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PREFACE

In the preparation of this book the author has had in

mind the fact that thQ student finds much difficulty in

seeing the applications of theory to practical problems.

For this reason each new principle developed is followed

by a number of applications. . In many cases these are

illustrated, and they all deal with matters that directly

concern the engineer. It is believed that problems in

mechanics should be practical engineering work. The
author has endeavored to follow out this idea in writing

the present volume. Accordingly, the title "Applied

Mechanics for Engineers " has been given to the book.

The book is intended as a text-book for engineering

students of the Junior year. The subject-matter is such

as is usually covered by the work of one semester. In

some chapters more material is presented than can be used

in this time. With this idea in mind, the articles in

these chapters have been arranged so that those coming

last may be omitted without affecting the continuity of

the work. The book contains more problems than can

usually be given in any one semester.

While it is difficult to present new material in the

matter of principles, much that is new has been intro-

duced in the applications of these principles. The sub-

ject of Couples is treated by representing the couples

by means of vectors. The author claims that the chap-

ters on Moment of Inertia, Center of Gravity, Work
and Energy, Friction and Impact are more complete
in theory and applications than those of any other
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American text-book on the same subject. These are

matters upon which the engineer frequently needs infor-

mation ; frequent reference is, therefore, given to origi-

nal sources of information. It is hoped that these chapters

will be especially helpful to engineers as well as to students

in college, and that they will receive much benefit as

a result of looking up the references cited. In general,

the answers to the problems have been omitted for the

reason that students who are prepared to use this book

should be taught to check their results and work inde-

pendently of any printed answer.

The author wishes to acknowledge the helpful sugges-

tions obtained from the many standard works on me-

chanics. An attempt has been made to give the specific

reference to the original for material taken from engi-

neering works or periodical literature. He wishes, more-

over, to express his thanks to Dean C. H. Benjamin and

Professor L. V. Ludy for their careful reading of the

manuscript, to Professor W. K. Hatt for many of the

problems used, and to Dean W. F. M. Goss, whose con-

tinued interest and advice have been a constant source of

inspiration. It is hoped that the work may be an inspira-

tion to students of engineering.

E. L. HANCOCK.
Purdue University,

November, 1908.
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APPLIED MECHANICS FOR ENGINEERS

CHAPTER I

DEFINITIONS

1. Introduction.— The study of the subject of mechanics

of engineering involves a study of matter^ space^ and time.

The subject as presented in tliis book consists of two parts

;

viz., statics, including the study of bodies under the action

of systems of forces that are in equilibrium (balanced),

and dynamics, including a study of the motion of bodies.

2. Force. — A body acted upon by the attraction or

repulsion of another body is said to be subjected to an

attractive or repulsive force, as the case may be. Forces

are usually defined by the effects produced by them, as

for example, we say, a force is something that produces

motion or tends to produce motion, or changes or tends

to change motion, or that changes the size or shape of a

body. The study of relations between forces and the

motions produced by them is usually designated as the

study of Statics and Dynamics, Forces always occur in

pairs ; for example, a book held in the outstretched hand
exerts a downward pressure on the hand, and the hand
exerts an equal upward pressure on the book.

3. Unit of Force. — The unit of force used by engineers

in this country and England is the pound avoirdupois. It
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is sometimes, however, necessary to use the absolute unit

of force. This ijaay be defined as follows : The absolute

unit of force is .that force which acting on a unit mass

during unit time will produce in the mass, unit velocity.]

This absolute unit of force is called a poundal. In France,

Germany, and other countries where the centimeter-gram-

second system is used, the engineer's unit of force is the

kilogram. The absolute unit of force, in such countries,

is the force which acting upon a mass of one gram weight

(at Paris) w^ill produce a velocity of one centimeter per

second, in a second. Such a unit is called a dyne.

4. Unit Weight. — The weiglit of a cubic foot of a sub-

stance will be called the unit weight of the substance and

will be represented by 7. Below is given a table of such

weights taken at the sea level. It will be seen that the

unit weight of a substance divided by the unit weight

of pure water gives its specific gravity. (See Table I on

opposite page.)

5. Rigid Body. — In studying the state of motion or

rest of a body due to the application of forces acting upon

it, it is not necessary to consider the deformation of the

body itself, due to the forces. When so considered it is

customary to say that the body is a rigid body. Unless

otherwise stated bodies will be considered as rigid bodies

in this book.

6. Inertia.— The property of a body that causes it to

continue in motion, if in motion, or remain at rest, if at rest,

unless acted upon by some other force, is called inertia.

This is Newton's First Law of Motion. (See Art. 76.)
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TABLE I

Unit Weights and Specific Gravity of Some Materials
(Kent's *' Engineer's Pocket Book ")

Material Specific Gravity Unit Weight

Brass 8.2 to 8.G 511 to 536
Brick

Soft 1.6 100
Common 1.79 112
Hard 2.0 125
Pressed 2.16 135
Fire 2.24--2.4 140-150

Brickwork— mortar 1.6 100
Brickwork— cement 1.79 112
Concrete 1.92--2.24 120-140
Copper 8.85 552
Earth— loose 1.15--1.28 72-80
Earth— rammed 1.44--1.76 90-110
Granite 2.56-2.72 160-170
Gum .92 57
Hickory .77 48
Iron— cast 7.21 450
Iron— wrought 7.7 480
Lead 11.38 709.7
Limestone 2.72-3.2 170-200
Masonry— dressed 2.24-2.88 140-180
Nickel 8.8 548.7
Pine— white .45 28
Pine— yellow .61 38
Poplar .48 30
Sandstone 2.24-i2A 140-150
Steel 7.85 490
White Oak .77 48

7. Mass. —The mass of a body is the quantity of
matter it contains. Mass differs from weight, in that
the weight varies with the position on the surface of the
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earth and with the height above tlie surface, while the
mass remains the same. The engineer's definition of
mass, viz. that it is equal to the weight divided by the
acceleration of gravity (see Art. 76), may be expressed

^= — • I^oth a and g vary for different localities, but

the quotient is constant ; that is, the quantity of matter in
a body is independent of its position with reference to the
earth. The weight of a body may be determined by
means of the spring balance. Such a balance is the only
true measure of weight, since the equal-armed balance
gives the same weight regardless of distance from the
center of the earth. The equal-armed balance really

measures mass.

8. Displacement. — By the displacement of a body is

meant its change from one position to another. A dis-

placement involves a movement in a definite direction.
It may be represented by an arrow, the length of the
arrow representing the distance moved and the direction
of the arrow the direction of the motion. Thus, if a man
walks due east one mile and then due north one mile, we
might represent his displacement from the original posi-
tion by an arrow drawn northeast of a length equal to V2
miles. Or, in Fig. 1, if P^ represents a displacement of
a body in the direction indicated and Pj a subsequent dis-

placement in the direction of Pj, then B represents a dis-

placement equivalent to P^ and F^. It is seen that B
may be determined by constructing a parallelogram on Pj
and P2 as sides and drawing the diagonal. Quantities
that may be represented by arrows are known as vector

quantities, and tlie arrows themselves as vectors.
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9. Representation of Forces.— Forces have a certain

magnitude, act in a certain direction, and have a definite

point of application. If a man, for example, attaches a

rope to a log and pulls on the rope, his pull may be meas-

ured in pounds ; it acts along the rope, and it has a point

of application which is the same as the point of attach-

ment of the rope to the log. It has been found convenient,

for the purpose of analysis, to represent forces by arrows

(vectors of Art. 8), the length of the arrow representing

the magnitude of the force and the direction of the arrow

giving the direction in which it acts. Thus, a 10-pound

force, acting in a direction 30° with the horizontal, is

represented by an arrow drawn in the same direction and

having its point of application in the body and having

a length representing 10 lb. (In this case, if 2 lb.

represents 1 in., the length of the arrow is 5 in.) The

line along which a force acts will be referred to as its

line of action,

10. Concurrent Forces.—When two or more forces act

upon the same point of a body, their lines of action are

concurrent^ and the forces are known as concurrent forces,

11. Resultant of Two Concurrent Forces. — If two forces

having the same point of application act on a body, there

is some single force that might be applied at the same

point to produce the same effect. This single force is

called the resultant of the two forces, and is found as

follows : construct upon the arrows representing the

forces a parallelogram and draw the diagonal from the

point of application. This diagonal represents the re-

sultant of the two forces in macfnitude and direction
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Fig. 1

(Art. 8). Thus, if P^ and P^ (Fig. 1) are the forces,

then R is the resultant.

Algebraically ^ = ^r^^ + r,^ -^2I>,r,cos AOB .

12. Resolution of Force. — We have just seen how two

concurrent forces may be replaced by a single force called

their resultant. In a similar way a single force may be

resolved into two forces. These forces are the sides of a

parallelogram of which the single force is a diagonal. It

is clear, then, that there are an infinite number of compo-

nents into which a single resultant may be resolved. It

is necessary, therefore, in speaking of the components of

a force, to state specifically which are intended. It will

be seen in problems that follow that the components most

often used are at right angles to each other, and usually

the vertical and horizontal components. In such a case

the components are the projections of the force on the verti-

cal and horizontal lines.

13. Force Triangle. — It follows directly from the par-

allelogram law of forces (Art. 11) that if we draw from

any point a line parallel to and representing one of two

concurrent forces, P^ say, and from the extremity of this

line another line parallel to P^ and of the same length, then

the remaining side of the triangle will be represented by H.

This triangle is called the force triangle. In general, the

resultant of two concurrent forces may be found by drawing
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lines parallel to the forces as above. The line necessary

to complete the triangle is tlie resultant, and its arrow is

always away from the point of application. The equal and

opposite of this resultant would be a single force that

would hold the two concurrent forces in equilibrium.

14. Force Polygon.— If more than two forces are con-

current, we may find their resultant by proceeding in a way

similar to that outlined above. Thus, let the forces be P-^,

P^, P3, P4, etc. (Fig. 2), all passing through a point ; from

any point draw

a line equal and

parallel to P-^,

from the ex-

tremity of the

line draw an-

other equal and

parallel to P^^ from the extremity of this last line draw

another equal and parallel to P3, and proceed in the same

way for the other forces. The figure produced will be a

polygon whose sides are equal and parallel to the forces.

The resultant will be given in magnitude, direction, and

point of application by the line necessary to close the

polygon. The arrow, representing the direction of the

resultant, will always be away from the point of applica-

tion. (See Fig. 2.) If the polygon be closed, the sj^stem

of forces will be in equilibrium. The single force neces-

sary to produce equilibrium will, in any case, be equal and

opposite to P. The student should construct force poly-

gons by taking the forces in different orders and checking

the resultant in each case.
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By drawing the lines OA^ OB^ OQ^ etc., it is easy to

see that OA represents the resultant of P^ and P^, that

OB represents the resultant of OA and Pg, and so of Pj, Pg,

and Pg, etc. That is, it is easy to' see that the force polj^-

gon follows directly from the force triangle. By means

of the force polygon it is easy to find graphically the

resultant of any number of concurrent forces in a plane.

The work, however, must be done accurately.

The student should show that the force polygon may be

used for finding the resultant of concurring forces in space,

by considering two forces at a time. The force polygon

in this case is called a twisted polygon.

15. Transmissibility of Forces. — It is a matter of expe-

rience that the point of application of a force may be

changed to any point along its line of action without

changing the effect of the force upon the rigid body.

This, of course, is on the assumption that all the force is

transmitted to the body. The law may be stated as fol-

lows : The point of application of a force may be transferred

anywhere along its line of action without changing its effect

upon the body upon which it acts.



CHAPTER II

CONCURRENT FORCES

16. Concurrent Forces in a Plane. — It will often be

convenient to consider forces as acting on a material

point; this is equivalent to considering the body without

weight and

simply a point.

If a material

point (0) (Fig.

3) be acted up-

on by a num-

ber of forces in

a plane, P^, P^^

-T^g, x"^^, etc.,

each one mak-

ing angles a^,

«2^ "3' ^4' ^^^-^

respectively,

with the posi-

tive 2:-axis, it

is desirable to find the resultant of all of them in magni-

tude and direction; that is, the single ideal force that

could produce the same effect as the system of forces.

Each force P may be resolved into components along

the a> and y-axes, giving P cos a along the rc-axis, and P
9
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sin a along the ?/-axis. The sum of these components

along the a;-axis may be expressed,

2a; = P^ cos a^ + P^ cos a^ + Pg cos a^ + etc.,

the proper algebraic sign being given cos a in each case.

In a similar way the sum of the components along the

y-axis may be written,

2y = -Pi sin a^ + P^ sin a^+P^ sin ^3 + etc.

These forces, ^x and 2y, may now replace the original

system as shown in Fig. 4. And these may be combined

into a single re-

sultant which

is the diagonal

of the rectangle

of which the

two forces are

sides (Art. 11).

This gives the

resultant in

magnitude and

direction, and

this resultant

force is the sin-

gle force which

if allowed to

act upon the

material point would produce the same effect as the

system of forces. It should be remembered in all that

follows that this resultant force has no real existence ; it

sr

sx
->-—

z

Fig. 4
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is used to simplify the solution of problems. Analytically

the resultant may be expressed,

i2 = V(2x)2+(Ey)2,

and its direction a as such an angle that tan a =-^y.
^x

(See

Fig. 5.) If the material point be at rest or moving

uniformly, this resultant force must be equal to zero;

This means that (22:)^+ (2z/)2 = 0, that is, that the sum

of two squares y
must be zero

;

but this can

happen only

when each one,

separately, is 2y

zero (since

neither can be *^'

negative being

squared). We
therefore have

as the necessary

and sufficient

conditions for

the equilibrium

of a material point, acted upon by a system of concurring

forces in a plane,

iJ = or 2a5 = 0, and 2?/ = 0.

When It is not zero, the system of forces causes accel-

erated motion in the direction of R\ when li=0, the
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material point remains at rest, if at rest, or continues in

motion with uniform velocity, if in motion. In this case

the system of forces

is said to be balanced.

As an illustration

of the foregoing,

consider the case of

a body of weight G-

situated on an in-

clined plane, making

an angle 6 with the

horizontal. (See

Fig. 6.) There is

a certain force P
making an angle cf)

with the plane,

whose component along the plane acts upwards, and also

a force of friction F upwards. The other forces acting

on the body are Gr, the force of gravity acting vertically,

and iV, the normal pressure of the plane. Taking the

a:-axis along the plane positive upward and the ^/-axis

perpendicular to it positive upward, we get,

'2x=Pcos(b-^F- asm 6,

and 2^/ = N+ P sin (f>— Gr cos 0.

For equilibrium

Pcos<^ + i"- (? sin (9=0,

N+Psmcf)- G^cos(9 = 0.

Therefore, N= G cos — P sin <^,

asm0-F

Fig. 6

P =
COS

(f>
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This last equation gives the magnitude of P required to

preserve equilibrium, supposing that the force of friction,

^, and ^ are known.

Problem 1. An angle iron whose

weight is 20 lb. and angle a right angle,

rests upon a circular shaft, radius 2 in.

Find the normal pressure at .4 and B
(Fig. 7).

Problem 2. (jiven three concurring forces, 100 lb., 50 lb., and

200 lb., whose directions referred to the a;-axis are 0°, QO"", 180^

respectively ; find the

resultant in magnitude

and direction.

Problem 3. A body

(Fig. 8) whose weight

is G is drawn up the

inclined plane with uni-

form velocity due to the

action of the forces I^

and P', Find the force

of friction and the

IGO lb. P acts

Fig. 8

normal pressure, if P = 100 lb., P' = 100 lb., G
parallel to the plane and P' acts horizontally.

Problem 4. A w^heel is about to roll over an obstruction. The

diameter of the wheel (Fig. 0) is -V and its weight 800 lb. Find

the force P necessary to start the w^heel over the obstruction.
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Problem 5. A weight of 10 tons is supported as shown in

Fig. 10. Find the force acting in the tie A and the member B,

17. Concurrent Forces in Space. — If the material point

(0) be acted upon by a system of concurrent forces not

in a plane P^^

-^2' 3' 4' etc.,

whose direc-

tion angles are

etc., respec-

tively, one of

which is shown

in Fig. 11, the

resultant force

may be found in magnitude and direction by an analysis

similar to that used in the preceding case. The sum of

the components of all the forces along the a;-axis is

2 a: = Pj cos a^ + P^ cos a^ + P^ cos a^ + P^ cos a^ + etc.

Similarly, the sum of the components along the ^/-axis,

2y = Pj cos ySj + P^ cos ySg + -P3 cos ySg + P^ cos ^^ + etc.,

Fig. 11



CONCURRENT FORCES 15

and the sum of the components along the 2-axis,

S 2 = Pj cos 7j + Pg C^S 72 + ^3 ^^^ 73 + ^4 ^^^ 74 + ^^^•

The original system of forces may now be replaced

by a system of three rectangular forces 2a:, 2y, and

tz (Fig. 12). ^

Finally, this

system may be

replaced by a

resultant which

is the diagonal

of a paral-

lelopiped con-

structed with

^x^ 2y, and ^z

as edges. In P^'" Fig. 12

magnitude this resultant may be expressed

•sz

zx

R = V(2;x)2 + (2^)2 + {^z)\ (See Fig. 13)

and its direction given by the angles a, yS, and 7. These

angles are given by the equations

^x _ 2y S2
cos a = -~^ COS /3 = ~^ cos 7 = -^.

Jit ^ -/^

For equilibrium jR must be ; that is,

(22:)2 + (2y)2+ (2^)2=0,

^x = 0, 2?/ = 0, ^z = 0.

This gives three equations of condition from which three

unknown quantities may be determined. In the preced-

ing case of Art. 16 there were only two equations of

condition ^x= and Sy = ; consequently, only two un-

known quantities could be determined.

and therefore.
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Fig. 13

Problem 6. Three men (Fig. 14) are each pulling with a force P
at the points a, b, and c, respectively. What weight Q can they raise

with uniform motion if each man pulls 100 lb.?

Each force makes an angle of 60° with the

horizontal.

Problem 7. Three concurring forces act

upon a rigid body. Find the resultant in mag-

nitude and direction. The forces are defined

as follows

:

Pi = 75 lb. a.

Pg = 80 lb

^3 = 147^2'; 73 = ?

Fig. 14

63° 27'
; )8i

= 48° 36'
; y^ =

a, = 153° 44'

;

P. = 95 lb. ; a. = 76° 14'

Hint, yj, yo, and yg may be found from

either of the following relations :

cos (a + fS) cos («-/?)+ cos^y = 0,

C0S2« + COs2/5 + COS^y = 1.

Problem 8. Each leg of a pair of shears (Fig. 15) is 50 ft. long.

They are spread 20 ft. at the foot. The back stay is 75 ft. long.

Find the forces acting on each member when lifting a load of 20 tons

at a distance of 20 ft. from the foot of the shear legs, neglecting the

weight of structure.
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20 TONS

Fig. 15

18. Moment of a Force. — The moment of a force with

respect to any point in its plane may he defined as the prod-

uct of the force and a

perpendicular let fall

from the point on the

line of action of the

force. Let P (Fig. 16)

be the force and the

point and a the perpen-

dicular distance of the

force from the point

;

then Pa is the moment

of the force with respect to the point 0. This moment

is measured in terms of the units of both force and

lengthy viz. foot-pounds or inch-pounds, and is read foot-

pounds moment or inch-pounds moment to distinguish

it from foot-pounds work or inch-pounds work.

For convenience the algebraic sign of the moment is

Fig. 16
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said to be positive when the moment tends to turn the

body in a direction counter-clockwise^ and negative when it

tends to turn the body in the clockivise direction.

The moment may be represented geometrically as fol-

lows : let EF represent the magnitude of P, drawn to

the desired scale, and draw EO and FO, The area of the

triangle OEF ^ {EFa, or EFa=2A0EF^ that is, the

moment of the force with respect to a point is geometrically

represented hy twice the area of the triangle^ whose lase is

the line representing the magnitude of the force and ivhose

vertex is the given point.

19. Varignon's Theorem of Moments. — The moment of

the resultant of two concurring forces with respect to any

point in their plane is equal to the algebraic sum of the

moments of the two forces with respect to the same-point.

The given forces P and P^ may be represented by OP
and OPj and

their resultant

by OR. Take

as the point

with respect to

which moments

are to be taken,

and construct

the dotted lines

as shown in Fig.

17. The rao-

FiG. n' jnent of OP
with respect to is twice the area of the triangle OOP
(Art. 18), = 2 area of the triangle OOP, since the tri-
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angles have the same base and the same altitude. That

is, the moment of CP with respect to is the same as the

moment of CB with respect to = CBa^ where a is the

perpendicular let fall from on OR, In a similar way, it

is seen that the moment of CP^ with respect to is equal

to the moment of CA with respect to 0; that is, to OA • a.

Therefore, the sum of the moments of P and P^ with

respect to equals (OB + OA) • a. But (OB + OA)a =
(0A + AB) 'a==R ' A, since OB = AR (equal triangles

OPB and AP^R), When the point is taken between the

P and Pp the moment of the resultant equals the differ-

ence of the moments of P and P^ Let the student show

that this is true.

Cor. 1. If there are any number of concurring forces

in a plane, it may be shown that Varignon's theorem holds

by considering the resultant of two of them with the

third, and so on. The more general theorem may then be

stated as follows : The moment of the resultant of any num-

ber of concurring forces in a plane with respect to any point

in that plane is equal to the algebraic sum of the moments of

the forces with respect to the same point.

Cor. 2. If the point be taken in the line of action of

iJ, then a = 0^ and therefore the sum of the positive

moments equals the sum of the negative moments.

The moment of a force with respect to a line at right

angles to the line of action of the force is the product of the

force and the shortest distance between the two lines.

The moment of a force with respect to a line not at right

angles to the line of action of the force is the same as the

moment of the component of the force in a plane perpendic-

ular to the line.



CHAPTER III

PARALLEL FORCES

20. The Resultant of Two Parallel Forces. — In consid-

ering two parallel forces in a plane three cases arise :

(a) when the forces are in the same direction
; (5) when

they are unequal and in opposite directions; (^) when
thej- are equal and in opposite directions, but having dif-

ferent lines of action.

Fig. 18

Case (a). When the forces are in same direction. The
two forces are P and P^, and the distance between their

lines of action is a. For the sake of analysis put in two
20
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equal and opposite forces T as shown in Fig. 18. These

forces will have no effect as far as the state of motion of

the body is concerned. The resultant of T and P is iJ,

and that of T and P^ is By Transfer It and R^ to the

point of intersection of their lines of action A. Here

resolve them into components parallel to their original

components ; the two forces 2^ nullify each other, and there

are left the two forces P and P^ acting along the same line

AU. The resultant of P and P^ then, is equal to P + P^

and acts in the same direction as the forces.

To determine the position of P with reference to the

forces we have from similar triangles

T
P'

irom which —i = , or a; =—

.

P X R

That 18^ the resultant of two parallel forces in the same direc-

tion divides the distance between them in the inverse ratio

of the forces.

Cor. For any point in the same plane, it is easy to

show that the moment of the resultant is equal to the

algebraic sum of the moments of the two forces with

respect to this same point. Draw a line through paral-

lel to T and let m be the distance from to the line of

action of P^ If now Pm be added to both sides of the

equation
Px = Pa^

we shall have
Ii(7n + x) = P{a + m) + P-^m^

and this is the relation we were to find.

X T
Pi

and
a — X

AF AF

Py- a —•^
n V Xz=-
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When (9 is a point on the line of action of B, the

moment of iJ = 0, and we have the moment of P equal to

the moment of P^. This is often a convenient relation to

use in the solution of problems. Following out the above

reasoning, let the student show that the moment of the

resultant of any number of parallel forces in a plane with

respect to a point in the plane is equal to the algebraic sum

of the moments of the forces with respect to that same point.

Case (J). When the forces are unequal and opposite in

direction. In this case the analysis is exactly similar to

Case (a) and leads to exactly the same conclusions. It is

left as an exercise to be worked out by the student.

Case (c). When the forces are equal and opposite^ but

not acting along the same line, they form a couple. These

will be treated later. (See Art. 30.)

Problem 9. Two parallel forces, one of 20 lb. and one of

100 lb., have lines of action 24 in. apart. Find the resultant in mag-

nitude, direction, and point of application

:

(1) When they are in the same direction.

(2) When they are in opposite directions.

Problem 10. A horizontal beam of length I is supported at its

ends by two piers and loaded with a single load P at a distance of

T from one end. Find the pressure of the piers against the beam.

Problem 11. The locomotive shown in Fig. 19 is run upon a

turntable whose length is 100 ft. Find the position of the engine

so that the table will balance.

21. System of Parallel Forces in Space. — If the forces

are all parallel, it is evident that the resultant is equal in

magnitude to the algebraic sum of the forces, and that its

line of action is parallel to the forces. It remains, then,

to determine the point of application of this resultant.
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Fig. 19

Suppose the forces represented by Pj, P^, P3, P4, etc., and

let their points of application be ^i^i^i, ^2^/2^2' ^zVz^z'^

x^y^^, etc. (Fig. 20). (In order to avoid a complicated

figure only two forces are shown.) The two forces

Fig. 20
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Pj and P2 li^ i^^ ^ plane and have a resultant R = P^+ P^
whose point of application is at a distance z^ from the xy-

plane and on a line joining L^ and L^ at L^ , Draw L^A
perpendicular to L^A, Then from Art. 20, R^L^B =
P^L^A^ which multiplied by sec a gives RL^L^ = P^LJLy^

L,y P.
or —2— = 1

-^2^1 -^1 + ^2

Now in the plane of z^ and z^ draw ig^ ^^^ -^'^' perpen-

dicular to 2-^, and we have

z^ — Zc

^2^1 -^1^ ^1 ~ %

so that 2' - ^2 = p ^ p (^1 - ^2)'
-^1 + ^2

A + ^2

Consider now ^' with P^\ these forces lie in a plane.

Let their resultant be R^^ and its point of application

x^\y^^^z^\ Following out the above reasoning for this

case, the resultant is seen to be R^^ = P^ + P^ + P^ and

z'^ = -^ ^ "^ -^3^3 __ -^1^1 "I" ^2^2 "^ -^3^3
.

Extending this process so as to include all of the forces

P4, Pg, etc., and calling the final resultant M and its point

of application x, y, i, we have

R= P^+P^ + P^ + Pi+ etc.

and i
- -Pi^i+-P2^2 +A^3 + -P4^4 + etc. ^ 2^

Pi + P^ +A +A + etc. 2P'
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and by a reasoning similar to the above

y = -Pi.Vi +A.y2 + Aj/« + ^4?/4 + etc. ^ 2Pz/
^ P^ + F^ + P^ + F^ + etc. SP

_ _ PiX^ + P<>x<2, + Pg^s + -^A + etc. _ 2Px

This point of application of the resultant is called the cen-

ter of the system ofparallel forces.

As an illustration of the above, suppose P^ = 50 lb., P^

= 100 lb., ^3=300 lb., P4 = 10 1b., andP5 = -400 lb.,

and their points of application respectively 2, 1,— 5; — 1,

-2,4; 2,1,-2; -2,1,1; 1,1,1. The resultant in this

case equals 50 lb. + 100 lb. + 300 lb. + 10 lb. - 400 lb. =
60 lb. and its point of application

__ 50 (2) + 100 (-1) + 300 (2) + 10 (-2)- 400(1) _^^-
QQ

-^.

_ __ 50(1) + 100(- 2)+ 300(1) + 10(1)- 400(1) _
^
~

60
"" ""

'

__50( _5) + 100(4) + 300(-2) + 10(l)-400(l) _
"^
-

60 - " ^^•

As another illustration consider the problem of finding

the center of the system of parallel forces P^, P^^ Pg, in

Fig. 21. The figure represents a Z-iron of the same cross

section throughout, and Pj, P^-, and Pg are therefore the

weights of the individual parts (considering the Z-iron as

divided into three parts— two legs and the connecting ver-

tical portion). If the weight of a cubic inch of iron =.26

lb., Pj = .78 lb., P2 = 2.08 lb., P3 = 1.04 lb., and therefore

i2 = 3.9 lb. The points of application of P^, P^^ and Pg
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are (- ^, - 1 91), Q, - 1-, 5), and (2, - i, i), respectively,

so that

_ .78(- 1)4- 2.08(1) + 1.04(2) _'^~"
3.9

= .70 in.,

i/

78(-i) + 2.08(-i) + 1.04(--i)
^ ^g^.^^^

3.9

.78(-V-)+ 2.08(5) + 1.04(1) _
3.9

" m,

This point x^ y, 2J is, in this case, the center of gravity of

the Z-iron.

Problem 12. Parallel forces of Pp Pg' ^s' ^^^ ^4 ^^^ ^^ the corners

of a rectangle 3 ft. by 2 ft. and perpendicular to its plane. Find the

point of application of the resultant, if P^ = 10 lb., Pg = ^0 lb., Pg =
100 lb., P^ = 200 lb., Pj and P^ being

2 ft. apart, and Pg on same side as Pg.

Problem 13. Eight parallel forces

act at the corners of a one-inch cube,

making an angle of 45° with one of its

faces. Find the point of application

of the resultant force, if Pj = 30 lb.,

Pg = 50 lb., P3 = 10 lb., P, = 20 lb.,

P, = 100 lb., Pq=5 lb., P, = 10 lb.,

Pg = 40 lb.

The student should prove that

the moment of the resultant of

any system of parallel forces in

space with respect to any line

in space, equals the sum of the moments of the forces with

respect to this same line. The solution of Problems 12

and 13 is made much shorter by using this principle.

Fig. 21



CHAPTER IV

CENTER OF GRAVITY

22. Definition of the Center of Gravity. — The center of

gravity of a body may be defined as the point of appli-

cation of the resultant attraction of the earth for that

body, and the center of gravity of several bodies con-

y sidered together, as the point of application of

the resultant attraction of the earth for the

bodies. The expressions for x, y, and z. Art.

21, may be used for locating the center of

gravity, in the latter case, without change, P^,

P^, Pg, etc., 'representing the weights of the

individual bodies. In such cases the center of

the system ofparallel forces is the center of gravity

of the body. The attention of the stu-

dent is called to the fact that the forces

acting upon the particles of a body, due

to the attraction of the earth, are not

parallel, but meet in the center of the

earth. For all practical purposes, how-

ever, they are considered

parallel.

^1

B

F„

Fig. 22

27
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If the unit weight times the volume be substituted for

weight, that is, if we write instead of P^, 7^ V^ and P^^

72 ^"2, etc., then S, y^ z become

- ^ 7i^"i ^1 + 72 ^^2 ^2 + 78 ^s^3 + etc. ^ ^7^^

7il^i + 72^'2 + 73f'^3+etc. 27r'

— __ 27 Vy - __ 27Fi
^ " 27 r' ^ " 27 r*

And if the bodies are all of the same material and so

have the same heaviness, 7 is constant and may be taken

outside the summation sign, where it cancels out. This

gives values for S, y, and i,

^_2F^ 7/-^ZM 5-2Z^

formulae exactly similar to those of Art. 21, where the P's

are replaced by F's.

If the bodies are thin plates of the same material, of

constant thickness 5, we may write for F^, V^, F3, etc.,

hF^, hF^, bF^, etc., where the P's represent the areas of

the faces of the plates. Making this substitution for the

F's, 5, ^, z may be written

- _ IF^x^ + hF^x^^ + hF^X r^ + etc. ^ ^Fx^"
bF^ + bF^ + bF^ + etc.

"" 2P'

- 2P7/ 2P2:

the J being a constant factor, cancels out. These formulae

are applicable to finding the center of gravity of areas, and

are much used by engineers for finding the center of

gravity of sections of angles, channels, T-sections, Z-sec-
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^~ ~"

/ j_0.4"

[
*;^

^ ^. ^

1
10 '

Fig. 23

tions, etc. As

an illustration

let it be re-

quired to find

the center of

gravity of the

angle section shown in Fig. 22. It is convenient to select

the X- and ^/-axes as shown and to divide the area up into

the two indicated areas F^ and F^. We then have

F, + F^ ^ F, + F,
'

x^T/^ being the center of gravity of F^, and 0:2^2 the center

of gravity of F^. It is left to the student to make the

numerical substitution and to calculate the values for x

and ^.

Second Method. The same results for x and y might be

obtained from the expressions

X- -^1^1 - F^H
.-7 _ F^yi - F^y^

F,-F, y F,-F,

where now F^ is the area formed by completing the rec-

tangle whose sides are 4 in. and 3 in. and x^y^ the center of

gravity of this rectangle referred to the coordinate axes,

and F^ the area of the rectangle whose sides are 3 in. and

2 in. and x^y^ the coordinates of its center of gravity re-

ferred to the same axes. Let the student find the center

of gravity of the angle section by this method and com-

pare the results with those obtained by the previous

method.
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Problem 14. Find the center of gravity of the channel section

shown in Fig. 23.

Problem 15. Find the center of gravity of the T-section shown

in Fig. 24.

''
.. 1

. f I

Fig. 24 Fig. 25

Problem 16. Find the center of gravity of the U-section shown

in Fig. 25. Given the fact that the center of gravity of a semicircular

4r
area is— from the diameter. (See Prob. 22.)

Problem 17. Find the position of the center of gravity of a

trapezoidal area, the lengths of whose parallel sides are a^ and Og? re-

^ ^ spectively, and the distance

between them h. (See Fig.

26.)

Hint. Draw the diaiio-

nal AB and call tlie tri-

angle ACB, F^, and the

triangle ABD, F^. Given,

the center of gravity of a triangle is \ the distance from the base to

the vertex. (See Prob. 21.) Select ^jD as the a:-axis, then

Fig. 26

y
^l.Vl + ^2.^2

where y^ = | A and ^2 = i ^* ^^^ center of gravity is seen to lie on a

line joining the middle points of the parallel sides.
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"^- Problem 18. A cylindrical piece of cast iron whose height is

6 in. and the radius of whose base is 2 in., has a cylindrical hole of 1 in.

radius drilled in one end, the axis of which

coincides wdth the axis of the cylinder. The

hole was originally 3 in. deep, but has been

filled with lead until it is only 1 in. deep.

Find the center of gravity of the body, the unit

weight of lead being 710 and of cast iron 450.

(Fig. 27.)

Problem 19. Find the center of gravity of

a portion of a reinforced concrete beam. (See Fig. 27

Fig. 28.) The beam is reinforced with three half-inch steel rods,

centers 1 in. from the bottom of the beam and 1 in. from the sides.

The center of the middle rod is 4 in. from the sides.

(y for steel = 490 lb. per cubic foot

;

y for concrete = 125 lb. per cubic foot.)

Note. It is seen that the thickness cancels out of the expression

for the center of gravity, and might, therefore, have been neglected.

Z

^

yf'^

<^--6^-\6^
Iz:

Fig. 28
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23. Center of Gravity determined by Symmetry. — In

some areas and solids it is often possible to determine the

center of gravity from considerations of the symmetry of

the figure ; for example, the center of gravity of a paral-

lelogram is at its geometrical center. This is also true of

the circle, square, cylinder, sphere, etc. Whenever any

axis is an axis of symmetry, that is, an axis such that for

every element of area or volume on one side there is an

equal area or volume on the other side, symmetrically

placed, the center of gravity must be on that axis. This

was found to be true in the case of the channel section,

the T-section, and the U -section. In each of these cases

the vertical line through the center of gravity is an axis

of symmetry. The student will be able to note many

more such cases, and by a little thought will often be

able to find either x^ y^ or z from observation.

24. Center of Gravity determined by Aid of the Calculus.

— The expressions for x^ y^ and z used to locate tlie center

of gravity in Art. 22 may be put in the form of the quo-

tient of two integrals, and these expressions may be inte-

grated when there is no discontinuity in the expressions

between the limits taken. With this understanding we

may write __2Px_|^P(f)

__ ^Pz _^dP{z)
" 2P ~ {dP
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As an illustration, suppose it is desired to obtain the

center of gravity of a right circular cone of altitude h and

radius of base r. Take the 2:-axis as the axis of the cone

with the vertex at the origin. (See Fig. 29.) It is evident

z

Fig. 29

that ^ = and 2 = 0, so that it is only necessary to find x.

The volume of any dv cut from the cone by two parallel

planes, perpendicular to x and separated by a distance

dx, is iry^dx^ and the weight of this dv is ^iryHx = dP.

Therefore ^ ^n
I xdP 1 x^iry^dx

x =
I dP I ^iry^dx

But from similar triangles y : x

gives 2

sc =

r : h or y = -x. This

12Jo
x^dx

A'

y^T-oJ xHx T
r

X2

r
3

3

,

h 4
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The expressions for x, y, and 2, involving c?P, may be

changed to similar ones involving dv, and these become
for homogeneous bodies, since dP = ydv^

1 xdv
j
ydv j zdv

J dv I dv j dv

and for thin plates of constant thickness b the dv may be

replaced by hdF, giving values of x, y, and 5 for area,

^xdF _^ JydF __ jzdF
7 ' ^=-p . ^ = -7X

Fig. 30

The center of gravity of thin homogeneous wires of con-

stant cross section may be found by replacing the dv in

the above formulae by ads, where a is the constant area

of cross section and ds is a distance along the curve. The
formulae then become

J

xds

ds

[yds
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Problem 20. Find the center of gravity of a parabolic area shown

in Fig. 30, the equation of the parabola being i/ = 2px.

I
xdF

J
dF

Here dF = ydx, so that

^ — — a ^ ~~ "
2 ^n** ^

Ci/dx V2^CJdx ^^^]o
Jo Jo

It is left as a problem for the student to show that y = ^ h.

Y

Fig. 31

Problem 21. Find the center of gravity of a triangle whose alti-

tude is h and whose base is a. Take the origin at the vertex and

draw the 2:-axis perpendicular to the base. (See Fig. 31.)

. Here dF = (y -\- y')dx, and from similar triangles

?/ + V' rr ??x, so that dF = - xdx,
^ ^ h h
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and

0? =
hjo"^ 3 Jo

2 ~h

h.

?H- -IhJo 2_\

The center of gravity is f the distance from the vertex to the base,

and since the median is a line of symmetry, it is a point on the median.

It is, in fact, the point where the medians of the triangle intersect.

Problem 22. Find the center of gravity of a section of a flat

ring, outside radius R^ and inside radius i^g. (See Fig. 32.) Let

the angle of the sector be 2 0. Take the origin at the center and let

the X-axis bisect the angle 2 6.

axdF

idF
here, dF = pdpda, and x = p cos a.

so that

\ i cos a da ' p'^dp

r (pdpda

Fig. 32

Integrating the numerator first,

R
i cos ada

{ p^df
Rl_

3

3 /^ + R 8

cos ada — —

^

^(2sin0)
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Integrating the denominator,

da I pdp = ^'J^—^
J

./(^ = (/?^2 _ /^g^) (9.

Therefore,

37

If i?2 = 0, the sector becomes the sector of a circle, and x becomes

2 ^ sin e

3
^ = ^^1-^

If the sector is a semicircle, that is, if 2 5 = ir, then, since = ^,

- 2p fll

Fig. 33

Problem 23. Find the center of gravity of a portion of circular

wire (Fig. 33) of length L and whose chord = 2h. Take the center

of the circular arc as origin and let the x-axis bisect Z. Then

( xds

X = -^ ; but R\x — ds\ dy,

ds= -dy,
X

'BR I dy
'ft _ 2 ii6 _ radius x chord

I
~ L

"
arc
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For a semicircular wire

X — Diameter

TT

Problem 24. Find the center of gravity of a paraboloid of revo-

lution. The equation of the generating curve being z/^ = 2 jox, and

the greatest value of x^ is a.

Note. Use the same method as that used for the right circular

cone.

r

Fig. ai

Problem 25. Find the center of gravity of a semi-ellipse (Fig. 34)

whose equation is

X — J
xdF

sdF

where dF=2ydx = 2- Va^ - x^ dx,
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therefore

ciJo _
X = —.

7^^

1 f""**

8^ ^

^'Va-^c/x i[.Va-.'^ + a^sin-g;

_ 3 _4a

¥ *

2

Problem 26. Find the center of gravity of a hemisphere, the

radius of the sphere being r. Let the equation of the generating

circle of the surface be x^ -^ 7/ = r^. Then

CxdP
X =^^ , where dP=yTry'^dx = y7r(r^ - x^)dx^

J
dP

and ^^y^(r^ - a:2)rfx = yw\rx - g-J,,^-^—

X =
JyTrr'

= ?r.

Problem 27. Find the center of gravity of

the area between the parabola, the y-axis, and the

line AB in Problem 20.

Problem 28. A quadrant of a circle is taken

from a square whose sides equal the radius of tlie

circle. (See Fig. 35.) Find the center of gravity

of the remaining area. Fig. 35

Problem 29. Suppose that the corners A and C of the angle iron

in Fig. 22 are cut to tlie arc of a circle of y\^ in. radius and the angle

at B is filled to the arc of a circle of | in. radius ; what would be the

change in x and ^?
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Problem 30. Show that the center of gravity of the segment of a

circle (Fig. 36), included between the arc 2 5 and the chord 2dy is

given by ^ = —— , where F is the area of the segment.
12 F

Fig. 36

25. Center of Gravity of Counterbalance of Locomotive Drive

Wheel.— In Fig. 37 the drive wheel is indicated by the

circle and the counterbalance by the portion inclosed by

the heavy lines, the point is the center of the wheel, and

a is the angle subtended by the counterbalance. The

point 0' is the center of the circle forming the inner

boundary of the counterbalance, and yS is the angle sub-

tended by the counterbalance at this point. Let F^ repre-

sent the area of the segment of radius r and F^ the area
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of the segment of radius r^ Also let x-^ represent tlie

distance of the center of gravity of F^ from 0, and x^ the

distance of the center of gravity of F^ from 0^ Then,

from Problem 30, „ „ o q
8 a^ i / 8 a*^

x-^— and x^' =
12F^ ' 12 F^

But 2^2, the distance of the center of gravity of F^ from (?,

So that a:, the distance of the center of gravity of the

F X ~ F X
counterbalance from (9, equals —^^^—^^^~^' ^^ ^^ seen that

F^ equals area of sector minus area of triangle equals

ar cos -, and similarly.

i<„ = ^—-^— ar. cos ^.2 .> 1 w7

/3
2^ I r^ coSy-— r cos

Therefore, a; = —

26. Simpson's Rule. — When the algebraic equation of a

curve is known, it is expressed as y =/(2:), and the area

between the curve and either axis i^ always determined

by integration. In Fig. 38 the area ABCD is expressed

by the integral ^^ ^^
jjjdx = jj(x)dx,

when the curve represented by y —f(x) is continuous

between A and B.

In many engineering problems the curve is such that

its equation is not known, so that approximate methods of
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obtaining the areas under the curve must be resorted to.

One of these methods of approximation is known as

Simpson s Rule, Suppose the curve in question is the

r

Fig. 38

curve AB (Fig. 39) and it is desired to find the area

between the portion AB and the a;-axis. Divide the

length I — a into an even number of equal parts n (here

71=10). Consider the portion OBUF 2ind imagine it mag-

nified as shown in Fig. 40, Pass a parabolic arc through

n D ^R
c ^3^

_^
A

[^
/"
^

y. f, V,

E

2/4 2/5

F

2/6 y-i Vs Vo 2/10

n
7

\JV

^

Fig. 39

the points 0, D, Gr\ then the area CDEF is approxi-

mated by the area of the parabolic segment CGrDI plus

the area of tlie trapezoid CDEF, therefore area GGrBFF
= K2/2 + yd^^+ 1(2/3 - 2 [^2 + ^4])^^' since the area of
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the parabolic segment is | tlie area of the circumscribing

parallelogram. Since EII= = A a:, this area may be
71

written lA<2/2 + 4^/3 + 2/4)-

In a similar way the next two strips to the right will have

-—— (y^ + 4 y. + ^g), and the next two strips, anan area.

A y
area, (2/6 + "^ 2/7 +2/3)' ^^^ ^^ ^^^- Adding all these so

o

as to get the total area under the portion of the curve AB^

we get

total area
h — a

3 . 10
[2/0 + Kvi + y^ + yr, + yi + y^)

+ -0j2 + y^ + yQ + ys) + yio] >

ys

D

or in general for n divisions,

total area =-^ [^/o + -^C^i + 2/3 + ^5 + * * * ^n-i)
o n

+ -(2/2 + ^4 + 2/6 + •••
2/^-2) + 2/n].

and this is Simpson's formula for determining approxi-

mately the area under a curve. It is easy to see that

the smaller A2:, the less the approxi-

mation will be.

27. Application of Simpson's Rule. —
Simpson's Rule may be made use of

in determining approximately not only

areas, but volumes and moments. On
account of its use in adding moments

Simpson's formula may be employed in

finding the center of gravity of areas

or volumes bounded by lines or sur-

faces whose equations are not known.

Suppose, for example, it is desired to
E n

Fig. 40
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know the volume and position of the center of gravity of

a coal bunker of a ship as shown in Fig. 41. The bunker

is 80 ft. long and the areas A^, A^, A^, A^, A^, are as

follows:
^, = 400 sq.ft.,

^^ = 700 sq. ft.,

^2=650sq. ft.,

^3=600 sq. ft.,

A^ = 400 sq. ft.

The distance between the successive areas is 20 ft.

Applying Simpson's formula for volume,
Qf)

Summing the values A^Xq, A^x^, A^x^, etc., we obtain

'S,vx = 80

(3) (4)

A,

lA^o + 4(^12^1 + Agx^} + 2 A^x^ + A^x^\,

A^ A^ A^ At

^ y^ y\ ^iX\ X: X\ y

L^

1

1

1

1

1

1

1

1

1

1-—4-—/ _
...->-

1

1

1

1

1

1 J
Fig. 41

where x^ = 0, a^j = 20, x^ = 40, x<^ = 60, x^ = 80. The po-

sition of the center of gravity from the fore end can now
be obtained from the relation

^vx
x —
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A value of x might also have been obtained from the

formula

Vq + ^'l
4- v^ + ^3 + ^4

by simply adding the terms in the numerator and denom-

inator. Compare the value obtained

by using this formula with that ob-

tained by using Simpson's formula.

Problem 31. A reservoir with five-

foot contour lines is shown in Fig. 42.

Find the volume of water and the distance

of the center of gravity from the surface

of the water, if the areas of the contour

lines are as follows : Aq = 0, A^ = 100 sq.

ft., A, = 200 sq. ft., A, = 500 sq. ft., A, =
^^^ ^^

600 sq. ft., .45 = 1000 sq. ft., A^ = 1500 sq.

ft., Aj = 2000 sq. ft., Ag = 2500 sq. ft. Making substitutions in the

Simpson's formula, it becomes, for the volume,

Yo\nme = -^lA,-\.i(A, + A,-\-A,+ A,)^2(A,-^A,-\-A,)+A,-].

Summing the values AqXq^ A^x^, ^2^2* ^^-j by Simpson's formula,

we have

'2(VX — ^
(3) (8)

IAqXq-^4:(A^x^-\-A^x^-\-A^^x^-{-AjX.)

4- 2(A2X2 + A^x^+ A^^)+A^x^'],

where Xq =0 ft., x^ = o ft., arg = 10 ft., etc., so that

V

Both numerator and denominator are computed by Simpson's formula.

Compute X by means of the formula,

- _ V(^X(^ + v^x^ + vnX2 4- ^V^s 4- etc.

1^0+^1 + ^2 + ^3+ ^^'

and compare with previous result.

Problem 32. Compute x for the parabolic area of Fig. 30, by
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using Simpson's Rule, and compare the result with that obtained by-

integration.

Problem 33. By Simpson's Rule find the area and center of

gravity of the rail section shown

in Fig. 43.

All = 2.05

^10 = 2.07

A,=

A^ =1.89 A.=

.55

.61

1.95

A^=A9
A, =m
^5 = .51

A, = .ol

and the horizontal distances are

as follows

:

A, = .82 ^0 = 2.95

= 4'' Uc 1.24' u. 1.0''

= 4.08" w-. = 1.18"

= 4.24" w. = 1.0"

= 2.5" u, = 1.0"

Wg = 1.24"

M2 = 2.23"

u^ = 5.5"

u, =6"Fig. 43

Problem 34. Find the center of gravity of the deck beam section

shown in Fig. 44. Use the formula

—_ F^xi + F2X2 + F's^s + ^'^^•

Fi + F "+ F, + etc. '

and divide the bulb area into convenient

areas, say F^, F^, F-,, etc. Check the re-

sult thus obtained with that obtained by

balancing a stiff paper model over a knife

edge.

28. DuranJ's Rule.— A method

of finding the area of irregular

areas was published by Professor

Durand in the Engmeering Neivs^

Jan. 18, 1894. The rule states

that the total area of an irregular

curve equals Fig. 44
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(^^)[(1 - 0-f>)^^0 + (1 + 0.1)^1 + ^2 + ^'3 + ^'4 + %
+ ...(i+o.iK_i + (i-o.6X],

.^«

where the i^'s have the same

meaning as before. The divi-

sions may be even or odd. The

student is advised to make use

of this rule as well as Simpson's

Rule and compare the results.

Fig. 45

j,tt," 29. Theorems of Pappus and

Guldinus.— Let the disk in Fig.

45 be any slice cut from a solid

of revolution by two parallel

planes perpendi-eular to the axis

of revolution and at a distance dx apart. The volume of this

slice is dv = 7r(i/^^ — y^^dx^ so that the volume of the whole

solid is V == IT i Qy^ — y^^dx. The generating figure of

this slice, dF^ equals {^y^— y^dx^ and the distance of its

center of gravity from the ^^-axis is ^2_^1. We have

seen that

then

_ CydF

and this, considering the expression for volume, becomes

1
y = -

therefore, V

2irF

yF.
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This may be stated as a general principle as follows

:

The volume of any solid of revolution is equal to the area

of the generating figure times the distance its center of

gravity moves.

Problem 35. Find the volume of a sphere, radius r, by the above

method, assuming it to be generated by a semicircular area revolving

about a diameter.

Problem 36. Assuming the volume of the sphere known, find the

center of gravity of the generating semicircular area.

Problem 37. Find the volume of a right circular cone, assuming

that the generating triangle has a base r and altitude h.

Problem 38. Assuming the volume of the cone known, find the

center of gravity of the generating triangle.

Problem 39. The parabolic area of Problem 20 revolves about

the a;-axis ; find the volume of the resulting solid.

Problem 40. Find the vol-

ume of an anchor ring, if the

radius of the generating figure is

a and the distance of its center

from the axis of revolution is r.

Let the curve AB (Fig.

46), of length Z, be the gen-
^^*

crating curve of a surface

of revolution. The area of the surface generated by ds will

be dF= 2 nryds,, and the area of the whole surface will be

F = 2 7r i yds. The center of gravity of this curve AB is

given by the expression

= jfyds;
Cyds

jds

- F
y =-—-., ov F^t-Kyl-

lirl
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This may be stated as follows : The area of any surface of

revolution is equal to the length of the generating curve times

the distance its center of gravity moves.

Problem 41. Find the surface of a sphere, radius r, assuming the

generating line to be a semicircular arc.

Problem 42. Find the center of gravity of a quadrant of a circu-

lar wire, radius of the circle r; use results obtained above.

Problem 43. Find the surface of the paraboloid in Problem 39.



CHAPTER V

COUPLES

30. Couples Defined. — In Art. 20, Case (c), it was shown

that the resultant of two parallel forces in a plane was

equal to the algebraic sum of the two forces. The con-

sideration of the case when the forces are equal and oppo-

site in direction, that is, where the resultant is zero, will

^^

^i^

{a)

A

Pi

Fig, 47

ib)

now be considered. It is easy to see that since the result-

ant is zero, the two forces tend to produce only a rotation

of the rigid body about a gravity axis perpendicular to the

plane of the forces. Such a pair of equal and opposite

parallel forces is called a couple. Let it be represented as

in Fig. 47 (a), the two forces being P, and d the distance

between the lines of action of the forces. This distance

d is called the arm of the couple ; one of the forces times

50
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the arm is called the moment of the couple. It was found

ill Art. 20 that the algebraic sum of the moments of the

resultant and the system of parallel forces with respect to

any point in their plane, is zero. In this case, since the

resultant is zero, the moment of the forces of the couple

with respect to any point in the plane is equal to the sum

of the moments of the two forces with respect to that

point. Let the point be (7, Fig. 47 (a), distant x from

the force P; then — Px — P(^— d — x) represents the sum

of the moments of the two forces with respect to the point

C (calling distance below O negative). This sum is equal

to Pc?, the moment of the couple. The student should

take C in different positions and show that the moment of

the two forces with respect to any point in the plane is

always Pd, Since the moment consists of force times

distance, it is measured in terms of the units of force and

distance ; that is, foot-pounds or inch-pounds, usually. If

the couple tends to produce rotation in the clockwise

direction, the moment is said to be negative; and if counter-

clockwise, positive.

31. Representation of Couples.— The couple involves mag-

nitude (moment) and direction (rotation), and may, there-

fore, be represented by an arrow, the length of tlie line

being proportional to the moment of the couple, and the

arrow indicating the direction of rotation. In order to

make the matter of direction of rotation clear, the agree-

ment is made that the arrow be drawn perpendicular to

the plane of the couple on that side from which the rota-

tion appears counter-clockwise. This means that if we
look along the arrow pointing toward us, the rotation
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the couple

any point

appears counter-clockwise. Thus, the couple of Fig. 47

(a), whose moment is Pc?, may be represented b}^ the arrow

in Fig. 48 (a), where the length of line AB is propor-

tional to Pd and the couple is in a plane through B and

perpendicular to AB. The line AB is sometimes called

the axis of the couple; it may be drawn perpendicular

to the plane

of

at

in that plane,

since the mo-

ment is con-

stant for any

point in the

plane. In a

similar way,

the couple (i)

in Fig. 47 whose moment is Bid^ is represented completely

by the arrow (5), Fig. 48, the length CD being propor-

tional to F^dy

IN'oTE. The arrows are placed slightly away from the ends, so that

the moment arrows may not be confused with force arrows. These

arrows, like force arrows, may be added algebraically when parallel,

resolved into components and compounded into resultants ; the prin-

ciple of transmissibility holds and also the triangle and polygon laws

as seen for force arrows. Several important conclusions follow easily

as a result of this arrow representation.

Since a moment arrow represents both force and distance and direc-

tion of rotation, it is evident that it cannot be balanced by a single

force arrow even though they have the same line of action and are

opposite in direction. Hence, we conclude that a single force cannot

balance a couple.

Fig. 48
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32. Couples in One Plane. — If the couples are all in the

same plane, their moment arrows are all parallel, and may-

be added algebraically, so that the resultant couple lies in

the same plane and its moment is the alyehraic surn of the

moments of the individual couples.

For example, in Fig. 49, the couples P^d^, ^2^2' ^3^3'

P^d^, P^d^, P^d^^ are all in the plane (aJ) ; their resultant

couple must also be in this

plane, and its moment must be

equal to the algebraic sum of

the moments of these couples.

It is evident since the above

is true that a couple may be

transferred to any part of its

plane without changing its

effect upon the rigid body

upon which it acts. This

means, when applied to some

particular rigid body, as a

closed book, that the effect of

a couple acting in the plane of one of the covers of the

book (book remains closed) tends to produce rotation

about an axis, perpendicular to the cover through the

center of gravity of the book ; and that this rotation

is the same no matter where the couple acts, provided it

remains always in the same plane. The moment arrow

of the resultant couple will be perpendicular to the cover

of the book and on the side from which the rotation

appears counter-clockwise. The student should endeavor

to see the application of the above theorem and to see that

it agrees with his observations.

Fig. 49
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33. Couples in Parallel Planes. — The moment arrow

represents a couple in magnitude and direction of rotation

and shows that the plane of the couple is perpendicular to

its line. This moment arrow represents any couple of

given moment and direction in any plane perpendicular to

its line. It is evident, then, that a couple may he trans-

ferred to any parallel plane zvithout changifig its effect upon

the rigid body upon which it acts. Applied to the case of

the book in the preceding article, it may be said that the

effect of the couple would be unchanged if it acted in the

plane of the other cover or in any of the leaves.

34. Couples in Intersecting Planes. — Suppose all the

couples in a plane (1, 2) be added and let AB (a) (Fig.

48) represent the moment arrow of the resultant couple,

and let the sum of all the couples in the plane (2, 3) in-

tersecting (1, 2) be represented by CD (J) (Fig. 60).

These moment ar-
c >— i>

{()) ^ rows are perpen-

^ dicular to their

respective planes

and may be moved

about without
changing the ef-

fect of the couple.

Move A and to some point on the line of intersection

of the two planes. The resultant moment arrow is now
found by the parallelogram law. The resultant couple

has a moment represented by AU and acts in a plane

perpendicular to AU and making an angle a with the

plane (2, 3).
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Problem 44. Two forces, each equal 10 lb., act in a vertical plane

so as to form a positive couple. The distance between the forces is

2 ft. ; another couple whose moment is equal to 20 in. -lb. acts in a

horizontal plane and is negative. Required the resultant couple, its

plane, and direction of rotation.

Problem 45. A couple whose moment is 10 ft. -lb. acts in the

a:?/-plane ; another couple whose moment is —30 in.-lb. acts in the

a:2;-plane, and another couj^le whose moment is — 25 ft. ili-lb. acts in

the ?/2;-plaiie. Required the amount, direction, and location of the

resultant couple that w^ill hold these couples in equilibrium, (x, y,

and 2-axes are at right angles with each other in this case.)

/



CHAPTER VI

NON-CONCURRENT FORCES

35. Forces in a Plane. — The most general case of

forces in a plane is that one in which the forces are non-

concurrent and non-parallel. We shall now consider such

a case. Let the forces be Pj, P^, Pg, P^, etc., as shown in

T

Fig. 51

Fig. 51, and let them have the directions shown. For

the sake of analysis, introduce at the origin two equal

and opposite forces Pj, parallel to Pj, two equal and oppo-

66
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site forces Pg' Parallel to P^^ and so on for each force.

The introduction of these equal and opposite forces at

the origin cannot change the state of motion of tlie rigid

body.

The original force P^ taken with one of the forces P^,

introduced at the origin, forms a couple wliose moment is

P^dy The same is also true of the forces P^^ Pg, P^,

etc., giving respectively moments P2<^2' ^s^h' P^d^^ etc.

In addition to tliese couples there is a system of con-

curring forces at the origin Pj, P^, Pg, P^, etc. The

resultant of this system is, as has been shown (Art. 16),

R = V(S2:)2 + (S2/)2.

The moments Pid^ -^2^2' ^3^3' ^^^-^ being all in one

plane, may be added algebraically (see Art. 32), giving

the moment of the resultant couple as SPc?.

The systeyyi of non-concurrent forces in a plane may he

reduced^ then^ to a single force R at the origin {arhitrarily

selected^ and a single couple whose plane is the plane of the

forces.

For equilibrium, JK = and SfVZ = 0, or Sac = 0, ^y = 0,

and SJPtZ = 0; that is, for equilibrium, the sum of the com-

ponents of the forces along each of the two- axes is zero

and the sum of the moments with respect to any point in

the plane is zero.

Considering as a special case the case Where the forces

are concurring, it is seen that Pd is always zero (see

Art. 16). The case of a system of parallel forces in a

plane may also be considered as a special case of the above.

(Art. 20 and Art. 31).

Problem 46. The following forces act upon a rigid body : a
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1 TON 2 TONS

force of 100 lb. whose line of action makes an angle of 45° with the

horizontal, and whose distance from an arbitrarily selected origin is

2 ft. ; also a force of 50

lb. whose line of action

makes an angle of 120°

with the horizontal, and

whose distance from

the origin is 3 ft.; and

a force of 500 lb. whose

line of action makes an

angle of 300° wdth the

horizontal and whose

Find the resultant force and the

Fig. 52

distance from the origin is 6 ft.

resultant couple.

Problem 47. It is required to find the stress in the members^5,
EC, CD, and CE of the bridge truss showm in Fig. 52.

^OTE. The member AB is the member between A and B, the

member CD is the member between C and D, etc. This is a type of

Warren bridge truss. All pieces (members) are pin-connected so

that only tw-o forces act on each member. The members are, there-

fore, under simple tension or compression ; that is, in each member

the forces act along the piece. Usually, in such cases there are no

loads on the upper pins.

Solution of Problem. The reactions of the supports are found

by considering all the external forces acting on the truss. Taking

moments about the left support, we get the reaction at the right sup-

port, equal 4500 lb. Summing the vertical forces or taking moments
about the right-hand support, the reaction at

the left-hand supj^ort is found to be 3500 lb.

Cutting the truss along xy and putting in the

forces exerted by the left-hand portion, consider

the right-hand portion (see Fig. 53). The

forces C and T act along the pieces, forming a

system of concurring forces. For equilibrium,

then, 2x = and 2^/ = 0, giving two equations,

sufficient to determine the unknowns C and T. The forces in the

members CD and CE may now be considered known.

4600 LB&. I

Fig. 53
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Cutting the truss along the line ZW and putting in the forces

exerted by the remaining portion of the truss, we have the portion

represented in Fig. 54. This

gives a system of concurring

forces of which C and 2 T are

known, so that from the equa-

tions ^x = and 2?/=0 the

remaining forces d and e may
be found.

Fig. 54

The truss is pin-con-

2 TONS

Problem 48. Find the stress

in each of the members AB and

BC of the simple roof truss shown in Fig. 55.

nected, and all the members are under simple tension or compression ex-

cept the horizontal

piece, which is under

flexure. The method

of cutting the truss,

employed in the

preceding problem,

cannot be employed

to advantage here,

since the stress in

the horizontal piece

is not along the

piece. The simplest method of solution for such a case is to take

the whole member in question and consider all of the forces acting.

In this case we have (see Fig.

56) a system of non-concur-

ring forces in a plane. For

equilibrium 2^ = and 2?/ =
and SPrZ = 0, from which

P,

mined,

Fig. 55

^1

i

P, and Pj may be deter-
T f

1 TON 1 TON

Fig. 56

Problem 49. In the crane shown in Fig. 57 (a) find the forces

acting on the pins and the tension in the tie AC. Tlie method of

cutting cannot be used in this case since the vertical and horizontal
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members are in flexure. Taking the horizontal member and consid-

ering all of the forces acting upon it, we have the system of non-con-

curring forces shown in Fig.

