitation on the earth to the celestial motions was as
follows: We see that there is a force acting all over the earth
by which all bodies are drawn toward its centre. This
force is called gravitation. It extends without sensible
diminution to the tops not only of the highest buildings,
but of the highest mountains. How much higher does it
extend? Why should it not extend to the moon? If it
does, the moon would tend to drop toward the earth, just
as a stone thrown from the hand drops. As the moon
moves round the earth in her monthly course, there must
be some force drawing her toward the earth; else, by the
first law of motion, she would fly entirely away in a straight
line. Why shounld not the force which makes the apple
fall be the same force which'keeps her in her orbit? To
answer this question, it was not only necessary to calculate
the inténsity of the force which would keep the moon her-
self in her orbit, but to compare it with the intensity of
gravity at the earth’s surface. It had long been known
that the distance of the moon was about sixty radii of the
earth, from measures of her parallax (see page 57). If
this force diminished as the inverse square of the distance,
then at the moon it would be only 344y as great as at the
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surface of the earth. On the earth a body falls sixteen feet
in a second. If, then, the theory of gravitation were cor-
rect, the moon ought to fall towards the earth 545 of this
amount, or about {5 of an inch in a second. The moon
being in motion, if we imagine it moving in a straight line
at the beginning of any second, it ought to be drawn away
from that line 7 of an inch at the end of the second.
When the calculation was made it was found to agree ex-
actly with this result of theory. Thus it was shown that
the force which holds the moon in her orbit is the same
force that makes the stone fall, diminished as the inverse
square of the distance from the centre of the earth.

It thus appeared that central forces, both toward the sun
and toward the earth, varied inversely as the squares of the
distances. KEPLER’s second law showed that the line drawn
from the planet to the sun would describe equal areas in
equal times. NEwroN showed that this could not be true
unless the force which held the planet was directed toward
the sun. We have alrcady stated that the third law showed
that the force was inversely as the square of the distance,
and thus agreed exactly with the theory of gravitation. It
only remained to consider the results of the first law, that
of the elliptic motion. After long and laborious efforts,
NEwTON was enabled to demonstrate rigorously that this
law also resulted from the law of the inverse square, and
could result from no other. Thus all mystery disappeared
from the celestial motions; and planets were shown to be
simply heavy bodies moving according to the same laws that
were acting here around us, only under very different cir-
cumstances. AU three of KEPLER’S laws were embraced in
the single law of gravitation toward the sun. The sun at-
tracts the planets as the earth attracts bodies here around us,
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Mutual Action of the Planets,—By NEwToN’s third law of motion,
each planet must attract the sun with a force equal to that which the
sun exerts upon the planet. The moon also must attract the earth
as much as the earth attracts the moon. Such being the case, it
must be highly probable that the planets attract each other. If so,
KEPLER’S laws can only be an approximation to the truth. The sun,
being immensely more massive than any of the planets, overpowers
their attraction upon each other, and makes the law of elliptic mo-
tion very nearly true. But still the comparatively small attraction
of the planets must cause some deviations. Now, deviations from
the pure elliptic motion were known to exist in the case of several of
the planets, notably in that of the moon, which, if gravitation were
universal, must move under the influence of the combined attraction
of the earth and of the sun. NEwToN, therefore, attacked the com-
plicated problem of the determination of the motion of the moon
under the combined action of these two forces. Ile showed in a
general way that its deviations would be of the same nature as those
shown by observation. But the complete solution of the problem
which required the answer to be expressed in numbers, was beyond
his power.

Gravitation Resides in each Particle of Matter.—Still
another question arose. Were these mutually attractive
forces resident in the centres of the several bodies attracted,
or in each particle of the matter composing them? NEW-
ToN showed that the latter must be the case, because the
smallest bodies, as well as the largest, tended to fall toward
the earth, thus showing an equal gravitation in every sepa-
rate part. It was also shown by NEwToN that if a planet
were on the surface of the earth or outside of it, it wounld
be attracted with the same forece as if the whole mass
of the earth were concentrated in its centre. Putting
together the various results thus arrived at, NEWTON
was able to formulate his great law of universal grav1ta-
tion in these comprehensive words: ‘“Every particle of
matter in the universe atiracts every other particle with
a force directly as the masses of the two particles, and
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tnversely as the square of the distance which separates
them.”

To show the nature of the attractive forces among these various
particles, let us represent by m and m’ the masses of two attracting
bodies. We may conceive the body m to be composed of m par-
ticles, and the other body to be composed of m' particles. Let us
conceive that each particle of one body attracts each particle of the

1 3 E
other with a force et Then every particle of m will be attracted by
each of the m' particles of the other, and therefore the total attractive
!
force on each of the m particles will be % Each of the m particles

being equally subject to this attraction, the total attractive force' be-
m m’
r

tween the two bodies will be ‘When a given force acts upon

a body, it will produce less motion the larger the body is, the accel-
erating force being proportional to the total attracting force divided
by the mass of the body moved. Therefore the accelerating force
which acts on the body ', and which determines the amount of
m

motion, will be bt and conversely the accelerating force acting on

n2 ?
!

the body m will be represented by the fraction %

REMARKS ON THE THEORY OF GRAVITATION.

The real nature of the great discovery of NEWTON is so
frequently misunderstood that a little attention may be
given to its elucidation. Gravitation is frequently spoken
of as if it were a theory of NEWTON’S, and very generally
received by astronomers, but still liable to be ultimately
rejected as a great many other theories have been. Not
infrequently people of greater or less intelligence are found
making great efforts to prove it erroneous. NEwroxN did
not discover any new force, but only showed that the
motions of the heavens could be accounted for by a force
which we all know to exist, Gravitation (Latin gravitas—
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weight, heaviness) is the force which makes all bodies
here at the surface of the earth tend to fall downward;
and if any one wishes to subvert the theory of gravitation,
he must begin by proving that this force does not exist.
This no one would think of doing. What NEwToxN did
was to show that this force, which, before his time, had
been recognized only as acting on the surface of the earth,
really extended to the heavens, and that it resided not only
in the earth itself, but in the heavenly bodies also, and in
each particle of matter, however sitnated. To put the
matter in a terse form, what NEwToN discovered was not
gravitation, but the universality of gravitation.

It may be inquired, is the induction which supposes
gravitation universal so complete as to be entirely beyond
doubt? We reply that within the solar system it certainly
is. The laws of motion as established by observation and
experiment at the surface of the earth must be considered
as mathematically certain. It is an observed fact that the
planets in their motions deviate from straight lines in a
certain way. By the first law of motion, such deviation
can be produced only by a force; and the direction and
intensity of this force admit of being calculated once that
the motion is determined. When thus calculated, it is
found to be exactly represented by one great force con-
stantly directed toward the sun, and smaller subsidiary
forces directed toward the several planets. Therefore no
fact in nature is more firmly established than that of uni-
versal gravitation, as laid down by NEWTON, at least within
the solar system. (The student should read p. 278.)

We shall find, in describing double stars, that gravita-
tion is also found to act between the components of a great
number of such stars, It is certain, therefore, that at
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least some stars gravitate toward each other, as the bodies
of the solar system do; but the distance which separates
most of the stars from each other and from our sun is so
immense that no evidence of gravitation between individual
stars and the sun has yet been given by observation. Still,
that they do gravitate according to NEWTON’S law ecan
hardly be seriously doubted by any one who understands
the subject.

The student may now be supposed to see the absurdity
of supposing that the theory of gravitation can ever be
subverted. It is not, however, absurd to suppose that it
may yet be shown to be the result of some more general
law. Attempts to do this are made from time to time
by men of a philosophic spirit; but thus far no theory of
the subject having much probability in its favor has becn
propounded.

Note 10 PAGE 116.

Suppose a body m to move about a central body M in a circular
orbit of radius 7, in a periodic time ¢, with a velocity V. The cir-
cumference of the circle is 277 ; it is described in a time ¢; hence

1) = 2~7t£i The relation of the force and the velocity of such
a body m is expressed by the equation

= = 4= (5)
®) ~ or; MSFIc Y =)

In this equation f is the measure of the central force by which m is
retained in its orbit. If this force ceased to act at any moment m
would fly away from its circular orbit and would move along a tan-
gent to the circle (Law I, page 115). Hence f is sometimes called the
centrifugal force.

From the law of gravitation we have (page 119) f = = M being

r®’
3 2 Vet
the sun’s mass; therefore f = %{ = 47; T, op = 4—:; [1—'. g (3)

For another planet 7’ revolving in an orbit of radius +’ in a time ¢’
@ = 4ntprd

() $*: ¢ = 7% : 7%, which is the third law of KEPLER.

and consequently



CHAPTER VII.
THE MOTIONS AND ATTRACTION OF THE MOON.

EacH of the planets, except Mercury and Venus, is at-
tended by one or more satellites, or moons as they are
sometimes familiarly called. These objects revolve around
their several plahets in nearly circular orbits, accompany-
ing them in their revolutions around the sun. Their dis-
tances from their planets are very small compared with the
distances of the latter from ecach other and from the sun.
Their magnitudes also are very small compared with those
of the planets around which they revolve. Considering
each system by itself, the satellites revolve around their
central planets, or ¢‘ primaries,” in nearly circular orbits,
and in each system KEPLER’S laws govern the motion of the
satellites about the primary. Each system is carried around
the sun without any derangement of the motion of its sev-
eral bodies among themselves.

Our earth has a single satellite accompanying it in this
way, the moon. It revolves around the earth in a little Xu.f.i,/
less than a month. The nature, causes, and consequences
of this motion form the subject of the present chapter.

=

THE MooN's MOTIONS AND PHASES.

That the moon performs a monthly circuit in the heavens is a fact
with which we are all familiar from childhood. At certain times we
see her newly emerged from the sun’s rays in the western twilight,
and then we call her the npew moon. On each succeeding evening
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we see her further to the east, so that in two weeks she is opposite
the sun, rising in the east as he sets in the west. Continuing her
course two weeks more, she has approached the sun on the other
side, or from the west, and is once more lost in his rays. At the end
of twenty-nine or thirty days, we see her again emerging as new
moon, and her circuit is complete. The sun has been apparently
moving toward the east among the stars during the whole month, so
that during the interval from one new moon to the next the moon
has to make a complete circuit relatively to the stars, and to move
forward some 80° further to overtake the sun, which has also been
moving toward the east at the rate of 1° daily. The revolution of
the moon among the stars is performed in about 27} days,* so that if
we observe when the moon is very near some star, we shall find her
in the same position relative to the star at the end of this interval.

The motion of the moon in this circuit differs from the apparent
motions of the planets in being always forward. We have seen that
the planets, though, on the whole, moving toward the east, are
effected with an apparent retrograde motion at certain intervals, ow-
ing to the motion of the earth around the sun. But the earth is the
real centre of the moon’s motion, and carries the moon along with it
in its annual revolution around the sun. To form a correct idea of
the real motion of these three bodies, we must imagine the earth per-
forming its circuit around the sun in one year, and carrying with it
the moon, which makes a revolution around it in 27 days, at a dis-
tauce only about 35 that of the sun.

Phases of the Moon.—The moon, being 2 non-luminous
body, shines only by reflecting the light falling on her from
some other body. The principal source of light is the sun.
Since the moon is spherical in shape, the sun can illumi-
nate one half her surface. The appearance of the moon
varies according to the amount of her illuminated hemi-
sphere which is turned toward the earth, as can be seen by
studying Fig. 39. Here the central globe is the earth;
the circle around it represents the orbitof the moon. The
rays of the sun fall on both earth and moon from the
right, the distance of the sun being, on the scale of the

* More exactly, 27.321664.
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figure, some 30 feet. Eight positions of the moon are
gshown around the orbit at 4, X, C, etc., and the right-
hand hemisphere of the moon is illuminated in each posi-
tion. Outside these eight positions are eight others show-
ing how the moon looks as seen from the earth in each
position.

At A it is ““new moon,” the moon being nearly between

Fia. 39.

the earth and the sun. Its dark hemisphere is then turn-
ed toward the earth, so that it is entirely invisible. The
sun and moon then rise and set together.

At F the observer on the earth sees about a fourth of
the illuminated hemisphere, which looks like a crescent, as
shown in the outside figure. In this position a great deal
of light is reflected from the earth to the moon, rendering
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the dark part of the latter visible by a gray light. This
dppearance is sometimes called the ¢ old moon in the new
moon’s arms.” At ¢ the moon is said to be in her ¢ first
quarter,” and one half her illuminated hemisphere is visi-
ble. The moon is on the meridian at 6 p.M. At @ three
fourths of the illuminated hemisphere is visible, and at B
the whole of it. The latter position, when the moon is
opposite the sun, is called *“full moon.” The moon rises
at sunset. After this, at ZZ, D, F, the same appearances
are repeated in the reversed order, the position D being
called the ‘¢ last quarter.”

THE TIDES.

It is not possible in an elementary treatise to give a complete ac-
count of the theory of the tides of the ocean due to the effect of the
sun and moon. A general account may be presented which will be
sufficient to show the nature of the effects produced and of their
causes. (See Fig. 392.)

Let us consider the earth to be composed of a solid centre sur-
rounded by an ocean of uniform (and not very great) depth. * The
moon exercises an attraction upon every particle of the earth’s mass,
solid and fluid alike. The attraction of the whole moon (3) upon

a particle m is pT, where p is the distance from the centre of the

moon to 7. If m is one of the solid particles of the earth, it cannot
move towards M in obedience to the attraction unless all the other
solid particles move, since the earth proper is rigid.

If m is a fluid particle, it is free to move in obedience to the forces

impressed upon it. The attraction of M is proportional to ;1,—; that is,

the particles nearest M are most attracted, and, on the whole, the
water on the part of the earth nearest the moon will be raised to-
ward M.

The moon also attracts the solid parts of the earth more than she
attracts the water most distant from her, and this produces exactly
the same effect as if there was another moon M’ exactly opposite to
M. The elevation of the water under M’ will not be quite as great
as that under M, on account of the increased distance from M,
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Thus the moon’s action tends to elevate the whole mass of water on
the line joining her centre with the centre of the earth, and this is so
not only on the part of this line nearest the moon, but also on that
farthest from her.

This elevation of the waters of the ocean above their mean level is
called the tide. 'The tidal effect of the moon produces a distortion of
the spherical shell of water which we have supposed to surround the
earth,and elongates this shell into the shape of an ellipsoid, the longer
axis of which is always directed to the moon. Now as the moon
moves around the earth once in 24" 54, this ellipsoidal shape must
also move with her. The crest of the wave directly under M would
come back to the same meridian every 24" 54=, The outer crest (under
M'y would come 12k 27= after the first, so there would be two high
tides at any one meridian every (lunar) day. The first (and largest)
high tide would be at the time of the moon’s visible transit over the
meridian. The second high tide would be 12k 27™ later, when the
moon was on the lJower meridian of the place.

