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ANALYTICAL MECHANICS

INTRODUCTION.

1. Scope and Aim of Mechanics. Mechanics is the science

of motion. It has a twofold object:

First, to describe the motions of bodies and to interpret

them by means of a few laws and principles, which are gen-

eralizations derived from observation and experience.

Second, to predict the motion of bodies for all times when
the circumstances of the motion for any one instant are

given, in addition to the special laws which govern the

motion.

The present tendency in science is toward regarding all

physical phenomena as manifestations of motion. Compli-

cated and apparently dissimilar phenomena are being ex-

plained by the interactions and motions of electrons, atoms,

molecules, cells, and other particles. The kinetic theory of

heat, the wave theories of sound and light, and the electron

theory of electricity are examples which illustrate the tend-

ency toward a mechanical interpretation of the physical

universe.

This tendency not only emphasizes the fundamental im-

portance of the science of mechanics to other physical

sciences and engineering but it also broadens the aim of the

science and makes the dynamical interpretation of all physi-

cal phenomena its ultimate object. The aim of elementary

mechanics is, however, very modest and its scope is limited to

the discussion of the simplest cases of motion and equilibrium

which occur in nature.

l



2 ANALYTICAL MECHANICS

2. Divisions of Mechanics. It is customary to divide

Mechanics into Kinematics and Dynamics. The former

treats of the time and space relations of the motions of

bodies withdtit regard to the interactions which cause them.

In other words, Kinematics is the geometry of motion. In

Dynamics, on the other hand, motion and equilibrium are

treated as the results of interactions between bodies; conse-

quently not only time and space enter into dynamical discus-

sions, but also mass, the third element of motion.

Dynamics in its turn is divided into Statics and Kinetics.

Statics is the mechanics of bodies in equilibrium, while

Kinetics is the mechanics of bodies in motion.

Chapters II, III, and IV of the present work are devoted

to problems in statics, while the rest of the book with the

exception of Chapters I, V, and VII, are given to discussions

of problems in kinetics. The subject matter of Chapters I

and VII is essentially of a mathematical nature. In the

former the addition and resolution of vectors are discussed,

while in the latter the Calculus is applied to finding centers

of mass and moments of inertia. Chapter V is devoted

mainly to kinematic al problems.
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CHAPTER I.

ADDITION AND RESOLUTION OF VECTORS.

3. Scalar and Vector Magnitudes.— Physical magnitudes may
be divided into two classes according to whether they have

the property of orientation or not. Magnitudes which

have direction are called vectors, while those which do not

have this property are called scalars. Displacement, veloc-

ity, acceleration, force, torque, and momentum are vector

magnitudes. Mass, density, work, energy, and time are

scalars.

4. Graphical Representation of Vectors.— Vectors are repre-

sented by directed lines or arrows. The length of the

directed line represents the magnitude

of the vector, while its direction coin-

cides with that of the vector. For

brevity the directed lines as well as

the physical quantities which they

represent are called vectors. The
head and the tail of the directed line

are called, respectively, the terminus

and the origin of the vector. In Fig. 1, for instance, P is

the origin and Q the terminus of the vector a.

5. Notation.— Vectors will be denoted by letters printed in

Gothic type, while their magnitudes will be represented by
the same letters printed in italic type. Thus in Fig. 1 the

vector PQ is denoted by a, but if it is desired to represent

the length PQ without regard to its orientation a is used.

6. Equal Vectors.—Two vectors are said to be equal if they

have the same length and the same direction. It follows,

therefore, that the value of a vector is not changed when it is

3
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4 ANALYTICAL MECHANICS

moved about without changing its direction and magni-
tude.

7. Addition of Two Vectors.— Let the vectors a and b, Fig. 2,

represent two displacements, then their sum is another
vector, c, which is equivalent to the given vectors. In
order to find c let us apply to a particle the operations indi-

cated by a and b. Each vector displaces the particle along

its direction through a distance equal to its length. There-

Fig. 2. :
>

fore applying a to the particle at P, Fig. 3, the particle is

brought to the point Q. Then applying the operation indi-

cated by b the particle is brought to the point R. There-

fore the result of the two operations is a displacement from

P to R. But this is equivalent to a single operation repre-

sented by the vector c, which has P for its origin and R for

its terminus. Therefore c is called the sum, or the resultant,

of a and b. This fact is denoted by the following vector

equation,

a + b = c. (I)

8. Order of Addition.— The order of addition does not affect

the result. If in Fig. 3 the order of the operations indicated

by a and b is reversed the particle moves from P to Q' and

then to R. Thus the path of the particle is changed but not

the resultant displacement.

9. Simultaneous Operation of Two Vectors.—The operations

indicated by a and b may be performed simultaneously

without affecting the final result. In order to illustrate
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the simultaneous operation of two vectors suppose the

particle to be a bead on the wire AB, Fig. 4. Move the

wire, keeping it parallel to itself, until each of its particles

is given a displacement represented by b. Simultaneously

with the motion of the wire move the bead along the

wire giving it a displacement equal to a. At the end of

R

-^+f
b/ >'*>?

—r——
/

^f**'
(< /

a
"M_B

Fig. 4.

these operations the bead arrives at the point R. If both

the wire and the bead are moved at constant rates the

resultant vector c represents not only the resulting dis-

placement but also the path of the particle.

10. Rules for Adding Two Vectors.—The results of the last

three paragraphs furnish us with the following methods for

adding two vectors graphically.

Triangle Method.— Move one of the vectors, ivithout changing

its direction, until its origin falls upon the terminus of the

other vector, then complete the triangle by drawing a vector the

origin of which coincides with that of the first vector. The new

vector is the resultant of the given vectors.

Parallelogram Method.— Move one of the vectors until its

origin falls on that of the other vector, complete the parallelo-

gram, and then draw a vector which has the common origin of

the given vectors for its origin and which forms a diagonal of

the parallelogram. The new vector is the resultant of the given

vectors.

11. Analytical Expression for the Resultant of Two Vectors.

— Let a and b, Fig. 5, be two vectors and c their result-
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ant. Then3 solving the triangle formed by these vectors,

we obtain

and

c
2 = a 2 +b 2 +2abcos<t>

b sin
<f>tan 6 =

a-\-b cos

(ii)

an)

where a, b, and c are the magnitudes of a, b, and c,' respec-

tively, while
<f>
and 6 are the angles b and c make with a.

Equation (II) determines the magnitude and equation (III)

the direction of c.

Fig. 5. Fig. 6.

Special Cases, (a). If a and b have the same direction,

as in Fig. 6a, then = 0. Therefore

and

c
2 = a 2+b 2 +2ab,

tan (9 = 0,

c = a + 6,

= 0.

Thus c has the same direction as a and b, while its magni-

tude equals the arithmetical sum of their magnitudes.

(b). When a and b are oppositely directed, as in Fig. 6b,

= 7T. Therefore

c
2 = a 2 +b'

and tan = 0,

c = a — b,

6 = 0.



ADDITION AND RESOLUTION OF VECTORS 7

Thus the magnitude of c equals the algebraic sum of the

magnitudes of a and b, while its direction is the same as

that of the larger of the two. It is evident that if the

magnitudes of a and b are equal c vanishes. Therefore

two vectors of equal magnitude and opposite directions are

the negatives of each other. In other words, when the direc-

tion of a vector is reversed its sign is changed.

(c). When a and b are at right angles to each other, as in

Fig. 6c, <t>
= ~- Therefore

c
2 = a*+b'

b
and tan =

a

12. Difference of Two Vectors.—Subtraction is equivalent to

the addition of a negative quantity. Therefore, to subtract

b from a we add — b to a. Thus
we have the following rule for

subtracting one vector from an-

other.

In order to subtract one vector

from another reverse the one to be

subtracted and add it to the other

vector.