57 (6). Three unknowns are

involved, Pg, Pi, and P2, and

these may be determined by

three equations ^x = 0, 2?/

== 0, and ^Pd = 0. It is to

be remembered that the pin

pressure at E is unknown in

magnitude and direction. In

all such cases it is usually

more convenient to resolve

this unknown pressure into

its vertical and horizontal

components, giving two un-

known forces in known di-

rections instead of one un-

known force in an unknown

direction. This will be done

in all problems given here.

4 TONS In the present case the two

forces Pi and P2 are the

components of the unknown pin pressure.

The tension in the tie A C may be found by considering the forces

acting on the whole crane and taking moments about B. Thus

^Pd = gives, calling the tension in the tie T,

T35sin45° = 8000 (25),

y^ SOOO (25)

Fig. 57

or
35 sin 45'

Problem 50. In the crane shown in Fig. 58 (a) find the tension

in the ties T and T' and the comj^ression in the boom. The method

of cutting may be used here to determine the tension T and the com-

pression in the boom, since AB is not in flexure, if we neglect its own

weight. Cutting the structure about the point A and drawing the

forces acting on the body, we have the system shown in Fig. 58 b.
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c/ (b)

Fig. 58

The forces T^ may be considered as acting at the center of the pulley.

The system of forces is concurring, so that 2x == and 2^ = are suf-

ficient to determine T and C.

T may be found by consider- ^ -^*v,

ing the forces acting on the

whole crane and taking mo-

ments about the lowest point

B,

Note. Neglecting friction,

the tension W in tlie cord sup-

porting the weight is trans-

mitted undiminished through-

out its length.

Problem 51. Find the

horizontal and vertical com-

ponents of the forces acting

on the pins of the structure shown in Fig. 59.

Suggestion. First take the vertical strip and consider all the

forces acting on it.

Problem 52. Find the forces

acting on the pins of the structure

shown in Fig. 60, the weight of the

members AD, BF, and CE being

600 lb., 400 lb., and 100 lb., respec-

tively.

Problem 53. A traction engine

is passing over a bridge, and when

it is in the position shown in Fig.

61 one half of the load is carried

by each truss. The weight of the

engine is transmitted by the floor

beams to the cross beams, and

these are carried at the pin connections of the truss. Find the stress

in the members AB^ BC, CE, CD, and DF, for the position of the

engine shown.

Fig
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XoTE. The floor beams are supposed to extend only from one

cross beam to another.

Problem 54. In Problem 50, suppose the weight of the boom to

be one ton ; find the tensions

T and T and the pin pres-

sures.

Note. The boom is now

under flexure, so that the

method of cutting cannot be

made use of.

Problem 55. A dredge

or steam shovel, shown in

outline in Fig. 62, has a dip-

per with capacity of 10 tons.

When the boom and dipper

are in the position shown, find the forces acting on AB, CD, and EF.

Suggestion. Consider first all the forces acting on CD, then all

the forces acting on AB.

Fig. 60

Fig. 61

Note. The member EF has been introduced as such for the sake

of analysis ; it replaces two legs, forming an A frame. The projection

of the point i^ is 6 ft. from the point E,

Problem 56. Suppose the members of the structure in Problem
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55 to have weights as follows: AB, 15 tons, and CD, 3 tons, not in-

cluding the 10 tons of dipper and load. Find the stresses as required

in preceding problem.

Fig, 62

Problem 57. Suppose the beam in Problem 5 to be 20 ft. long

and to have a weight of 2000 lb. ; find the pin reaction and the ten-

sion in the tie.

Problem 58. Assume that the compression members of the War-

ren bridge truss of Problem 47 have each a weight of 500 lb. ; find

the stress in the members jBC and CE.

36. Forces in Space, Non-intersecting and Non-parallel.—
If a rigid body is acted upon by any system of forces in

space Pj, P^') P3, P4, P5, Pg, etc., making angles with

the arbitrarily chosen axes, x^ y, and ^, a^, ^j, 7^ ; a^^ ySg, 72

;

ttg, ^3, 73, etc. (see Fig. 63), it can be shown that the

system may he replaced hy a single force and a single couple.

The single force acts at the origin, and its direction

angles are a, /8, and 7. The resultant couple acts in a

plane whose direction angles are X, /i, v.

Introduce at the origin two equal and opposite forces

Pj parallel to the line of action of P^. One of these

forces Pj together with the original P^ form a couple

whose moment is P^d^^ and this couple may be represented

by a moment arrow at the origin, perpendicular to the



64 APPLIED MECHANICS FOR ENGINEEBS

plane of the couple (see Art. 31). We thus have re-

placed the force P^ by an equal and parallel force at the

origin and a couple represented at the origin by a mo-

ment arrow P-^dy Proceeding in the same way with P^,

Pg, P4, etc., we finally have instead of the original system

Fig. 63

of non-concurring, non-parallel forces in space, a sys-

tem of concurring forces P^ P^, P31 P^. etc., at the origin

and a system of moment arrows P^d-^, ^2^2' -^3^3' ^^^">

represented at the origin. The forces may be combined

into a single resultant as in Art. 17, and we then have
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whose direction cosines are

cos «= --, COS /3 = -j^, cos 7 = -^-

Since the moment arrows also follow the same laws as

the force arrows, we may also write tlie moment of the

resultant couple,

where M^ = Pi^i cos \ + P^d.^ cos ^2 + etc.,

3Iy = Pi'^i cos fi^ + P^d^ cos /i2 + etc.,

M^ = Pid^ cos v^ 4- -^2^2 ^^^ ^2 + e^e-

The direction angles of ilfare X, /i, i^, and these are de-

fined as follows (see Fig. 64)

:

cos \ = —~,M
My

COS M =^ COS V = —

^

il!f

This system of forces pro-

duces a translation of the

body in the direction of

R and a rotation about a

gravity axis parallel to M.

li B=0 and ilf^O, the

body only rotates or is

translated with uniform

motion, and if M= and

H^ 0^ the body has only

translation with possibly

uniform rotation. For

equilibrium both Ii=
and M= ; that is, 2x =
0, % = 0, 2^ = 0, ilf, = 0, Fig. 64
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My = 0, and M^ =0, or expressed in words: the sum of the

components of the forces along each of the three arbitrarily

chosen axes is zero^ and the sum of the moments with respect

to each of these axes is zero.

It may be further shown that the single force and

resultant of the preceding article may be replaced by a

single force and a couple whose plane of rotation is per-

pendicular to the line of action of the force.

Suppose iHfand R both drawn at the origin and let a be

the angle between them. M may be resolved into com-

ponents along and perpendicular to i2, Gr cos a along jR,

and Gr sin a perpendicular to R, Gr sin a may be replaced

by another couple having the same moment. Let the

forces he — R and + R and allow the — R to act along

the line of action of the resultant force. The other force

of the couple acts along a line parallel to the direction of

the resultant force. The forces + R and — R along the

line of action of the resultant force neutralize each other,

and we have left (a) a force, R^ parallel to the original

resultant, and (5) a couple, Gr cos cc, acting in a plane per-

pendicular to R.

That is, the system reduces to a single force and a sin-

gle couple whose plane is perpendicular to the line of

action of the force, or we may say, the effect of any system

of forces acting on a rigid body,, at any instant,, is to cause

an angular acceleration about the instantaneous axis of rota-

tion and an acceleration of translation along that axis.

Such a system of forces is called a screw wrench. The

instanta^^us axis is called the central axis. This axis

passes thr<fWgh the center of gravity of the body if the

body is free^ rotate.
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Problem 59. A vertical shaft is acted upon by the belt pressures

Tj and T^, the crank pin pressures ]\

and the reactions of the supports. See

Fig. 65. Write down the six equations

for equilibrium.

Note. The 3/-axis has been chosen

parallel to the force P, and T^ and Tg

are parallel to the x-axis.

^x = x' -{- x" - T^- T^ = 0,

^z=z" - G - G' = 0]

M,= -Pb- y"l = 0,

My = x"l - T^c - T^c - G,'^= 0,

Mz = Fa+ T^r - T^r = 0.

From these six equations six unknown

quantities can be found. If G^ Cg,

Tp and Tg are known, the reaction of

the supports and P may be found.

Problem 60. A crane shown in

Fig. 66 has a boom 45 ft. long and a

mast 30 ft. high. It is loaded with 20

tons, and the angle between the boom

and mast is 45°. The two stiff legs

each make angles of 30° with the mast and an angle of 90° with each

other. Find the pin pressures in boom and mast, also the stress in

Fig. GG
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the legs when (a) the plane of the crane bisects the angle between

the legs, and (b) the plane of the crane makes an angle of 30° with

one of them. If the boom weighs 4000 lb., find the stress in the

legs when the plane of the crane bisects the angle between them.

Assume that the pulleys A and B are at the ends of the boom and

mast respectively.

Problem 61. Suppose the shaft of Problem 59 to be horizontal,

find P and the reactions of the supports. Assume y horizontal and

perpendicular to the shaft, and x vertical.



CHAPTER VII

MOMENT OF INERTIA

37. Definition of Moment of Inertia. —The study of

many problems considered in mechanics brings to our at-

tention the value of the integral of the form (y^dF^ where

dF represents an area and y the distance of the center of

gravity of that area from an axis of reference. A more

general definition of moment of inertia would be the prod-

uct of an elementary area, mass^ or volume by the square of

its distance from a designated pointy line^ or plane. The

integral given above simply adds these products to give

the moment of inertia of an entire area. In the case of a

mass, the integral becomes jy^dM, and of volume (y^dV.

If the area, mass, or volume is not continuous throughout,

the limits of integration must be properly taken to

account for the discontinuity. We shall designate

moment of inertia by the letter /. Thus we write:

I=jy^dF,

I=^yHM,

I=fy^dV,

for area, mass, and volume, respectively. In finding the

moment of inertia of several disconnected parts, it is often
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necessary to use the summation sign instead of the inte-

gral ; we may then write

:

1= ^fdF,

1= ^i/dM,

for area, mass, and volume, respectively.

Many problems that confront the engineer involve in

their solution the consideration of the moment of inertia.

This is the case when the energy of a rotating fly wheel,

for example, is being determined. The energy of a rotat-

ing body (kinetic energy, Art. 133) is expressed as follows:

Kinetic energy = —-,

where i"is the moment of inertia with respect to the axis

of rotation and co is the angular velocity (see Art. 95).

It is seen that the energy of rotating bodies, having the

same angular velocity, or the same speed, is directly pro-

portional to their moments of inertia. The quantity,

therefore, plays a very important part in the considera-

tion of rotating bodies.

In computing the strength of a beam or column it is

necessary to consider the product of an area and the

square of its distance from some line. This is called

the moment of inertia of the area; it is usually taken

with respect to a gravity axis of the area. An idea of the

use of moment of inertia in computing the strength of

beams may be obtained by considering the beams sup-

ported at both ends and loaded in the middle. The load

that the beam will carry is then given by the formula
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P = —^, where P is the load in pounds, I the length of
Ih

the beam in inches, h the height of beam in inches, p the

strength of the material, of wliich the be.im is comj)osed,

in pounds per square inch, and I is tlie moment of inertia

of the cross section with respect to a horizontal gravity-

axis. The student should thoroughly master the princi-

ples of moment of inertia.

38. Meaning of the Term. — The term moment of inertia

is somewhat misleading, and the student is apt to try

to connect moment of inertia with inertia. The term

has no such significance and should be regarded as

the name arbitrarily applied to a quantity that engineers

frequently use.

Radius of Gyration. The moment of inertia of an area

involves area times the square of a distance. We may

write 1= iy'^dF^FW^ where F is the area and Z: is a

distance, at which, if the area were all concentrated, the

moment of inertia would be unchanged. This distance

k is called the radius of gyration. In a similar way

for a mass we w^rite: /= \y\iM=Mk^^ and for volume

1= ^y\lV= Vk^.

39. Units of Moment of Inertia. — The moment of inertia

of an area with respect to any axis may be expressed

as Fk^. The area involves square inches, and ^ is a dis-

tance squared. The product is expressed as inches to the

fourth power. The moment of inertia of a volume Vk^

requires inches to the fifth power. Tlie moment of

inertia of a mass requires in addition to Vk'^ the factor ^,
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SO that, pounds and feet per second are involved. This is

somewhat more complicated since it involves units of

weight, distance, and time. This presence of ^(=32.2)

in the expression requires that all distances be in feet. It

is customary to express the moment of inertia of a mass

without designating the units used, it being understood

that feet, pounds, and seconds were used.

40. Representation of Moment of Inertia. — From the

definition of moment of inertia it is evident that an area

has a different moment of inertia for every line in its

plane. We shall designate the moment of inertia with

respect to a line through the center of gravity by Ig with

a subscript to indicate the particular gravity line in-

tended. For example, Ig^. indicates the moment of inertia

with respect to a gravity axis parallel to x^ and Ig^ indi-

cates the moment of inertia with respect to a gravity

axis parallel to y. The moment of inertia with respect

to a line other than a gravity line will be designated

by P, the proper subscript indicating the particular

line. Similar subscripts will be used to designate the

corresponding radii of gyration. It should be noted that

moment of inertia is not a quantity involving direction.

It has to do only with magnitude and is essentially

positive.

41. Moment of Inertia ; Parallel Axes. — Consider the

area inclosed by the irregular line (Fig. 67) and sup-

pose that its moment of inertia is known with respect

to every line through its center of gravity (gravity

axis). It is required to find its moment of inertia

with respect to any other line in the plane. Select the
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Fig. 67

arbitrary rectangular axes x and y and draw through

the center of gravity of the area a line parallel to the

a;-axis. Let the

distance between

these parallel

lines be d. The

moment of inertia

of the area i^ with

respect to the

dotted line will

be called Ig^ and

its moment of

inertia with re-

spect to the a;-axis, J'^. The moment of inertia of the

elementary area dF with respect to the 2:-axis is then

written (c? + d^^dF^ and the moment of inertia of the

whole areaF with respect to this same axis becomes

r^= j(d + dydF= ^d?dF+ J2 dd^dF+
JQdydF.

But i d^dF may be written d^jdF=d^F, since cZ is a

constant, and 2d Cd^dF=2dQFd'} (see Art. 22), where

d' is the distance of the center of gravity of the area

from the line of reference. In this case d' = 0, so that

2dCd^dF= 0. The term C{dydF equals Ig^ by defini-

tion (see Art. 37). It follows, then, that

or, expressed in words.

The moment of inertia of an area with respect to any line

in its plane is equal to its moment of inertia with respect to
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a parallel gravity axis plus the area times the square of the

distance between the ttvo axes.

This theorem is used very often in work that follows

and should be thoroughly understood. It may also be

by transposing terms. In this form it is convenient when
J'^, jP, and d are known, and Ig^ is to be determined. It

is easily seen from either of these expressions that the

moment of inertia of an area for a gravity axis is less

than for any other line in the plane.

In case neither axis is a gravity axis, 2 dd^F is not

equal to zero and T^= I' -\- Fd?' + 2 dd'F^ where I' is the

moment of inertia with respect to the parallel axis and dJ

the distance of the center of gravity of the area from this

parallel axis ; the quantities F^ c?, and F^ having the same

meaning as before.

42. Moment of Inertia ; Inclined Axis. — It is often de-

sirable, when F^ is known, to find the moment of inertia

Y
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with respect to an axis tv making an angle a with x (see

Fig. 68). Here, I\,=:Jv^dF'dnd r,= Jw\IF. In terms

of a;, y, and a,

T^= j (7/ cosa — X sin a)^ dF

=
j
^2 (>Qg2 adF— 2 i XT/ cos a sin a c?l'+ j a;^ sin^ a dF

= cos^ a j ?/2c?j^— 2 sin a cos a j xydF+ sin^ a
j
a;^^?^

= i'^ cos^ a — sin 2 a I xydF+ Ty sin^ a.

In a similar way

7'^ = I^ sin2 a + 2 sin a cos a j a^yc^i^+ Fy cos^ a.

These are the required formulae for obtaining the mo-

ment of inertia with respect to inclined axes. It follows

that Ti \ ji — jt I
ji

That is, the sum of the moments of inertia of an area

with respect to two rectangular axes in its plane is the

same as the sum of the moments of inertia with respect to

any other two rectangular axes in the same plane and

passing through the same point. This states that the

sum of the moments of inertia for any two rectangular

axes through a point is constant. It will be seen in

Art. 45 that this constant is the polar moment of inertia.

43. Product of Inertia. — The integral j xydF is called

a product of inertia^ for want of a better name. In case

the area has an axis of symmetry, either the x- or y-axis

may be taken along such an axis. The product of inertia

then becomes zero, since if x is the axis of symmetry.
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for every + y there is a corresponding — ?/. A similar

reasoning shows the product of inertia zero when 7/ is the

axis of symmetry. In such cases

I'^^ = I'x C0S2 a + I'y sin2 a

and j'^ = l'^ sin^ a + I'y cos^ a.

When j xydF is not equal to zero it is necessary to

select the proper limits of integration and sum the

integral over the area in question. This is illustrated in

Article 63.

44. Axes of Greatest and Least Moment of Inertia. — It is

often important to know for what axis through the center

of gravity the moment of inertia is least or greatest ; that

is, what value of a makes /^ or /^ a maximum or a mini-

mum. For any area i^, i^, and I xydF are constant after

the X and y axes have been selected. Using the method

of the calculus for finding maxima and minima, we have,

putting

/xydF= z, --— = (/y — i^) sin 2 a — 2i cos 2 a,

Equating the right-hand side to zero, the value of a that

gives either a maximum or minimum is seen to be given

by the equation
9 i

^y i:

or, what is the same thing.

sin 2a= 2i
and cos 2a= lu-I.

± V4 t-2+ (/^_/j2 ± V4>+ (J,-/J2
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It is seen upon substituting these values of sin 2 a and

cos 2 a in

^'^ = 2(7, - /^)cos 2 a + 4 i sin 2 a

that the positive sign before the radical indicates a mini-

mum and the negative sign a maximum value for i^.

Investigating the values of a which give I^ maximum or

minimum values, it is seen that the value of a for which 7^

is a minimum gives 7^ maximum, and the value of a for

which i^ is a maximum gives I^ minimum. These axes

for which the moment of inertia is greatest and least are

known as the Principal Axes of the Area. This subject

will be further discussed in Art. 53.

It is seen from the above that when either the x- or

2/-axis is a line of symmetry, so that I xi/dF= 0, the val-

ues of a which give maximum or minimum values for

7^ and 7y are all zero.

This means that the x- and

y-axes, themselves, are the

principal axes.

45. Polar Moment of In-

ertia. — The moment of

inertia of an area with

respect to a line perpen-

dicular to its plane is called

the polar moment of inertia

of the area.

Consider the area repre-

sented in Fig. 69 and let the axis be perpendicular to the

area at its center of gravity. Let dF represent an infini-

Fia. 69
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tesimal area and let r be its distance from the axis.

Representing the polar moment of inertia by i^, we have

but

so that

r^ = x^ + ^2,

or

That is, the polar moment of inertia of an area is equal

to the sum of the moments of inertia of any tivo rectangular

axes through the same point. It has already been shown

that I^ + ly^ constant (see Art. 42) for any point of an

area.

46. Moment of Inertia of Rectangle.— Let it be required

to find the moment of inertia of the rectangle shown in

Fig. 70 (a), with respect to the axis, x. We may write

/;=/yW.

Since dF=bdy^ this becomes

4 = *TW^=^'

w^
42/

-.Y

{a)

Fig. 70
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To find the moment of inertia with respect to a gravity-

axis parallel to x it is only necessary to make use of the

formula Ig^ = 7'^ — Fd^^ from which we have

],^ = ^bMandk%. =^
From comparison we may write the moment of inertia

with respect to a gravity line perpendicular to x^

and the polar moment of inertia for the center of gravity

47. Moment of Inertia of a Triangle. — It is required to

find the moment of inertia of the triangle shown in Fig.

70 (J) with respect to the axis a:, coinciding with the base

of the triangle. We have

j^ = j
yHF^ where dF= xdy,

But x = -(h — I/), from similar triangles, giving
ft

The moment of inertia with respect to horizontal gravity

36
axis may now be determined. 1^^=!^^—Fd?=-^^^ and

"" "18"
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It is left as an exercise for the student to find tlie moment

of inertia with respect to an axis through the vei'tex paral-

lel to the base, and also the polar moment of inertia for

the center of gravity.

48. Moment of Inertia of a Circular Area. — The moment

of inertia of a circular area with respect to a horizontal

gravity axis a;, as shown in Fig. 71, may be found as fol-

lows : J^^ = j 2/^dF, Changing to polar coordinates, re-

membering that y = psm6^ and dF= dp(^pd6^^ the inte-

gral becomes
I,, =

fp^
sin^ OpdOdp.

Fig. 71

This integral involves two variables, p and 0. It will,

therefore, be necessary to make use of a double integra-

tion. For this purpose, write

'-gx
sin2 edej pHp = -j 1 (1 - cos 2 e')de

4L2 4 Jo ~ *
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The corresponding radius of gyration is kg^ = ^. On

account of the symmetry of the figure tliis is the moment
of inertia for any line in the plane through the center of

gravity. It follows that

[l --^*
[

^.-"'*
OV 1

and that <

^ 2

^P -2-

Fig. 72

49. Moment of Inertia of Elliptical Area.— Let it be

required to find I^^ and I^y of the elliptical area shown

in Fig. 72. The equation of the bounding curve is

^ + ^=1
a^ V'

and I^y =^x\lF =fx^ 2 ydx.

From the equation of the bounding curve

^ a
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SO that

Iay =— I x^'V a? —x^ dx
^y a Jo

= —[^(2 x^ - a2)V^2T^ + ~ sin-i-T"
a[_8 8 aJo

= —T"'^ ^^^ therefore kgy = g.

In a similar way

I^^=fy^dF=Jf2xdy

=
"/Jo^^^^^

- / ^2/ = ^^^ and therefore ^^^ = ^.

Since /^ = 7^^, + J^^, the polar moment of inertia is

abTT

^ (a2 + 62)^ and k^ = ^Va2 + 52.

It is seen that when a = b = r the equations obtained

for the elliptical area are the same as those obtained for

the circular area, just as they should be.

50. Moment of Inertia of Angle Section.— When an area

may be divided up into a number of triangles, or rec-

tangles, or other simple divisions, the moment of inertia

of the whole area with respect to any axis is equal to the

sum of the moments of the individual parts. This method

is often made use of in determining the moment of inertia

of such areas as the section of the angle iron, shown in

Fig. 73.

We shall now determine the moment of inertia of this

section with respect to the horizontal and vertical gravity

axes, Ig^ and J^^, and also with respect to an axis v (see
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Art. 53), making an angle a with the axis x. Consider

the section divided into two rectangles, one 5" x f
'' which

we may call jF\ and the other 3|'' x f
^', which we may call

Fc^. The moment of inertia of the section, with respect to

X, is equal to the moment of inertia of F^ with respect to x

plus the moment of inertia of F^ with respect to x, so that

la. = M^Xiy + 5(|)(.808)2 + J,(2gl)3 1 + -V-(f)(1-19/

= 7.14 in. to the 4th power. Similarly

I.y = iWi-Xiy + ¥(l)(l-30)^ + iV(f)(5)^ + 6(|)(.88)='

= 12.61 in. to the 4th power.

Note. The problem of finding the moment of inertia of angle

sections, channel sections, Z-bar sections, and the built-up sections

shown in Figs. 75, 76, 77, 78, 79, is of special interest and importance

to engineers, occurring as it does in the computation of the strength

of all beams and columns. gy
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9y Problem 62. Find

the moment of inertia of

the Z-bar section shown

in Fig. 74 for the gravity-

axes Qx and gy.

Hint. Divide the area

into three rectangles.

Problem 63. Com-

pute the moment of

inertia for the channel

I Fig. 74 section, shown in Fig. 23,

Problem 14, for the horizontal and vertical gravity axes.

Problem 64. Required the moment of inertia of the T-section (Fig.

24, Problem 15), also the moment of inertia of the U-section (Fig. 25,

Problem 16) with respect to both horizontal and vertical gravity axes.

Problem 65. The section shown in Fig. 75 consists of a web

section and 4 angles, as shown. Find the moment of inertia of the

whole section with respect to the

horizontal gravity axis. Given,

the moment of inertia of an

angle section with respect to its

own gravity axis, g'^ is 28.15 in.

to the 4th power.

Problem 66. Consider the

section given in Problem 65 to ^^^- '^^

be so taken that it includes two rivet holes, as indicated by the posi-

tion of the rivets in Fig. 75. Compute the moment of inertia of the

whole section, when the moment of inertia of the rivet holes is

deducted. The distance from the center of the rivet hole to the out-

side of the angle section may be taken as 3 in. Compare the result

with that obtained in the succeeding problem.

Problem 67. The same section shown in Fig. 75 is shown in Fig.

76 with two cover plates. Find the moment of inertia of the whole

beam section with respect to its horizontal gravity axis, now that the

cover plates have been added.
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Problem 68. Find the moment of inertia of the section of a box

girder, shown in Fig. 77, with respect to its horizontal gravity axis.

The moment of inertia of one of

the angle sections with respect to

its own horizontal gravity axis, is

31.92 in. to the 4th power.

Problem 69. Find the mo-

ment of inertia of the column

section, show^n in Fig. 78, with

respect to the two gravity axes gjj

and cjy. The column is built up ^^* '

of one central plate, two outside plates, and four Z-bars. The legs

of the Z-bars are equal, and have a length of 3^ in. The moment of

inertia of each Z-bar
1.82'

T -til
g—

^fl"

—g

section with respect

to its own horizontal

and vertical gravity

axis is 42.12 and

15.44 in. to the 4th

power, respectively.

Problem 70. Find

the moment of in-

ertia of the section

shown in Fig. 79,

with respect to the

horizontal and verti-

cal gravity axes g-c

and gy. This section

is made up of plates

and angles. The

moment of inertia of each angle section with respect to both its own

horizontal and vertical gravity axes is 28.15 in. to the 4th power.

51. Moment of Inertia by Graphical Method.— It will

often be necessary to lind the moment of inertia of a plane

section whose bounding curve is of a complicated form, as

-18- FiG. 77
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in the case when it is necessary to compute the strength

of rails or deck beams. The graphical method given

below may be used for such cases.

:5

S —EEEEH

*4

ilt

V>i*

'V
d

,1J.

xL

9'

tL
9^

-16-

99
Fig. 78

Let the section be a rail section, Fig. 80. Draw two

lines, AB and CD, parallel to the required gravity axis,

at any distance, Z, apart. The present section is symmet-

rical with respect to the ^/-axis, so that it will only be

necessary to consider the part on one side of that axis, say

the part to the right. Suppose the section divided into

strips parallel to AB and CD^ and let x denote the length

of one of these strips, and dy its width. For each value

of X there is a length x^ found, such that

Then for every point P on the original section whose

coordinates are x and y^ there will be a point P^ on the

transformed section whose coordinates are x' and y. Sup-

pose all these points, P\ constructed, and a boundary line

drawn through them. Let J^ denote the area of the orig-
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Fig. 79

inal curve, and F the area of the transformed curve, also

N= ^ydF= ^yxdy = l^x'dy = IF.

But \ydF=yF (^Art. 24), where j^ is the distance of the

center of gravity of F from the line AB. It follows that

This locates the center of gravity.

The moment of inertia will be found by substituting

for each x^ x\ and for each x\ x'\ such that

Every point, P\ now goes over into a point P", forming

a new transformed boundary. Call the area of this last

y y y^
curve F^^ , Since x^^ = x^'-^ and x^ = x^^ x^' = x'^.
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Fig. 80

Therefore the moment of inertia

r^= ^fdF= ^y^xdy = pfx''dy=PF'^,

giving the moment of inertia of the original section with

respect to the line AB.
To determine I^^ it is simply necessary to use the for-

mula Ig-^ = I'^ — Fd^, This gives

The areas of the sections are measured by means of a

planimeter.

52. Moment of Inertia by Use of Simpson's Rule. — An
approximate value for the moment of inertia of irregular

sections, such as rail sections, may be obtained by the use

of Simpson's Rule. Let the irregular area be the rail sec-
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tion (Fig. 43) and let it be required to find the moment
of inertia of tlie section with respect to the base of the rail.

We may write

/; = -li/A = ylA, + y\A, + ylA^ - + y^A,,

where the ^'s represent the areas and the y's the distance

from the center of the ^'s to the base of the rail. In this

case 2/0 == 4> Hi = 1' ^2 = 4' ^^^"> ^^^^ ^0 = --95, A^ = 1.95,

7l2 = .61, etc. (see Problem 33).

A more exact summation of the terms would be given

by adding by means of Simpson's Formula. This gives

(Art. 2G)

r= 6 r
-X

3(12)

+ 2(2/1^2 + i/4^'4
+•••) + yX I

where u^, u-^^ ti^, etc., have the values given in Problem 33.

The student should compare the result obtained by this

method with tliat obtained by the method of direct addi-

tion given above. Compare the value obtained with that

resulting when Durand's Rule (Art. 28) is used. Use

both methods to find the moment of inertia of the sections

in Problem 33 and Problem 34.

53. Least Moment of Inertia of Area. — In considering

the strength of columns and struts it is necessary to know

the least moment of inertia of a cross section, since bend-

ing will take place about an axis of its cross section

having such least moment of inertia. It was shown in

Art. 42 that, if the moment of inertia of the area with

respect to two rectangular axes in its plane is known,

the moment of inertia with respect to any other axis.
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making an angle a with one of these, could be found. It

was further developed (Art. 44) that the value of a that

would render the moment of inertia a minimum was

given by the equation
2 (xydF

tan 2 a = —^ —•

In case either of the axes x or y is an axis symmetry, the

value of a given by this criterion is zero, so that, for areas

having an axis of symmetry, the axis of least moment of

inertia is the axis of symmetry or the one perpendicular to it.

As an illustration of the problem in general let it be

required to find the least moment of inertia of the angle

section shown in Fig. 73 with respect to any axis in the

plane of the area through the center of gravity. Let v be

the gravity axis making an angle a with the rr-axis. The

problem then is to find such a value of a that Ig^ will be a

minimum. From Art. 42 we have

Igy = Ig^ cos^ cc " Sill ^ai xi/cixdy + Igy slu^ a.

In Art. 50 it was found that Ig^ = 7.14 and Igy = 12.61.

We proceed now to find the value of
j
xydxdy for the

angle section. For this purpose, suppose the section com-

posed of two rectangles, F^ (5 in. x | in.), and F^ (p^^ in.

X I in.), and then find the value of the integral, for the

two rectangles separately. Considering first the area F^^

and using the double integration, we get

r-'' rJyLdy = P1T(zlM2I^ _ (^.495)^1
•^1.62 *^-.495 ^1.62 L ^ 2 J

= .505r^^M8)!_(l:62)2n 2.222.
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In a similar way for F^, we have

.025 [^M2I^-I:995)_^1 = 3.288,
2-J

Therefore,
j xydxdy for the whole area of the angle sec-

tion is 5.51 in. to the 4th power. From this we find

tan 2 a = ^1^ = 2.02.
5.47

Therefore 2 a = 63°40',

a = 31° 50'.

The expression for J^„ now becomes

J,, = 7.14 cos2(31° 500 - 5.51 sin(63° 45')

+ 12.61 sin2(31°500 = 3.72 in. to the 4th power.

This gives the least radius of gyration,

hg,= .84 in.

Problem 71. Find the least moment of inertia Igy and least radius

of gyration kg^ of the Z-section shown in Fig. 71. In this case

Ig^ = 15.44 in. to the 4th power and Igy = 42.12 in. to the 4th power.

Ans. Least Igy = 5.66 in. to 4th power and least kgy = .81 in.

Problem 72. An angle iron has equal legs. The section, similar

to that in Fig. 73, is 8 in. x 8 in. wdth a thickness of I in. Find

Ig^y Igy, ^ast Igy aud least A:^.

Ans. Ig^ = Igy =48.65 in. to the 4th power,

Ig^ = 19.59 in. to the 4th power,

kgy = 1.59 in.

Problem 73. Find the moment of inertia of column section,

shown in Fig. 78, with respect to an axis v making an angle of 30"

with gx. What value of a gives 7^„ miiiinum in this case?
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54. The Ellipse of Inertia. — It is interesting to note, at

this point, the relations between the moments of inertia

with respect to all the lines, in the plane of the area pass-

ing through a point. We have seen that for every point

in an area there is always a pair of rectangular axes for

which the moment of inertia is a maximum or a minimum ;

that is, there is always a pair of principal axes. The cri-

terion for such axes was found to be

tan 2a = __^^,

which means, since the tangent of an angle may have any

value from to infinity, positive and negative, that for

every point there is always a pair of axes such that

^ = 0, or j xydF= 0.

This means that the expression for J^ may always be

reduced to the form

Jy = I^ cos^ (^ + ly sin2 a

by properly selecting the axes of reference, where now

Jp and ly represent the principal moments of inertia. If

we divide through by F^ the equation becomes

^2 -- ^2 cos^ a+k^ sin2 a.

Let p=Mji, sothatyi;^ = ^and^^ = ^,
fC^ Ky. K y

then h\ = ^—^cos^ a + 2—i: sin^ a,

ky fc-^

or dividing by k%
-j _ p2 cos^ ci .p^ sin2 a
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which is the equation of an ellipse referred to the princi-

pal axes of inertia as axes. It may be written

It is evident that k^ is inversely proportional to p, so

that the major axis of tlie ellipse is along the axis of the

least moment of inertia and minor axis along the axis of

greatest moment of inertia. The ellipse of inertia has no

physical significance, but merely shows the relation be-

tween the moments of inertia with respect to the different

axes through a point. If, then, the moments of inertia for

all axes in a plane, through a point, be laid off on these

axes, to scale, the locus of the end points will be an ellipse.

The ellipse of inertia furnishes a graphical method for

finding the moment of inertia for any axis through a point.

55. Moment of Inertia of Thin Plates. — Suppose the

plate of constant thickness t and unit weight 7 and let x

be the distance of any dM from the axis of reference, then

^x= j x^d3I= ^ I x\iV= - M x^dF. But this expression

under the integral sign is the expression for the moment
of inertia of the area of one of the faces of the plate, if F
represents the area of a face. Therefore, the moment of

inertia of a thin plate with reference to an axis in its j^^awe

equals — times the moment of inertia of the area, of its face

with reference to the same axis.

A similar statement is seen to hold with reference to

the polar moment of inertia of a thin plate by replacing x

by p the distance of c?iirfrom a point. The following re-

sults are deduced at once.
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I, for thin circular plate

:

J _<ytf-7nf\_M^ y _ r
""' A 2j- 2 ' ^^^~V2

I, for thin rectangular plate :

7„ =2^aM.V^;*„ =

VW+¥
9

^''~
2V3

I^ for triangular plate :

g\S6'-J 18 '••-
8V2

Ig^ (parallel to base) = — f gg ^^^J
= -j^ >Kx =—

I, for elliptical plate

(1) major axis

:

J-
^-/tfirab^^^Mlfi

. j^
_h

(2) minor axis

:

J-
_jt/'Trb^\_Ma'^

J. _«
"^"7^ 4 J T' "^"2

(3) polar axis

:

^ffp - ~ ~~^^ 4- « ; 1— .
f^pg -—2

—

(4) central axis, 2r, making angle a with major axis:

^gv
_-/t('rraW\ _Ma%^ j. ^ ab_

ff\ir')~ 4r^ ' "" 2r
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56. Moment of Inertia of Right Prism ; Geometrical

Axis. — The moment of inertia of a right prism of height

h with respect to its geometrical axis is given by the ex-

That is, the moment of inertia of a rigid prism of height h

is equal to — times the polar moment of inertia of its base.

9
From this result we may write :

For right circular cylinder

:

Right parallelopiped :

therefore,

where d is the diagonal of the base.

Hollow cylinder

:

r r^hfiTT\ 7rri\ M.^, ^. . Vr'^ + r'^

Elliptical cylinder

:

-^^2/-y-4-C^ +^)- 4
'
^gy- 2

57. Moment of Inertia of Right Prism ; Axis Perpendicu-

lar to Geometrical Axis. — Let the axis be perpendicular to

the geometrical axis through the base. Consider a tliin

slice cut from the prism by two parallel planes, distant dy
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and perpendicular to the prism. The slice so cut may be

considered a thin plate, Avhose mass is "^dvF^ where F is

9
the cross section of the prism. Suppose the distance of

this slice from the base is y. Then the moment of inertia

of this slice with respect to the axis through the base is

{ci) Fig. 81

equal to its moment of inertia about its own parallel

gravity axis plus its mass times the square of the distance

between the axes. (See Art. 41.) This will be made

more clear by reference to the special case of the right

circular cylinder of Fig. 81 (a). Adding the moments

of all the slices, we liave

g ''>g \ 3/

For the right circular cylinder :

I. 31('-J^ F=a/? A2
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For right elliptical cyliiider

:

(1) major axis : Fj,= 3ll y + — )•

(2) minor axis: ![,= wf- + ^.

For right rectangular cijlinder

:

(1) parallel to h: r, = 3lf^ + -\

(2) parallel to h, : 7j = iff
(^^ + |

58. Moment of Inertia of Solid of Revolution. — Con-

sider tlie moment of inertia of a solid of revolution with

respect to its axis of revolution. Imagine the solid cut

into thin slices, all of same thickness, by parallel planes

perpendicular to the axis of revolution. Each slice is a

circular disk of thickness dg and radius re, and its polar

moment of inertia with respect to the axis of revolution is

^di/TTx^ • — • The moment of inertia of the solid of revo-

^
.

^

lution is the sum of the moments of the small slices, so

that

the limits of integration and the relation between x and y
depending upon the particular solid considered.

For right circular cone

:

The right circular cone is illustrated in Fig. 81 (6).

For this case

"^ Jo 2a ^ 2fi ,Wo^ ^ lOrt 10

f^^^cly.

cj " 'Igh^^o" " 10 (/ 10

since x = -y.
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For a sphere :

since a;^ = r^ — 7/^

=^ ro^di/ - 2 T^dy + y'dy-)=Wy -^ +

= TZ: . A r^ = I Mr^ therefore A: 2 = f ^2.

^ 15 5 ^'5

i^or an ellipsoid of revolution

:

(1) prolate spheroid

:

2 a^-a z a a^^-a

+r

g^-a zg

I
since ^= - v a^ — a;^,

a

and v = - irah\ L^ = -^^^^^ • -— a^ = | TMTft^.

3 ga'^ 15 »

(2) oblate spheroid

:

since ^ = t ^^^ ~" 3/^ ^^^ ^ = o ^r^^^^-

6 3

59. Moment of Inertia of Right Circular Cone. — When
the moment of inertia of a right circular cone with respect

to an axis through its vertex parallel to the base is to be

found we may proceed as in Art. 58.
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Imagine the cone to be cut by parallel planes into slices

as shown in Fig. 81 (J). The moment of inertia of the

whole cone with respect to x is equal to the sum of the

moments of the small slices with respect to x.

Then

but x=--y
h''

so that J^:=l!r!i^ + l!r?1^3^^/^3 2 + 3^2

4^ 5 g b V20 .

60. Moment of Inertia of Mass ; Parallel Axis. — If the

moment of inertia of a mass with respect to an axis in

space is known, it is im-

portant to be able to

determine its moment

with respect to any par-

allel axis. Let dM be

the mass of a particle of

the body, a' and a (Fig.

82) the parallel axes dis-

taiit cZ, and r' and r the

distances of the mass

from the two axes.

From the triangle r^ =
by dM and integrating over the body, we have

^rHM=-^ ^r^HM+ ^dHM -
J2 r^d cos edM,

Fig. 82

r'2 -f d'^— 2 r'd cos 6, multiplying
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But r' COS 0=d\ the distance of dM from a plane through

a\ perpcndicuhxr to the plane a^ and a,

so that ^r\UI= ^r^d3I+ d^M- 2 d^d'dM,

or la = la' + d'^M - 2 d3Id^,

where d^ represents the distance of the center of gravity

of the mass from the plane through a' perpendicular to

the plane of a' and a.

From this relation, if the position of the body is known

and its moment of inertia with respect to an axis in

space, its moment of inertia with respect to any other

parallel axis may be found.

In particular, if d^ = 0, that is, if the center of gravity

of the body lies in a plane through a^ perpendicular to

the plane of a' and a, the relation reduces to

That is, the moment of inertia of a mass with respect to any

axis in space is equal to its moment of inertia ivith respect to

^^
m

mm^m

Fig. 83

a parallel axis, lyiyig in a gravity plane
^
perpendicular to the

line joining the two axes^ pins the mass times the square of

the distance between the bodies.

The student will notice that this relation is very similar

to the one developed for the moment of inertia of plane

areas with respect to parallel axes, in Art. 41.
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Problem 74. Show tliat the moment of inertia of a right circular

cylinder, altitude h, and radius of base ?-, with respect tg a gravity

axis parallel to the base is Igx = mI—h "/ ). J^^id find Wui moiucnt

of inertia with respect to an axis parallel to this and at a distance d

from the base.

Problem 75. Show that the moment of inertia of a right circular

cone, altitude h, and radius of base r, with respect to a gravity axis

parallel to the base is Igx = ^^M (r- + i A-).

Problem 76. Find the moment of inertia of a slender rod of

length I with respect to an axis through one end and perpen-

dicular to the rod. Let the cross section be F and the mass M: then

Problem 77. It is required to find the moment of inertia of the

cast-iron disk fly wheel shown in Fig. 83 with respect to its geomet-

rical axis.

Hint. The wheel may be regarded as made up of three hollow

cylinders, the moment of the whole wheel being equal to the sum

of the moments of the three parts. The dimensions are as follows

:

diameter of wheel 2 ft., width of rim and hub 4 in., thickness of rim

and web 2 in., thickness of hub 1\ in., and diameter of shaft 2 in.

All distances must be in feet.

'^ ss

JL.

Wm

v3><-

/i>6

15

Fig. 84
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Problem 78. Find the moment of inertia of the cast-iron fly-

wheel shown in Fig. 84 with respect to its axis of rotation. There

are six elliptical spokes, and these may be regarded as of the same

cross section throughout their entire length.

61. Moment of Inertia of Non-homogeneous Bodies.—When
the bodies are not homogeneous, the expressions for the

moment of inertia given in this chapter do not hold, since

in that case 7 is no longer constant. In case the law of

variation of 7 is known, as for example if 7 varies as the

distance from the line, then this variable value of 7 may

be used and the moment of inertia found.

Let it be required to find the moment of inertia of a

right circular cylinder with respect to an axis through its

base, if the density varies as the distance from the base,

in such a way that 7 = 2/' where ?/ is a distance measured

from the base (Art. 57).

Then /;= Ci'^Fdykl + '^FdyyA

=[
I4F y^ F / FJif^.oh . ¥

9
= £±[T,f-^^'^

If 7 varies in some other way, the proper value must

be used in the integral. In most cases, however, 7 is

a constant.

62. Moment of Inertia of a Mass ; Inclined Axis.—We
shall now study the problem of finding the moment of

inertia of a solid with respect to an axis inclined to the

coordinate axes. Suppose the moments of inertia of the
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body with respect to the three coordinate axes known
from the expressions:

and let it be required to find the moment of inertia of the

body with respect to any other axis OA making angles

a, yS, 7 with the coordinate axes. (See Fig. 85.) Let

dM equal the mass of an infinitesimal portion of the body

and d its distance from the axis OA.

Since r^ = a;^ _|_ ^2 _(_ ^2^ q^ _ ^ ^^^ ol + y cos /3 + 2 cos 7
and

(p = 7^— OA^ = (x^+ ^2 -f 22) — (x cos a+ y cos /3 + 2J COS7)2,

z
dM

t Fig. 85

we may write

= / [(^ + ^^ + ^0 — (^ cos a + y cos /3 + 2 cos 7)^] dM,
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This reduces, since cos^ a + cos^yS + cos^ 7 = 1^ to

J^ , = j(f+ ^2) cos2 adM+ J
(^2 + ^2) cos2 /3dM

+ f (2j2 + 2/2) cos2 ydM— 2 cos a COS yS (xydM

— 2 cos y8 cos ^KyzdM— 2 cos 7 cos a (xzdM,

or

io^i = -^ cos2 oc + J^/ cos2 ^ + Iz cos2 7 — 2 COS a COS ^ (xydM

— 2 cos yS COS 7 r^/^c^iHf— 2 cos 7 cos a KxzdM^

which gives the moment of inertia of the body with

respect to an inclined axis in terms of the moments of

inertia with respect to the coordinate axes and the prod-

ucts of inertia \xydM^ \yzdM^ 'diiAxxzdM.

63. Principal Axes. — If the three products of inertia

KxydM^ \yzdM^ and \xzdM are each equal to zero, the

expression for Iq^ reduces to the form

Iqa = Ix C0S2 Ci + ly C0s2 /3 + I^ C0s2 7.

In this case the coordinate axes x^ y, and z are called

the principal axes for the point and the moments i^, Z^,

and I^ the principal moments of inertia.

If the point is the center of gravity of the body and

the products of inertia are each equal to zero, the prin-

cipal axes are called the principal axes of the body. It

can be shown that it is always possible to select the"

coordinate axes x, y, and z so that the products of inertia

given in the expression for Iqj^ will each be zero. It fol-

lows that for every point of a body there exists a set of

rectangular axes that are principal axes.
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Problem 79. Find the moment of inertia of the ellipsoid whose

surface is given by the equation

with respect to the axes a, i, and c, and with respect to an inclined

axis making angles a, /3, y with a, h, and c, respectively. The volume

of an ellipsoid is

o o o

and loA — la cos2 a + /j COS^ ^ -\- Ic cos^ y.

64. Ellipsoid of Inertia. — It is always possible to re-

duce the expression for Iqj^ to the form

J^^ = I^ COS^ OL + ly cos^ 13 + I^ cos^ 7,

by selecting the axes x^ y, and z so that the products of

inertia are zero.

Dividing this equation through by M^ we have

^Ia = ^1 cos2 a + kl cos2 /3 + k^ cos^ 7.

Let /) = ^f^% so that

"'X

so that

Z. -^rzM. h — P^OA r.j.A -L ^ h"^OA

^0 A^y ^^ ^^ ^x^y

which when divided through by ^^^ becomes

1 — (£_52?_^4. (p c^^-"^ yQ)^ Cp cos 7)'
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This is seen to be the equation of an ellipsoid whose

semi-axes are k^ky^ kjc^^ and kjcy\ the equation may be

written

1 = X'

k^ ky
+

2/'

2 7.2
+

2 7_2
f^x '^z '^x f^y

where x\ y\ and z^ represent the coordinates of a point

on the line OA at a distance p from 0.

It is evident that if we draw all the lines through and

then locate all points x^^ y^^ and z^ on these lines, such that

p = ^ the locus of all the points will be the ellip-
k

soid of inertia for that point. For the position of the co-

ordinate axes selected, the principal axes of the ellipsoid

of inertia coincide with the principal axes of the body.

Problem 80. Write the equation and construct the inertia ellip-

soid for the center of gravity of a right circular cylinder, altitude h

and radius r.

Problem 81. Construct the

inertia ellipsoid for the center

of a solid sphere of radius r.

Problem 82. Show that the

moment of inertia of the seg-

ment of the circle F\ (Fig. 86)

with respect to the axis OZ is

r-V^ + lsin4
4\2 2 /

the moment of the sector

OBSA, minus J ah^, the mo-

ment of the triangle OAB or

Fig. 8(3
^oz = Y^(2a-sin2aj,
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and the moment of inertia of Fi with respect to 05 is —
(

- — - sin a
)

,

the moment of inertia of the sector, minus \ ha^, the moment of inertia

of the triangle ^Oi? or Iqs = — Ta - sin a M + ^ sin^^
j

~|

.

Problem 83. Show that the moment of inertia of the counter-

balance, Fig. 37, with respect to a line through 0, perpendicular to OS,

and in the plane of the wheel, is

Ioz=[f^{2a-sin2a) -!^^(^2fi-sin2l3y'-^^ - F,(00r,]^

where Fo =^ ~ar. cos ^, 00' — r. cos ^ - r cos -, and t is the thick-
2 2 2 2

ness, as explained in Art. 25.

Problem 84. Find the moment of inertia of the counterbalance.

Fig. 37, with respect to a line through perpendicular to the plane of

the wheel. It may be written

/o =
j y^

[4 a - sin 2 cc -2 sin a ^1 + ?sin2^]1 -^ fd ^ - sin 2 )8-

2 sin ^(1 +
I

sin^
|)] -fi^^^ - F,(00')4^^

f if

65. Moment of Inertia of Locomotive Drive Wheel.— The

drive wheel may be represented as in Fig. 87, and may be

considered as made up of a tire, rim, twenty elliptical

spokes, counterbalance, and equivalent weight on opposite

side of center, and hub. The tire, rim, and hub may each

be considered as hollow cylinders whose moments may
be found as in Art. 56. The moment of the spokes is

easily found by considering them elliptic cylinders (see

Art. 57), with the short axis of the ellipse in the plane of

the wheel. The moment of the counterbalance is equal

to the moment of the weights carried by the crank pin,

radius of counterbalance
times

radius of crank
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The dimensions of the wheel are as follows : radius of

tread 40'^, radius of inside of tire 36'^, width of tread 5'',

outside radius of rim 36'', inside radius of rim 34'', width

of rim 4y . There are twenty elliptical spokes 24" long,

31" X 21". The hub is 10" outside radius, 4|" inside

radius, and 8" thick, radius of crank pin circle 18". The

counterbalance has an outside radius of 34", an inside

Fig. 87

radius of 7' 11.5", thickness 7^", mass 20.2, and distance

of its center of gravity from the center 28.8", a = 94° 40',

yS = 30° 20', 7 = 490 (Art. 64).

We shall neglect the moment of inertia of the flange

and shall consider the spokes cylindrical throughout

their length, and that 10% of the moment of inertia of

the spokes is included in that of the counterbalance and
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boss. The moment of inertia of the wheel with respect

to its axis of rotation will first be found. The moment

of inertia consists of: I^ for tire = 415, I^ for rim = l-JU,

/q for spokes = 246, I^ for hub = T, I^ for counterbalance

= 344, and for boss = 73. The total moment is 1224.

With respect to a gravity axis OZ, Fig. 86, in the plane

of the wheel when the counterbalance is in a position

where the line joining its center of gravity to the center is

perpendicular to OZ, we get for the moment of the vari-

ous parts: loz for tire = 207, loz for rim = 69, loz for spokes

= 123, loz for hub = 3, loz for counterbalance = 279, and

for boss = 73. The total moment is 755. In computing

the moment of the spokes in this case, it was necessarj^

to consider that it differs for each spoke. The value 48

was obtained by computing the moment of inertia of a

spoke perpendicular to OZ^ multiplying by 20, deducting

10% for the part of spokes in counterbalance and boss,

and then dividing the remainder by 2. This, of course,

is only a reasonable approximation.

Problem 85. Compute the moment of inertia of a pair of drivers

and their axle with respect to their axis of rotation. Use the data

given above and assume the axle as cylindrical, the diameter being

9^' and the length 68'^ Ans, 2451.

Problem 86. Compute the moment of inertia of the pair of

drivers and their axle, given in the preceding problem, with respect

to an axis midway between the wheels and perpendicular to the axle.

Consider the counterbalance of both wheels in such a position as to

give a maximum moment of inertia and the distance between the

centers of the wheels 60". Ans. 314.").

Problem 87. Find the moment of inertia of two cast-iron car

wheels and their connecting steel axle with respect to (a) their axis

of roti^tion, (b) an axis midway between the wheels and perpendicular
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to the axle. Consider the car wheels as composed of an outside tread,

a circular web, and a hub ; each part may be considered a hollow cyl-

inder with the following dimensions : tread, outside radius 16'^ inside

radius 14", width o^" ; web, outside radius 14'', inside radius 5^",

thickness 1.5"
; hub, outside radius 5J", inside radius 2|", width 8"

;

axle (considered cylindrical), 5" diameter and 7' 3" long. Distance

between centers of wheels 60". According to the assumption made

above, the flange has been neglected, the web is considered a hollow

disk, and the axle of uniform diameter throughout its length. The

results will be approximately as follows : (a) 40, (b) 320.

Problem 88. The value 755 is the greatest value for the moment

of inertia of a drive wheel with respect to a gravity axis in its plane.

The least value will be with respect to an axis at right angles to this

through the centers of gravity of the counterbalance and wheel. The

student should compute this least moment of inertia.

Problem 89. In Problem 86 the drivers have been considered as

having their cranks in the same plane. In practice they are 90° apart.

Find the moment of inertia with respect to the axis stated when the

wheels are so placed.



CHAPTER VIII

FLEXIBLE CORDS

66. Introduction. — A cord under tension due to any

load may be considered as a rigid body. In the analysis

of problems in which

such cords are consid-

ered, the method of

cutting or section may

be used. Since the cord

is flexible (requiring no

force to bend it), it is

easy to see that, no

matter what forces are

acting upon it, it must

have at any point the

direction of the result-

ant force at that point,

and so must be under

simple tension. If the ^'^- ^^

cord is curved, as is the case where it is wrapped around

a pulley, the resultant force is in the direction of the

tangent.

Consider, as the simplest case, a weight TF suspended by

a cord, as shown in Fig. 88 (a). The forces acting on W
are shown in (6) of the same figure. The cord has been

considered cut and the force T^ acting vertically upward,

111
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has been used to represent the tension. Summation of

vertical forces = 0, gives T = TF". When the weight W^

is supported by two cords as in Fig. 88 (c), the cords A
and B are under tension and may be cut. The system of

forces acting on the point is shown in (c?), where T^ and

T^ represent the tensions in the cords A and 5, respec-

tively. ^x=0 and Sy = give

and

2^ cos a =2^^^ cos /9

These two equations are sufficient to determine the

unknown tensions F and T^^.

If two weights TTj and W^ are attached to the cord, as

shown in the case of

the cord ^5 (7i) (Fig.

89), each portion is

under tension. Con-

sider the cord cut at

A and D and repre-

sent the tensions byFig. 89

T^ and T^ respectively, From ^x=0 and 2^= we have

an(

T^ cos 7 = ^2 cos a

T^ sin 7+^2 sin a^W^+ W^,

A consideration of the forces .acting at 5, if we call the

tension in the portion BC^ T^^ gives, when the summation

of the X and y forces are each put equal to zero.

and

y^cos 7= T3COS/3

2\sin7- 2^3sinyS= W^
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In a similar way, consider the forces acting on the point

c, and we have

T^ cos /3 = 2^2 ^^^ ^

and T^ sin ^ + T^ sin a = W<^,

Of the six equations given above only four are independ-

ent; consequently, of the six quantities T^^ T^, T^, a, /3,

and 7, two must be known in order to determine the other

four.

In general, if there are n knots such as B and O of

Fig. 89, with the weights TF^ IFg, TPg, TF^, etc., attached,

it will be possible to get n + 2 independ-

ent equations. These will be sufficient

to determine the tension in each portion

of the cord and its direction, provided the

tension at A, say, and its direction are

known. If the weights are close together,

the curve takes more nearly the form of a

smooth curve. Two special cases of this

kind are discussed in this chapter in Art.

68 and Art. 69.

67. Cords and Pulleys. — When a cord

passes over a pulley, without friction,

the tension is transmitted along its length

undiminished. A weight W attached to

a cord which passes vertically over a pulley

is raised by a direct downward pull P on

the other end of the rope. If there is no friction, P is

equal to TF. In the case of a system of pulleys, as shown

in Fig. 90, the cord may be considered as under the same

Fig. 90
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tension throughout and parallel to itself in passing from

one sheave to the other. It is then possible to cut across

the cords, just as was done in the case of the bridge truss,

Problem 47, where the stress was along the member in each

case. Cutting all the cords at and considering all the

forces acting on the sheave 5, we get, calling the tension

in the cord P,
6 P = TF

or the tension in the cord is TF/6. A consideration of the

upper sheave gives y= 7P = 7/6 (TT). The various

cases of cords and pulleys that come up in engineering

work may be taken up in a similar way, but in any case

of cutting cords, it must be remembered that all cords

attaching one part to another must be cut and the tension

acting along the cords inserted before the principles of

equilibrium can be applied. The consideration of the

friction between cords and pulleys will be taken up in

Chapter XIV.

68. Cord with Uniform Load Horizontally.—When a cord

is suspended from two points A and P, Fig. 91 (a), and

A. [B loaded with a

uniform load

horizontally in

such a way that

the points of

attachment of

the load to the

cable are very

close together,

the cable takes

Fig. 91 the form of a

[a)
T

ib)

;rrn
J
wwij
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continuous curve. The resultant tension in the cable in

this case is in the direction of the cable at any point.

Suppose the cable cut at the points and (7, where is

the middle point and Q any point between and jB, and

consider the forces acting on the cut portion. At Q there

is a tension T making an angle a with the horizontal, Fig.

91 (6). At 0, the lowest point on the curve, the tension

(P) is horizontal. The curve is supposed loaded with a

uniform load of W pounds per linear foot, so that Wx
represents the total horizontal loading. Writing down the

equations Sa: = and 2y = 0, we obtain

P= ^cosa,

Wx = T sin a,

Wx
and by division tan a = ——-

.

But tan a = ^, giving ^ = ^.
ax dx P

Therefore, y = or x^ =4^^'

which is the equation of the curve taken by the cable under

the assumed loading. This is a parabola. The deflection

of the curve at any point can be found by putting in the

value of X for that point and solving for y. If I equals

length of span and d the maximum deflection at the center,

then d =——

.

8P
The length of the cable may be found by considering

the formula ^^
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where ds is measured along the curve. The length OB^

or semi-length of the cable for a span Z, is, since

ds^ = dx^ + (7^2,

op
From the equation of the curve x^ = v. we have

dji_ _ Wx
dx'~'~P'

Therefore,

1^2 + ^

Expanding the two terms of the above expression into

infinite series and adding like terms, we may express the

total length of the parabola in terms of Z, TF, and P :

Total length - 1 + ^^ - ^^-\ + • •

24 P*^ 708 P*

or in terms of I and c?

Total length = I -f
^^^ - '^^^ +

70

8^ 32^*

3^ ht

In general, the convergence of either of the above series

will be sufficiently rapid that only the first two terms

need be used. In such cases they will be found con-

venient for computation.



FLEXIBLE CORDS 117

The point of maximum tension in the cable is determined

by considering the equation P = T cos a ov T=
cos a

It is easy to see that T is greater, the smaller the value

of cos a, that is, the larger the value of «, and this is

greatest at the points of attachment A and B, Tliis is

the problem of the suspension bridge where tlie weight of

the cable is neglected.

69. Equilibrium of a Flexible Cord Due to its Own Weight. —
Where the loading along a flexible cord or cable is uni-

form, as in the case where the cable bends due to its own

weight, the shape of the

curve taken is no longer

a parabola, as will be

shown in what follows.

Suppose a portion of the

cable, 00, Fig. 92, with

its load, cut free, and let

the tensions in and C ( is the middle point and O is any

point between and jB) be P and T respectively. Then,

2x = and 2^/ = give P = T cos a and W8= T sin a,

and from these two equations, by division, we have

tan a = Ws dy

dx
or -^ = Ws

~P'

where 8 represents distance along the curve, and is re-

lated to X and y in such a way that ds'^ = do^ + dy'^.

Eliminating dy between this and the previous equation,

we obtain
ds P ds

W 'dx =
>|i + p2 4

p2

jy2
+ s,2
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Therefore, ^ = w" ^^Se (
^+ \ "ttT^ + "^

=w''^^

s+4F2
+ s^

W
(«)

This gives a relation between x and s. A relation be-

tween y and s may be obtained by eliminating dx between

the equations -^ = -—- and d8^ = dx^ + dy^. This gives
dx P

dy=^
sds

+

Therefore,

y=V^+4=V- h S^ —
W^ w (5)

Eliminating s between (a) and (6), we get the equation

of the curve taken by the cable to be

4-— =— (WX VVX\

(0

This is the equation of the catenary with the origin at the

vertex and the y-axis the axis of symmetry.

If the length of span is Z, the maximum deflection of the

cable at the center may be determined by substituting

2: = - in (c). The semi-length of the cable may be found

I
from (a) by substituting x = ~ and solving for s. For

this purpose (a) may be written in the exponential form

;
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remembering that a"^ = n may be written m = log^ n, we

then have

p
Since P = T cos a or T= , it is evident that the maxi-

COS a

mum tension occurs at the supports A and B.

70. Representations by Means of Hyperbolic Functions.—
Equations (c) and (cZ) may be expressed in a simpler form

by using the hyperbolic functions, remembering that the

hyperbolic sine and cosine are expressed

. . Wx
sinh—

, Wx
cosh —

P 2

We have for equation ((?)

,
P P , Wx

'"-w^w'^'^'-p-^

and for equation (c?) p . ^ W^

'"If 7^-

It is evident that for rapidity of computation of s and

^, tables giving the values of the hyperbolic sine and

cosine, for various values of —^, would be convenient.

For this reason a table is given in Appendix I, and the

student is requested to use this table in solution of the

problems.

e

Wx
p — e

Wx
P

2
9

e

Wx
p + e~

Wx
P ,
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Problem 90. A suspension bridge as shown in Fig. 93 has a span

of 1200 ft. and the cable a maximum deflection at the center d = 120

ft. The weight of the floor is 2 tons per linear foot. Find the

Fig. 93

equation of the cable and the tension at and at B. If the safe

strength of cable is 75,000 lb. per square inch, find the area of wire

section of cable necessary to support the floor.

Problem 91. Find the length of the cable in the preceding

problem.

Problem 92. A flexible wire weighing ^ lb. per foot is sup-

ported by two posts 200 ft. apart. The horizontal pull on the

wire is 500 lb. Find the deflection at the center and the length of

the wire.

Problem 93. What pull will be necessary in Problem 92 so that

the greatest deflection will not be greater than 6 in.? What is the

length of the wire for this case?

Problem 94. Find the tension in the wire of Problem 92 at the

supports.

In practice use is often made of the fact that the exponential func-

tion may be expanded into an infinite series, so that

P P .Wx
V H = — cosh
^ W W P
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Wx
may be written, remembering the meaning of cosh

).