The high tides occur when there is more water than the mean
depth, and between these high tides we should have low tides, two
in each lunar day. Similarly there would be two high tides daily at
each meridian, due to the attractive force of the sun. These would
have a period of 24 hours and could not always agree with the lunar
high tides. When the solar and lunar high tides coincided (at new
and full moon), then we should have the lughest high tides and the
lowest low tides. (These are the Spring tides, so called.) When the
moon and the sun were 90° apart (moon at first and third quarter),
then we should have the lowest high tides and the highest low tides.
(Neap tides, so called.)

The tide-producing force of the moon is to that of the sun as 800 is
to 855. The great mass of the sun compensates in some degree for
his relatively great distance.

At spring tides sun and moon work together; at neap tides they
oppose each other. The relative heightsare as 800 4 355 : 800 — 855,
or as 13to 5 approximately.

The explanation above relates to an earth covered by an ocean of
uniform depth. To fit it to the facts as they are, a thousand cir-
cumstances must be taken into account, which depend upon the
modifying effects of continents and islands, of deep and shallow
seas, of currents and winds. Practically, the high tide at any sta-
tion is predicted by adding to the time of the moon’s transit over
its meridian a quantity determined from observation and not from
theory,
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Effects of the Tides upon the Earth’s Rotation.—As the tide-wave
moves it meets with resistance due to friction. The amount of this
resistance is subtracted daily from the earth’s energy of rotation,
The tides act on the earth, in a way, as if they were a light friction-
brake applied to an enormously heavy wheel turning rapidly. The
Wheel has been set to turning, and, so far as we know, it will never
have any more rotative energy given to it. Every subtraction of
energy, however small, is a positive and irretrievable loss.

The lunar tides are gradually, though very slowly, lengthening the
day. Since accurate astronomical observations began there has been
no observational proof of any appreciable change in the length of the
day, but the change has been going on nevertheless.

Fia. 89,

In the figure M is the moon on the meridian Om of a
place m. It is high water at m and m’. Itis low water
at m’” and m’”’. In an hour the moon will have moved to
1’ and the crest of the wave to 1. The tide will be high
at 1 and falling at m. As the moon moves by the diurnal
motion to 2/, 3/, M’”’, M’, the crest will move with it.
When the moon is at M"” it is low water at m and m/'.
When the moon is at M’, it 1s again high water at m; and
so on. If we suppose M to be the sun, a similar set of
solar tides will be produced every 24 hours. The actual
tide is produced by the superposition of the solar and
lunar tides.



CHAPTER VIIL
ECLIPSES OF THE SUN AND MOON.

EcL1psES are phenomena arising from the shadow of one
body being cast upon another, or from a dark body passing
over a bright one. In an eclipse of the sun, the shadow of
the moon sweeps over the earth, and the sun is wholly or
partially obscured to observers on that part of the earth
where the shadow falls. In an eclipse of the moon, the
latter enters the shadow of the earth, and is wholly or
partially obscured in consequence of being deprived of
some or all of its borrowed light. The satellites of other
planets are from time to time eclipsed in the same way by
entering the shadows of their primaries; among these the
satellites of Jupifer are objects whose eclipses may be
observed with great regularity.

THE EARTH'S SHADOW AND PENUMBRA.

In Fig. 40 let S represent the sun, and Z the earth. Draw straight
lines, DBV and D'B'V, each tangent to the sun and the earth.
The two bodies being supposed spherical, these lines will be the
intersections of a cone with the plane of the paper, and may be
taken to represent that cone. It is evident that the cone B V' B will
be the outline of the shadow of the earth, and that within this cone
no direct sunlight can penetrate. It is therefore called the earth’s
shadow-cone.

Let us also draw the lines ’BP and D B'P’ to represent the
other cone tangent to the sun and earth. Itis then evident that
within the region - VBP and VIB'P’' the light of the sun will be
partially but not entirely cut off.
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Dimensions of Shadow.—Let us investigate the distance ¥ ¥ from
the centre of the earth to the vertex of the shadow. The triangles
VEB and V8D are similar, having a right angle at B and at D,
Hence

VE:EB=VS8:SD=ES:(8D— EB)
So if we put

= V E, the length of the shadow measured from the centre of
the earth,

r= K 8, the radius-vector of the earth,

R = 8D, the radius of the sun,
p = K B, the radius of the earth,

we have

- _ESXEB _ rp
Z_VE—SD—EB—R—p'

F16. 40.—FOoRM OF SHADOW,

That is, ! is expressed in terms of known quantities, and thus is
known.

The radius of the shadow diminishes uniformly with the distance
as we go outward from the earth. At any distance z from the

carth’s centre it will be equal to (1 —-;)p, for this formula gives

the radius p when z = 0, and the diameter zero when z =1 as it
should.*

* It will be noted that this expression is not, rigorously speaking, the semi-
diameter of the shadow, but the shortest distance from a point on its central
line to its conical surface. This distance is ineasured in a direction E B perpen-
dicular to D B, whereas the diameter would be perpendicular to the axis S E,
and its half-length would be a little greater than £ B.
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ECLIPSES OF THE MOON,

The mean distance of the moon from the earth is about
60 radii of the latter, and the length Z V of the earth’s
shadow is 217 radii of the earth. Hence when the moon
passes through the shadow she does so at a point less than
three tenths of the way from Z to V. The radius of the
shadow here will be 24,1562 of the radius Z B of the earth,
a quantity which we readily find to be about 4600 kilo-
metres. The radius of the moon being 1736 kilometres, it
will be entirely enveloped by the shadow when it passes
through it within 2864 kilometres of the axis Z V of the
shadow. If its least distance from the axis exceed this
amount, a portion of the lunar globe will be outside the
limits BV of the shadow-cone, and will therefore receive a
portion of the direct light of the sun. If the least distance
of the centre of the moon from the axis of the shadow is
greater than the sum of the radii of the moon and the
shadow—that is, greater than 6336 kilometres—the moon
will not enter the shadow at all, and there will be no eclipse
proper, though the brilliancy of the moon is diminished
wherever she is within the penumbral region.

‘When an eclipse of the moon occurs, the phases are laid down
in the almanac. (See Fig. 40.) Supposing the moon to be moving
around the earth from below upward, its advancing edge first
meets the boundary B'P' of the penumbra. The time of this
occurrence is given in the almanac as that of ‘“moon entering
penumbra.” A small portion of the sunlight is then cut off from the
advancing edge of the moon, and this amount constantly increases
until the edge reaches the boundary B’V of the shadow. It is
curious, however, that the eye can scarcely detect any diminution in
the brilliancy of the moon until she has almost touched the boundary
of the shadow. The observer must not, therefore, expect to detect the
coming eclipse until very nearly the time given in the almanac as that
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of ‘“moon entering shadow.” As this happens, the advancing
portion of the lunar disk will be entirely lost to view, as if it were
cut off by a rather ill-defined line. It takes the moon about an hour
to move over a distance equal to her own diameter, so that if the
eclipse is nearly central the whole moon will be immersed in the
shadow about an hour after she first strikes it. 'This is the time of
beginning of total eclipse. So long as only a moderate portion of
the moon’s disk is in the shadow, that portion will be entirely
invisible, but if the eclipse becomes total the whole disk of the moon
will nearly always be plainly visible, shining with a red coppery
light. This is owing to the refraction of the sun’s rays by the lower
strata of the earth’s atmosphere. We shall see hereafter that if a ray
of light D B passes from the sun to the earth, so as just to graze the
latter, it is bent by refraction more than a degree out of its course,
so that at the distance of the moon the whole shadow of the earth
is filled with this refracted light. An observer on the moon would,
during a total eclipse of the latter, see the earth surrounded by a
ring of light, and this ring would appear red, owing to the absorp-
tion of the blue and green rays by the earth’s atmosphere, just as the
sun seems red when setting,.

The moon may remain enveloped in the shadow of the earth
during a period ranging from a few minutes to nearly two hours,
according to the distance at which she passes from the axis of the
shadow and the velocity of her angular motion. When she leaves
the shadow, the phases which we have described occur in reverse
order.

It very often happens that the moon passes through the penumbra
of the earth without touching the shadow at all. 'The diminution of
light in such cases is scarcely perceptible unless the moon at least
grazes the edge of the shadow.

ECLIPSES OF THE SUN.

In Fig. 40 we may suppose B E B’ to represent the
moon. The geometrical theory of the shadow will remain
the same, though the actual length of the shadow in
miles will be much less. The mean length of the moon’s
shadow cast by the sun is 877,000 kilometres. This is
nearly equal to the distance of the moon from the earth
when she is in conjunction with the sun. We therefore
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conclude that when the moon passes between the earth
and the sun, the former will be very near the vertex V of
the shadow. As a matter of fact, an observer on the
earth’s surface will sometimes pass through the region
C V 0’, and sometimes on the other side of V.

Now, in Fig. 40, still supposing BE B to be the moon, and
S DD to be the sun, let us draw the lines D B'P and D'B P tan-
gent to both moon and sun, but crossing each other between these
bodies at d. It is evident that an observer outside the space
PB B'P will see the whole sun, no part of the moon being project-
ed upon it; while within this space the sun will be more or less
obscured. The whole obscured space may be divided into three
regions, in each of which the character of the phenomenon is dif-
ferent.

First, we have the region BV B’ forming the shadow-cone proper.
Here the sunlight is entirely cut off by the moon, and darkness is
therefore complete, except so far as light may enter by refraction
or reflection. To an observer at ¥ the moon would exactly cover
the sun, the two bodies being apparently tangent to each other all
around. >

Secondly, we have the conical region to the right of ¥ between
the lines B ¥V and B'V continued. In this region the moon is scen
wholly projected upon the sun, the visible portion of the latter
presenting the form of a ring of light around the moon. This ring
of light will be wider in proportion to the apparent diameter of the
sun, the farther out we go, because the moon will appear smaller
than the sun, and its angular diameter will diminish in a more rapid
ratio than that of the sun. This region is that of annular eclipse,
because the sun will present the appearance of an annulus or ring of
light around the moon.

Thirdly, we have the region P BV and P'B'V, which we notice
is continuous, extending around the interior cone. An observer
here would see the moon partly projected upon the sun, and there-
fore a certain part of the sun’s light would be cut off. Along the
inner boundary B V and B'V’ the obscuration of the sun will be
complete, but the amount of sunlight will gradually increase out to
the outer boundary B P B’ P/, where the whole sun is visible, This
region of partial obscuration is called the penumbra.

To show more clearly the phenomena of solar eclipses, we present
another figure representing the penumbra of the moon thrown upon
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the earth.* The outer of the two circles S represents the limb of the
sun. The exterior tangents which mark the boundary of the shadow
cross each other at 7 before reaching the earth. The earth () being
a little beyond the vertex of the shadow, there can be no total eclipse.
In this case an observer in the penumbral region, €0 or DO, will
sce the moon partly projected on the sun, while if he chance to be
situated at O he will see an annular eclipse. To show low this
is, we draw dotted lines from O tangent to the moon. The angle
between these lines represents the apparent diameter of the moon as
seen from the earth. Continuing them to the sun, they show the
apparent diameter of the moon as projected upon the sun. It will
be seen that, in the case supposed, when the vertex of the shadow
is between the earth and moon the latter will necessarily appear

F16. 41.—FIGURE OF SHADOW FOR ANNULAR ECLIPSE,

smaller than the sun, and the observer will see a portion of the solar
disk on all sides of the moon, as shown in Fig. 42.

If the moon were a little nearer the earth than it is represented
in Fig. 41, its shadow would reach the earth in the neighborhood
of O. We should then have a total eclipse at each point of the earth
on which it fell. It will be seen, however, that a total or annular
eclipse of the sun is visible only on a very small portion of the earth’s
surface, because the distance of the moon changes so little that the
earth can never be far from the vertex V of the shadow. As the

# It will be noted that all the figures of eclipses are necessarily drawn very
much out of proportion, Really the sun is 400 times the distance of the moon,
which again is 60 times the radius of the earth, But it would be entirely im-
possible to draw a figure of this proportion; we are therefore obliged to
represent the earth in Fig. 41 as larger than the sun, and the moon as nearly
half way between the earth and snn.
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moon moves around the earth from west to east, its shadow, whether
the eclipse be total or annular, moves in the same direction. The
diameter of the shadow at the
surface of the earth ranges from
zero to 150 miles. It therefore
sweeps along a belt of the
earth’s surface of that breadth,
in the same direction in which
the earth is rotating. The
velocity of the moon relative to
the earth being 3400 kilometres
per hour, the shadow would
pass along with this velocity if
the earth did not rotate, but
owing to the earth’s rotation
the velocity relative to points
on its surface may range from

2000 to 3400 kilometres (1200 Fi1G. 42.—DARK Bobpy oF MOON PROJECTED
to 2100 miles) ON SUN DURING AN ANNULAR ECLIPSE.

The reader will readily understand that in order to see a total
eclipse an observer must station himself beforehand at some point of
the earth’s surface over which the shadow is to pass. These points

are generally calculated some years in advance, in the astronomical
ephemerides.

It will be seen that a partial eclipse of the sun may be
visible from a much larger portion of the earth’s surface
than a total or annular one. The sf)ace C D (Fig. 41) over
which the penumbra extends is generally of about one half
the diameter of the earth. Roughly speaking, a partial
eclipse of the sun may sweep over a portion of the earth’s
surface ranging from zero to perhaps one fifth or one sixth
of the whole.

There are really more eclipses of the sun than of the
moon. A year never passes without at least two of the
former, and sometimes five or six, while there are rarely
more than two eclipses of the moon, and in many years
none at all. But at any one place more eclipses of the
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moon will be seen than of the sun. The reason of this is
that an eclipse of the moon is visible over the entire hemi-
sphere of the earth on which the moon is shining, and as
it lasts several hours, observers who are not in this hemi-
sphere at the beginning of the eclipse may, by the earth’s
rotation, be brought into it before it ends. Thus the
eclipse will be seen over more than half the earth’s surface.
But, as we have just scen, each eclipse of the sun can be
scen over only so small a fraction of the earth’s surface as
to more than compensate for the greater absolute fre-
quency of{slar ¢clipses.

s :
F16. 43.=-COMPARISON OF SHADOW AND PENUMBRA OF EARTH AND MooN. A4 1S
THE POSITION OF TRE®MOON DURING A SOLAR, B DURING A LUNAR, ECLIPSE.

It will be seen'that, in order to have either a total or
jannular eclipse visible upon the earth, the line joining
:the centres of the sun gmdmoon, being continued, must
istrike the earth. To ap er on this line the centres
of the two bodies will\seem to coincide. An eclipse in
which this occurs is called™a cenfral one, whether it be
total or annular. Fig. 43 will perhaps aid in giving a
clear idea of the phenomena of eclipses of both sun-and
moon.

THE RECURRENCE OF ECLIPSES.

If the orbit of the moon around the earth were in or near the
plane of the ecliptic there would be an eclipse of the sun at every
4w 1100m, and an eclipse of the moon at every full moon. ‘But,
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owing to the inclination of the moon’s orbit (five degrees to the
ecliptic), the shadow and penumbra of the moon commonly passabove
or below the earth at the time of new. moon, while the moon, at her
full, commonly passes above or below the shadow of the earth. It
is only when the moon is near its node at the moment of new or full
moon that an eclipse can occur.