It is evident from Fig. 7 that

the sum and the difference of two vectors form the diagonals

of the parallelogram determined by them.

ILLUSTRATIVE EXAMPLES.

A particle is displaced 10 cm. N. 30° E., then 10 cm. E. Find the

resulting displacement.

Representing the displacements and their resultant by the vectors a,

b, and c, Fig. 8, we obtain
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c 2 = o2
-f- b 2 + 2 ab cos

= (10cm.) 2+(10cm.) 2+2xl0cm.Xl0cm.cos(60°)
= 300 cm. 2

c = 10 \/3 cm.

= 17.3 cm.*

6 sin0
tan0

a-\-b cos </>

10 cm. sin (60°)

10 cm. + 10 cm. cos (60°)

= |V3.
= 30°. , «

Therefore the resultant displacement

is about 17.3 cm. along the direction N. 60° E.

Fig. 8.

PROBLEMS.

1. A vector which points towards the East has a length of 16 cm., and

another vector which points towards the Southeast is 25 cm. long. Find

the direction and the magnitude of their sum.

2. Find the direction and the magnitude of the difference of the

vectors of the last problem.

3. The sum of two vectors is perpendicular to their difference. Show
that the vectors are equal in magnitude.

4. The sum and the difference of two vectors are equal. Show that

the vectors are at right angles to each other.

13. Resolution of Vectors into Compo-

nents.— The projection of a vector upon a

line is called the component of the vector

along that line. The vectors a* and a y in

Fig. 9, for instance, are the components of

a along the rr-axis and the 2/-axis, respec-

tively. The following relations are evident

from the figure and do not need further

explanation. Fig. 9.

* The symbol " = " will be used to denote approximate equality. There-

fore " = " should be read " equals approximately," or "equals about," or

"equals nearly." See p.
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a — Six i" 3-j/?

ax = a cos 0,

«7V
tan =

(IV)

(V)

(VI)

(VII)

When a has components along all three axes of a rectangular

system, Fig. 10, the following equations express the vector

in terms of its components.

Y

Fig. 10.

a= az+ ay+ a3 . (IV)

ax = a cos a\

ay
= a cos a2 (V)

az
= a cos a3

a = Va^+V+ a, 2
,

(VI')

where en, a2 ,
and «3 are the angles a makes with the coordi-

nate axes.

14. Resultant of Any Number of Vectors. Graphical Methods.

— The resultant of a number of vectors a, b, c, etc., may be

obtained by either of the following methods.

First : move b, without changing either its direction or its

magnitude, until its origin falls on the terminus of a, then
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Fig. 11.

move c until its origin falls on the terminus of b, and so on
until all the vectors are joined. This gives, in general, an
open polygon. Then the resultant

is obtained by drawing a vector

which closes the polygon and which
has its origin at the origin of a.

The validity of this method will be

seen from Fig. 11, where r repre-

sents the resultant vector. Evi-

dently the resultant vanishes when
the given vectors form a closed

polygon.

Second : draw a system of rectangular coordinate axes

;

resolve each vector into components along the axes; add the

components along each axis geometrically, beginning at

the origin. This gives the components of the required vector.

Then draw the rectangular parallelopiped determined by
these components. The resultant is a vector which has the

origin of the axes for its origin and forms a diagonal of the

parallelopiped. This method is based upon the following

analytical method.

15. Analytical Method.—Expressing the givenvectors and their

resultant in terms of their rectangular components, we have

a = 3.x ~r &y t~ a2 ,

b = b x+ b y+ b z ,

(1)

r = rx + x y + r 2

Substituting from (1) in the vector equation

r=>+b+c+ • • •
A (2)

and collecting the terms we obtain

r*+>y+r2 = (ax +[bx+}]^0+(av+ b,,+ • •)

+ (a.+ b.+ ; •)• (3)

But since the directions of the coordinate axes are indepen-

dent, the components of r along any one of the axes must



ADDITION AND RESOLUTION OF VECTORS 11

equal the sum of the corresponding components of the given

vectors. Therefore (3) can be split into the following three

separate equations.

r*= ax+ b x+ c x+ • • •

,

ry = ny+b y+c y+ • • •
, (4)

xz = a2 + bz + cz + • • •
.

.

It was shown in § 11 that when two vectors are parallel

the algebraic sum of their magnitudes equals the magni-

Fig. 12.

tude of their resultant. This result may be extended to

any number of parallel vectors. Therefore we can put the

vector equations of (4) into the following algebraic forms.

rx = a x+bx+ cx+ - • • ,'

ry = ay+ by+ cy+ - • -
, (5)

rz
= az + b z + cz + • • • .

Equations (5) determine r through the following relations

r = a//\

COS ai = —

:

r
COS a2

— , COS az = —
:

r r

(6)

(7)

where ah a2 , and a3 are the angles r makes with the axes.

16. Multiplication and Division of a Vector by a Scalar.

—

When a vector is multiplied or divided by a scalar the result

is a vector which has the same direction as the original vec-

tor. If, in the equation b = ma, m be a scalar then b has the

same direction as a but its magnitude is m times that of a.
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ILLUSTRATIVE EXAMPLE.

A man walks 3 miles N. 30° E., then one mile E., then 3 miles S. 45° E.,

then 4 miles S., then one mile N. 30° W. Find his final position.

Representing the displacements by vectors we obtain the graphical

solution given in Fig. 13, where r represents the resultant displacement.

Fig. 13.

In order to find r analytically we first determine its components. Thus

rx = [3 cos (60°) + cos (0°) + 2 cos (-45°) + 4 cos (-90°)

+ cos (120°)] miles

= (2 + V2) miles

= 3.41 miles.

ry = [3 sin (60°) + sin (0°) + 2 sin (-45°) + 4 sin (-90°)

+ sin (120°)] miles

= (2 a/3 -a/2 -4) miles

= —1.95 miles.

r = Vrx
2 + ry

2

= 3.93 miles.

The direction of r is given by the following relation.

a r„.. -1.95w =
r,
=
iur'

... e = -37M.

Therefore the final position of the man is about 3.93 miles S. 52°.9 E.

from his starting point.
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PROBLEMS.

1. The resultant of two vectors which are at right angles to each other

is twice the smaller of the two. The magnitude of the smaller vector is

a; find the magnitude of the greater vector.

2. In the preceding problem find the resultant vector.

3. Find analytically the sum of three equal vectors which point in the

following directions — East, N. 30° W., and S. 30° W.
4. In the preceding problem make use of the first graphical method.

5. In problem 3 make use of the second graphical method.

6. A vector which is 15 cm. long points N. 30° E. Find its compo-

nents in the following directions.

(a) N. 30° W. (c) W. (e) S. 60° E.

(b) N. 60° E. (d) S. 30° W. (f) E.

7. A vector a is in the xy-p\a,ne. If 3 is added to ax and 4 to ay the

magnitude of the new vector equals ax -f ay . Find the magnitude and

direction of a.

8. Three vectors a, b, and c lie in the :n/-plane. Find their resultants

analytically, taking the magnitudes of their components from the follow-

ing tables:

ax ay bx by Cx Cy

(1) 6, 9, -5, 2, o, 10

(2) -3, 7, 5, o, 6, -8
(3) o, -10, 8, 5, 3, -2

(4) 2, o, -6, 4, o, 8

9. In the preceding problem make use of the second graphical method.

10. Straight horizontal tunnels in a mine connect the points Pi, P2 ,

P3 , and Pi, in the given order. The length of each tunnel and the angle

it makes with the meridian are given in the following tables. Find the

lengths and directions of the tunnels which have to be dug in order to

connect Pi with P3 and P4 .

PiP2 = 200 feet, and makes 30° with the meridian.

P2P3 = 100 feet, and makes 120° with the meridian.

P3P4 = 400 feet, and makes 300° with the meridian.