^ 2r2S^r3^

In a similar way we may write

P (2 Wx WV W^x^

2W\ P 3P3 3.4.5P6
"^

W2x3

Wl
Since tan a at the supports may be written tan a = sinh , we

may write it as the following series

:

ir 48 i^3 2 3 4 5 321^5

When the series are rapidly convergent, only the first terms need

be used, so that

TF.r2 , W^x^

s = x -\ ,

2.3P2'

and tana = I^+^^-^
P 6P3

When y = c?, x = -, so that

d —- —— +
8P 2.3.4.I6P8

or approximately _ JVli . or, 7^ - Wl'^d-^-^,andsoJ>_-^.
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Also at the supports tan a is approximately

jn 4 €i

When X — -t

^"^^ = 21> I

s — - A = - H .

2 48P^ 2 6Z

The total length of the cable or wire may then be expressed as

Total length = Z +
3«

The student should make use of these formulae in solving the pre-

ceding problems.



CHAPTER IX

MOTION IN A STRAIGHT LINE (RECTILINEAR MOTION)

71. Velocity. — The velocity of a body is its rate of

motion. If the velocity is constant (uniform), it may be

defined as the ratio of the distance passed over to the

time spent in passing over that distance. If the velocity

is variable, the velocity at any instant is the velocity that

the body would have if at that instant the motion should

become uniform. Speed is sometimes used instead of

velocity, especially in speaking of the motion of machines

or parts of machines. Speed, however, involves only the

rate of motion without reference to the direction of

motion, while velocity involves both rate of motion and

the direction in which the motion takes place. Since con-

stant velocity is the ratio of distance to time, it may be

represented as

8

t

The units for measuring velocity are those of distance

and time, usually feet and seconds. Thus a body has a

velocity of k feet per p
second or a train has

^ 9 7
a velocity of k miles F^ i' -A*—

H

1 Fig. ^
per hour.

A formula for expressing the relation between velocity,

distance, and time for variable velocity may be derived by

123
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referring to Fig. 94. Suppose a body to have moved

from to P over the distance s with variable velocity.

Let V be its velocity at P and t the time. In moving to

another position P^ distant As, the velocity changes by an

amount Av and the time by an amount Af, so that at P^

V + Av =—

;

A^

as Av^ As, and At approach zero as a limit,

that is, the velocity is the first derivative of the distance with

respect to time.

72. Acceleration. — Acceleration may be defined as the

rate of change of velocity. If the velocity changes by

equal amounts in equal times, tlie acceleration is said to

be constant or uniform^ otherwise it is variable. Constant

acceleration, then, is the ratio of the velocity to time; rep-

resenting this acceleration by a^, we have

The units used are those of velocity and time, and since

velocity is usually expressed in terms of feet and seconds

or feet per second, acceleration is usually expressed in

terms of feet per second per second. This is sometimes

expressed as feet per square second or simply as feet per

second, it being understood that the time must enter

twice.

Since the acceleration equals the rate of change of

velocity at any instant, we may write
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^ dv d^sd =— = ?

dt dt2

where a represents the variable acceleration. Since

v = — and a = — , vdv = ads, by eliminatine^ dt.
dt dt

J &
(

^-
^^--

73. Constant Acceleration. — When the acceleration is

constant, we have the relation dv = a^dt^ a^ representing

the constant value of a, and therefore

.

%/ Vq c/0

V = a^« + Vo

;

and since

or

ds
V = —i

dt

£ds = ajjtdt +

In a similar way the relation

vdv = a^ds

gives

£vdv = a,j^ds;

therefore
v^ vl

2 2
~^«*'

or

These equations of motion give the velocity in terms of

time, the distance in terms of time, and the distance in

terms of velocity.
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74. Freely Falling Bodies. — Bodies falling toward the

earth near its surface have a constant acceleration. It is

usually represented by ^ and equals approximately 32.2 ft.

per second squared. The value of g varies slightly with

the height above the sea level and the latitude, but for

the purposes of engineering it may usually be taken as

32.2. The equations of motion for such bodies are, then,

v=gt + VQ,

8 = ^gt^ + VQt,

V^ — Vq

If the body falls from rest, v^ = 0, and the equations of

motion become
v=gt,

This latter is often written v^ = 2gh^ where h= s.

75. Body Projected vertically Upward. — When a body

is projected vertically upward from the earth, the accelera-

tion is constant and equals —g. If the velocity of pro-

jection is ^Q, the equations of motion are

V = — gt + v^
,

2 2

Problem 95. A body is projected vertically downward with an

initial velocity of 30 ft. per second from a height of 100 ft. Find

the time of descent and the velocity with which it strikes the ground.
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Problem 96. A body falls from rest and reaches the ground in

6 sec. From what height does it fall, and with what velocity does

it strike the ground ?

Problem 97. A body is projected vertically upw\ard and rises to

the height of 200 ft. Find the velocity of projection v^ and the

time of ascent. Also find the time of descent and the velocity with

which the body strikes the ground.

Problem 98. A stone is dropped into a well, and after 2 sec.

the sound of the splash is heard. Find the distance to the surface

of the water, the velocity of sound being 1127 ft. per second.

Problem 99. A man descending in an elevator whose velocity

is 10 ft. per second drops a ball from a height above the elevator

floor of 6 ft. How far will the elevator descend before the ball

strikes the floor of the elevator ?

Problem 100. In the preceding problem, suppose the elevator

going up wdth the same velocity, find the distance the elevator goes

before the ball strikes the floor of the elevator.

76. Newton's Laws of Motion.— Three fundamental laws

may be laid down which embody all the principles in

accordance with which motion takes place. These are

the result of observation and experiment and are known

as Newton's Laws of Motion,

First Law, Every body remains in a state of rest or

of uniform motion in a straight line unless acted upon by

some unbalanced force.

Second Law. When a body is acted upon by an unbal-

anced force, motion takes place along the line of action

of the force, and the acceleration is proportional to the

force applied.

Third Law. To every action of a force there is always

an equal and opposite reaction.
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The first law has already been made use of, and also

the third law— see articles of Chapter II.

The second law states that in case the system of forces

acting on the body is unbalanced, the motion is accelerated.

Motion takes place in the direction of the resultant force

with an acceleration proportional to the force. It also

implies that each force of the system produces or tends

to produce an acceleration in its own direction propor-

tional to the force. That is to say, each force produces

its own effect, regardless of the action of the other forces.

As a result of this latter fact, if a body is acted upon

by a force P and the earth's attraction Gr^ we have

P: a = a:g,

where Gr is the weight of the body, g the acceleration of

gravity, and a the acceleration due to the force P. From

this it follows that

g

that is, the accelerating force equals the mass (see Art. 7)

times the acceleration.

77. Motion on an Inclined Plane. — A body (see

Fig. 95), of weight (r, moves

down an inclined plane, with-

out friction under the action

of a force Gi sin 6. The

acceleration down the plane

equals the accelerating force

Fig. 95 divided by the mass (see Art.

76) = j^
— = g sin 6, The acceleration is constant.

1
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The equations of motion for such a case, then, are (see

Art. 73)
v = {g sin 6) f + v^^

8 = \g (sin 0) f3 + v^t,

s = ?.

2 gr sm 6

If the body starts from rest down the plane, Vq = 0. If

it be projected up the plane with an initial velocity v^, the

acceleration equals —g sin 6.

Problem 101. A body is projected up an inclined plane which

makes an angle of 60° with the horizontal with an initial velocity of

12 ft. per second. Neglecting friction of the plane, how far up the

plane will the body go? Find the time of going up and of coming

down.

Problem 102. A body is projected down the plane given in the

preceding problem with a velocity of 20 ft. per second. How far

will it go during the third second?

Problem 103. Suppose the body in the preceding problem

meets a constant force of friction F = 10 lb. What will be the

acceleration down the plane? How far will it go during the second

second ?

Problem 104. A boy who has coasted down hill on a sled has a

velocity of 10 mi. per hour when he reaches the foot of the hill.

He now goes on a horizontal, meeting a constant resistance of 25

lb. If the combined weight of the boy and sled is 75 lb., how far will

he go before coming to rest ?

Problem 105. Suppose that in the preceding problem the boy

weighs 65 lb. and the sled 10 lb., and that the boy can exert a force

of 20 lb. horizontally to keep him on the sled. Will the boy

remain on the sled when the latter stops, or will he be thrown

forward ?
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G^ = 20 LBS.

Fig. 96

Problem 106. A body whose

weight G = D lb. is being drawn

up an inclined plane as shown in

Fig. 96 by the action of the

weight G = 20 lb. Suppose the

resistance offered by the plane

F = 10 lb., and that G starts

from rest. How far up the

plane will G go in 6 sec?

Problem 107. Two weights, Gi = 6 lb. and G2

attached to an inextensible cord

w^hich runs over a pulley, are acted

upon by gravity ; no friction ; mo-

tion takes place. Find the tension

in the cord, and the acceleration.

Consider G2 and Gi separately

with the forces acting upon them,

and call the tension in the cord T.

Then apply the principle " acceler-

ating force equals mass times acceler-

ation,
'^

10 lb., Fig. 97,

T

G.

Problem 108.

Fig. 98

ing problems,

descending?

An elevator. Fig. 98, whose weight is 2000 lb. is

descending with a velocity, at one instant, of 2

ft. per second, and at the next second it has a

velocity of 18.1 ft. per second. Find the tension

T in the cable that supports the elevator.

Problem 109. Suppose the elevator in preced-

ing problem going up with the same acceleration.

Find the tension in the cable if the elevator starts

from rest and attains its acceleration in 3 sec.

Problem 110. A man can just lift 200 lb.

when standing on the ground. How much could

he lift when in the moving elevator of the preced-

(a) when the elevator was ascending? (b) when
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Problem 111. Two weights, G and G\ are connected by an

inextensible flexible cord

that passes over a friction-

less pulley, as shown in

Fig. 99. G = 20 lb., G' =

100 lb., and there is no

friction on the plane. Find

the tension in the cord and

the acceleration of the two

bodies.

Fig. m

Problem 112. A 30-ton car is moving with a velocity of 30 mi.

per hour on a level track. The brakes refuse to work. Ho^y far

will the car go after the power is turned off before coming to rest,

if the friction is .01 of the weight of the car?

78. Variable Acceleration. — It has already been shown
fl Q Cm 1) Cr^

that V = — . a =— =—^, and vdv = ads. These relations
dt dt dt^

hold true no matter whether the acceleration is constant

or variable. If the acceleration is constant^ the equations

of motion are those that have already been worked out

(see Art. 73), and by simple substitution in these equa-

tions it is possible to find the velocity in terms of the

time, the distance in terms of time, and the distance in

terms of velocity.

If the acceleration is variable, it is necessary to work

out the equations of motion for each case. This may be

done, when it is known how a varies, by means of either

of the equations.

a =

or

d^
dfi'

vdv = ads.

The latter equation will usually give the beginner less

difficulty.
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79. Harmonic Motion. — Let it be supposed that a body

is moved by an attractive force which varies as the dis-

tance. That is, the attractive force is proportional to

the distance. Then the acceleration is also proportional

to the distance.

Let the acceleration = — ks.

Then vdv = — ksds,

and I vdv = —Jc \ sds ;

therefore v^ — v^^ — ks\

where Vq is the initial velocity when s equals zero and

k is the factor of proportionality, determinable in any

special case. This equation gives the relation between

the velocity and distance. Since v = Vv^ — ks^^ it is

evident that v = whenV^ - s= v^. This means that the

body comes to rest when s has reached a certain value,

viz. —^ • From the original assumption, a= — ks^ it is

y/k

seen that the acceleration is greatest when s is greatest,

Vk
when s= 0.

To get the relation between distance and time, the

equation v = Vt^g — ks^ may be put in the form

ds

V »

that is, when s = —% ; and is least when s is least, that is.

Vv2 __ J^g2

= dt,

from which, —=. sin"^ '— = f,

Vk ^0

or -4. sin -y/kt = s.

^k
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This relation between the distance and time shows that

as t increases s chang^es in value from —^_ to ^, as-

^k Vk
suming all values between these limits, but never exceed-

ing them, since sin ^kt can never be greater than + 1 or

less than — 1. The motion is, therefore, vibratory or

periodic, and is known as harmonic motion. The complete

period m tins case is —z.
•

Vyfc

The relation between velocity and time may be found

for this case by differentiating the last equation with

respect to time. Then,

V = Vq cos Vkt

This shows that v^ is the greatest value of v.

This motion is usually illustrated by imagining a ball

attached by means of two rubber bands or springs, since

the force exerted by either
^ ^

of these is proportional to L ^ _J

the elongation, to two pins, IS

as shown in Fig. 100. As- ^'^- ^^^

suming that there is no friction and that the ball is dis-

placed to a position B by stretching one of the rubber

bands, when released it continues to move backward and

forward with harmonic motion.

Problem 113. Suppose the ball in Fig. 100, held by two helical

springs, to have a weight of 10 lb. and that it is displaced 1 in.

from O. The two springs are free from load when the body is at O.

The springs are just alike, and each requires a force of 10 lb. to

compress or elongate it 1 in. Find the time of vibration of the

body and its velocity and position after \ sec. from the time when

it is released. It has been found by experiment that the force neces-
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sary to compress or elongate a helical spring is proportional to the

compression or elongation.

80. Motion with Repulsive Force Acting. — Suppose the

force to be one of repulsion and to vary as the distance

;

then a = ks^ and vdv = ksds^ so that

s = -\(e^~''^ - e-^''A = -^ sinh ^/kf
2Vk\ J Vyfc

These equations show that as t increases s also increases

and the body moves farther and farther away from the

center of force. The motion is not oscillatory.

81. Motion where Resistance varies as Distance, — If a©body w^hose weight is 644 lb. falls freely

from rest through 60 ft. and strikes a

-. . resisting medium (a shaft where friction

on the sides equals 2 ^=10 times the

distance; see Fig. 101), since accelerating

force equals mass times acceleration,

a-2F a-ios
a = M a

9

= 9- 2*

It is required to find (a) the distance

the body goes down the shaft before

coming to rest
;

(J) the distance at which

the velocity is a maximum; ((?) the total

time of fall
; (c?) the velocity at a distance

of 10 ft. down the shaft. After striking

the shaft the relation between velocity and distance is

as follows

:

Fig. 101
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Jvdv = I 9 ds.

The remainder of the problem is left as an exercise for the

student.

Problem 114. A ball whose weight is 32.2 lb. falls freely from

rest through a distance of 10 ft.

and strikes a 400-lb. spring, Fig.

102. Find the compression in

the spring. It is to be under-

stood that a 400-lb. spring is such

a spring that 400 lb. resting upon

it compresses it one inch, and

4800 lb. resting on it compresses

it one foot, if such compression

is possible. After the ball strikes

the spring it is acted upon by the

attraction of the earth and the

resistance of the spring. The ac-

O _ 4800 5
celeration a is then M
where s is measured in feet. The

relation between velocity and dis-

tance is then obtained from the

relation,

4800 s) ds.

Fig. 102

Problem 115. A 20-ton freight car, Fig. 103, moving with a

velocity of 4 mi. per hour strikes a bumping post. The 60,000-lb.

spring of the draft rigging of the car is compressed. Find the com-

pression s. Assume that the bumping post absorbs none of the shock.

Problem 116. Suppose the car in the preceding problem to be

moving with a velocity of 4 mi. per hour, what should be the
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strength of the spring in the draft rigging so that the compression

cannot exceed 2 in. ?

Problem 117. After the spring in Problem 114 has been com-

pressed so that the ball comes to rest, it begins to regain its original

4 Ml. PER HR.

3wwww\/\D

Fig. 103

form. Find the time required to do this and the velocity with which

the ball is thrown from the spring.

82. Motion when Attractive Force varies inversely as

Square Distance. — This is the case

I

of motion, Fig. 104, when two bodies

G in space are considered, since in such

cases the attractive force varies di-

rectly as the product of their masses

and inversely as the square of the dis-

tance between them. The same at-

traction holds between two opposite

poles of magnets or between two

bodies charged oppositely with elec-

tricity.

— k
Suppose the acceleration = —-- and that the velocity is

Fig. 104

zero.
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vdv= — I .,^7s,

so that

and VSqS — S^ -^vers 1 ^

9 ^ ->

The time required to reach the center of attraction O
from the position of rest is obtained by putting s = 0.

This gives ^ = —f^\2.

It is seen that when s = the velocity is infinite, and

therefore the body approaches the center of attraction

with increasing velocity and passes through the center, to

be retarded on the other side until it reaches a distance

— «Q. The motion will be oscillatory.

If one of the bodies is the earth, of radius r, and the

other is a body of weight Gr falling toward it, the equa-

tions just derived hold true. In this case it is possible

to determine k. The attraction on the body at the sur-

face of the earth is (7, and at a distance s is F^ so that

F= (xf — ). The acceleration is therefore = — J —

This gives k, then, equal to r^g.

Substituting these values in the above equation, we find

.=#gr^ 'VsnS — s^
'SI

h «

When s = r vt the earth's surface,
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If Sq= cc, v= V2 gr.

But this is a value of v that cannot be obtained, since

Sq cannot be infinite. So that the velocity is always less

than V2 gr. It is interesting to notice here that if a

body were projected from the earth with a velocity

greater than V2 gr^ it w^ould never return, provided there

were no atmospheric resistance. Substituting ^= 32.2

and r = 3963 mi.,

V = 6.7 mi. per second.

This is the greatest velocity that a body could possibly

acquire in falling to the earth, and a body projected

upward with a greater velocity would never return

(neglecting resistance).

If the body falls to the earth from a height A, the veloc-

ity acquired may be obtained from the foregoing by put-

ting s = r and SQ = h + r ; then

. 2 grh

^r + h

If h is small compared to r, this may be written, without

serious error, /-

—

-
V = yzgh,

which is the formula derived for a freely falling body in

Art. 74.

83. Motion of a Body through the Atmosphere. —When a

body such as a raindrop moves through the air, the resist-

ance varies approximately as the square of the velocity.

Suppose a body of weight Gr projected vertically upward

in such a medium and let the resistance be Ii = Ma =

a=-g[l-:^v^
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And the relation between velocity and distance is ex-

pressed by the equation

vdv= — g\l + -^vAds,

or

^ a

a
1

2k °

1 + ^ 21
(7^

1 +

This gives the relation between velocity and distance. It

is left as a problem for the student to determine the

relation between distance and time for this case. Find

the greatest height to which a body will rise and the

velocity with which it strikes the ground upon re-

turning. Compare this velocity with the velocity of

projection.

84. Relative Velocity. — When we speak of the velocity

of a body, it is understood that we mean the velocity of

the body relative to the earth, more particularly the point

on the earth from which the motion is observed. Since

the earth is in motion, it is evident that velocity as gen-

erally spoken of is not absolute velocity, and since there

is nothing in the universe that is at rest, all velocities

must be relative. In everyday life, however, we think of

velocities referred to any point on the surface of the earth

as being absolute.

A person walking on the deck of a boat, for example,

has a velocity relative to the earth and a velocity relative
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to the boat ; the former is usually spoken of as the absolute

velocity, and the latter the relative velocity. Or, suppose

the case of a man standing on the deck of a boat moving

south with a velocity v while the wind blows from the

east with a velocity Vy It is required to find the velocity

of the wind with respect to the man, or, in other words,

the apparent direction and velocity of the Avind as ob-

served by the man. Referring to Fig. 105,

we represent the velocity (see Art. 85) of

the boat with respect to the earth by v^

and the velocity of the wind with respect

to the earth by i^j, then V represents the

velocity of the wind with respect to the man ;

that is, the wind appears to the man to be

coming from the southeast. The velocity

V was obtained by reversing the arrow rep-

resenting the velocity of the boat and find-

ing the resultant of this reversed velocity

and the velocity v-^ of the wind.

If v-^^ be considered as the velocity with respect to the

earth of a man walking- across the deck of a steamer mov-

ing with a velocity v^ then F' represents the velocity of the

man with respect to the boat.

Fig. 105

Problem 118. An ice boat is moving due north at a speed of

60 mi. per hour, the wind blows from the southwest with a

velocity of 20 mi. per hour. What is the apparent direction and

velocity of the wind as observed by a man on the boat ?

Problem 119. A man walks in the rain with a velocity of 4

mi. per hour. The rain drops have a velocity of 20 ft. per second

in a direction making 60° with the horizontal. How much must the

man incline his umbrella from the vertical in order to keep off the
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rain : (a) when going against the rain,
(J>)

when going away from

the rain V If he doubles his speed, what change is necessary in the

inclination of his umbrella in (</) and (A) ?

Problem 120. The light from a star enters a telescope inclined

at an angle of 45° with the surface of the earth. The velocity of light

is 186,000 mi. per second and the earth (radius 4000 mi.) makes

one revolution in 24 hr. What is the actual direction of the star

with respect to the earth? This displacement of light due to the

velocity of the earth and the velocity of light is known as aberration

of light.

Problem 121. A man attempts to swim across a river, 1 mi.

wide, which is flowing at the rate of 4 mi. per hour. If he can swim

at the rate of 3 mi. per hour, what direction must he take in swim-

ming in order to reach a point directly across on the opposite shore ?

Problem 122. A train is moving with a speed of 60 mi. per

hour, another train on a parallel track is going in the opposite direc-

tion with a speed of 40 mi. per hour. What is the velocity of the

second train as observed by a passenger on the first ?

Problem 123. A man in an automobile going at a speed of 40

mi. per hour is struck by a stone thrown by a boy. The stone has

a velocity of 30 ft. per second and moves in a direction perpendicu-

lar to the direction of motion of the automobile. With what velocity

does the stone strike the man ?

Problem 124. A locomotive is moving with a velocity of 40

mi. per hour. Its drive wheels are 80 in. in diameter. What is the

tangential velocity of the upper point of the wheels with respect to

the frame of the locomotive ? What is the tangential velocity of the

lowest point?



CHAPTER X

CURVILINEAR MOTION

85. Representation of Velocity and Acceleration.— It has

been shown (Art. 71) that velocity is measured in terms

of feet per second, miles per hour, or in general in terms

of the units of distance and units of time. The velocity is,

moreover, in a given direction and may accordingly be

represented by an arrow just as forces may be so repre-

sented. It follows then that velocity arrows may be

added algebraic-

ally if paralleland

if such addition is

not inconsistent

with the prob-

lem. They may
be resolved into

components or

combined to form

resultants (see

Art. 11 and Art.

12). In case the body moves in a curve it is often desir-

able, instead of dealing with the resultant velocity along

the tangent, to deal with the components of that velocity

along the two coordinate axes. Thus if v is the velocity

along the tangent (Fig. 106), 'Vx=v cos a and ^y = v sin a are

142

Fig. 106
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the component velocities along the axes x and y respec-

tively. In a similar way if we know the velocity

of a body along the a:-axis, v^^ and the velocity along

the y-axis, Vy^ we find the resultant velocity to be

^ = V v^+vl and its direction with the 2:-axis such that

tan a = ~-

Accelerations have been seen to be measured in terms

of units of distance and units of time, in particular in

terms of feet per (second)^ (see Art. 72). An accelera-

tion may be represented by an arrow, the length of the

arrow representing the number of feet per (second)^ and

the direction of the arrow giving the direction of the

acceleration. Since arrows represent accelerations, the

acceleration arrows may be treated just as velocity arrows.

That is, they may be added algebraically if parallel,

or added and subtracted geometrically if intersecting.

Or we may say that the parallelogram law holds for

accelerations. Referring to Fig. lOG, it is seen that the

resultant acceleration, a, of the body moving in the curve

y =zf(x) is directed toward the concave side of the curve

in the direction of the resultant force. This is evident

from Newton's Law, which states that the acceleratioyi is

proportional to the resultant force and in the same direction.

Let a be the resultant acceleration, then the accelerations

along the two axes are ax=acos 9 and ay=a siu 8, respec-

tively. In a similar way if we know the accelerations

along the two axes, a^ and a^, the resultant acceleration

a = Va|~+~a2, and its direction is given by the equation

tan^=^.
ar
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86. Tangential and Normal Accelerations.—Suppose a

body (Fig. 106) moves in any curve y =f{x) and

that at a certain point P it has a resultant velocity v

and a resultant acceleration a, v acts along the tangent,

which at this point makes an angle a with the a::-axis and a

acts along the line of action of the resultant force on the

concave side of the curve. It is seen from the figure that

v^=^ V cos a^ Vy=^ V sin a, a^: = a cos 0^ ay = a sin 0^ so that

V = -y/vl + v^ and a = Va| + a^.

It is usually convenient in curvilinear motion to con-

sider the acceleration along the tangent and normal ; that

is, a^ and a^. Since the tangent and normal are at right

angles, it is evident that a = V^^ _|_ ^2^ When it is

remembered that v acts along the tangent, it is evident

that the tangential acceleration at =—, or,
dt

dt '^

'

^ dt\\jtj ^\dtj

fcPx dx d^y dy

^dx\^(dy\^\dt^dt dt^ dt

\\dt) '^\dt)

)

Since

= - (^a^Vj, + ayVy) = a^ cos a + ay sin a^

V

^ == cos a and -^ = sm a.
V V

It now remains to find the normal acceleration. It has

been shown that a = Va^ + a^ ; therefore, a„ = Va^ — a^.

Substituting" the value of a^ = Ca'^ + a^), and the value of

a^ just found, we have as the va-lue of the normal accelera-

tion.
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a,i = ay cos cc— aj. sm a.

The norinal force and tangential force may now be found

by multiplying by the mass iff, giving,

Normal force = 3Iay cos a — Ma^ sin a;

Tangential force = ilfa^ cos « + ifcTa^ sin a.

It is usually, however, more convenient to have the

normal and tangential forces expressed in terms of tlie

fi1) (ii)

velocity. Since a^ = —, the tangential force = M— To
dt dt

express the normal acceleration in terms of velocity it is

necessary to write.

^71 =_ fd?']/ dx d'^x dii

dfi dt dt^ dtj \fdx\^ fdymr-m

[

cPy dx _ d^x dy

liflTt dfidt /ds\^

dtJ ydtj _

= - — = —

.

(bee note.

)

Note. Since ?/ is a function of x and both x and y are functions

of t^ we may write,

dy dP-y dx __ d^x dy

dy dt , r/2// dt- dt dt'^ dt
-f- = —- and —4 =
dx dx_ dx^

dt m
The expression for the radius of curvature of a curve whose equation

is y =f(x) is

[(f)'^(g)']'
^ ^/-// dx d'h: dy

dt'^ dt dt^ dt
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The normal force and tangential force may now be

written,

Normal force
3Iv^

Tangential force = M^.
dt

For all curves except the circle p the radius of curva-

ture varies from point to point. In the circle, however, it

is the radius, and is therefore constant. In this case the

normal force is usually called the centripetal force.

87. Uniform Motion in a Circle.—A body moving with

constant velocity in the circumference of a circle is acted

upon by one force, the normal or centripetal force, and this

equals
Mv'

That this is true is evident when it is re-

membered that the tangential velocity is constant, thus

making the tangential accelera-

tion zero. An illustration of

uniform motion in a circle is

seen in the case of the simple

governor shown in Fig. 107.

When the velocitv is constant,

then a, A, and r are constant.

Let T be the tension in the rod

supporting the ball, then, since

there is no vertical motion 2y =
0, so that T cos a = Gr, Consid-FiG. 107

ering the normal force, we have T sin a
Mv'

so that

tan a = — . From these equations T may be found for any
gr

values of a and r.
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Problem 125. The weighted governor shown in Fig. 108 is rotated

at such a speed that a = 30°. Find the forces acting on the longer

rods and the stress in the

shorter rods. The connec-

tions are all pin connec-

tions.

Problem 126. A type

of swing is shown in Fig.

109. A revolving central

post supported by wires A
and B carries six cars G,

each suspended from cross

arms D by means of cables

50 ft. long. When the swing

is at rest, the cars hang ver-

tically and a = ; as the

speed of rotation increases*

a becomes larger. Sup-

pose the car and its load of

four passengers to weigh

1000 lb., and the speed to

=» 10 LBS.

20 LBS.

Fig. 108

be such that a = 30°, find the tension in the cables supporting the

cars. Assume that a single car is carried by one cable.

Problem 127. The

same principle that has

been seen to hold for

motion in a circle en-

ables us to solve the

problem that comes up

in railroad work.

When a train goes

around a curve, it is

desirable to have the

outer rail raised suffi-

ciently so that theFig. 109

wheel pressure will be normal to the rails. It is really the same
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Fig. 110

problem as Problem 126, where the sustaining cable is replaced by

a track (see Fig. 110). Let r be the radius of curvature, v the veloc-

ity of the car, of weight G. Show that the superelevation of the

outer rail is given by tan a = — , and so

where d is the distance between the

rails in feet, r the velocity in ft. per

second, g is 32.2, r is the radius of

curvature in feet, and li is the superelevation of the outer rail in feet.

This height may be expressed, approximately, as follows

;

3r

where A and r are in feet and v^ is the velocity in miles per hour.

Here d has been taken as 4.9 ft. Using this latter formula, the

following table for the superelevation of the outer rail has been con-

structed :

Elevation Qi) in Feet for Given Radius in Feet

VELOCITY
MILES PER 5730 2865 1910 1632 1146 955

HOUR

20 .02 .05 .07 .09 .12 .14

30 .05 .10 .16 .21 .26 .31

40 .09 .19 . .28 .37 .46 .56

50 .15 .29 .44 .58 .73 .87

60 .21 .42 .63 .84 1.04 1.25

88. Simple Circular Pendulum. — The simple circular

pendulum consists of a weight Gr suspended by a string

without weight, of length ?, in such a way that it is free

to move in a circle in a vertical plane due to the action of

gravity (see Fig. 111). Let B be such a position of the
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pendulum that its height above the liorizontal is h, and
c any other position designated by the coordinates x
and y. Let the weight

be (7 and the tension

in the string T, These

are the only forces act-

ing on the body O,

The only forces that

can produce motion in

the circle are those

that are tangent to the

circle OB. The force

T is normal to the

circle and so has no

tangential component.

The force Cr has a tangential component — Gr sin a. The
equation of motion is, therefore,

vdv = ads = — ^ sin ads^

V

„,-u^ arcT^?^) s .wneie a = = Avhere s denotes distance along the

curve.

This equation, as it stands, leads to a complicated rela-

tion between distance and time. If, however, the angle
a is sufficiently small, so that we may replace sin a by a, we
may write

I vdv = ^^ ( sds.

Integrating with respect to s, we liave

.'=f.,^-j«».



150 APPLIED MECHANICS FOB ENGINEERS

where v = 0, s= S;,, where s^ is length of curve OB.

Solving for the velocity, we have

or ar^r^' ^'

which may be put in the form

where c is a constant of integration.

This equation may be written,

s = Sj, cos[VfO-o];

it represents the relation between distance and time.

When s = Sf^^ t = t^^ so that

[Vf0.-O]=0;
therefore, c = t^^.

It is evident that s is a periodic function of the time,

and that it repeats itself at intervals of time t^ such that

n
^9

This value t^^ represents the time taken by the body from

leaving the position B until its return. One half of this

value
P-

h g

is designated as the period of vibration.
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In general, when the angle is not small, the equation

vdv = — g sin ads becomes, since ds sin a = dy^

Integrating, we have v'^=: —2gy =2g(^h— y).

It will be seen that this result is the same as if the body

had fallen freely through a height h — y (see Art. 74).

The value for v is evidently true whatever be the vertical

curve in which the body moves, providing the only forces

acting on the body are the force of gravity and another

force normal to the curve. The foregoing fact leads to

the statement, in descending along any curve without fric-

tion^ from a height h to any other height y a body will have

the same velocity as if it fell freely through the height h — y.

This fact is often made use of in mechanical problems.

The summation of forces normal to the path gives

T— Gr cos a =
I

'

Mv^
and, therefore, T= Gr cos a + r'

which gives a value for the tension in the cord. Since v

is greatest when a = 0, it is seen that the greatest tension

in the cord occurs when the pendulum is vertical.

If now we make use of the fact that the body moves in

a circle whose equation is x^+ y^— 2 ry = 0, and remem-

ber that ds^ = dx^ + dy^ for any curve, we may write

v^ =
dt
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and, therefore, f — )
= ^^^ =^1g(h- y),

or dt
-\/dx^ + d^/^

But from the equation of the curve

so that ^^2^ 0/-O^y

and rf^ = ——

^

The integral of the expression on the right-hand side of

the equation is not expressible in terms of ordinary alge-

braic or trigonometric functions, but must be expressed in

terms of the elliptic functions. The student may not be

familiar with such functions, so that we shall express it

approximately by means of an infinite series. This series

will be sufficiently rapidly convergent if the radius of the

circle is large and the distance OB is small. Using the

minus sign in the numerator, since ^ is a decreasing func-

tion of s, we may write

'^ jr rh dy ^ _ xV^

^yJo L 2V2r; 2 4t\2rJ

\2

+ dy

^9 2r \2--i:J\2rJ VI-l-aJK^rJ J^-&i-AMm'-(^Mh^-^-
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For very small values of h we may neglect the terms con-

taining h. The result then becomes

since r = Z, and this is the same result that was obtained

before.

This means that for small values of a, not greater than

4°, the time of vibration of a simple circular pendulum is

a constant ; that is, the oscillations are isochronal.

It is seen that the time of vibration of a simple pendu-

lum varies as the square root of its length, for any locality

on the earth. In order to get a pendulum that will beat

seconds it is necessary to place ^=1. Knowing the value

of g for the locality, the proper length may be determined.

If w^e measure the length of a pendulum and its period

we may calculate the value for^ for any locality. This is

the easiest and most accurate way of determining g.

Fig. 112

Problem 128. The centrifugal railway (Fig'. 112), or ''loop the

loop," is a conuiion example of a simple circular pendulum, where

the effect of the string is replaced by a track. If we neglect friction,

the only forces acting on the car are the force of gravity and the
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normal pressure of the track. Suppose the car starts from rest at a

height, h. What must be the relation between h and h', so that the car

will pass the point A without leaving the track.

Hint. The velocity at the lowest point, v^= 2 gh, is the same as the

velocity with which the car comes down. The centrifugal force must

be great enough at A to overcome G, the w^eight of the car (h = |A').

Problem 129. In the simple pendulum find the value of y in

terms of h for which the tension in the string is the same as when the

pendulum hangs at rest.

Problem 130. A pendulum vibrates seconds at a certain place and

at another place it makes 60 more vibrations in 12 hours. Compare

the values of g for the two places.

89. Cycloidal Pendulum.— It has been found that a pen-

dulum may be obtained whose period of vibration is

Fig. 113

constant by allowing the string to wrap itself around a

cycloid as shown in Fig. 113. The pendulum hangs from

the point A, AB and AO are cycloidal guides around
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which the string wraps as the pendulum swings. This

causes the length of the pendulum to continually change

and the pendulum ''bob" to move in another cycloidal

curve COB, The equation of this curve referred to the

axes X and ?/ is

a; = -vers [-l^ + ^j^-y\

In Art. 88 it was seen that v^=^2g(h — y^ represented

the velocity of a body moving in a vertical curve when

only the force of gravity and a force normal to the path

of the curve acted. We may make use of the equation in

this case, since the same conditions exist. We may write

^^ ^dx^ + dip' . c?s
at = ——==^, since ^; = --•

^2g{h-y^ dt

From the equation of the curve, we find

r

so that Cdt = a/-^ r (-jT—^ j

taking the negative sign, since ^ is a decreasing function

of s.

Therefore t =\~- vers~^-/ =7r\/—-.

^-igl A Jo yi4g

The whole time of vibration is twice this value, so that

the time of vibration
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This expression is independent of A, so that all vibrations

are made in the same time. The motion is therefore

isochronal.

Problem 131. A body of mass M slides from rest down a cycloid

from the position 5 (Fig. 113) without friction. What is its velocity

when ^ = -? Show that this is its maximum velocity.

Problem 132. Find the position of a cycloidal pendulum w^here

the tension in the string is greatest. What is the velocity of the bob

at the point O (Fig. 113)?

90. Motion of Projectile in Vacuo. — A method, slightly

different from the preceding, of dealing with a problem

of curvilinear

motion, is il-

lustrated in

the present ar-

ticle. It is de-

X sired to find

the path taken

by a body pro-

jected with a velocity v^ at an angle of elevation a, when

the resistance of the air is neglected (see Fig. 114). In

this case, since there is no horizontal force acting on the

body a^, = 0, so that,

and -^r- = constant = v\ cos a,
at ^

therefore, x = Vq cos a {t).

In a similar way we know that the vertical acceleration

ay= — ^, since the only force acting is Gr.

Fig. lU
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Then, §=-,

and -f^ = — gt + constant.
at

This equation may be rewritten

Vy= — gt-\- constant.

To determine this constant of integration, we put ^ = 0,

and Vy = v^y = v^ sin a;

therefore ~J~^ ~9^ + '^o
sin a

and y = —
}^
gt'^ 4- v^ sin a (f).

Eliminating t between the equations in x and y, we get

2/ = i:c tan a - ^^-^f—r-
2 vi cos^ a

as the equation of the path of the projectile. This is evi-

dently a parabola, with its axis vertical and its vertex at A,

Range, To find the range or horizontal distance d we

put «/ = : then x = Q and x = d^

,1 , , t^osin2a
so that d =—

9

From this it is clear that the greatest range is given when

a == 45°, since then d = -^^

9
The Grreatest Height. The greatest height to which the

projectile will rise is found by putting x = -^^—^^ in

the equation of the curve and solving for g. Tliis gives
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and the angle that gives the greatest height is a = 90°.

For this case h =^ . This is the case that has already

been considered under the head of a body projected verti-

cally upward.

91. Body projected up an Inclined Plane. — If the body is

projected up an inclined plane, making an angle yS(/3<a)

with the horizontal and passing through the point (see

Fig. 114), we desire to find the point at which the pro-

jectile will strike the plane. For any point in the plane

we have y ^x tan y8. The point where this plane cuts the

parabolic path of the projectile is given by the equations

2 ^0 cos a sin (fa — /3)

2 v^ cos a tan ^ sin (a — /?)
^1""

^cosyS

The range on the plane

2vl cos a sin (a — /3)

g cos^yS

Problem 133. The initial velocity vq is the same as that of a body

falling freely from the directrix of the parabolic path to the point

on the curve. Show that the velocity of the body at any point on the

curve is the same as would be acquired in falling freely from the

directrix to that point.

Problem 134. A fire hose delivers water with a nozzle velocity vo,

at an angle of elevation a. How high up on a vertical wall, situated

at a distance c/' from the nozzle, will tlie water be thrown? It should
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be said that water thrown from a nozzle in a non-resisting medium

takes a parabolic path and follows the same laws as projectiles.

Problem 135. What must be the nozzle velocity of water thrown

upon a burning building, 200 ft. high, the angle of elevation of the

curve being 60° ?

Problem 136. The muzzle velocity of a gun is 500 ft. per second.

Find its greatest range when stationed on the side of a hill which

makes an angle of 10° with the horizontal : (a) up the hill, (h) down

the hill. If the hillside is a plane, the area commanded by the gun

is an ellipse, of which the gun is a focus.

Problem 137. A ball whose weight is 64.4 lb., shown in Fig.

115, starts from rest at A and rolls without friction in a circular path

/ ^ G =64.4 LBS.

/

Fig. 115

to the point B, where it is projected from the circular path horizontally.

Find (a) the velocity at B, (b) the equation of its path after leaving

B, and (c) the distance d from a vertical through B, where it strikes a

horizontal 10 ft. below B.
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Problem 138. If the body in Problem 137 had moved along a

straight line from A to B and was then projected, find, as in the

preceding problem, (a), (h), and (c).

Problem 139. A body whose weight is 12 lb. swings as a circular

pendulum, as shown in Fig. 116, from A to B, w^hen the string breaks.

Find (a) the velocity at

B, (b) the equation of

its path after leaving

B, and (c) the distance

d where it strikes a hori-

zontal 5 ft. below B.
/

d
/ to '12 LBS.

Ci

Fig. IIG

Problem 140. A
ball whose weight is

32.2 lb. starts from rest

at A on the top of a

sphere (Fig. 117), and

rolls w^ithout friction to

the point B, where it

leaves the surface. Lo-

cate the point B. Find

also (a) the angle of

projection a, (h) the

equation of the path of

the body after leaving the sphere, and (c) the distance d where it

strikes the horizontal.

Problem 141. The muzzle velocity of a gun situated at a height

of 300 ft. above a horizontal plane is 2000 ft. per second. Find the

area of plane covered by the gun.

Problem 142. The fly wheel shown in Fig. 81 ^'runs wild " and

the rim breaks into six equal parts, free from the arms, when going at

the speed of 300 revolutions per second. The path of the pieces being

unimpeded, find the greatest height that could be reached by either

piece and the greatest horizontal distance attainable.

^^ 92. Motion of Projectile in Resisting Medium. It was

found by Rollins and others (see Encyclopa3dia Britannica
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— "Gunnery'') that

the formula for pro-

jectiles in vacuo did

not hold when the

projectile moved in

the atmosphere. That

is, that the path fol-

lowed by the projec-

tile was not parabolic,

but on account of the

resistance of the at-

mosphere the range

was much less

than that given

by the parabola.

A formula constructed by Helie, empirically modifying

the parabolic formula, is

Fig. 117

y = X tan a — gx^

2 cos^ a

kx

d^
where k = 0.0000000458 — , d being the diameter of the

w

projectile in inches, and w its weight in pounds. This gives

the simplest formula for roughly constructing a range table.

Professor Bashforth of Woolrich found, from a series of

experiments made by him, that for velocities between 900

and 1100 ft. per second the resistance varied as v^^ for

velocities between 1100 and 1350 ft. per second the re-

sistance varied as v^^ and for velocities above 1350 ft. per

second the resistance varied as v^.

In addition to the resistance of the air other factors tend

to change the path of the projectile from the parabolic
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form, viz. the velocity of the wind and the rotation of the

projectile itself. Most projectiles are given a right-handed

rotation, and this causes them to bear away to the right

upon leaving the gun. This is called drift. Correction

is made for drift and wind velocity upon firing.

If the resistance of the air varies as the velocity, say it

equals kv^ then kv^ = k —- and kvy = k -^^^ "" dt "" dt

so that

^ ^
df^ dt' dt^ dt

^*

Integrating, and remembering that when ^ = 0,

v^ = v^ cos a, Vy =v^ sin a,

we have

/^ox dx _j,t dy In
(2) ..= - = .„cos«..- v, =

f^
= -i-g

+ {kvQ sin a + ^)^"^'^],

and therefore, since, when ^ == 0, a; = 0, and 2/ = 0,

(3) a; = ^ cos a (1 - ^-^'),

k

(4) y=.^t-{- '
^^ ^(1 - e ^y

Eliminating ^, the equation of the curve is

/rx kvi) sina + a , q ^ ^n cos a—kx
(5) 2/ =—

7

^^ ^ + 7^1og-^ .

kv^ cos a k^ Vq cos a

93. Path of Projectile Small Angle of Elevation. — When
the resistance varies as the square of the velocity, the

complete determination of the path of the projectile is

mathematically difficult. In what follows, tlie angle of
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elevation has been assumed small so that powers of
d̂x

higher than the first have been neglected. Then ds = dx

and s = x. Let the resistance equal kv'^= kl-—j . Then

.^. d^x __ ndsdx^
^ ^ dfi" Jtdt'

d?y 7 ds dy

Equation (1) may be put in the form

d{^\
\dtJ ___^,ds

dx dt

which gives, upon integrating,

dx

(3)
,

dt
log _ = — ^s.

Vq cos a

dx

'dt

Cm I

Since the initial value of -77 is v^ cos a, that is, when ^ = 0,

dx—
• = -y^ cos a,

dt ^

Equation (3) may be written,

(4) — = 2;^= t; cos a-^

Multiplying (1) by dy and (2) by dx and subtracting

(2) from (1), we get
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(5) ^y^^^Il^^ = -gdx.

From (4) and (5) we have

d^ydx-dHdy _ ^^ _ _ 9 ^,^^^^
ddi? dx 7.2 QQg2 ^

and since 8 = 2:,

(6) d^= '-L e^'^^dx.

Integrating, and remembering that when 2: = 0, -^ = tana,
dx

we have

(7) ^ - tan a = 3_ (^2^- _ 1) .

therefore,

(8) ^=:,tan«+--f^-^ ,„/ ,
(.2^--l).

2 A:?;^ cos"^ a 4 A:^y^ cos^ a

If ^2^"^ be expanded in a series, this may be expressed

approximately as follows,

(9) y= xi'i\A\a ^^ f ^. • • •

It is seen that if the third and following terms be neglected,

the equation is that of the projectile in vacuo (Art. 90).

Problem 143. Find the range, greatest height, and time of flight,

from llelie's equation (Art. 92) ; Equation 5, Art. 92 ; and Equation 9

of the present article.

Problem 144. Compare the values obtained in the preceding

problem with similar values obtained for the case of motion in vacuo,

taking a = 45° and vq = 1000 ft. per second. In each case take

k= .0000000458 — , where J = 6 in. and w; = 150 lb.
w
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Problem 145. Find the angle of elevation a for each of the cases

in preceding problem in order to strike a point 200 ft. high, distant

1000 ft. Take r, = 1000 ft. per second.

Problem 146. A locomotive weighing 175 tons moves in an 800

ft. curve with a velocity of 40 mi. per hour. Find the horizontal pres-

sure on the rails, if they are on the same horizontal.

Problem 147. If the velocity of the earth was 18 times what it

actually is, show that the force of gravity would not be sufficient to

keep bodies on the earth near the equator. Take the radius of the

earth as 4000 mi., and assuming the above conditions, find at what

latitude the body would just remain on the earth.

Problem 148. The weight of a chandelier is 300 lb., and the dis-

tance of its center of gravity from the ceiling is 16 ft. Neglecting the

weight of the supporting chain, find how much the tension in the

chain will be increased if the chandelier is set swinging through an

angle of 2°, measured at the ceiling.

Problem 149. A pail containing 5 lb. of water is caused to sw^ing

in a vertical circle at the end of a string 3 ft. long. Find the velocity

of the pail at the highest point so that the w^ater will remain in the

pail. Find also the velocity of the pail at the lowest point.

94. Motion in Twisted Curve. — When the motion of a

body is in a twisted curve, it is convenient to take account

of its motion relative to three rectangular axes, x, ?/, and z.

Let a, yS, 7 be the direction angles of the tangent line to

the curve, and X, //., v the direction angles of the resultant

force. We may then write for the velocity,

v^ = v cos a = dx .

lit'

Vy = v cos /3 = —^ I

dz .

v^ = v cos 7 = — »

dt
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.= vgTiiT7i=v('|)V(;IT+(IT-MJ \dtj \dt

and for the acceleration, since

dx __ dx ds Q^^Q

dt ds dt

cPx c^s dx fds\^ d^x
a^ = a cos A, = -r—r = ———- +

dt^ dt^ds \dtj ds^

a, = acos/.=--^ =— -^+ - ^•
dfi df-ds \dtj dt^

dh dH dz fds\^ d'^z

«. = acos. = ^=^,^^ + (^j 5^-

dt^J \dty \dt^J'

since — 5
—^? —- are the direction cosines of the tangent

ds ds ds

line and p
—--> p—^, andp—- are the direction cosines of
ds^ ds^ ds^

the principal normal.

From the above equations it will be seen that the result-

ant acceleration a may be resolved into tangential and

normal components

at = —- and a^ = —->

dt p

just as was done in the case of motion in a plane curve.

In this case the normal is the principal normal and the

radius p is the radius of absolute curvature.

As an illustration of motion in a twisted curve consider

the motion in a helix. The helix may be considered as
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generated by the end of a line that moves with uniform

velocity along the line OZ (Fig. 118). The edge of the

thread of a screw is such a twisted curve. Let the curve

Fig. 118

be given by Fig. 118, and letP be any point having coor-

dinates x^ y, and z.

Then x = r cos c^,

^=rsin^,
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will represent the curve. It follows that

t; = — r sin d) -^ = — ro) sin </>

;

V =r cos 6-^ = rco cos
(f>;^ at

_ k cl(f> _cok

-2 is the angular velocity of the point with respect to z;
^^

I p"
represent it by co (see Art. 95), so that v = o)^ r^ -]

= constant (^k is an arbitrary constant that determines the

pitch of the helix). The velocity of a point moving in

such a curve is constant since co is constant. The accel-

eration a^ is therefore zero.

We may also write

a^== r cosrf)-^ = —rco cos 6;^ ^ dt

ay — r sin </> -^ = — rco sin ^.

a. = 0.

Therefore a = V a| + a^ + a^ = ray.

That is, the acceleration in the direction of the resultant

force is equal to (or and the accelerating force is equal to

The fact of zero tangential accelerations has made this

curve very useful. In many cases the helical surface

formed by the revolving line has been made use of to

send packages from upper floors of commercial establish-

ments to the lower floors. Since a^ = 0, the packages

move down with uniform motion. The helicoid is in-

closed in a tube with convenient openings for the insertion

of packages.



CHAPTER XI

ROTARY MOTION

95. Angular Velocity.— In Art. 71 linear velocity was

defined as the rate of motion, and it was stated that it

might be expressed as the ratio of distance to time or

the rate of change of linear distance to time. The

simplest case of rotating bodies is seen in uniform rotation

about a fixed axis. The angular velocity is defined as

the ratio of angular distance to time. Let the angular

distance (measured in radians) be represented by a and

the angular velocity by co. Then for uniform velocity

» a

and for variable velocity

dt

Angular velocity involves a magnitude and a direction,

and may, therefore, be represented by an arrow (see

Fig. 119), the length of the arrow representing the magni-

tude and drawn perpendicular to the plane of motion

such that if you look along the arrow, from its point,

the motion appears positive or negative ; positive if coun-

ter-clockwise and negative if clockwise.

Velocity arrows may be compounded into a resultant

or resolved into components in the same wa}' tliat force

arrows were treated. For example, in Fig. 119, the

169
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angular velocity of a body at any instant is represented

by CO. Then the angular velocity with respect to two rec-

•33—

Fig. 119

tangular axes x and y will be represented hj co^ = co cos \

and (Oy = co sin X, so that co^ = toj + co^.

In a similar way if a body has an angular velocity

CO about an axis making angles X, /x, and v with the x^ y^

and z axes, respectively, the component velocities along

the axes will be given by

ft)^ = ft) cos X, o)^ == ft) cos /i, ft)^ = ft) cos V

so that a)2=z:«2 +0,2 +0)2.

96. Angular Acceleration.—Angular acceleration, which

we shall represent by ^, may be defined as the rate of

change of angular velocity, so that if
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From the preceding article and the definition of angular

acceleration we may write

'~~dt' ^~
dt ' '"'dt'

The linear velocity and linear acceleration of a point

of a rotating body may be determined in terms of the

angular velocity and angular acceleration. Assume that

for the instant under consideration the point is moving

in the arc of a circle of radius p, over an arc ap, then

pda 1 pd'^a
i; =^ = cop and at =^^ = Op.

dt dfi

It will be seen that v in this case is the velocity along a

tangent to the path at the point P.

/- 97. Angular Acceleration Constant. — In Art. 73 we found

that when the linear acceleration was constant, the equa-

tions of motion reduced to a simple form. In a similar

way if is constant, and the axis of rotation fixed, we have

« = «o + 0^

;

(lidia = Met
;

<^=—^—^;
20

where (o^ is the constant initial angular velocity.

The expression for linear velocity and linear accelera-

tion of any point P of the body becomes in this case

V = a^r and at = ^r, where r is the distance of P from the

axis of rotation.
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Problem 150. A fly wheel making 100 revolutions per minute is

brought to rest in 2 min. Find the angular acceleration and

the angular distance a passed over before coming to rest.

Problem 151. A fly wheel is at rest, and it is desired to bring it

to a velocity of 300 radians per minute in J min. Find the accelera-

tion 6 necessary and the number of revolutions required. What is

the velocity w at the end of 10 sec. ?

Problem 152. Suppose the fly wheel in Problem 151 to be 6 ft.

in diameter. After arriving at the desired angular velocity, what is

the tangential velocity of a point on the rim? What has been the

tangential acceleration of this point, if constant ?

98. Variable Acceleration.— In case is not constant,

its law of variation must be given so that the equations

of motion may be worked out. As an illustration suppose

that a body moves in such a way that the angular accelera-

tion 6 varies as the angular distance a. Let ^ = —
- ^cc,

then from the equation codco = dda^ we get (odco = — kada.

Taking the limits of (o as (o^ and c», and the limits of a,

and a, and of t^ and t^ we have

Jcodco = — k ) ada ;

therefore co = Va)2 — ka^.

Integrating again,

da

which gives

J"^"^

da r

Va)2 — ka^ *^Q

1 . _iV^a—- sin ^ = t^

\/k «o

or -^ sin -^u = <^-

-\k
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This last equation sliows tliat a is a periodic function

of the time; the motion is vibratory. Referring to Art.

79, it is seen that the motion is harmonic. In fact, if we

substitute co^ = ij^p and a =^/o, we have exactly the same

equation as was obtained in Art. 79. This example ap-

plies to the motion of a simple pendulum, considering

it as rotating about the point of support.

Problem 153. The balance wheel of a watch goes backward and

forward in | sec. The angle through which it turns is 1S(F; find

the greatest angular acceleration and the greatest angular velocity.

Problem 154. Assume the angular acceleration varies inversely

as the square of the angular distance; find the relation between oj and

a, and t and a.

99. Combined Rotation and Translation. —The angular

acceleration of a body may
be resolved into its tan-

gential and normal com-

ponents at = 6p and «^ =

— = ofip. If now the body

has in addition to its rota-

tion, a translation, the total

acceleration of any point

P will be given by the

components 6p^ od^p^ and %.

In Fig. 120 the body is sup-

posed to have an axis of ro-

tation perpendicular to the

paper, and a translation parallel to ox. Let the angle that

PO makes with x be yS, so that cos (3 = - and sin ^ = --•

P P '

ar^

Fig. 120
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Writing the x and 7/ components of the acceleration, we

have
a^ = — co^x Oy -aj

ay= — ofiy + Ox.

The tangejitial and normal components of a are, from

^'^' ^^^'
fv\ fx\

at = 6p + aJ^\ a^ = co^p + aJ-V

As an illustration of combined rotation and translation

consider the case of a wheel of radius r rolling in a

straight horizontal track. Let the acceleration of transla-

tion of the center be a^, and the angular velocity of the

wheel, about the center, be w, and the corresponding

angular acceleration 6.

Tl^en

are the tangential and normal accelerations of a point on

the rim situated at the top of the wheel.

Problem 155. A locomotive drive wheel 6 ft. in diameter

rolls along a level track. Find the greatest tangential acceleration

and the greatest normal acceleration of any point on the tread,

(a) when the velocity v with which the w^heel moves along the track is

60 mi. per hour, (b) when the engine is slowing down uniformly

and has a velocity of 30 mi. per hour at the end of 3 min.,

(c) when the engine is starting up uniformly and has a velocity of

30 mi. per hour at the end of 5 min.

Problem 156. A cylinder, diameter d, rolls from rest down an

inclined plane, inclined at an angle <^ wdth the horizontal. What is

the greatest normal and greatest tangential acceleration of any point

on its circumference? I^eglect friction.
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100. Rotation in General.— It lias been shown in Art.

36 that any system of forces acting upon a rigid body

may be reduced to a single force and a single couple

whose plane is perpendicular to the line of action of the

single force. That is, the most complicated cases of rota-

tion consist of an instantaneous translation combined with

an instantaneous rotation at right angles to the translation.

Bodies projected into the air while rotating have been

mentioned in Art. 92. The projectile rotating about an

axis is projected in the direction of the axis. If no forces

acted upon it after leaving the gun, it could move in a

straight line. It is, however, acted upon by gravity, which

causes it to take a somewhat parabolic path. The resist-

ance of the air causes the projectile to drift.

This action of the projectile will probably be most

easily explained by a consideration of the motion of a base-

ball. The modern pitcher when he throws the ball gives

it also a motion of rotation. The force of gravity causes

the ball to take a path somewhat parabolic and the resist-

ance of the air, due to the rotation, causes the ball to de-

:^—

>

Fig. 121
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fleet from the plane in which it started. The combination

of the two deflecting forces makes the path of the ball a

twisted curve. Different speeds and directions of rota-

tion and different speeds of translation give great variety

to the curves produced. The action of the baseball will

be best understood by referring to Fig. 121. Let the

baseball have an initial angular velocity co and an initial

linear velocity v in the directions shown. The rotation

of the ball causes the air to be more dense at J. than at jB,

so that the ball is pushed constantly from A to B, This

action causes it to deviate from the plane in which it

initially moved and to take the path indicated by c.

As stated above, this action in the case of a projectile

is known as drift.



CHAPTER XII

DYNAMICS OF MACHINERY

101. Statement of D'Alembert's Principle. — A body may
be considered as made up of a collection of individual

particles held together by forces acting between them.

The motion of a body concerns the motion of its individ-

ual particles. We have seen that in dealing with such

problems as the motion of a pendulum it was necessary to

consider the body as concentrated at its center of gravity;

that is, to consider it as a material point. The principle

due to D'Alembert makes the consideration of the motion

of bodies an easy matter. Consider a body in motion due

to the application of certain external forces or impressed

forces. Instead of thinking of the motion as being pro-

duced by such impressed forces, imagine the body divided

into its individual particles and imagine each of the parti-

cles acted upon by such a force as would give it the same

motion it has due to the impressed forces. These forces

acting upon the individual particles are called tlie effective

forces, D'Alembert's Principle, then, states that the im-

pressed forces ivill he in equilibrium with the reversed effec-

tive forces.

It must be seen by the student that the principle does

not deal with the forces acting between the particles of a

body; these are considered as being in equilibrium among

themselves. We shall see in what follows that this

N 177
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principle, by assuming a system of effective forces acting

upon the particle, enables us in many cases to apply the

principles of equilibrium as developed and used in the

subject of statics.

102. Simple Translation of a Rigid Body.— The principle

of D'Alembert will be best understood by applying it to

•' the consideration of

the simpler motions

of a rigid body. Let

us consider the body,

Fig. 121 a, and let us

assume that it has

simple translation

parallel to x due to

the action of certain

impressed forces P.,

Fig. 121a
^ P^, Pg, etc., making

angles oci, aoj ^3' ^^<^-'

with X, It is seen at once that only the components

of Pj, P2, P3, etc., parallel to x have any part in produc-

ing motion in that direction. We may say, then, that

the impressed forces are Pj cos a^, P^ cos a^-, P3 cos ccg, etc.,

and that these produce an acceleration a in the direction

indicated.

Imagine the body now divided into small particles each

of mass dM^ and assume that the system of forces produc-

ing the motion of the body consists of a small force dM . a

acting on each particle. D'Alembert's Principle then

states that these forces reversed are in equilibrium with

the impressed forces. We have, then, ^x =0,
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or PjCOS ai + 1^2^^^ «2 + ^3C0S a^ + etc. — ^tlM • a = 0,

or P-^cos ai + P^^os a^ + -Ps^^os a^ + etc. = ^dM • a.

But since motion is parallel to x^ it is evident that

Pjcos ai+ P'f'^^ a^+ Pz^o^ a^ + etc. = Resultant Force= 72.

Therefore, for continuous bodies,

since a is the same for every particle of the body. Con-

sider each particle at a distance y from x and let d be the

distance of R from x ; then taking moments with respect

to an axis through x and perpendicular to it, we have

Rd — a \ydM= ayM^

where y is the distance of the center of gravity of the body

from X (Art. 22). Dividing through by R^ we find,

that is, the resultant force passes through the center of

gravity of the body.

103. Simple Rotation of a Rigid Body. — We shall now
apply D'Alembert's Principle to the case of a rigid body

rotatinof about a fixed axis. Let B in Fisr. 122 be the

body, and imagine it rotating in the direction indicated

about an axis through perpendicular to the paper. Sup-

pose the rotation due to the action of forces P^, P^^ Pg, P^,

etc., making angles a^, ^^, 7^ a^. ^^^ j^' ^^^"> ^^'i^l^ ^ ^^^ of

axes x^ 2/, ^, with origin at 0. It is evident that only the

components of the forces P^, P^^ P3, P^, etc., parallel to
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the xz-'plaue^ Avill have any part in producing rotation.

Call these projections P^, P^^ ^s^ P['> ^^^-5 ^l^^J ^^'^ ^^^

impressed forces

for the motion con-

sidered. The dis-

tances of the lines

of action of these

forces from may
be represented by

(Jv-ttj Ctey^ ^Q^ ^49 etc.

Now consider

the effective
forces. Imagine

the body made up

of individual par-

ticles c^iltf situated

at a distance p

from 0. Eachc^iHf

is acted upon by

a force d3Iat=d3I6p, These are the effective forces.

Equating the moments of these forces, reversed, to the

moments of the impressed forces, we have

2 {Pi'di + r2.'d2 + jPs'^s + etc.) = (cUI-ep'p = 6 Cp'^d3I= 07,

since j p'^dM gives the moment of inertia of B with respect

to 0. (See Art. 37.)

That is, when a body rotates about a fixed axis, the sum of

the moments of the impressed forces in the jjlane of rotation

equals 61.

It is evident that any one of the forces P[^ P^, P^, F^,

Fig. 122
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etc., may be such as to offer a resistance to the indicated

motion of the body. In such a case the sign of its mo-

ment would be changed.

104. Reactions of Supports ; Rotating Body. — It has

just been shown that one equation is sufficient to give

the motion of a

rigid body about

u fixed axis. It

is necessary, how-

ever, in order to

determine the re-

actions of the

supports, to use

other equations.

Consider the

body B with its

axis vertical, as

shown in Fig.

123, and let the

rotation take

place as indi-

cated due to the

action of the

forces P^, P.

-£3, x'^^, etc.

2'

Let Fig. 123

P^, Py^ and P^ be the reaction of the supports on the axis

at 0, and P^ and P^ the reactions of the support at A on

the axis.

The effective forces acting upon a particle of the body

B are shown in Fig. 124. Let dMhe its mass and replace
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the resultant force acting on d3f by its tangential and

normal components and call them cZ^ and JiV respectively.

It has been shown (Art.

86) that the normal force

equals
3Ii

and the tan-

gential force equals Ma^^

and that v = cop and a^ =
Op (Art. 96). We have

then

dN= fOJa)2p and dT= eZJX0p,

X and it is seen that both

dJV and dT may be re-

solved along each of the

axes x^ y, and z for every

dM of the body.