The question now arises, how near must the moon be to its node
in order that an eclipse may occur? It is found that if, at the
moment of new moon, the moon is more than 18°.6 from its node
no eclipse of the sun is possible, while if it is less than 13°.7 an
eclipse is certain. Between these limits an eclipse may occur or fail
according to the respective distances of the sun and moon from the
earth. Half way between these limits, or say 16° from the node, it

p 2]

Fia. 44.—Tllustrating lunar eclipse at different distances from the node. 'Th'e
dark c’rcles are the earth’s shadow, the centre of which is always in the ecliptic
A B. The moon's orbit is represented by C D. At G the eclipse is central and
total, at F'it is partial, and at E there is barely an eclipse.

is an even chance that an eclipse will occur; toward the lower limit
(18°-7) the chances increase to certainty; toward the upper oune
(18°-6) they diminish to zero. The corresponding limits for an
eclipse of the moon are 9° and 124°; that is, if at the moment of full
moon the distance of the moon from her node is greater than 1.21}"
no eclipse can occur, while if the distance is less than 9° an eclipse
is certain. We may put the mean limit at 11°. Since, in the long-
run, new and full moon will occur equally at all distances from the
node, there will be, on the average, sixteen eclipses of the sun to
eleven of the moon, or nearly fifty per cent more.

If, at the moment of new moon, the distance of the moon from
the node is less than 103° there will be a central eclipse of the sun,
and if greater than this there will not be such an eclipse. The
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eclipse limit may range half a degree or more on each side of this
mean value, owing to the varying distance of the moon from the
earth., Inside of 10° a central eclipse may be regarded as certain,
and outside of 11° as impossible.

If the direction of the moon’s nodes from the centre of the earth
were invariable, eclipses could occur only at the two opposite months
of the year when the sun had nearly the same longitude as one node.
For instance, if the longitudes of the two opposite nodes were re-
spectively 54° and 234°, then, since the sun must be within 12° of
the node to allow of an eclipse of the moon, its longitude would have
to be either between 42° and 66°, or between 222° and 246°. But
the sun is within the first of these regions only in the month of May,
and within the second only during the month of November. Hence
lunar eclipses could then occur only during the months of May and
November, and the same would hold true of central eclipses of the
sun. Small partial eclipses of the latter might be seen occasionally
a day or two from the beginnings or ends of the above months, but
they would be very small and quite rare. Now, the nodes of the
moon’s orbit were actually in the above directions in the year 1873.
Hence during that year eclipses occurred only in May and No-
vember, We may call these months the scasons of eclipses for
1873.

There is a retrograde motion of the moon’s nodes amounting to
194° in a year. The nodes thus move back to meet the sun in its
annual revolution, and this meeting occurs about 20 days earlier
every year than it did the year before. The result is that the season
of eclipses is constantly shifting, so that each season ranges through-
out the whole year in 18-6 years. For instance, the season corre.
sponding to that of November, 1873, had moved back to July and
August in 1878, and will occur in May, 1882, while that of May,
1873, will be shifting back to November in 1882.

It may be interesting to illustrate this by giving the days in which
the sun is in conjunction with the nodes of the moon’s orbit during
several years,

Ascending Node. Descending Node.
1879. January 24. 1879. July 1%.
1880. January 6. 1880. June 27,
1880. December 18. 1881. June 8.
1881, November 30. 1882, May 20.
1882. November 12. 1883. May 1.
1883. October 25. . 1884. April 12,

1884. October 8. 1885. March 25.
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During these years, eclipses of the moon can occur only within 11
or 12 days of these dates, and eclipses of the sun only within 15 or
16 days.

In consequence of the motion of the moon’s node, three varying
angles come into play in considering the occurrence of an eclipse:
the longitude of the node, that of the sun, and that of the moon.
One revolution of the moon relatively to the node is accomplished,
on the average, in 27-21222 days. If we calculate the time required
for the sun to return to the node, we shall find it to be 346.6201
days.

Now, let us suppose the sun and moon to start out together from
2 node. At the end of 346.6201 days the sun, having apparently
performed nearly an entire revolution around the celestial sphere, will
again be at the same node, which has moved back to meet it. But.the
moon will not be there. It will, during the interval, have passed
the node 12 times, and the 13th passage will not occur for a week.
The same thing will be true for 18 successive returns of the sun to
*he node; we shall not find the moon there at the same time with
the sun; she will always have passed a little sooner or a little later.
But at the 19th return of the sun and the 242d of the moon, the two
bodies will be in conjunction within half a degree of the node. We
find from the preceding periods that

242 returns of the moon to the node require 6585.357 days.
19, a2 b Algun: weeel o ¢ 6585.780 ¢

The two bodies will therefore pass the node within 10 hours of
sach other. This conjunction of the sun and moon will be the 223d
new moon after that from which we started. Now, one lunation
(that is, the interval between two consecutive new moons) is, in the
mean, 29.530588 days; 223 lunations therefore require 6585.82 days.
The new moon, therefore, occurs a little before the bodies reach the
node, the distance from the latter being that over which the moon
moves in 04,036, or the sun in 04.459. This distance is 28’ of arc,
somewhat less than the apparent semidiameter of either body. This
would be the smallest distance from either node at which any new
moon would occur during the whole period. The next nearest ap-
proaches would have occurred at the 35th and 47th lunations respec-
tively. The 385th new moon would have occurred about 6° before
the two bodies arrived at the node from which we started, and the
47th about 1}° past the opposite node. No other new moon would
occur so near a node before the 223d one, which, as we have just
seen, would occur 0° 28" west of the node. This period of 223 new
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moons, or 18 years 11 days, was called the Saros by the ancient as-
tronomers, and by means of it they predicted eclipses.

The possibility of a total eclipse of the sun arises from the occa-
sional very slight excess of the apparent angular diameter of the
moon over that of the sun This excess is so slight that such an
eclipse can never last more than a few minutes. It may be of inter-
est to point out the circumstances which favor a long duration of
totality. These are:

(1) That the moon should be as near as possible to the earth, or,
technically speaking, in perigee, because its angular diameter as
seen from the earth will then be greatest.

(@) That the sun should be near its greatest distance from the
earth, or in apogee, because then its angular diameter will be the
least. It is now in this position about the end of June; hence the
most favorable time for a total eclipse of very long duration is in the
summer months. Since the moon must be in perigee and also be-
tween the earth and sun, it follows that the longitude of the perigee
must be nearly that of the sun, The longitude of the sun at the
end of June being 100°, this is the most favorable longitude of the
moon’s perigee. |

(3) The moon must be very near the node in order that the centre
of the shadow may fall near the equator. The reason of this condi-
tion is that the duration of a total eclipse may be considerably in-
creased by the rotation of the earth on its axis. We have seen that
the shadow sweeps over the earth from west toward east with a
velocity of about 3400 kilometres per liour. Since the earth rotates
in the same direction, the velocity relative to the observer on the
earth’s surface will be diminished by a quantity depending on this
velocity of rotation, and therefore greater the greater the velocity.
The velocity of rotation is greatest at the earth’s equator, where it
amounts to 1660 kilometres per hour, or nearly half the velocity of
the moon’s shadow. Hence the duration of a total eclipse may, withi-
in the tropics, be nearly doubled by the earth’s rotation. When all
the favorable circumstances combine in the way we have just de-
scribed, the duration of a fotal eclipse within the tropics will be
about seven minutes and a half. In our latitude the maximum du-
ration will be somewhat less, or not far from six minutes, but it is
only on very rare occasions, hardly once in many centuries, that all
these favorable conditions can be expected to concur.

Occultation of Stars by the Moon.—A phenomenon which, geomet-
rically considered, is analogous to an eclipse of the sun is the occul-
tation of a star by the moon. Sinceall the bodies of the solar system
are nearer than the fixed stars, it is evident that they must from.






CHAPTER IX.
THE EARTH.

OUR object in the present chapter is to trace the effects
of terrestrial gravitation and to study the changes to which
it is subject in various places. Since every part of the
earth attracts every other part as well as every object upon
its surface, it follows that the earth and all the objects
that we consider terrestrial form a sort of system by them-
selves, the parts of which are firmly bound together by
their mutual attraction. This attraction is so strong that
itis found impossible to project any object from the sur-
face of the earth into the celestial spaces. Every particle
of matter now belonging to the earth must, so far as we
can see, remain upon it forever.

MAss AND DENSITY OF THE EARTH.

The mass of a body may be defined as the quantity of matter it con-
tains. It is measured by the product of its volume (V) by its density
(D). M= V.D. Foranother body M' = V'. IV, and for equal vol-
umes V=V'and M: M' = D :D'. The density of pure water at
about 89° Fahr. is taken as the unit-density. The unit-volume may
be taken as a cubic foot. The unit-mass will then be that of a cubic
foot of pure water at 39° Fahr.

The weight of a body is the forceswith which it is attracted to the cen-
tre of the earth. A body of mass m is attracted by the earth’s mass

M by J’%ﬂ}, where 7 is the distance M m. (See page 120.) The weight

w of m is then ]LJ’)} The weight ' of another body m' is w’ = l,,—.
7 n
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. If the bodies are at the same place on the earth » = #’ and v : ' =
m:m', or the weights of bodies at the same place on the earth are
proportional to their masses. It is easy to measure the weights of
bodies by balancing them in scales against certain pieces of metal.
Hence by weighing two bodies of weights w and w' we can deter-
mine the ratio of their masses m and m'. If m is a cubic foot of
water, m’ is the absolute mass of the other substance.

The weight w is not the same in all parts of the earth, nor at dif-
ferent heights above the earth’s surface. It is therefore a variable
quantity, depending upon the position of the body, while the mass
of the body is something inherent in it, which remains constant
wherever the body may be taken, even if it is carried through the
celestial spaces, where its weight would be reduced to almost noth-
ing.

The unit of mass which we may adopt is arbitrary. Generally the
most convenient unit is the weight of a body at some fixed place on
the earth’s surface—the city of Washington, for example. Suppose
we take such a portion of the earth as will weigh one kilogramme in
Washington; we may then consider the mass of that particular lot of
earth or rock as the unit of mass, no matter to what part of the uni-
verse we take it. Suppose, also, that we could bringall the matter
composing the earth to the city of Washington, one uunit of mass at
a time, for the purpose of weighing it, returning each unit of mass to
its place in the earth immediately after weighing, so that there should
be no disturbance of the earth itself. The sum-total of the weights
thus found would be the mass of the earth, and would be a perfectly
definite quantity, admitting of being expressed in kilogrammes or
pounds. We can readily calculate the mass of a volume of water
equal to that of the earth because we know the maguitude of the
earth in litres, and the mass of one litre of water. Dividing this
into the mass of the carth, supposing oursclves able to determine
this mass, and we shall have the specific gravity, or what is more
properly called the density, of the earth: D = M + M'.

What we have supposed for the earth we may imagine for any
heavenly body ; namely, that it is brought to the city of Washington
in small pieces, and there weighed one piece at a time. Thus the
total mass of the earth or any heavenly body is a perfectly definite
quantity when it is once determined.

It will be remarked in this connection that our units of weight, the
pound, the kilogramme, etc., are practically units of mass rather than
of weight. If we should welgh out a pound of” tea in the latitude of
Washington, and then take it to the equator, it would really be less
heavy at the equator than in Washington ; but if we take a pound
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weight with us, that also would be lighter at the equator, so that the -
two would still balance each other, and the tea would be still con-
sidered as weighing one pound. Since things are actually weighed
in this way by weights which weigh one unit at some definite place,
say Washington, and which are carried all over the world without
being changed, it follows that a body which has any given weight in
one place will, as measured in this way, have the same apparent
weight in any other place, although its real weight will vary. But
if a spring-balance or any other instrument for determining absolute
weights were adopted, then we should find that the weight of the
same body varied as we took it from one part of the earth to another.
Since, however, we do not use this sort of an instrument in weigh-
ing, but pieces of metal which are carried about without change, it
follows that what we call units of weight are properly units of mass.
Density of the Earth. —We see that all bodies around us tend to fall
toward the centre of the earth. According to the law of gravitation,
this tendency is not simply a single force directed toward the centre
of the earth, but is the resultant of an infinity of separate forces
arising from the attractions of all the separate parts which compose
the earth. The question may arise, how do we know that each
particle of the earth attracts a stone which falls, and that the whole
attraction does not reside in the centre ? The proofs of this are
numerous, and consist rather in the exactitude with which the
theory represents a great mass of disconnected phenomena than in
any one principle admitting of demonstration. Perhaps, however,
the most conclusive proof is found in the observed fact that masses
of matter at the surface of the earth do really attract each other as
required by the law of Newron. It is found, for example, that
isolated mountains attract a plumb-line in their neighborhood.

It is noteworthy that though astronomy affords us the
means of determining with great precision the relative
masses of the earth, the moon, and all the planets, it does
not enable us to determine the absolute mass of any hea-
venly body in units of the weights we use on the earth.
The sun has about 328,000 times the mass of the earth, and
the moon only ¢ of this mass, but to know the absolute
mass of either of them we must know how.many kilo-
grammes of matter the earth contains. To determine this
we must know the mean density of the earth, and this is

N
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something about which direct observation can give us no in-
formation, because we cannot penetrate more than an in-
significant distance into the earth’s interior.

The only way to determine the density of the earth 13 to find how
much matter it must contain in order to attract bodies on its surface
with a force equal to their observed weight ; that 1s, with such intensity
that at the equator a body shall fall nearly five metres in a second. To

Jind this we must know the relation between the mass of a body and

s attractive force. This relation can only be found by measuring
the attraction of a body of known mass.

We may measure the attraction of a body of known mass in the
following ingenious way. In Fig. 44* let H I K L be a cube of lead
1 metre on each edge. T'wo holes are bored through the cube at D F
and £ G. A pair of scales A BC
has its scale -pans D K connected
by fine wires to other scale-pans,
F @, below the block. Suppose
the pans empty and everything at
rest.

I. Put a weight W in D, and
balance the scales by weights in G.
At D the total attraction is the
attraction of the earth plus the
attraction of the block, while at
G we have the attraction of the
earth (downwards) minus the attraction of the bloek (upwards); hence

1) Weights in @ = weight in D -} 2 attraction of block.

II. Put the weight W in ¥, and balance the scales by weights in .
At F the total attraction is earth msnus block, and at X it is earth
plus block; hence
® Weights in Z = weight in ¥ — 2 attraction of block.

Combining these equations (1) and (2), we have

Weights in @ — weights in X = 4 attraction of block,
after small corrections have been applied for the difference of height
of D, E, F, G, etc.

The attraction of this block, which has a known mass in kilo-
grammes, is thus known, and hence the general relation between mass
in kilogrammes and attractions. The attraction of the earth is known,
since it is such as to attract bodies with forces equal to their observed
weights. Therefore the mass of the earth expressed in kilogrammes
is known. The volume, V, of the earth is known from surveys; its
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mass, M, is now known, and hence its density, D. The relative masses
of the sun and earth (and other planets) are known, and hence their
absolute masses in kilogrammes become known as soon as we have
the earth’s absolute mass in kilogrammes, determined as above,

The results of experiment show the earth to be about 5 times as
dense as water. The sun is only } as dense as the earth. Other re-
searches give about 5.6 for the density of the earth; this is more
than double the average specific gravity of the rocks whieh compose
the surface of the globe: whence it follows that the inner portions of
the earth are much more dense than the outer parts.