11. Work out the preceding problem by the first graphical method.

12. Work out problem 10 by the second graphical method.

13. Find the direction and magnitude of the force experienced by an

electrical charge of five units placed at one vertex of an equilateral tri-

angle due to two unlike charges of 10 units each placed at the other vertices.

The sides of the triangle are 2 cm.



CHAPTER II.

EQUILIBRIUM OF A PARTICLE.

ACTION AND REACTION. FORCE.

17. Particle.— A body whose dimensions are negligible is

called a particle. In a problem any body may be considered

as a particle so long as it does not tend to rotate. Even
when the body rotates it may be considered as a particle if

its rotation does not enter into the problem. For instance,

in discussing the motion of the earth in its orbit the earth

is considered as a particle, because its rotation about its

axis does not enter into the discussion.

18. Degrees of Freedom.—The number of independent ways

in which a body can move is called the number of degrees of

freedom of its motion. It equals the number of coordinates

which are necessary in order to specify completely the posi-

tion of the body. A free particle can move in three inde-

pendent directions, that is, along the three axes of a system

of rectangular coordinates, therefore it has three degrees of

freedom. When the particle is constrained to move in a

plane its freedom is reduced to two degrees, because it can

move only in two independent directions. When it is con-

strained to move in a straight line it has only one degree of

freedom.

19. Force.—While considering the motion or the equilibrium

of a body our attention is claimed not only by that body

but also by others which act upon it. In order to insure

concentration of attention problems in Dynamics are sim-

plified in the following manner. All bodies are eliminated,

except the one the motion of which is being discussed, and

their actions upon the latter are represented by certain vec-

tor magnitudes known as forces. As an illustration consider

14

l



EQUILIBRIUM OF A PARTICLE 15

the equilibrium of the shaded part of the rope in Fig. 14a.

The shaded part is acted upon

by the adjoining sections of the "^ S3 i)

rope. Therefore we consider the

shaded part alone and represent

the actions of the adjoining parts

by the forces F and F', as shown
in Fig. 14b.

20. Definition of Force.— Force is a vector magnitude which

represents the action of one body upon another. The interac-

tion between two bodies takes place across an area, while the

forces which represent them are supposed to be applied at

one point. Therefore the introduction of the idea of force

presupposes the simplification of dynamical problems which

is obtained by considering bodies as single particles, or as

a system of particles.

21. Internal Force.—A force which represents the action of

one part of a body upon another part of the same body is

called an internal force.

22. External Force.—A force which represents the action of

one body upon another body is called an external force.

23. Unit Force.— The engineering unit of force among
English speaking people is the pound. The pound is the

weight, in London, of a certain piece of platinum kept by
the British government.

24. The Law of Action and Reaction.—The fundamental law

of Mechanics is known as the law of action and reaction.

Newton (1692-1727), who was the first to formulate it, put

the law in the following form.

"To every action there is an equal and opposite reaction,

or the mutual actions of two bodies are equal and oppositely

directed."

Let us apply this law to the interaction between a book

and the hand in which you hold it. Your hand presses

upward upon the book in order to keep it from falling,
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while the book presses downward upon your hand. The
law states that the action of your hand equals the reaction

of the book and is in the opposite direction. The book

reacts upon your hand because the earth attracts it. When
your hand and the earth are the only bodies which act upon

the book, the action of your hand equals and is opposite to

the action of the earth. In other words the sum of the

two actions is nil. Generalizing from this simple illustra-

tion we can put the law into the following form:

To every action there is an equal and opposite reaction, or

the sum of all the actions to which a body or a part of a body
is subject at any instant vanishes :

SA = 0. (A)

25. Condition for the Equilibrium of a Particle.— The condi-

tion of equilibrium of a particle is obtained by replacing the

term " action" by the term "force" in the last form of the

fundamental law and then stating it in the form of a condi-

tion. Thus — in order that a particle be in equilibrium the

sum of all the forces which act upon it must vanish.

In other words if Fi, F2 , F3 , . . ., Fn are the forces which

act upon a particle, then the vector equation

Fi+F2 +F3 + " +F.= (I)

must be satisfied in order that the particle be in equilib-

rium. Equation (I) is equivalent to stating that when the

forces are added graphically they form a closed polygon.

But when the sum of a number of vectors vanishes the sum
of their components also vanishes. Therefore we must

have
x x+x 2 + •

.-*. +Xn = 0,1

Yi+Y 2 + • • • +Yn =0, (no
Zi + Z2 + • • • + Zn = 0, J

where X;, Y», and Z z are the components of F t
-.* Since the

* The subscript "»" is used to denote "any one," thus Fj denotes any one

of Fi, F 2 , etc.
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vectors in each of the equations of (IF) are parallel we can

write them as algebraic equations. Therefore we have the

following equations for the analytical form of the condition

of equilibrium of a particle.

2Z = Xi + X2 + • • • +Xn =0,*l

(II)2F = Yl + Y2 + • • • + Yn = 0,

2Z eee Zx + Z2 + • • • + Zn = 0.

The condition of equilibrium may, therefore, be stated

in the following form.

In order that a particle be in equilibrium the algebraic sum

of the components of the forces along each of the axes of a rec-

tangular system of coordinates must vanish.

The following rules will be helpful in working out prob-

lems on the equilibrium of a particle.

First. Represent the particle by a point and the action of

each body which acts upon it by a properly chosen

force-vector. Be sure that all the bodies which

act upon the particle are thus represented.

Second. Set the sums of the components of the forces

along properly chosen axes equal to zero.

Third. If there are not equations enough to determine the

unknown quantities, obtain others from the geo-

metrical connections of the problem.

Fourth. Solve these equations for the required quantities.

Fifth. Discuss the results.

ILLUSTRATIVE EXAMPLES.

1. A particle suspended by a string is pulled aside by a horizontal

force until the string makes an angle a with the vertical. Find the tensile

force in the string and the magnitude of the horizontal force in terms of

the weight of the particle.

The particle is acted upon by three bodies, namely, the earth, the

string, and the body which exerts the horizontal force. Therefore, we

* The relation 2X = Xi + X2 + • • • + Xn is not an equation. It

merely states that ZX is identical with and is an abbreviation for Xy +
X« + • • • + xn .
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represent the actions of these bodies by three force-vectors, W, T, and F,

Fig. 15, and then apply the conditions of equilibrium. Setting equal to

zero the sums of the components of the y
forces along the x- and ?/-axes, we get

XX = F - T sin a = 0. (a)

2F - -W+Tcosa = 0. (b)

Solving equations (a) and (b) we have

W

and

T =
cos a

F = T sin a
= W tan a.

Discussion. — When a = 0, T=W

and F = 0. When a = -
, T = oo and

Z

Fig. 15.

F= oo. Therefore no finite horizontal

force can make the string perfectly hori-

zontal.

2. A uniform bar, of weight W and

length a, is suspended in a horizontal

position by two strings of equal length

I. The lower ends of the strings are fastened to the ends of the bar and

the upper ends to a peg. Find the tensile force in the strings.

The bar is acted upon by three bodies, namely the earth and the two

strings. We represent their actions by the forces W, Ti, and T2, Fig. 16a.

The tensile forces of the strings act at the ends of the bar. On the other

hand the weight is distributed all along the rod. But we may consider

it as acting at the middle point, as in Fig. 16a, or we may replace the rod

W
by two particles of weight — each, as shown in Fig. 16b. In the last case

the rigidity of the bar which prevents its ends from coming together is

represented by the forces F and — F.

Considering each particle separately and setting equal to zero the sums

of the components of the forces along the axes, we obtain

2X ^ Tx cos a - F = 0,

W2F = 7
7

1 sino;-^ = 0,
Zi

for the first particle, and

zZX m -T2 cos a+ F = 0,

SF = 7
7

2 sina-^ = 0,
z
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for the second particle. It follows from these equations that

W
2 sin a

I

ViP
w.