From what has been

said it is evident that the sum of the impressed forces

along the a;-axis equals the sum of the reversed effective

forces along the same axis. Calling the impressed forces

i and the effective forces ^, we may write

2.x
i
— ^x^^ X mom^^J. = 2 mom^^,

S mom.,, = S momw ey^

S niom^v^ = S mom^

That is, the components of the impressed forces along

each of the three axes x^ y, and z equal the components

of the reversed effective forces along these axes and the

moment of the impressed forces with respect to the three
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axes x^ ?/, and z equals the moment of the reversed effective

forces with respect to these axes.

Writing down these six conditions, we have

^Xi = — (dlVcos
(f> + (dTiiin <^,

2y^- = — (dN'sm
(f)
— \dTcos(f>^

2 mom^-^ ~ ""
J

^^^^'^'^
• ^ + J

dTcos cf) • 2,

S mom,-^ = \dJVcos
(f)

- z+ idTsin
(f)

• ^,

Smom^2=
J
dT' p.

Substituting the values of tZiVand dTin the expressions

on the right-hand side, we have

^dJVcos
(f)
= w2Jp COS (j)d3f= afi^xdM= - ay^Mx,

^dNsin
(t>
=co^^ydM= - co'^M^,

Jc?iV^sin ^ . 2 = ofl^ijzdM,

JrfiV^cos (/) • ^ = &)2Ja:^t7il!f,

f
cZrsin ^ = ^epdMsm cf> = e^ydM=e3Iy,

(dTco^ (\> = e^xdM= OMx,

jdTsm(f>'Z = 6^f/zdM,

^dTcos<f>'Z = e^xzdM.
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The six general equations therefore reduce to the form

^Xi = QMy - 0)2JX^, (^1)

^y. = -r 0315c - a)2ilf

^

(2)

S^i=0; (3)

2 mom^^ = - «2 (yzdM + (xzdM, (4)

Smom ,.^ = 0)2 fxi^i^JJr -f ^(yzdM, (5)

2 mom^^ =: r p'^d3I= 01z. (6)

These equations hold true at any instant during the

motion of the body. It will be seen, since x and ^ are the

coordinates of the center of gravity of the body, that

when the axis of rotation passes through the center of

gravity, the right-hand sides of (1) and (2) become zero.

It is further seen from (4) and (5) that if the body JS

has a plane of symmetry as the 2:^-plane, the right-hand

sides of these equations reduce to zero, since for every

I xQ+ z^dM there is a corresponding I x(^— z^dM 2iiid for

every \ 7/Q+z)dM there is a corresponding \ y(^— z^dM.

Therefore, ivhen the axis of rotation passes through the

center of gravity and the plane xy is a plane of symmetry^

the six equations become

:

^x, = 0, , (7)

2y, = 0, (8)

22, = ; (9)

2mom,-^ = 0, (1*^)

2 mom,J,— 0, (H)

^mom,,=^dI,. (12)



DYNAMICS OF^MACniNERY 185

This case is the one that usually comes up in engineer-

ing problems, and so these simplified equations are more

often used than the six more general equations. It will

be noticed that these equations are exactly the same as

the conditions for equilibrium as determined in Art. 35

except that 2 mom^-^ is not zero.

105. Rotation of a Sphere. — Suppose the body B, Fig.

125, to be a cast-iron

sphere, radius 2 in., con-

nected to the axis by a

weightless arm whose

length is 6 in. Let the

body be rotated by a

cord running over a

pulley of radius 1 in.

situated 2 in. below P^.

Call the constant ten-

sion in the cord 10 lb.

and suppose it acts in

the y^-plane. Suppose

a=l ft. and 6 = 6 in.

Consider the motion

when the sphere is in

the a:^-plane. Take

the xy-j^lane through

the center of the sphere

perpendicular to z, then

( xzdM and ( yzdM 'avq both zero. Using the foot-pound-

second system of units, we have, x = ^ = -^, ilif= |, i^ =
.065, (? = 8.05 1b., and

Fig. 125



186 APPLIED MECHANICS FOR ENGINEERS

^- = ^'^-^^--8-?' (a)

2y,= -10-P',-P,= -^-«g^ (^)

23, = P,- 8.05 = 0; (0

2 mom,, = -P',- 10(f) + P,(|) = 0, (^)

2mom,, = P',-(8.05)(i)-P.^ = 0, (0

2momi, =lf = 6'(.065). (/)

From equation (/) we get ^=12.81 radians per (second)^.

Suppose the body begins to rotate from rest and that at

the time under consideration it has been rotating one

second. From the relation co = 00^+ 6t (Art. 97) we get

€0 = z= 12.81 radians per second. Solving the remaining

equations, we get P'^= - 3.623 lb.; P'^ = -1.507 lb.;

P,= 8.05 lb.; P,=- 15.281 lb.; P^ = 13.616 lb. The

negative signs indicate that the arrows in the figure have

been assumed in the wrong direction.

Problem 157. A fly wheel 3 ft. in diameter rotates about a verti-

cal axis. The cross section of the rim is 3 in. x 3 in. and is made of

cast-iron. Neglect the weight of the spokes. This wheel is placed

on the axis in the preceding problem instead of the sphere. If the

other conditions are the same, find the reactions of the supports.

Problem 158. The sphere in Fig. 125 is replaced by a right

circular cast-iron cone of height one foot and diameter of base one

foot. The vertex is placed at the point of attachment of the sphere.

If the other conditions are the same, find the reactions of the sup-

ports.

Problem 159. In the problem of the sphere, Art. 105, find the

angular velocity at the end of 30 sec. and the reactions of the sup-

ports for such speed.
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106. Center of Percussion. — It

will be interesting now to consider

the motion of a slender homoge-

neous rod due to an impulsive

force P when free to swing about

a horizontal axis through one end.

Let the rod be given in Fig. 126

and let be the axis perpendicu-

lar to the paper about which rota-

tion takes place. The length of the

rod is Z, and P is the impressed

force tending to produce rotation.

The effective forces are repre-

sented in the figure as acting on

each individual particle, equal in

each case to dM • a^ = dMOp, where

p is the distance of dM from 0,

D'Alembert's Principle for the

horizontal forces gives

y- ^ r
187

--
-i

—X Y"

c;

-^ >

-f{0>

—

p.

e
Fig. 126

P - P^= jdM0p = e^pdM= 0pM;

similarly moments about the axis through (?,

Pd = 0^pHM== 61,.

But Z for a slender rod has been shown to be

- Ml^ and /o = -,

so that p^ = p-eMp = p-^Mp=p(i-^^^
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H

If Fj, = 0, then d = ^l. Under such conditions, if the

rod were struck with a blow P, there would be no hori-

zontal reaction at 0. This point distant 1 1 from 0, for

which Pj, = 0, is called the center of percussion. The

general problem of center of percussion is not quite within

the scope of the present work.

A right circular cylinder of height h and diameter of

base d is made of cast iron. Locate its center of percus-

sion, when supported as the rod in Fig. 126.

107. Compound Pendulum.— When a body rotates about

a horizontal axis due to the action of

gravity, it is called a compound pen-

dulum. We have seen how to find

the time of vibration of a simple pen-

dulum and can investigate its motion

completely, for small oscillations. We
shall now study the motion of the

compound pendulum.

Let the pendulum be represented

by Fig. 127 and suppose the axis of

rotation is through perpendicular

to the paper. Taking moments about

the axis of rotation, we have
Fig. 127

— Grd sin a= 6L
0'

e= - Grd sin a _ Grd sin a _ gd sin a

L Mkl hi

It is seen that varies with sin a. We wish now to

find the length of a simple pendulum that will have the

same period of vibration as this compound pendulum.
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It was found, Art. 88, thtat the tangential acceleration for

a simple pendulum, a^ = — ^sina, and hence its angular

acceleration =—^ -. Equating this value to the
c

value of found for the compound pendulum, we get

as the length of a simple pendulum having the same

period of vibration. This length I is the length of the

compound pendulum. That is, the length of a compound

pendulum is the length of a simple pendulum having the

same period of vibration.

The student may find this length experimentally by

taking a piece of thread with a small lead ball attached

to one end, and holding the other end at adjust the

length of the thread until the compound pendulum and

the simple pendulum vibrate simultaneously. The length

of the thread is the length Z.

Since I = —^, and k^ = k§, + (P^

we may write

d(l -d} = kL or 00' ' aa^ = constant,

Evidently the relation is not changed if 0' and 0^' be

interchanged; we may, therefore, say that the compound

pendulum will vibrate with the same period when sus-

pended about 0^' as an axis. This point is called the center

of oscillation. The point is known as the point of sus-

pension. The result may be stated as follows : m a
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compound pendulum the ]joiyit of suspension and the center

of oscillation are interchangeable.

The time of vibration of a simple pendulum was found

tobei^ = 7r^/- (Art. 88). This gives for the time of

vibration of a compound pendulum,

gd

Problem 160. A cast-iron sphere whose radius is 6 in. vibrates

as a pendulum about a tangent hne as an axis. Find the period

of vibration and the length of a simple pendulum having the same

period. Locate the center of oscillation.

Problem 161. A steel rod one inch in diameter and 3 ft.

long is free to turn about a horizontal axis through one end.

AVhile hanging from this axis it is suddenly acted upon by a 10-lb.

force perpendicular to its length in such a way as to cause the hori-

zontal component of the

reaction of the support to

be zero. How far from

the support does the force

act?

Problem 162. Two
drums whose radii are ?'i

=
16 in. and r^ = 12 in. are

mounted as shown in Fig.

128. Their combined
weight is 200 lb. and Jc =
U", The forces Gi and

6^2 3,ct upon the drum, as

well as journal friction

amounting to 16 lb. The

radius of the shaft is 1 in.

Find the velocities of Gi
and G'2 and the drums when the point of attachment of the cord on

20 LB&

Fig. 128.
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the small drum has traveled from rest at A to a point A '. Neglect

the friction at B,

108. Experimental Determination of Moment of Inertia.—
The computation of the moment of inertia of many bodies

is a difficult matter. It is often convenient, therefore, to

use an experimental method in dealing witli such bodies.

The compound pendulum furnishes a means whereby

such determinations may be made. From Art. 107, we

find that the time of vibration of a compound pendulum

is

This may be written

gd

^ = 5^^ '

multiplying both sides by M^ the mass of the body, we

have

It thus appears that if c?, the distance from to the

center of gravity, is known (the center of gravity may be

located by balancing over a knife edge) and also the

weight Gr^ and the body be allowed to swing as a pendu-

lum about as an axis, t may be determined, giving J^.

If I^, be desired, it may be determined from the formula

(see Art. 41),

Problem 163. The connecting rod of a high-speed engine tapers

regularly from the cross-head end to the crank-pin end. Its length is

10 ft., its cross section at the large end 5.59 " x 12.58'' and at the
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cross-head end 5.59'^ x 8.39'^ Neglecting the holes at the ends, the

center of gravity is 6J: in. from the cross-head end. The rod is

made of steel and vibrates as a pendulum about the cross-head end in

1.3 sec. Compute its moment of inertia.

Problem 164. The student should take such a connecting rod as

the one in the preceding problem and by swinging it as a pendulum

find its period of vibration. Compute the moment of inertia.

109. Determination of g.—From the preceding article

we see that 12 2 r *>

this relation enables us to determine gr, as soon as we know

Jq, i^f, and c?, by determining the time of vibration about the
r 2

point 0. It is evident that __o is a constant for the^ Md
body, when the axis is through 0, and that when once

determined accurately the pendulum might be used to

determine g for any locality.

7-2
This constant,— , is known as the pendulum constant

Md^ ^

Problem 165. A round rod of steel 6 ft. long is made to swing

as a pendulum about an axis tangent to one end and perpendicular to

its length. The rod is 1 in. in diameter. Determine the pendu-

lum constant.

Problem 166. The center of gravity of a connecting rod 5 ft.

long is 3 ft. from the cross-head end. The rod is vibrated as a pendulum

about the cross-head end. It is found that 50 vibrations are made in

a minute. Find the radius of gyration with respect to the cross-head

end.

110. The Torsion Balance.—A torsion balance consists

of a body such as ABQ^ Fig. 129, suspended by means

of a slender rod or wire rigidly clamped at both ends.

Suppose the wire clamped at 0, and let the body ABC
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/'UU/AW//////'

I)

be a cast-iron disk of radius r and thickness t. The point

of support is the center of gravity. The mark OA
on the body is shown in the neutral

position. The application of a certain

torque in the plane of the disk causes

it to turn through a certain angular

distance so that OA assumes period-

ically the positions OB and 00^ due

to the resistance of the wire. It is well

known that a circular rod or wire when

twisted offers a resistance to the twist,

such that the resisting torque varies as

the angle of displacement. As the line

OA moves to OB the resisting torque

offered by the wire steadily increases.

After the body has been given a twist ^ig. 129

the only forces tending to produce rotation are the

forces in the wire. So that if we call the moment of the

couple m we may write m = ca^ since the moment of

resistance varies with a. If, for the particular wire in

question, when a = a^ that m = m^ we may write, since c

is constant, ^= -^•

Taking moments about the axis of rotation, we have

m = eLzi

or la
a.

L codco

da

since (odco = Oda-t and the resisting torque is negative.

Multiplying through by da and integrating, we get, if

when a = a,(O '0'



194 APPLIED MECHANICS FOR ENGINEERS

or co = ^JP^^/al-^a^.

But ft) = -— , so that
cZ^

c?^=^/5 c?a

^1 Va2_^2

If we integrate, taking ^ = 0, when a = a^, we have

where ^ is the time taken in turning from OB through

any angle a. Suppose the upper limit zero (a = 0), then

sin~i -^ = 0, TT, etc.

Suppose sin~^ — = tt,

then « = |V^-

The value of t given represents one fourth of a com-

plete backward and forward swing, so that for a complete

period

t = 2.^lI^. .

It is seen that this time of vibration is independeyit of the

initial angular displacement a^.
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It is also seen that the moment of inertia of a body

might be determined by suspending it as the body ABC
m

is suspended. The constant (? = -—
i is a constant of the

wire or rod and depends upon the material and diameter.

Knowing this constant, it would only be necessary to

determine the period of vibration in order to find /.

For practical purposes, however, it is desirable to

m
For thiseliminate from consideration the value

purpose suppose the disk provid.ed with

a suspended platform rigidly attached

as shown in cross section in Fig. 130.

Let t be its time of vibration and I its

moment of inertia about the axis of

suspension. Now place on the disk two

equal cylinders IT in such a way that

their center of gravity is the axis of

suspension. Let t^ be the period of

vibration of the cylinders and support

and 7j their moment of inertia.

t^ I
Then — =— The moment of inertia of the two cyl-

ti I,

inders with respect to the axis of rotation is known;

Then I^ = 1+ 1^,

Fig. 130

call it I^,

SO that J=Z ^2

2^2_^2

This gives the moment of inertia of the torsion balance,

which, of course, is a constant.

The moment of inertia of any body L may now be
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determined by placing the bod}^ on the suspended plat-

form with its center of gravity in the axis of rotation and

noting the time of vibration. Calling the time of vibra-

tion of the body L and the balance t^ and their moment

of inertia io, we have

3 "^

Let the moment of inertia of L itself be /^, so that

Then ^^ =^^-

This method may be used in finding the moment of

inertia of non-homogeneous bodies, provided the center

of gravity be placed in the axis of rotation.

Problem 167. The moment of inertia of a torsion balance is

6300 and its time of vibration 20 sec. The body L consists of a

homogeneous cast-iron disk 3 in. in diameter and 1 in. thick. Find

the time of vibration of the balance when L is in place. Assume

the moment of inertia of the disk.

Problem 168. The same balance as that used in the preceding

problem is loaded with a body L, and the time of vibration is found

to be 30 sec. Determine the moment of inertia of Z.

111. Constant Angular Velocity. — The six general equa-

tions may be written,

PJ + P^ + '2x = OMy - oflMx,

PJ + P^ + S^ = - BMx - ofiMy,

PJ + P, + ^z=0,
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FJa + P^b + 2(2X- xZ-) = oy^-jxzd3I+ O^yzdM,

where the P's represent the action on the bearings and

2X, Ey, and EZ represent the components of the forces

producing the rotation and ^(^yZ—zY}. etc., the moments

of these forces. Now if JT, y, and Z are each zero, the

last equation shows that ^ = 0, and therefore the angular

velocity co is constant. The condition, however, that A"^,

y, and Z be each equal zero, means that the forces tend-

ing to produce rotation no longer exist. Such an axis

is sometimes called a permanent axis. It is a principal,

axis of the body for the point.

112. Rigid Body Free to Rotate. — If in addition to the

conditions that X, Y, Z, \xzdM eind \yzdMhe each zero,

we impose the condition that both x and y be zero, that

is, that the 2:-axis pass through the center of gravity, the

equations of motion become

PJ + P. = 0,

P>+P,5 = 0,

^ = 0.

The body is in equilibrium under the action of the

reactions of tlie supports and continues to rotate with

uniform velocity co about the original axis of rotation.
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The axis of rotation is now a principal axis of the body

through the center of gravity. It is often called an axis

of free rotation. Since there are three principal axes of

the body through the center of gravity, there are three

free axes of rotation.

113. Rotation of Symmetrical Bodies. — When a homo-

geneous body having a plane of symmetry rotates with

constant angular velocity cd about an axis perpendicular to

that plane, the only forces acting on the body reduce to

where P is the centripetal force acting through the

center of gravity and p is the distance of the center of

gravity of the body from the axis of rotation. The force

of gravity is assumed to produce no rotation. Let the xy-

plane be the plane of symmetry and suppose the axes to

rotate with the body and the ^-axis be the axis of rota-

tion. It is seen that equations (1) and (2) of Art. 104

are now identical and each expresses the fact

1.x = ofiMp,

and the other four equations are satisfied by this condition.

This will be more easily understood by applying it

especially to the sphere in Fig. 125. The only force act-

ing, if o) is constant and the rry-plane is the plane of

symmetry, will be a centripetal force P=co^Mp^ if we

neglect the tendency to rotate about the x and y axes on

account of the weight of the sphere.

If the body is also symmetrical with respect to the

axis of rotation, we may consider for each half, P= oy^Mp^
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where M is the mass of | of the

body and p is the distance of that

one half from the axis of rotation.

As an illustration consider the ro-

tation of a fly wheel. Suppose all

the centrifugal force is carried by the

rim and neglect the spokes. If the

mean diameter of the wheel is r (Fig.

131), its mass M, and it rotates with

constant angular velocity co about its

axis, then

2F=ay'^Mp.

Fig. 131

2r
If the rim be considered as a thin wire, p =— (Prob. 23)

TT

and M= ^ irrF^ so that

9

It is seen that the tension in the rim varies with the

square of the angular velocity.

In particular, suppose the wheel made of cast iron and

let r= 6 ft. and #= 10^' x4'^ Then

P = 0)2(140.1).

If the speed of rotation is six revolutions per second, we
^^^^

0)2=1421.29 and

P= 199,122 lb.

Dividing by ^=40 sq. in., tlie area of cross section, we

get the stress on tlie material in pounds per square inch

as 4978,
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Problem 169. If the wheel just described should "run wild,"

what speed would be attained before the bursting of the rim occurred,

supposing the rim to carry all the centrifugal forces? Assume the

tensile strength of cast iron as 25,000 lb. per square inch.

114. Rotation of a Locomotive

Drive Wheel. — The drive wheel of

a locomotive, Fig. 132, may be con-

sidered for the present as rotating

about a fixed axis. We shall con-

sider the effect of the weight of the

counterbalance on the tire due to ro-

tation only, on the assumption that

the tire carries all the weight of the

l^ 132 counterbalance.

Note. It is to be understood that the wheel center carries part

of the weight of the counterbalance, but a complete solution of the

problem of the drive wheel is beyond the scope of this book. The

above assumption is therefore made.

Let M be the mass of ^ of tire and p the distance of its

center of gravity from the center of wheel. Let M^ be

the mass of the counterbalance, and p-^ the distance of its

center of gravity from the center of wheel.

Then 2P= 0)2 (Mp + M^p^)

.

In particular suppose the diameter of the tread of the tire

to be 80 in. ; distance of the center of gravity of ^ of tire

from center 27 in., and mass of | of tire 21. The mass

of the counterbalance is 20, and the distance of its center

of gravity from the center of the wheel 29 in. Substitut-

ing these values, we get

2 P =0)2 [ 21(fJ) + 20 (fl)] = 95.5o)2.
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If now we know the speed of rotation of the wheel so

that CO is known, we may determine P. Let us take co

corresponding to a speed of train of 60 mi. per hour.

This gives co= 2QA radians per second and

F = 33,380 lb.

Problem 170. If the area of a cross section of tire is 20 sq. in.

under the assumption given above, the stress on the metal due to

rotation about the axis would be P divided by 20, or 1669 lb. per

square inch.

Problem 171. If the allowable stress on the metal is 20,000

lb. per square inch, the value of o) necessary to develop such a

stress is given by

0) = M
20,000 X 20

47.7
= 91.5 radians per second.

This corresponds to a speed of train of 207 m. per hour.

Problem 172. Consider the rotation to take place about a point

on the track. Find P for a speed of train of 60 rni. per hour.

Find the corresponding stress in pounds per square inch. What

speed of train would develop a stress in the tire of 20,000 lb. per

square inch?

115. Rotation about an Axis not a Gravity Axis,

the center of gravity of a

rotating part of a machine

is not on the axis of rota-

tion, there is a force tend-

ing to bend the shaft equal

to ofiMp. The distance

p is the distance of the

center of gravity from

the axis.

Suppose the body be a

disk of steel, Ficy. 133, Fig. 133

•When
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radius 6 in., and tliickness 1 in., and let to == 60 tt

radians per second. If the disk is off center -| in., the

force perpendicuhir to the sliaft due to the unbalanced

mass is given by the equation

= (60 7r)Va)2 J,-
II 0^ (^,) =1241 lb.

Such a disk might be balanced by the addition of a

proper Aveight placed with its center of gravity diametri-

cally opposite the center of gravity of the disk and in the

plane of the disk.

For static balancing it would not be necessary for the

added weight to have its center of gravity in the plane of

the disk, but for rotation this is necessary, as will be

shown in what follows. Let the shaft AB^ Fig. 134,

. .
carry weie^hts G-

']'

¥L

G,

Fig. 134

and (7^, as shown.

When Gr is up, it

tends to lift the

end A of the shaft,

due to its centrif-

ugal force. When

Gti is up, the end

B of the shaft is lifted. Thus for each revolution, the

end ^ is lifted, and then the end B ; that is, the shaft

wobbles about the point (7. What really happens is

something more than the mere lifting of the shaft in

the bearing. Each end describes a cone with as

the apex.

One wheel, improperly balanced, when rotated on a

shaft, causes the shaft to wobble about one of the bearings
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or to lift bodily. Two wheels improperly balanced on

the same shaft, cause the shaft to wobble about some

point C.

The principle involved in the balancing of rotating

parts is made clear by considering two masses, M^ and M^,

distant r-^ and r^-, respectively, from the axis of rotation.

Suppose these bodies to be in the same plane. For

static balance it is necessary that M^r^ = M^r^, but for

dynamic balance, in addition to this, we must have

M-^r^ = M^r^. It follows, therefore, that for static balance

an equivalence of moment is required^ while for dynamic

balance an equivalence of both masses and distances is re-

quired.

If the counterbalance on the locomotive drive wheel

(see Fig. 87) does not balance perfectly the parts on the

opposite side of the center and the reciprocating parts,

the unbalanced mass will cause the locomotive to lift up

when it is above the center. When it is below the center,

the weight comes down on the rail with what is known as

a "hammer blow." This becomes very destructive to

both rail and wheel at high speeds when the unbalanced

mass is at all large. It is much the same in effect as the

dropping of the weight on the driver through a given

distance.

Suppose the counterbalance is too heavy by 64.4 lb.,

and that its center of gravity is 30 in. from the center of

the wheel. If the locomotive is making 60 mi. per

hour, and the drivers are 80 in. in diameter, the approx-

imate lifting force when the counterbalance is up is,

from P= (omp, 3780 lb. For a speed of 100 mi. per

hour, this lifting force would be about 10,980 lb. In
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either case this weight applied suddenly to the rail must

be very destructive to both wheel and rail.

Problem 173. A steel disk 3 ft. in diameter and 1 in. thick

is not perpendicular to the axis of rotation, but is out of true by

yJo of its radius. Find the twisting couple introduced tending to

make the shaft wobble.

Problem 174. If the unbalanced weight in a drive wheel in the

above illustration is 200 lb., find the centrifugal force for a speed of

train of 60 mi. per hour.

116. Rotation of the Fly Wheel of Steam Engine.— Let

the fly w^heel be given as in Fig. 135 w4th radius r, and

suppose that a belt runs over it horizontally as shown by

— -. n^-
-2a-

FiG. 135

Pj and P^. The effective steam pressure is P; iV^ is the

pressure of the guides on the crosshead. (It is normal if

friction is neglected.) The pressure on the crank pin is

resolved into tangential and radial components 2^ and Ny
The relation between P^ and P^ is shown by the expres-

sion Pj =: (const.) P2 = C'A (se^ ^i^t. 156). The six

general equations give, considering only the fly wheel,
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^x = -I\- I\^ - N^ cos a - Tsin a = 0,

^y = Tcosa — iVj sin a — (? = 0,

2^ = 0,

Smom^= 0,

2momj,= 0,

2 mom^ = F^r - P^r + Ta= 61,.

It is reasonable to assume that the resistance of the

machinery, as shown by P^ and P^^ is constant. The last

equation, then, states that jT, the tangential force on the

crank pin, varies with ^, the angular acceleration. From
this equation we have, remembering that P^ = CT^g' C' < 1

or P^ > Pj,

Ta-(P,^P,)r
^^^

L

Since P^ > Pi, it is evident that the numerator will be

zero when Ta = QP^ — P-^r^ so that 6 will be zero for such

a case. This makes the angular velocity to either a maxi-

mum or a minimum at such a point. At the dead point

B^ T is zero; as a increases, 2^ increases until at a certain

point B^ it equals (^P^ — P^-, At this point ^ = and

o) is a minimum. Beyond Pj, o) increases and 6 increases,

T has a maximum value and so does 6 at some point beyond

B^^ after which ^ decreases, since it is again zero at the dead

point A. Thus in passing to zero there is a value such

that T= (P^ — P\)~'> so that is again zero at some point

Ay At this point Ay, 6 changes from positive to negative,

so that 0) is a maximum. It is evident that there are two

corresponding points A-^ and B^ below the line AB.



206 APPLIED MECHANICS FOR ENGINEERS

The above equation may be written

codco = Y )
^^^^ ""

T I ^^^^

where the subscript zero indicates some initial value ; now
ada = ds^ distance in the crank-pin circle and rda = c?s',

distance in the fly-wheel circle. We may, accordingly,

write

= Crds - (Po - A) arc of fly wheelT-

Since work done (see Art. 135) on one end of connecting

rod equals the work done on the other, i Tds = I Pdx^

where x^ x^^ and dx are distances in the cylinder corre-

sponding to s, Sq, and ds in the crank-pin circle. Assum-

ing that this has already been shown, we may write

(0)2 -«2) ^x Y
I^-—2~^ =

j
-^^^ " ^^2 - Pi) arc of fly wheel .

^0

The approximate value of I Pdx may be found by reading

from the indicator card the values of P for successive

values of x between the limits x and x^,

A more exact treatment of the above equation may be

obtained by considering that the expansion of steam in

the cylinder is constant and equal to P' up to the point

of cut-off and that beyond this point the pressure varies

inversely as the volume. If we assume P constant and

equal to P^ to the cut-off, then the limits of integration

will be regarded accordingly, and we may write
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i;^!l__^ ^ J^^f% - (P2 - i^i) arc of fly wheel
?i

= F'(x^-Xq) - {F^-F^) arc of fly wheel

Beyond the cut-off F varies inversely as the volume of

steam in the cylinder, and so F = q[ -— ) = 2i. Then
\ ITV^X J X

from the point of cut-off to the end of the stroke

-.s'

I,- —^ = ?i (A - ^1) ^^I'c of fly wheel

If the pressure be regarded as constant throughout,

that is, if the mean effective pressure F^' be substituted

for P, we have, considering the motion from B to J.,

(^2 -col)
I. ^

2
= ^i2 a - (P, - P^vrr.

The two first equations of this article in SX and EY
give ^ ^ (jr ^Qg ^ _ ^p^ ^ p^>^ gjj^ ^^

and

^
\ since /

"^

Problem 175. Suppose the mean effective steam pressure is 16,000

lb., the radius of the crank-pin circle 18 in., and the radius of the fly

wheel 3 ft. If {P^ ~ ^\) — ^^^ ^h. and w^ = 2 tt radians per second,

find iDA\ if 4=2000.

Problem 176. The fly wheel in the above problem has a velocity

0)^ = 6 TT radians per second. What constant resistance (P^ — P^) will

change this to 2 tt radians per second in 100 revolutions?

Problem 177. Find the values of a for which co and are maxi-

mum and minimum in the above problem.
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117. Rotation and Translation. — In this work only the

simple case of rotation and translation in a straight line

will be considered, since the engineer is not usually con-

cerned with more complicated motions. Let us consider

the motion of a body rotating about an axis that moves

parallel to itself. Suppose the body in Fig. 136 rotates

about 0, and at

the same time has

a motion of trans-

lation along X.

Take the origin

at 0, and allow it

to be translated

with the body.

Any elementary

mass dM of the

body may be con-

sidered subjected

to a force dM- a

parallel to X, due

to the translation, a tangential force dT= 6Mp^ and a

normal force dN = co^Mp, These are the effective forces.

Writing down the equations of equilibrium between these

forces and the impressed forces, we have at any instant

2a; =J dMa+ydTsin a- JdJ^icosa =Ma+ 0My -co^Mx

^y = -fd]Srsin a- fdTcos a= - ay'^My - OMx

Fig. 136

23=0
2mom^ =
2inomj, =

2 mom^ ^ '^
J^'^P~~ J ^^^P sin cc = — 61^ - a3Iy.
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It is seen at once that if the x and 7/ axes pass through

the center of gravity, so that x and y are each zero, the

right-hand side of the second equation becomes zero, and

the first and last equations may be written

^x = 3Ia,

2 mom^ = — 61^,

As an illustration let us assume that a cast-iron cylinder

rolls on a straight horizontal track, due to the application

Fig. 137

of certain impressed forces. Suppose the radius of the

cylinder is 18 in. and its thickness 2 in., and that at the

time of observation it is making 10 revolutions per

second. From this time there is only a constant tangen-
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tial force of friction F acting parallel to X and the

normal pressure iV. The cylinder comes to rest in one

minute. Find F; the distance passed over, in coming

to rest ; the angular velocity at the end of 10 sec, and

the linear velocity at the end of 30 sec. Take the origin

at the center and X horizontal. From Fig. 137 it is seen

that the general equations for this case become

F=:Ma,

N= a,

Fr=0Z.

Since F is constant, a and are constant, so we have in

addition to the above equations

CO = COq + 6t^

9. 2

20
'

az= ^0fi -{- (Oot.

These equations are sufficient to determine the unknown

quantities.

Problem 178. The same cylinder given in the above illustration

rolls, without slipping, down a rough inclined plane, inclined at an

angle 8 to the horizontal. In addition to the forces acting as given

above there is a component of gravity (see Fig. 138).

Let a; be parallel to the plane, then

2a; = F4- Gsm8 = May

^y = N- GcosS = 0,

Smom, = Fr = 6h,

so that a is constant and equal to
g sin 8

1 + ^
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If the cylinder has the same velocity as in the above illustration,

find the constant force of friction and the distance passed over in

coming to rest, 8 = 10°.

Fig. 138

Problem 179. A cast-iron cylinder, radius 3 in. and 6 in. long,

rolls down a rough inclined plane, inclined at an angle of 30° with

the horizontal. Find the acceleration dow^n the plane ; the angular

acceleration ; the force of friction jp; and the normal pressure N.

118. Side Rod of Locomotive. — The side rod of a loco-

motive furnishes an interesting study of a case of com-

bined rotation

dN"

P

cLV

and translation.

Assume the ve-

locity of the loco-

motive uniform

so that each dM
of the side rod

revolves uni-

formly in the arc

of a circle of radius r. See Fig. 139 (referred to the

locomotive). Writing the equation of equilibrium after

Q
Fig. 139
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neglecting the thrust due to the pressure of steam on

the piston, we have

where P is the pressure on a crank pin due to the rotation

alone and v is the tangential velocity of any dM relative

to the locomotive. If v^ is the velocity of the train and r'

the radius of the drive wheel, then

r

so that

2P-a
^/2

Problem 180. Suppose the locomotive to have a velocity of

90 mi. per hour, the radius of the crank-pin circle 20 in., the radius

of the drive wheel 40 in., and the weight of the parallel rod 400 lb.

Find the pressure on the crank pins due to the centrifugal force.

119. The Connecting Rod. — The connecting rod of an

engine has a circular motion at one end while the other

end moves backward and forward in a straight line. We
shall consider the motion relative to the engine and shall

assume that the fly wheel is of sufficient weight to give

the crank a motion sensibly uniform. It will be con-

venient to regard the motion of the connecting rod as

consisting of a rotation about the crosshead end while

that end is moving in a straight line.

In Fig. 140 let A be the crosshead and the center of

the crank-pin circle. Let I be the length of the connect-

ing rod, and r the radius of the crank-pin circle. If we

neglect friction, the only forces acting on the connecting
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rod at A are iV^', the pressure of the guides, and P\ the

pressure exerted by the piston rod. The force exerted on

the connecting rod by the crank pin has been resolved

into its normal and tangential components N^ and T^ re-

spectively. Suppose ft)i to be the constant angular velocity

of the crank, and suppose the angular velocity of the rod

about A to be represented by cd and the angular accelera-

tion by 6.

If we consider any element of mass dM oi the rod, it is

seen that the forces acting upon it consist of a force dP =

Fig. 140

dM' a parallel to OX, a normal force dN= ofiMp and a tan-

gential force dT=6Mp, so that at any instant we have

the same formulae as those developed in Art. 104. These

may be written in this case.

"Ixi = P' - T^m « - iVj cos a = Ma - co'^3Ix - OMy,

^yi = - iV^' + iV^ sin a - ^Tcos a = - cifiMy + QMx,

2 mom^i = N^ sin (cc + (/>) - Tl cos (« +</>)= 6L - aMy.

The axis of rotation cannot pass through the center

of gravity, so no further reduction is possible.
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We know
sin a __ Z

sin
(f)

r'

so that
(f>
= sin~i f - sin a

j

;

differentiating with respect to t,

sm a
J_ = «=

V^2
'

l--sm2a

therefore a, = ^^i'^^^'^
.

-\/P —r^sin^a
da

since —-= — ft).

dt
^

and
n _ — ^\^ sin a(Z2 _ ^2^

(P — r^sin^ a)%

From these last two equations, for any values of (o^ and

a we may obtain o) and 6. The linear acceleration, a, has

been taken the same for each dM of the rod, and equal to

the acceleration of the piston. If the quantities M^ ^, ^,

and I^ are known ; we might find for any steam pressure

P' and the corresponding a, the forces N\ iVj, and T, In

other words, we could determine the forces acting on the

guides and crank pin.

Problem 181. The connecting rod given in Problem 163, Art.

108, is in use on an engine whose crank has a constant angular ve-

locity of 26 radians per second. The length of the crank is 2 ft.,

the effective steam pressure on the piston is 16,000 lb. Let a be taken

as 30"^, then <^ = 5° 45' ; w = — 4.52 radians per second, and = — 69

radians per second squared. From Problem 163, / = 2172, M — 61.1,

X = 5.3 ft., y = .533 ft. To determine a, consider the relation be-

tween the velocity v of the piston and the velocity t\ of the crank
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pin, Fig. 140. Since the velocity of every point of the rod in the

direction of its length is the same, the projections of v and vi on the

rod are equal. The rela-

tions will not be altered '''^X G

if the figure vi\ED be

turned through 90° and

E be placed at and

ri be made to coincide

with OF and drawn to

such a scale as to equal

r. Then v will fall on

^^^ 1 "K " ^
'^\f^^ 1 ^'N

Fig. 141

OG and will be of a length equal to that cut off on OG hj AF
produced (see Fig. 141).

V sin (a + d)) . , , ,— _ V—L^r/ _ gjj^ ^ _^ (>Qg ^ ^^^-^ ^^
vi cos (^

V = vi (sin a + cos a tan <^)

.

?^p-$. = -, For small values of
<fy
we may replace tan </>

sin a I

by sin <^, so that

V = ?;i(sin a + cos a -sin a ) = n (sin a + — sin 2 a).

Then

But

The acceleration a

= vi (cos a 4- - cos 2 a)(Di.

But since vi = <oir,

a = (0? r (cos ci-{-'^ cos 2 a),

For a = 30°, v = - 30.5 ft. per second, and a = 1306 ft. per (second)2.

The three equations in ^x, %, and 2 mom;^ now give N' = 9660 lb.,

Ni = 58,137 lb., and T = - 18,151 lb. Compounding iVi and T, we get

the resultant pressure on the crank pin to be 60,900 lb. The

negative signs for Ni and T indicate that the arrows were assumed in

the wrong direction.

Problem 182. Show that the values of a that make to a maximum

or minimum, when the motion of the crank is assumed constant, are

TT, 37r, etc., and o, 2 tt, etc.
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Problem 183. Find what values of a will make a maximum or

minimum. Locate the crosshead for these values.

Problem 184. Find values for T, N', iVi, and the resultant pres-

sure on the crank-pin when cc = tt and when « = 0. Use the above data.

Problem 185. Assume a force of friction F acting on the cross-

head, such that F = .06 N\ In the above case when a = 30°, what is

the value of F, iV, iV^i, and T?

Problem 186. Suppose the steam pressure zero, find T, N', Ni,

and the resultant crank-pin pressure, if coi is the same.

120. Body Rotating about an Axis— One Point Fixed. —
We shall now consider the case of a body rotating about

an axis when only one point of that axis is fixed. Con-

sider the equations 1, 2, 3, 4, 5, and 6 (Art. 104) and recall

that a body acted upon by any system of forces may be

considered as being acted upon by a single force and a

single couple (Art. 36). If one point of the axis is fixed,

the single force will act at this point, but the effect of the

single couple will be to move the axis of rotation about

this point. The components of the moment of the couple

are shown in the right-hand side of equations (4) and (5).

If these reduce to zero, the couple vanishes and rotation con-

tinues about the original axis of rotation even though only

one point of that axis is fixed. But this can happen only

when
I
xzdM= and also ( yzdM ^ 0. We may say,

then, that a body rotating about an axis one point of which

is fixed^ when no forces are acting to produce rotation^ will

continue to rotate about that axis with a constant angular

velocity o).

121. Gyroscope. — The gyroscope illustrated in Fig. 142

consists of a metal wheel A mounted on an axis BB^ fixed
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at one point to the stand 0, The weight D serves to bal-

ance the wheel about the point of support. The wheel

A is very delicately mounted, so that there is little fric-

tion. It is set in motion by means of a cord wound

around its axle, as in the case of an ordinary top.

Fig. 142

When the weight D exactly balances A so that BB is

horizontal, we have a case of a body rotating about an

axis fixed at one point, with no external forces acting.

According to the previous article, the body continues to

rotate about that axis.

If, however, the weight I) does not balance A^ so that

BB is not horizontal, the axis of rotation changes, since

in that case the force of gravity tends to turn BB about

a horizontal axis through JS perpendicular to BB, As a

result of the two rotations, the body tends to turn about

a new axis, so that BB turns about the point B horizon-
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tally. All this is in accordance with Art. 95, where we

saw that the resultant of two angular velocities was an

angular velocity given by the diagonal of a parallelogram

constructed upon the two velocity arrows as sides. This

rotation of the gyroscope about the vertical axis through

JE is known, as precession. The student may reproduce

the above results experimentally by taking a bicycle wheel

mounted upon its axle. Suspend one end of the axle by

a string and hold the other in the hand, so that the axle

is horizontal. With the other hand now give the wheel

a spin. If the axle remains horizontal, the wheel contin-

ues to spin about the same axis, but if the hand support-

ing one end of the axle be removed, the wheel continues

to rotate about its own axis while the axis rotates about

the suspending string. In other words, the wheel has a

motion of precession.

The motion of the bicycle wheel is explained in the

same manner as that used in explaining the precession

of the gyroscope.

122. The Spinning Top. — The student will be interested

in seeing that tlie motion of a spinning top, with which

all are familiar, is also capable of the same explanation.

Let the top be represented, as in Fig. 143, with its point

at 0, and suppose it has an angular velocity co about its

own axis. If it is rotating sufficiently rapidly, and its axis

is vertical, it " sleeps," or continues to revolve about that

same axis. If, however, the axis be tilted slightly from

the vertical, the weight of the top Gr and the reaction of

the floor constitute an unbalanced couple tending to make

it revolve about an axis through perpendicular to the
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paper. The result of tliese two rotations is to cause tlie

top to always tend to revolve about an axis a little in

front of the geometrical

axis. This causes the

axis of spin to continually

advance, and describe a

cone about OZ, that is,

the top precesses. It is

well known that when the

top has been so disturbed,

if spinning rapidly, it

moves about OZ very slowly, and gradually takes the

vertical position again.

When the velocity of rotation co finally becomes small,

the irregularities of the support throw the axis out of the

vertical, and the action of the unbalanced couple causes

precession. At first the precession is very slow, but grad-

ually increases as (o decreases until the top falls.

123. Motion of Earth. — A brief presentation of this

subject would be incomplete without mentioning the pre-

cession of the earth's axis. In Fig. 144 let S represent the

sun and U the earth, with its axis slightly inclined to the

vertical. The earth is a spheroid with its axis of rotation

as its short axis. Consider the ring of matter near the

equator which if cut off would make the earth spherical.

The attraction of the sun for this ring of matter is greater

on the side nearest the sun. This causes the earth to be

acted upon by an unbalanced force i^, and tends to cause a

rotation of the earth about an axis through perpendicu-

lar to the paper. As a result the axis of rotation is moved
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forward slightly so that its path is a cone about OZ. On
account of the very great velocity of the earth and the

smallness of the force F^ this precession is very slow, a

^F

Fig. 144

complete rotation of the axis about OZ requiring 25,800

years. (See Young's '' General Astronomy," Precession of

the Equinoxes.)

124. Plane of Rotation.— We have seen that a body

moving in a straight line continues to move in that line

due to its inertia unless acted upon by some force (Art. 76).

In a similar way a body rotating about an axis tends to

maintain its axis and plane of rotation due to its moment

of inertia unless acted upon by some external forces. The

moment of inertia of a rotating body has the same relation

to its rotation as the inertia of a body has to its translation.

The student may get some idea of this tendency of a

rotating body to maintain its plane and axis of rotation

from the study of a bicycle wheel mounted on its axle. If

the wheel be held by grasping both ends of the axle and if

it is then rotated rapidly, it will be found that there is no

difficulty in moving the rotating wheel in the plane of ro-
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tation, but that as soon as an attempt is made to change

the direction of the axle, there is considerable resistance.

The same experience may be had by treating the wheel of

the gyroscope (Art. 121) in a similar way.

The same action takes place in the rolling of ships at

sea. The rolling is lessened by the tendency of the large

fly wheels on board to maintain their plane of rotation.

125. Gyroscopic Action Explained. — Spinning bodies,

such as the gyroscope or a fly wheel, when acted upon by

an unbalanced couple that produces a rotation at right

angles to the spin, rotate about an axis at right angles to

Fig. 145

each of these (Art. 124). Such action may be explained

as follows (see Fig. 145). Suppose the body to be a disk,
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and that rotation is taking place about the axis OY in the

direction indicated. A couple shown by the forces P
produces rotation about the axis OZ in the direction in-

dicated.

Consider any element of the disk dM; it is subjected to

two angular velocities, co about OY^ and o)-^ about OZ. If

we imagine the element at the point A on the axis OZ, its

velocity v due to rotation about OZ is pco^ = 0, since

p = 0. As it moves from A toward B this velocity v in-

creases, and from B to it decreases until it is zero at 0.

This increase and decrease of the velocity is represented

in the figure by the arrows v. Since the velocity of dM
increases in going from A to B^ the increase must be caused

by some force having the direction dP^^ on the side facing

the reader. The decrease in the velocity v in going from

B to must be due to a force dJP^^ acting away from the

side facing the reader. In a similar way the velocity v

increases in going from O to I) and decreases in going from

I) to J.. The force acting on any dM as it moves from

A to A again are represented by the arrows dPy It

is seen that the result of such forces acting on every dM
will be to turn the disk about the axis OX. This motion

about OZ we have called preces-

sion (Art. 121 and Art. 122).

126. Precessional Moment;

Special Case.—A simple analysis

serves to give the moment about

the axis OX. Let the disk of the

preceding article be represented

in Fig. 116 with the axis OYFig. 146
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perpendicular to the paper. The elementary mass dM is

in the position shown. The velocity (y^ of this dM'i^

V = po)^ = rco^ sin «,

when p is the distance from the axis (9Z, co^ the angular

velocity about OZ^ and r is the distance from 0,

Therefore the acceleration a-^ in the direction of v is

given by
dv da— = rco. cos a—

.

dt
^

dt

But— = ft), the angular velocitv about OY^
dt

so that a^ = rco^co cos a

and cZPj, the force in the direction of v,

= dM' a^ = dJfrco^co cos a.

We may write dM= t±rda dp.

Then dP. = t'^(o.(or\Ir cos ada.
9

The moment of this force about the axis OX is

mom^^ = dP^(r cos «) = t-co^cor^dr cos^ «(?«.

The moment for the whole disk U about the axis OX is

then

JJ= t-o).co
I
r^dr i cos^ ada

y r^ n^ ^ -, .y r^= c-ft).ft)— I cos^ ada = t~o).co~
9 ^^0 9 ^

= t-CO.CO—TT,

9 ' ^

- + - Sin 2 a
Z 4



22-i APPLIED MECHANICS FOR EJSIGINEEBS

But M=tl7rr\
9

so that U= JJwiw^

.

If the rotating body is the rim of a fly wheel with out-

side radius r^ and inside r^^ the value of U changes only

in integrating between the limits r^ and r^. Then

TT /7 W-^D ivr (^i+i)

As an illustration, suppose the weight of the ring of a

gyroscope to be 50 lb. and the mean radius 6 in., and

outside radius 8 in., and let co^ be unity, and suppose it

makes 100 revolutions per second about the axis OY.

Then

It is seen that with a small value for co^ the tendency

to turn about OX is considerable.

Note. The above analysis is substantially the same as that

given in Engineering, June 7, 1907.

Problem 187. A ship carries a cast-iron fly wheel whose rim is

6 ft. outside diameter, 4 in. thick, and 18 in. wide. When it

is making 3 revolutions per second, its axis is turned about an axis

through the plane of the wheel with unit angular velocity. Find the

moment of the couple that tends to turn the wheel about an axis

perpendicular to these two axes.

Problem 188. A solid cast-iron disk 3 ft. in diameter and 3

in. thick revolves about its axis, making 3000 revolutions per

minute. At the same time it is made to turn about an axis in its

plane at the rate of 2 revolutions per minute. Find the magnitude

of the couple tending to rotate the disk about an axis perpendicular

to these two axes.
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The equation

may be written

U = M(i).u}—
4

(i).

O)

If the value of the couple U is constant, it is seen that o varies in-

versely with oiy That is, if o) is large (o^ is small, and if oj is small coj

is large. This was pointed out in Art. 122 and illustrated in the case

of the top when it is dying down. As the spin decreases in such

cases, the precession increases.

127. Precessional Moment ; General Case. — The preces-

sional moment for any body when OZ is perpendicular to

01^ may be obtained from a consideration of the moment

equation (Art. 126) by retaining the dM. The equation

may then be written

U— \ dP^Qr cos «) = j dMo)^(or^ cos^ «

or U= (o^cD I (iil!f(r cos a)2.

Since r cos a is

the distance of

dM from OX,

this may be i'

written

When the axis

of precession OZ
is inclined at an

angle S to the

axis of spin OY,

the above value

for JJ must be

Q

Fig. 147
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changed slightly. To make the ideas clear, let the orig-

inal axis OZ be drawn as well as the inclined axis OZ'

making the angle 8 with OY^ as in Fig. 147. Let p be

the distance of an elementary dMivom OZ, as before, and

Pj the distance of dM from OZ^, Then p = pi sin 8, and

the expression for the velocity, v = po)^ = rco^ sin a becomes

V = rcwj sin a sin S.

and a.= -— = "^^i^ sin B cos a,
at

since sin S is constant, so that

dP^ = ai^dM= dMrco^co sin S cos a ;

therefore U= j dP-^{r cos a)= j dMcoiCo sin Sr^cos^^

= cD^o) sin S I c?illf(r cos a)^,

or Z7= Wjwjr^^sinS.

The gyroscopic action of the fly wheel of an automobile

has much to do in causing the machine to overturn when

rounding sharp curves at high speeds. Even when the

machine is not overturned, the gyroscopic moment due to

the rotation of the wheel causes an extra pressure on the

bearings. This pressure is shown by the wear on the

bearings. It is left as an exercise to determine the over-

turning moment due to the action of an automobile fly

wheel under assumed conditions. It will also interest the

student to know that a German torpedo boat 116 ft. long,

and 56 tons displacement, was held upright in a heavy

sea by an 1100 lb. disk rotating 1600 revolutions per

minute.
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Problem 189. A locomotive is going at the rate of 40 mi. per

hour around a curve of GOO ft. radius. The diameter of the drivers

is 80 in., and a pair of drivers and axle have a moment of inertia

about an axis midway between the wheels and perpendicular to the

axle of 3000. What is the magnitude of the couple introduced by

the precessional motion of this pair of wheels? Give tlie direction in

which it acts. Does it tend to make the locomotive tip inward or

outward ?

Problem 190. A car pulled by the locomotive in the preceding

problem has four pairs of wheels. The moment of inertia of each

pair of wheels and their connecting axle, with respect to an axis mid-

way between the wheels and perpendicular to the axle, is 320 (see

problem 87). What is the magnitude of the precessional couple acting

upon the whole car ?

Problem 191. The fly wheel of an engine on board a ship makes

300 revolutions per minute. The rim has the following dimensions

:

outside radius 4 ft., inside radius 3J ft., width 12 in. The ship

rolls with an angular velocity of ^ a radian per second; find the torque

acting on the ship due to the gyrostatic action of the fly wheel.

Problem 192. A conical top is made of wood and is spinning

about its axis with a velocity of 20 revolutions per second. The cone

has a base of 2 in. and a height of 2 in., and spins on the apex.

While spinning steadily with its axis vertical (sleeping), it is dis-

turbed by a blow so that its axis is inclined at an angle of 30° with

the vertical. Find the velocity of precession and the torque U that

tends to keep the top from falling. See Fig. 143.

128. Car on Single Rail.—An interesting application of

the gyroscope has been made recently in England. A
car (see Fig. 148) is run upon a single rail, and is

held upright by means of rapidly rotating fly Avlieels.

Each car contains two of tliese wheels rotating in op-

posite directions, at the rate of 8000 revolutions per

minute.



228 APPLIED MECHANICS FOR ENGINEERS

Any tendency of the car to tip over, either when run-

ning or standing at the station, is righted by the gyro-

scopic action of the fly wheels. The experimental car

O' "0
.^.^Lbrx r^ 1 1^-.
i;cy \^j) tcJL—Lu)

'^ ^/i i^A M ^A (^A f^At^iyAtd <^J i^i (^A e^ i/Ai^ (yA l^-J CA t<) iA ^A t>> t^ kA ^'

Fig. 148

was so successful in operation that it maintained itself in

an upright position even when loaded eccentrically. The

action of the fly wheels is such as to place the center of

gravity of the car and load directly over the rails.

(Note. See Engineering^ June 7, 1907.)



CHAPTER XIII

WORK AND ENERGY

129. Definitions. — When the forces acting upon a body

cause a motion of that body, work is done. We define

the work done by a force as the magnitude of the force

times the distance through which the hody^ upon which it acts^

moves along its line of action.

This definition may be less exactly stated by saying

that a force acting on a body that moves through a dis-

tance does work. This brings to mind the forces consid-

ered as acting in Chapters II, III, and VI, where no mo-

tion was produced; that is, where the point of application

did not move. Such forces produce lio work according

to our definition.

To make the idea 1^

of work clearer,

suppose the body

(Fig. 149) to

be acted upon by

a force P, and

that the body is moved until the point at A is finally

at B, The work done by P is P times AB. Suppose

the plane upon which C^ moves is rough, so that it offers

a resistance F. In passing over the distance AB, the

force F does a work of resistance equal to F times AB.
229

Fig. 149
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The upward force iV, which is the pressure of the support-

ing surface, does no work, since no motion takes phice along

its line of action. The idea of work is related to that of

the motion of the body in the direction of the acting force,

but is independent of time.

130. Units of Work. — Since work involves force times

distance, we express it in terms of the units of force and

distance; that is, in inch-pounds or foot-pounds. These are

the units used by engineers in this country and England,

and are the units that will be used in this book.

We might say, then, that the unit of work, the foot-pound^

is the work done hy a force whose magnitude is one pound

when the body upon which it acts moves through a distance

of one foot.

In countries where the metric system is used, the erg

is used when a small unit of w^ork is convenient. The

erg is the work done by a force of one dyne when the body

upon which the force acts moves a distance of one centi-

meter in the direction of the force. A larger unit of

work, the joule, is often used; the joule is 10" ergs. En-

gineers often use the kilogram-meter as a unit of work.

It is the work done by a force whose magnitude is one

kilogram, while the body upon which the force acts moves

one meter in the direction of the force.

131. Graphical Representation of Work. — Work has been

defined as the product of a force and a distance. If the

force be uniform and equal to P, and the body upon

which it acts be moved through a distance a, the graph-

ical representation of the work done by P is given by the
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airea of a rectangle, Fig. 150, constructed on F and a as

sides, since P
W= Fa,

Fig. 150

If the force F varies as the dis-

tance through which the body is

moved along its line of action, we

may represent the work by the area of the triangle as

shown in Fig. 151. Let the force be zero when the

motion begins, and let it be F^

when the distance passed over along

its line of action is OA. Then since

the force varies as the distance, it

is equal to F for any intermediate

distance 00. The total work done,

then, in moving the body through a

distance OA by the variable force

P, which varies as the distance, is

equal to —J^^- L It is seen that

p
this is the same as the work done by the average force —^

acting through the distance OA. The resistance of a

helical spring varies with the elongation or compression.

The same law of variation holds for all elastic bodies.

Another variation of force with distance with which

the engineer is frequently concerned, is the case where

the force varies inversely as the distance through which the

body is moved. If F is the force and S the distance,

the relation between force and distance may be expressed,

F = ^^H^, or FS= const. But this represents the equi-

FiG. 151
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J^
s

p^^
1

E
C

1
D

1

1
Fig. 152

lateral hyperbola. This will be made clearer by reference

to the specific example of the expansion of steam in a steam

cylinder. (See

Fig. 152.) Up to

the point of cut-

off 0^ the steam

pressure is the

same as that in

the boiler (prac-

tically), and is

constant while

the piston moves

from to C.

At this point, the entering steam is cut off and the work

done must be done by the expansion of the steam now in

the cylinder. According to Mariotte's Law, the pressure

varies inversely with the volume of steam; but since the

cross section of the cylinder is constant, we may say that

the pressure varies inversely as the distance. From the

properties of the curve, it is easy to see that the area under

the curve represents

the work done.

The curve ob-

tained in practice

representing the re-

lation between the

force and distance is

shown in Fig. 153.

The curve after

cut-off is not a true hyperbola, and its area is determined

by means of a planimeter or by Simpson's Rule.

Fig. 153



WOBK AND ENERGY 233

132. Power.— The idea of work is independent of time.

But for economical reasons it is necessary to take into

consideration this element of time. We must know

whether certain work has been done in an hour or ten

hours. For such information a unit of the rate at which

work is done has been adopted. This unit is called power.

Power is the rate of doing work. It is the ratio of the work

done to the time spent in doing that work.

The unit of power is the horse poiver. This has been

taken as 550 ft. -lb. per second, or 33,000 ft. -lb. per minute.

Originally the idea of the rate of work was connected

with the rate at which a good draft horse could do work.

This value as used by Watt was 550 ft. -lb. per second.

The horse power of a steam engine is mean effective

pressure times distance traveled by the piston per second,

divided by 550.

133. Energy. — Energy is the capacity for doing work;

it is stored-up work. Bodies that are capable of doing

work due to their position are said to possess potential

energy. Bodies that are capable of doing work due to

their motion are said to possess kinetic energy, A familiar

example of potential energy is the energy possessed by a

brick as it is in position on the top of a chimney. If the

brick should fall, its energy at any instant would be

called kinetic. When the brick strikes the ground, work

is done in deforming the ground and brick, or perhaps

even breaking the brick and even generating heat. The

work done by the brick when it strikes is sufficient to

use up all the energy that the brick had when it

struck.
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134. Conservation of Energy.— The kinetic energy of

the brick spoken of in the last article was used up in

doing work on the ground and air, and upon the brick

itself, so that the kinetic energy that the brick possessed

when it struck was used up. It was not, however, de-

stroyed, but was transferred to other bodies, or into heat.

Such transference is in accord with the well-known prin-

ciple of the conservation of energy. This principle may

be stated as follows : energy cannot he created or destroyed.

The amount of energy in the universe is constant. This

means that the energy given up by one body or system of

bodies is transferred to some other body or bodies. It

may be that the energy changes its form into light, heat,

or electrical energy.

Energy cannot be created or destroyed; it is, therefore,

evident that such a thing as perpetual motion is impossible.

Such a motion would involve the getting of just a little

more energy from a system of bodies than was put into

them. i./i /

135. Energy of a Body moving in a Straight Line. — Sup-

pose the body, Fig. 154, moving in a straight line as in-

^^-^

n
>^

n
Fig. 154

dicated with a variable velocity v. Let P be a constant

working force, so that the resulting force acting on the

body will be P— R. From the relation that the accelerat-
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ing force equals the mass times the acceleration, we may

=
if~

Integrating between the limits v^ and t', and and s,

we have — -^=(P-R}s,

The quantity --^ is the kinetic energy of the body

when it has a velocity v^ and the quantity -^ the kinetic

energy of the body when it has a velocity v^. The left-

hand side of the equation, therefore, represents the change

in kinetic energy. The equation shows that tlie work

done hy the tvorhing force equals the ivorh done hy the re-

sisting force plus the change in the kinetic energy.

The weight of the body is 64.4 lb., and P is a constant

force, say 100 lb., and R a constant resistance = 84 lb.

If the body starts from rest, what will be the velocity when

it has moved a distance of 16 ft.?

Substituting in the above equation, w^e have z; = 16 ft.

per second.

Problem 193. A car whose weight is 20 tons, and having a veloc-

ity of 60 mi. per hour, is brought to rest by means of brake friction

after the power has been shut off. If the tangential force of friction

of 200 lb. acts on each of the 8 wheels, how far will the car go

before coming to rest?

Solution. Here M = -^— ^ v^ — 88 ft. per second, i; = 0, P = 0,
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since there are no working forces, it = 1600 lb., so that

40,000
(88)2 = 1600 5.

2(32.2) ^ ^

Therefore s =3009 ft.

Problem 194. Suppose the car in the preceding problem to be

moving at the rate of 60 mi. per hour when the power is shut ofP,

what tangential force on each of the 8 wheels will bring the car to

rest in one half a mile ?

Problem 195. What is the kinetic energy of a river 200 ft. wide

and 15 ft. deep, if it flows at the rate of 4 mi. per hour, the weight

of a cubic foot of water being 62.5 lb. ? What horse power might be

developed by nsing all the water in the river ?

Problem 196. The flow of water in Niagara River is approxi-

mately 270,000 cu. ft. per second. What is its kinetic energy?

What horse power could be developed by using all the water ?

Problem 197. This amount of water, 270,000 cu. ft., goes over the

falls of Niagara every second. The height of the falls including rapids

above and below is 216 ft. What horse power could be developed by

using all the water? What horse power could be developed by using

the water, considering the height of the falls to be 165 ft., the height

of free fall ?

Note. It is estimated that the total horse power of Niagara Falls,

considering the fall as 216 ft., is 7,500,000. The Niagara Falls Power

Company diverts a part of the volume of water above the rapids into

their power plants, where it passes through a tunnel into the river

below the falls. The turbines are 140 ft. below the water level, and

each one is acted upon by a column of water 7 ft. in diameter. The

estimated power utilized in this way is 220,000 horse power. The

student should estimate the horse power of each turbine, assuming

the w^ater to fall from rest through 140 ft. For a full account of the

power at Niagara Falls, the student is referred to Proc. Inst. C. E.,

Vol. CXXIV, p. 223.

When the motion of the body is not along the line of

the force, as is the case in Fig. 155, where the body is



WOBK AND ENERGY 237

supposed moving up the plane under the system of forces

shown, we resolve the force into components along and

perpendicular to the direc-

tion of motion. It is evi-

dent that the component

perpendicular to the direc-

tion of motion can do no

work in moving the body
^

'

Fig~155

up or down the plane.

The same might be said of the component of Gr perpen-

dicular to the plane and of iV, so that the work-energy

equation in such a case includes only the components of

the forces along the line of motion. The accelerating

force in this case is P cos a, and the resisting forces are F
and Gr sin a. The work-energy equation becomes

^-.^^^Fs + Ca sin a)8= (P cos «)5,
2 2

^

where s is a distance measured along the plane.

Problem 198. A body whose weight is 32.2 lb. is pulled up an

inclined plane, inclined at an angle of 30^ w^ith the horizontal, by a

horizontal force of 250 lb. The motion is resisted by a constant

force of friction of 10 lb. acting along the plane. If it starts from

rest, what will be its velocity after it has gone up a distance of 100 ft. ?

Problem 199. The same body as that in the preceding problem is

projected down the plane with a velocity of 5 ft. per second. How far

will it go before coming to rest?

Hint. In this case there is no working force acting, and the final

kinetic energy is zero, so that the work-energy equation reduces to the

expression : the work of resistance equals the initial kinetic energy.