LAws oF TERRESTRIAL GRAVITATION.

The earth being very nearly spherical, certain theorems respecting
the attraction of spheres may be applied to it. The demonstration
of these theorems requires the use of the Integral Calculus, and will
be omitted here, only the conditions and the results being stated.
Let us imagine a hollow shell of matter, of which the internal and
external surfaces are both spheres, attracting any other mass of
matter, a small particle we may suppose. This particle will be
attracted by every particle cf the shell with a force inversely as the
square of its distance from it. The total attraction of the shell will
be the resultant of this infinity of scparate attractive forces.

TrarorEM L—If the particle be outside the shell, it will be attracted
as if the whole mass of the shell were concentrated in ils centre.

TraEOREM IL—If the particle be inside the shell, the opposite attrac-
tions in every direction will neutralize each other, no matter whereabouts
in the interior the particle may be, and the resultant attraction of the
shell will therefore be zero.

To apply this to the attraction of a solid sphere, let us first sup-
pose a body either outside the sphere or on its surface. If we con-
ceive the sphere as made up of agreat number of spherical shells, the
attracted point will be external to all of
them, Since each shell attracts as if
its whole mass were in the centre, it
follows that the whole sphere attracts
a body upon the outside of its surface
as if its entire mass were concentrated
at its centre.

Let us now suppose the attracted
particle inside the sphere, as at P, Fig.
45, and imagine a spherical snrface
P @ concentric with the sphere and
passing through the attracted particle.
A1l that portion of the sphere iying
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outside this spherical surface will be a spherical shell having the
particle inside of it, and will therefore exert no attraction whatever
on the particle, That portion inside the surface will constitute a
sphere with the particle on its surface, and will therefore attract as
if all this portion were concentrated in the centre. To find what
this attraction will be, let us first suppose the whole sphere of equal
density. Let us put

a, the radius of the entire sphere.
7, the distance P C of the particle from the centre.

The total volume of matter inside the sphere P will then be, by
geometry,—;nfr". Dividing by the square of the distance r, we see
that the attraction will be represented by

4

37"
that is, inside the sphere the attraction will be directly as the dis-
tance of the particle from the centre. If the particle is at the sur-

face we have » = @, and the attraction is % mwa. Outside the sur-

face the whole volume of the Sphere% 7 a® will attract the particle,

3
and the attraction will be % T i:;. If we put 7 =« in this formula,

we shall have the same result as before for the surface attraction.

Let us next suppose that the density of the sphere varies from its
centre to its surface, so as to be equal at equal distances from the
centre. We may then conceive of it as formed of an infinity of con-
centric spherical shells, each homogeneous in density, but not of the
same density as the others. Theorems I and II. will then still
apply, but their result will not be the same as in the case of a homo-
geneous sphere for a particle inside the sphere. Referring to Fig.
45, let us put

D, the mean density of the shell outside the particle P
D', the mean density of the portion P @ inside of P.
‘We shall then have :
Volume of the shell, -%7: (a® — 13). Volume of the inner sphere,

%7:‘ 73, Mass of the shell =vol. X D = % 7 D (a®—13). Mass of the
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inner sphere = vol. X I = ;—n‘ D'r®, Mass of the whole sphere =

sum of masses of shell and inner sphere = ;’— 21 (D @+ (D' — D) 74).
Attraction of the whole sphere upon a point at its surface =

Mass 4 23

s L (ot 7).

Attraction of the inner sphere (the same as that of the whole shell)

Mass 4 ,
pe) = 3— r D r.

upon a point at P =

If, as in the case of the earth, the density continually increases to-
ward the centre, the value of D' will increase also, as » diminishes, so
that gravity will diminish less rapidly than in the case of a homo-
geneous sphere, and may, in fact, actually increase as we descend.
To show this, let us subtract the attraction at P from that at the sur-
face. The difference will give :

Diminution at P = ;— 4 (Da + @ —-D g == D"r)
Now let us suppose 7 a very little less than @, and put r =a —d;
d will then be the depth of the particle below the surface.
Cubing this value of 7, neglecting the higher powers of d, and

dividing by a? we find f,: @ —3d. Substituting in the above
o

4
equation, the diminution of gravity at P becomes 37 BD-2'D)d.

We see that if 8 D < @ D'—that is, if the density at the surface is
less than  of the mean deunsity of the whole inner mass—this quan-
tity will become negative, showing that the force of gravity will be
less at the surface than at a small depth in the interior. But it must
ultimately diminish, because it is necessarily zero at the centre. It
was on this principle that Professor AIry determined the density of
the earth by comparing the vibrations of a pendulum at the bottom
of the Harton Colliery, and at the surface of the earth in the neigh-
borhood. At the bottom of the mine the pendulum gained about
2.5 per day, showing the force of gravity to be greater there than at
the surface.

FIGURE AND MAGNITUDE OF THE EARTH.

If the earth were fluid and did not rotate on its axis, it
would assume the form of a perfect sphere. The opinion
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is entertained that the earth was once in a molten state,
and that this is the origin of its present nearly spherical
form. If we give such a sphere a rotation upon its axis,
the centrifugal force at the ;equator acts in a direction op-
posed to gravity, and thus tends to enlarge the circle of
the equator. It is found by mathematical analysis that the
form of such a revolving fluid sphere, supposing it to be
perfectly homogeneous, will be an oblate ellipsoid ; that is,
all the meridians will be equal and similar ellipses, having
their major axes in the equator of the sphere and their
_ minor axes eoincident with the axis of rotation. Our earth,
however, is not wholly fluid, and the solidity of its conti-
nents prevents its assuming the form it would take if the
ocean covered its entire surface. By the figure of the
earth we mean, hereafter, not the outline of the solid and
liquid portions respectively, but the figure which it would
assume if its entire surface were an ocean. Let us
imagine canals dug down to the ocean level in every direc-
tion through the continents, and the water of the ocean to
be admitted into them. Then the curved surface touching
the water in all these canals, and coincident with the sur-
face of the ocean, is that of the ideal earth considered by
astronomers. By the figure of the earth is meant the figure
of this liquid surface, without reference to the inequalities
of the solid surface.

We cannot say that this ideal earth is a perfect ellipsoid,
because we know that the interior is not homogeneous, but
all the geodetic measures heretofore made are so nearly
represented by the hypothesis of an ellipsoid that the lat-
ter is a very close approximation to the true figure. The
deviations hitherto noticed are of so irregular a character
that they have not yet been reduced to any certain law.
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The largest which have been observed seem to be due to
the attraction of mountains, or to inequalities in the den-
sity of the rocks beneath the surface.

Method of Triangulation.—Sjnce it is practically impossi-
ble to measure around or through the earth, the magnitude
as well as the form of our planet has to be found by com-
bining measurements on its surface with astronomical ob-
servations. Even a measurement on the earth’s surface
made in the usual way of surveyors would be impracticable,
owing to the intervention of mountains, rivers, forests, and
other natural obstacles. The method of triangulation is
therefore universally adopted for measurements extending
over large areas.

Fi1G. 46—A PART OF THE FRENCH TRIANGULATION NEAR PARIS.

Triangulation is executed in the following way: Two points, a
and b, a few miles apart, are selected as the extremities of a base-
line. They must be so chosen that their di-tance apart can be accu-
rately measured by rods ; the intervening ground should therefore
be as level and free from obstruction as pussible. One or more ele-
vated points, % F, etc., must be visible from one or both ends of the
base-line. By means of a theodolite and by observation of the pole-
star, the directions of these points relative to the meridian are accu-
rately observed from each end of the base, as is also the direction a b
of the base-line itself. Suppose F to be a point visible from each
end of the base, then in the triangle @ b #' we have the length a b de-
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termined by actual measurement, and the angles at a and 5 deter-
mined by observations. With these data the lengths of the sides
a Fand b Fare determined by a simple computation.

The observer then transports his instruments to #, and determines
in succession the direction of the elevated points or hills D ¥ G HJ,
etc. He next goes in succession to each of these hills, and determines
the direction of all the others which are visible from it. Thus a net-
work of triangles is formed, of which all the angles are observed
with the theodolite, while the sides are successively calculated from
the first base. For instance, we have just shown how the side a Fis
calculated; this forms a base for the triahgle FE Fa, the two remain-
ing sides of which are computed. The side # F forms the base of
the triangle @G E F, the sides of which are calculated, etc. In this
operation more angles are observed than are theoretically necessary
to calculate the triangles. This surplus of data serves to insure the
detection of any errors in the measures, and to test their accuracy by
the agreement of their results. Accumulating errors are further
guarded against by measuring additional sides from time to time as
opportunity offers,

Chains of triangles have thus been measured in Russia and Sweden
from the Danube to the Arctic Ocean, in England and France from
the Hebrides to Algiers, in this country down nearly our entire At-
lantic coast and along the great lakes, and through shorter distances
in many other countries. An east and west line is now being run
by the Coast Survey from the Atlanticto the Pacific Ocean. Indeed
it may be expected that a network of triangles will be gradually ex-
tended over the surface of every civilized country, in order to con-
struct perfect maps of it.

Suppose that we take two stations, a and j, Fig. 46, situated north
and south of each other, determine the latitude of each, and calculate
the distance between them by means of triangles, as in the figure.
It is evident that by dividing the distance in kilometres by the dif-
ference of latitude in degrees we shall have the length of one degree
of latitude. Then if the earth were a sphere, we should at once have
its circumference by multiplying the length of one degree by 360.
It is thus found that the length of 1 degree is a little more than 111
kilometres, or between 69 and 70 English statute miles. Its circum-
ference is therefore about 40,000 kilometres, and its diameter between
12,000 and 13,000.* (25,000 and 8000 miles.)

* When the metric systein was originally designed by the French, it was in-
tended that the kilometre should be 1gdsy of the distance from the pole of the
earth to the equator. This would make a degree of the meridian equal, on tLe
average, to 111} kilometres. But the metre actually adopted is nearly 1}z of
an inch oo short. '
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Owing to the ellipticity of the earth, the length of one degree
varies with the latitude and the direction in which it is measured.
The next step in the order of accuracy is to find the magnitude and
the form of the earth from measures of long arcs of latitude (and
sometimes of longitude) made in different regions, especially near
the equator and in high latitudes. But we shall still find that dif-
ferent combinations of measures give slightly different resuits, both
for the magnitude and the ellipticity, owing to the irregularities in
the direction of attraction which we have already described. The
problem is therefore to find what ellipsoid will satisfy the measures
with the least sum-total of error. New and more accurate solutions
will be reached from time to time as geodetic measures are extended
over a wider area. The following are among the most recent results:

* Fia. 47.

the earth’s polar semidiameter, 6355- 270 kilometres; earth’s equatorial
semidiameter, 6377377 kilometres ; earth’s compression, gz of the
equatorial diameter ; earth’s eccentricity of meridian, 0-08319. An-
other result is that of Captain CLARKE of England, who found:
polar semidiameter, 6356-456* kilometres; equatorial semidiameter,
6378-191 kilometres.

Geographic and Geocentric Latitudes.—An obvious result of the
ellipticity of the earth is that the plumb-line does not point toward
the earth’s centre. Let Fig. 47 represent a meridional section of the
earth, V8 being the axis of rotation, £ @ the plane of the equator,
and O the position of the observer. The line H R, tangent to the

* Captain CLARKE'S results are given in feet, the polar radius being 20,854,895
feet, the equatorial 20,926,202. These numbers are in the proportion 292 : 203,
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earth at O, will then represent the horizon of the observer, while the
line Z N', perpendicular to H R, and therefore normal to the earth
at 0, will be the vertical as determined by the plumb-line. The angle
ON'Q, or Z0 @', which the observer’s zenith makes with the equa-
tor will then be his astronomical or geographical latitude. This is
the latitude which in practice we always have to use, because we
are obliged to delermine latitude by astronomical observation, and
not by measurement from the equator. We cannot determine the
direction of the true centre C of the earth by direct observation of
any kind, but only the direction of the plumb-line, or of the perpen-
dicular to a fluid surface. Z O ' is the astronomical latitude. If,
however, we conceive the line €Oz drawn from the centre of the
earth through O, z will be the observer’s geocentric zenith, while the
angle O 0 @ will be his geocentric latitude. 1t will be observed that it
is the geocentric and not the geographic latitude which gives the true
position of the observer relative to the eartli’s centre. The difference
between the two latitudes is the angle C O N’ or Z Oz ; this is called
the angle of the vertical. 1t iszero at the poles and at the equator, be-
cause here the normals pass through the centre of the ellipse, and it
attains its maximum of 11/ 30’ at latitude 45°. It will be seen that the
geocentric latitude is always less than the geographic. In north
latitudes the geocentric zenith issouth of the apparent zenith, and in
southern latitudes north of it; being nearer the equator in each case.

MoTION oF THE EARTH'S AXIS, OR PRECESSION OF THE
EQUINOXES.

Sidereal and Equinoctial Year.—In describing the appar-
ent motion of the sun, two ways of finding the time of its
apparent revolution around the sphere were described ; in
other words, of fixing the length of a year. One of these
methods consists in finding the mterva,l between successive
passages of the sun throu_gl the equmoxes, or, which is the
same thlng, across the plane of the equator, and the other
by finding when it returns to _the same position among-the
stars. Two thousand years ago HIPPARCHUS found, by
comparing his own observations with those made two cen-
turies before by TiMocHARIS, that these two methods of
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fixing the length of the year did not give the same result.
It had previously been considered that the length of a year
was about 365} days, and in attempting to correct this
period by comparing his observed times of the sun’s pass-
ing the equinox with those of TiMocHARIS, HIPPARCHTUS
found that the length required a diminution of seven or
eight minutes. He therefore concluded that the true length
of the equinoctial year was 365 days 5 hours and about 53
minutes. When, however, he considered the return of the
sun not to the equinox, but to the same position relative
to the bright star Spice Virginis, he found that it took
some minutes more than 365} days to complete the revolu-
tion. Thus there are two years to be distinguished, the
Xtropical or equinoctial year and the sidereal year. 'The
first is measured by the time of the sun’s return to the
equinox ; the second by its return to the same position
relative to the stars. Although the sidereal year is the
correct astronomical period of one revolution of the earth
around the sun, yet the equinoctial year is the one to be
used in civil life, because the change of seasons depends
upon that year. Modern determinations show the respec-
tive lengths of the two years to be, in mean solar days:

=« Sidereal year, 3654 6® 9™ 9° = 3659.25636.
Equinoctial year, 365 5" 48™ 46° = 365%24220.