Fig. 16.

Discussion. — The tensile force of the strings increases indefinitely

as their total length approaches that of the bar. On the other hand

as the length of the strings becomes very large compared with that of the

W
bar the tensile force approaches — as a limit.

A

The problem can be solved also by considering the forces acting on the

peg, as shown in Fig. 16b.

PROBLEMS.

1. Show that when a particle is in equilibrium under the action of two

forces, the forces must lie in the same straight line.

2. Show that when a particle is in equilibrium under the action of

three forces the forces lie in the same plane.
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3. Find the horizontal force which will keep in equilibrium a weight

of 150 pounds on a smooth inclined plane which makes 60° with the

horizon.

4. A ring of weight W is suspended by means of a string of length I,

the ends of which are attached to two points on the same horizontal line.

Find the tensile force of the string if the distance between its ends is d.

Also discuss the limiting cases in which I approaches d or becomes very

large compared with it.

5. A body of weight W is suspended by two strings of lengths k and h.

The upper end of each string is attached to a fixed point in the same
horizontal line. Find the tensile forces in the strings if the distance

between the two points is d.

6. A weight is suspended by four equal strings, the upper ends of which

are attached to the vertices of a horizontal square. Find the tensile

forces in the strings.

7. A particle is in equilibrium on a smooth inclined plane under the

action of two equal forces, the one acting along the plane upwards and

the other horizontally. Find the inclination of the plane.

8. Apply the conditions of equilibrium to find the magnitude and

direction of the resultant of a number of forces acting upon a particle.

9. Two spheres of equal radius and equal weight are in equilibrium in

a smooth hemispherical bowl; find the reactions between the two spheres

and between the spheres and the bowl.

10. The ends of a string, 60 cm. long, are fastened to two points in the

same horizontal line and at a distance of

40 cm. apart; two weights are hung from

points in the string 25 cm. and 20 cm. from

the ends. Find the ratio of the weights if

the part of the string between them is hori-

zontal.

11. A single triangular truss of 24 feet

span and 5 feet depth supports a load

of 3 tons at the apex. Find the forces acting on the rafters and the tie

rod.

12. A particle of weight W can be kept in equilibrium upon a smooth

inclined plane by a force Fx acting horizontally; it can also be kept in

equilibrium by a force F2 acting parallel to the plane. Express W in

terms of Fi and F2 .

13. In the following arrangements of pulleys find the relation between

F and W.
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SLIDING FRICTION.

26. Frictional Force.—Consider the forces acting upon a body

which is in equilibrium on a rough inclined plane, Fig. 17.

The body is acted upon by two

forces, namely, its weight, W,

and the reaction of the plane,

R. The reaction of the plane

is the result of two distinct

and independent forces. One
of these, N, is perpendicular

to the plane and is called the

normal reaction. The other,

F, is along the plane and is

called the frictional force. The
normal reaction is due to the rigidity of the plane. It re-

sists the tendency of the body to go through the plane. The
frictional force is due to the roughness of the contact between

the body and the plane. It prevents the body from sliding

down the plane.

27. Angle of Friction.— As we increase the angle of elevation

of the inclined plane a certain definite angle will be reached

Fig
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when the equilibrium is disturbed and the body begins to

slide down the plane. This angle is called the angle of

friction. This definition for the angle of friction does not

hold when the body is acted upon by other forces besides

its weight and the reaction of the plane. The following

definition, however, is valid under all circumstances: The

angle of friction equals the angle which the total reaction makes

with the normal to the surface of contact when the body is on

the point of motion.

28. Coefficient of Friction.— Denoting the angle of friction

by 0, we obtain

F = R sin cf),

N = R cos 0.

Therefore F = N tan
<f>

= »N, (III)

where n = tan and is called the coefficient of friction.

The angle of friction and consequently the coefficient of

friction are constants which depend upon the surfaces in

contact. The last four equations hold true only when the body

is on the point of motion.

29. Static and Kinetic Friction.— The friction which comes

into play is called static friction if the body is at rest and

kinetic friction if it is in motion.

30. Laws of Friction.— The following statements, which are

generalizations derived from experimental results, bring out

the important properties of friction. They hold true within

certain limits and are only approximately true even within

these limits.

1. Frictional forces come into play only when a body is

urged to move.

2. Frictional forces always act in a direction opposite to

that in which the body is urged to move.

3. Frictional force is proportional to the normal reaction,
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4. Frictional force is independent of the area of contact.

5. The static frictional force which comes into play is not

greater than that which is necessary to keep the body in

equilibrium.

6. Kinetic friction is smaller than static friction. i

Laws 1 to 4 hold true for both static and kinetic friction.

The coefficient of friction between two bodies depends upon

the condition of surfaces in contact. Therefore the value of

ix is not a perfectly definite constant for a given pair of sub-

stances in contact.

The values given in the following table are averages of

values obtained by several experimenters.

Condition of surfaces in

contact.

Coefficient of friction.

Static. Kinetic.

Wood on wood
Wood on wood
Wood on wood
Heavy rope on wood
Heavy rope on wood
Cast iron on cast iron

Cast iron on cast iron

Dry
Wet

Polished and greased
Dry
Wet
Dry
Greased
Wet

.50

.68

.35

.60

.80

.24

.15

.65

.30

.36

.25

.12

.40

.35

.18

.13

Cast iron on oak
Leather on cast iron

ILLUSTRATIVE EXAMPLES.

1. A body which is on a rough horizontal floor can be brought to the

point of motion by a force which makes an angle a with the floor. Find

the reaction of the floor and the coefficient of friction.

The body is acted upon by three forces, Fig. 18,

P, the given force,

W, the weight of the body,

R, the reaction of the floor.

Replacing R by its components F and N , and applying the conditions

of equilibrium, we obtain

XX = P cos a - F = 0,

2Y = P sin a + N - W = 0.

Therefore F = P cos a,

JV = W - P sin a,
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and R = VF 2 + JV2

= VP 2 + W2 - 2PW sin a.

But since the body is on the point of 'motion the relation F = /jlN holds.

Therefore

_ _F _ P cos a
M N W-P sin a'

Discussion. — (a) When a = 0,
7 R = VP 2 + W2 and ju = —

_ W
(b) When a = ^, R = P-W = 0, therefore P = W, and n is indeter-

minate, (c) When P_= 0, m = 0, and # = IT.

Yl

Fig. 19.

2. A body which rests upon a rough inclined plane is brought to the

point of motion up the inclined plane by a horizontal force. Find /* and R.

The body is acted upon by three forces, Fig. 19,

P, the horizontal force,

W, the weight,

R, the reaction of the plane.

Replacing R by its components F and N, and taking the axes along and

at right angles to the plane, we obtain

SX s P cos a - F - W sin a = 0,

27 = -P sin a + N - W cos a = 0.

Therefore
F = P cos a — W sin a,

N = P sin a + W cos a,

p = VfmT/v 2

= Vp 2 + w2
~
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F P cos a — W sin a
N P sin a + W cos a

P
Discussion. — (a) When a = 0, \x = — , and # = W V/jl 2 + 1.

(b) When P = 0, ju = —tan a; therefore a = —
<f>, that is, the inclined

plane must be tipped in the opposite direction and must be given an

angle of elevation equal to the angle of friction in order that motion may
take place towards the positive direction of the a>axis.

PROBLEMS.
1. A body which weighs 100 pounds is barely started to move on a

rough horizontal plane by a force of 150 pounds acting in a direction

making 30° with the horizon. Find R and (jl.

2. A body placed on a rough inclined plane barely starts to move
when acted upon by a force equal to the weight of the body. Find

the coefficient of friction, (a) when the force is normal to the plane;

(b) when it is parallel to the plane.

3. A horizontal force equal to the weight of the body has to be applied

in order to just start a body into motion on a horizontal floor. Find the

coefficient of friction.