Problem 200. The student should solve Problem 112 by using

the principle of work and energy.
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136. Work under the Action of a Variable Force.— When
the forces are not constant, the work-energy equation

already derived does not hold true. In such a case the

equation vdv = ads becomes, by integrating,

2 2 ^0 ^0

The integrals expressed cannot be determined until it is

known how H and P vary. In any case, however, we see

that the quantity under the integral sign represents work,

and so we may say: the work done equals the resistance

overcome plus the change in kinetic energy.

Let us suppose that the resistance H varies as the dis-

tance, and also that the force P varies as the distance.

Then R = const, x (6-) = C-^s and P = const, x (s) = O^s.

The work-energy equation becomes, upon substitution,

In Art. 81 the case of a body of 644-lb. weight falling

in a resisting medium was discussed. We may now dis-

cuss this same problem by means of the principle of work

and energy. In this case,

E = 10s,F= a,M= 20, v^ = V2 (/h = 62. 1 ft. per second.

Then 20.^-2^62^
2 2 ^0 ^0

^2^ 3864 --§2+ 64.4 s.

2

This gives a relation between velocity and distance. The

student should complete the problem, as outlined in Art. 81.
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Problem 201. A body whose weight is G4.4 lb. falls freely from

rest from a height of 5 ft. upon a 200-lb. helical spring. Find the

compression in the spring.

It will be recalled from Problem 113 that a 200-lb. spring is such a

spring as would be compressed 1 in. by a weight of 200 lb. resting

upon it. It will also be recalled that in compressing such a spring,

the resistance of the spring is at first zero, and that it increases in pro-

portion to the compression. So in the present case we may write

-rr- = — , where the distance of one inch is expressed in feet : since
1 s

"12"

s is expressed in feet and R is the resistance of the spring in pounds,

R = 2400 s. In this case P= G,v = 0, vq = ^2 gh = ^"^-^ ^^' P^^ second,

and AI= 2. Then the work-energy equation gives

- ^ (^^'^y ^ 2400— = 64.4 5,
2 2

.s=.544ft., or 6.52 in.

Problem 202. A weight of 500 lb. is to fall freely from rest

through a distance of 6 ft. The kinetic energy is to be absorbed

by a helical spring. Specifications require that the spring shall not be

compressed more than 2 in. Find the strength of the spring required.

Problem 203. It requires 2000 lb. to press a certain sized nail

into a board a distance of 2 in. The same size nail is to be driven

to the same depth by a 5-lb. hammer (Fig. 156) in 4 blows. With

what velocity must the

hammer strike the nail

each time? Assume that

all the energy of the ham-

mer is absorbed by the

nail and that the resist-

ance offered by the timber

in question varies as the

distance of penetration of

the nail. Neglect the

weight of the hammer as a working force. Under the assumptions

made, the penetration of the nail will be the same for each blow.

3

S~?

Fig. 156
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Fig. 157

Problem 204. Specifications state that it shall require 32,000 lb.

to compress a helical spring 1^ in. What weight falling freely

from rest through a height of 10 ft. will compress it one inch?

Problem 205. The draft rigging of a freight car shown in Fig.

157 is provided with

two helical springs, one

inside the other. The

outside spring is a 10,000-

Ib. spring, and the inside

a 5000-lb. spring. A car

weighing 60,000 lb. is

provided with such a

draft rigging. While go-

ing at the rate of 1 mi. per hour it collides with a bumping post.

How much will the springs be compressed ?

Problem 206. The draft rigging in the preceding problem is

attached to the first car of a freight train, consisting of 30 cars, each

weighing 60,000 lb. How much will the springs of the first car be

elongated if there is 10 lb. pull for each ton of weight when the speed

is 40 mi. per hour? The speed is increased to 45 mi. per hour.

How much will the springs be elongated if the resistance per ton at

this speed is 12 lb. ?

Problem 207. The Mallet compound locomotive (Railway Age,

Aug. 9, 1907) is capable of exerting a draw-bar pull of 94,800 lb.

According to the preceding problem, how many 60,000-lb. cars can be

pulled at 45 mi. per hour? What strength of spring would be

necessary for the first car, if the allowable compression is 11 in.?

Problem 208. An automobile going at the speed of 30 mi. per

hour comes to the foot of a hill. The power is then shut off and the

machine allowed to "coast" up hill. If the slope of the hill is 1 ft.

in 50, how far up the hill will it go, if friction acting down the plane

is .06 Gy where G is the weight of the machine ?

137. Pile Driver.—A pile driver consists essentially of

a hammer of weight Gr so mounted that it may have a free
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.

fall from rest upon the pile (Fig. 158). The safe load

to be placed upon a pile after it has been

driven is the problem that interests the

engineer. This is usually determined by-

driving the pile until it sinks only a certain

fraction of an inch under each blow, then

the safe load is a fraction of the resistance

offered by the earth to these last blows.

This resistance is very small when the pile

begins to penetrate the earth, but increases

as penetration proceeds, until finally

due to the last blows it is nearly con-

stant. If we regard the hammer Gr

as a freely falling body, and consider

the hammer and pile as rigid bodies,

and further assume, as is usually done,

that It for the last few blows is constant,

we may write the work-energy equation. Fig. 158

^Mv1= rRds= Rs^,

since the final kinetic energy is zero and the weight of

the hammer as a working force is negligible. The

distance s^ is the amount of penetration of the pile for

the blow in question. But v'^=2 gh^ so that

lMvl=Gh.

We have then as the value for the supporting power

of a pile,

11 = Gh
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A safe value, H^ from l to |- of i2, is taken as the safe

supporting power of piles. The factor of safety and the

value of s-^ for the last bloAv are usually matters of specifi-

cation in any particular work. This is the formula given

by Weisbach and Molesworth. Other authorities give

formulae as follows

:

Trautwine, Ii=QO G -Vh^ if s^ is small,

, ^5 aVh
and U = —

;

^1 + 1

Wellington, H = — , where h is in feet and s-^ in inches;

McAlpine, i? = 80 [ (7 + (. 228VA - 1)2240]

;

Goodrich, jB = -— -.

For other formulae and a general discussion of the

subject of the bearing power of piles, the reader is referred

to Transactions of Am. Soc. C. Eng., Vol. 48, p. 180.

The great number of formulae for the supporting power

of piles is due to the various assumptions that are made

in deriving them. In deriving the Molesworth formula,

the hammer and pile were considered as rigid bodies.

It will be seen that the hammer and pile are both elastic

bodies, both are compressed by the blow; there is friction

of the hammer with the guides, and the cable attached

to the hammer runs back over a hoisting drum. There

is, in most cases, a loss of energy due to brooming of the

head of the pile. This broomed portion must be cut off

before noting the penetration due to the last few blows.

Results of tests have also been taken into consideration
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and have modified the formula}. The Wellington formula

differs from the Molesworth formula only in the denomi-

nator, where s^ + 1 is used instead of s^. This has been

done to guard against the very large values of R given

when §1 is very small. According to the Wellington

formula, M can never be greater than (7A, the total energy

of the hammer, and this is perhaps the safer formula to

use for small values of s^.

Engineers have come to believe that it will be extremely

difficult to get a general formula that will give very ex-

act information as to the bearing power of piles, since

soil conditions are so varied. The more simple formulae

with a proper factor of safety are used.

As an illustration of the use of the formula, let us

consider the problem of providing a pile to support 75

tons. If the weight of the hammer is 3000 lb., and the

height of fall 15 ft., the pile will be considered down when

Gh 3000 X 15 o p^ o r •

s. = -—- = = .o it. = o.b m.
^ E 1^0,000

Using a factor of safety of i, we have s^ = .6 in.

Problem 209. Compute the value of s^ for the pile in the above

illustration by using the various formulae given in this article.

Compare the results.

Problem 210. A pile is driven by a 4000-lh. hammer falling

freely 20 ft. What will be the safe load that the pile will carry if

at the last blow the amouut of penetration was | in.? Use a factor

of safety of J. Compute by the Molesworth and the Wellington

formulae, and compare.

Problem 211. A pile was driven by a steam hammer. The last

twenty blows showed a penetration of one inch. If two blows of

the steam hammer cause the same penetration as one blow from
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-2r-

B

r

a 2000-lb. hammer falling 20 ft., what weight in tons will the pile

support? Assume the penetration for each of the last few blows

the same.

138. Steam Hammer. — The steam hammer consists

essentially of a steam cylinder mounted vertically and

having a weight or hammer attached

to one end of the piston rod. Let

AB (Fig. 159) be the steam cylinder,

D the piston, and jETthe anvil, upon

which a piece of metal is shown un-

der the hammer (7. The steam pres-

sure in the cylinder is constant and

equal to P, while the piston passes

over a distance a to cut-off, and

varies inversely as the volume over

the remaining distance h, (r, the

weight of the hammer and piston, is

also a working force. The resistance,

I
d -B^ of the metal varies

I during any blow with

amount of compression. It is

^55
Q

t
K

the

Fig. 159

zero just as the hammer touches the

metal, and increases up to a maxi-

mum when the compression is great-

est. Let R^ be the average resistance of the metal, and

iZj, the exhaust pressure. Then the work-energy equa-

tion for the hammer before striking the metal becomes

Ml.M^R^ p. = P p, + Cp'as + a Cds,

or
2 2

+ E^s = Pa+ Gs +j^P'ds.
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Since P' varies inversely as the volume of the cylinder,

., jy, const.
we may write, I^' = — =-•

Then the work-energy equation gives

^ + E.s = Pa+ Gs + c\ogt.
2 a

The term —^ ^^ zero, since the motion has been consid-

ered from rest at the top of the cylinder to a distance s.

The quantity c may be computed by reading from the

indicator card the value of P' at s. It will be seen that

8 has been taken greater than a ; that is, the piston is

beyond the point of cut-off.

When the hammer finally comes to the face of the

metal, the work-energy equation may be written

^ + R^h^ = Pa+ ah^ + c^ log -,

where the distance h^ represents the value of s when

the hammer just touches the metal, and v^^ 6', and c^ are

the corresponding values of ^;, 5, and c. This equation

gives the kinetic energy of the hammer when it strikes

the metal. The work-energy equation for the hammer

during the compression of the piece may now be written

where d is the amount of compression of the metal due

to the blow. This is shown by the small figure to the

right, where the piece of metal has been drawn to a

somewhat larger scale.
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After the hammer strikes the metal, the steam pressure

and the weight of the hammer as working forces, and the

exhaust pressure as a resisting force, have been neglected.

The work done by these pressures is small, since the dis-

tance d is small. Approximately, then, the work done on

the metal equals the kinetic energy at the time of first

contact.

Instead of using the value P^ = -, and computing the
s

integral j P'ds as indicated in the formulae, values of P^

and s might be read from the indicator diagram (see

Art. 131) and added by means of Simpson's formula

(see Art. 26).

As an illustration of the foregoing, let us suppose the

steam cylinder 25 in. long and 14 in. in diameter; the

steam pressure P = 18,000 lb.; the exhaust pressure

i?i = 2300 lb.; a=7.2 in.; d = l in.; (^=644 lb.;

c^ = 10,800 lb. ; A' = 24 in. Substituting in the work-

energy equation, we have for the kinetic energy of the

hammer at the time of striking the iron,

:^ = 11,475 ft. -lb.

This gives a value for v^ = 33.8 ft. per second as compared

with 11.3 ft. per second for the same weight freely falling

through the same distance.

Investigating now the resistance of the metal, we have,

under the assumption already made,

i2^c^= 11,475 ft.-lb.,

so that E' = 550,800 lb.
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In the above discussion we have neglected the compres-

sion of the anvil and hammer due to the blow, and also

the friction of the piston.

Problem 212. Find the kinetic energy of the hammer when

k' = 18 in. Find also v and R', using the same value of d.

Problem 213. A steam hammer exactly similar to the one given

in the illustration above is used with the same steam pressure. It is

only necessary, however, for the work for which it is intended, that

the kinetic energy of the hammer for a stroke of 2 ft. be 6000 ft.-lb.

What weight of hammer should be used?

Problem 214. Compute the kinetic energy and velocity of the

hammer in the illustration (G = 644 lb.) when the piston has moved

the full length of the cylinder (h' = 25 in.). Assume that there is

nothing on the anvil.

Problem 215. "What value of h' in the above problem would give

the hammer the same velocity as it would have if it fell freely from

rest through the height h ? Compute the kinetic energy for this

velocity.

Problem 216. In the illustration given above, what would be

the value of R' if the steam pressure and G be included as working

forces, and R^ as a resisting force, during the compression of the

piece ?

Problem 217. In the illustration given above, suppose that, in

addition to the compression of the piece J in., the anvil is compressed

.02 in. Find the value of R\

139. Energy of Rotation about Fixed Axis.— In Art. 103,

where the subject of the rotation of a rigid body about

a fixed axis was discussed, the following equation was

derived

:

^CP\d,+P^^d^+ P'^d^ + etc.} = 61

where the P's represent forces tending to rotate or retard

the rotation of a rigid body about a fixed axis, the 6?'s,
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the distances of the lines of action of these forces from 0,

6 the angular acceleration, and I the moment of inertia of

the body with respect to the axis of rotation.

This equation may be put in the form

^ ^ 2 (F\d, + P^^, + P^A + etc.)

Now let us suppose the moment P\di is made up of

a working moment and a resisting moment, such that

P\d^ = P\d^-R\d^\,P\d^=P^^^d^-R'^d"^, etc. Re-

membering that (odco= 0da^\ we may write, after clearing

of fractions,

I(od(o = 'E(P'\d^da" + P^^^d^da^^ + P^^^d^da^^ + etc.

- ^(iR'\d^\dci'^+ R^\d!\du!^ + R^\d^\dci!^ + etc.).

Let the angles which P'\, P^\'^ P^-) ^tc, make with the

r2;-axis be called d\^ a^^^, a^^g, etc. Then d^da^' = dsi^ d^daf^

= ds^, d^dod^ = ds^^ and d^\da'^ = ds^\^ etc. Then if con-

tinuity exists so that we may integrate, we may write

Ijl)da) =fp^\ds^ +Jp'^^ds^ + etc.

^CE'\ds^\^ CB'^ds'^^^eiG.,

o)= Cp'\ds^+ r>Vs2 + etc.

- CR^\ds^\- fp^^^ds^'^^ etc.

Since i 0)2/= 1 (ifljdMp^ = Ji dM(copy = ^\ dMv\

ft)^— ft).
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the kinetic energy of the body, where co is the angular

velocity, the left-hand side represents the difference in the

kinetic energy of rotation of the body when its initial

velocity is co^ and its final velocity (o. On the right-hand

side, Fds represents work, since ds is measured along the

line of action of P in each case. A similar statement

could be made for the E's, so that the right-hand side

represents the work of the working forces minus the work

of the resisting forces. Here, then, as in simple transla-

tion, between any two positions of a rigid body, the work

done ly the working forces equals the work done by the resist-

ing forces plus the change in kinetic

energy.

As an illustration, let us consider

the case of two weights (see Fig.

160), (?i=20 lb. and a^-=10 lb.,

suspended from drums rigidly at-

tached to each other and of radii 3

ft. and 2 ft. respectively. Let the

weight of the two drums and shaft

be 644 lb., and the radius of gyration

2 ft. The radius of the axle is one

inch and the axle friction 30 lb. The

friction acts tangentially to the axle.

Assume that the initial velocity co^ is one radian per sec-

ond, and the final velocity 18 radians per second, how

many revolutions will the drums make ?

The work-energy equation gives

1 (18)2 (80) - \ (1)2 (80) + (^2 2 irrn + 30 ^^/i

= G-^2 Trr^n,

Fig. 160



250 APPLIED MECHANICS FOR ENGINEERS

where r^ is the radius of the large drum, r that of the

small drum, r^ that of the axle, and n the number of revolu-

tions. Making the substitutions, n becomes

7^ = 54.8 revolutions.

Problem 218. In the above illustration, what is the velocity of

_ Gi and G2 when co has its

initial and final values ? In

what time do the drums

make the 54.8 revolutions?

Problem 219. The drum

in Fig. 161 is solid and has

a radius r and a thickness h.

Initially, it is rotating, mak-

ing 0)0 radians per second,

but it is brought to rest by

the action of a brake. The

brake is applied from below by a force P acting at the end of the beam.

The force of friction between the drum and brake is — , where P' is
4

the normal pressure exerted by the beam on the drum. The radius

of the axle is ri, and the axle friction (.05) P'', where P'' is the pres-

sure of the axle on the bearing (neglecting the lifting caused by P)^

Required the work-energy equation.

Since the drum comes to rest, the final kinetic energy is zero, so

that

-- coo^/ + ^' 2 Trrn + (.05) P'' 2 Trnn = 0.

There are no working forces, so we find the equation reducing to the

form: the initial kinetic energy equals the work of resistance. The

normal pressure exerted by the beam on the drum may be found by

taking moments about the hinge of the beam. Then

Fig. 161

P'
a + b

P.



WORK AXD ENERGY 251

The number of revolutions turned through in coming to rest is

designated by n. The equation then becomes

1 ^
nrn (a + b) P ^ .

^^^ p„ o ^,^„.
2 2 /;

Problem 220. Suppose the drum in the preceding problem to

be 3 ft. in diameter, 1^ in. thick, and made of cast iron. It is mak-

ing 4 revolutions per second when the force P = 100 lb. is applied to

the beam. The length of the drum is 6 ft., and the rim weighs twice

as much as the spokes and hub. If ^ = 1.25 ft., a -h b = S ft., and

r =1 in., find the number of revolutions ni that the drum will make

before coming to rest. Assume the friction of the brake on the drum

to be I the normal pressure, and the friction of the axle (.05) P".

Problem 221. The drum in the preceding problem is making

3 revolutions per second ; what force will be required to bring it

to rest in 100 revolutions ?

Problem 222. If the brake in Problem 220 is above instead of

below the drum, how will the results in Problems 220 and 221 be

changed?

Problem 223. A square prism as shown in Fig. 162 is mounted

so as to rotate due to the weight G. The elastic cord runs over the

pulley B and meets the square

at P'. The mechanism is such

that motion begins when P is

in the position shown, and

ceases when the prism has made

a quarter turn; that is, when P
reaches P'. The diameter of

the journal is 2 in., and the

weight on the same is 600 lb.

The force of friction on the

journals is 60 lb., and on the pulley at B 10 lb. Find the tension in

the cord when P reaches P'. The cord is elastic, and is made of such

material that it elongates, due to a pull of 100 lb., .02 in. in each inch

of length. What is the elongation per inch due to the fall of G as

stated ?

BQ

Q^ 100 LB8.

Fig. 162
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140. Brake Shoe Testing Machine.— The brake shoe test-

ing machine owned by the Master Car Builders' Asso-

ciation has been established at Purdue University. It

consists of a heavy fly wheel attached to the same axle

as the car wheel. These are connected with the

engine, and may be given any desired rotation. When
this has been obtained, they may be disconnected and

allowed to rotate. The dimensions and weight of the

parts are known so that the kinetic energy of the fly

wheel and rotating parts may be computed by noting the

Fig. 163

angular velocity. When the desired velocity has been

attained, the brake shoe is brought down on the car wheel.

The required normal pressure on the shoe at A (see Fig.

163) is obtained by applying suitable weights at B, The

system of levers is such that one pound at B gives a nor-

mal pressure of 24 lb. on the brake shoe. The weight of

the levers themselves gives a normal pressure of 1233 lb.

Provision is also made for measuring the tangential pull

of the brake friction ; this, however, is not shown in the

figure.
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The weight of the fly wheel, car wheel, and shaft and

all rotating parts is 12,600 lb., and the radius of gyra-

tion is V2.I6. The weight of 12,600 lb. is supposed to

be the greatest weight that any bearing in passenger or

freight service will be called upon to carry. The diame-

ter of the fly wheel is 48 in., its thickness 30 in., diame-

ter of shaft 7 in., and the diameter of the car wheel is

33 in. The brake-shoe friction is ^ the normal pressure

of the brake shoe on the wheel, and the journal friction

may be assumed as (.002) of the pressure of the axle on

the bearing. The work-energy equation for the rotating

parts after being disconnected from the engine becomes

2\32.2 J 2V32.2 y o^^ ^ ^4 24
n

+ (1233 + 12,600 + 24 a)(.002)2 tt ^ « = 0,

since there are no working forces.

Problem 224. The speed is such as to correspond to a speed of

train of a mile a minute when brakes are applied. What must be

the weight G so that a stop may be made in a thousand feet? What
is the corresponding normal pressure on the brake shoe?

Problem 225. If the speed corresponds to the speed of a train

of 100 mi. per hour, what weight G would be necessary to reduce

the speed to 60 mi. per hour in one mile? What is the normal pres-

sure on the brake shoe necessary?

Problem 226. If the velocity corresponds to a train velocity of

60 mi. per hour, and the apparatus is brought to rest in 220 revolu-

tions, the weight G is 100 lb. Find the tangential force of friction

acting on the face of the wheel. What relation does this bear to the

normal brake-shoe pressure ?

Note. In the preceding problems, the ratio (the coefficient of

friction, see Art. 146) has been taken as J. One of the important
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uses of this testing machine is to determine the coefficient of friction

for different types of brake shoes. Experiment shows that it varies

generally from ^ to i, sometimes going as high as y^.

141. Work of Combined Rotation and Translation. — The

relation between work and energy of simple translation

and the work and energy of rotation about a fixed axis

have been discussed. We shall now determine the rela-

tion for combined rotation and translation when the axis

remains parallel to itself. Let the body of mass M

Fig. 164

(Fig. 164) be in rotation with angular velocity co about an

axis at 0, and at the same time let this axis move parallel

to itself with a linear velocity v. At any instant the

elementary mass dM has a linear velocity of translation

v-^ and a tangential velocity v= cop. Its resultant velocity

is expressed as the diagonal of a parallelogram con-

structed upon the two velocity arrows as sides, so that



WORK AND ENERGY 255

^12 -_ -y2 _|_ ^2 _(_ 2 VV^ COS
(f>.

dM
Multiplying both sides of tliis equation by —--, we have

J -2- =J -2- + J -Y^ + j
2—.., cos<^,

or J -^— = J —wy + J -^+J ciitfwpvicosc^;

but /J cos (f>= t/, and | c?il!i?/ = My=^0, since OX is a gravity

line. At any instant w and v-^^ are constant. Therefore,

At any instant, then, the kinetic energy of combined rota-

tion and translation is equal to the kinetic energy of trans-

lation of the center of gravity plus the kinetic energy of

rotation.

As an illustration, consider a disk of radius r and thick-

ness h rolling without slip-

ping down an inclined

plane, inclined at an angle

a with the horizontal (see

Fig. 165). There is a

working force (? sin a and

a resisting force F=^ (.06)

Gr cos a. Now the kinetic

energy of the disk is made

up of the sum of its kinetic energy rotation and transla-

tion. If ft)Q and v^ be the respective initial angular and

linear velocities, we have

lcu2j- l,,2r+ 1 3j^2 -\mvI \-Fs=G sin a • s.

Fig. 165
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Problem 227. Suppose the disk in the above illustration to be

made of cast iron, and let r = 2 ft., 7^ = J ft., and a = 30°. At a cer-

tain instant it is making 2 revolutions per second. What will be

the linear and angular velocities after the disk has gone 20 ft.?

Would the disk finally come to rest?

142. Kinetic Energy of Rolling Bodies. — It is convenient

to express the kinetic energy of combined rotation and

translation of such bodies as rolling wheels in a different

form from that given in the preceding article. There is

some mass M^ that will have the same kinetic energy when

translated with a velocity v-^ as the kinetic energy of trans-

lation plus the kinetic energy of rotation of the body of

mass M; that is,

2 ""22'

for a wheel rolling on a straight track cor = Vj, where r is

the radius.

Then M. = M+ 4/

This has been called the equivalent mass.

Applying this to the disk in the preceding article, we

find the work-energy equation to be,

^
^ ^ + Fs= Grsina -s

A ''A

for the disk, since J= \Mr\ 31^ = f 7l!f.

Problem 228. A sphere of radius r rolls without slipping down

an inclined plane, inclined at an angle a to the horizontal, with an

initial velocity r^. Show that its kinetic energy is the same as that

of a sphere whose mass is | larger translated with a velocity Vy
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Problem 229. The sphere in the preceding problem is made of

steel, 12 in. in diameter, and a = :^0^. If r^ = 10 ft. per second, wliat

will be the velocity 10 ft. down the plane ? There is a force of fric-

tion acting up the plane = (.03) times the normal pressure of the

sphere on the plane.

143. Work-Energy Relation for Any Motion. — The rela-

tion between work and energy for the motions considered

in this chapter holds for more complicated motions and

for motions in general. The limits of the present work

will not admit the proof of the general theorem. It may

be said, however, that for any motion the w^ork done by

the working forces equals the work done by the resisting

forces plus the change in kinetic energy. In the case of

the motion of a complicated machine, the total work done

equals the total resistance overcome plus the change in

kinetic energy of the various parts of the machine.

144. Work done when Motion is "Uniform. — AVhen the

motion is uniform, the change in kinetic energy is zero,

and the work-energy equation reduces to the form : tvork

done equals the resistance overcome.

As an illustration, let us consider the case of a loco-

motive moving at uniform speed and represented in Fig.

166. Suppose P the mean effective steam pressure (see

Art. 131), F the friction of the piston, F^ the friction of

the crosshead, F'^ the journal friction, F^^' the crank-pin

friction, T the friction on the rail. It the draw bar resist-

ance, G the weight of the locomotive, and N^ and iV the

normal reactions of tlie rails on the wheels. Consider

only one side of the locomotive and write the work-energy

equation for a distance s, equal to a half turn of the driver
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(from dead center A to dead center ^), that the loco-

motive travels. This becomes, for the frame,

Fira = F(7ra + 2 r) + i^'(7ra + 2 r) + E^ira - Rira,

where R^ is the pressure of the driver axle on the frame.

If we neglect friction, this becomes

JP=J? -JK.

Considering the rotating and oscillating parts, we obtain

P(7ra+ 2r)=F(7ra + 2r) + F^ (ira + 2 r) + Tira

+ F'^irr^ + F'^^irr^ + B^ira,

where r^ and r^ are the radii of the driver axle and the

crank pin, respectively. If we neglect friction, this equa-

tion reduces to the form,

PQira + 2r) = Tira + Wira.

Fig. 166

Taking all the parts represented in Fig. 166, we may
disregard the work of friction of the cylinder and cross-

head, since the sum would be zero. That is, the work done

by the piston on the cylinder, due to friction, equals the

work done by the cylinder on the piston due to friction.

We have, then, for the work-energy equation.
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P(ira + 2 r) = Prra + Rira + Tira + F'^ttt^ + F'^'irr^.

It is seen that the pressure of the steam on the head of

the cylinder, for the half of the stroke considered, is a

resistance. If Ave neglect friction and assume perfect roll-

ing, this equation becomes

P Qjra + 2 r) = Pira + Bira,

or
2r

or considering both cylinders,

P = ira

•1 r
R.

This is the formula usually given for the tractive power

of a locomotive having single expansion engines. This

may be expressed in

terms of the dimen-

sions of the cylin-

ders and the unit

steam pressure. Let

p be the unit steam

pressure in pounds

per square inch, I

the length of the

cylinder in inches, d

the diameter of the

cylinder in inches,

and d-^ the diameters of the drivers in inches; then

"
d^

'

Considering the forces acting on the driver, disregarding

()()(• EH
Fig. 167
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friction, and taking moments about the center of the wheel

(see Fig. 167), we have, for uniform motions,

Pr = Ta,

or T=-P,
a

Taking moments about the point of contact of the wheel

and rail, we have, for the position shown,

P(a + r) = R'a,

and since P = R — R^

we have R= —P.
a

It follows that T = R\ that is, the train resistance can-

not be greater than the adhesion of the drivers to the rails.

This adhesion in American practice is usually taken as \
to \ the load on the drivers.

Problem 230. What resistance R may be overcome by a locomo-

tive moving at uniform speed, diameter of drivers 62 in., cylinders

16 X 24 in., and a steam pressure on the piston of 160 lb. per square

inch ? What should be the weight of the locomotive on the drivers ?

Problem 231. If the diameter of the drivers of a locomotive is

68 in., and the size of the cylinder is 20 x 21 in., what train resistance

may be overcome by a steam pressure of 160 lb. per square inch ?

Problem 232. A locomotive has a weight of 155 tons on the

drivers, if the adhesion is taken as J, this allows 31 tons for the draw-

bar pull. The train resistance per ton of 2000 lb., for a speed of 60

mi. per hour, is 20 lb. Find the weight of the train that can be

pulled by the locomotive at the speed of 60 mi. per hour.

Problem 233. An 80-car freight train is to be pulled by a single

expansion locomotive at the rate of 30 mi. per hour. The weight of

each car is 60,000 lb., and the resistance for this speed is 10 lb. per

ton. What must be the weight on the drivers, if the adhesion is J?



CHAPTER XIV

FRICTION

145. Friction.— When one body is made to slide over

another, there is considerable resistance offered because of

the roughness of the two bodies. A book drawn across

the top of a table is resisted by the roughness of the two

bodies. The rough parts of the book sink into the rough

parts of the table so tliat when one of the bodies tends to

move over the other, the projections interfere and tend to

stop the motion. The bearings of machines are made

very smooth, and usually we do not think of such surfaces

as having projections. Nevertheless they are not perfectly

smooth, and when one surface is rubbed over the other, re-

sistance must be overcome. This resisting force to the

motion of one body over another is known as friction.

When the bodies are at rest relative to each otlier, the

friction is known as the friction of rest^ or static friction.

When they are in motion with respect to each otlier, tlie

friction is known as the friction ofmotion^ or kineticfriction.

146. Coefficient of Fric-

tion. — If the body repre-

sented in P'ig. 1G8 be

pulled along tlie horizon-

tal plane by the force P,

the following forces will

2G1
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be acting on it ; the downward force Gr (not shown) and

the reaction li inclined back of the vertical through the

angle 0. The reaction li of the plane on the body may be re-

solved into two components, one horizontal and one vertical.

The horizontal force is known as the force of friction, and

the normal force, the normal pressure. The tangent of the
XT

angle ^, or — , is called the coefficient of friction. This

coefficient of friction, which we shall represent by/, may

be defined as the ratio of the force offriction to the normal

pressure ; it is an absolute number.

The coefficient of friction is usually determined by al-

lowing a body to slide down an inclined plane as shown in

Fig. 169. The angle 6 is

increased until the force of

friction F will just keep the

body from sliding down the

plane. The angle is then

called the angle of repose^ and

the tangent of is the coeffi-

cient of friction.

It is possible with such an

apparatus to determine the

coefficient of friction for various materials. It has been

found that after motion begins the friction is less, that is,

the friction of motion is less than the friction of rest. This

is an important law for engineers.

Fig. 169

147. Laws of Friction for Dry Surfaces.—Very little was

known of the laws of friction until within the last seventy-

five years. About 1820 experiments were made that
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seemed to show that, for such materials as wood, metals, etc.,

friction varies with tlie pressure, and is independent of

the extent of the rubbing surfaces, the time of contact,

and the velocity. A little later (1831) Morin published

the following three laws as a result of liis experiments on

friction

:

(1) The friction between two bodies is directly propor-

tional to the pressure; that is^ the coefficient of friction is

constant for all pressures.

(2) The coefficient and amount of friction for any given

pressure is independent of the area of contact.

(3) The coefficient offriction is independent of the velocity.,

although static friction is greater than kinetic friction.

These laws of Morin hold approximately for dry unlu-

bricated surfaces, although it has been found that an in-

crease in speed lowers the coefficient of friction. The

coefficient of friction is a little greater for light pressures

upon large areas than for great pressures on small areas.

The following is a table of some of the coefficients of

friction as determined by Morin :

Coefficients of Friction, due to Morin

Material Condition of Surface
e 5

E F

S5

O U. Si III

Brick on limestone Dry .67 3r)° .30'

Cast iron on cast iron Slightly greased .16 9° 6'

Cast iron on oak Wet .^h 30° 2'

Copper on oak .17 9° 38'

Copper on oak Greased .11 6° 17'

Leather on cast iron .28 15° 39'
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Coefficients of Friction, due to Morin— Continued

Material Condition of Surface
1 1

Leather on cast iron Wet .38 20° 49'

Leather on cast iron Oiled .12 6° 51'

Leather on oak Fibers parallel .74 36° 30'

Leather on oak Fibers crossed .47 25° 11'

Oak on oak Fibers parallel, dry .62 31° 48'

Oak on oak Fibers crossed, dry .54 28° 22'

Oak on oak Fibers parallel, soaped .44 23° 45'

Oak on oak Fibers crossed, wet .71 35° 23'

Oak on oak Fibers end to side, dry .43 23° 16'

Oak on oak Fibers parallel, greased .07 4° 6'

Oak on oak Heavily loaded, greased .15 8° 45'

Oak on pine Fibers parallel .67 33° 50'

Oak on limestone Fibers on end .63 32° 15'

Oak on hemp cord Fibers parallel .80 38° 40'

Pine on pine Fibers parallel .56 29° 15'

Pine on oak Fibers parallel .53 27° 56'

Wrought iron on oak Wet .62 31° 48'

Wrought iron on oak .65 33° 2'

Wrought iron on wrought iron .28 15° 39'

Wrought iron on cast iron
_

.19 10° 46'

Wrought iron on limestone .49 26° 7'

Wood on metal Greased .10 6° 0'

Wood on smooth stone Dry .58 30° 7'

AVood on smooth earth Dry .33 18° 16'

148. Friction of Lubricated Surfaces.— The laws of fric-

tion as given by Morin and stated in the preceding article

hold approximately for rubbing surfaces, when the sur-

faces are dry or nearly so ; that is, for poorly lubricated

surfaces. If, however, the surfaces are well lubricated so
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that tlie projections of one do not fit into the otlier, but

are kept apart by a fihn or hiyer of the lubricant, tlie laws

of Morin are not even approximately true. The study of

the friction of lubricated surfaces, then, may be divided

into two parts: (1) the study of poorly lubricated bear-

ings, and (2) the study of well-lubricated bearings, the

friction of which varies from | to -^^ that of dry or poorly

lubricated bearings.

Since the friction of poorly lubricated bearings is about

the same as that of dry surfaces, we shall consider that

the laws of oNIorin hold, and shall confine our attention to

the friction of well-lubricated bearings. If tlie lubricant

is an oil, the friction of the bearing is no longer due to

one surface rubbing over the other, but to the friction

between the bearing and the oil, and to tlie internal fric-

tion of the oil. That is, the oil adheres to the two sur-

faces and its own particles attract each other, and the

motion of one of the surfaces with respect to the other

changes the positions of the oil particles. It is to be

expected then that the friction of an oiled bearing will

depend upon the viscosity of the oil, upon the thickness of

the layer interposed hetiveen the surfaces, and upon the

velocity and form of the bearing.

The coefficient of friction is no longer constant, but

varies with the temperature, velocity, and pressure. The

variation of the coefficient of friction of a paraffine oil

with temperature is shown in Fig. 170 when the pressure on

the bearing is 33 lb. per square inch and a velocity of rub-

bing of 296 ft. per minute. It is seen that the coefficient

of friction decreases with increase of temperature until a

temperature of 80° F. is reached, when it increases rapidly.
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This means that above this temperature the oil is so thin

that it is squeezed out of the bearing, and the conditions

of dry bearing are approached. The temperature at

which oils show an increasing coefficient of friction is dif-

.02 .03

COEFFICIENT OF FRICTION

Fig. 170

ferent for different oils, even at the same pressure and

velocity. The curve in Fig. 170, however, may be re-

garded as typical of all oils when the pressure and velocity

are constant.

The following table, due to Professor Thurston, shows
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the relation between tlie coefficient of friction and tem-

perature for a sperm oil in steel bearings when the veloc-

ity of rubbing is 30 ft. per minute.

Pressure, lb. Temfekatiue. Coefficient PKESSirUE, LH. TeMI'KUATUKE, Coefficient

PER SQ. IN. Degrees F. OF Friction PER SQ. IN. Degrees F. OF Friction

200 150 .0500 100 110 .0025

200 140 .0250 50 110 .0035

200 130 .0160 4 110 .0500

200 120 .0110 200 90 .0040

200 110 .0100 150 90 .0025

200 100 .0075 100 90 .0025

200 95 .0060 50 90 .0035

200 90 .0056 4 90 .0400

150 110 .0035

It is seen that for a pressure of 200 lb. per square inch as

the temperature increases from 90° F. the coefficient in-

creases, indicating that the temperature of 90°, for the

given pressure and velocity, was above the temperature at

which the oil became so thin as to be squeezed out and the

bearing to approach the condition of a dry bearing. For

a constant temperature 110° F. and 90° F. the coefficient is

seen to decrease with increase of pressure up to a certain

point and then to increase. This is a typical behavior of

oils when the temperature is constant and the pressure

varies.

At speeds exceeding 100 ft. per minute, the same

authority found '' that the heating of the bearings within

the above range of temperatures decreases the resistance

due to friction, rapidly at first and then slowly, and

gradually a temperature is reached at which increase
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takes place and progresses at a rapidly accelerating

rate."

The relation between the coefficients of rest and of

motion as determined by Professor Thurston for three oils

is given below. The journals were cast iron, in steel

boxes; velocity of rubbing 150 ft. per minute and a tem-

perature 115° F.

g PERM Oil West Virginia Oil Lard

Pressure,
LB. PER.
SQ. IN.

At 150
ft. per
min.

At
start-

ing

At
stop-
ping

At 150
ft. per
min.

At
start-

ing

At
stop-
ping-

At 150
ft. per
min.

At
start-

ing

At
stop-
ping

50 .013 .07 .03 .0213 .11 .025 .02 .07 .01

100 .008 .135 .025 .015 .135 .025 .0137 .11 .0225

250 ,005 .14 .04 .009 .14 .026 .0085 .11 .016

500 .004 .15 .03 .00515 .15 .018 .00525 .10 .016

750 .0043 .185 .03 .005 .185 .0147 .0066 .12 .020

1000 .009 .18 .03 .010 .18 .017 .0125 .12 .019

Steel Journals and Brass Boxes.

500 .0025 .004

1000 .008 .009

It is seen that the coefficient of friction at starting is

much greater than at stopping, and that these are both

much greater than the value at a speed of 150 ft. per

minute.

For an intermittent feed such as is given by one oil hole,

without a cup, oiled occasionally. Professor Thurston

found for steel shaft in bronze bearings, with a speed of

rubbing of 720 ft. per minute, the following coefficients

of friction:
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Pressuke, lb. i'er sq. in.

Oil
8 16 32 48

Sperm and lard

Olive and cotton seed

Mineral oils

.150-.25

.1G0-.283

.154-.2()1

.l;38-.192

.107-.245

.145-.233

.086-.141

.101-.108

.086-. 178

.077-.144

.079-.131

.094-.222

The results show that the coefficient decreases with the

pressure within the range reported, but that the results

are considerably higher than those for well-lubricated

bearings. He also found in connection with the same

tests that with continuous lubrication sperm oil gave the

following coefficients;

Pressure,
lb. per sq. in.

50

200

300

Coefficient
OF Frictioh.

.0034

.0051

.0057

The results of tests of the friction of well-lubricated

bearings are summarized by Goodman (^Engineering News^

April 7 and 14, 1888) as follows:

(a) The coefficient offriction of ivell-luhricated surfaces is

from \ to Jq that of dry or poorly lubricated surfaces.

(6) The coefficient of friction for moderate pressures and

speeds varies approximately inversely as the normal pressure;

the frictional resistance varies as the area in contact^ the nor-

mal pressure remaining the same,

(c) For low speeds the coefficient offriction is abnormally

high^ but as the speed of rubbing increases from about AO to

100 ft, per miiiute, the coefficient of friction diminishes^ and

again rises when that speed is exceeded^ varyiiig ajyproxi-

ynately as the square root of the speed.
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(c?) The coefficient of friction varies approximately in-

versely as the temperature^ within certain Ihnits; namely^

just hefore abrasion takes place,

149. Method of Testing Lubricants.—To make the matter

of the tests of the friction of lubricants clear, it will be

convenient to make use of the description of a testing

cTBlJl

Fig. 171

machine used by Dean W. F. M. Goss at Purdue

University on graphite, and a mixture of graphite and

sperm oil. In making the tests the apparatus shown in

Figs. 171 and 172 was used. (See "A Study in Graph-

ite," Joseph Dixon Crucible Co.)

This apparatus represents, in principle, the machines

generally used for testing lubricants. It is therefore

shown in some detail. The weight Gr is hung from the

shaft upon which it is suspended by the form of box to be

tested. The desired speed of rubbing is obtained by

means of the cone of pulleys, and the pressure on the bear-
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R-\-G

ing is adjusted by the spring. The temperature of the

bearing is read from the thermometer inserted in the bear-

ing. When rotation takes place, the

weight Gr is rotated a certain distance

dependent upon the friction. This dis-

tance is measured on the scale A, The

forces acting upon the pendulum Gr are

shown in Fig. 172, where R represents

the resistance of the spring, ^the force

of friction, I the distance of the center

of gravity of Gr from the axis of rota-

tion, (/) the angle through which Gr is

deflected, and r the radius of the

shaft. Taking moments about the

center of the shaft, we have, when Gi

is held in the position shown, due to

friction,

F-^r = Gri sin (/>, where F^ is the total

friction on the bearing 2F = F^;

Fig. 172

but

so that ^_ Grl sin
(f>

It is customary to take G small compared with i?, so

that the pressure on both sides of the bearing may be

considered equal to 72, the resistance of the spring. The

spring is easily calibrated so that R may be made any-

thing desired by compressing the spring through the

appropriate distance as indicated on the scale F(Fig. 171).

The quantities (r, Z, r, and It are known, and (j> can be

read so that/ can be calculated.
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If G is not small compared to i2, then

/=

so that

F, 'XF, F,

average pressure .XR + G-) + E

Crl sin ^

B + a

/=
r[R^^]R

The results of tests made upon a mixture of graphite

and oil as a lubricant are given in the pamphlet. The

tests were run under 200 lb. per square inch pressure,

at a speed of rubbing of 145 ft. per minute. Oil was

dropped into the bearing at the rate of about 12 drops per

minute, showing a coefficient of friction of \,

Problem 234. If the weight of the pendulum is 360 lb., the

diameter of the shaft 4J in., distance of the center of gravity of G
from the center of shaft 2 ft., the angle <^ 5 degrees, and the average

resistance of the spring 1000 lb., find the coefficient of friction. The

weight G should not be neglected in this case.

150. Rolling Friction.—The resistance offered to the

rolling of one body over another is known as rolling fric-

tion. It is entirely different from sliding friction, and its

laws are not so well

understood. When a

wheel or cylinder (Fig.

173) rolls over a track

the track is depressed

\ and the wheel dis-v;?//;;;??????v??^??????/7777r7

Fig. 173 torted. The force P
necessary to overcome this depression and distortion is

known as rolling friction.
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The forces acting on the wheel are seen from Fig. 173

to be: P the working force, W the weight on tlie wheel,

and M the resistance of the track or roadway to the rolling.

This upward pressure i2 is not quite vertical, but has its

point of application a short distance K' from the vertical.

Its line of action passes through the center of the wheel.

The distance jfiT' depends chiefly upon the roadway; it is

called the coefficient of rolling friction. It is measured in

inches and is not a coefficient of friction in the strict

sense that / is the coefficient of sliding friction. Taking

moments about the point of application of M^ we have,

approximately,

WK^ = Pr,

SO that K' = ^, or r=

When the track or roadway is elastic or nearly so, we
have a condition something like that represented in Fig.

174. The wheel

sinks into the ma-

terial and pushes it

ahead, at the same

time it comes up

behind the wheel.

For a portion of

the wheel on each

side of the point

the roadway is simply compressed; over the remainder of

the surface in contact, however, slipping occurs, as

indicated by the arrows. The resultant resistance,

however, is in front of the vertical through the center.
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and we have, as in the case of imperfectly elastic

roadways,

P = K^W

It has been found hj Reynolds (see Phil. Trans. Royal

Soc, Vol. 166, Part 1) that when a cast-iron roller rolls

on a rubber track, the slippage, due to the elasticity of

the track, may amount to as much as .84 in. in 34

in. An elastic roller rolling on a hard track will roll

less than the geometrical distance traveled by a point on

the circumference. When the roller and tracks are of the

same material, the roller rolls through less than its geo-

metrical distance.

151. Friction Wheels. — The friction of bearings is often

made much less by the use of friction wheels. The ar-

rangement is usually something like that shown in Fig.

Fig. 175
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175. The two friction wheels A^ carry the shaft of the

mechanism A, The friction of the shaft A is thus changed

from sliding to rolling friction. Let P be the normal

pressure on the shaft, and let the two equal forces P' act-

ing through the centers of the friction wheels be the com-

ponents of P acting on the friction wheels. The forces

acting on each friction wheel are, then, the pressure P\
the friction jP, and the friction of the bearing F'. Since

P, P\ and P' form a balanced system of forces, when the

forces acting on the shaft are considered,

2cos/3'

where 2/8 is the angle between the forces P' . The value

of the friction F' of the friction wheel bearings is

cos p

where/ is the coefficient of sliding friction, and the moment

of this friction is

cosp

Taking moments about the center of a friction wheel, we

have
Fr^ = PV3,

so that

cosp
^=(?^-^-

It is seen that if the ratio -^ is constant, the friction

may be made less by taking yS small, so that cos/3 is large.

If r^ is large as compared with rg, the friction is reduced.
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Tlie work lost due to friction per revolution of A is

2 Trr^ F, or

^ \7\y J COS P

The friction of A when resting in an ordinary bearing

would be /P. In order that the friction of the friction

wheels may be less than that of a plain bearing, we must

have
r,^-— <1, or -^<cos^.

ro cos yS r,
2

The work lost, per revolution of J., in a plain bearing,

would be 2 irr^fP, It is seen that the criterion that the

work lost in tlie friction bearing be less than that lost in

the plain bearing is the same as that given above, viz..

cos)8> !3

^2

If the angle /3 is zero, that is, if there is only one fric-

tion wheel, so that the center of A is vertically over J.',

the friction is

^2

This is always less than the friction of a plain bearing,

since -^ is always less than unity.
^2

Problem 235. li P— ^ tons and the radius of the shaft is 2 in.

and the coefficient of friction is .07, what work is lost per revolu-

tion ? If the shaft makes 3 revolutions per second, what horse power

per revolution is lost in friction? Given also /3 = 45°, rg = | in., and

Tg = 4 in.
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Problem 236. In the case of the shaft nieutioiied in the preced-

ing problem, how much more horse power per revohition would it

take if the bearing was plain ? What value of jB would give the

same loss due to friction in both the plain bearing and the one pro-

vided with friction wheels ?

152. Resistance of Ordinary Roads. — Resistance to trac-

tion consists of axle friction, rolling friction, and grade

resistance. Axle friction varies from .012 to .02 of the

load, for good lubrication, according to Baker. The

tractive power necessary to overcome axle friction for

ordinary American carriages has been found to be from

3 lb. to 3| lb. per ton, and for wagons with medium-sized

wheels and axles from 3| lb. to 4J lb. per ton.

The total tractive force per ton of load, for wheels 50 in.,

30 in., and 26 in., in diameter, respectively, is, according

to Baker (^Engineering Netvs^ March 6, 1902)

:

Tractive Force
IN Pounds

On macadam roads

On timothy and blue grass sod, dry, grass cut

On timothy and blue grass sod, wet and springy .

On plowed ground, not harrowed, dry and cloddy

57

1:32

173

252

61

145

203

303

70

179

288

374

Rolling resistance is influenced by the width of the tire.

According to Baker, poor macadam, poor gravel, compres-

sible earth roads, and, on agricultural lands, narrow tires,

usually give less traction. On earth roads composed of

dry loam with 2 to 3 in. of loose dust, traction with

l|-in. tires was 90 lb. per ton, and with 6-in. tires 106

lb. per ton. On tlie same road when it was liard and

dry, with no dust, that is, wlien it was compressible, the
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traction was found to be 149 lb. per ton with l|^-in. tires

and 109 lb. per ton with 6-in. tires. On broken stone

roads, hard and smooth, with no dust or loose stones, the

traction per ton was 121 lb. with l|-in. tires, and 98 lb.

with 6-in. tires. Moisture on the surface or mud in-

creases the traction.

Morin found that with 44-in. front and 54-in. rear

wheels on hard dry roads the traction per ton was 114 lb.

with either l|-in. or 3-in. tires. On wood-block pave-

ments the traction per ton was 28 lb. with 1^-in. tires,

and 88 lb. with 6-in. tires.

On asphalt, bricks, granite, macadam, and steel-road sur-

faces, investigated by Baker, the traction per ton varied

from 17 lb. to 70 lb., the average being 38 lb.

Morin gives the coefficient of rolling friction for wagons

on soft soil as .065 in., and on hard roads .02 in. Accord-

ing to Kent ("Pocket-Book"), tests made upon a loaded

omnibus gave the following results

:

Pavement
Speed, Miles
PER Hour

Coefficient,

Inches
Eesistance, per
Ton, in Lb.

Granite

Asphalt

Wood
Macadam, graveled . .

Macadam, granite, new .

2.87

3.56

3.34

3.45

3.51

.007

.0121

.0185

.0199

.0451

17.41

27.14

41.60

44.48

101.09

Problem 237. Compare tlie resistance offered to a load of two

tons pulled over asphalt, macadam, good earth roads, or wood-block

pavement. Width of tires, 6 in.

Problem 238. Compare the resistances in the above problem with

that of steel rails to the same load.
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153. Roller Bearings. — In the roller bearings the sliaft

rolls on hardened steel rollers as shown in cross section in

Fig. 176. The roll-

ers are kept in place

in some way similar

to that shown in the

journal of Fig. 177.

Such bearings are

used where heavy

loads are to be car-

ried. Tests of roller

bearings have been made by Dean C. H. Benjamin

(^Machinery^ October, 1905), who determined the follow-

ing values for the coefficient of friction. Speed 480

revolutions per minute.

Fig. 176

Diameter of
Roller Bearing Plain Cast-Iron Bearing

Journal, in Inches Max. Min. Average Max. Min. Avera«^e

2tV

211

.036

.052

.041

.053

.019

.034

.025

.049

.026

.040

.030

.051

.160

.129

.143

.138

.099

.071

.076

.091

.117

.094

.104

.104

It was found that the coefficient of friction of roller

bearings is from ^ to |- that of plain bearings at moderate

speeds and loads. As the load on the bearing increased,

the coefficient of friction decreased. Tightening the bear-

ing was found to increase the friction considerably.

Tests of the friction of steel rollers 1, 2, 3, and 4 in.

in diameter are reported in the Transactions Am. Soc.

C. E., August, 1894. The rollers were tested between
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plates IJ in. thick and 5 in. wide, arranged as shown in

Fig. 178. Tests were made with the plates and rollers of

Fig. 177

^P'

cast iron, wrought iron, and steel. The friction P' for

..1^7. ^ A ^ I.
-0063

unit load P was round to be
Vr

for cast-iron rollers

.0073
and plates, ^^^ for wrought iron, and '——- for steel,

Vr vr

when r represents the radius of

the roller in inches. The rollers

were turned and the plates

planed, but neither were polished.

154. Ball Bearings.— For high

speeds and light or moderate

loads the friction is much re-

duced by the use of hardened

Fig. 179 steel balls instead of the steel

rollers. These bearings are now used on all classes of
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machinery, giving a much greater efficiency except for

heavy loads. The principal objection to the ball bearing

seems to be clue to the fact that there is so little area of

contact between the balls and bearing plates. This gives

rise to very high stresses over these areas, and consequently

a considerable deformation of the balls. When the ball

has been changed from its spherical form it is no longer

free to roll, and the friction increases rapidly. Some

authorities consider a load of from 60 to 150 lbs. sufficient

for balls varying in size from | to -| inch in diameter.

Figure 179 illustrates a type of bearing used for shafts,

and Fig. 180 a type used for

thrust blocks.

The conclusions reached by

Goodman from a series of tests

on bicycle bearings (Proc. Inst.

C. E., Vol. 89) are as follows:

(1) The coefficient of friction

of ball hearings is constant for

varying loads, hence the frictional

resistance varies directly as the

load.

(2) The friction is unaffected hy a change of temperature.

The bearings were oiled before starting the tests. The

coefficient of friction for ball bearings Avas found to be

rather higher than for plain bearings with bath lubrica-

tion, but lower than for ordinary lubrication. Ball bear-

ings will also run easily with a less supply of oil. The

following table gives the resvilts of tests of ball bearings.

The bearings were oiled before starting, and the tests Avere

run at a temperature of 68° F.

Fig. 180
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19 is:r 350
Load on
Bearing

Retolutions PER MiN. Revolutions PER MiN. Revolutions per Min.

IN Lb.
Coetf. friction Friction, lb. Coeff. friction Friction, lb. Coeff. friction Friction, lb.

10 .0060 .06 .0105 .10 .0105 .10

20 .0045 .09 .0067 .13 .0120 .24

30 .0050 .15 .0050 .15 .0110 .33

40 .0052 .21 .0052 .21 .0097 .39

50 .0054 .27 .0054 .27 .0090 .45

60 .0050 .30 .0055 .33 .0075 .45

70 .0049 .34 .0054 .38 .0068 .47

80 .0048 .38 .0062 .49 .0060 .48

90 .0050 .45 .0068 .61 .0060 .54

100 .0058 .58 .0069 .69 .0057 .57

110 .0054 .59 .0065 .71 .0060 .66

120 .0055 .66 .0075 .90 .0057 .68

130 .0058 .75 .0078 1.01 .0062 .81

140 .0056 .78 .0077 1.08 .0060 .84

150 .0060 .90 .0083 1.24 .0062 .93

160 .0075 1.20 .0081 1.29 .0058 .93

170 .0079 1.34 .0078 1.33 .0055 .93

180 .0079 1.42 .0078 1.40 .0053 .95

190 .0087 1.65 .0076 1.44 .0054 1.03

200 .0090 1.80 .0081 1.62 .0060 1.20

Another series of tests, run with a constant load on the

bearing of 200 lb. and a temperature of 86^ F., shows the

variation of the coefficient of friction with the speed. It

is seen that as the speed increased the coefficient and the

friction decreased. The preceding table, however, shows,

for loads below 175 Zi., an increase in the coefficient with

increase in speed. In particular, this table shows that for

loads below 80 lbs. the coefficient increased with increase

of speed ; for loads between 90 and 175 lbs. it increased

when the speed was 150 r.p.m. and decreased when it was

350 R.P.M. Beyond 175 lbs. the coefficient increased.
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Revolutions per Minitk Coefficient Friction Friction Pounds

15 .00735 1.47

93 .004(35 .93

175 .00375 .75

204 .00345 .69

280 .00300 .60

It seems from the data given that the first conclusion

of Goodman's should be changed to read : the coefficient of

friction of hall hearings is constant for vari/ing loads^ up to

a certain limits heyond which it increases with increase of

load. This limit is about 150 lb. in the tests reported.

Tests on ball bearings designed for machinery subjected

to heavy pressures have been made in Germany (see Zeit-

schrift des Vereins deutsche Ingenieure^ 1901, p. 73). It

was found that at speeds varying from 65 to 780 revolu-

tions per minute, vt^here the bearing was under pressures

varying from 2200 lb. to 6600 lb., the coefficient of friction

varied little and averaged .0015.

Tests of ball bearings made by Stribeck and reported by

Hess (Trans. Am. Soc. M. E., Vol. 28, 1907) give rise to

the following conclusions : (a) the load that may be put

upon a bearing is given by the formula

r = cd-n

where P is the load in pounds on a bearing, consisting of

one row of balls, (? is a constant dependent upon the mate-

rial of the balls and supporting surfaces and determined

experimentally, d the diameter of the balls, the unit being

^ of an inch, and n the number of balls. For modern
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materials c varies from 5 to 7.5. (5) The coefficient of

friction varied from .0011 to .0095. It was independ-

ent of speed, '' within wide limits," and approximated

.0015; this was increased to .003 when the load was

about one tenth the maximum.

The following values for the coefficient of friction for

heavy loads are reported, from observation, with the state-

ment that the real values are probably somewhat less:

Revolutions

per minute
65 100 190 380 580 780 1150

Coefficient of

friction for

load 840 lb. .0095 .0095 .0093 .0088 .0085 .0074

Coefficient of

friction for

load 2400 lb. .0065 .0062 .0058 .0053 .0050 .0049 .0047

Coefficient of

friction for

load 4000 to

9250 lb. .0055 .0054 .0050 .0050 .0041 .0041 .0040

It should be remembered that the friction of a ball

bearing is due to both sliding and rolling friction, the

sliding friction being due to the elasticity of the balls

and the bearing (see Art. 150). Rolling friction is most

nearly approached when the balls are hard and not easily

changed from their spherical shape. All materials, how-

ever, are deformed under pressure so that perfect rolling

friction is impossible. On account of the sliding friction

present in roller and ball bearings, it is necessary to use a

lubricant to prevent wear.
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Problem 239. ITow many J-iii. balls will be necessary in a ball

bearing designed to carry 4000 lb., if c = 7.5? If /= .0015, what

work is lost per revolution, the distance from the axis of rotation to

the center of balls being one inch?

155. Friction Gears. — In the friction gears the driver

is usually the smaller wheel, and when there is any differ-

ence in the materials of which tlie wheels are made, the

driver is made of the softer material. This latter arrange-

ment is resorted to, to prevent flat places being worn on

either wheel in case of slipping. These gears have been

used for transmitting light loads at high speeds, where

toothed gears would be very noisy, or in cases where it is

necessary to change the speed or direction of the motion

quickly.

IRON FOLLOWER

Fig. 181

The use of paper drivers has made possible the trans-

mission of much heavier loads by means of such gears.
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A series of tests, made by W. F. M. Goss, and reported

ill Trans. Am. Soc. M. E., Vol. 18, on the friction be-

tween paper drivers and cast-iron followers, is of inter-

est in this connection. The apparatus used is shown in

Fig. 181. The pressure between the wheels was obtained

by a mechanism that forced the two wheels together w^itli

a pressure P. A brake w^heel shown in the figure ab-

sorbed the power transmitted.

The coefficient of friction was regarded as the ratio of

F to P, as in sliding friction. While this is customary,

it is not entirely true, since we have the rolling of one

body over the other. We shall, however, assume that we

may call the coefficient of friction /=—• It was found

that the coefficient of friction varied with the slippage,

but was fairly constant for all pressures up to some point

between 150 to 200 lb. per inch of width of wheel face.

'' Variations in the peripheral speed between 400 and 2800

ft, per minute do not affect the coefficient offriction.''^

If the allowable coefficient of friction be taken as .20,

the horse power transmitted per inch of width of face of

the wheel is

H.P. = 150 X .2x^\7rd xwx ^^M0288dwl^,
33,000

where d is the diameter of the friction wheel in inches,

w the width of its face in inches, and iV the revolutions

per minute. Using this formula, the following table is

given in the article in question

:
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Horse Power which may be Transmitted by Means of Paper
Friction Wheel of One Inch Face, when run

UNDER A Pressure of 150 lb.

DiAMETEK Kf.volutions per M [NUTE
r\v Pitt tw
IN Inches 25 50 75 100 150 200 600 1000

8 .0476 .0952 .1428 .1904 .2856 .3808 1.1424 1.904

10 .0595 .1190 .1785 .2380 .3570 .4760 1.4280 2.380

14 .0833 .1666 .2499 .3332 .4998 .6664 1.9992 3.332

16 .0952 .1904 .2856 .3808 .5712 .7616 2.2848 3.808

18 .1071 .2142 .3213 .4284 .6426 .8568 2.5704 4.288

24 .1428 .2856 .4284 .5712 .8568 1.1424 3.4272 5.712

30 .1785 .3570 .5355 .7140 1.0710 1.4280 4.2840 7.140

36 .2142 .4284 .6426 .8568 1.2852 1.7136 5.1408 8.560

42 .2499 .4998 .7497 .9996 1.4994 1.9992 5.9976 9.996

48 .2856 .5712 .8568 1.1424 1.7136 2.2848 6.8544 11.420

The value of the coefficient of friction for friction gears,

(Kent, ''Pocket Book") may betaken from .15 to .20 for

metal on metal; .25 to .30 for wood on metal; .20 for

wood on compressed

paper.

Problem 240. If the

friction wheels are grooved

as shown in Fig. 182, both

of cast iron, and the small

driver fits into the groove

of the larger follower, we

may take/= .18. Then

F = 2fN = 2fP cos a

= .36 P cos a. Fig. 182

Problem 241. The speed of the rim of two grooved friction

wheels is 400 ft. per minute. If a = 45°, /= .18, what must be the

pressure P to transmit 100 horse power ?
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Problem 242. What horse power may be transmitted by the

gearing in the preceding problem, ii P = 6000 lb. and the peripheral

velocity is 12 ft. per second?

156. Friction of Belts.— When a belt or cord passes over

a pulley and is acted upon by tensions T^ and T^^ the ten-

sions are unequal, due to the friction of the pulley on the

belt. We shall determine the relation between T^ and T^.

Let the pulley be represented in Fig. 183. The belt covers

Fig. 183

an arc of the pulley whose angle is a. Consider the forces

acting upon the belt and suppose 2\ and T^ to be the ten-

sions in the belt on the tight and slack sides, respectively,

and T the tension in the belt at any point of the arc of

contact. Let F be the total friction between the pulley

and belt and dF the friction on an elementary arc ds. If

dp is the noi'mal pressure on an elementary arc, then

dF=fdP and T^- T.^ = F, where / is the coefficient of

friction.

Represent as in Fig. 183 an elementary arc of the belt
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of length ds. The forces acting on this elementary part

are, the tensions T+ dT and T^ the friction dF^ and the

normal pressure dP. Taking moments about the center

of the pulley, we have

(^T+dTy = dFr+Tr,

or dT=dF.

Of the forces acting upon this elementary portion of the

belt, dT and dF are in

equilibrium, so that T^ dP^

and T must also be in equi-

librium. Since this is true,

these latter forces must

form a closed triangle when drawn to scale (Art. 13).