It is evident from this difference between the two years
that the position of tkle' _e_(luin_()} among the stars must be
changing, and that it must move toward the west, because
the equinoctial year is the shorter. This motion is called
the precession of the equinoxes, and amounts to about 50"’
per year. The equinox being simply the point in which
the equator and the ecliptic intersect, it is evident that if
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can change only through a change in one or both of these
circles. HrpparcHUS found that the change was in the
equator and not in the ecliptic, because the declinations
of the stars changed, while their latitudes did not. Since
the equator is defined as a circle everywhere 90° distant
from the pole, and since it is moving among the stars, it
follows that the pole must also be moving among the stars.
But the pole is nothing more than the point in which the
earth’s axis of rotation intersects the celestial sphere: the
position of this pole in the celestial sphere depends solely
upon the direction of the earth’s axis, and is not changed by
the motion of the earth around the sun. Hence precession
shows that the direction of the eartl’s aXIS is continunally
changmg ‘Careful observations from the time of HrpraRg-
cHUS until now show that the change in question consists
in a slow revolution of the pole of the earth around the pole
of the ecliptic as projected on the celestial sphere. The
rate of motion is such that the revolution will be completed
in between 25,000 and 26,000 years. At the end of this
period the equinox and solstices will have made a complete
revolution in the heavens.

The nature of this motion will be seen more clearly by referring to
Fig. 32, p. 93. We have there represented the earth in four posi-
tions during its annual revolution. We have represented the axis as
inclining to the right in each of these positions, and have described
it as remaining parallel to itself during an entire revolution. The
phenomena of precession show that this is not absolutely true, but
that, in reality, the direction of the axis is slowly changing. This
change is such that, after the lapse of some 6400 years, the north
pole of the earth, as represented in the figure, will not incline to the
right, but toward the observer, the amount of the inclination remain-
ing nearly the same. The result wili evidently be a shifting of the
seasons. At D) we shall have the winter solstice, because the north
pole will be inclined toward the observer and therefore from the sun,
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while at A we shall have the vernal equinox instead of the winter
solstice, and so on.

In 6400 years more the north pole will be inclined toward the left,
and the seasons will be reversed. Another interval of the same
length, and the north pole will be inclined from the observer, the
seasons being shifted through another quadrant. Finally, at the
end of about 25,800 years, the axis will have resumed its original
direction.

Precession thus arises from a motion of the earth alone and not of
the heavenly bodies. Although the direction of the earth’s axis
changes, yet the position of this axis relative lo the crust of the earth
remains invariable. Some have supposed that precession would
result in a change in the position of the north pole on the surface of

Fre. 48.

the earth, so that the northern regions would be covercd by the
ocean as a result of the different direction in which the ocean would
be carried by the centrifugal force of the earth’srotation. This, how-
ever, is a mistake. It has been shown that the position of the poles,
and therefore of the equator, on the surface of the earth, cannot
change except from some variation in the arrangement of the earth’s
interior. Scientific investigation has yet shown nothing to indicate
any probability of such a change.

*_ The motion of precession is not uniform, but is subject to several
small inequalities which are called nutation.

THE CAUSE OF PRECESSION.

The cause of precession, etc., is illustrated in the figure, which
shows a spherical earth surrounded by a ring of matter at the equa-
tor. If the earth were really spherical there would be no precession.
It is, however, ellipsoidal with a protuberance at the equator. Thy






CHAPTER X.
CELESTIAL MEASUREMENTS OF MASS AND DISTANCE.

THE CELESTIAL SCALE OF MEASUREMENT.

THE units of length and mass employed by astronomers
are necessarily different from those used in daily life. The
distances and magnitudes of the heavenly bodies are never
reckoned in miles or other terrestrial measures for astro-
nomical purposes; when so expressed it is only for the pur-
pose of making the subject clearer to the general reader.
The units of weight or mass are also, of necessity, astro-
nomical and not terrestrial. The mass of a body may be
expressed in terms of that of the sun or of the earth, but
never in kilogrammes or tons, unless in popular langnage.
There are two reasons for this course. One is that in most
cases celestial distances have first to be determined in
terms of some celestial unit—the earth’s distance from the
sun, for instance—and it is more convenient to retain this
unit than to adopt a new one. The other is that the
values of celestial distances in terms of ordinary terrestrial
units are for the most part uncertain, while the corre-
spounding values in astronomical units are known with
great accuracy.

An extreme instance of this is afforded by the dimensions
of the solar system. By a series of astronomical observa-
tions, investigated by means of KEPLER’S laws and the
theory of gravitation, it is possible to determine the forms

v
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of the planetary orbits, their positions, and their dimen-
sions in terms of the earth’s mean distance from the sun
as the unit of measure, with great precision. KEPLER’s
third law enables us to determine the mean distance of a
planet from the sun when we know its period of revolu-
tion. All the major planets, as far out as Safurn, have been
observed through so many revolutions that their periodic
times can be determined with great exactness—in fact
within a fraction of a millionth part of their whole amount.
The more recently discovered planets, Uranus and Nep-
tune, will, in the course of time, have their periods deter-
mined with equal precision. Then, if we square the peri-
ods expressed in years and decimals of a year, and extract
the cube root of this square, we have the mean distance
of the planet with the same order of precision. This
distance is to be corrected slightly in consequence of the
attractions of the planets on each other, but these correc-
tions also are krnown with great exactness. Again, the
eccentricities of the orbits are exactly determined by care-
ful observations of the positions of the plunets during suc-
cessive revolutions. Thus we could make a map of the
planetary orbits so exact that the error would entirely
elude the most careful scrutiny, though the map itself
might be many yards in extent.

On the scale of this same map we could lay down the
magnitudes of the planets with as much precision as our
instruments can measure their angular semidiameters.
Thus we know that the mean diameter of the sun, as seen
from the earth, is 32’; hence we deduce from formulase
already given on pages 5 and 57 that the diameter of the
sun is .0093083 of the distance of the sun from the earth.
We can therefore, on our supposed map of the solar system,
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lay down the sun in its true size, according to the scale of
the map, from data given directly by observation. In the
same way we can do this for each of the planets, the earth
and moon excepted. There is no immediate and direct
way of finding how large thc earth or moon would look
from a planct; whence the exception.

But without further special research into this subject,
we shall know nothing about the scale of our map. That
is, we have no means of knowing how many miles or kilo-
metres correspond in space to an inch or a foot on the map.
It is clear that in order to fix the distances or the magni-
tudes of the planets according to any terrestrial standard,
we must know this scale. Of course if we can learn either
the distance or magnitude of any one of the planets laid
down on the map, in miles or in semidiameters of the
earth, we shall be able at once to find the scale. But this
process is so difficult that the general custom of astrono-
mers is not to attempt to use a scale of miles, but to employ
the mean distance of the sun from the earth as the unit in
celestial measurements. Thus, in astronomical langnage,
we say that the distance of Mercury from the sun is 0.387,
that of Venus 0.723, that of Mars 1.523, that of Saturn
9.539, and so on. But thisgives us no information respect-
ing the distances and magnitudes in terms of terrestrial
measures. The unknown quantities of our map are the
magnitude of the earth and its distance from the sun in
terrestrial units of length. Could we only take up a point
of observation on the sun or a planet, and determine ex-
actly the angular magnitude of the earth as seen from that
point, we should be able to lay down the earth of our map
in its correct size. Then, since we already know the size
of the earth in terrestrial units from geodetic surveys we,
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should be able to find the scale of our map, and thence
the dimensions of the whole system in terms of those
units.

It will be seen that what the astronomer really wants is
not so much the dimensions of the solar system in miles as
to express the size of the earth in celestial measures.
This, however, amounts to the same thing, because having
one, the other can be readily deduced from the known
magnitude of the earth in terrestrial measures.

The magnitude of the earth is not the only unknown
quantity on our map. From KEPLER's laws we can deter-
mine nothing respecting the distance of the moon from the
earth, because unless a change is made in the units of time
and space, they apply only to bodies moving around the
sun. We must therefore determine the distance of the
moon as well as that of the sun to be able to complete our
map on a known scale of measurement.

MEASURES OF THE SOLAR AND LUNAR PARALLAX,

The problem of distances in the solar system is reduced
by the preceding considerations to measuring the distances
of the sun and moon in terms of the earth’s radius. The
most direct method of doing this is by determining their
respective parallaxes, which we have shown to be the same
a§ the earth’s angular semidiameter as seen from them.
In the case of the sun, the required parallax can be deter-
mined as readily by measuring the parallaxes of any of the
planets as by measuring that of the sun, because any one
measured distance on the map will give us the scale of our
map. Now, the planets Venus and Mars occasionally
come much nearer the earth than the sun ever does, and
their parallaxes also admit of more exact measurement.
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The parallax of the sun is therefore determined not by ob-
gervations on the sun itself, but on these two planets.

The general principles of the method of determining the
parallax of a planet by simultaneous observations at distant
stations will be seen by referring to the figure. If two
observers, situated at S’ and 8’’, make a simultaneous
observation of the direction of the body P, it is evident
that the solution of a plane triangle S’S8”’ P will give the dis-
tance of P froin each station. In practice, however, it would

be impracticable to make simultaneous observations at
distant stations; and as the planet is continually in motion,
the problem is a much more complex one than that of
simply solving a triangle.

This is the method of determining the parallax of the
moon. Knowing the actual figure of the earth, observa-
tions of the moon made at stations widely separated in
latitude, ag Paris and the Cape of Good Hope, can be com-
bined so as to give the parallax of the moon and thus its
distance. On precisely the same principles the parallaxes
of Venus or Mars have been determined.
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Solar Parallax from Transits of Venus.—When Venus is at inferior
conjunstion she is between the sun and the earth. If her orbit lay
in the ecliptic, she would be projected on the sun’s disk at every in-
ferior conjunction. The inclination of her orbit is, in fact, about 33°,
and thus ¢ransits of Venus occur only when she is near the node of
her orbit at the time of inferior conjunction. In Fig. 49%let E,V, S
bé the earth, Venus, and the sun. D) Cis Venus orbit. An observer
B will see Venus impiuge on the sun’s disk at 7, be just internally
tangent at 7, move across the disk to I/I and off at IV. Similar
phenomena will occur for 4 at 1, 2, 3, 4 When A4 sees Venus at a,
B will see her at b. a b is the parallax of Venus with respect to the
change of position 4 B. (See page 56.) ab: AB :: Va:VA; but
VA: Vaas1:2} nearly (see table p. 198, 3d column). a b there-
fore occupies on the sun’s disk a space 24 times as large as the earth’s
diameter. If we measure the angular dimension @ b in any way,
and divide the resulting angle by 24, we shall have the angle sub
tended at the sun by the earth’s diameter; or if we divide it by 5,
the angle subtended by the earth’s radius. This is nothing but the
sun’s parallax. (See page 57.)

The angular space abd can be directly measured at a transit of
Venus, or it may be calculated when we know the length of the
chords 77, I1I, and 2, 3. The length of each chord is known by ob-

Fia. 49,

serving the interval of time elapsed from phase II to phase I17, or
better by observing all four phases and making the proper allowances.

Other Methods of Determining Solar Parallax—A very
interesting and probably the most accurate method of
measuring the sun’s distance depends upon a knowledge of
the velocity of light. We shall hereafter see that the time



164 ASTRONOMY.

required for light to pass from the sun to the earth is known
with considerable exactness, being very nearly 498 seconds.*
This time can be determined still more accurately. If then
we can determine experimentally how many miles or kilo-
metres light moves in a second, we shall at once have the
distance of the sun by multiplying that quantity by 498.
The velocity of light is about 300,000 kilometres per second.
This distance would reach about eight times around the
earth. It is seldom possible to see two points on the earth’s
surface more than a hundred kilometres apart, and distinct
vision at distances of more than twenty kilometres is rare.
Hence to determine experimentally the time required for
light to pass between two terrestrial stations requires the
measurement of an interval of time which, even under the
most favorable cases, can be only a fraction of a thousandth
of a second. Methods of doing it, however, have been
devised, and the velocity of light would seem to be about
299,900 kilometres per second.t Multiplying” this by 498,
we obtain 149,350,000 kilometres (a little less than 93,000,-
000 miles) for the distance of the sun. The time required
for light to pass from the sun to the earth is still uncertain
by nearly a second, but this value of the sun’s distance is
probably the best yet obtained. The corresponding value
of the sun’s parallax is 8”.81.

Yet other methods of determining the sun’s distance
are given by the theory of gravitation. It is found by
mathematical investigation that the motion of the moon is
subject to several inequalities, having the sun’s horizontal
parallax as a factor. If the position of the moon could be
determined by observation with the same exactness that
the position of a star or planet can (which it cannot be),

* See page 175. 1 186,330 miles.
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this would probably afford the most accurate method of
determining the solar parallax.

Brief History of Determinations of the Solar Parallax.—The determi-
nation of the distance of the sun must at all times have been one of
the most interesting scientific problems presented to the human mird.
The first known attempt to effect a solution of the problem was made
by ARisTARCHUS, who flourished in the third century before Curisr.
It was founded on the principle that the time of the moon’s first
quarter will vary with the ratio between the distance of the moon
and sun, which may be shown as follows. In Fig. 50 let £ represent
the earth, M the moon, and § the sun. Since the sun always
illuminates one half of the lunar globe, it is evident that when one

Fie. 50.

half of the moon’s disk appears illuminated the triangle £ M S must
be right-angled at M. The angle M E S can be determined by
measurement, being equal to the angular distance between the sun
and the moon. Having two of the angles, the third can be deter-
mined, because the sum of the three must make two right angles.
Thence we shall have the ratio between E M, the distance of the moon,
and E S, the distance of the sun, by a trigonometrical computation.
Then knowing the distance of the moon, which can be determined
with comparative ease (see page 162), we have the distance of the sun
by multiplying by this ratio. ARisTARCHUS concluded, from his
suppesed measures, that the angle M £ S was three degrees less than
a right angle. 'We should then have %{ = 1—19- very nearly, since 3°
is {5 of 57° and E'S = 57° (sce page 5). It would follow from this
that the sun was 19 times the distance of the moon. We now know
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that this result is entirely wrong, and that it is so because it is im-
possible to determine the time when the moon is exactly half illumi-
nated with any approach to the accuracy necessary in the solution of
the problem. In fact, the greatest angular distance of the earth and
moon, as seen from the sun—that is, the angle £ .S M—is only about
one quarter the angular diameter of the moon as seen from the
earth,

The second attempt to determine the distance of the sun is men-
tioned by ProLEMY, though HIpPARCHUS may be the real inventor
of it. It depends on the dimensions of the earth’s shadow-cone dur-
ing a total eclipse of the moon. It is only necessary to state the
result, which was that the sun was situated at the distance of 1210
radii of the earth. This result, like the former, was due only to
errors of observation. So far as all the methods known at the time
could show, the real distance of the sun appeared to be infinite;
nevertheless PTOLEMY’S result was received without question for
fourteen centuries.