4. A weight W rests on a rough inclined plane, which makes an angle

a with the horizon. Find the smallest force which will move the weight

if the coefficient of friction is /jl.

5. How would you determine experimentally the coefficient of friction

between two bodies?

6. A weight of 75 pounds rests on a rough horizontal floor. Find the

magnitude of the least horizontal force which will move the body if the

coefficient of friction is 0.4; also find the reaction of the plane.

7. A particle of weight W is in equilibrium on an inclined plane under

the action of a force F, which makes the magnitude of the normal pres-

sure equal W. The coefficient of friction is /x and the angle of elevation of

the inclined plane is a. Find the magnitude and direction of the force.

8. An insect starts from the highest point of a sphere and crawls

down. Where will it begin to slide if the coefficient of friction between

the insect and the sphere is £?

9. The greatest force, which can keep a particle at rest, acting along

an inclined plane, equals twice the least force. Find the coefficient of

friction. The angle of elevation of the plane is a.

31. Resultant of a System of Forces.— The resultant of a

number of forces which act upon a particle is a force which



26 ANALYTICAL MECHANICS '

is equivalent to the given forces. There are two criteria by
which this equivalence may be tested. First : The resultant

force will give the particle the same motion, when applied

to it, as that imparted by the given system of forces. We
cannot use this test just now because we have not yet

studied motion. Second: When the resultant force is re-

versed and applied to the particle simultaneously with the

given forces the particle remains in equilibrium.

According to the second criterion, therefore, the resultant,

R, of the forces Fi, F2 , . . ., F„, must satisfy the equation

-R+(F!+F2 + • • • + Fn) = 0,l
riv

,x

or r = f 1+F2 + • • • +Fn .
J

Splitting the last equation into three algebraic equations,

we obtain

x = x1+x2 +- • . +zn ,

F = F1+y2 +. • • +Fn ,
(IV)

z = z1 + z2 + . • • +zn ,

where X t , Y t, and Z { are the components of R;.

The magnitude of R is given by the relation

r = VX 2+Y 2+Z 2
,

(V)

while the direction is obtained from the following expressions

for its direction cosines.

X Y Z
COS a\ = — i COS a2 = — > COS a3 = -• (VI

r

)k a k

Special Case.— When the forces he in the xy-plane the

^-components of each force equals zero. Therefore we have

R = Vx2+Y 2
, __ (V)

and tan0 = |i> (VI)
X

where is the angle R makes with the #-axis.
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PROBLEMS.

1. Three men pull on a ring. The first man pulls with a force of 50

pounds toward the N. 30° W. The second man pulls toward the S. 45°

E. with a force of 75 pounds, and the third man pulls with a force of 100

pounds toward the west. Determine the magnitude and direction of

the resultant force.

2. Show that the resultant of two forces acting upon a particle lies

in the plane of the given forces.

3. Show that the line of action of the resultant of two forces lies

within the angle made by the forces.

4. Find the direction and magnitude of the resultant of three equal

forces which act along the axes of a rectangular system of coordinates.

GENERAL PROBLEMS.

1. A particle is in equilibrium under the action of the forces P, Q, and

R. Prove that

P = Q = R
sin (Q, R) sin (P, R) sin (P, Q)

'

where (Q, R), etc., denote the angles between Q and R, etc.

2. Two particles of weights Wi and W2 rest upon a smooth sphere of

radius a. The particles are attached to the ends of a string of length I,

which passes over a smooth peg vertically above the center of the sphere.

If h is the distance between the peg and the center of the sphere, find (1)

the position of equilibrium of the particles, (2) the tensile force in the

string, and (3) the reaction of the sphere.

3. The lengths of the mast and the boom of a derrick are a and b

respectively. Supposing the hinges at the lower end of the boom and the

pulley at the upper end to be smooth, find the angle the boom makes
with the vertical when a weight W is suspended in equilibrium.

4. Find the tensile force in the chain and the compression in the boom
of the preceding problem.

5. Two rings of weights Wt and W2 are held on a smooth circular

wire in a vertical plane by means of a string subtending an angle 2 a at

the center. Show that the inclination of the string to the horizon is

given by

tan"=Jv^ tana -

6. A bridge, Fig. (a), of 60-foot span and 40-foot width has two queen-

post trusses 9 feet deep. ' Each truss is divided into three equal parts by two
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posts. What are the stresses in the different parts of the trusses when

there is a load of 150 pounds per square foot of floor space?

k 20- - ->j< 20- - -»u 20-- -*r

Fig. (a). Fig. (b).

7. Find the force in one of the members of the truss of figure (b).

8. A weight rests upon a smooth inclined plane, supported by two equal

strings the upper ends of which are fastened to two points of the plane in

the same horizontal line. Find the tensile force in the strings and the

reaction of the plane.

9. In the preceding problem suppose the plane to be rough.

10. A particle is suspended by a string which passes through a smooth

ring fastened to the highest point of a circular wire in a vertical plane.

The other end of the string is attached to a smooth bead which is movable

on the wire. Find the position of equilibrium supposing the bead and

the suspended body to have equal weights.

11. A particle is in equilibrium on a rough inclined plane under the

action of a force which acts along the plane. If the least magnitude of the

force when the inclination of the plane is a equals the greatest magnitude

when it is a 2 , show that <f>

ai a*
, where <f>

is the angle of friction.

12. Two weights W\ and W2 rest upon a rough inclined plane, con-

nected by a string which passes through a smooth pulley in the plane.

Find the greatest inclination the plane can be given without disturbing

the equilibrium.

13. Two equal weights, which are connected by a string, rest upon a

rough inclined plane. If the direction of the string is along the steepest

slope of the plane and if the coefficients of friction are Mi and jjl2,
find the

greatest inclination the plane can be given without disturbing the equi-

librium.

14. In the preceding problem find the tensile force in the string.

15. One end of a uniform rod rests upon a rough peg, while the other

end is connected, by means of a string, to a point in the horizontal plane

which contains the peg. When the rod is just on the point of motion it
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is perpendicular to the string. Show that 2 I = fia, where I is the length

of the string, a that of the rod, and /jl the coefficient of friction.

16. A particle resting upon an inclined plane is at the point of motion

under the action of a force F, which acts downward along the plane. If

the angle of elevation of the plane is changed from ax to a2 and the

direction of the force reversed the particle will barely start to move up the

plane. Express ju in terms of a.\ and a2 .

17. A string, which passes over the vertex of a rough double inclined

plane, supports two weights. Show that the plane must be tilted through

an angle equal to twice the angle of friction, in order to bring it from the

position at which the particles will begin to move in one direction to the

position at which they will begin to move in the opposite direction.

18. Three equal spheres are placed on a smooth horizontal plane and

are kept together by a string, which surrounds them in the plane of their

centers. If a fourth equal sphere is placed on top of these, prove that the

W
tensile force in the string is

—— , where W is the weight of each sphere.
3 v6

19. Three equal hemispheres rest with their bases upon a rough hori-

zontal plane and are in contact with one another. What is the least value

of fj.
which will enable them to support a smooth sphere of the same radius

and material ?

20. If the center of gravity of a rod is at a distance a from one end and

b from the other, find the least value of /jl which will allow it to rest in

all positions upon a rough horizontal ground and against a rough vertical

wall.

21. A string, which is slung over two smooth pegs at the same level,

supports two bodies of equal weight W at the ends, and a weight W at

the middle' by means of a smooth ring through which it passes. Find

the position of equilibrium of the middle weight.
,



CHAPTER III,

EQUILIBRIUM OF RIGID BODIES.

TRANSLATION AND ROTATION.