We have, then, from Fig. 184, approximately,

dP= TJ/3,

dT=dF=fTdl3,

Fig. 184

SO that

or

This gives

or

*^T2 I *^0

T

or, writing it in the exponential form,

This is the relation desired. The quantity e = 2.72+ is

the base of the system of natural logarithms. The

log
10

.4343.

F=T,^T,^=T,(l
u

-fo.

) T./y'^ 1)
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When the band is used to resist the motion of a pulley-

as in some types of brakes (see Fig. 185), it is known as a

friction strap, see Art. 165.

Fig. 185

Problem 243. A rope is wrapped four times around a post and a

man exerts a pull of 50 lb. on one end. If the coefficient of friction is

.3, what force can be exerted upon a boat attached to the other end

of the rope ?

Problem 244. A pulley 4 ft. in diameter, making 200 revolutions

per minute, drives a belt that absorbs 20 horse power. What must be

the width of the belt in order that the tension may not exceed 70 lb.

per inch of width ?

Problem 245. What should be the width of a belt J of an inch

thick to transmit 10 horse power ? The belt covers .3 the smaller

pulley and has a velocity of 500 ft. per minute. The coefficient of fric-

tion is .27 and the strength of the material 300 lb. per square inch.

Note. The power that can be transmitted by a belt depends

upon the friction between the belt and pulley. So that

H.P.
Fv _ (T,-T,)v

33,000 33,000
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'V 157. Transmission Dynamometer. — It has been shown,

Art. 156, that the tensionin

I

of a belt on the tight side is

greater than the tension on the

slack side. The transmission dy-

namometer (the Fronde dynamom-

eter), illustrated in Fig. 186, is

designed to measure the difference

in these tensions. Let the pulley

D be the driver and the pulley E T,

the follower, so that 7\ represents

the tight side of the belt and T^

the slack side. The pulleys B^ B
run loose on the T-shaped frame

CBB, This frame is pivoted at A.

If we neglect the friction due to

the loose pulleys, we have the fol-

lowing forces acting on the T-

frame, two forces T^ at the center

of the right-hand pulley B^ two

forces T^ at the center of the left-

hand pulley jB, a measurable re-

action P at (7, and the reaction of the pin at A, Taking

moments about the pin, we have

P((7^) = 2 T^iBA) - 2 T^(^BA}

= 2BAiT,-T,\

Fig. 18(3

so that
^ - 2 BJL

The distances CA and BA are known, and P may be

measured ; the difference, then, T^ — T^, may always be
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obtained. The value T^ — T^ is then known and the horse

power determined by the rehition (see Problem 253)

' ' ' 33,000

where n is the number of revolutions, r is the radius of the

machine pulley in feet.

158. Creeping or Slip of Belts.— A belt that transmits

power between two pulleys is tighter on the driving side

than it is on the foUoiving side. On account of this differ-

ence in tension and the elasticity of the material, the tight

side is stretched more than the slack side. To compen-

sate for this greater stretch on one side than on the other,

the belt creeps or slips over the pulleys. This slip has

been found for ordinary conditions to vary from 3 to 12

ft. per minute. The coefficient of friction when the slip

is considered is about .27 (Lanza). It has also been

found that the loss in horse power in well-designed belt

drives, due to slip, does not exceed 3 or 4 per cent of the

gross power transmitted, and that ropes are practically

as efficient as belts in this respect. For an account of the

experimental investigations on this subject the student is

referred to Institution of Mechanical Engineers, 1895,

Vols. 3-4, p. 599, and Transactions Am. Soc. M. E., Vol.

26, 1905, p. 584.

159. CoeiScient of Friction of Belting. — The value of

the coefficient of friction of belting depends, not only on

the slip but also upon the condition and material of tlie

rubbing surfaces. Morin found for leather belts on iron

pulleys the coefficient of friction /= .50 when dry, .30
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when wet, .23 when greasy, and .15 when oily (Kent,

''Hand Book"). Most investigators, however, including

Morin, took no account of slip, so that the best value of/,

everything considered, is that given in the preceding

article (.27).

160. Centrifugal Tension of Belts.— When a belt runs at

a high rate of speed over a pulley there is considerable

tension introduced in the belt due to the centrifugal force.

We have seen (Art. 86) that the centrifugal force equals

, where 31 is the mass and v tlie tangential velocity.

Let the centrifugal force be represented by P^ and the

tension in the belt due to this force by T^.. We know
3Iv^

that Pc = • Now if we consider a section of belt one
r

foot long and of one square inch cross section, we may
consider the tensions Tc, at either end of this len^^th, in

Fig. 187

equilibrium with P^ (see Fig. 187 (^) ). From Fig. 187

(5) we have approximately P^ = T^.6, but from Fig. 187

(a), 6=-, so that P^ = —^ Since Pc =—-,
r r. r
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T = 31v'- =
9

where W is the weight of a portion one foot long and one

square inch in cross section. If 7 for leather is 56 lb.,

Tr= .388 lb. and T,= -~v'- = .012 v^.

Hence, in designing belts, the total tension must be

T^+T,^ ^i + .012z;2= T^e^-+,012v\

Problem 246. A belt runs at a velocity of 4000 ft. per minute.

What tension is introduced by the centrifugal force of the belt in

passing over the wheel ?

Problem 247. What additional width of belt must be provided

for in Problems 244 and 245 if the centrifugal force of the belt is

considered ?

161. Stiffness of Belts and Eopes.— Belts and ropes used

in the transmission of power

are not perfectly flexible, so

that some force is necessary to

bend them around the pulleys.

We desire to know the magni-

tude of this force. Let T
(Fig. 188) be the tension in

the on-side of the belt and

T + T^ the tension on the

off-side. Neglecting the effect

of the friction of the pulley, T^

represents the force necessary

to overcome the stiffness of

tlie rope. In the analysis here

Fig. 188
* '

^' given, it is assumed that whiler+r.
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it takes a certain force T^ to cause the rope to wind around

the pulley, it does not require any force to straighten it.

This assumption is nearly true for steel wire rope, but not

nearly so true for hemp rope. All rope requires some

force to straighten it when coming off the pulley.

Taking moments about the center of the pulley and

neglecting the friction of the bearing, we have

or T^ = y(^^ ~ ^i\

where d^= r + -, and d^ = r + ai+- + a^-

The distance a^ is due to the stiffness of the rope, and

the distance a^ the distance of the point of application of

T from the center of the rope. That T does not act at

the center of the rope, but at a distance a^ toward the

outside, is due to the fact that the outside of the roj)e is

under greater tension than the inside. Now the distance

a^ for inelastic ropes decreases as T increases, and so we

may write a^ = ^, where c^ is a constant, determined

experimentally. For wire rope, a^ increases with in-

creased radius of the pulley, and decreases with increased

tension, so that we may write

.(-f)
«i
= Y

making these substitutions in the above equation, we have

e^ + d^T
1\ = — -1— tor hemp rope,
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and a^T ,

2\ = c^-i ^—y tor wire rope.

For tarred hemp ropes, c-^ has been found (see Du Bois,

''Mechanics of Engineering") to be 100, and a^^ .222, so that

^ 100 + .222y .

^^ = \— pounds.
, Cv

For new hemp ropes^

T^ = —ZLl—_ pounds.

For wire ropes^

m i Ao .0937 7 ,

y=1.08H
-J-

pounds.

^ + 2

In each case T is expressed in pounds and r and d in

inches.

Problem 248.— A new hemp rope, one inch in diameter, passes

over a pulley 13 in. in diameter, under a tension of 500 lb. What
is the force necessary to overcome the stiffness of the rope? What

per cent is this of the total tension in the rope ?

Problem 249.— A wire rope, one inch in diameter, passes over a

pulley 2 ft. in diameter, under a tension of 1000 lb. What force

is necessary to overcome the stiffness of the rope? Compare this force

with that necessary to overcome the stiffness of the same rope under

the same tension, when it passes over a pulley 12 in. in diameter.

What per cent of the total tension is it in each case ?

Problem 250. — A new hemp rope, 2^ in. in diameter, passes

over a grooved pulley 31 in. in diameter, under a tension of 1000

lb. What force is necessary to overcome the stiffness of the rope?

Allow an increase of 6 per cent for the grooved pulley.



FRICTION 297

It will be seen from the formula and the problems tliat

the force necessary to overcome the stiffness of ropes is

greater for small pulleys than for large ones.

The following empirical formula will be found useful

(see Memoirs et Compte rendu de la Societe des Ingenieurs

Civile^ December. 1893, p. 558, or Proc. Inst. C. E., Vol.

116, p. 455):

for ropes, where c?and r are expressed in millimeters and

2\ and T in kilograms. A formula for belting is also

given,

t, = ^^^m-^ut'].

where w is the width of the belt and t its thickness. T^

and T are expressed in kilograms and w^ t^ and r in milli-

meters.

The student should solve Problems 248 and 249, using

the empirical formula given above.

Problem 251. A belt 12 in. wide and -| in. thick passes over

a pulley 18 in. in diameter under a tension of 1000 lb. What
force is necessary to overcome the stiffness of the belt?

In using the empirical fornmla just given it will be necessary to

change pounds to kilograms and distances to millimeters.

162. Friction of a Worn Bearing.— Tlie friction of a bear-

ing that fits perfectly is the friction of one surface sliding

over another and is given by the equation
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where F is the force of friction, / the coefficient of friction,

and iV'is the total normal pressure on the bearing.

When, however, the bearing is worn, as is shown much

exaggerated in Fig. 189, the friction may be somewhat

Fig. 189

different. When motion begins, the shaft will roll up on

the bearing until it reaches a point A where slipping be-

gins. If motion continues, slipping will continue along a

line of contact through A. Let P be a force that causes

the rotation, R a force tending to resist the rotation, and

M^ the reaction of the bearing on the shaft. There are

only three forces acting on the shaft, so that P, i2, and R^

must meet in the point B. The direction of R^ is accord-

ingly determined. The normal pressure is iV^= i^^ cos ^,

and the force of friction is

It is seen that 6 is the angle of friction. The moment of

the friction with respect to the center of the axle is

Fr m^r sin 6.
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If the axle is well lubricated so that 6 is small and sin 6

may be replaced by tan 6 = f, the friction is

and the moment
Fr = fM^r.

The circle tangent to AB radius r sin is called the

friction circle. Since r and 6 are known generally, this

circle may be made use of in locating the point A, In

other words, the shaft will continue to rotate in the bear-

ing so long as the reaction B^ falls within the friction

circle, and slipping will begin as soon as the direction of

B^ becomes tangent to the friction circle.

Problem 252. If the radius of the shaft is 1 in., = 4°,

P = 500 lb., ai = 3 ft., a-z = 2 ft., angle between ai and ao is 100° and

P and R are at right angles to ai and a2, what resistance R may be

overcome by P when slipping occurs ?

Problem 253. The radius of a shaft is 1 in., R = 20 lb.,

P = 20 lb., ai = 3 ft., and a2 = 2 ft. What force of friction will be

acting at the point A, when the angles between P and ai and R and

ao are right angles ? What must be the value of the coefficient of

friction ?

163. Friction of Pivots.— The friction of pivots presents

a case of sliding friction, so that the force of friction F
equals the coefficient of friction times the normal pressure.

That is,

(a) Flat-End Pivot.— The friction on a flat-end pivot

is greatest on the outside and varies linearly to zero at the

center as shown in Fig. 190. The resultant force of friction
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R has its point of application |r from the center. We
may write

F=R=fP,

and the moment of the friction with respect to the center

is

Moment = | rfP.

p

/^—

>

^ ^

Fig. 190 Fig. 191

The work lost per revolution is

(6) Collar Bearing or Hollow Pivot. Let the outside

radius be r^ and the inside radius r^ (Fig. 191); then,

F=B=.fP,
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and the moment of friction is

Moment = 2rg- fP
:i rl - rl

(For the position of the center of gravity, see Art. 24.)

The work lost, due to friction, per revolution is

3L.2
W •» 1 r/P.

( "^'^^^i^

If r^ = 0, this reduces to the work lost per revolution

for the solid flat-end pivot.

((?) Conical Pivot.

The conical pivots,

such as are illustrated

in Fig. 192, do not

usually fit into the

step the entire depth

of the cone. Let the

radius of the cone at

the top of the step be

/, a half the angle of

the cone, and P^ the

resultant normal re-

action of the bearing

on the pivot. Then Fig. 192

z Sin a

and the total friction F= li — fP
i sin a

The moment of friction in this case is

fpMoment =
2 sin a
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since the resultant friction may be regarded as applied at

I r'. The work lost due to friction per revolution may

be written - ^-o

3 sin a

If cc = — , this value for work lost reduces to the work

lost per revolution, in the case of the flat-end solid pivot.

It is easily seen, since sin a is less than unity, that if r' is

nearly equal to r, the friction of the conical bearing is

greater than the friction of the flat-end bearing. This

might have been expected from the wedgelike action of

the pivot on the step. It is also easily seen that r' may

be taken small enough so that the friction will be less

than the friction of the flat pivot. The work lost due to

friction in the case of the conical pivot will be equal to,

greater, or less than, the work lost, due to friction in the

case of the flat-end pivot,

p according as

r'-^r sin a.

(c?) Spherical Pivot,

Suppose the end of the

pivot is a spherical sur-

face, as shown in Fig.

193. Let r be the radius

of the shaft and r^ the

radius of the spherical

surface; then the load

per unit of area of

P
horizontal surface is

Fig. 193 irr'
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The horizontal projection of any elementary circle of the

bearing, of radius x^ is 2 irxdx. The load on this area is

\7rrv ^"

and the corresponding normal pressure is

dF, = ?Zf^ sec /3.

X. ^ r, OD Vr^-a^ ^\.^;jT> ^Pxdxf r, \But cos/3=— =

—

^
, so that dF.= —

(
——^

—

]•

^1 ^1 r^ Wrf-x^J

The corresponding friction is/dP^,

Integrating between the values x = and x = r^ the

value for tlie total friction is given by

F=E= n-Pnf( ^dx \
Jo r2 VVrf - xy

Since r = r^ sin a and Vr^ — r^= r^ cos a, the expression

for the friction may be written

1 + cos CI

IT
If « = ^9 that is, if the bearing is hemispherical,

Li

F=^fPy and if «=0, that is, if the bearing is flat,

F=fP.
The moment of the friction is given by adding all the

tQvm^fdP^x by means of integration; this gives

Moment =:M^f'l sin"!- - ?!V/f=^\
r^ \'l r^ 2 /

or in terms of a.

Moment = fBr (—V " ^^^ ^) '
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The work lost due to friction, for each revolution, is

found by adding the work lost by friction on each ele-

mentary area of the bearing ; that is, by finding the sum

of such terms as 2 irxfdP-^ by means of integration ; this

gives

TF= 2 ir/Fr i-^ - cot (i\ .

If the bearing is hemispherical, a = - , and the moment
becomes

Moment ->^^^
2

and the work lost per revolution

The friction of flat pivots is often made much less by

forcing oil into the bearing, so that the shaft runs on a

film of oil. In the case of the turbine shafts of the Niag-

ara Falls Power Company (see Art. 135) the downward

pressure is counteracted by an upward water pressure.

In some cases the end of a flat pivot has been floated on

a mercury bath. This reduces the friction to a minimum

(see Engineering^ July 4, 1893).

The Schiele pivot is a pivot designed to wear uniformly

all over its surface. The surface is a tractrix of revolu-

tion; that is, the surface formed by revolving a tractrix

about its asymptote. Its value as a thrust bearing is

not as great as was first anticipated (see American Ma-

chinist, April 19, 1891).

The coefficient of friction for well-lubricated bearings

of flat-end pivots has been found to vary from .0041 to

.0221 (see Proc. Inst. M. E., 1891). For poorly lubri-
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cated bearings the coefficient may be as high as .10 or

.25 for dry bearings.

Problem 254. Show that the work lost per revolution for the

hemispherical pivot is 2.35 times the work lost per revolution for the

flat pivot.

Problem 255. The entire weight of the shaft and rotating parts

of the turbines of the Niagara Falls power plant is 152,000 lb., tlie

diameter of the shaft 11 in. If the coefficient of friction is con-

sidered as .02 and the bearing a flat-end pivot, what work would be

lost per revolution due to friction ?

Problem 256. A vertical shaft carrying 20 tons revolves at a

speed of 50 revolutions per minute. The shaft is 8 in. in diameter

and the coefficient of friction, considering medium lubrication, is

.08. What work is lost per revolution if the pivot is flat? AVhat

horse power? What horse power is lost if the pivot is hemispherical

?

Problem 257. What horse power would be lost if the shaft in

the 2^receding problem was provided with a collar bearing 18 in. out-

side diameter instead of a flat-end block? Compare results.

Problem 258. A vertical shaft making 200 revolutions per minute

carries a load of 20 tons. The shaft is 6 in. in diameter and is

provided with a flat-end bearing, well lubricated. If the coefficient

of friction is .004, what horse power is lost due to friction?

164. Absorption Dynamometer.—The friction brake shown

in Fig. 181 is used to absorb the energy of the mechanism.

It may be used as a means of measuring the energy, and

when so used it may be called an absorption dynamometer.

The weight TF, attached to one end of the friction band,

corresponds to the tension in the tight side of an ordinary

belt (see Art. 156), while the force measured by the spring

S corresponds to the tension on slack side of a belt. Let

W= T^ and S = T^\ then 2\ = 7^2^-^% just as was found in
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the case of belt tension. The work absorbed per revolu-

tion is work =z (T^— T^}2 7rr^, where r^ is the radius of

the brake wheel. The horse power absorbed is

HP ^ (T,-T,r^^r,
33,000 vv^>^\ . .^..v^ ^ ^

In many cases the friction band is a hemp rope, and in

such cases it is possible to wrap the rope one or more

times around the pulley, making it possible to make

T^ — T^ large while T^ is small.

The surface of the brake wheel may be kept cool by

allowing water to flow over the inside surface of the rim,

which should be provided with inside flanges for that

purpose.

165. Friction Brake. — The friction brake shown in

Fig. 185 consists of the lever EQ^ the friction band, and

the friction wheel. Such brakes are used on many types

of hoisting drums, automobiles, etc. Let the band ten-

sions be T^ and T^^ and let W be the force causing the

motion, that is, the working force, andP the force applied

at the end of the lever EC in such a way as to retard the

rotation of the drum. We have here as before ^i = T^e^°-

and the work per revolution C^i~ ^2)^ '^^1 + ^^ '^^s-

By taking moments about A we have T^— T^ =—2 a,

where r^ is the radius of the shaft and F is the force of

friction acting on the shaft. Taking moments about (7,

we have
p^(^EC^ = T^d^ sin S + T^d^ sin /8.

Problem 259. A weight of one ton is being lowered into a mine

by means of a friction brake. The radius of the drum is 1^ ft.,



FRICTION 307

radius of the friction wlieel 2 ft., coefficient of brake friction .30,

8 = 45^ ^ = 15^ r/j = cl^ = l ft, EC = G ft., radius of shaft 1 in.,

coefficient of axle friction .04, and the weight of the drum and brake

wheel is 600 lb. Find T^, T,^, and P in order that the weight W
may be lowered with uniform velocity.

Problem 260. Suppose the weight in the above problem is being

lowered with a velocity of 10 ft. per second when it is discovered that

the velocity must be reduced one half while it is being lowered the

next 10 ft., what pressure P will it be necessary to apply to the lever

at E to make the change ? What will be the tension in the friction

bands and the tension in the rope that supports TF?

Problem 261. If the weight in the above problem has a velocity

of 10 ft. per second, and it is required that the mechanism be so con-

structed that it could be stopped in a distance of 6 ft., what pressure

P on the lever and tensions T^ and T^g would it require ? What
would be the tension in the rope caused by the sudden stop ? Com-

pare this tension with IF, the tension when the motion is uniform.

166. Prony Friction Brake. — The Prony friction brake

may be used as an absorption dynamometer as shown in

Fig. 194

principle in Fig. 194. Let W be a working force acting

on the wheel of radius r and suppose the brake wheel to



308 APPLIED MECHANICS FOR ENGINEERS

be of radius r^ The brake consists of a series of blocks

of wood attached to the inner side of a metal band in

such a way that it may be tightened around the brake

wheel as desired by a screw at B, This band is kept

from turning by a lever (7AZ>, held in the position shown

by an upward pressure P, at A, Considering the forces

acting on the brake and taking moments about the center,

we have the couple due to friction, jFV^, equal to the mo-

ment FQOA), or

Fr^ = F(OA}.

Considering the forces acting on the wheel, and neglecting

axle friction, we get

Fr-^ = Wr,

The energy absorbed is used in heating the brake wheel.

The wheel is kept cool by water on the inside of the rim.

The work absorbed is 2 7rr^Fn= 2irF( 0A^7i^ where n is

the number of revolutions. The force F may be measured

by allowing a projection of the arm at A to press upon a

platform scales. The horse power absorbed is

where OA is expressed in feet, and n is the number of

revolutions per minute.

33
If OAhQ taken as -— , a convenient length, the formula

2 TT

reduces to

IT P -_^

A dynamometer slightly different from the Prony

dynamometer is shown in Fig. 195. It differs only in the

means of measurincr F. In this case the force F is meas-
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ured by the angular displacement of a lieavy pendulum

Wy Taking moments about the axis of W^ and calling

Fig. 195

r^ the distance from that axis to its center of gravity and

yS the angular displacement, we have

Fr^ = W^Tr^ sin ^8,

so that the horse power absorbed may be written

7-4 33,000 '

where OA^ r^, and r^ are expressed in feet. If OA be

taken as —^, this becomes
27r

H.P.=
W^r^ sin Pn

r^lOOO

The student should understand that the rotation of the

mechanism at is not in every case due to a weight W
being acted upon by gravity. In fact, in most cases, tlie

motion will be due to the action of some kind of engine.

This, however, will not change the expressions for horse

power.
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Problem 262. If ]]\ = 100 lb., OA = — , r^ = 2 ft., and r^ = 6
27r

in., what horse power is absorbed by the brake if /3 is 30°, and n is

300 revolutions per minute ?

167. Friction of Brake Shoes.— The application of the

brake shoe to the wheel of an ordinary railway car is

shown in Fig. 196, where F' is the axle friction, F the

brake-shoe friction, N the normal pressure of the brake

shoe, Gr the weight on

the axle, and F^ and

iV^j the reaction of the

rail on the wheel.

The brakes on a rail-

way car when applied

should be capable of

absorbing all the en-

ergy of the car in a

very short time. The

high speeds of modern

trains require a system of perfectly working brakes,

capable of stopping the car when running at its maximum
speed in a very short distance.

The coefficient of friction between the shoes and wheel

for cast-iron wheels at a speed of 40 mi. per hour is about

;|, while at a point 15 ft. from stopping the coefficient of

friction is increased 7 per cent, or it is about .27. The

coefficient for steel-tired wheels at a speed of 65 mi. per

hour is .15, and at a point 15 ft. from stopping it is .10.

(See Proc. M. C. B. Assoc, Vol. 39, 1905, p. 431.)

The brake shoes act most efficiently when the force of

friction F is as large as it can be made without causing a

Fig. 196
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slipping of the wheel on the rail (skidding). The normal

pressure iV, corresponding to the values of the coefficient

of friction given above, varies in brake-shoe tests from

2800 lb. to 6800 lb., sometimes being as high as 10,000

lb.

Problem 263. A 20-ton car moving on a level track with a

velocity of a mile a minute is subjected to a normal brake-shoe pres-

sure of 6000 lb. on each of the 8 wheels. If the coefficient of brake

friction is .15, how far will the car move before coming to rest?

Problem 264. In the above problem the kinetic energy of rota-

tion of the wheels, the axle friction, and the rolling friction have been

neglected. The coefficient of friction for the journals is .002, that

for rolling friction is .02. Each pair of wheels and axle has a mass

of 45 and a moment of inertia with respect to the axis of rotation of

37. The diameter of the wheels is 32 in. and the radius of the axles

is 2i in. Compute the distance the car in the preceding problem will

go before coming to rest. Compare the results.

Problem 265. A '30-ton car is running at the rate of 70 mi. per

hour on a level track when the power is turned off and brakes ap-

plied so that the wheels are just about to slip on the rails. If the

coefficient of friction of sliding between w^heels and rails is .20, how

far will the car go before coming to rest?

Problem 266. A 75-ton locomotive going at the rate of 50 mi.

per hour is to be stopped by brake friction within 2000 ft. If the

coefficient of friction is .25, what must be the normal brake-shoe

pressure ?

Problem 267. A 75-ton locomotive has its entire weight carried

by five pairs of drivers (radius 3 ft.). The mass of one pair of drivers

is 271 and the moment of inertia is 1830. If, when moving with a

velocity of 50 mi. per hour, brakes are' applied so that slipping on

the rails is impending, how far will it go before being stopped? The

coefficient of friction between the wheels and rails is .20.
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168. Train Resistance. — The resistance offered by a train

depends upon a number of conditions, such as velocity,

acceleration, the condition of track, number of cars, curves,

resistance of the air, and grades. No law of resistance

can be worked out from a theoretical consideration, be-

cause of the uncertainty of the influence of the various

factors involved. Formulae have been developed from the

results of tests; the most important of these are given

below.

Let R represent the resistance in pounds and v the ve-

locity in miles per hour. W. F. M. Goss has found that

the resistance may be expressed as

i2 = . 0003(^4- 347) ^;^

where L is the length of the train in feet (see Engineering

Record, May 25, 1907).

The Baldwin Locomotive Works have derived the

formula

b

as the relation between the resistance and velocity. When
all factors are considered, this becomes

R = Z + ^+ .3788 (0 + .5682 {c) + .01265 (a)2,

where t = grade in feet per mile, c the degree of curvature

of the track, and a the rate of increase of speed in miles

per hour in a run of one mile.

To get the total resistance it is necessary to include, in

addition to the above factors, tlie friction of the locomo-
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tive and tender. Tliis is given by Holmes (see Kent's

"Hand Book") as

R^= [12 + .3(i;- 10) W],

where W is the weight of the engine and tender in pounds

and R^ the resistance in pounds due to friction.

70

1 60

oc
LU

°- 50
CO
o
z

2 40

^ 30

U^^W-^U::^!!-: ! .ltUl}!!4i^:-4!!.l- -^ :|.---!---H!.!-l U, -1;

n FOR RAILROAD TRAINS

-"d^

10 20 30 40 oO 60 70 bO 90 100
VELOCITY IN MILES PER HOUR

Fig. 197

Other formulae derived as the result of experiments are

shown graphically in Fig. 197.
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The formulae themselves are as follows (see Engineering,

July 26, 1907):

Curve Number Formula Authority

1 ''='-^+;44 Clark

2 '==
« +m Clark

3
*=*-"+i';2

Wellington

4 «=»+2» Deeley

5 i? = .2497 V Laboriette

6 R = 3.36 + .1867 v Baldwin Company

7 72 = 4.48 + 284:1; Lundie

8 J? = 2 + .24 i; Sinclair

9 72 = 2.5+ ""'

65.82
Aspinal

It is evident that these formulae do not agree as closely

as one would wish. The difference must be due chiefly to

the different conditions under which the tests were made.

These conditions should be taken into account in any

application of the formulae to special cases.



CHAPTER XV

IMPACT

169. Definitions.—^When two bodies that are approach-

ing each other collide, they are said to be subjected to

impact. If their motion is along the line joining their

centers of gravity, the collision is designated as direct

central impact. If they are moving along parallel lines,

not the common gravity line, the impact is known as direct

eccentric impact. When the collision differs from either

of the above forms, the impact is known as oblique impact.

The phenomena of impact may be best studied by con-

sidering the two bodies somewhat elastic. Suppose for

simplicity that they are two spheres, M^ and M^^ Fig. 198,

and that they are moving in opposite directions with

velocities v^ and v^ and that the impact is central. In

Fig. 198 (a) they are shown at the instant when contact

first takes place, and in Fig. 198 (J) they are shown some

time after first contact when each has been deformed

somewhat by the pressure of the other. The dotted lines

indicate the original spherical form and the full lines the

actual form of the deformed spheres. When the spheres

first touch, the pressure P between them is zero, but as

each one compresses the other, the pressure P increases

until it becomes a maximum. The compression of the

spheres is indicated in the figure by d^ and d^. We shall
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designate the time during which the bodies are being com-

pressed as the period of deformation.

After the compression has reached its maximum value

the bodies, if they be partially elastic, begin to separate and

to regain their original

_!j ^ form. The common
pressure P decreases

and becomes zero, if the

bodies are sufficiently

elastic so that they

finally separate. We
shall designate this pe-

riod of separation as the

period of restitution^ and

the velocities of separa-

tion as v-^^ and v^^

If the bodies are en-

tirely inelastic^ there will

be no restitution. They

will, in that case, remain

in contact just as they

are when the pressure be-

tween them is amaximum
and will move on with a

common velocity V.

(a)

170. Direct Central Impact, Inelastic.—When the bodies

meet in direct central impact, separation will take place

along the line joining tlie centers of gravity. Let T be

the time from the first contact up to the time of maximum
pressure, that is, the time of deformation^ and T^ the time
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from first contact up to the time of separation. Then

T^— T represents the time of restitution. We have, from

Art. 72, dv = a ' dt. Considering the motion of M^

during the period of deformation, we have dv^ = a^dt

anda,= -|
so that I dv. = — -—

: j Pdt^

or iffiC r - t^i) = - fpdt.
Jo

In a similar way, remembering that if v^ is positive v^ is

negative,

Jo

The two integrals f Pdt on the right-hand side of the

preceding equations cannot be determined since we do

not know in general how the pressure P varies with the

time; we do know, however, that they are equal term for

term, so that we may eliminate them. We have, then,

or

If the bodies were moving in the direction of Jfj and

Vj > v^, we should have both Vi and v^^ positive, a^ negative,

and ^2 positive. Then

M^v^ + M^v^

This is also the value for P^if both bodies are moving in

the direction v^ and v^ > v^.
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If the bodies are inelastic, they will both move with the

velocity V^ and there will be no separation. Suppose the

bodies to be two lead balls, and let (7^ = 10 lb., Gr^ = 25

lb., Vi = 10 ft. per second, and v^ = 60 ft. per second.

Then V= 51.28 ft. per second if the bodies are moving in

the same direction, and F^= 33.3 ft. per second if they

move in opposite directions.

The energy lost in direct central impact of inelastic

bodies may be found by subtracting the kinetic energy of

31-^ and 711^2, when the common velocity is F^ from the

kinetic energy of the two bodies at the time of first con-

tact. The kinetic energy of M^ before impact is E^ =

I M^vl, and that of M^ is -£"2=2 ^2^% ^^ ^^^^^ ^^^ total

energy before impact is ^M^v\ + ^M^v\, The kinetic

energy after impact is ^(^M^ + M^ F"^, so that the loss of

kinetic energy is

and this equals ""Xlt^Mf

if the bodies move in the same direction, or

if they move in opposite directions.

This energy is used up in deforming the bodies and in

raising their temperatures. The kinetic energy remain-

ing may be written

when the bodies move in the same direction.
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In the above example of the lead balls, we find that the

kinetic energy lost due to impact is 40.3 ft. -lb. when the

bodies move in the same direction, and 1109 ft.-lb. when

they move in opposite directions.

When the bodies move toward each other and M-i^i\ =
M^v^^ the final velocity Vis zero and the kinetic energy lost

is ^ M^v'^ + 1^ M^v'^, If the masses are equal, V= ^^ ~ ^2

and the kinetic energy lost is

MOh + v^
2 2

If M^ is infinite as compared with 3f^^ and v^ is zero, the

final velocity V is zero, and the kinetic energy lost is

2

Problem 268. A lead sphere whose radius is 2 in. strikes a large

mass of cast iron after falling freely from rest through a distance

of 100 ft. What is its final velocity? What is the loss of kinetic

energy?

Problem 269. A 10-lb. lead sphere is at rest when it is acted upon

by another lead sphere, whose radius is 3 in., in direct central impact.

The velocity of the latter sphere is 20 ft. per second. What is the

common velocity of the two spheres and what is the loss of kinetic

energy due to impact ?

171. Direct Central Impact, Elastic. — If the impact is

not too severe, elastic or partially elastic bodies tend to

regain their original shape after the deformation has

reached a maximum and finally separate if they possess

sufficient elasticity. Using the notation of Art. 169, we

have, for the period of restitution, if jR is the force of

restitution.
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M^\ dv^ = — J Rdt, and for M^,

so that Mi(v[ - V) = -JRdt,

and M^(v'^ - F) = Clidt

The value of the integral j Pdt during deformation will

not in general be the same as its value during restitution.

Call the ratio of I Bdt to I Pdt, e. This value, which, is

called the coefficient of restitution, is constant for a given

material. It is unity for perfectly elastic substances, zero

for non-elastic substances, and some intermediate value

for the imperfectly elastic materials with which the

engineer is usually concerned. The following values of e

have been determined: for steel, ^ = .55, for cast iron,

^ = 1, nearly; for wood, ^ = 0, nearly.

From the above definition of e, it is seen at once that

we may write

v^ -V v^-V
e-i = —,

, and Co = ~ '

V- v{ 2 Y_ ^

and these equations enable one to determine e experi-

mentally.

Rdt = e ) Pdt,

we may write
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so that v[ — V{1 + gj) — e-^v^,

and ^2 = V(l + ^2) - ^2^2'

where ^=-E^r^'
if the bodies are moving in the same direction, and

M^ + M^

if they are moving in opposite directions. If the bodies

are of the same material, e-^ = e^ = e. Then from the

above equation it is seen that

and the energy lost in impact is

If the bodies are perfectly elastic, so that ^ = 1, the loss

of energy is zero.

Problem 270. The student should show that for any impact

M^vi + M2V2 = M^v[ + il/g?;^

;

that is, the sum of the momenta before impact equals the sum of the

momenta after impact.

Problem 271. Two perfectly elastic bodies, having equal veloci-

ties in opposite directions, meet in direct central impact. What must

be the relation of their masses so that they will be reduced to rest?

Problem 272. If the bodies are perfectly elastic and M^= M^,

show that v[ = v^ and vl^ — Vy

T
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Problem 273. If a ball M^ of a certain material falls upon a

large mass M2 of the same material from a height h and rebounds to

a height /?,, show that e =^-^.
^ h

In this case il/g = 00 , rg = 0, and V= 0.

Problem 274. A 20-ton car having a velocity of 40 mi. per hour

collides with a 30-ton car having a velocity of 60 mi. per hour in the

opposite direction. Both are destroyed. What is the loss of kinetic

energy ?

172. Elasticity of Material. — All materials of engineer-

ing are imperfectly elastic. Some, however, show almost

perfect elasticity for stresses that are rather low. This

has been expressed by saying that all materials have a

limit (elastic limit) beyond which if the stress be increased

the material will be imperfectly elastic. Within the limit

of elasticity^ stress is proportional to the deformation pro-

duced. Let the total stress in tension or compression be

P, and the stress, in pounds per square inch of cross sec-

tion, be/, also let d be the deformation caused by JP and

X the deformation per inch of length. Within the limit

of elasticity of the material the ratio ^ is a constant, and
A

since /= —
-, and X = -, when F is the area of cross sec-
F I

tion and I is the length of the material, it may be written

Fl . .—— . This constant is called the modulus of elasticity of
Jid
the material; it is usually represented by E^ so that

for tension or compression. For steel F has been found to

be 30,000,000 lb. per square inch.
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173. Impact of Imperfectly Elastic Bodies. — Let d^ be

the compression of M^ due to the impact, iincl c?2 the com-

pression of ilfg* ^f -Pyji i^ tl^6 pressure between the two

bodies when the compression is greatest, the average force

p
acting maybe represented by --^, if the limit of elasticity

of the material is not passed. The work done on the two

p
bodies is -~ Qd^ + d.^^ and this should equal the energy

lost during compression ; then

p I
From the preceding article we know that d. = ''L^

F I
' '

and c:?2= xT^^ where Zj and Zg are the lengths of the

masses itf^ and M^ (considered prismatic), F^ and F^ the

areas of cross section, and F^ and E^ the moduli of elas-

ticity. The sum d^ + d^ may then be represented by

^^J^l.^'l ^ J^2-^2

F F F 7^
For convenience let ^ ^ = ^^ and ^ ^ = ^2 (iTj and

^1 ^2

^2 may be considered as representing the hardness).

Then d, + d,==pj^j±fl

and i>.. = (.^1- V,)
^3^^^^^^ l^r+ffJ
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Problem 275. Suppose a 100-lb. steel hammer strikes an immov-

able cast-iron plate with a velocity of 25 ft. per second. The hammer

has a face of 3 sq. in. area and a length of 6 in. ; the plate has

the same area and a thickness of 2 in. If the modulus of elas-

ticity of steel is 30,000,000 and of cast iron is 15,000,000, find the

greatest pressure between the two bodies due to the impact.

Under the assumptions v^ = and Mo = oo

,

M^ = M., ij^ = 22,500,000, H^ = 15,000,000.
o'2»2

Then P^ = 132,750 lb.

Problem 276. Let the mass of the ram of a pile driver be M^
and let h be the height of fall. Let il/^ be the mass of the pile and

s its penetration under a blow. If c?^ is the compression of the ham-

mer"and c?2 the compression of the pile, the work equation becomes

Pr.s+^(d, + d,)= G,h,

and P. = ,y ,

It is required to find the load that the pile will carry.

Since v^ = V2 gh and V2 = 0, we may write

and then Pm =

' ^ iV/i + M, V H,H^ J
'

Gih

8 +

The load Pm that the pile will carry is found by measuring the

penetration s for the last blow. It is customary to use a factor of

safety, as was explained in Art. 137.

Problem 277. A wooden pile whose cross section is 1.5 sq. ft.,

and whose length is 30 ft., is driven by a steel hammer of 2000 lb.

weight falling a distance of 20 ft. The penetration at the last blow

is observed to be \ in. What load will the pile carry, using a factor

of safety of 6 ?
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Assume the weight of the pile as 1800 lb., the modulus of elas-

ticity of timber as 1,500,000, and of steel as 30,000,000, the face of

the hammer 2 sq. ft., and its length 2 ft.

An approximate formula may be obtained by noting that lo is

large as compared with li and E^ is small as compared with Ei, so

that Hi is large compared with Ho, thus making

H. ^Ih Ih^ 1 . • ^ 1 N

-Hjrr = -Hr=m (^Woximately).

Substituting in the expression for Pm, we have

t^m.m
_^ / MxM^gli

(.Ml + M,)i/2

Problem 278. The student should solve Problem 277, using this

approximate formula and compare the result with that already

obtained.

Problem 279. Compare the results obtained in problems 277

and 278 with those obtained by using formulas of Art. 137.

174. Impact Tension and Impact Compression.— Figure

199 (a) represents a massi!i2 subjected to impact from the

mass M^ falling from rest through a height li. The mass

M^ is compressed by the impact. Figure 199 (5) repre-

sents the body M^ as subjected to impact in tension, the

mass in this case being a rod having Gr^ attached to one end

and the other end attached to a crosshead A, Tlie rod,

crosshead, and weight fall freely together through the

distance li until A strikes the stops at B. when one end

of the rod suddenly comes to rest aud tlie weight Gr^

causes tension in the rod due to impact.

Suppose v^ represents the velocity of M^ when impact

occurs and l^ its length, whether it be a tension or compres-



326 APPLIED MECHANICS FOR ENGINEERS

sion piece. Let V be the common velocity of the bodies

at the time of greatest pressure. Then V= -^ ^ ^^

(see Art. 170), and the kinetic energy necessary to bring

the two bodies to rest is given by the expression,

where h is the height of fall.

^1

A

B

3/.

M.

G,

{a) ib)

Fig. 199

This energy is used in stretching or compressing M2, if

we neglect the work done on (7^, which is supposed small

in comparison. Let c^g be the deformation of M^ when the

pressure between the two bodies is greatest, and let the

average pressure between them be -^, as before. Then the
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work done on the bar may also be expressed as —^ x d^
2

and P^d,=M^ = ^ML,
2 ' 2^2 M^ + M^

where F^ is the cross section, l^ the length, and E^ the

modulus of elasticity of M^. We may, therefore, write

^-=\ir.
Ml 2</LA

+ if, E,F.2^ 2

as the elongation or compression of M^ due to the impact.

Problem 280. A weight of 500 lb. falls through a distance of 2

ft. in such a way as to put a 1-in. round steel rod in tension. If

the rod is 18 in. long, \yhat will be the elongation due to the im-

pact ?

In this case M, = ^^^
, M, = -M_, L = 18, h = 24, E. = 30,000,000,

and F2 = j\ sq. in.

Problem 281. A cylindrical piece of steel 1 in. high and 1 in.

in diameter is subjected to compression by a weight of 20 lb. falling

through a distance of 1 in. How much will it be compressed ?

If we substitute for P^ its equivalent /2F2 (Art. 172), where /2

represents the stress in il/g in pounds per square inch of cross section,

we may write

so that M^_J^^_^
Eo^ Ml + M2 E2F2

which may be written

2 E2 ' Ml + M2

Since F'zl represents the volume of il/o, we have

2

h = l^ (vol.) 2 JZ!_+^^^-
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This equation represents the relation between the height of fall of

Ml and the stress /2 produced by such fall.

Problem 282. In the preceding problem what stress (pounds

per square inch) was caused in the cylindrical block by the fall of

the20-lb. weight?

Problem 283. The safe stress in structural steel for moving loads,

impact loads, is usually taken as 12,500 lb. per square inch (value of

fo). Through what height might a 300-lb. weight fall so as to pro-

duce tension in a 1-in. steel round bar, 10 ft. long, without ex-

ceeding the safe stress?

Problem 284. Two steel tension rods in a bridge, each of 2

sq. in. in cross section and 20 ft. long, carry the effect of the

impact of a loaded wagon as one wheel rolls over a stone 1 in.

high. The weight on the wheel is 2000 lb. What stress is intro-

duced in the tension rods ?

Note. For the strength of metals under impact the student is

referred to the work of W. K. Hatt, Am. Soc. " Testing Materials,"

Vol. lY, p. 282.

175. Direct Eccentric Impact.— The impact is said to be

direct eccentric when the

line of motion does not

31^ coincide with the line

joining the centers of grav-

ity of the two bodies (see

Fig. 200) . Suppose M^ at

rest and that it is acted

upon by M2 moving with a

velocity v^ in the direction

shown, and that P,„ is the

force exerted hy M^ on My
We shall first show t^at the motion imparted to M^ may

B
> ?

}

4— -- '-.

M,

c

Fig. 200
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be considered a rotation about its center of gravity A com-

bined with a translation of that center of gravity.

Introduce at a point (<?), distant b below A^ two equal

p
and opposite forces equal to -^ and parallel to P^, The

introduction of these forces does not change the state of

motion of the body. Consider one half of P„ acting at B
with I P^ acting at in the same direction. These two

forces are equivalent to a single force F^ acting at A in

the direction P^. The remaining ^ of P^ at B with the

I P^ at (7 'form a couple, of moment PJ), which tends to

produce rotation about the center of gravity A. The

motion, then, imparted to 31^ may be considered as con-

sistinor of a translation and a rotation.

Considering the motion of 31^ and calling P the

variable pressure between 31^ and 31^^ we may write

3I^Cdv = Cpdt (see Art. 170),

Ph
and since rotation also occurs, and dco = 6dt = '^rrr^ ^^

(see Art. 103), we may also write

k\3I^jJlco=hjFdt.

These equations become upon integration

3I^V=jPdt,

b

Considering now the motion of 3I2. we may write
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which gives

Eliminating j Pdt from these equations, we have

and

and since F = w^ft,

these equations are sufficient to determine Fand Wy

Problem 285. If the bodies are both inelastic, find the kinetic

energy lost in direct eccentric impact.

Problem 286. Suppose M^ to be a bar of steel J in. in diameter

and 2 ft. long, and suppose M2 to be a hammer weighing 2 lb. and

that its velocity at the time of impact is 20 ft. per second, find V and

Wj if the hammer strikes 10 in. from the center of the rod.

Problem 287. Let M^ be a square stick of timber ^" x 4'' x 10'

and let 1T/2 be a 10-lb. hammer having a velocity at the time of impact

of 10 ft. per second. If the impact takes place 4

B

M,

A

I)

P ft. from the center, find V and coj.

176. Center of Percussion. We have

seen that the motion of M^ in direct eccen-

tric impact may be considered as being

made up of a rotation combined with a

translation. As a matter of fact, however,

the motion that actually occurs is a rota-

tion about an instantaneous center. We
shall now find such center of rotation,

called center of jjercussion (see Art. 106).

Let M^, Fig. 201, be the body underFig. 201

consideration and let P be the force caused by the impact
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and h the distance of P from the center of rotation D.

We have shown in the preceding article that

h

when Fand co^ are the velocities of the body at time of

greatest pressure. Now V=(o^(li-h^, since D is mo-

mentarily at rest. Therefore

so that

The quantities b and k^ are usually known, so that h may

readily be computed.

Problem 288. A right circular cone of steel, radius of whose

base is 6 in. and altitude 6 in., is supported as a pendulum by an axis

through its vertex parallel to the base. It is struck with a 3-lb. ham-

mer with a velocity of 10 ft. per second, at the center of percussion.

Find V and w at time of greatest pressure.

Problem 289. A man strikes a blow with a steel rod 1^ in. in

diameter and 4 ft. long, by holding the rod in the hand and striking

the farther end against a stone in such away as to cause the rod to be

under flexure. AVhere should he grasp the rod in order that he may
receive no shock ?

177. Oblique Impact of Body against Smooth Plane. — Let

M (Fig. 202) be a sphere

moving toward the plane

indicated with a velocity

at impact of t>, the direc-

tion of motion making an

angle a with the vertical

to the plane. After im- Fig. 202

Js ©
^^ ^.^>'-V

/
' ^\/^ /•r^^^/
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pact the body iff rebounds with a velocity v-^ in the direc-

tion, making an angle /3 with the vertical AB, Since

the plane is considered smooth, the effect of the impact

will be all in the direction of AB and the impulsive force

after impact will be e times what it was before impact.

Summing horizontal and vertical components of the

velocities, we have
v-^ sin /3 = V sin a

;

v^ cos ^ = ev cos a.

Dividing, we have

tan yS = - tan a,

e

and squaring and adding.

So that if a and e are known, v^ and yS may be determined.

If the body is perfectly elastic, ^ == 1, /3 = «, and v-^ — v.

If the body is inelastic, so that ^ = 0, /3
TT

9' "1 V sm a,

it then moves along the plane with a velocity v sin a.

178. Impact of Rotating^ Bodies. — Suppose two bodies

M^ ^^^d. 31^ revolve about two parallel axes and 0^ (Fig-

203) in such a way

that impact occurs at

a point along the line

BU, Let the point at

which impact occurs be

distant r^ from and

rj from 0^ It is evi-

dent that the kinetic

energy oi M^ is
I- Iq^I and that this is equal to the kinetic

Fig. 203
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energy of an equivalent mass 3f situated at a distance r^

from O.suice IM^v- = l3f7'lco?^. Equating these values

for kinetic energy, we have for the equivalent mass 31'

AT J
^

the value—2fo. Likewise the equivalent mass of 31^ at

9
71 T- 7 2

the point of impact is —IJh, The impact of the two
,2

rotating bodies 31^ and iHf^ then, may be considered by

considering the impact of their equivalent masses along

the line DU, From Art. 171, we have

and

vl = F(l + e,) - e^v^

^2 = T^l + ^2) - ^2^'2'

where V= 1^1 + 2^2
^ if the bodies are moving in the

same direction, and a similar expression with v^^ say, nega-

tive, if they are moving in opposite directions.

Let 0)2 be the angular velocity of 71^2 before impact.

Let coi be the angular velocity of 31^ before impact.

Let co^ be the angular velocity of 31^ after impact.

Let col ^^ ^'^^ angular velocity of 31^ after impact.

Then we may write

co^r^ = t'2, (o^7\ = v^, co,^r^ = v.^, co[r^ = vl,

so that

G)i= r^

0)2

C 3Lk^7'^ + 3J,k^i^~
^ Oi 2 ^01

3I,klrl + 3I,klrl

2—1

(1 + 0-^i«r

(1 + ^2) -^2^2'
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These equations may be put in the form

1 2 2 1

a>2 = (o^-r^ (rjft)! - r^to^yO- + e^}
Ix

1 2 ' 2 1

Problem 290. Suppose the moment of inertia of M^ is 3000 and

its angular velocity before impact one radian per second ; that of ilfg

Fig. 204
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15,000 and its angular velocity zero. Let r^ = 2 ft. and rg = 3 ft. and

= ^2 = 0.

Then w^= .311 radian per second.

0)'= — .207 radian per second.

The kinetic energy lost due to the impact is

1034 ft.-lb.

Problem 291. A well drill is shown in principle in Fig. 204.

The drill is supported by a cable that passes over a pulley C and is

attached to a friction drum A. When A is held, the drill is raised by

the operation of M^ and M^- Suppose that I is 300 and w^ = 3

radians per second ; /g = 200 and w,^ = ] r^ = 2 ft. and rg = 6 ft.

Assume e^ = e^^ J. Find o)[ and w'^. What kinetic energy is lost

due to each impact ?

Problem 292. The moment of inertia of the trip hammer ilfg,

illustrated in principle in Fig. 205, is 100,000 ; that of J/j is 00,000.

If Tj = 3 ft., r2 = 10 ft., (Oj = 2 radians per second, (Og = 0, and e^^ — e^

= i, find 0)1 and wL What is the kinetic energy lost due to each

impact? What is the kinetic energy of the hammer?





APPENDIX I

HYPEEBOLIC FUNCTIONS

cosh X

sinh a; =

tanh X =

2

sinh X e^ — e~^

cosh X e-^ + e
^
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X Cosh X Sinha: X Cosh X Sinhx

0.01 1.0000,500 0.0100002 0.51 1.13289:^ 0.5323978
.02 .0002000 .0200013 .52 .1382741 .54375;^)

.03 .0004500 .0300045 .53 .1437686 .5551(;.37

.04 .0008000 .0400107 .54 .1493776 .5(;6()292

.05 .0012503 .0500208 .55 .1551014 .5781 51 (;

.0() .0018006 .06003()0 .56 .1609408 .5897;n7

.07 .0024510 .0700572 .57 .1668fK)2 .()013708

.08 .0032017 .0800854 .58 .1729()85 .6130701

.09 .0040527 .0901215 .59 .1791579 .6248:)()5

.10 .0050042 .1001668 .60 .1854652 .636653(5

.11 .0060561 .1102220 .61 .1918912 .6485402

.12 .0072086 .1202882 .62 .1984363 .6604917

.13 .0084618 .1303664 .63 .2051013 .6725093

.14 .0098161 .1404578 .64 .2118867 .6845942

.15 .0112711 .1505631 .(>5 .2187933 .mmiry

.1() .0128274 .1606835 .()() .2258219 .7089704

.17 .0144849 .1708200 .67 .2329730 .7212()43

.18 .0162438 .1809735 .68 .2402474 .73:^)303

.19 .0181044 .1911452 .69 .247()458 .7460()97

.20 .0200668 .2013360 .70 .2551690 .7585837

.21 .0221311 .2115469 .71 .2628178 .7711735

.22 .0242977 .22177i)0 .72 .2705927 .7838405

.23 .02( )56( 58 .2320333 .73 .2784948 .7^5858

.24 .0289384 .2423107 .74 .2865248 .8094107

.25 .0314132 .2526122 .75 .2946833 .82231()7

.26 .0339<)08 .2629393 .76 .3029713 .835:>049

.27 .0366720 .2732925 .77 .311385)6 .84837()6

.28 .0394568 .2836731 .78 .3199392 .8()15330

.29 .0423456 .2940819 .79 .3286206 .8747758

.30 .0453385 .3045203 .80 .3374349 .8881060

.31 .0484361 .3149891 .81 .3463831 .9015249

.32 .0516384 .3254894 .82 ,3554658 .9150342

.33 .05494()0 .33()0222 .83 .3(>46840 .928();U7

.34 .05835<)0 .34(35886 .84 .3740388 .9423282

.35 .0618778 .3571898 .85 .3835309 .9561 1(W

.36 .0(>55029 .3(578265 .86 .3931614 .9699993

.37 .0()92345 .3785001 .87 .4029312 .9839796)

.38 .07307:^ .3892116 .88 .4128413 0.9980584

.39 .0770189 .3999619 .89 .4228927 l.()1223()9

.40 .0810724 .4107523 .90 .4330864 .02()5167

.41 .0852341 .4215838 .91 .44.34234 .0408991

.42 .0895042 .4324574 .92 .4539048 .055.3cS5()

.43 .0938888 .4433742 .93 .4()45315 .06)99777

.44 .0983718 .4543354 M .4753046 .0<S4(i768

.45 .1029702 .4()5;U20 .95 .4862254 .0994S43

.46 .1076788 .4763952 .9(> .4972947 .1144018

.47 .1124983 .4874959 .97 .50851.37 .1294;i<)7

.48 .1174289 .498()455 .98 .5198837 .144:.72()

.49 .1224712 .5098450 .i)9 .5314057 .1598288
0.50 1.1276260 0.5210953 1.00 1.54.30806 1.1752012
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X Cosh X Sinli X X Cosh X Sinhx

1.01 1.5549100 1.190(3910 1.51 .2338704 2.1529104
1.02 .5668948 .2062999 1.52 .3954(586 .17675(36

1.03 .5790365 .2220294 1.53 .41735()3 .2008206

l.Olr .5913358 .2378812 1.54 .4394857 .2251046

1.05 .6037945 .2538567 1.55 .4618591 .2496111

1.0(3 .6164134 .2()99576 1.56 .4844787 .2743426

1.07 .6291940 .2861855 1.57 .5073467 .2993014

1.08 .6421375 .3025420 1.58 .5304654 .3244903

1.09 .6552453 .3190288 1.59 .5538373 .3499117

1.10 .6685186 .3356474 1.60 .5774645 .3755679

1.11 .6819587 .3523997 1.61 .()013494 .4014618

1.12 .7005670 .3(342872 1.62 .6254945 .4275958

1.13 .7093449 .3863116 1.63 .6499(^21 .4539726

1.14 .7232938 .4034746 1.64 .6745748 .4805947

1.15 .7374148 .4207781 1.65 .6995149 .5074(350

1.16 .7517098 .4382235 1.66 .7247249 .5345859

1.17 .7661798 .4558128 1.67 .7502074 .5619()03

1.18 .7808265 .4735477 1.68 .7759(550 .5895910

1.19 .7956513 .4914299 1.69 .8020001 .6174806

1.20 .8106556 .5094613 1.70 .8283154 .6456319

1.21 .8258410 .5276436 1.71 .8549136 .6740479

1.22 .8412089 .5459788 1.72 .8817974 .7027311

l!23 .8567610 .5644685 1.73 .9089692 .7316847

1.24 .8724988 .5831146 1.74 .9364319 .7(509115

1.25 .8884239 .(3019191 1.75 .9641884 .7904143

1.26 .9045378 .6208837 1.76 2.9922411 .8201962

1.27 .9208421 .6400105 1.77 3.0205932 .8502601

1.28 .9373385 .6593012 1.78 .0492473 .8806091

1.29 .9540287 .6787578 1.79 .0782063 .9112461

1.30 .9709143 .6983824 1.80 .1074732 .9421742

1.31 1.9879969 .7181768 1.81 .1370508 2.9733966

1.32 2.0052783 .7381431 1.82 .16()9421 3.(W49163

1.33 .0227603 .7582830 1.83 .1971501 .03673(55

1.34 .0404446 .7785989 1.84 .2276799 .0(588(303

1.35 .0583329 .7990926 1.85 .2585283 .1012911

1.36 .0764271 .8197662 1.86 .2897047 .1340321

1.37 .0947288 .840()219 1.87 .3212100 .1670863

1.38 .1132401 .8616615 1.88 .3530475 .2004573

1.39 .1319627 .8828874 1.89 .3852202 .2341484

1.40 .1508985 .9043015 1.90 .4177315 .2681629

1.41 .1700494 .9259060 1.91 .450584(3 .3025041

1.42 .1894172 .9477032 1.92 .4837827 .3371758

1.43 .2090041 .9(39()951 1.93 .5173293 .3721810

1.44 .2288118 1.9918840 1.94 .5512275 .4075235

1.45 .2488424 2.0142721 1.95 .5854808 .44:52067

1.46 .2690979 .0:>68616 1.9() .6200927 .4792343

1.47 .2895803 .0591)549 1.97 .6550()(;7 .515(5097

1.48 .3102917 .082()540 1.98 .69040(31 .55233(58

1.49 .3312341 .1058614 1.99 .7261146 .5894191

1.50 2.352409(3 2.1292794 2.00 3.7()21957 3.6268604
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X Cosh X Sinh X X Cosh X Siuh X

2.01 3.7986528 3.6(54()642 2.51 6.19:!0993 6.111S311

2.02 .8354899 .7028:U5 2.52 .2545281 .174()(5S5

2.03 .8727101 .7413746 2.53 .31(55827 .2:5692:57

2.0-i .9103184 .7802896 2.54 .3792(587 .:3()(J402:3

2.05 .9483518 .819(5198 2.55 .4425928 .3(545111

2.06 .98()7111 .8592571 2.56 .50(55(511 .4292.~)(5:i

2.07 4.02550:'>8 .8993179 2.57 .5711800 .494(5444

2.08 .0()47395 .9:598093 2.58 .(5:3(545(50 .5(50(5820

2.09 .1043012 .980(5140 2.59 .702:5958 .(527:5758

2.10 .1443131 4.0218567 2.(50 .7690059 .6947:323

2.11 .1847398 .06:^5018 2.61 .8362940 .7627595

2 12 .2255846 .1055530 2.(52 .9042(544 .8314(515

2.13 .2668523 .1480149 2.63 .9729254 .<K1()84(59

2.14 .3085462 .1908914 2.64 7.0422S;38 .9709225

2.15 .3506713 .2341871 2.(55 .112:34(33 7.04169,10

2.1(3 ..3932312 .2779062 2.(36 .1831184 .11:31701

2.17 .4362311 .32205:34 2.67 .2546108 .1853586

2.18 .4796741 .366(5:325 2.(58 .32(58282 .2582(550

2.19 .5235()49 .411(5482 2.69 .3997785 .3318975

2.20 .5679083 .4571052 2.70 .4734686 .40(52631

2.21 .6127086 .5030079 2.71 .5479060 .4813(392

2.22 .6579702 .5493610 2.72 .62:30984 .55722:37

2.23 .70:^1972 .59(51688 2.73 .6990531 .63:58338

2.24: .7498951 .(5434:564 2.74 .7757775 .7112072

2!25 .71^)5677 .6911(585 2.75 .85:32799 .789:3520

2.26 .8437197 .7:39:3(592 2.76 .9315(574 .8(58275(5

2.27 .89135()5 .7880444 2.77 8.010(5482 .9479862

2.28 .9394824 .8371982 2.78 .01K)5297 8.0284911

2.29 .9881022 .8868:358 2.79 .1712205 .10<)7993

2!30 5.0372206 .9369618 2.80 .2527285 .1919185

2.31 .0868429 .9875817 2.81 .3350617 .27485(56

2.32 .1369741 5.0:387004 2.82 .4182283 .:358(5224

2.33 .1876186 .0903228 2.83 .50223(58 .41:52239

2.^4 .2387822 .1424545 2.84 .587095(3 .528(5(599

2.35 .2905196 .1951504 2.85 .(57281:50 .(5 1 45 H 587

2.36 .342()859 .2482(556 2.86 .759:3979 .7021291

2.37 .39543(55 .3019558 2.87 .84(58585 .7901595

2.38 .44872(56 .35617(50 2.88 .9:552041 .87<)0694

2.39 .5025(518 .4109:321 2.89 9.02444:50 .!i()SS(;()8

2.40 .5569472 .4662293 2.90 .1145844 9.0595611

2.41 .6118883 .5220729 2.91 .2056373 .1.-.11(316

2.42 .(5(573910 .57.84(583 2.92 .2976105 .24:5(57(59

2.43 .72:54594 .(5:55422() 2.93 .:5905i:;8 .: 5:571 1(58

2.44 .7801009 .(5929401 2.94 .484:3.V,9 .4314902

2.45 .837:»201 .75102(55 2.95 .5791467 .52(5S(^70

2.4(3 .8951232 .809(5882 2.9(3 .(574S952 .62:507(5:3

2.47 .9535159 .8(5S9310 2.97 .771(5115 .720:5()S1

2.48 6.012.'0:58 .92S7(505 2.98 .8(59:5047 .SIS.-) 119

2.49 .0720930 .98918:51 2.99 .9(579S.")0 .917(597(>

2.50 6.1322895 6.0502045 3.00 10.0(37(3620 10.017S750
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X Coslia: Sinha: X Cosh X Sinha:

3.01 10.1683456 10.1190539 3.51 16.7390823 16.7091854
3.02 .2700464 .2212451 3.52 .9070139 .8774144
3.03 .3727741 .3244585 3.53 17.0766361 17.0473312
3.04 .4765391 .4287042 3.54 .2479662 .2189529
3.05 .5813518 .5339929 3.55 .4210213 .39229()6

3.06 .6872224 .6403347 3.56 .5958178 .567:3790

3.07 .7941620 .7477408 3.57 .7723744 .7442186
3.08 .9021809 .85()2217 3.58 .9507082 .9228:325

3.09 11.0112900 .9657881 3.59 18.1308371 18.1032388
3.10 .1215004 11.0764511 3.60 .3127790 .2854552

3.11 .2328226 .1882217 3.61 .4965523 .4695004
3.12 .3452684 .3011112 3.62 .6821753 .6553927
3.13 .4588488 .4151309 3.63 .8696665 .8431503
3.14 .5735748 .5302919 3.64 19.05^)0447 19.0327924
3.15 .6894584 .6466062 3.()5 .2503288 .2243376
3.16 .8065107 .7640850 3.66 .4435377 .4178052
3.17 .9247440 .8827403 3.67 .6386909 .61:32145

3.18 12.0441695 12.0025838 3.68 .8358083 .8105854

3.19 .1647998 .123(5279 3.69 20.0349094 20.0099373
3.20 .2866462 .2458839 3.70 .2360140 .2112905

3.21 .4097213 .3693646 3.71 .4391421 .4146645

3.22 .5340375 .4940825 3.72 .6443142 .6200802
3.23 .6596073 .6200497 3.73 .8515505 .8275577