The first really successful measure of the parallax of a planet was
made upon Mars during the opposition of 1672, by the first of the
two methods already described. An expedition was sent to the
colony of Cayenne to observe the declination of the planet from
night to night, while corresponding observations were made at the
Paris Observatory. From a discussion of these observations, Cas-
SINI obtained a solar parallax of 9.5, which is within a second of
the truth. The next steps forward were made by the transits of
Venus in 1761 and 1769. The leading civilized nations caused obser-
vations on these transits to be made at various points on the globe.
The method used was very simple, consisting in the determination
of the times at which Venus entered upon the sun’s disk and left it
again. The absolute times of ingress and egress, as seen from differ-
ent points of the globe, might differ by 20 minutes or more on ac-
count of parallax. The results, however, were found to be discord-
ant. It was not until more than half a century had elapsed that the
observations were systematically calculated by ENCEKE of Germany,
who concluded that the parallax of the sun was 8 .58, and the dis-
tance 95 millions of miles.

In 1854 it began to be suspected that ENCKE’s value of the parallax
was much too small. HANSEN, from the theory of the moon, found
the parallax of the sun to be 8”.916. This result seemed to be con-
firmed by other observations, especially those of Mars during 1862.
It was therefore concluded that the sun's parailax was probably be
tween 87.90 and 9”.00. Subsequent researches have, however, been
diminishing this value. In 1867, from a discussion of all the data
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which were considered of value, it was concluded by one of the
writers that the most probable parallax was 87.848. The measures
of the velocity of light reduce this value to 8"”.81, and it is now
doubtful whether the true value is any larger than this.

All we can say at present is that the solar parallax is probably be-
tween 8”.79 and 8" .83, or, if outside these limits, that it can be very
little outside.

RELATIVE MASSES OF THE SUN AND PLANETS.

In estimating celestial masses as well as distances, it is necessary
to use what we may call celestial units; that is, to take the mass of
some celestial body as a unit, instead of any multiple of the pound or
kilogram. The reason of this is that the rativs between the masses
of the planetary system, or, which is the same thing, the mass of
each body in terms of that of some one body as the unit, can be de-
termined independently of the mass of any one of them. To express
a mass in kilogrammes or other terrestrial units, it is necessary to find
the mass of the earth in such units, as already explained. This,
however, is not necessary for astronomical purposes, where only the
relative masses of the several planets are required. In estimating
the masses of the individual planets, that of the sun is gencrally
taken as a unit. The planetary masses will then all be very small
fractions.

The mass of the sun bemg als 00 the mass of Mercury is m&mx
Venus is mm:

“« « “ “« “« Earth is B'TB' ;

13 € € ‘c 6 Mars iS B"O'F'i ;

‘@ €« “ ““ 6 Jupz'ter is '] &

[ 3 €« 3 € > i iy ’
Saturn  is giys;

“« €« “ « “« Uranus is ﬂéﬂ;

‘e X3 € € € .Neplune iS TT}EU’

Masses of the Earth and Sun.—The mass of the earth is connected
by a very ‘curious relation with the distance of the sun. Knowing
the latter, we can determine the mass of the sun relative to the earth,
which is the same thing as determining the astronomical mass of the
earth, that of the sun being unity. This may be clearly seen by re-
flecting that when we know the radius of the earth’s orbit we can
determine Low far the earth moves aside from a straight line in one
second in consequence of the attraction of the sun. This motion
measures the attractive force of the sun at the distance of the earth.
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Comparing it with the attractive force of the earth, and making
allowance for the difference of distances from centres of the two
bodies, we determine the ratio between their masses.
Masses of the Planets.—If a planet m has a satellite revolving in a
circular orbit of radius 7 in a time ¢, then (see page 122, note)
_Anr
G

The force acting on the satellite is (see page 120, fine print)

m
= g
Equating these two values of f we have
4773
= ——tﬂ .

If the distance of the planet from the sun (#/) is R and its periodic
time is 7', then

47 R3
M=T
and
R 13
M:m:T,: A

by which expression we determine m in fractions of the sun’s mass
Mas R, T, r, t are known. In this way the masses of all the planets
with satellites are calculated, after making suitable allowances for
the fact that the orbits are ellipses and not circles.

Mercury and Venus have no known satellites, and their masses are
calculated by determining the perturbations which they cause in the
motions of other planets (and of comets) in their vicinity.

The angular diameters of the planets are measured with a microm-
eter attached to a telescope. The result is expressed in seconds of
arc. Knowing the distance of the planet in miles, the diameter can
also be expressed in miles. (See page 5.) The surface of a planet
is proportional to the square, and its volume to the cube of its diam-
eter. The mass of a planet is deduced as above described. Its
density is obtained by dividing its mass by its volume,



CHAPTER XI.

THE REFRACTION AND ABERRATION OF LIGHT; AND
TWILIGHT.

ATMOSPHERIC REFRACTION.

WHEN we speak of the place of a planet or star, we usu-
ally mean its frue place; ¢.e., its direction from an ob-
server situated at the centre of the earth. We have shown
in the section on parallax how observations which are
necessarily taken at the surface of the earth are reduced
to what they would have been if the observer were situated
at the earth’s centre. We have supposed the star to be
projected on the celestial sphere in the prolongation of
the line joining the observer and the star. The ray from
the star was considered to suffer no deflection in passing
through the stellar spaces and through the earth’s atmos-
phere. But from the principles of physics, we know that
such a luminous ray passing from an empty space (as the
stellar spaces probably are), and through an atmosphere,
must suffer a refraction, as every ray of light is known to
do_in passing from a rare into a denser medium. As we
see the star in the direction in which its light enters rs the
eye—that is, as we pro;ect the star on the celestial sphere
by ) prolonglng this light- -beam backward into space—there
must be an apparent displacement of the star from refrac-
tion.

We may recall a few definitions from physics. The ray which
leaves the star and impinges on the outer surface of the earth’s at-
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mosphere is called the fneident ray ; after its deflection by the atmos-
phere it is called the refracted ray. The difference between these
directions is called the astronomical refraction. If a normal is drawn
(perpendicular) to the surface of the refracting medium at the point
where the incident ray meets it, the acute angle between the incident
ray and the normal is called the angle of incidence, and the acute angle
between the normal and the refracted
ray is called the angle of refraction.
The refraction itself is the difference
of these angles. The normal and
both incident and refracted rays are
in the same vertical plane. In Fig.
51, SA is the ray incident upon the
surface B A of the refracting medium
BBAN, AC is the refracted ray,
MN the normal, SAM and CAN
the angles of incidence and refrac-
tion respectively. Produce CA back-
ward in the direction AS:SA8 is
the refraction. An observer at € will
see the star Sas if it were at §'. A4S is the apparent direction of
the ray coming from the star 8, and §' is the apparent place of the star
as affected by refraction.

F1a. 51.—REFRACTION.

This explanation supposes the space above BB’ in the
figure to be entirely empty, and the earth’s atmosphere,
equally dense throughout, to fill the space below B B’.
In fact, however, the earth’s atmosphere is most dense
at the surface of the earth, and gradually diminishes in
density to its exterior boundary. Therefore we must sup-
pose the atmosphere to'be divided into a great number of
parallel layers of air, and by assuming an infinite num-
ber of these we may also assume that throughout each one
of them the air is equally dense. Hence the preceding
figure will only represent the refraction at a single one of
these layers. The path of a ray of light through the at-
mosphere is not a straight line like 4 C, but a curve. We
may suppose this curve to be represented in Fig. 52, where
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longed will meet the line 4 Z in a point above 4, suppose
at &,

Quantity and Effects of Refraction.—At the zenith the
refraction is 0, at 45° zenith distance the refraction is about
1’, and at 90° it is 34’ 30”’; that is, bodies at the zenith
distances of 45° and 90° appear elevated above their true
places by 1’ and 34}’ respectively. If the sun has just
risen—that is, if its lower limb is just in apparent contact
with the horizon—it is in fact entirely below the true
horizon, for the refraction (35’) has elevated its centre by
more than its whole apparent diameter (327).

The moon is full when it is exactly opposite the sun,
and therefore, were there no atmosphere, moon-rise of a
full moon and sunset would be simultancous. In fact,
both bodies being clevated by refraction, we see the full
moon risen before the sun has set. On April 20th, 1837,
the full moon rose eclipsed before the sun had set.

TWILIGHT.

It is plain that one effect of refraction is to lengthen the
duration of daylight by causit;g the sun to appear above
the horizon before the time of his geometrical rising and
after the time of true sunset.

Daylight is also prolonged by the reflection of the sun’s
rays (after sunset and before sunrise) from the small parti-
cles of matter suspended in the atmosphere. This pro-
duces a general thongh faint illumination of the atmos-
phere, just as the light scattered from the floating particles
of dust illuminated by a sunbeam let in through a crack
in a shutter may brighten the whole of a darkened room.

The sun’s direct rays do mnot reach an observer on the
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earth after the instant of sunset, since the solid body of
the earth intercepts them. But the sun’s direct rays
illuminate the clouds and the §ﬁ§§ended particles of the
upper air, and are reflected downwards so as to produce a
general illumination of the atmosphere.

In the figure let 4 B C'D be the earth and 4 an observer
on its surface, to whom the sun § is just setting. Aa is
the horizon of A4; Bbof B; Ccof C; Dd of D. Let the

Fia. 53.

circle P @ R represent the upper layer of the atmosphere.
Between 4 BCD and PQR the air is filled with sus-
pended particles which will reflect light. The lowest ray
of the sun, S 4 M, just grazes the earth at 4 ; the higher
rays S N and SO strike the atmosphere above 4 and leave
it at the points @ and B. Each of the lines S4 P M,
S@QLN, is bent from a straight course by refraction, but
S B 0O is not bent since it just touches the upper limits of
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the atmosphere.. The space M 4 B (D E is the earth’s

shadow. An observer at 4 receives the (last) direct rays

from the sun, and also has his sky illuminated by the reflec-

tion from all the particles lying in the space PQR T

which is all above his horizon 4 a.

An observer at B receives no direct rays from the sun,
Lt is'after sunset. Nor does he receive any light from all
that portion of the atmosphere below 4 P M; but the por-
tion P R 2, which lies above his horizon B b, is lighted by
the sun’s rays, and reflects to B a portion of the incident
rays. .

This fwilight is strongest at R, and fades away gradu-
ally toward P. The altitude of the twilight is & d.

To an observer at C the twilight is derived from the
illumination of the portion PQz which lies above his
horizon C¢. The altitude of the twilight is ¢ d.

To an observer at D it is night. All of the illuminated
atmosphere is below his horizon D d.

N~ The student should notice for himself the twilight arch
which appears in the west after sunset. It is more marked
in summer than in winter; in high latitudes than in low
ones. There is no true night in England in midsummer,
for cxample, the morning twilight beginning before the
evening twilight has ended ; and in the torrid zone there
is no perceptible twilight. Twilight ends when the sun
reaches a point 20% below the horizon.

ABERRATION AND THE MOTION OF LIGHT.

Besides refraction, there is another cause which prevents
our seeing the celestial bodies exactly in the true direction
{in which they lie from us; namely, the progressive mo-
|tion of light. We see objects only by the light which
emanates from them and reaches our eyes, and we know
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that this light requires time to pass over the space which
separates us from the' luminous object. After the ray of
light once leaves the object, the latter may move away, or
even be blotted out of existence, but the ray of light
will continue on its course. Consequently when we look
at a star, we do not see the star that now is, but the star
that was several years ago. If it shonld be annihilated, we
should still see it during the years which would be required
for the last ray of light emitted by it to reach us. The
velocity of light is so great that in all observations of ter-
restrial objects our vision may be regarded as instantane-
ous. But in celestial observations the time required for
the light to reach us is quite appreciable and measurable.
The discovery of the propagation of light is among the
most remarkable of those made by modern scicnce. _The.
fact that light requires time to travel was first learned by
the observations of the satellites of Jupiter. (See Fig. 73.)
Owing to the great magnitude of this planet, it casts a much
longer and larger shadow than our earth does, and its inner
satellite passes through this shadow and is eclipsed, at every
revolution. These eclipses can be observed from the earth,
the satellite vanishing from view as it enters the shadow,
and reappearing when it leaves it again. The astronomers
of the seventeenth century made a careful study of the mo-
tions of these bodies. It was, however, necessary to con-
struet tables by which the times of the eclipses could be pre-
dicted. It was fonnd by ROEMER that these times depended. ="
on the distance of Jupiter from the earth. If he made his
tables agree with observations when the earth was nearest
Jupiter, it was found that as the earth receded from Jupiter
in its annual course around the sun, the eclipses were con-
stantly seen later, until, when at its greatest distance, the
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times appeared to be 22 minutes late. ROEMER saw that it
was in the highest degree improbable that the actual motions
of the satellites should be affected with any such inequality;
he therefore propounded the bold theory that it took fime
for light to come from Jupiter to the earth. The extreme
differences in the times of the eclipse being 22 minutes, he
assigned this as the time required for light to cross the
orbit of the earth, and so concluded that it came from the
sun to the earth in 11 minutes. This estimate was too
great; the true time for this passage being about 8 minutes
and 18 seconds.

Discovery of Aberration.—This theory of ROEMER was
not fully accepted by his contemporaries. But in the year
1729 the celebrated BRADLEY, afterward Astronomer Royal
of England, discovered a phenomenon of an entirely dif-
ferent character, which confirmed the theory. He was
then engaged in making observations on the star y Dra-
conts in order to determine its parallax. The effect of
parallax would have been to make the declination of the
star greatest in June and least in December, while in
March and September the star wounld occupy an interme-
diate or mean position. But the result was entirely dif-
ferent. The declinations of June and December were the
same, showing no effect of parallax; but instead of remain-
ing constant the rest of the year, the declination was some
40 seconds greater in September than in March, when the
effect of parallax would be the same. This showed that
the direction of the star appeared different, not according
to the position of the earth in its orbit, but according to
the direction of the earth’s motion around the sun, the
star being apparently displaced in this direction.

To show how this is, let 4B be the optical axis of a
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telescope, and S a star from which emanates a ray moving
in the true direction S4B’. Per-
haps the student will have a clearer
conception of the subject if he imag-
ines 4B to be a rod which an ob-
server at B seeks to point at the star
8. It is evident that he will point
this rod in snch a way that the ray
of light shall run accurately along its
length. Suppose now that the ob-
server is moving from B toward B’
with such a velocity that he moves Fie. 54,

from B to B’ during the time required for a ray of light to
move from A to B’. Suppose, also, that the ray of light
SA4 reaches 4 at the same time that the end of his rod
does. Then it is clear that while the rod is moving from
the position AB to the position 4’5’, the ray of light
will move from 4 to B’, and will therefore run accurately
along the length of therod. For instance, if & is one third
of the way from B to B’, then the light, at the instant of
the rod taking the position & a, will be one third of the way
from 4 to B’, and will therefore be accurately on the rod.
Consequently, to the observer, the rod will appear to be
pointed at the star. In reality, however, the pointing will
not be in the true direction of the star, but will deviate
from it by a certain angle depending upon the ratio of the
velocity with which the observer is carried along to the
velocity of light. This presupposes that the motion of the
observer is at right angles to that of a ray of light. If
this is not his direction, we must resolve his velocity into
two components, one at right angles to the ray and one’
parallel to it. The latter will not affect the apparent-di-




178 ASTRONOMY.,

rection of the star, which will therefore depend entirely
upon the former.