32. Rigid Body. — There are problems in which bodies

cannot be treated as single particles. In such cases they are

considered to be made up of a great number of discrete par-

ticles. A body is said to be rigid if the distances between

its particles remain unchanged whatever the forces to which

it may be subjected. There are no bodies which are strictly

rigid. All bodies are deformed more or less under the action

of forces. But in most problems discussed in this book ordi-

nary solids may be treated as rigid bodies.

33. Motion of a Rigid Body.— A rigid body may have two

distinct types of motion. When the body moves so that its

particles describe straight paths it

is said to have a motion of trans-

lation. Evidently the paths of the

particles are parallel, Fig. 20. If

the particles of the body describe

circular paths it is said to have a

motion of rotation. The planes of

the circles are parallel, while their

centers lie on a straight line per-

pendicular to these planes, which

is called the axis of rotation. The
motion of a flywheel is a well-known example of motion of

rotation. Suppose A, Fig. 21, to be a rigid body which is

brought from the position A to the position A' by a motion

of rotation about an axis through the point perpendicular

to the plane of the paper, then the paths of its particles

30

Fig. 20.
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Fig. 21.

are arcs of circles whose planes

are parallel to the plane of the

paper and whose centers lie

on the axis of rotation.

34. Uniplanar Motion.

—

When a rigid body moves so

that each of its particles re-

mains at a constant distance

from a fixed plane the motion

is said to be uniplanar. The
fixed plane is called the guide plane.

35. Theorem I. — Uniplanar motion of a rigid body consists

of a succession of infinitesimal rotational displacements.

Suppose the rigid body A, Fig. 22, to describe a uniplanar

motion parallel to the plane of the paper and let A and A'

be any two positions occupied by the body. Then it may
be brought from 4 to i' by a rotational displacement

about an axis the position of Q
which may be found in the fol-

lowing manner. Let P and Q
be the positions of any two
particles of the body in a plane

parallel to the plane of the

paper when the body is at the

position A, and P' and Q
f

be the

positions of the same particles

when the body occupies the po-

sition A'. Then the desired axis is perpendicular to the

plane of the paper and passes through the point of

intersection of the perpendicular bisectors of the lines

PQ and P'Q', drawn in the plane determined by these

lines.

Therefore the body can be brought from any position A
to any other position A' by a single rotational displacement.

The actual motion between A and A' will be, in general,

Fig. 22.
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quite different from the simple rotation by which we accom-

plished the passage of the body from one of these positions

to the other. But the result, which we have just obtained,

is true not only for positions which are separated by finite

distances but also for positions which are infinitely near

each other. Therefore by giving the body infinitesimal

rotational displacements about properly chosen axes it may
be made to assume all the positions which it occupies during

its actual motion.

36. Instantaneous Axis. — As the body is made to occupy

the various positions of its actual motion the axis of rota-

tion moves at right angles to itself and generates a cylinder

whose elements are perpendicular to the guide plane.

The elements of the cylinder are called instantaneous axes,

because each acts as the axis of rotation at the instant when
the body occupies a certain position. The curve of inter-

section of the cylinder and the guide plane is called the

centrode.

The motion of a cylinder which rolls in a larger cylinder

is a simple example of uniplanar motion. In this case the

common element of contact is the instantaneous axis. As

the cylinder rolls different elements of the fixed cylinder

become the axis of rotation.

Motion of translation and motion of rotation are special

cases of uniplanar motion. In motion of translation the

axis of rotation is infinitely far from the moving body. In

rotation the cylinder formed by the instantaneous axes

reduces to a single line, i.e., the axis of rotation.

37. Theorem II. — Rotation about any axis is equivalent to a

rotation through the same angle about a parallel axis and a

translation in a direction perpendicular to it.

The truth of this theorem will be seen from Fig. 23, where

the rigid body A is brought from the position A to the posi-

tion A' by a single rotation about an axis through the point

perpendicular to the plane of the paper. This displace-
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merit may be produced also by rotating the body to the

position A" and then translating it to the position A'

.

Fig. 23.

PROBLEMS.

, 1. Show that in theorem II the order of the rotation and of the trans-

lation may be changed.

2. Show that the converse of theorem II is true.

38. Theorem III.— The most general displacement of a rigid

body can be obtained by a single translation and a single

rotation.

Let A and A' be any two positions occupied by the rigid

body and P and P' be the corresponding positions of any one

Fig. 24.

of its particles. Then the body may be brought from A to

A' by giving it a motion of translation which will bring the

particle from P to P' and then rotating the body about a

properly chosen axis through P'. A special case of this
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theorem is illustrated in Fig. 24, where the direction of the

translation is perpendicular to the axis of rotation.

39. Theorem IV.

—

The most general displacement of a rigid

body can be obtained by a displacement similar to that of a

screw in its nut, that is, by a rotation about an axis and a

translation along it.

This theorem states that the axis of rotation of the last

theorem can be so chosen that the translation is along the

axis of rotation. Let PP' , Fig. 25, be the path of any point

of the body described during

the translation and BB be the

line about which the body is

rotated. Draw CC through

P parallel to BB and drop the

perpendicular P'P" upon CC.

The displacement may be ac-

complished now in the fol-

lowing three stages. First:

translate the body along the

line CC until the point which

was at P arrives at P"

.

Second: translate the body along P"P' until the point

arrives at P' . Third: rotate the body about BB until it

comes to the desired position. But by theorem II the

last two operations can be accomplished by a single rotation

about CC. Therefore the desired displacement can be

obtained by a translation along and a rotation about the

line CC.

Evidently the last theorem holds for infinitesimal dis-

placements as well as for finite displacements; therefore

however complicated the motion of a rigid body it can be

reproduced by a succession of infinitesimal screw-displace-

ments, each displacement taking the body from one position

which it has occupied during the motion to another position

infinitely near it. Thus at every instant of its motion the
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rigid body is displaced like a screw in its nut. In general

the pitch and the direction of the axis of the screw-motion

change from instant to instant/ In the case of the motion

of a screw in its nut these do not change.

Translation and rotation are special cases of screw-

motion. When the pitch of a screw is made smaller and

smaller it advances less and less during each revolution.

Therefore if the pitch is made to vanish the screw does

not advance at all when it is rotated. Thus rotation is a

special case of screw-motion in which the pitch is zero.

On the other hand as the pitch of the screw is made greater

and greater the screw advances more and more during each

revolution. Therefore at the limit when the pitch is in-

finitely great the motion of the screw becomes a motion of

translation. Thus translation is a special case of screw-

motion in which the pitch is infinitely great.

LINEAR AND ANGULAR ACTION. TORQUE.

40. Two Types of Action.—We have seen that a rigid body
may have two different and independent types of motion,

namely, motion of translation and motion of rotation.

These motions are the results of two independent and

entirely different kinds of actions to which a rigid body
is capable of being subjected. We will differentiate between

these two types of action by adding the adjectives " linear"

and " angular" to the term "action." Thus the action which

tends to produce translation will be called linear action and

that which tends to produce rotation angular action.

41. Torque.—The vector magnitude which represents the

angular action of one body upon another is called torque.

42. Couple.— Although a single force is not capable of pro-

ducing the effect of a torque upon a rigid body, two or more
external forces will produce it when properly applied. The
simplest system of forces which is capable of producing

rotation is known as a couple. It consists of two equal and

opposite forces which are not in the same line, Fig. 26.
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It is evident from Fig. 26 that a couple is capable of

giving a rigid body a motion of rotation. But this is not

enough to show that the effect produced by a couple is the

same as that produced by a torque. We must show also

that the couple is not capable of producing a motion of

translation. Consider the rigid body A, Fig. 27, which is

acted upon by a couple. Suppose the couple did tend to

Fig. 26. Fig. 27.

produce a translation in a direction BB'. Then pass through

the body a smooth bar of rectangular cross-section in the

direction of the supposed motion, so that the body is free

to move along the bar but not free to rotate. When this

constraint is imposed upon the rigid body it behaves like

a particle and therefore cannot be given a motion by two

equal and opposite forces. But since any motion in the

direction BB ' is not affected by the presence of the bar,

the assumption that the couple produces a motion of trans-

lation along BB' must be wrong. Hence we see that when
the bar is taken out the motion due to the couple will be

one of pure rotation.