3.24 .7864428 .7472790 3.74 21.0608720 21.0371178
3.25 .9145572 .8757829 3.75 .2722997 .2487819
3.26 13.0439629 13.0055744 3.76 .4858548 .4625710
3.27 .1746730 .136{j665 3.77 .7015584 .6785064
3.28 .30()7006 .2690723 3.78 .9194324 .89(J609()

3.29 .4400587 .4028048 3.79 22.1394981 22.1169025
3.30 .5747611 .5378780 3.80 .3617777 .3394069

3.31 .7108208 .6743046 3.81 .5862933 .5641452
3.32 .8482516 .8120988 3.82 .8130681 .7911403
3.33 .9870673 .9512741 3.83 23.0421239 23.0204143
3.34 14.1272820 14.0918450 3.84 .2734843 .2519907
3.35 .2689091 .2338247 3.85 .5071715 .4858917
3.36 .411 (KiO .3772277 3.86 .7432095 .7221415
3.37 .5564583 .5220686 3.87 .9816222 .9607()38

3.38 .7024094 .()(i83()19 3.88 24.2224327 24.2017819
3.39 .8498306 .8161219 3.89 .465()658 .4452205

3.40 .9987366 .9653634 3.90 .7113454 .6911034

3.41 15.1491429 15.1161016 3.91 .9594963 .9394557
3.42 .3010()37 .2683513 3.92 25.2101431 25.1W3020
3.43 .4545147 .4221278 3.93 .4633109 .44:^6673

3.44 .6095114 .5774468 3.94 .7190247 .6995765
3.45 .7()60()88 .7343232 3.95 .9773109 .9580561
3.46 .9242033 .8927735 3.<HJ 26.2:^.81943 26.2191311
3.47 16.08:^)9298 16.0528128 3.97 .5017019 .4828285
3.48 .2452646 .2144571 3.98 .7678597 .7491740
3.49 .4082241 .3777233 3.99 27.0:^()()943 27.0181946
3.50 16.5728248 16.5426275 4.00 .:5082:iU .2899175



APPENDIX II

LOGAKITHMS OF NUMBERS





LOGARITHMS OF NUMBERS 345

LOGARITHMS OF NUMBERS, FROM TO 1000

No. 1 2 3 4 5 6 7 8 9

00000 30103 47712 6020(5 69897 77815 84510 90:309 95424
10 00000 00432 008(50 01283 01703 02118 025:30 02938 03:342 0:5742

11 04139 04532 04921 05:307 05(590 0(50(59 0(5445 0(5818 07188 07554
12 07918 08278 08(536 089<X) 0i):i42 09(591 10037 10:580 10721 1105<)

13 113^U 11727 12057 12385 12710 13u:5:3 i:5353 1:3(572 13987 14:301

14 14613 14921 15228 15533 15836 16136 1(5435 16731 17026 17:318

15 17609 17897 18184 18469 18752 v.m's 19:312 195^)0 198(55 20139
16 20412 20()82 20951 21218 21484 21748 22010 22271 225:50 22788
17 23045 23299 23552 23804 24054 24303 24551 24797 25042 25285
18 25527 25767 2(5007 2(5245 2(5481 2(5717 26951 27184 27415 27(546
19 27875 28103 28330 28555 28780 29003 29225 29446 296(56 29885

20 30103 30319 30535 30749 30963 31175 31386 31597 31806 :52014

21 3'79->2 32428 32(533 32838 33041 33243 3:3445 33(546 33845 :34044
22 34242 34439 34(535 34830 35024 :35218 :35410 35(502 :35793 :35983

23 36173 363()1 3(5548 36735 36921 :^7106 37291 37474 37657 37839
24 38021 38201 38381 38560 38739 38916 39093 39269 39445 39619

25 39794 39967 40140 40312 40483 40654 40824 40993 41162 41330
26 41497 416(i4 41830 41995 421(>0 42:524 42488 42651 42813 42975
27 43136 43296 4345(5 4361(5 43775 4:3933 44090 44248 44404 44560
28 44716 44870 45024 45178 45331 45484 45(536 45788 459:3i) 4(5089
29 46240 46389 46538 46686 46834 46982 47129 47275 47421 47567

30 47712 47856 48000 48144 48287 48430 48572 48713 48855 48995
31 49136 49276 49415 49554 49693 49831 49968 50105 50242 50:379
32 50515 50650 50785 50920 51054 51188 5i:321 51454 51587 51719
33 51851 51982 52113 52244 52374 52504 526:53 52763 52891 53020
34 53148 53275 53402 5352i) 53655 53781 53907 54033 54157 54282

35 54407 54530 54654 54777 54900 55022 55145 55266 55388 55509
36 55630 55750 55870 55990 5(5110 56229 56:i48 5(5466 5(5584 56702
37 56820 56937 57054 57170 57287 57403 57518 57(5:34 57749 57863
38 57978 58092 5820(5 58319 58433 5854(5 58(558 58771 58883 58995
39 59106 59217 59328 59439 59549 59659 597(59 59879 59988 (50097

40 60206 60314 (50422 60530 60638 60745 60852 60959 61066 61172
41 61278 61384 (51489 61595 61700 61804 61909 (520i:5 (52118 (52221
42 62325 (52428 (52531 62634 (52736 62838 (52941 (5:5042 (53144 (5:5245

43 63347 ();5447 63548 63(548 63749 6:3848 (5:3948 (54048 64147 (54246
44 64345 64443 64542 (>4t540 (54738 (548:36 649:53 (550:30 65127 (55224

45 65321 65417 65513 65()09 (55705 65801 6589(5 (55991 (5(508(5 (56181
46 66276 (56370 (5(5464 (5(5558 (5(5(551 (5(5745 6(58:58 (5(1931 (57024 (57117
47 67210 67302 67394 (57486 (57577 (57(5(59 (57760 (57851 (57942 (580:33

48 68124 68214 68:^4 (58394 (58484 (58574 (58(5(53 (5S752 (58842 (589:50

49 69020 69108 69196 (59284 (59372 (59460 (59548 (59(5: 55 (59722 (59810

50 69897 69983 70070 70156 70243 70:^29 70415 70500 7058(5 70(571
51 70757 70842 70927 71011 7109(5 71180 712(55 71:549 1 714:53 71516
52 71600 71683 717(57 71850 7193:5 72015 72098 72181 722(53 72:545
53 72428 72509 72591 72(572 72754 728:55 72! 116 72997 7:5078 73158
54 73239 73319 73399 73480 73559 73639 73719 73798 73878 73957



346 LOGARITHMS OF NUMBERS

LOGARITHMS OF NUMBERS, FROM TO 1000
(Contl/tued)

No. 1 2 3 4 5 6 7 8 9

55 74036 74115 74193 74272 74351 74429 74507 74585 74(5()3 74741

56 74818 74896 74973 75050 75127 75204 75281 ' 75358 75434 75511

57 75587 75663 75739 75815 75891 75966 7()042 76117 76192 76267
58 76342 76417 76492 76566 76641 76715 76789

1

76863 76937 77011

59 77085 77158 77232 77305 77378 77451 77524 77597 77670 77742

60 77815 77887 77959 78031 78103 78175 78247 78318 78390 78461

61 78533 78604 78()75 78746 78816 78887 78958 79028 79098 791(59

62 79239 79309 79379 79448 79518 79588 79()57 79726 79796 798(55

63 79934 80002 80071 80140 80208 80277 80345 80413 80482 80550

64 80618 80685 80753 80821 80888 80956 81023 81090 81157 81224

65 81291 81358 81424 81491 81557 81624 81690 81756 81822 81888
6() 81954 82020 82085 82151 82216 82282 82347 82412 82477 82542
67 82607 82672 82736 82801 82866 82930 82994 83058 83123 83187
68 83250 83314 83378 83442 83505 83569 83632 83(595 83758 83821

69 83884 83947 84010 84073 84136 84198 84260 84323 84385 84447

70 84509 84571 84633 84695 84757 84818 84880 84941 85003 85064

71 85125 85187 85248 85309 85369 85430 85491 85551 85612 85672

72 85733 85793 85853 85913 85973 86033 86093 8(5153 8(5213 86272
73 86332 86391 86451 86510 86569 86628 86687 86746 86805 86864
74 86923 86981 87040 87098 87157 87215 87273 87332 87390 87448

75 87506 87564 87621 87679 87737 87794 87852 87909 87966 88024

76 88081 88138 88195 88252 88309 88366 88422 88479 88536 88592
77 88649 88705 88761 88818 88874 88930 88986 89042 8fK)98 89153

78 89209 89265 89320 89376 89431 89487 89542 89597 89(552 89707

79 89762 89817 89872 89927 89982 90036 90091 90145 90200 90254

80 90309 90363 90417 90471 90525 90579 90633 90687 90741 90794

81 90848 90902 90955 91009 91062 91115 91169 91222 91275 91328

82 91381 91434 91487 91540 91592 91645 91698 91750 91803 91855

83 91907 91960 92012 92064 92116 92168 92220 92272 92324 92376

84 92427 92479 92531 92582 92634 92685 92737 92788 92839 92890

85 92941 92993 93044 93095 93146 93196 93247 93298 93348 93399

86 93449 93500 93550 9;^01 93651 93701 93751 93802 93852 93^X)2

87 93951 94001 94051 94101 94151 94200 1M250 94300 94349 94398

88 94448 94497 94546 94596 94645 94(594 94743 94792 94841 94890

89 94939 94987 95036 95085 95133 95182 95230 95279 95327 95376

90 95424 95472 95520 95568 95616 95664 95712 95760 95808 95856

91 95904 95951 95999 96047 96094 96142 9(5189 9(5236 96284 96331

92 %378 96426 9(^73 9()520 9()567 9()614 9(5661 9(5708 96754 9(5801

93 96848 96895 9()941 9()988 970;U 97081 97127 97174 97220 972(56

94 97312 97359 97405 97451 97497 97543 97589 97635 97680 97726

95 97772 97818 97863 97^K)9 97954 98000 98045 98091 98136 98181

96 98227 98272 98317 983()2 98407 98452 98497 98542 98587 98632

97 98677 98721 9876(j 98811 98855 98900 98945 98989 99033 99078

98 f)9122 991()6 99211 99255 99299 99343 99387 99431 99475 99519
99 99563 99607 99651 99694 99738 99782 99825 99869 99913 99956



APPENDIX III

TRIGONOMETRIC FUNCTIONS





TRIGONOMETIilC FUNCTIONS 349

NATURAL SINES, COSINES, TANGENTS, ETC.

O / Sine Cosecant Tangent Cotangent Secant Cosine /

.000000 Infinite .000000 Infinite 1.00000 1.000000 90
10 .002* 109 343.77516 .0(>29()9 343.77371 1.0()()(K) .99991 K3 50
20 .oonsis 171.8S831 .005818 171.88540 1.00(X)2 .999983 40
30 .008727 114.59301 .008727 114.588(55 1.00004 .999962 30
40 .011()35 85.945609 .011()3() 85.939791 1.00007 .999932 20
50 .014544 68.757360 .014545 68.750087 1.00011 .999894 10

1 .017452 57.298688 .017455 57.289962 1.00015 .999848 89
10 .0203()1 49.114062 .020365 49.103881 1.00021 .999793 50
20 .0232()9 42.975713 .023275 42.9(54077 1.00027 .999729 40
30 .021)177 38.201550 .02()186 38.188459 i.ooo:^ .999657 30
40 .029085 34.382316 .01^9097 34.3(57771 1.00042 .999577 20
50 .031992 31.257577 .032009 31.241577 1.00051 .999488 10

2 .034899 28.653708 .034921 28.636253 1.00061 .999391 88
10 .03780() 2().450510 .037834 2(5.431(500 1.00072 .999285 50
20 .040713 24.562123 .040747 24.541758 1.00083 .999171 40
30 .043(;i9 22.925586 .0436(51 22.9037(36 1.00095 .999048 30
40 .04(5525 21.49:5676 .046576 21.470401 1.00108 .998917 20
50 .049431 20.230284 .049491 20.205553 1.00122 .998778 10

3 .052336 19.107323 .052408 19.0811.37 1.00137 .998630 87
10 .055241 18.102619 .055325 18.074977 1.00153 .998473 50
20 .0.58145 17.1984:i4 .058243 17.169337 1.001(59 .998:308 40
30 .0()1049 16.380408 .0611(53 16.:^9855 1.00187 .998135 30
40 .C>63952 15.6;i6793 .0(54083 15.(504784 1.00205 .997:357 20
50 .006854 14.957882 .0(37004 14.924417 1.00224 .997763 10

4 .069756 14.335587 .069927 14.300(366 1.00244 .997564 86
10 .072658 13.763115 .072851 13.72(5738 1.002(35 .997:357 50
20 .075559 13.234717 .075776 13.196888 1.00287 .997141 40
'SO .078459 12.745495 .078702 12.70(3205 1.00309 .996917 30
40 .081359 12.291252 .081629 12.250505 1.00333 .99(3685 20
50 .084258 11.868370 .084558 11.826167 1.00357 .9iK3444 10

5 .087156 11.473713 .087489 11 430052 1.00382 .996195 85
10 .090053 11.104549 .090421 11.059431 1.00408 .9959:37 50
20 .092950 10.758488 .093:^)4 10.711913 1.00435 .995671 40
30 .095846 10.43;'.431 .096289 10.385397 1.004(33 .995396 30
40 .098741 10.127522 .09922(5 10.078031 1.00491 .995113 20
50 .101635 9.8391227 .102164 9.7881732 1.00521 .91M822 10

6 .104528 9.5667722 .105104 9.5143645 1.00551 .994522 84
10 .107421 9.3091()9<) .10804(5 9.255;i035 1.00582 .994214 50
20 .110313 9.0651512 .110990 9.0098261 1.00614 .993897 40 83

o / Cosine Secant Cotangent Tangent Cosecant Sine f

Fit func tions from S3*' 40' to 90° read from bottom of tab e upward.



350 TRIGONOMETRIC FUNCTIONS

NATURAL SINES , COSINES, TANGENTS, ETC.
(Co7itinued)

o / Sine Cosecant Tangent Cotangent Secant Cosine / o

6 30 .113203 8.8336715 .113936 8.7768874 1.00647 .993572 30
40 .11()093 8.6137901 .116883 8.5555468 1.00681 .993238 20
50 .118982 8.4045586 .119833 8.3449558 1.00715 .992896 10

7 .121869 8.2055090 .122785 8.1443464 1.00751 .992546 83
10 .124756 8.0156450 .125738 7.9530224 1.00787 .992187 50
20 .127642 7.8344335 .128694 7.7703506 1.00825 .991820 40
30 .130526 7.6612976 .131653 7.5957541 1.00863 .991445 30
40 .133410 7.4957100 .134613 7.4287064 1.00902 .991061 20
50 .136292 7.3371909 .137576 7.2687255 1.00942 .990669 10

8 .139173 7.1852965 .140541 7.1153697 1.00983 .990268 82
10 .142053 7.0396220 .143508 6.9682335 1.01024 .989859 50
20 .144932 6.8997942 .14()478 6.8269437 1.01067 .989442 40
30 .147809 6.7654691 .149451 6.6911562 1.01111 .989016 30
40 .150686 6.6363293 .152426 6.5605538 1.01155 .988582 20
50 .153561 6.5120812 .155404 6.4348428 1.01200 .988139 10

9 .156434 6.3924532 .158384 6.3137515 1.01247 .987688 81
10 .159307 6.2771933 .161368 6.1970279 1.01294 .987229 50
20 .162178 6.1(360674 .164354 6.0844381 1.01342 .986762 40
30 .165048 6.0588980 .167343 5.9757644 1.01391 .986286 30
40 .167916 5.9553625 .170334 5.8708042 1.01440 .985801 20
50 .170783 5.8553921 .173329 5.7693688 1.01491 .985309 10

10 .173648 5.7587705 .176327 5.6712818 1.01543 .984808 80
10 .176512 5.6653331 .179328 5.5763786 1.01595 .984298 50
20 .179375 5.5749258 .182332 5.4845052 1.01649 .983781 40
30 .182236 5.4874043 .185339 5.3955172 1.01703 .983255 30
40 .185095 5.4026333 .188359 5.3092793 1.01758 .982721 20
50 .187953 5.3204860 .191363 5.2256647 1.01815 .982178 10

11 .190809 5.2408431 .194380 5.1445540 1.01872 .981627 79
10 .193(i()4 5.1635924 .197401 5.0658352 1.01930 .981068 50
20 .196517 5.0886284 .200425 4.9894027 1.01989 .980500 40
30 .199368 5.0158317 .203452 4.9151570 1.02049 .979925 30
40 .202218 4.9451687 .206483 4.8430045 1.02110 .979341 20
50 .205065 4.8764907 .209518 4.7728568 1.02171 .978748 10

12 .207912 4.8097343 .212557 4.7046e301 1.02234 .978148 78
10 .210756 4.7448206 .215599 4.6382457 1.02298 .977539 50
20 .213599 4.6816748 .218645 4.5736287 1.02362 .976921 40
30 .21(>440 4.()202263 .221695 4.5107085 1.02428 .97(>296 30
40 .219279 4.5604080 .224748 4.4494181 1.02494 .975(562 20
50 .222116 4.5021565 .227806 4.3896940 1.02562 .975020 10 77

o f Cosine Secant Cotangent Tangent Cosecant Sine f o

For functions from 77° K ' to S3° 30' read from bottom of taible upward.



TRIGONOMETRIC FUNCTIONS 351

NATURAL SINES, COSINES, TANGENTS, ETC.
(Continued)

13

14

15

16

17

18

19

r Sine

.224951
10 .227784
20 .23061(3

30 .23;U45

40 .230273

50 .239098

.241922
10 .244743

20 .247r)()3

30 .250380

40 .253195

50 .250008

.258819

10 .201028
20 .2()44:34

30 .207238

40 .270040

50 .272840

.275037

10 .278432

20 .281225

30 .284015

40 .280803

50 .289589

.292372

10 .295152
20 .297930
30 .30070()

40 .30:3479

50 .300249

.309017

10 .311782

20 .314545

30 .317305

40 .3200()2

50 .322810

.325508
10 .328317
20 .331003

1 Cosine

Cosecant

4.4454115
4.3<H)1158

4.33()2150

4.283«)57()

4.2323i)43

4.1823785

4.1335055
4.0859130
4.0393804
3.99392<)2

3.9495224
3.9001250

3.8037033
3.8222251
3.7810590
3.7419775
3.7031.500

3.0051518

3.0279553
3.59153()3

3..5558710

3.52093()5

3.4807110
3.4531735

3.4203030
3.3880820
3.3504900
3.3255095
3.29512.34

3.2053149

3.2.300080

3.2()73()73

3.1791978
3.151.54.")3

3.124.3959

3.09773)03

3.07155.35

3.0458.352

3.0205093

Serant

Tangent

.230808

.233934

.237004

.240079

.243158

.240241

.249328

.252420

.255517

.2,58018

.2()1723

.204834

.207949

.271009

.274195

.277325

.280400

.283000

.280745

.28989(5

.293052

.2iH)214

.299380

.302553

.305731

.308914

.312104

.315299

.318500

.321707

..324920

.3281.39

.331.304

.3134.595

.3.378.33

.341077

.344328

.347585

.350848

Cotangent

Cotangent

4.3314759
4.2747006
4.2193318
4.10.52998

4.112.5014

4.0010700

4.0107809
3.9010518
3.9130420
3.8007131
3.8208281
3.7759519

3.7320508
3.0890927
3.04704()7

3.()058835

3.5055749
3.5200938

3.4874144
3.4495120
3.412302(5

3.3759434
3.340232(5

3.3052091

3.2708520
3.2371438
3.2040038
3.1715948
3.1397194
3.1084210

3.077()835

3.0474915
3.0178301
2.98808.50

2.9(500422

2.9318885

2.9042109
2.8709970
2.8502349

Tangent

Secant Cosine /
'

1.02(5.30 .974370
1.02700 .973712 50
1.02770 .973045 40
1.02842 .972370 30
1.02914 .971(587 20
1.02987 .970995 10

1.0.3001 .970296
1.03137 .9(59588 50
1.03213 .<H58872 40
1.03290 .9(58148 30
1.03.303 .9(57415 20
1.03447 .900075 10

1.0.3528 .965926
1.03(509 .f)(551(59 50
1.03(591 .9(544(J4 40
1.03774 ,9(5.3(5:50 30
1.03858 .9(52849 20
1.03944 .9(52059 10

1.04030 .9(31262

!

1.04117 .900450 50
1

1.04200 .9.59(542 40
1.04295 .958820 30
1.04.385 ,957990 20
1.04477 .957151 10

1.04509 .950305
1.04(5(33 .955450 50
1.04757 .954588 40
1.04853 .95.3717 30
1.04950 .9528:38 20
1.05047 .951951 10

1.05146 .951057

1.0524(5 .950154 50
1.05347 .949243 40
1.0.5449 .948:324 30
1.0.55.52 .947:5!)7 20
1.05(5.57 .94(5402 10

1.0.5762 .945519
1.058(59 .<)44.508 50
1.0597(5 .*^:3009 40

Cosecant Sine 1

77

76

75

74

73

72

71

70

For functions from 70° 40' to TT° 0' read from bottom of table upward.



352 TRIGONOMETRIC FUNCTIONS

NATURAL SINES , COSINES, TANGENTS, ETC.
(Cojitinued)

O f Sine Cosecant Tangent Cotangent Secant Cosine / o

19 30 .333807 2.9957443 .354119 2.8239129 1.06085 .942641 30
40 .336547 2.9713490 .357396 2.7980198 1.0()195 .941666 20
50 .339285 2.9473724 .360680 2.7725448 1.06306 .940684 10

20 .342020 2.9238044 .363<)70 2.7474774 1.06418 .939693 70
10 .344752 2.9006346 .367268 2.7228076 1.06531 .938694 50
20 .347481 2.8778532 .370573 2.6985254 1.06645 .937687 40
30 .350207 2.8554510 .373885 2.6746215 1.06761 .936672 30
40 .352931 2.8334185 .377204 2.6510867 1.0()878 .935650 20
50 .355651 2.8117471 .380530 2.6279121 1.06995 .934619 10

21 .358368 2.7904281 .383864 2.6050891 1.07115 .933580 69
10 .3()1082 2.7694532 .387205 2.5826094 1.07235 .932534 50
20 .363793 2.7488144 .390554 2.5604649 1.07356 .931480 40
30 .366501 2.7285038 .393911 2.5386479 1.07479 .930418 30
40 .369206 2.7085139 .397275 2.5171507 1.07602 .929348 20
50 .371908 2.6888374 .400647 2.4959661 1.07727 .928270 10

22 .374607 2.6694672 .404026 2.4750869 1.07853 .927184 68
10 .377302 2.()503962 .407414 2.4545061 1.07981 .926090 50
20 .379994 2.6316180 .410810 2.4342172 1.08109 .924989 40
30 .382683 2.6131259 .414214 2.4142136 1.08239 .923880 30
40 .385369 2.5949137 .417626 2.3944889 1.08370 .922762 20
50 .388052 2.5769753 .421046 2.3750372 1.08503 .921638 10

23 .390731 2.5593047 .424475 2.3558524 1.08636 .920505 67
10 .393407 2.5418961 .427912 2.3369287 1.08771 .919364 50
20 .396080 2.5247440 .431358 2.3182606 1.08907 .918216 40
30 .398749 2..5078428 .434812 2.2998425 1.09044 .917060 30
40 .401415 2.4911874 .438276 2.2816693 1.09183 .915896 20
50 .404078 2.4747726 .441748 2.2637357 1.09323 .914725 10

24 .40()737 2.4585933 .445229 2.2460368 1.09464 .913545 66
10 .409392 2.4426448 .448719 2.2285676 1.09606 .912358 50
20 .412045 2.4269222 .452218 2.2113234 1.09750 .911164 40
30 .414()93 2.4114210 .455726 2.1942997 1.09895 .909961 30
40 .417338 2.3961367 .459244 2.1774920 1.10041 .908751 20
50 .419980 2.3810650 .462771 2.1608958 1.10189 .907533 10

25 .422618 2.3662016 .466308 2.1445069 1.10338 .906308 65
10 .425253 2.3515424 .4()9854 2.1283213 1.10488 .VX)5075 50
20 .427884 2.3370833 .473410 2.1123348 1.10640 .903834 40
30 .430511 2.3228205 .47()976 2.096543() 1.10793 .902585 30
40 .433135 2.3087501 .480551 2.0809438 1.10947 .901329 20
50 .435755 2.2948685 .484137 2.0655318 1.11103 .900065 10 64

o r Cosine Secant Cotangent Tangent Coserant Sine / o

I'or functioiIS from 64° -1 y to 70° -30' read from bottom of Uible upward.



TRIGONOMETRIC FUNCTIONS 353

NATURAL SINES , COSINES, TANGENTS, ETC.
(^Contuiued)

O t Sine Cosecant Tangent Cotangent Secant Cosine / o

26 .438371 2.2811720 .487733 2.0503038 1.11260 .898794 64
10 .440984 2.2(57(5571 .491339 2.03525(55 1.11419 .897515 50
20 .443593 2.2543204 .494955 2.0203862 1.11579 .89(5229 40
30 .44(5198 2.2411585 .498582 2.0056897 1.11740 .8949154 30
40 .448799 2.2281(581 .502219 1.9911(537 1.111K)3 .893(533 20
50 .451397 2.2153460 .505867 1.9768050 1.12067 .892323 10

27 .453990 2.2026S93 .509525 1.9(526105 1.12233 .891007 63
10 .45()580 2.1901947 .513195 1.9485772 1.12400 .889(582 50
20 .4591()<) 2.1778595 .51(5876 1.9347020 1.125(58 .888350 40
30 .4()1749 2.1(55(5806 .520567 1.9209821 1.12738 .887011 30
40 .4(54327 2.153(5553 .524270 1.9074147 1.12910 .885(5(54 20
50 .466901 2.1417808 .527984 1.8939971 1.13083 .884309 10

28 .4(59472 2.1300545 .531709 1.8807265 1.13257 .882948 62
10 .472038 2.1184737 .535547 1.867(5003 1.13433 .881578 50
20 .474(500 2.1070359 .539195 1.8546159 1.13(510 .880201 40
30 .477159 2.0957385 .542956 1.8417409 1.13789 .878817 30
40 .479713 2.0845792 .546728 1.8290(528 1.13970 .877425 20
50 .482263 2.0735556 .550515 1.8164892 1.14152 .876026 10

29 .484810 2.0626653 .554309 1.8040478 1.14335 .874620 61
10 .487352 2.05190(51 .558118 1.79173(52 1.14521 .87320(5 50
20 .489890 2.0412757 .561939 1.7795524 1.14707 .871784 40
30 .492424 2.0307720 .565773 1.7(574940 1.14896 .87035(5 30
40 .494953 2.020:592i) .5(59619 1.7555.590 1.15085 .8(58920 20
50 .497479 2.0101362 .573478 1.7437453 1.15277 .867476 10

30 .500000 2.0000000 .577350 1.7320508 1.15470 .8(56025 60
10 .502517 1.9899822 .581235 1.7204736 1.156(55 .8(545(57 50
20 .505030 1.9800810 .5851;^ 1.7090116 1.158(51 .8(53102 40
30 .507538 1.9702944 .589045 1.(597(5(531 1.1(5059 .8(51(529 30
40 .510043 1.960(5206 .592970 1.68(54261 1.1(5259 .8(50149 20
50 .512543 1.9510577 .596908 1.6752988 1.16460 .858662 10

31 .515038 1.9416040 .600861 1.6642795 1.16663 .857167 59
10 .517529 1.9:522578 .604827 1.6533(5(53 1.1(58(58 .855(5(55 50
20 .520016 1.9230173 .608807 1.(5425576 1.17075 .85415(5 40
30 .522499 1.9138809 .612801 1.(5318517 1.17283 .852(540 30
40 .524977 1.90484(5!» .61(5809 1.(52124(59 1.17493 .851117 20
50 .527450 1.8959138 .620832 1.6107417 1.17704 .849586 10

32 .529919 1.8870799 .624869 1.6003345 1.17918 .848048 58
10 .532384 1.8783438 .(528921 1.5900238 1.18133 .84(i.")03 50
20 .534844 1.8697040 .632988 1.5798079 1.18350 .844951 40 57

o r Cosine Serant Cotaiijrent Tangent Cosecant Sine f o

For functions from 5T°"[(Y to 04°-0' read from bottom of table upward.

2 A



354 TRIGONOMETRIC FUNCTIONS

6

NATURAL SINES , COSINES, TANGENTS, ETC.
(CoJitijiued)

o I Sine Cosecant Tangent Cotangent Secant Cosine / o

32 30 .537300 1.8611590 .637079 1.5696856 1.18569 .843391 30
40 .539751 1.8527073 .641167 1.5596552 1.18790 .841825 20
50 .542197 1.8443476 .645280 1.5497155 1.19012 .840251 10

33 .544639 1.8360785 .649408 1.5398650 1.19236 .838671 57
10 .54707() 1.8278985 .653531 1.5301025 1.19463 .837083 50
20 .549509 1.8198065 .657710 1.5204261 1.19691 .835488 40
30 .551937 1.8118010 .661886 1.5108352 1.19920 .833886 30
40 .554360 ;L.8038809 .666077 1.5013282 1.20152 .832277 20
50 .556779 1.7960449 .670285 1.4919039 1.20386 830661 10

34 .559193 1.7882916 .674509 1.4825610 1.20622 .829038 56
10 .561602 1.7806201 .678749 1,4732983 1.20859 .827407 50
20 .564007 1.7730290 .68:^.007 1.4641147 1.21099 .825770 40
30 .56<)406 1.7655173 .687281 1.4550090 1.21341 .824126 30
40 .568801 1.7580837 .691573 1.4459801 1.21584 .822475 20
50 .571191 1.7507273 .695881 1.4370268 1.21830 .820817 10

35 .573576 1.7434468 .700208 1.4281480 1.22077 .819152 55
10 .575957 1.7362413 .704552 1.4193427 1.22327 .817480 50
20 .578332 1.7291096 .708913 1.4106098 1.22579 .815801 40
30 .580703 1.7220508 .713293 1.4019483 1.22833 .814116 30
40 .583069 1.7150639 .717691 1.3933571 1.23089 .812423 20
50 .585429 1.7081478 .722108 1.3848355 1.23347 .810723 10

36 .587785 1.7013016 .726543 1.3763810 1.23607 .809017 54
10 .590136 1.6945244 .730996 1.3679959 1.23869 .807304 50
20 .592482 1.6878151 .735469 1.3596764 1.24134 .805584 40
30 .594823 1.6811730 .739961 1.3514224 1.24400 .803857 30
40 .597159 1.6745970 .744472 1.3432331 1.24669 .802123 20
50 .599489 1.6680864 .749003 1.3351075 1.24940 .800383 10

37 .601815 1.6616401 .753554 1.3270448 1.25214 .798636 53
10 .604136 1.6552575 .758125 1.3190441 1.25489 .796882 50
20 .606451 1.6489376 .762716 1.3111046 1.25767 .795121 40
30 .608761 1.6426796 .767627 1.3032254 1.26047 .793353 30
40 .611067 1.(5364828 .771959 1.2954057 1.26330 .791579 20
50 .613367 1.6303462 .776612 1.2876447 1.26615 .789798 10

38 .615661 1.6242692 .781286 1.2799416 1.26902 .788011 52
10 .617951 1.6182510 .785981 1.2722957 1.27191 .786217 50
20 .620235 1.6122fK)8 .790698 1.2647062 1.27483 .784416 40
30 .622515 1.6063879 .795436 1.2571723 1.27778 .782608 30
40 .624789 1.6005416 .800196 1.2496933 1.28075 .780794 20
50 .627057 1.5947511 .804080 1.2422685 1.28374 .778973 10 51

o 1 Cosine Secant Cotangent

1

Tangent Cosecant Sine / o

I"or functio ns from 51°-1 0' to 57° -30' read from b ottom of tfible iii)\var(l.



TRIGONOMETRIC FUNCTIONS 355

NATURAL SINES>, COSINES, TANGENTS, ETC.
(Continued)

O / Sine Cosecant Tangent Cotangent Secant Cosine /

39 .629320 1.5890157 .809784 1.2348972 1.28676 .77714(5 51
10 .(531578 1.5833318 .814612 1.2275786 1.28980 .775312 50
20 .633831 1.5777077 .8194(53 1.2203121 1.29287 .77:3472 40
30 .636078 1.5721337 .82433(5 1.21:30970 1 .29597 .771625 30
40 .638320 1.5666121 .8292:U 1.2059:527 1.29909 .7(59771 20
50 .640557 1.5611424 .834155 1.1988184 1.30223 .767911 10

40 .642788 1.5557238 .839100 1.1917536 1.30541 .766044 50
10 .645013 1.5503558 .8440(59 1.1847:576 l.:50861 .7(54171 50
20 .647233 1.5450378 .849062 1.1777698 1.31183 .7(52292 40
30 .649448 1.5397(590 .854081 1.1708496 1.31509 .7(50406 30
40 .651657 1.5345491 .859124 1.1(539763 1.31837 .758514 20
50 .653861 1.5293773 .864193 1.1571495 1.32168 .756615 10

41 .656059 1.5242531 .869287 1.1503684 1.32501 .754710 49
10 .658252 1.5191759 .874407 1.143(5326 1.328:38 .752798 50
20 .6(50439 1.5141452 .879553 1.1:369414 1.33177 .750880 40
30 .(362620 1.5091(505 .884725 1.1302944 l.:3:3519 .748956 30
40 .()6479() 1.5042211 .889924 1.1236909 1.3:38(54 .747025 20
50 .666966 1.4993267 .895151 1.1171:305 1.34212 .745088 10

42 .669131 1.4944765 .900404 1.1106125 1.34563 .743145 48
10 .671289 1.489(5703 .W5(585 1.1041:5(55 1.34917 .741195 50
20 .67^43 1.4849073 .910994 1.0977020 l.:35274 .739239 40
30 .675590 1.4801872 .916331 1.091:5085 l.:356:54 .737277 30
40 .677732 1.4755095 .921(597 1.0849554 1.35997 .735309 20
50 .679868 1.4708736 .927091 1.0786423 1.36363 .733335 10

43 .681998 1.4662792 .932515 1.0723(587 1.36733 .73ia54 47
10 .684123 1.4(517257 .937iH)8 i.066i:ui 1.37105 .7293(57 50
20 .686242 1.4572127 .943451 1.0599:381 l.:37481 .727374 40
30 .688355 1.4527397 .9481K55 1.0537801 l.:378t50 .725374 30
40 .6904()2 1.448:^(53 .954508 1.0476598 1.38242 .72336<) 20
50 .692563 1.4439120 .960083 1.0415767 1.38628 .721357 10

44 .694658 1.4395565 .9(55689 1.0355:503 1.39016 .719340 46
10 .(i9()748 1.4352393 .97132(5 1.0295203 l.:594()9 .717:316 50
20 .()98832 1.4:509()02 .97(59i)(5 1.02:354(51 l.:39804 .715286 40
30 .700{K)9 1.42(57182 .982<5i>7 1.01 76074 1.4020:5 .71:5251 30
40 .702981 1.4225134 .988432 1.0117088 1.40(50(5 .711209 20
50 .705047 1.4183454 .994199 1.0058:348 1.41012 .709161 10

45 .707107 1.4142136 1.000000 1.0000000 1.41421 .707107 45

o / Cosine Secant Cotangent Tangent Cosecant Sine /

For functit)ns from 45°-(y to 51°-0' reiul from bottom of tab le upward.





APPENDIX IV

SQUARES, CUBES, SQUARE ROOTS, ETC.





SQUARES, CUBES, SQUARE ROOTS, ETC. 359

SQUARES, CUBES , SQUARE ROOTS, CUBE
BOOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reciprocals

1 1 1 1.0000000 1.0000000 1.000000000
2 4 8 1.414213() 1.2599210 .500000000
3 9 27 1.7320508 1.4422496 .;3:3:5:5:3:5:3:53

4 16 64 2.0000000 1.5874011 .250000000
5 25 125 2.23(J0(i80 1.7099759 .200000000

6 36 216 2.4494897 1.8171206 .l(i(;6( 56(567

7 49 343 2.()457513 1.9129312 .142.S.57143

8 64 512 2.8284271 2.00000(J0 .] 25000000
9 81 729 3.0000000 2.0800837 .111111111

10 100 1000 3.1622777 2.1544;M7 .100000000
11 121 1331 3.316()248 2.2239801 .090iK)<M)01

12 144 1728 3.4()41016 2.2894286 .08:3:33:3:533

13 169 2197 3.6055513 2.3513347 .07(592:3077

14 196 2744 3.7416.574 2.4101422 .071428571
15 225 3375 3.87298:53 2.4(i(52121 .0(5(5(5(5(5(5(57

16 256 4096 4.0000000 2.5198421 .062.")0OO()0

17 289 4913 4.1231056 2.5712816 .(J58S2:3529

18 324 5832 4.2426407 2.6207414 .05." 55.")."."5(5

19 361 6859 4.3588989 2.6684016 .052(531579

20 400 8000 4.4721360 2.7144177 .050000000
21 441 9261 4.5825757 2.7589243 .047619048
22 484 10648 4.6904158 2.8020:393 .04.">454545

23 529 12167 4.7958315 2.8438670 .04:347S2(51

24 576 13824 4.8989795 2.8844991 .041(5(56(5(57

25 625 15625 5.0000000 2.9240177 .040000000
26 676 17576 5.091K)195 2.9()24960 .0:38461."):38

27 729 11M383 5.1<H;1524 3.0000000 .0370370:37

28 784 21952 5.2i)15026 3.0:^(>')889 .0:357142S(5

29 841 24389 6.3851648 3.07231(58 .034482759

30 900 27000 5.4772256 3.1072325 .0»5:):).j>). 5:3.3

31 961 29791 5.5(577644 3.1413806 .0:52258065

32 1024 32768 5.6568542 3.1748021 .0312.50000

33 1089 35937 5.7445()2() 3.2075^U3 .0:30:30:50:30

34 1156 39304 5.8:509519 3.2:306118 .0294117(55

35 1225 42875 5.9160798 3.2710663 .028571429
36 1296 46656 6.0000000 3.:5019272 .027777778
37 1369 50653 6.0827(525 3.:3:322218 .027027(V27

38 1444 54872 6.1()44140 3.:5(519754 .026:515789

39 1521 59319 6.2449^)80 3.3912114 .025641026

40 1600 64000 6.3245553 3.41<9519 .02.")0noooo

41 1681 68921 6.4031242 3.44S2172 .024:3'. K)244

42 lliyi 74088 6.4807407 3.47(i02(3(3 .02:3S(MI524

43 1849 79507 6.5574:585 3.50:5:5981 .02:52.-)5S14

44 1936 85184 ().():^:>249() 3.530:5483 .022727273
45 2025 91125 6.7()<S2():5<) 3.55(),S0:33 /)>)»)0*)'>')02

4(5 2116 973:^ 6.782:5:i()0 3.58:30479 !02173rtir3(")

47 2209 103823 ().(S55().')4(> 3.(50882(51 .021 27t 5596

48 2304 110592 6.92S20:V2 3.6:342411 .0208:5:5:3:33

49 2401 ii7(;4i) 7.000()()00 3.659:3057 .O2O40Sl(53



360 SQUARES, CUBES, SQUARE ROOTS, ETC.

2

SQUARES, CUBES , SQUARE ROOTS, CUBE
EOOTS, AND RECIPROCALS

Jfo. Squares Cubes Square Roots Cube Roots Reciprocals

50 2500 125000 7.0710678 3.6840314 .020000000
51 2601 132651 7.1414284 3.7084298 .019(J07843

52 2701 140608 7.2111026 3.7325111 .019230769
53 2809 148877 7.2801099 3.7562858 .018867925
54 2916 157464 7.3484692 3.7797631 .018518519
55 3025 166375 7.4161985 3.8029525 .018181818
5(5 3136 175616 7.48.33148 3.8258624 .017857143
57 3249 185193 7.5498344 3.8485011 .017543860
58 3364 195112 7.6157731 3.870876() .017241379
59 3181 205379 7.6811457 3.8929965 .016949153

60 3600 216000 7.7459667 3.9148676 .016666667
61 3721 226981 7.8102497 3.9364972 .016393443
62 3814 238328 7.8740079 3.9578915 .016129032
63 3969 250047 7.9372539 3.9790571 .015873016
64 4096 262144 8.0000000 4.0000000 .015625000
65 4225 274625 8.0622577 4.0207256 .015384615
66 4356 287496 8.1240384 4.0412401 .015151515
67 4489 300763 8.1853528 4.0615480 .014925373
68 4624 314432 8.2462113 4.0816551 .014705882
69 4761 328509 8.3066239 4.1015661 .014492754

70 4900 343000 8.3G66003 4.1212853 .014285714
71 5041 357911 8.4261498 4.1408178 .014084507
72 5184 373248 8.4852814 4.1601676 .013888889
73 5329 389017 8.5440037 4.1793390 .013698630
7i 5476 405224 8.6023253 4.1983364 .013513514
75 5625 421875 8.6602540 4.2171633 .013333333
76 5776 438976 8.7177979 4.2358236 .013157895
77 5929 456533 8.7749644 4.2543210 .012987013
78 6084 474552 8.8317609 4.2726586 .012820513
79 6241 493039 8.8881944 4.2908404 .012658228

80 6400 512000 8.9442719 4.3088695 .012500000
81 6561 531441 9.0000000 4.3267487 .012345679
82 6724 551368 9.0553851 43444815 .012195122
83 6889 571787 9.1104336 4.3620707 .012048193
84 7056 592704 9.1651514 4.3795191 .0119047()2
85 7225 614125 9.2195445 4.396821K) .011764706
86 7396 636056 9.2736185 4.4140049 .011(327907
87 7569 658503 9.3273791 4.4310476 .011494253
88 7744 681472 9.3808315 4.4479602 .011363636
89 7921 7049()9 9.4339811 4.4647451 .011235955

90 8100 72^)000 9.4868330 4.4814047 .011111111
91 8281 753571 9.5393920 4.4979414 .010989011
92 8464 778688 9.5f)16630 4.5143574 .010869565
93 8649 804357 9.6436508 4.5.306549 .010752688
91 8836 8305S4 9.695.3.^)97 4.54()8359 .010(538298
95 9025 857;'.75 9.74()7943 4..")(;29026 .01052(5316
96 9216 88473() 9.7979.'")90 4.57S8.570 .010416(5(57

97 9409 912673 9.848S578 4.5947009 .010309278
98 9()04 941192 9.8994949 4.61043()3 .010204082
99 9801 970299 9.9498744 4.6260650 .010101010



8QUABES, CUBES, SQUARE SOOTS, ETC.

3

361

SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reriprorals

100 10000 100(^000 10.0000000 4.(5415888 .oiooooooo

101 10201 1030301 10.049875(5 4.(5570095 .009900990
102 10404 1061208 10.0995049 4.^)72:3287 .00i)8():i922

103 10G09 1092727 10.1488916 4.(3875482 .00970S7:}8

104 1081(3 1124864 10.1980390 4.702(5(594 .009(515:W5

105 11025 1157(325 10.24(59508 4.717(5940 .00952:5810

10() 11236 1191016 10.295(5301 4.732(52:35 .0094:5:59(52

107 11449 1225043 10.:5440804 4.7474594 .0(^)9:145794

108 1161)4 1259712 10.3923048 4.7(5220:52 .0(J9259259

109 11881 1295029 10.4403065 4.7768562 .009174312

110 12100 1331000 10.4880885 4.7914199 .009090909

111 12321 13()7631 10.535(5538 4.8058955 .009009009

112 12544 1404928 10.5830052 4.8202845 .008928571
113 127()9 1442897 10.6301458 4.8:345881 .008849558
114 1299() 1481544 10.6770783 4.8488076 .008771!):30

115 13225 1520875 10.7238053 4.8(529442 .008695(552

IK) 13456 1560896 10.7703296 4.87(59990 .008(520(590

117 13689 1601(313 10.8166538 4.89097:32 .008547009
118 13924 1(343032 10.8(527805 4.9048(581 .008474576
119 14161 1685159 10.9087121 4.9186847 .008403361

120 14400 1728000 10.9544512 4.9324242 .0083333:33

121 14(541 1771561 11.0000000 4.94(50874 .0082(544(53

122 14884 1815848 11.0453610 4.9596757 .00819(5721

123 15129 18608()7 11.09053(55 4.9731898 .0081:30081

124 15:'>7() 1906624 11.1355287 4.98(5(5310 .0080(5451(5

125 15()25 1953125 11.1803:599 5.000(X)00 .008000000
12(i 15876 2000376 11.2249722 5.01:32979 .0079:3(3508

127 16129 2048383 11.2(594277 5.02(55257 .00787401(5

128 16384 2097152 11.3137085 5.0:39(5842 .007812500
121) 1(3()41 2146689 11.3578167 5.0527743 .007751938

130 16900 2197000 11.4017543 5.0657970 .007692:308

131 171()1 2248091 11.4455231 5.07875:51 .0076:53588

132 17424 22i)99()8 11.4891253 5.091(54:34 .007575758
133 17689 2352(i37 11.5325(526 5.1044(587 .007518797
134 1795() 240(5104 11.5758369 5.1172299 .0074(52(587

l.T) 18225 21(5():'>75 11.6189500 5.129H278 .007407407
i:;(j 1849() 2515456 11.(5(5190:58 5.1425(5:32 .007:352941

137 18769 2571353 11.704(5999 5.1551:3(57 .007299270
138 11H)44 2(52.S072 11.747:3401 5.1(57(5493 .00724(5:577

139 19321 2685(319 11.7898261 5.1801015 .007194245

140 19(;00 2744000 11.8321596 5.1924941 .0071428.57

141 19881 2803221 11.874:3421 5.2()4S279 .007092 11 »9

142 20164 28(5.".288 ll.i)l(5.3753 5.21710:34 .0070422.54

143 20449 2!)24207 11.9582(507 5.229:3215 .00(599:5007

144 207;5() 2985984 12.(X)()00()0 5.2414828 .006944444
145 21025 3048(525 12.041594(5 5.25:i5879 .0O(589(55.")2

146 21316 3112136 12.0.S:;04(50 5.2(55(5.374 .00(5,S49315

147 21()()9 317(5523 12.124:5557 5.277(5:321 .()0(5SO2721

148 21904 3241792 12.1(55.-)251 5.2895725 .00(575(5757

149 22201 's^mm 12.20(5.")55() 5.:5()14592 .00(5711409
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

Ao. Squares Cul)('s Square Roots Cube Roots Reciprocals

150 22500 3375000 12.2474487 5.3132928 .0066()(5(i(57

151 22801 3442951 12.2882057 5.3250740 .00(5(522517

152 23104 3511808 12.3288280 5.3368033 .00657S947

153 23409 3581577 12.3693169 5.3484812 .006535948
154 23716 3652264 12.4096736 5.3(301084 .00(3493506

155 24025 3723875 12.4498996 5.3716854 .006451613

156 24336 3796416 12.4899960 5.3832126 .006410256
157 24649 3869893 12.5299641 5.3946907 .006369427
158 24964 3944312 12.5698051 5.4061202 .006329114
159 25281 4019679 12.6095202 5.4175015 .006289308

ino 25600 4096000 12.6491106 5.4288352 .006250000
161 25921 4173281 12.6885775 5.4401218 .006211180
162 26244 4251528 12.7279221 5.4513618 .006172840
163 26569 4330747 12.7671453 5.4625556 .0061349(59

164 26896 4410944 12.8062485 5.4737037 .006097561

165 27225 4492125 12.8452326 5.4848066 .00(5060(506

166 27556 4574296 12.8840987 5.4958647 .006024096

167 27889 4(357463 12.9228480 5.5068784 .005988024
168 28224 4741632 12.9614814 5.5178484 .005952381
169 28561 4826809 13.0000000 5.5287748 .005917160

170 28900 4913000 13.0384048 5.5396583 .005882353
171 29241 5000211 13.0766968 5.5504991 .005847953
172 29584 5088448 13.1148770 5.5612978 .005813953
173 29929 5177717 13.1529464 5.5720546 .005780347
174 30276 5268024 13.1909060 5.5827702 .005747126
175 30625 5359375 13.2287566 5.5934447 .005714286
176 30976 5451776 13.2(564992 5.(3040787 .005681818

177 31329 5545233 13.3041347 5.6146724 .005649718

178 31684 5639752 13.341(3(341 5.6252263 .005617978

179 32041 5735339 13.3790882 5.6357408 .005586592

180 32400 5832000 13.4164079 5.(i4(321(32 .005555556
181 32761 5929741 13.4536240 5.6566528 .0055248(52

182 33124 6028568 13.4907376 5.6(570511 .005494505
183 33489 6128487 13.5277493 5.6774114 .005464481

184 33856 6229504 13.564(3(300 5.6877340 .005434783

185 34225 6331625 13.(3014705 5.6980192 .005405405

186 34596 6434856 13.6381817 5.7082675 .00537(5344

187 34969 6539203 13.(3747943 5.7184791 .005347594

188 35344 6644()72 13.7113092 5.728(5543 .005319149

189 35721 6751269 13.7477271 5.7387936 .005291005

190 36100 6859000 13.7840488 5-7488971 .005263158
191 36481 69()7871 13.8202750 5.7589652 .005235602

192 3()864 7077888 13.85()40(35 5.7(589982 .005208333

193 37249 7189057 13.8924440 5.77899(36 .005181347

194 37636 7301384 13.9283883 5.7889(304 .005154639

195 38025 7414875 13.9642400 5.7988900 .005128205

196 38416 7529536 14.0000000 5.8087857 .005102041

197 38809 7645373 14.035(3(388 5.818(3479 .00507(5142

198 39204 7762392 14.0712473 5.8284767 .005050505

199 39601 7880599 14.10(373(30 5.8382725 .005025126
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reciprorals

200 40000 8000000 14.1421356 5.8480355 .005(K)(K)(K)

201 40401 8120601 14.17744()9 5.85776()0 .004975121
202 40804 8242408 14.212()704 5.8674643 .0049.50195

203 41209 8365427 14.2478068 5.8771307 .004926108
204 41()16 848VU;64 14.28285()9 5.8867653 .00490 19()1

205 42025 8(U5125 14.3178211 5.89()3685 .004S7.S049

206 4243() 8741816 14.3527001 5.90.-)9406 .0048.54.369

207 42849 88()9743 14.3874946 5.9154817 .0048.30918

208 43264 8998912 14.4222051 5.9249921 .004807692
209 43681 9129329 14.4568323 5.9344721 .004784(389

210 44100 9261000 14.491.3767 5.9439220 .004761905
211 44521 9393931 14.525835)0 5.9533418 .0047:39:33f)

212 44944 9528128 14.5(i02198 5.9627320 .00471()981

213 453()9 9663597 14.5945195 5.9720926 .004()1K18:36

214 4579() 9800344 14.()287388 5.9814240 .004(572897

215 4()225 9938375 14.6628783 5.99072(>4 .004(5511(53

216 4()6r)6 10077()96 14.()969385 6.0000000 .004629(5:30

217 47089 10218313 14.7309199 6.0092450 .004(508295

218 47524 10360232 14.7648231 6.0184()17 .004.5871.56

219 471K51 10503459 14.7986486 6.0276502 .00456(5210

220 48400 10648000 14.8323970 6.0368107 .(X)4545455
221 48S41 10793861 14.8660687 6.0459435 .004524887
222 492.S4 10941048 14.8996644 6.0550489 .004.504505
223 49729 11089567 14.9331845 6.0()41270 .004484.305
224 50176 11239424 14.966()295 6.0731779 .0044(54286
225 50()25 113<K)625 15.0000000 6.0822020 .004444444
226 5107() 11543176 15.03: '>2964 6.0911994 .004424779
227 51529 11697083 15.06()5192 6.1001702 .004405286
228 51984 11852352 15.0996()89 6.1091147 .004:3859(55

229 52441 12008989 15.1327460 6.1180332 .004:3(56812

230 52900 12167000 15.1657509 6.1269257 .004.347826
231 53361 1232()391 15.1986842 6.1357924 .004329004
232 53824 12487168 15.2315462 6.14463.37 .004310:U5
233 54289 12649337 15.2(543.375 6.1.5.34495 .004291845
2.34 54756 12812904 15.2970585 6.1622401 .00427:3.504
235 55225 12977875 15.32970i)7 6.1710058 .004255319
236 55696 13144256 15.3622915 6.1797466 .0042:>72S8
237 56169 13312053 15.3948043 6.1884628 .004219409
238 56644 13481272 15.4272486 6.1971544 .004201(581
239 57121 13()51919 15.4r)96248 6.20.-).S218 .004 1841 (Ml

240 57600 13824000 15.4919.3.34 6.2144650 .004 1(3(5(5(37

241 58081 13997521 15.5241747 6.22:30843 .004149:^78
242 58564 14172488 15.5."56:U92 6.2316797 .0041:^2231
243 51K)49 14:H8907 15.5884573 6.2402515 .00411.5226
244 59536 14526784 15.()204994 6.2487998 .004098:3(51
245 60025 1470(;i25 15.6.")24758 6.2.')7:'»248 .004081(5:^3

246 6051() 14<SS69:36 15.6S4."»S71 6.2().~)82()6 .0040(5.5041

247 61009 15069223 15.71 62.3:U) ().274:3054 .00404S583
248 61504 15252992 15.74S01.57 ().2827613 .0040:52258
249 62001 15438249 15.7797338 6.2911946 .00401(5(^54
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

Xo. Squares Cubes Square Roots Cube Roots Reciprocals

250 62500 15625000 15.8113883 6.2996053 .004000000
251 63001 15813251 15.8429795 6.3079935 .003984064
252 63504 16003008 15.8745079 6.3163596 .0039(58254

253 64009 16194277 15.9059737 6.3247035 .003952569

254 64516 16387064 15.9373775 6.3330256 .003937008
255 65025 16581375 15.9687194 6.3413257 .003921569
256 65536 16777216 16.0000000 6.3496042 .003906250
257 66049 16974593 16.0312195 6.3578611 .003891051
258 66564 17173512 16.0623784 6.3660968 .003875969
259 67081 17373979 16.0934769 6.3743111 .003861004

260 67600 17576000 16.1245155 6.3825043 .003846154
261 68121 17779581 16.1554944 6.3906765 .003831418
262 68644 17984728 16.1864141 6.3988279 .003816794
263 691()9 18191447 16.2172747 6.4069585 .003802281
264 69696 18399744 16.2480768 6.4150687 .003787879
265 70225 18()09625 16.2788206 6.4231583 .003773585

266 70756 18821096 16.3095064 6.4312276 .003759398

267 71289 19034163 16.3401346 6.4392767 .003745318
268 71824 19248832 16.3707055 6.4473057 .003731343

269 723(U 19465109 16.4012195 6.4553148 .003717472

270 72900 19683000 16.4316767 6.4633041 .003703704
271 73441 19902511 16.4620776 6.4712736 .003690037
272 73984 20123<)48 16.4924225 6.4792236 .003676471
273 74529 20346417 16.5227116 6.4871541 .003663004
274 75076 20570824 16.5529454 6.4950653 .003649635
275 75625 20796875 16.5831240 6.5029572 .003636364
276 76176 21024576 16.6132477 6.5108300 .003623188
277 76729 21253933 16.6433170 6.5186839 .003610108
278 77284 21484952 16.6733320 6.5265189 .003597122
279 77841 21717639 16.7032931 6.5343351 .003584229

280 78400 21952000 16.7332005 6.5421326 .003571429
281 78961 22188011 16.7630546 6.5499116 .003558719
282 79524 22425768 16.7928556 6.5576722 .00354()099
283 80089 22665187 16.822()038 6.5654144 .003533569
284 80656 22906304 16.8522995 6.5731385 .003521127
285 81225 23149125 16.8819430 6.5808443 .003508772
286 81796 23393656 16.9115345 6.5885323 .003496503
287 82369 23639903 16.9410743 6.5962023 .003484321
288 82944 23887872 16.9705627 6.6038545 .003472222
289 83521 24137569 17.0000000 6.6114890 .003160208

290 84100 24389000 17.0293864 6.6191060 .003448276
291 84681 24642171 17.0587221 6.62()7054 .00343(5426

292 85264 24897088 17.0880075 ().6342874 .003424(558

293 85849 25153757 17.1172428 6.6418522 .003412969
294 86436 25412184 17.1464282 6.6493998 .003401361
295 87025 25672375 17.1755640 6.(i5()9302 003389831
296 87616 25934336 17.204(5505 6.6644437 .003378378
297 88209 26198073 17.23:;6S79 ().6719403 .0033(57003

298 88804 2CAiyM)2 17.2626765 6.(5794200 .003355705
299 89401 267:50899 17.2916165 6.6868831 .003344482
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reriprorals

300 90000 27000000 17.3205081 6.(5943295 .003:5:^3:533

301 90601 27270901 17.349351() 6.7017593 .003322259
302 91204 27543608 17.3781472 6.7091729 .003311258
303 91809 27818127 17.40()8952 6.71(55700 .003300:5:50

30i 9241() 280944()4 17.4355958 6.72:39508 .00:5289474
305 93025 2S372()25 17.4(542492 6.7313155 .00:5278(581

306 936;^>() 28()52r)16 17.4928557 6.738(5(541 .0032(57974
307 94249 28934443 17.5214155 6.7459967 .003257329
308 948(54 29218112 17.5499288 6.7533134 .00324675:5

309 95481 29503629 17.5783958 6.7606143 .00323624(5

310 96100 29791000 17.(50(58169 6.7(578995 .00322580(5
311 9()721 300802;U 17.6351921 6.7751(590 .0032154:^
312 97344 30371328 17.6635217 6.7824229 .003205128
313 97969 30664297 17.69180(50 6.789(5613 .003194888
314 98596 30959144 17.7200451 6.7968844 .003184713
315 99225 31255875 17.7482393 (5.8040921 .003174(503
316 9985() 31554496 17.77(53888 6.8112847 .003164557
317 100489 31855013 17.8044938 6.8184620 .003154574
318 101124 32157432 17.8325545 6.825(5242 .003144r,.54

319 101761 32461759 17.8605711 6.8327714 .003134796

320 102400 32768000 17.8885438 6.8399037 .003125000
321 103041 33076161 17.9164729 6.8470213 .0031152(55

322 103684 33386248 17.9443584 6.8541240 .0031055^)0

323 104329 33698267 17.9722008 6.8612120 .003095975
324 104976 34012224 18.0000000 6.8682855 .00308(5420

325 105625 34328125 18.0277564 6.875:5443 .00:307(5923

326 10(L>76 34645976 18.0554701 6.8823888 .00:50(57485

327 106929 349(35783 18.0831413 6.8894188 .00:5058104

328 107584 35287552 18.1107703 6.89(54:545 .003048780
329 108241 35611289 18.1383571 6.9034359 .003039514

330 108900 35937000 18.1659021 6.9104232 .0030:50:503

331 1095()1 362(54691 18.1934054 6.917:3964 .00:3021148

332 110224 3()594;^)8 18.2208(572 6.9243556 .003012048
333 110889 36926037 18.248287(5 6.931:5008 .00:500:500:5

334 111556 37259704 18.275(5(5(59 6.9:582:321 .002994012
3:35 112225 37595375 18.3030052 6.9451496 .002985075
336 112896 37933056 18.330:5028 6.9520533 .00297(51<X)

337 113569 38272753 18.3575598 6.95894:54 .0029(57:559

338 114244 38614472 18.3847763 6.^X558198 .002958580
339 114921 38958219 18.4119526 6.9726826 .002^985:5

340 115600 39304000 18.4390889 6.9795.321 .002941176
341 116281 39651821 18.4(561853 6.98(53681 .0029:52551

342 1169()4 40001688 18.4932420 6.9931906 .00292:5977

343 117()49 40;i5;5()07 18.5202592 7.0(X)0000 .002915452
344 118336 40707584 18.5472370 7.00(579(52 .0021K)(5977

345 119025 ^lOiVMVIo 18.5741756 7.01:35791 .002898551
346 119716 41421736 18.(5010752 7.02(\34<)0 .0O28<)0173

347 120409 417S1923 18.(5279:1(50 7.0271058 .002,S81844

348 121104 42144192 18.(5.">47581 7.0:5:58497 .00287:5.-)(53

349 121801 42508549 18.(5815417 7.0405806 .0028653:30
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reciprocals

350 122500 42875000 18.7082869 7.0472987 .002857143
351 123201 43243551 18.734V)910 7.0540041 .002849003
352 123904 43614208 18.761(5630 7.0006967 .002840909
353 124609 43986977 18.7882942 7.0673767 .002832861
354 125316 443()1864 18.8148877 7.0740440 .002824859
355 126025 44738875 18.8414437 7.0806988 .002816901
356 126736 45118016 18.8679623 7.0873411 .002808989
357 127449 45499293 18.8944436 7.0939709 .002801120
358 128164 45882712 18.92088V9 7.1005885 .002793296
359 128881 46268279 18.9472953 7.1071937 .002785515

360 129600 46656000 18.9736660 7.1137866 .002777778
361 130321 47045881 19.0000000 7.1203674 .002770083
362 131044 47437928 19.0262976 7.1269360 .002762431
363 131769 47832147 19.0525589 7.1334925 .002754821
364 132496 48228544 19.0787840 7.1400370 .002747253
365 133225 48627125 19.1049732 7.1465695 .002739726
366 133956 49027896 19.1311265 7.1530901 .002732240
367 134689 49430863 19.1572441 7.1595988 .002724796
368 135424 49836032 19.1833261 7.1660957 .002717391
369 136161 50243409 19.2093727 7.1725809 .002710027

370 136900 50653000 19.2353841 7.1790544 .002702703
371 137641 51064811 19.2613603 7.1855162 .002695418
372 138384 51478848 19.2873015 7.1919663 .002688172
373 139129 51895117 19.3132079 7.1984050 .002680965
374 139876 52313624 19.3390796 7.2048322 .002673797
375 140625 52734375 19.3649167 7.2112479 .002666667
376 141376 53157376 19.3907194 7.2176522 .002659574
377 142129 53582633 19.4164878 7.2240450 .002652520
378 142884 54010152 19.4422221 7.2304268 .0026)45503