Effects of Aberration.—The apparent displacement of
the heavenly bodies thus produced is called the aerration
of light. Its. effect is to cause each of the fixed stars to
describe an apparent annual oscillation in a very small orbit.
The nature of the displacement may be conceived of in the
following way: Suppose the earth at any moment, in the
course of ‘its annual revolution, to be moving toward a
point of the celestial sphere, which we may call P. Then
a star lying in the direction P or in the opposite direction
will suffer no displacement whatever. A star lying in any
other direction will be displaced in the direction of the
point P by an angle depending upon its angnlar distance
from P. At 90° from P the displacement will be a maxi-
mum.

Now, if the star lies near the pole of the ecliptie, its di-
reetion will always be nearly at right angles to the direc-
tion in which the earth is moving. A little consideration
will. show that it will seem to describe a circle in conse-
quence of aberration. " If, however, it lies in the plane of
the earth’s orbit, then the various points toward which the
earth moves iu the course of the year all lying in the eclip-
tic, and the star being in this same plane, the apparent
motion will be an oscillation back and forth in this plane,
and in all other positions the apparent motion will be in an
ellipse more and more flattened as we approach the ecliptic.
The maximum displacement of a star by aberration is 20”.44.

The connection between the velocity of light and the dis-
tance of the sun is such that knowing one we can infer the
other. Let us assume, for instance, that the time required
for light to reach us from the sun is 498 seconds, which
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is probably accurate within a single second. Then know-
ing the distance of the sun, we may obtain the velocity
of light by dividing it by 498. But, on the other hand,
if we can determine how many miles light moves in a
second, we can thence infer the distance of the sun by
multiplying it by the same factor. During the last cen-
tury the distance of the sun was found to be certainly be-
tween 90 and 100 millions of miles. It was therefore
correctly concluded that the velocity of light was some-
thing less than 200,000 miles per second, and probably
between 180,000 and 200,000. This velocity has since
been determined more exactly by the direct measurements
at the surface of the earth already mentioned. See p. 164.

We actually see the planets and stars in their apparent places, but
we must employ their frue places in calculation. We can obtain the
place of the centre of a planet when we have observed its border by
correcting for its (known) semi-diameter (expressed in seconds of arc).
A star’s diameter = 0. The next correction is for refraction, which
removes the deviation due to the earth’s atmosphere. This is derived
from previously calculated Refraction-tables. We then correct for
parallax, which has the effect of making the observed place what it
would have been had the observer been stationed at the earth’s
centre. The next correction is for aberration, which gives the place
the star would have had if light were instantaneous in its transmis-
sion. If we apply these corrections we shall have the true R. A.
and Dec. of the star for the instant of observation. As, however,
the vernal equinox (from which we measure) is itself in motion, we
usually add another correction for precession, to reduce the observa-
tion to what it would have been had it been made at the beginning of
the year. That is, we reduce to the mean equinox and equator of Dec.
81.0. In this way observations made at different times and places
become comparable, after they have all been reduced to a single
epoch.



CHAPTER XII.
CHRONOLOGY.

ASTRONOMICAL MEASURES OF TIME.

THE intimate relation of astronomy to the daily life ot
mankind has arisen from its affording the only reliable and
accurate measure of intervals of time. The fundamental
units of time in all ages have been the day, the month, and
the year, the first being measured by the revolution of the
earth on its axis, the second, primitively, by that of the
moon around the earth, and the third by that of the earth
round the sun. ~

Of the three units of time just mentioned, the most nat-
ural and striking is the shortest; namely, the day. It is
so nearly uniform in length that the most refined astro-
nomical observations of modern times have never certainly
indicated any change. This uniformity, and its entire
freedom from all ambiguity of meaning, have always made
the day a common fundamental unit of astronomers. Ex-
cept for the inconvenience of keeping count of the great
number of days between remote epochs, no greater unit
would ever have been necessary, and we might all date our
letters by the number of days after CHRIST, or after any
other fixed date.

The difficulty of remembering great numbers is such
that a longer unit is absolutely necessary, even in keeping
the reckoning of time for a single generation. Such a unit
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is the year. The regular changes of seasons in all extra-
tropical latitudes renders this unit second only to the day
in the prominence with which it must have struck the
minds of primitive man. These changes are, however, so
slow and ill-marked in their progress that it would have
been scarcely possible to make an accurate determination
of the length of the yvear from the observation of the sca-
sons. Here astronomical observations came to the aid
of our progenitors, and, before the beginnings of history,
it was known that the alternation of scasons was due to
the varying declination of the sun, as the latter seemed
to perform its annual course among the stars in the
““oblique circle” or ecliptic. The seasons were also marked
by the position of certain bright stars relatively to the sun;
that is, by those stars rising or setting in the morning
or evening twilight. Thus arose two methods of measur-
ing the length of the year—the one by the time when the
sun crossed the equinoxes or solstices, the other when it
seemed to pass a certain point among the stars. As we
have already explained, these years were slightly different,
owing to the precession of the equinoxes, the first or equi-
noctial year being a little less and the second or sidereal
year a little greater than 3651 days,

The number of days in a year is too great to admit of
their being easily remembered without any break; an
intermediate period is therefore necessary. Such a period
is measured by the revolution of the moon around the
earth, or, more exactly, by the recurrence of new moon,
which takes place, on the average, at the end of nearly
293 days. The nearest round number to this is 30 days,
and 12 periods of 30 days each only lack 5} days of being
a year. It has therefore been common to consider a year
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as made up of 12 months, the lack of exact correspondence
being filled by various alterations of the length of the
month or of the year, or by adding surplus days to each

year.
The true lengths of the day, the month, and the year

having no common divisor, a difficulty arises in attempting
to make months or days into years, or days into months,
owing to the fractions which will always be left over. At
the same time, some rule bearing on the subject is neces-
sary in order that people may be able to remember the year,
month, and day. Such rules are found by choosing some
cycle or period which is very nearly an exact number of
two units, of months and of days for example, and by
dividing this cycle up as evenly as possible.

FORMATION OF CALENDARS.

The months now or heretofore in use among the peoples of the
globe may for the most part be divided into two classes:

?\ (1) The lunar month pure and simple, or the mean interval be-
tween successive new moons.

(2) An approximation to the twelfth part of a year, without respect
to the motion of the moon.

The Lunar Month.—The.mean interval between consecutive new
moous being nearly 294 days, it was common in the use of the pure
Junar month to have months of 29 and 30 days alternately. This
supposed period, however, will fall short by a day in about 2} years.
This defect was remedied by introducing cycles containing rather more
months of 30 than of 29 days, the small excess of long months being
spread uniformly through the cycle. Thus the Greeks had a cycle
of 235 months, of which 125 were full or long months, and 110 were
short or deficient ones. We sce that the length of this cycle was
6940 days (125 X 80 + 110 X 29), whereas the length of 235 true lunar
months is 235 X 29.53088 = 6939.688 days. The cycle was therefore
too long by less than one third of a day, and the error of count would
amount to only one day in more than 70 years. The Mohammedans,
again, took a cycle of 360 months, which they divided into 169 short
and 191 long ones. The length of this cycle was 10631 days, while
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the true length of 860 lunar months is 10631.012 days. The count
would therefore not be a day in error until the end of about 80
cycles, or nearly 23 centurics. This month therefore follows the
moon closely enough for all practical purposes.

Months other than Lunar.—The complications of the system just
described, and the cousequent difficulty of making the calendar
month represent the course of the moon, are so great that the pure
lunar month was generally abandoned, except among people whose
religion required important ceremonies at the time of new moon. In
such cases the year has been usually divided into 12 months of
slightly different lengths. The ancient Egyptians, however, had 12
months of 30 days each, to which they added 5 supplementary days
at the close of each year.

Kinds of Year.—As we find two different systems of months to
have been used, so we may divide the calendar years into three
classes, namely:

(1) The lunar year, of 12 lunar mouths.

(2) The solar year.

(3) The combined luni-solar year.

The Lunar Year.—We have already called attention to the fact that
the time of recurrence of the year is not well marked except by
astronomical phenomena which the casual observer would hardly
remark. But the time of new moon, or of beginning of the month,
is always well marked. Consequently it was very natural for people
to begin by considering the year as made up of twelve lunations, the
error of eleven days being unnoticeable in a «ingle year unless care-
ful astronomical observations were made. Even when this error was
fully recognized, it might be considered better to use the regular
year of 12 lunar months than to use one of an irregular or varying
number of months. The Mohammedans use such a year to this day.

The Solar Year.—In forming this year, the attempt to measure the
year by revolutions of the moon is entirely abandoned, and its length
is made to depend entirely on the change of the seasons. The solar
year thus indicated is that most used in both ancient and modern
times. Its length has been known to be nearly 365} days from the
times of the earliest astronomers, and the system adopted in our cal-
endar of having three years of 865 days each, followed by one of 366
days, has been employed in China from the remotest historic times.
This year of 365} days is now called by us the Julian Year, after
Jurius CESAR, from whom we obtained it.

The Metonic Cycle.-—These considerations will enable us to under-
stand the origin of our own calendar. We begin with the Metonic
Cycle of the ancient Greeks, which still regulates some religious fes-
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tivals, although it has disappeared from our civil reckoning of time.
The necessity of employing lunar months caused the Greeks great
difficulty in regulating their calendar so as to accord with their rules
for religious feasts, until a solution of the problem was found by
MEeToON, about 433 B.c. The discovery of METON was that a period
or cycle of 6940 days could be divided up into 285 lunar months, and
also into 19 solar years. Of these months, 125 were to be of 30 days
each and 110 of 29 days each, which would, in all, make up the re-
quired 6940 days. To see how nearly this rule represents the actual
motions of the sun and moon, we remark that:

Days. Hours. Min.

235 lunations require......oo.uu.... 6939 16 31
19 Julian years require............ 6939 18 0
19 true solar years require.......... 6939 14 27

We see that though the cycle of 6940 days is a few hours too
long, yet if we take 235 true lunar months, we find their whole dura-
tion to be a little less than 19 Julian years of 365} days each, and a
little more than 19 true solar years.

The problem was to take these 235 months and divide them up
mto 19 years, of which 12 should have 12 months each and 7
should have 13 months each. The long years, or those of 13 months,
were probably those corresponding to the numbers 3, 5, 8, 11, 13, 16,
and 19, while the first, second, fourth, sixth, etc., were short years.
In general, the months had 29 and 80 days alternately, but it was
necessary to substitute a long month for a short one every two or
three years, so that in the cycle there should be 125 long and 110
short months.

Golden Number.—This is simply the number of the year in the
Metonic Cycle, and is said to owe its appellation to the enthusiasm
of the Greeks over METON’s discovery, the authorities having ordered
the division and numbering of the years in the new calendar to be
inscribed on public monuments in letters of gold. The rule for find-
ing the golden number is to divide the number of the year by 19 and
add 1 to the remainder. From 1881 to 1899 it may be found by sim-
ply subtracting 1880 from the year. It is employed in our church
calendar for finding the time of Easter Sunday.

The Juliaz Calendar.—The civil calendar now in use throughout
Christendom had its origin among the Romans, and its foundation
was laid by JuLius C&sar. Before his time, Rome can hardly be
said to have had a chronological system, the length of the year not
Leing prescribed by any invariable rule, and being therefore changed
from time to time to suit the cnprice or to compass the ends of the
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rulers. Instances of this tampering disposition are familiar to the
historical student. It is said, for instance, that the Gauls having to
pay a certain monthly tribute to the Romans, one of the governors
ordered the year to be divided into 14 months, in order that the pay-
days might recur more rapidly. A year was fixed at 8365 days, with
the addition of one day to every fourth year. The old Roman months
were afterward adjusted to the Julian year in such a way as to give
rise to the somewhat irregular arrangement of months which we now
bave.

0ld and New Styles.—The mean length of the Julian year is 365}
days, about 11} minutes greater than that of the true ¢quinoctial
year, which measures the recurrence of the seasons. This difference
is of little practical importance, as it only amounts to a week in a
thousand years, and a change of this amount in that period is pro-
ductive of no inconvenience. But, desirous to have the year as cor-
rect as possible, two changes were introduced into the calendar Ly
Pope Grecory XIIL ‘with this object. They were as follows :

(1) The day following October 4, 1582, was called the 15th instead
of the 5th, thus advancing the count 10 days.

(2) The closing year of each century, 1600, 1700, etc., instead of
being always a leap-year, as in the Julian calendar, is such only
when the number of the century is divisible by 4. Thus while 1600
remained a leap-year, as before, 1700, 1800, and 1900 were to be
common years.

This change in the calendar was speedily adopted by all Catholic
countries, and more slowly by Protestant ones, England lolding out
until 1752. In Russia it has never been adopted at all, the Julian
calendar being still continued without change. The Russian reckon-
ing is therefore 12 days behind ours, the ten days dropped in 1582
being increased by the days dropped from the years 1700 and 1800 in
the new reckoning. This modified calendar is called the Gregorian
Calendar, or New Style, while the old system is called the Julian
Calendar, or Old Style.

It is to be remarked that the practice of commencing the year on
January 1st was not universal until comparatively recent times. The
most common times of commencing were, perhaps, March 1st and
March 22d, the latter being the time of the vernal equinox. But
January 1st gradually made its way, and becume universal after its
adoption by England in 1752.

Solar Cycle and Dominical Letter.—In our church calendars Janu-
ary 1st is marked by the letter A, January 2d by B, and so on to G,
when the seven letters begin over again, and are repeated through
the year in the same order. Each letter there indicates the same day
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of the week throughout each separate year, A indicating the day on
which January 1st falls, B the day following, and so on. An excep-
tion occurs in leap years, when February 29th and March 1st are
marked by the same letter, so that a change occurs at the beginning
of March. The letter corresponding to Sunday on this scheme is
called the Dominical or Sunday letter, and when we once know
what letter it is, all the Sundays of the year are indicated by that
letter, and hence all the other duys of the week by their letters. In
leap-years there will be two Dominical letters, that for the last ten
mouths of the ycar being the one next preceding the letter for
January and February. In the Julian calendar the Dominical letter
must always recur at the end of 28 years (besides three recurrences
at unequal intervals in the mean time). This period is called the
solar cycle, and determines the days of the week on which the days
of the month fall during each year.

Since any day of any year occurs one day later in the week than
it did the year before, cr two days later when a 29th of February
has intervened, the Dominical letters recur in the order G, F, E, D,
C, B, A, G, etc. This may alsv be expressed by saying that any day
of a past year occurred one day earlier in the week for every year
that has elapsed, and, in addition, one day earlier for every 29th of
February that has intervened. This fact will make it easy to calcu-
late the day of the week on which any historical event happened
from the day corresponding in any past or future year. Let us take
the following example:

On what day of the week was WASHINGTON born, the date being
1732, February 22d, knowing that February 22d, 1879, fell on
Saturday? The interval is 147 years: dividing by 4 we have a
quotient of 36 and a remainder of 3, showing that, had every fourth
year in the interval been a leap-year, there were either 36 or 37 leap-
years. As a February 29th followed only a week after the date, the
number must be 37;% but as 1800 was dropped from the list of leap-
years, the number was really only 36. Then 147 4 36 = 183 days
advanced in the week. Dividing by 7, because the same day of the
week recurs after seven days, we find a remainder of 1. So
February 22d, 1879, is one day further advanced than was Febru-
ary 22d, 1732; so the former being Saturday, WASHINGTON was born
on Friday.