43. Measure of Torque.— When a rigid body is in equi-

librium under the action of two couples it is always found

that the product of one of the forces of one couple by the

distance apart of the forces of the same couple equals the
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corresponding product for the other couple. In order, for

instance, that the rigid body A, Fig. 28, be in equilibrium,

we must have

FD = F'D'.

Therefore the product FD is

the measure of the torque of

the couple formed by the forces

F and — F, the lines of action

of which are separated by the

distance D. Thus denoting

the torque of a couple by G,

we have

G=FD.
The distance D is called the arm of the couple and the plane

of the forces the plane of the couple.

44. Unit Torque. — The torque of a couple whose forces

are one pound each and whose arm is one foot is the unit of

torque. The symbol for the unit torque is the lb. ft.

45. Vector Representation of Torque.—Torque is a vector

magnitude and is represented by a vector which is perpen-

F*f G

(I)

Fig. 29.

dicular to the plane of the couple. The vector points away
from the observer when the couple tends to rotate the body

in the clockwise direction and points towards the observer

when it tends to rotate the body in the counterclockwise

direction, Fig. 29. In the first case the torque is considered

to be negative and in the second case positive.
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46. Equal Couples.— Two cou-

ples are equal when the vectors

which represent their torques are

equal in magnitude and have the

same direction. The three couples

in Fig. 30 are equal if Gx = G2 = G3 .

Resultant of two couples is a

third couple, whose torque is the

vector sum of the torques of the

given couples.
Fig. 30.

PROBLEMS.

1. Find the direction and magnitude of the resultant torque of three

equal couples the forces of which act along the edges of the bases of a

right prism. The bases of the prism are equilateral triangles.

2. In the preceding problem let the forces have a magnitude of 15

pounds each, the length of the prism be 2 feet and the sides of the bases

10 inches.

3. In problem 1 suppose the prism to have hexagonal bases.

L 4. In problem 2 suppose the prism to be hexagonal.

5. A right circular cone, of weight W and angle 2 a, is placed in a

circular hole of radius r, cut in a horizontal table. Assuming the coeffi-

cient of friction between the cone and the table to be m, find the least

torque necessary to rotate the former about its axis. .

,

47. Moment of a Force. — The most common method of

giving a rigid body a motion of rotation is to put an axle

through it and to apply to it a

force which acts in a plane per-

pendicular to the axle. The
rotation is produced by the

couple formed by the applied

force and the reaction of the

axle. The torque due to the

couple equals the product of

the applied force by the shortest distance from the axle

to the line of action of the force. It is often more con-

Fig. 31.
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venient to disregard the reaction of the axle. When this

is done the torque of the couple is called the moment of the

force applied. Therefore the moment of a force about an

axis equals the product of the force by its lever-arm. The lever-

arm of a force is the shortest distance between the axis and

the line of action of the force. In Fig. 31 the moment of

F about the axis through the point and perpendicular to

the plane of the paper is

G = Fd, (II)

where d is the lever-arm.

PROBLEMS.

1. Prove that the moment of a force about an axis equals the moment
of its component which lies in a plane perpendicular to the axis.

2. Prove that the sum of the moments of the forces of a couple about

any axis perpendicular to the plane of the couple is constant and equals

the torque of the couple.

48. Degrees of Freedom of a Rigid Body.—A rigid body
may have a motion of translation along each of the axes of

a rectangular system of coordinates and at the same time it

can have a motion of rotation about each of these axes.

Therefore a rigid body has six degrees of freedom, three of

translation and three of rotation. When one point in it is

constrained to move in a plane the number of degrees of

freedom is reduced to five. When the point is constrained

to move in a straight line the number becomes four. When
the point is fixed the body has only the three degrees of

freedom of rotation. If two points are fixed the body can

only rotate about the line joining the two points. There-

fore its freedom is reduced to one degree. When a third

point, which is not in the line determined by the other two,

is fixed the body cannot move at all, that is, it has no

freedom of motion.

49. The Law of Action and Reaction.—The law from which

the conditions of equilibrium of a particle were obtained is a
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universal law applicable to all bodies under all conditions;

therefore it is applicable to rigid bodies as well as to single

particles. But since rigid bodies may be subject to two

distinct types of action the law may be stated in the fol-

lowing form.

The sum of all the linear and angular actions to which
a body or a part of body is subject at any instant vanishes.

2(A, + AJ = (A')

But since the two types of action are independent of each

other the sum of each type must vanish when the combined

sum vanishes. Therefore we can split the law into the fol-

lowing two sections.

To every linear action there is an equal and opposite
linear reaction, or, the sum of all the linear actions to

which a body or a part of body is subject at any instant

vanishes:
2A, = (A,)

To every angular action there is an equal and opposite
angular reaction, or, the sum of all the angular actions

to which a body or a part of body is subject at any in-

stant vanishes:
2Aa = (Aa)

50. Conditions of Equilibrium of a Rigid Body.— If we replace

the term " linear action" in the first section of the law by the

word " force" and the term " angular action " in the second

section of the law by the word "torque" we obtain the two

conditions which must be satisfied in order that a rigid body

be in equilibrium. Thus, in order that a rigid body be in

equilibrium the following conditions must be satisfied.

First. The sum of all the forces acting upon the rigid body

must vanish, that is, if Fi, F2 ,
• • • Fn denote all the forces

acting upon the body then the vector equation

Fi+F2 + • • *Fn *=6 (HI)

must be satisfied.
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Second. The sum of all the torques acting upon the rigid

body must vanish, that is, if Gi, G2 ,
• On denote all the

torques acting upon the body then the vector equation

Gi+G2 + • • • +G„=0 (IV)

must be satisfied.

The following forms of the statement of these two condi-

tions are better adapted for analysis.

First. The algebraic sum of the components of all the forces

along each of the axes of a rectangular system of coordinates

must vanish, that is,

2X=X1+X2+ • • • +Xn =0.
2Y=Y1+Y2 + • • • +Fn =0.

2Z ^ Zi + Z2 + • • • + Zn = 0.

Second. The algebraic sum of the components of all the

torques about each of the axes of a system of rectangular coor-

dinates must vanish, that is,

2GX =G/ + (V
, + • • + <£° = 0.

(V)

v ^ y i ^y i ^v

2G2 = GJ + 6," + • • • + Gi"> = 0.

(VI')

51. Coplanar Forces.— If two or more forces act in the same

plane they are said to be coplanar. If a system of coplanar

forces act in the xy-p\sme then the conditions of equilibrium

reduce to the following equations:

2X^X^X2+ • • +Xn =0,| ()XY^Y,+ Y2 + • • • +Fn =0,j
{ }

XG^F^ + F2d2 + • • • + Fndn = 0, (VI)

where dh a\, . . . , dn are the lever-arms of the forces Fi,

F2 , . . . Fn , respectively, about any axis which is perpen-

dicular to the plane of the forces. The ^-components of

the forces and the x- and ^/-components of the moments
vanish identically. Consequently they need not be con-

sidered.
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52. Transmissibility of Force. — A force which acts upon a

rigid body may be considered to be applied to any particle

of the body which lies on the line of action of the force. In

order to prove this statement consider the rigid body A,

Fig. 32, which is in equilibrium under the action of the two

Fig. 32.

equal and opposite forces F and — F. Nov/ suppose we
change the point of application of F, without changing

either its direction or its line of application. Evidently

the equilibrium is not disturbed, because by moving F in its

line of action we neither changed the sum of the forces nor

the sum of their moments about any axis. Therefore the

line of action of a force is of importance and not its point

of application.