379 143641 54439939 19.4679223 7.2367972 .002638522

380 144400 54872000 19.4935887 7.2431565 .002631579
381 145161 55306341 19.5192213 7.2495045 .002624672
382 145924 55742968 19.5448203 7.2558415 .002617801
383 146689 56181887 19.5703858 7.2621675 .002()10966

384 147456 56623104 19.5959179 7.2684824 .002604167
385 148225 57066625 19.6214169 7.2747864 .002597403
386 148996 57512456 19.6468827 7.2810794 .002590674
387 149769 57960603 19.6723156 7.2873()17 .002583979
388 150544 58411072 19.6977156 7.2936330 .002577320
389 151321 58863869 19.7230829 7.2998936 .002570694

390 152100 59319000 19.7484177 7.3061436 .002564103
391 152881 59776471 19.7737199 7.3123828 .002557545
392 153(J64 60236288 19.7989S99 7.3186114 .002551020
393 154149 60()98457 19.8242276 7.3248295 .002544529
394 155236 611()2984 19.8494332 7.33103()9 .002538071
395 156025 61()29875 19.874()069 7.3372339 .002531646
396 156816 62099136 19.8997487 7.3434205 .002525253
397 157609 62570773 19.9248588 7.3495966 .002518892
398 158404 63044792 19.9499373 7.35.57()24 .002512563
399 159201 63521199 19.9749844 7.3619178 .0025062()()
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367

SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

Itfo. Squares Cabes Square Roots Cube Roots Reriprorals

400 160000 (;40ouooo 20.0000000 7.3680()30 .0()2r)()()0()o

401 1()0S01 64481201 20.0249844 7.3741979 .00249:576(5

402 161604 649(>4808 20.0499377 7.3803227 .0024875(52

403 162409 65450827 20.0748599 7.3864373 .002481:590

404 163216 65939264 20.0997512 7.3925418 .002475248

405 1()4025 664:^125 20.1246118 7.398()362 .0024(591:5(5

406 16483() 66923416 20.1494417 7.4047206 .0024(5:5054

407 165()49 67419143 20.1742410 7.4107950 .002457002

408 16()464 67917312 20.19rK)099 7.4168595 .0024.-)0980

409 167281 68417929 20.2237484 7.4229142 .002444988

410 168100 68921000 20.24S45()7 7.4289589 .0024:59024

411 168921 69426531 20.2731349 7.4349938 .0024:5:5090

412 169744 69934528 20.2977831 7.4410189 .002427184
413 170569 70444997 20.3224014 7.4470:542 .002421:508

414 171396 70957944 20.34()9899 7.45:>0:399 .002415459
415 172225 71473375 20.3715488 7.4590359 .002409(5:59

416 17305() 71991296 20.3900781 7.4650223 .00240:5846

417 173889 72511713 20.4205779 7.4709991 .002398082
418 174724 73034632 20.4450483 7.4769(564 .002392:344

419 175561 73560059 20.4694895 7.4829242 .002:5866:55

420 176400 74088000 20.4939015 7.4888724 .002380952
421 177241 74618461 20.5182845 7.494S113 .002375297
422 178084 75151448 20.542()386 7.5007406 .002:5(59(5(58

423 178929 7568()iK57 20.5669()38 7.50(5(5(507 .002:5640(56

424 179776 76225024 20.5912603 7.5125715 .002:558491

4'^ 180625 767()5625 20.()155281 7.51847:30 .002:552941

426 181476 77308776 20.6397()74 7.524:3(552 .002:547418

427 182329 77854483 20.6639783 7.5:302482 .002341920
428 183184 78402752 20.()881609 7.5:561221 .0023:5(5449

429 184041 78953589 20.7123152 7.5419867 .002331002

430 184900 79507000 20.7364414 7.5478423 .002:525581

431 185761 80062991 20.7605395 7.55:36888 .002:520186

432 186624 806215()8 20.7846097 7.55952(53 .002314815
4:53 187489 81182737 20.8()8()520 7.565:3548 .002:5(n>4(59

434 18835() 81746504 20.8326(;()7 7.5711743 .002:5(^4147

435 189225 82312875 20.85665:36 7.57(59849 .002298851
43() 1900i)() 82881856 20.880(5130 7.58278(55 .00229:5578

437 1<M)9(;9 8:U53453 20.<K)45450 7.5885793 .002288:5:50

438 191844 84027672 20.9284495 7.5943(533 .002283105
439 192721 84604519 20.952326)8 7.(5001385 .002277W4

440 193600 85184000 20.97()1770 7.605<X)49 .002272727
441 194481 8576()121 21.0000000 7.611(5(52(5 .0022(57574

442 1953()4 8f)350888 21.0237960 7.617411(5 .0022(5244:5

443 196249 86938307 21.0475652 7.62:51519 .002257:5:56

444 197136 87528384 21.07 1;'>075 7.(52888:57 .002252252
445 198025 88121125 21.()9.~)()231 7.6:54(50(57 .002247191
446 198<)1() 8871()536 21.1187121 7.(540:3213 .002242 1.")2

447 199809 89314()23 21.1423745 7.(^(50272 .0022:571:5(5

448 200704 89915392 21.1660105 7.6517247 .0022:52143

449 201601 90518849 21.1896201 7.(55741:58 .002227171
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reciprocals

450 202500 91125000 21.2132034 7.6630943 .002222222
451 20;i401 91733851 21.23()7606 7.()687()()5 ;002217295
452 204304 92345408 21.2602916 7.6744303 .002212389
453 205209 92959677 21.28379(;7 7.()800857 .002207506
454 206116 93576664 21.3072758 7.6857328 .002202643
455 207025 94196375 21.3307290 7.691.3717 .002197802
456 207936 94818816 21.35415()5 7.()970023 .002192982
457 208849 95443993 21.3775583 7.7026246 .002188184
458 209764 96071912 21.4009346 7.7082388 .002183406
459 210681 96702579 21.4242853 7.7138448 .002178649

460 211600 97336000 21.4476106 7.7194426 .002173913
461 212521 97972181 21.4709106 7.7250325 .002169197
462 213444 98611128 21.4941853 7.7306141 .0021(14502

463 214369 99252847 21.5174348 7.7361877 .002159827
464 215296 99897344 21.5406592 7.7417532 .002155172
465 216225 100544625 21.5638587 7.7473109 .0021.50538

466 217156 101194696 21.5870331 7.7528606 .002145923
467 218089 101847563 21.6101828 7.7584023 .002141328
468 219024 102503232 21.6333077 7.7639361 .002i;5()752

469 219961 103161709 21.6564078 7.7694620 .002132196

470 220900 103823000 21.6794834 7.7749801 .002127660
471 221841 104487111 21.7025344 7.7804904 .002123142
472 222784 105154048 21.7255610 7.7859928 .002118644
473 223729 105823817 21.7485632 7.7914875 .002114165
474 224676 106496424 21.7715411 7.7969745 .002109705
475 225(525 107171875 21.7944947 7.8024538 .0021()52()3

476 226576 107850176 21.8174242 7.8079254 .002100840
477 227529 108531333 21.8403297 7.8133892 .0020!i()43()

478 228484 109215352 21.8632111 7.8188456 .002092050
479 229441 109902239 21.8860686 7.8242942 .002087683

480 230400 110592000 21.9089023 7.8297353 .002083333
481 231361 in284()41 21.9317122 7.8351688 .002079002
482 232324 111980168 21.9544984 7.8405949 .002074689
483 233289 112678587 21.9772610 7.8460134 .002070393
484 2:^256 113379904 22.0000000 7.8514244 .0020(5(5116

485 235225 114084125 22.0227155 7.8.5{)8281 .002061856
486 236196 114791256 22.0454077 7.8()22242 .002057(513

487 237169 115501303 22.0680765 7.8676130 .002053388
488 238144 116214272 22.0^)07220 7.8729944 .002049180
489 239121 116930169 22.1133444 7.8783684 .002044990

490 240100 117649000 22.13594.36 7.8837352 .002040816
491 241081 118370771 22.1585198 7.8890946 .002036(5(50

492 2420()4 119095488 22.1810730 7.8944468 .002032520
4<)3 24:^)049 119823157 22.2036033 7.8997917 .002028398
494 24403() 120553784 22.2261108 7.9051294 .002024291
495 245025 121287375 22.248.5955 7.9104599 .002020202
496 246016 122023936 22.2710575 7.9157832 .002016129
497 247009 12276;M73 22.29IU9()8 7.92109()4 .002012072
498 248004 123505992 22.31591 :U) 7.9264085 .0020080.32

499 249001 124251499 22.338:3079 7.9317104 .002004008
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

5o. Squares Cubes Square Roots Cube Roots Reciprocals

500 250000 125000000 22.360(;798 7.9:370053 .002000000

501 251001 125751501 22.3830293 7.9422!>31 .00199(5008

502 252004 12()5()()008 22.4053565 7.94757:39 .0019920:52

503 25:3009 127263527 22.427()615 7.9528477 .001988072
504 2:401() 128024061 22.4499443 7.9581144 .001984127
505 255025 128787625 22.4722051 7.9(5:3:3743 .001980198
50() 25()036 12i)554216 22.4944438 7.9(58(5271 .00197(5285

507 257049 130323843 22.51()6605 7.97:38731 .001972.387

508 2580()4 131096512 22.5388553 7.9791122 .0019(585(4

509 251K)81 131872229 22.5610283 7.984:3444 .0019(346:37

510 260100 132()51000 22.5831796 7.9895(597 .0019(50784

511 261121 133432831 22.(3053091 7.9917883 .00195(3147

512 262144 134217728 22.(3274170 8.0000000 .001953125
513 2()3169 135005697 22.(495033 8.0052049 .001949318
514 264196 1357i)6744 22.(3715(381 8.01(40:32 .001945525
515 265225 13(3590875 22.(5936114 8.015594(5 .001941748
51(3 266256 137388096 22.71563134 8.0207794 .0019:37984

517 2(57289 138188413 22.737(3340 8.0259574 .0019342:36

518 268324 138991832 22.75fK3134 8.0:311287 .0019.30502

519 269361 139798359 22.7815715 8.0:362935 .001926782

520 270400 140608000 22.8035085 8.0414515 .00192:3077

521 271441 141420761 22.8254244 8.04(5(30:30 .001919386
522 272484 14223()648 22.8473193 8.0517479 .00191.5709
523 273529 143055(367 22.8691933 8.0568862 .001912046
524 274576 143877824 22.8910463 8.0(520180 .0O11KK397
525 275()25 144703125 22.9128785 8.0(371432 .0019047(52
52() 27(>()76 145531576 22.934(5899 8.0722(520 .0011K)1141

527 277729 14(33(33183 22.9564806 8.0773743 .0018975:33
528 278784 147197952 22.9782506 8.0824800 .00189:3939

529 279841 148035889 23.0000000 8.0875794 .001890:359

530 280! )00 148877000 23.0217289 8.092(5723 .00188(5792
531 281961 149721291 23.04:4372 8.0<)77589 .00188:32.39

532 283024 1505687(J8 23.0(351252 8. 1028; 590 .001879(599
533 281089 151419437 23.0867928 8.1079128 .00187(5173
5;u 2851 5() 152273304 23.1084400 8.112i)S03 .001872(559
535 286225 153130375 23.1:300(570 8.1180414 .0018(59159
536 28729() 1539<)0656 23.151(3738 8.12:309(32 .0(M 8(55(572

537 2883()9 154854153 23.17:52(305 8.1281447 .0018(52197
538 289444 155720872 23.1948270 8. 1:3:51 870 .0018587:3(3

539 290521 156590819 23.21(53735 8.1:3822:30 .001855288

540 291(300 157464000 23.2:579001 8.1432529 .001851852
541 292681 158340421 23.25140(37 8.14827(55 .001.S4S429

542 2937()4 159220088 23.28089:35 8.15:329:39 .00184.1018

543 294849 16010; ;oo7 23.:302:5(501 8.158:3051 .001841(521

544 2!>59;'.6 1()0989184 23.:32:38076 8.16:33102 .(^) 18:382.35

545 2971)25 I(;i878()25 23.:452:\51 8.1(58:3092 .0018:48(52

546 298116 162771336 23.:3( 5(3(5429 8.17:3;5020 .fH)1831.n02

547 299209 1().3()67323 23..38803 11 8.17S28S8 .001S28J.14

.548 300304 1(4566592 23.409:3998 8.18:32(595 .001824818
-49 301401 1()54(J<)149 23.4:30741K) 8.1882441 .001821494

2 b
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes

166375000

Square Roots Cube Roots Reciprocals

550 302500 23.4520788 8.1932127 .001818182
551 303601 167284151 23.4733892 8.1981753 .001814882
552 304704 168196608 23.4946802 8.2031319 .001811594
553 305809 169112377 23.5159520 8.2080825 .001808318
554 306916 170031464 23.5372046 8.2130271 .001805054
555 308025 170953875 23.5584380 8.2179(357 .001801802
556 309136 171879616 23.5796522 8.2228985 .001798561

557 310249 172808693 23.6008474 8.2278254 .001795332

558 311364 173741112 23.6220236 8.2327463 .001792115

559 312481 174676879 23.6431808 8.2376614 .001788909

560 313600 175616000 23.6643191 8.2425706 .001785714
561 314721 176558481 23.6854386 8.2474740 .061782531
5()2 315844 177504328 23.7065392 8.2523715 .001779359
563 316969 178453547 23.7276210 8.2572633 .001776199
564 318096 179406144 23.7486842 8.2621492 .001773050
565 319225 180362125 23.7697286 8.2670294 .001769912
566 320356 181321496 23.7907545 8.2719039 .00176()784

567 321489 182284263 23.8117618 8.2767726 .001763668
568 322624 183250432 23.8327506 8.2816355 .001760563
569 323761 184220009 23.8537209 8.2864928 .0017574(^9

570 324900 185193000 23.8746728 8.2913444 .001754386
571 326041 186169411 23.895(^063 8.296^)03 .001751313
572 327184 187149248 23.91(55215 8.3010304 .001748252
573 328329 188132517 23.9374184 8.3058651 .001745201
574 329476 189119224 23.9582971 8.3106941 .001742160
575 330625 190109375 23.9791576 8.3155175 .001739130
576 331776 191102976 24.0000000 8.3203353 .001736111
577 332929 192100033 24.0208243 8.3251475 .001733102
578 334084 193100552 24.0416306 8.3299542 .001730104
579 335241 194104539 24.0624188 8.3347553 .001727116

580 336400 195112000 24.0831891 8.3395509 .001724138
581 337561 196122941 24.1039416 8.3443410 .001721170
582 338724 197137368 24.12467(^2 8.3491256 .001718213
583 339889 198155287 24.1453929 8.3539047 .001715266
584 ^41056 199176704 24.1(^(50919 8.358(5784 .001712329
585 342225 200201625 24.1867732 8.3634466 .001709402
586 M339f) 201230056 24.2074369 8.3682095 .001706485
587 344569 202262003 24.2280829 8.3729(568 .001703578
588 345744 203297472 24.2487113 8.3777188 .001700680
589 346921 204336469 24.2693222 8.3824(553 .001697793

590 348100 205379000 24.2899156 8.38720(55 .001(594915

591 349281 206425071 24.3104916 8.3919423 .001692047
592 350464 207474688 24.3310501 8.39(5(5729 .001689189
593 351649 208527S57 24.351.5913 8.4013981 .001686341
594 352836 209584584 24.3721152 8.4061180 .001683502
595 354025 210(544875 24.3926218 8.410832(5 .001(580672

596 355216 211708736 24.4131112 8.4155419 .001677852
597 356409 21277(5173 24.4335834 8.42024(50 .001675042
598 357604 213847192 24.4540385 8.4249448 .001()72241

599 358801 214921799 24.4744705 8.429(5383 .001(5(59449
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SQUARES, CUBES SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reciprocals

600 360000 216000000 24.4948974 8.4343267 .001(5(5(3(3(57

601 361201 217081801 24.5153013 8.4390098 .001(5(5:3894

602 362404 218167208 24.53515883 8.443(5877 .(X)l (5(51 1.30

603 363609 219256227 24.55(50583 8.4483(305 .001(558375

604 364816 220348864 24.5764115 8.4530281 .001655(529

605 36(5025 221445125 24.5967478 8.457(5906 .001(552893

606 367236 222545016 24.6170(373 8.462:3479 .001(5501(35

607 3()8449 223648543 24.6373700 8.4670001 .001(54744(5

608 36^)664 224755712 24.(i576560 8.4716471 .001644737

609 370881 225866529 24.6779254 8.4762892 .001(542036

610 372100 226981000 24.()981781 8.4809261 .001639:344

611 373321 228099131 24.7184142 8.4855579 .001(3:3(3(5(51

612 374544 229220928 24.738(3338 8.4f)01848 .001(333987

613 375769 230346397 24.7588368 8.4948065 .001631321

614 376996 231475544 24.7790234 8.4994233 .001628(3(54

615 378225 232608375 24.7991935 8.5040350 .001(52(3016

616 379456 233744896 24.8193473 8.508(5417 .001623377

617 380689 234885113 24.8394847 8.5132435 .001620746
618 381924 23()029032 24.8596058 8.5178403 .001618123

619 383161 237176659 24.8797106 8.5224321 .001615509

620 384400 238328000 24.8997992 8.5270189 .001612903

621 385641 239483061 24.9198716 8.531(3009 .001610:306

622 386884 240641848 24.9399278 8.5361780 .001(307717

623 388129 241804367 24.9599679 8.5407501 .001(5051:36

624 389376 242970624 24.9799920 8.5453173 .001(3025(34

625 390625 244140625 25.0000000 8.5498797 .001(500000

62() 391876 245314376 25.0199920 8.5544372 .001597444
627 393129 246491883 25.0399681 8.5589899 .00159489(5

628 394384 247673152 25.0599282 8.5(535377 .001592:357

629 395641 248858189 25.0798724 8.5680807 .001589825

630 smm 250047000 25.0998008 8.5726189 .001587:302

631 398161 251239591 25.1197134 8.5771523 .00158478(5

632 399424 2524359()8 25.1396102 8.581(3809 .001582278
633 400689 253636137 25.1594913 8.58(52047 .001579779
()34 401956 254840104 25.17935(36 8.5907238 .001577287

635 403225 256047875 25.19920(53 8.5952380 .00157480:5

636 404496 257259456 25.2190404 8.5997476 .001572:527

637 405769 258474853 25.2388589 8.6042525 .00 !.")( 59859

638 407044 259694072 25.2586(519 8.608752(5 .0015(57:39S

639 408321 260917119 25.2784493 8.6132480 .0015(34945

640 409600 262144000 25.2982213 8.6177388 .(X)15(52500

641 410881 263374721 25.3179778 8.(5222248 .0015600(52

642 412164 264609288 25.3377189 8.(52(570(53 .001557(5:32

643 41.3449 265847707 25.3.-.74447 8.(5311830 .001555210

(^t4 4147:3(^ 267089984 25..3771551 8.(535(5551 .0015527i)5

645 416025 268336125 25..3iH5S5()2 8.(340122(3 .001550:388

646 417316 26958()136 25.41(5."k>()1 8.(544.")8.'')5 .001547988
647 418009 270840023 25.43(51947 8.(541K)437 .001545595
648 419904 272097792 25.4.V)S441 8.r).^);U974 .00154:3210

649 421201 273359449 25.4754784 8.(557941.5 .0015408:32
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

Xo. Squares Cubes Square Roots Cube Roots Reciprocals

650 422500 274625000 25.4950976 8.6623911 .001538462
651 423801 275894451 25.5147016 8.6()()8310 .00153()098

652 425104 277167808 25.5342907 8.6712665 .001533742
653 426409 278445077 25.5538647 8.6756974 .001531394
654 427716 279726264 25.5734237 8.6801237 .001529052
655 429025 281011375 25.5929678 8.6845456 .001526718
656 430336 282300416 25.6124969 8.6889()30 .001524390
657 431649 283593393 25.6320112 8.6933759 .001522070
658 432964 284890312 25.6515107 8.6977843 .001519757
659 434281 286191179 25.6709953 8.7021882 .001517451

660 435G0O 287496000 25.6904652 8.7065877 .001515152
661 436921 288804781 25.7099203 8.7109827 .001512859
662 438244 290117528 25.7293607 8.7153734 .001510574
663 439569 291434247 25.7487864 8.7197596 .001508296
664 440896 292754944 25.7681975 8.7241414 .00150()024

665 442225 294079625 25.7875939 8.7285187 .001503759
666 443556 295408296 25.8069758 8.7328918 .001501502
667 444889 296740963 25.8263431 8.7372604 .001499250
668 446224 298077632 25.8456960 8.7416246 .001497006
669 447561 299418309 25.8650343 8.7459846 .001494768

670 448900 300763000 25.8843582 8.7503401 .001492537
671 450241 302111711 25.9036677 8.7546913 .001490313
672 451584 303464448 25.9229628 8.7590383 .001488095
673 452929 304821217 25.9422435 8.7633809 .001485884
674 454276 306182024 25.9615100 8.7677192 .001483680
675 455625 307546875 25.9807621 8.7720532 .001481481
676 456976 308915776 26.0000000 8.7763830 .0014792^)0

677 458329 310288733 26.0192237 8.7807084 .001477105
678 459684 311665752 26.0384331 8.7850296 .001474926
679 461041 31304-6839 26.0576284 8.7893466 .001472754

680 462400 314432000 26.0768096 8.7936593 .001470588
681 463761 315821241 26.0959767 8.7979679 .001468429
682 465124 317214568 26.1151297 8.8022721 .001466276
683 466489 318611987 26.1342687 8.8065722 .001464129
684 467856 320013504 26.1533937 8.8108681 .001461988
685 469225 321419125 26.172.-047 8.8151598 .001459854
686 470596 322828856 26.1916017 8.8194474 .001457726

687 471969 324242703 26.2106848 8.8237307 .001455604
688 473:^44 325660672 26.2297541 8.8280099 .001453488

689 474721 327082769 26.2488095 8.8322850 .001451379

690 476100 328509000 26.2678511 8.8365559 .001449275
691 477481 329939371 26.2868789 8.8408227 .001447178
692 478864 331373888 26.3058929 8.8450854 .001445087
693 480249 332812557 26.3248932 8.8493440 .001443001
694 481636 334255384 26.3438797 8.8535985 .001440922

695 483025 335702375 26.3628527 8.8578489 .001438849
696 484416 33715:^536 26.3818119 8.8(;20952 .00143()782

697 485809 338608873 26.400757() 8.8()63375 .001434720

698 487204 34()0(;8392 26.419()896 8.8705757 .001432(;()5

699 488(501 3415320i)9 26.4386081 8.8748099 .001430615
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

No. Squares Cubes Square Roots Cube Roots Reciprocals

.001428571700 490000 343000000 20.45751:51 8.8790400
701 4!)1401 344472101 2(5.47(5404(5 8.88:52(561 .0014205:54

702 492804 ^45948408 26.4952826 8.8874882 .001424.-)01

703 494209 347428927 26.5141472 8.89170(53 .001422475
704 495(}16 348913(5(54 26.5329983 8.895il2(J4 .001420455
705 497025 350402(525 26.5518:5(51 8.9001:504 .(H)1418440

706 49843() 351895810 2(5.570(5(505 8.iM)4:5:5(5() .00141(5431

707 499849 353393243 2(5.5894710 8.9085:587 .001414427
708 501204 354894912 26.(5082(594 8.9127:5(59 .001412429
709 502081 350400829 20.0270539 8.9169311 .001410437

710 504100 357911000 26.6458252 8.9211214 .001408451
711 505521 359425431 26.6(5458:53 8.925:5078 .00140(5470
712 50(5944 3(50944128 26.(58:5:5281 8.9294902 .001404494
713 5083(59 3024(57097 2(5.7020598 8.9:3:5(5(587 .001402525
7U 509790 3(515994344 26.7207784 8.9:5784:53 .0014(XJ5(50

715 511225 305525875 2(5.73948:59 8.9420140 .001:598(501

710 512(356 3670(51(590 1:6.75817(53 8.94(51809 .001:59(5(548

717 514089 308001813 26.7768557 8.9503438 .001:594700
718 515524 37014(5232 26.7955220 8.9545029 .a)i:592758
719 510901 371094959 20.8141754 8.958(5581 .001390821

720 518400 373248000 26.8328157 8.9(528095 .001:588889
721 519841 3748053(51 26.85144:52 8. i)( 5(59570 .OOi:58(51K53

722 521284 3703(57048 26.8700577 8.9711007 .001:585042
723 522729 37793:50(57 20.888(5593 8.9752406 .001383126
724 524170 379503424 26.9072481 8.979:57(56 .001:581215
725 525(525 381078125 26.9258240 8.98:55089 .001:579310
72(5 527070 382(557170 20.i)44:5872 8.987(5:573 .001:577410
727 528529 384240583 2(5.9(52<):;75 8.9917(520 .001:575516
728 529984 385828352 20.9814751 8.9958829 .001:57:5(526

729 531441 387420489 27.0000000 9.0000000 .001371742

730 532900 389017000 27.0185122 9.00411:54 .001:5(598(53

731 5;U3(;i 390617891 27.0:570117 9.008222i) .001:5(57989

732 535824 392223108 27.0554985 9.0123288 .001:5(5(5120

733 537289 393832837 27.07:59727 9.01(54309 .001:5(5425(5

lU 53875() 39544(5904 27.0924:U4 9.0205293 .001:5(52:598

735 540225 3970(55375 27.11088:54 9.024(52:59 .001:5(50.544

73() 541(59(5 398(588256 27.1293199 9.0287149 .0()i:558()^H)

737 5431(59 400315553 27.14774:59 9.0:528021 .00i:55(58,"')2

738 544(^44 401947272 27.1(5(51554 9.0:5(58857 .001:555014
739 540121 40358:1419 27.1845544 9.0401H)55 .00K553180

740 547(500 405224000 27.202!)410 9.0450417 .001:551:5,51

741 549081 40(58(59021 27.2213152 9.0491142 .001:549528
742 5505(54 408518488 27. 2:5<H 57(59 9.05318:51 .(.H)i:547709

743 552049 410172407 27.25802(5:5 9.0572482 .001:545895
744 553530 4118:50784 27.27(5:5(5:U 9.0(51 :U)98 .00i:54408(>

745 555025 41:549:5(525 27. 2! M( 5881 9.(X 55:5(577 .001:542282
74() 55(5510 4151 (509:5(5 27.31:5000(5 9. (M 594220 .001:540483
747 558009 41(58:52723 27.:53i:5(M)7 9.07:5472(5 .001:5:58(588

748 559504 418508992 27.:549.~)887 9.0775197 .001:5:5(5898

749 501001 420189749 27.:5(578()44 - 9.(3815(5:51
,

.001:5:55113
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SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

JVo. Squares Cubes Square Roots Cube Roots Reciprocals

7r.o 562500 421875000 27.3861279 9.0856030 .001333333

751 564001 423564751 27.4043792 9.0896392 .001331558

752 565504 425259008 27.4226184 9.0936719 .001329787

753 567009 426957777 27.4408455 9.0977010 .001328021

754 568516 428661064 27.4590604 9.1017265 .001326260

755 570025 430368875 27.4772633 9.1057485 .001324503

756 571536 432081216 27.4954542 9.1097669 .001322751

757 573049 433798093 27.5136330 9.1137818 .001321004

758 574564 435519512 27.5317998 9.1177931 .001319261

759 576081 437245479 27.5499546 9.1218010 .001317523

760 577600 438976000 27.5680975 9.1258053 .001315789

761 579121 440711081 27.5862284 9.1298061 .001314060

762 580644 442450728 27.6043475 9.1338034 .001312336

7(53 582169 444194947 27.6224546 9.1377971 .001310616

764 583696 445943744 27.6405499 9.1417874 .001308901

765 585225 447697125 27.6586334 9.1457742 .001307190

766 586756 449455096 27.6767050 9.1497576 .001305483

767 588289 451217663 27.6947648 9.1537375 .001303781

768 589824 452984832 27.7128129 9.1577139 .001302083

769 591361 454756609 27.7308492 9.1616869 .001300390

770 592900 456533000 27.7488739 9.1656565 .001298701

771 594441 458314011 27.7668868 9.1696225 .001297017

772 595984 4(J0099()48 27.7848880 9.1735852 .001295337

773 597529 461889917 27.8028775 9.1775445 .001293661

774 599076 463684824 27.8208555 9.1815003 .001291990

775 600025 465484375 27.8388218 9.1854527 .001290323

776 602176 467288576 27.8567766 9.1894018 .001288660

777 603729 469097433 27.8747197 9.1933474 .001287001

778 605284 470910952 27.8926514 9.1972897 .001285347

779 60()841 472729139 27.9105715 9.2012286 .001283697

780 608400 474552000 27.9284801 9.2051641 .001282051

781 601M!61 476379541 27.94()3772 9.2090962 .001280410

782 611524 478211768 27.9()42()29 9.2130250 .001278772

783 613089 480048687 27.9821372 9.2169505 .001277139

784 614656 481890304 28.0000000 9.2208726 .001275510

785 616225 4837:5()(;25 28.0178515 9.2247914 .001273885

786 617796 485587656 28.0356915 9.2287068 .0012722(55

787 619369 487443403 28.0535203 9.2326189 .001270648

788 620944 489303872 28.0713377 9.2365277 .00126^)036

789 622521 491169069 28.0891438 9.2404333 .001267427

790 624100 493039000 28.1069386 9.2443355 .001265823

791 625681 494913()71 28.1247222 9.2482344 .001264223

792 6272f)4 49()793088 28.1424946 9.2521300 .001262626

793 ()28849 498()77257 28.1602,557 9.2560224 .001261034

794 6304:^.6 50056()184 28.17800.56 9.2599114 .001259446

795 632025 502459875 28.1957444 9.2637973 .001257862

79f) 633()16 504358^,36 28.2134720 6.2(576798 .001256281

797 635209 50()261573 28.2311884 9.2715592 .001254705

798 63>6804 5081()9592 28.2488938 9.27.54352 .001253133

799 638401 510082399 28.2()65881 9.2793081 .001251564
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SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

Ko. Squares Cubes Square Roots Cube Roots Reciprocals

800 ()40000 512000000 28.2842712 9.2831777 .0()i2r)()(X)()

801 641()()1 513922401 28.:5019434 9.2870440 .00124s };;<)

802 ()43204 515849()08 28.31 9()045 9.2i)0i)072 .0O124(5S,S3
803 644809 517781627 28.:5:;7254(j 9.2947(571 .001245:5:50
804 646416 51971S464 28.:55489:58 9.298(52::59 .00124:5781
805 648025 5216()()125 28.:3725219 9.3024775 .0012422:5(5
806 649()36 523()0()()16 28.390L391 9.30(5:5278 .001240(595
807 651249 525557^)43 28.4077454 9.3101750 .001 2:59 1.-)7

808 652864 527514112 28.425:5408 9.:3140190 .0012:57(524
809 654481 529475129 28.4429253 9.3178599 .0012:5(5094

810 656100 531441000 28.4(;04989 9.321(5975 .0012:345(58
811 657721 533411731 28.4780(517 9.3255:520 .0012:5:504(5
812 659344 535387328 28.4i)5()i:57 9.;329:5(5:34 .001231.V27
813 660969 5373()7797 28.5131549 9.3:331916 .0O12:;00I2
814 6625i)6 539353144 28.5:50(5852 9.:3:5701(57 .001228501
815 6(J4225 54134:5375 28.5482048 9.:5408:586 .00122(5994
816 &mm 54333849() 28.5(>57L37 9.344(5575 .00122541K)
817 667489 54533S513 28.58:52119 9.3484731 .00122:^990
818 669124 54734:^132 28.6001)99:5 9.3522857 .001222494
819 670761 549:353259 28.61817(50 9.3560952 .001221001

820 672400 55i:')()S000 28.():55i)421 9.3599016 .001219512
821 674041 55:3;)87661 28.65:5097(5 9.:36:57049 .00121.S()27
822 675()84 555412248 28.(^705424 9.:^(575051 .00121(5.")45
823 677329 557441767 28.6S797()6 9.:37i:^022 .00121.-.0(57

824 678976 559476224 28.7054002 9.:^750iK)3 .00121:5592
825 680625 561515625 28.72281:^2 9.:5788873 .001212121
826 682276 5(i:;55997l> 28.7402157 9.:5826752 .001210(5.")4
827 683i)29 5(i5()09283 28.757(5077 9.:5864(;00 .001209190
823 ()8r)584 5()7()'>:r)52 28.7749891 9.:5902419 .001207729
829 687241 569722789 28.792:5(501 9.3940206 .00120(5273

830 688900 571787000 28.809720(5 9.:59779(54 .001204819
831 6905()1 57:^856191 28.827070(5 9.4015(591 .00120:5:^(59
832 692224 5759:](K3()8 28.8444102 9.405:5:587 .001201023
833 693889 5780095:^7 28.8(517:594 9.4091054 .0012OO4S0
834 695556 58009:5704 28.8790582 9.4128()t)0 .0011!M)041
835 697225 582182875 28.8<K5:5(5(;6 9.4! 0(5297 .001197(505
8;3() 6i)8896 584277056 28.91:5(5(54(5 9.420:5873 .001H)(5172
837 70()5()9 58():i7()253 28.9:50952:5 9 4241420 .(H-) 11^743
838 702244 588480472 28.9482297 9.42789:56 .(X) 119:5317
839 703921 590589719 28.^)(554^K57 9.4:51(5423 .001191895

840 705()00 592704000 28.98275.35 9.4:-5:5880 .0011W476
841 707281 594.s2;5:;2l 29.0000000 94:591:507 .00118<)061
842 70S9()4 59(;947688 29.0 172; 5(5:

5

9.4428704 i .001187(548
843 710()49 599077107 29.0:544(523 9.44(1(1072 i .00118(5240
844 71233() ()()12115S4 29 051(5781 9.450:5410 1 .ooiis4.s:u
845 714025 (;o:;:;5ii25 29()i;s88:57 9.4540719

1 .00118:^4:52
846 71571() ()0549:)7:5<i 29 (1S( 50791 9.4577! »99 .0011820:33
847 717409

1
(;()7t;4:)423 29.10:52(544 9. 4(51."5249 .001180(5:58

848 719104 609800192 29.120i:5iK5 9.4(5.")2470 .001179245
849 720801 611960049 29.137(504(5 . 9.4()8<)(5(51 .001177856
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

Jfo. Squares Cubes Square Roots Cube Roots Reciprocals

850 722500 614125000 29.1547595 9.4726824 .001176471
851 724201 616295051 29.1719043 9.47(53957 .001175088
852 725904 618470208 29.1890390 9.48010(51 .001173709

853 727609 620650477 29.2061(537 9.4838136 .001172333

854 729316 622835864 29.2232784 9.4875182 .0011709(50

855 731025 62502(J375 29.2403830 9.4912200 .00116^*591

856 732736 627222016 29.2574777 9.4949188 .001168224

857 734449 629422793 29.2745623 9.4986147 .0011(5(5861

858 736164 631628712 29.291(5370 9.5023078 .001165501

859 737881 633839779 29.3087018 9.5059980 .001164144

860 739600 636056000 29.3257566 9.5096854 .001162791

861 741321 638277381 29.3428015 9.5133699 .001161440

862 743044 640503928 29.3598365 9.5170515 .001160093
863 744769 642735647 29.3768(516 9.5207303 .001158749
8()4 746496 644972544 29.3938769 9.5244063 .001157407

865 748225 647214625 29.4108823 9.5280794 .00115(50(59

866 749956 649461896 29.4278779 9.5317497 .001154734

867 751689 651714363 29.4448637 9.5354172 .001153403

868 753424 653972032 29.4618397 9.5390818 .001152074

869 755161 656234909 29.4788059 9.5427437 .001150748

870 756900 658503000 29.4957624 9.5464027 .001149425

871 758641 660776311 29.5127091 9.5500589 .001148106
872 760384 663054848 29.52964(51 9.5537123 .001146789
873 762129 665338617 29.54(55734 9.5573(530 .001145475
874 763876 667627()24 29.5634910 9.5610108 .001144165
875 765625 669921875 29.5803989 9.564(5559 .001142857

876 767376 672221376 29.5972972 9.5(582982 .001141553

877 769129 674526133 29.6141858 9.5719377 .001140251
878 770884 676836152 29.(5310648 9.5755745 .001138952

879 772641 679151439 29.6479342 9.5792085 .001137656

880 774400 681472000 29.6647939 9.5828397 .001136364
881 77()161 683797841 29.6816442 9.58(54(582 .001135074
882 777924 686128968 29.6984848 9.5900939 .001133787

883 779689 688465oS7 29.7153159 9.59371(59 .001132503
884 781456 690807104 29.7321375 9.5973373 .001131222
885 78:5225 693154125 29.7489496 9.6009548 .001129944
886 784996 69550()45() 29.7(557521 9.(5045696 .001128668
887 786769 697864103 29.7825452 9.(5081817 .001127396
888 788544 700227072 29.7993289 9.(5117911 .001126126

889 790321 7025953()9 29.81(51030 9.6153977 .001124859

8^K) 792100 7049()9000 29.8328678 9.6190017 .001123596
891 793881 707347971 29.849(5231 9.(522(5030 .001122334
892 7956()4 709732288 29.8(5(53690 9.62(52016 .001121076
893 797449 712121957 29.8831056 9.6297975 .001119821
894 799236 714516984 29.81)98328 9.6333907 .0011185(58

895 801025 716917375 29.91(55506 9.(53(59812 .001117318
896 802S1() 71932:U36 29.9332591 9.(5405(590 .00111(5071

897 804609 721734273 29.9499583 9.(5441542 .001114827
898 806404 724150792 29.9(5(5(5481 9.6477367 .001113586
8i^9 808201 72(5572(599 29.9833287 9.(5513166 .001112347
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SQUARES, CUBES, SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

IVo. Squares Cal)es Square Roots Cube Roots Rftcilirocals

900 810000 729000000 30.0000000 9.(55489:38 .001111111
901 811801 731432701 30.016(5(520 9.(S5S4(),S4 .001109878
902 813004 733870808 30.0:533148 9.(5(520403 .001I()8()47
1X)3 815409 736314327 30.0499584 9.(5(55(5(KK) .001107420
iH)4 817210 7387632()4 30.06(55928 • 9.(5(5917(52 .001106195
905 81<K)25 741217625 30.08:32179 9.(5727403 .001104972
900 820836 743()77416 30.09i)83:39 9.(57(53017 .00110:5753
907 822649 74() 142(543 30.11(54407 9.(5798(504 .0011025:5(5
908 8244()4 748613312 30.i:i30383 9.(58:541(56 .00110L322
909 826281 751089429 30.1496269 9.68(59701 .001100110

910 828100 753571000 30.1(562063 9.(5905211 .001098901
911 829921 7.~6058()31 30.1827765 9.(5940(594 .001097(595
912 831744 758550528 30.1993377 9.(597(5151 .00109(5491
913 8335()9 761048497 30.2158899 9.7011583 .()0109.V2i)0

914 83539() 763551944 30.2324:529 9.704()<'89 .001094092
915 837225 7(56060875 30.2489(5(59 9.7082:5(59 .001092896
91

G

839()5() 768575296 30.2(554919 9.7117723 .001091703
917 840889 771095213 30.2820079 9.715:5051 .001090513
918 842724 773620(532 30.2985148 9.7188:554 .001089325
919 844561 776151559 30.3150128 9.7223631 .0010881:59

920 846400 778688000 30.;5315018 9.7258883 .00108(5957
921 848241 781229<h;1 30.:5479818 9.7294109 .001085776
922 850084 783777448 30.:i644529 9.7329:509 .001084r)i»9
923 851929 78()3;m()7 30.3809151 9.7:;(54484 .00108:5424
924 85;'>776 788881K)24 30.397:5(583 9.7:>99(534 .0010.S2251
925 855(525 791453125 30.41:58127 9.74:54758 .001 (IS 1 081
926 85747() 794022776 30.4:502481 9.74(59857 .001079914
927 8593,29 71K)597983 30.44(5(5747 9.75049:50 .001078749
928 861184 799178752 30.4(5:50924 9.75:59979 .00107758(5
929 8():i041 80176r;089 30.4795013 9.7575002 .00107(5426

930 8(54900 804357000 30.4959014 9.7610001 .(X)10752(59
931 8()()761 806954491 30.5122926 9.7(544974 .001074114
932 8()8624 8095575(58 30.5286750 9.7(579922 .()O1072!i(51

fl33 870489 8121(5()237 30.5450487 9.7714845 .001071811
934 872;}5() 814780504 30.5(5141:56 9.7749743 .001070(5(54
93,5 874225 817400375 30.5777(597 9.7784(516 .001()(5<)519
93(3 87(;09() 820025856 30.5941171 9.78194(56 .0010(58:576
937 877969 822(55(5953 30.6104557 9.7854288 .0010(572:56
938 879844 825293(572 30.62(57857 9.788<)()87 .0010(5(5098
939 881721 82793(5019 30.(54:51069 9.7il2:5861 .0010(549(53

940 883600 830584000 :50.6594194 9.7958611 .0010(5:58:50
941 885481 8:5323.7(521 :30.(-;757233 9.799:5:5:5() .O01(^(52()<><)

942 8873()4 83,589(5888 30.(5920185 9.802S0:5() .0010(51571
943 8S9249 8385(51807 30.708:5051 9.80(52711 .0010(50445
944 891 13() 8412:523,84 30.72458:50 9.8(V.)7:5(52 .0010.'')9:522

945 893025 84:5908(525 30.740S.V2;) 9.8131989 .(HI 1058201
940 894911; 84( 5590.1:56 :50.757li:50 9.81(5(5591 .(M)10.")7082
947 89()S09 849278123 :50.77:5:5(551 9.S2011()9 .0010559(5(5
948 898704 851971:592 30.789(5086 9.82:5.-)72:i .001054S52
949 900601 854(570:549 30.80584:56 9.8270252 .00105:5741
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SQUARES, CUBES , SQUARE ROOTS, CUBE
ROOTS, AND RECIPROCALS

Jfo. Squares Cubes Square Roots Cube Roots Reciprocals

950 902500 857375000 30.8220700 9.8304757 .001052632
951 904401 860085351 30.8382879 9.8339288 .001051525
952 906304 862801408 30.8544972 9.8373695 .001050420
953 908209 865523177 30.8706981 9.8408127 .001049318
954 910116 868250664 30.8868904 9.8442536 .001048218

955 912025 870983875 30.9030743 9.8476920 .001047120

956 913936 873722816 30.9192497 9.8511280 .00104(5025

957 915849 876467493 30.9354166 9.8545617 .001044932

958 917764 879217912 30.9515751 9.8579929 .001043841

959 919681 881974079 30.9677251 9.8614218 .001042753

960 921600 884736000 30.9838668 9.8648483 .001041667

961 923521 887503681 31.0000000 9.8682724 .001040583
962 925444 890277128 31.0161248 9.8716941 .001039501

963 927369 893056347 31.0322413 9.8751135 .001038422

964 929296 895841344 31.0483494 9.8785305 .001037344

965 931225 898632125 31.0644491 9.8819451 .001036269

966 933156 901428(596 31.0805405 9.8853574 .001035197

967 935089 904231063 31.0966236 9.8887673 .001034126

968 937024 907039232 31.1126984 9.8921749 .001033058

969 938961 909853209 31.1287648 9.8955801 .001031992

970 940900 912673000 31 .1448230 9.8989830 .001030928

971 942841 915498611 31.1608729 9.9023835 .001029866
972 944784 918330048 31.1769145 9.9057817 .001028807

973 946729 921167317 31.1929479 9.9091776 .001027749

974 948676 924010124 31.2089731 9.9125712 .001026694

975 950625 926859375 31.2249900 9.9159(524 .001025(541

976 952576 929714176 31.2409987 9.9193513 .001024590

977 954529 932574833 31.2569992 9.9227379 .001023541

978 956484 935441352 31.2729915 9.9261222 .001022495

979 958441 938313739 31.2889757 9.9295042 .001021450

980 960400 941192000 31.3049517 9.9328839 .001020408

981 962361 944076141 31.3209195 9.9362613 .0010193(58

982 964324 94696()168 31.33(38792 9.9396363 .001018330
983 96()289 949862087 31.3528308 9.9430092 .001017294
984 968256 952763<)04 31.3687743 9.94(i3797 .00101()2(50

985 970225 955(571625 31.3847097 9.9497479 .001015228

986 972196 958585256 3i.400(;;i(;9 9.95:51138 .001014199

987 9741()9 961504803 31.41()5561 9.9;5()4775 .001013171

988 976144 964430272 31.43241 ;73 9.9598389 .001012146

989 978121 967361()69 31.4483704 9.9(531981 .001011122

990 980100 970299000 31.4f)42654 9.9665549 .001010101

991 982081 973242271 31.4801525 9.9(;9{K)95 .0010(^9082

9i)2 984064 976191488 31.49(50315 9.9732()19 .0010080()5

993 98(5019 97914()()57 31.5119025 9.9766120 .001007049
994 988036 982107784 31.5277(555 9.9799599 .001006036

995 99(J()25 985074875 31.5436206 9.983;'.055 .001005025
996 992016 988047936 31.5."')9-1()77 9.98(5(5488 .001004016
997 994009 9i)102()973 3i.575:;()()8 9.9899<)00 .()()10();5009

998 99(;001 99401 19i)2 31.5911380 i).9933289 .001002004
999 998001 997(X)2999 31.(5(J(5i)(513 i).99(;()(55() .001001001



APPENDIX V

CONVERSION TABLES





CONVERSION TABLES 381

TABLES FOR CONVERTING UNITED STATES
WEIGHTS AND MEASURES

METRIC TO CUSTOMARY

WEIGHTS

Milli^n-iuiis (^raius Grams Kilograms Tonnes to Tonnes to

No. to to to Avoirdii})ois to Avoirdupois Net Tons of (Jross Tons of

1

Grains Troy Ounces Ounces Pounds 2000 Pounds 2240 Pounds

.01543 .03215 .03527 2.20462 1.10231 .98421

2 .0308G .0()4;30 .07055 4.40924 2.20462 1.96841

3 .046:30 .09645 .10582 6.()1387 3.:5()693 2.952(;2

4 .06173 .12860 .14110 8.81849 4.40924 3.9:J682

5 .07716 .1()075 .176:57 11.02311 5.51156 4.92103

6 .09259 .192^)0 .21164 13.22773 6.6i:387 5.90.-)24

7 .10803 .22.-)06 .24()92 15.4:52:36 7.71618 (5.88944

8 .121346 .25721 .28219 17.63698 8.81849 7.87:565

9 .13889 .2893(5 .31747 19.84160 9.92080 8.85785

1 Kilogram = 15432.356:39 Grains

LINEAR MlEASURE

Miliimetrrs Centimeters Meters liletcrs Kilometers Kilometers

No. to m\\s of ail to to to to to

Inch Inches Feet Yards Statute Miles Nautical Miles

1 2.51968 .39370 3.280833 1.093611 .62137 .53959

2 5.03936 .78740 e.oinmi 2.187222 1.24274 1.07919

3 7.55904 1.18110 9.842.500 3.2808:13 1.86411 1.(51878

4 10.07872 1.57480 13.12.33:53 4.:i74444 2.4S548 2.158:57

5 12.59840 1.96850 16.4041()7 5.468056 3.10685 2.6979(5

6 15.11808 2.36220 lO-fiS-^OOO 6.561()(;7 3.72822 3.2:575(5

7 17.63776 2.75.^)<>0 22.96.~)S:;:i 7.65.-)278 4.:U959 3.77715

8 20.15744 3.141K)0 26.24()(;67 8.748S89 4.97096 4.:51(574

9 22.67712 3.54330 29.527500 9.842500 5.59233 4.85633

•



382 CONVERSION TABLES

TABLES FOR CONVERTING UNITED STATES
WEIGHTS AND MEASURES

CUSTOMARY TO METRIC

WEIGHTS

Grains : Troy Ounces Avoirdupois Avoirdupois Net Tons of Gross Tons of

No. to to Ounces Pounds to 2000 Pounds 2240 Pounds

Milligrams Grams to Grams Kilograms to Tonnes to Tonnes

1 64.79892 31.10348 28.34953 .45359 .90718 1.01605

2 129.59784 62.20696 56.69f)05 .^)0718 1.81437 2.03209

3 194.39675 93.31044 85.04858 1.36078 2.72155 3.04814

4 259.19567 124.41392 113.39811 1.81437 3.62874 4.06419

5 323.99459 155.51740 141.74763 2.26796 4.53592 5.08024

6 388.79351 186.62088 170.09716 2.721.55 5.44311 6.09628

7 453.59243 217.72437 198.44669 3.17515 6.35029 7.11233

8 518.39135 248.82785 226.79621 3.62874 7.25748 8.12838

9 583.19026 279.93133 255.14574 4.08233 8.16466 9.14442

1 AvoirduiD

L

ois Pound =

-INEAR ME

453.5924277 Grams

EASURE

64tlis of an Inches Feet Yards Statute Miles Nautical Miles

M Inch to to to to to to

Millimeters Centimeters Meters Meters Kilometers Kilometers

1 .39688 2.54001 .304801 .914402 1.60935 1.85325

2 .79375 5.08001 .609601 1.828804 3.21869 3.70650

3 1.19063 7.62002 .914402 2.743205 4.82804 5.55975

4 1.58750 10.16002 1.219202 3.657607 6.43739 7.41300

5 1.98438 12.70003 1.524003 4.572009 8.04674 9.26625

6 2.38125 15.24003 1.828804 5.486411 9.65608 11.11950

7 2.77813 17.78004 2.133604 6.400813 11.26543 12.97275

8 3.17501 20.32004 2.438405 7.315215 12.87478 14.82600

9 3.57188 22.86005 2.743205 8.229()16 14.48412 16.67925

1 NauticialMile = 1853.25 Meters

1 Gunte r's Chain = 20.1 1()8 Meters

1 Fathoim = 1.829 Meters



INDEX

Absorption dynamometer, 305.

Acceleration, 124, 125, 131, 143, 170,

171, 172.

angular, 170.

normal, 144.

taniijential, 144.

Angular velocity, 169, 196.

Appendix I, Hyperbolic Functions, 339.

Appendix II, Logarithms of Numbers,
345.

Appendix III, Trigonometric Func-
tions, 349.

Appendix IV, Squares, Cubes, etc., 359.

Appendix V, Conversion Tables, 380.

Attractive force, 132, 136.

Ball bearings, 280.

Bearings, ball, 280.

roller, 279.

Belts, centrifugal tension, 293.

coefficient of friction, 292.

creeping of, 292.

friction of, 288.

stiffness of, 2i)4.

Body, freely falling, 126.

projected up inclined plane, 158.

projected upward, 126.

through atmosphere, motion of, 138.

Brake friction, 306, 307.

Brake shoes, friction of, 310.

Brake shoe testing machine, 252.

Car on single rail, 227.

Catenary, 118.

Center of gravity, 27, 32.

of cone, 33.

of locomotive counterbalance, 40.

of rail section, 46.

of triangle, 35.

of T-section, 30.

of U-section, 30.

Center of percussion, 187, 330.

Centrifugal force, 146.

Centrifugal tension of belts, 293.

Circular pendulum, 148.

Coefficient of friction, 261.

Combined rotation and translation

173.

Compound pendulum, 188.

Concurrent forces, 5.

in plane, 9.

in space, 14.

Conical pivot, 301.

Connecting rod, 212.

Conservation of energy, 234.

Conversion Tables, 381.

Cords, and pulleys, 113.

flexible, 111.

uniform load along cord, 117.

uniform load horizontally, 114.

Couples, 50, 53, 54.

Creeping of belts, 292.

Cubes, Cube Roots, etc., 359.

Curvilinear motion, 142.

Cycloidal pendulum, 154.

D'Alembert's principle, 177.

Determination of //, 192.

Direct central impact, 316, 319.

Direct eccentric impact, 328.

Displacement, 4.

Dry surfaces, friction of, 262.

Durand's rule, 46.

Dynamometer, absorption, 305.

transmission, 291.

Eccentric impact, 328.

Elasticity of materials, 322.

Ellipse of inertia, 92.

Ellipsoid of inertia, 105.

Energy, 2:i3.

and work, 229.

conservation of, 234.

of body moving in straight line, 234.

383
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Experimental determination of mo-
ment of inertia, 191.

Falling bodies, 126.

Flat pivot, 299.

Flexible cords, 111.

Force, 1, 8, 56, 63.

moment of, 17, 18.

parallel, 20, 22.

polygon of, 7.

representation of, 5.

tangential and normal, 146.

transmissibility of, 8.

triangle of, 6.

units of, 1.

Friction, 261.

coefficient of, 261.

laws of, dry surfaces, 262.

laws of, lubricated surfaces, 264.

of belts, 288, 292.

of brake shoes, 310.

of pivots, 299.

of worn bearing, 297.

rolling, 272.

Friction brake, 306, 307.

Friction gears, 285.

Friction wheels, 274.

Gears, friction, 285.

Gravity, center of (see Center of grav-

ity).

Gyroscope, 216.

Gyroscopic action explained, 221.

Harmonic motion, 132.

Hyperbolic Functions, 119, 339.

Impact, 315.

direct central, elastic, 319.

direct central, inelastic, 316.

imperfectly elastic bodies, 323.

oblique, 331.

rotating bodies, 332.

tension and compression, 325.

Inclined plane, motion on, 128.

Inertia, 2.

ellipse of, 92.

ellipsoid of, 105.

moment of, 69, 71.

(see Moment of inertia).

Introduction, 1.

Kinetic energy of rolling bodies, 256.

Laws of friction, 262, 264.

of motion, 127.

Length of cord, 116, 122.

Locomotive counterbalance, 40.

Locomotive side rod, 211.

Logarithms of Numbers, 345.

Lubricants, testing of, 270.

Lubricated surfaces, friction of, 264.

Mass, 3.

Moment of force, 17, 18.

Moment of inertia, 69, 71.

experimental determination of, 191.

graphical method, 85.

greatest and least, 76, 89.

inclined axis, 74, 102.

non-homogeneous bodies, 102.

of angle section, 82.

of circular area, 80.

of circular cone, 98.

of elliptical area, 81.

of locomotive drive wheel, 107.

of rectangle, 78.

of triangle, 79.

parallel axes, 72, 99.

principal, 104.

polar, 77.

right prism, 95.

Simpson's rule, 88.

solid of revolution, 97.

thin plates, 93.

Motion, curvilinear, 142.

body through atmosphere, 138.

due to repulsive force, 134.

earth, 219.

harmonic, 132.

in circle, 146.

in straight line, 123.

Newton's laws of, 127.

on inclined plane, 128.

resistance varies as distance, 134.

tAvisted curve, 165.

Newton's laws of motion, 127.

Non-concurrent forces, 56, 63.

Parallel forces, 20, 22.

Pendulum, compound,
cycloid al, ir)4.

simple circular, 148.

188.
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Percussion, center of, 187, 330.

Pile driver, 240.

Pivots, friction of, 299.

Plane of rotation, 220.

Polar moment of inertia, 77.

Power, 233.

Precessional moment, 222, 225.

Principal axes, 104.

Principal moment of inertia, 104.

ProcUict of inertia, 75.

Projectile, 156, 160, 162.

Pulleys and cords, 113.

Peciprocals of numbers, 359.

Pectilinear motion, 123.

Ridative velocity, 139.

liepresentation of force, 5.

of couples, 51.

of moment of inertia, 72.

Repulsive force, 134.

Resistance, of roads, 277.

train, 312.

varies as distance, 134.

Ri.2:id body, 2.

free to rotate, 197.

Roller beariuij^s, 279.

Rolling friction, 272.

Ropes and belts, stiffness of, 294.

Rotating body, reactions of supports,

181.

Rotation, about axis, one point fixed,

216.

axis fixed, 247.

axis not a gravity axis, 201.

and translation, 173, 208.

fly wheel, 204.

in general, 175.

locomotive drive wheel, 200.

rigid body, 179.

sphere, 185.

symmetrical bodies, 198.

Side rod of locomotive, 211.

Simple circular pendulum, 148.

Simpson's rule, 41, 43.

Specific gravity, 3.

Spherical pivot, 302.

Spinning top, 218.

Squares, square roots, etc., 359.

Steam hammer, 244.

Stiffness of belts, 294.

Suspension bridge, 114, 120.

Tangential and normal acceleration.

144.

Tangential and normal force, 146.

Testing of lubricants, 270.

Theorems of Pai)pus and Guldinus, 47.

Top, spinning, 218.

Torsion balance, 192.

Train resistance, 312.

Translation and rotation, 173, 208.

Translation of rigid body, 178.

Transmissibility of force, 8.

Transmission dynamometer, 291.

Trigonometric Functions, 349.

Twisted curve, motion in, 165.

Uniform motion in circle, 146.

Unit of force, 1.

of moment of inertia, 71.

of power, 233.

of weight, 2, 3.

of work, 230.

Variable acceleration, 131, 172.

Varignon's Theorem of Moments, 18.

Velocity, 123, 142, 169.

relative, 139.

Work, combined rotation and transla-

tion, 254.

graphical representation, 230.

motion uniform, 257.

units of, 230.

variable force, 238.

Work and energy, 229.

AVork-energy relation for any motion,
257.

Worn bearing, friction of, 297.
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Text-Books on Mechanics

FRANKLIN and MACNUTT — The Elements of Mechanics. A Text-Book

for Colleges and Technical Schools. By W. S. FRANKLIN and Barry
Macnutt of Lehigh University. Cloth, Svo, xi + 2Sj pages, $1.50 ?iet.

Its special aim is to relate the teaching of mechanics to the immediately

practical things of life, to cultivate suggestiveness w ithout loss of exactitude.

DUFF— Elementary Experimental Mechanics. By A. Wilmer Dukf, D.Sc.

(Edin.), Professor of Physics in the Worcester l*olytechnic Institute. New
York, 1905. Cloih, 26-] pages, $1.60 ?ict.

LE CONTE— An Elementary Treatise on the Mechanics of Machinery.

With special reference to the Mechanics of the Steam Engine. By Josi.rii X.

Le CONTE, Instructor in Mechanical Engineering, University of California;

Associate Member of the American Institute of Electrical Engineers, etc.

Cloth, i2mo, $2.2^ net.

SLATE— The Principles of Mechanics. An Elementary Exposition for Students

of Physics. By FREDERICK SLATE, Professor of Physics in the University of

California. Cloth, i2mo, $i.go net.

The material contained in these chapters has taken on its present form

gradually, by a process of recasting and sifting. The ideas guiding that pro-

cess have been three : first, to select the subject-matter with close reference to

the needs of college students ; second, to bring the instruction into adjustment

with the actual stage of their training; and, third, to aim continually at treating

mechanics as a system of organized thought, having a clearly recognizable

culture value.

ZIWET— Elements of Theoretical Mechanics. By Alexander Ziwet, Jun-

ior Professor of Mathematics in the University of Michigan. Revised Edition

of "An Elementary Treatise on Theoretical Mechanics," especially designed

for students of engineering. Cloth, Svo, $4.00 net.

" I can state without hesitation or quahfication that the work is one that is

unexcelled, and in every way surpasses as a text-book for class use all other

works on this subject; and, moreover, I find the students all giving it the

highest praise for the clear and interesting manner in which the subject is

treated."— M. J. McCUE, M.S., C.E., University of Notre Dame, Ind.

Carriage on **net'* books Is uniformly an extra charge

THE MACMILLAN COMPANY
64-66 FIFTH AVENUE, NEW YORK

Boston Chicago San Francisco Atlanta



Standard Books on Mechanics^ etc*

ABBOT— Problems of the Panama Canal: Including Climatology of the Isth-

mus, Physics and Hydraulics of the River Chagres, Cut at the Continental

Divide, and a Discussion of the Plans for the Waterway, with History from

1890 to date. By Hrig.-Gen. HENRY L. Abbot, U.S.A. New Edition.

C7o^/i, gilt top, 8vo, xil + 2yo pages, index, ^2.00 net.

BAMFORD — Moving Loads on Railway TJnderbridges. Including Diagrams
of Bending Moments and Shearing Forces and Tables of Equivalent Uniform
Live Loads. By HARRY Bamford. Cloth, 8vo, diagrams, $1.2^ net.

BOYNTON— Application of the Kinetic Theory to Gases, Vapors, Pure
Liquids, and the Theory of Solutions. By William Pingry Boynton,
University of Oregon. Cloth, 8vo, 10 + 288 pages, $1.60 ?iet.

DERR— Photography for Students of Physics and Chemistry. By Louis
Derr, M.A., S.B., Associate Professor of Physics, Massachusetts Institute of

Technology. Cloth, crown 8vo, $1.40 net.

DTJNRAVEN— Self-Instruction in the Practice and Theory of Navigation.

By the Earl of Dunraven, Extra Master. Enlarged and revised edition. Three

volumes and supplement. The set, $8.00 net.

HALLOCK and WADE — Outlines of the Evolution of Weights and Meas-
ures and the Metric System. By William Hallock, Ph.D., Professor of

Physics in Columbia University, and Herbert T. Wade.
Cloth, 8vo, 204 pages, with illustrations^ $2.2^ net.

HATCH and VALLENTINE — The Weights and Measures of International

Commerce. Tables and Equivalents. By F. H. Hatch, Ph.D., and F. H.
Vallentine. Cloth, crown 8vo, 59 pages, $.80 net.

Mining Tables. Crown 8vo, $i.go net.

REEVE— The Thermodynamics of Heat-Engines. By Sidney A. Reeve,
Worcester I^olytechnic Institute. Cloth, i2ino, xi -[ ji6 pages, $2.60 net.

SOTHERN— Verbal Notes and Sketches for Marine Engineers. By J. \\\

SOTHERN. Fifth Edition, revised and enlarged.

Cloth, 8vo, XXi + 4JI pages, illustrated, $2.60 net.

TAYLOR— Resistance of Ships and Screw Propulsion. By D. W. Taylor,
Naval Constructor, United States Navy. New Edition.

Cloth, 2J4 pages, diagrams, etc., $2.2^ net.

Carriage on **uet'* books is uniformly an extra charge

THE MACMILLAN COMPANY
64-66 FIFTH AVENUE, NEW YORK

Boston Chicag-o San Francisco Atlanta
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