* Perhaps the most convenient way of deciding whether the remainder does
or does not indicate an additional leap-year is to subtract it from the last date,
and see whether a February 29th then intervenes. Subtracting 3 years from

- February 224, 1879, we have February 22d 1876, and a 29th occurs between the
two dates, only a week after the first,
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.

DiIvisioN oF THE DAY.

The division of the day into hours was, in ancient and medizval
times, effected in a way very different from that which we practise.
Artificial time-keepers not being in general use, the two funda-
mental moments were sunrise and sunset, which marked the day as
distinct from the night. The first subdivision of this interval was
marked by the instant of noon, when the sun was on the meridian.
The day was thus subdivided into two parts. The night was
similarly divided by the times of rising and culmination of the
various constellations. EURIPIDES (480-407 B.c.) makes the chorus
in Rhesus ask:

“ Crorus.—Whose is the guard? Who takes my turn? The first
signs are setting, and the seven Pleiades are in the sky, and the Eagle
glides midway through heaven. Awake! Why do you delay? Awake
from your beds to watch! See ye not the brilliancy of the moon?
Morn, morn indeed is approaching, and Zdther is one of the forerun-
ning stars.”

The interval between sunrise and sunset was divided into twelve
equal parts called hours, and as this interval varied with the season,
the length of the hour varied also. The night, whether long or
short, was divided into hours of the same character, only when the
night hours were long those of the day were short, and vice versa.
These variable hours were called temporary hours. At the time of
the equinoxes both the day and the night hours were of the same
length with those we use; namely, the twenty-fourth part of the
day; these were therefore called equinoctial hours.

Instead of commencing the civil day at midnight, as we do, it was
customary to commence it at sunset. The Jewish Sabbath, for
instance, commenced as soon as the sun set on Friday, and ended
when it set on Saturday. This made a more distinctive division of
the astronomical day than that which we employ, and led naturally
to considering the day and the night as two distinct periods, each to
be divided into 12 hours.

So long as temporary hours were used, the beginning of the day
and the beginning of the night, or, as we should call it, six o’clock
in the morning and six o’clock in the evening, were marked by the
rising and setting of the sun; but when equinoctial hours were
introduced, neither sunrise nor sunset could be taken to count from,
because both varied too much in the course of the year. It therefore
became customary to count from noon, or the time at which the sun
passed the meridian. Tbe old habit of dividing the day and the
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night each into 12 parts was continued, the first 12 being reckoned
from midnight to noon, and the second from noon to midnight. The
day was made to commence at midnight rather than at noon for
obvious reasons of convenicnce, although noon was of course the
point at which the time had to be determined.

Equation of Time.—To any one who studied the annual motion of
the sun, it must have been quite evident that the intervals between
its successive passages over the meridian, or between one noon and
the next, could not be the same throughout the year, because the
apparent motion of the sun in right ascension is not constant, It
will be remembered that the apparent revolution of the starry
sphere, or, which is the same thing, the diurnal revolution of the
earth’ upon its axis, may be regarded as absolutely constant for all
practical purposes. This revolution is measured around in right
ascension as explained in the opening chapter of this work. If the
sun increased its right ascension by the same amount every day, it
would pass the meridian 3= 56° later every day, as measured by
sidereal time, and hence the intervals between successive passages
would be equal. But the motion of the sun in right ascension is
unequal from two causes: (1) the unequal motion of the earth in its
annual revolution around it, arising from the eccentricity of the
earth’s orbit, and (2) the obliquity of the ecliptic. How the first
cause produces an inequality is obvious. The mean motion is 3= 56¢;
the actunal motion varics from 3m 48° to 4™ 4+,

The effect of the obliquity of the ecliptic is still greater. 'When
the sun is near the equinox, the direction of its motion along the
ecliptic makes an angie of 231° with the parallels of declination,
Since its motion in right ascension is measured along the parallel of
declination, we see that it is less than the motion in longitude. The
days are then 20 seconds shorter than they would be were there no
obliquity. At the solstices the opposite effect is produced. Here
the different meridians of right ascension are nearer together than
they are at the equator; when the sun moves through one degree
along the ecliptic, it changes its right ascension by 1°.08; here,
therefore, the days are about 19 seconds longer than they would be
if the obliquity of the ecliptic were zero.

We thus have to recognize two slightly different kinds of days:
solar days and mean days. A solar day is the interval of time
between two successive transits of the sun over the same meridian,
while a mean day is the mean of all the solar days in a year. If we
had two clocks, one going with perfect uniformity, but regulated
80 as to keep as near the sun as possible, and the other changing its
rate 80 as to always follow-the sun, the latter would gain or lose on
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the former by amounts sometimes rising to 22 seconds in a day. The
accumulation of these variations through a period of several months
would lead to such deviations that the sun-clock would be 14 minutes
slower than the other during the first half of February, and 16
minutes faster during the first week in November. The time-keepers
formerly used were so imperfect that these inequalities in the solar
day were nearly lost in the necessary irregularities of the rate of the
clock. All clocks were therefore set by the sun as often as was
found necessary or convenient. But during the last century it was
found by astronomers that the use of units of time varying in this
way led to much inconvenience; they therefore substituted mean
time for solar or apparent time.

Mean time is so measured that the hours and days shall always be
of the same length, and shall, on the average, be as much behind the
sun as ahead of it. We may imagine a fictitious or mean sun mov-
ing along the equator at the rate of 8™ 56* in right asceusion every
day. Mean time will then be measured by the passage of this
fictitious sun across the meridian. Apparent time was used in
ordinary life after it was given up by astronomers, because it was
very easy to set a clock from time to time as the sun passed a noon-
mark. But when the clock was so far improved that it kept much
better time than the sun did, it was found troublesome to keep put-
ting it backward and forward so as to agree with the sun. Thus
mean time was gradually introduced for all the purposes of ordinary
life.

The common household almanac should give the equation of time,
or the mean time at which the sun passes the meridian, on each day
of the year. Then, if any one wishes to set his clock, he knows the
moment when the sun passes the meridian, or when it isat some noon-
mark, and sets his time-piece accordingly. For all purposes where
accurate time is required, recourse must be had to astronomical
observation. It is now customary to send time-signals every day at
noon, or some other hour agreed upon, from observatories along the
principal lines of telegraph. Thus at the present time the moment
of Washington noon is signalled to New York, and over the principal
lines of railway to the South and West. Each person within reach
of a telegraph-office can then determine his local time by correcting
these signals for the difference of longitude. (See p. 350, note to
p- 47) >



PART IL
THE SOLAR SYSTEM IN DETAIL.

CHAPTER L
STRUCTURE OF THE SOLAR SYSTEM.

THE solar system consists of the sun as a central body,
around which revolve the major and minor planets, with
their satellites, a few periodic comets, and an unknown
number of meteor swarms. These are permanent members
of the system. At times other comets appear, and move
usually in parabolas through the system, around the sun,
and away from it into space again, thus visiting the system
without being permanent members of it.

The bodies of the system may be classified as follows :

1. The central body—the Sun.

2. The four inner planets— Mercury, Venus, the Earth, Mars.

3. A group of small planets, sometimes called Asteroids, revolving
outside of the orbit of Mars.

4, A group of four outer planets—Jupiter, Saturn, Uranus, and
Neptune.

5. The satellites, or secondary bodies, revolving about the planets,
their primaries.

6. A number of comets and meteor swarms revolving in very
eccentric orbits about-the sun.

The eight planets of Groups 2 and 4 are sometimes classed to-
gether as the major planets, to distinguish them from the two hun-
dred or more minor planets of Group 8. The formal definitions of
the various classes, laid down by Sir WiLL1aM HERsCHEL in 1802, are
worthy of repetition :
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Planets are celestlal bodies of a certain very considerable size.
They move in not very eccentric ellipses about the sun. The planes
of their orbits do not deviate many degrees from the plane of the
earth’s orbit. Their motion about the sun is direct (from west to
east). They may have satellites or rings. They have atmospheres of

F1G. 55.—RELATIVE SURFACES OF THE PLANETS.

considerable extent, which, however, bear hardly any sensible pro-
portion to their diameters, Their orbits are at certain considerable
distances from each other.

Asteroids, now more generally known as small or minor planets, are
celestial bodies which move about the sun in orbits, either of little or
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Relative Surfaces of the Planets.—The comparative surfaces of the
major planets, as they would appear to an observer situated at an
equal distance from all of them, is given in the figure on page 191.

The relative apparent magnitudes of the sun, as seen from the
various planets, is shown in the figure on page 192.

Flora and Mnemosyne are two of the asteroids.

A curious relation bLetween the distances of the planets, known as
BobpE’s law, deserves mention. If to the numbers

0, 3, 6, 12, 24, 48, 96, 192, 384,
each of which (the second excepted) is twice the preceding, we add
4, we obtain the series

4, 7, 10, 16, 28, 52, 100, 196, 388.

These last numbers represent approximately the distances of the
planets from the sun (except for Neptune, which was not discovered
when the so-called law was announced).

This is shown in the following table:

PLANKTS. Dﬁ%;‘;?:z. | BopE's Law.

TN ATAK) < Foif L3S o s S S ARSI 3.9 4.0

PV IS . A T R R F IR origorse L =) olmomeasoms o o 7-2 7.0

) 31T Nt .0 Boins < b dofy aot DI 10-0 10-0
3D S SO0 66 ou s BOAE 300 33577000060 15-2 16-0
@erer]] e R PR ok L L 277 28.0
JUPIter. .. oG i ST Rt PN 52-0 52-0
ST RSl 0B, <0 5 Ao 50 o DRI (AT S 95-4 100-0
EATIIS., R e o S e e 191-8 196-0
N O et b o o o ol B oo SN 300-4 388-0

It will be observed that Neptune does not fall within this ingenious
scheme. Ceres is one of the minor planets. -

The relative brightness of the sun and the various planets has been
measured by ZOLLNER, and the results are given below. The column
per cent shows the percentage of error indicated in the separate re-
sults: -

SUN AND Ratio: 1 to Percent. of Error.
618,000 1-6
6,994.000,000 5-8
P e 5.472,000,000 5.7
Saturn (ball alone).......... 180,980,000,000 5-0
VLA, ik i e 8.486,000,000.000 6-0
5.6

INEPEAMEL. 14 -is oarss Saerepetore &2 79,620,000,000,000
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The differences in the density, size, mass, and distance of the
several planets, and in the amount of solar light and heat which they
receive, are immense. The distance of Neptune is eighty times that
of Mercury, and it receives only ;5 as much light and heat from the
sun. The density of the earth is about six times that of water, while
Saturn’s mean density is less than that of water.

The mass of the sun is far greater than that of any single planet
in the system, or indeed than the combined mass of all of them. In
general, it is a remarkable fact that the mass of any given planet ex-
ceeds the sum of the masses of all the planets of less mass than itself.
This is shown in the following table, where the masses of the planets
are taken as fractions of the sun’s mass, which we here express as
1,000,000,000:

g PLANETS.
=)

Mercury.
Mars.
Venus
Uranus
Neptune.
Saturn.
Jupiter.

g

200 | 324 | 2,353 | 3,060 | 44,250 | 51,600 | 285,580 | 954,305 |1,000,000,000| Masses.

The total mass of the small planets, like their number, is unknown,
but it is probably less than one thousandth that of our earth, and
would hardly increase the sum-total of the above masses of the solar
system by more than one or two units. The sun’s mass is thus over
700 times that of all the other bodies, and hence the fag_hnf. its.cen-
tral posmon in the solar_system_is _pr]amcd In f fact, the centre of
grawity of the whole solar system is very little outside the body of the
sun, and will be inside of it when Jupiter and Saturn are in opposite
direetions from it.

Planetary Aspects.—The motions of the planets about the sun have
been explained in Chapter V. From what is there said it appears
that the best time to sce one of the outer planets will be when it is
in opposition; that is, when its geocentric longitude or its right as-
cension differs 180° or 12" from that of the sun. At such a time the
planet will rise at sunset and culminate at midnight. During the
three months following opposition the planet will rise from three to
six minutes earlier every day, so that, knowing when a planet is in
opposition, it is easy to find it at any other time. For example, a
month after opposition the planet will be two or three hours high
about sunset, and will culminate about nine or ten o’clock. Of
course the inner planets never come into opposition, and hence are
best seen about the times of their greatest elongations.
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Dimensions of the Solar System,—The figure gives a rough plan of
part of the solar system uas it would appear to a spectator immediately
above or below the plane of the ecliptic. It is drawn approximately
to scale, the mean distance of the earth (= 1) being half an inch.
The mean distance of Saturn would be 4-77 inches, of Uranus 9-59

Fia. 57.

inches, of Neptune 15-03 inches. On the same scale the distance of
the nearest fixed star would be 103,133 inches, or over one and one half
miles.

The arrangement of the planets and satellites is, then—

The Inner Group. Asteroids. T.he Outer Group.
gy, 300 minor plaaeis,{ Jupitr and 4 moons
Farth and Moon. / and probably Uranus and 4 moons.

- many more.
Mars and 2 moons. 2 Neptune and 1 moon.
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To avoid repetitions, the elements of the major planets and other
data are collected into the two following tables, to which reference
should be made by the student. The units in terms of which the vari-
ous quantities are given are those familiar to us, as miles, days, etc.,
yet some of the distances, etc., are so immensely greater than any
known to our daily experience that we must have recourse to illus-
trations to obtain any idea of them at all. For example, the dis-
tance of the sun is said to be 92} million miles. Itis of importance
that some idea should be had of this distance, as it is the unit, in
terms of which not only the distances in the solar system are ex-
pressed, but which serves as a basis for measures in the stellar uni-
verse. Thus when we say that the distance of the nearest star is over
200,000 times the mean distance of the sun, it becomes necessary to see
if some conception can be obtained of one factor in this. Of the ab-
stract number, 92,500,600, we have no conception. It is far too
great for us to have counted. We have never taken in at one view
even a million similar discrete objects. The largest tree has less
than 500,000 leaves. To count from 1 to 200 requires, with very
rapid counting, 60 seconds. Suppose this kept up for a day without
intermission ; at the end we should have counted 288,000, which is
about 3y of 92,500,000. Hence over 10 months’ uninterrupted
counting by night and day would be required simply to enumerate
the nwmber, and long before the expiration of the task all idea of it
would have vanished We may take other and perhaps more strik-
ing examples. We know, for instance, that the time of the fastest
express-trains between New York and Chicago, which average 40
miles per hour, is about a day. Suppose such a train to start for the
sun and to continue running at this rapid rate. It would take 363
years for the journey. Three hundred and sixty-three years ago there
was not a European settlement in America.

A cannon-ball moving continuously across the intervening space
at its highest speed would require about nine years to reach the sun.
The report of the cannon, if it could be conveyed to the sun with
the velocity of sound in air, would arrive there five years after the
pro