53. Internal Forces.— Internal forces do not affect the equi-

librium of a rigid body. This is a direct consequence of the

law of " action and reaction." Since by definition the in-

ternal forces are due to the interaction between the particles

of the system these forces exist in equal and opposite pairs,

therefore mutually annul each other.

ILLUSTRATIVE EXAMPLES.

1. A uniform beam rests with its lower end on a smooth horizontal

ground and its upper end against a smooth vertical wall. The beam is

held from slipping by means of a string which connects the foot of the

beam with the foot of the wall. Find the tensile force in the string and

the reactions at the ends of the beam.

There are four forces acting upon the beam, i.e., the two reactions, Ri

and R 2 , the tensile force T and the weight W. Since both the ground and

the wall are supposed to be smooth, Ri is normal to the ground, and R 2
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to the wall. Therefore denoting the lengths of the beam and the string

by I and a respectively, we have

SZ m R2 - T = 0,

zZY sb & - W= 0,

XG '^ -R2 l sin a -\-W^cos a = 0,

where zZG ' denotes the sum of the mo-

ments of the forces about an axis through

the point 0' perpendicular to the a^/-plane.

Solving the last three equations we have

Ri = W,

and

wR2 = — cot a
Z

W a
W \ |

Rl

2 Vl 2 -a 2 *t\
T W a T

C
o'

2 VI 2 -a2 Fig. 33.

X

Discussion. — It should be noticed that in taking the moments the

axis was chosen through the point 0' in order to eliminate the moments

of as many forces as possible and thus to obtain a simple equation.

The reaction Ri is independent of the angular position of the beam
and equals the weight W. On the other hand R 2 and T vary with a.

When a - both R 2 and T vanish. As a is diminished from - to 0, R 2

Zi Zi

and T increase indefinitely.

2. A ladder rests on a rough horizontal ground and against a rough

vertical wall. The coefficient of friction between the ladder and the

ground is the same as that between the ladder and the wall. Find the

smallest angle the ladder can make with the horizon without slipping.

There are three forces acting on the ladder, i.e., its own weight W and

the two reactions Ri and R 2 . Replacing Ri and R 2 by their components

and writing the equations of equilibrium we obtain

zZX = Fx - N2 = 0,

XY ^N1 -\-F2 -W =
}

2GV = F2 l cos a + N2 l sin a PT-cos a = 0,
Zi

where a is the required angle.

We have further

M =
Ni N2
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Solving these we get

Ni =
1+M 5

W.

Ri =

F,=

Vl+M2

..5

w,

1+M :

iV2 = —-

—

W2

1 + m2 '

#2 =

tan a =

Vl + m 2
'

1-M2

2m Fig. 34.

Discussion. — The last expression gives the value of a for a given

value of fx. When /* = 1, a = 0, therefore in this case the ladder will be

in equilibrium at any angle between and - with the ground. Evidently

this is true for any value of /jl greater than unity.

3. Find the smallest force which, when applied at the center of a

carriage wheel, will drag it over an obstacle.

The forces acting on the wheel are, its weight W, the required force F,

and the reaction R. Since the first two meet at the center of the wheel,

the direction of R must pass through the center also. Take the coordinate

axes along and at right angles to R, as shown in Fig. 31, and let F make
an angle 6 with the a;-axis. Then the equations of equilibrium become

XX ^Fcosd - R + Wcosa = 0,

SF =Fsind - IT sin a = 0,

XG '= W -asm a- Fsin6-a = 0.

From either of the last two equations we get

F==
smaw
sin v

Since W and a are fixed F can be changed only by changing 0. Therefore

the minimum value of F is given by the maximum value of sin 0, i e.,

6 = -, which makes

F = W sin a.
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a — h
From the figure we obtain cos a =

Kb

therefore sin a = - Vh (2 a — h),
a

and F = — Vh(2a-h).

Fig. 35.

Since cos 6 = the first equation of equilibrium gives

R = W cos a

Discussion. — It will be observed that the first two of the equations

of equilibrium are sufficient to solve the problem.

When h is zero, F = and R = W. On the other hand when h = a,

F = W and R = 0.

PROBLEMS.

1. Prove that the true weight of a body is the geometric mean between

the apparent weights obtained by weighing it in both pans of a false

balance.

2. A uniform bar weighing 10 pounds is supported at the ends. A
weight of 25 pounds is suspended from a point 20 cm. from one end.

Find the pressure at the supports if the length of the bar is 50 cm.

3. A uniform rod which rests on a rough horizontal floor against a

smooth vertical wall is on the point of slipping. Find the reactions at

the two ends of the rod.
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4. A body is suspended from the middle of a uniform rod which passes

over two fixed supports 6 feet apart. In moving the body 6 inches nearer

to one of the supports the pressure on the support increases by 100

pounds. What is the weight of the body if 5 pounds is the weight of

the rod?

5. A uniform rod of length a and weight W is suspended by two strings

having lengths k and Z2 . The lower ends of the strings are attached to the

ends of the rod, while the upper ends are tied to a peg. Find the tensile

force in the strings.

6. A safety valve consists of a cylinder with a plunger attached to a

uniform bar hinged at one end. The plunger has a diameter of \ inch

and is attached to the bar at a distance of 1 inch from the hinge. The
bar is 2 feet long and weighs 1 pound. How far from the hinge must a

slide-weight of 2 pounds be set if the steam is to blow off at 120 pounds

per square inch?

7. The two legs of a stepladder are hinged at the top and connected

at the middle by a string of negligible mass. Find the tensile force in the

string and the pressure on the hinges when the ladder stands on a smooth

plane. The weight of the ladder is W, the length of its legs I, and the

length of the string a.

8. A uniform rod rests on two inclined planes making angles of ai and

cli with the horizon. Find the angle which the rod makes with the

horizon and the pressure on the planes.

9. A rectangular block is placed on a rough inclined plane whose in-

clination is gradually increased. If the block begins to slide and to turn

about its lowest edge simultaneously find the coefficient of friction.

10. A uniform rod rests with one end against a rough vertical wall

and the other end connected to a point in the wall by a string of equal

length. Show that the smallest angle which the string can make with

'-©
11. A uniform rod is suspended by a string which is attached to the

ends and is slung over a smooth peg. Show that in equilibrium the rod

is either horizontal or vertical.

12. A ladder 25 feet long and weighing 50 pounds rests against a

vertical wall making 30° with it. How high can a man weighing 150

pounds climb up the ladder before it begins to slip? The coefficient of

friction is 0.5 at both ends of the ladder.

13. A rod of negligible weight rests wholly inside a smooth hemispheri-

cal bowl of radius r. A weight W is clamped on to the rod at a point

whose distances from the ends are a and b. Show that the equilibrium

the wall is tan'
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position of the rod is given by sin = a — b
where 6 is the angle it

2Vr 2 -ab'
makes with the plane of the brim of the bowl which is horizontal.

14. Prove that when a rigid body is in equilibrium under the action of

three forces their lines of action lie in the same plane and intersect at the

same point.

15. Find the forces which tend to compress or extend the different

members of the following cranes.

1,750 lbs

16. Supposing the weights of the following figures to be in equilibrium

find their relative magnitudes. The circles which are tangent to other

circles represent gears.

54. Resultant of a System of Forces Acting upon a Rigid Body.

—We have already shown that the most general displacement

of a rigid body consists of a translation along, and a rotation

about, a certain line. Therefore such a displacement can be

prevented by a single force opposed to the translation and

a single torque opposed to the rotation. Thus a single force

and a single torque can be found which will keep a rigid body

in equilibrium against the action of any system of forces.
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The resultant of a system of forces consists, therefore, of a

single force and a single torque which, when reversed, will

keep the rigid body in equilibrium against the action of the

given system of forces.

55. Resultant of Coplanar Forces Acting upon a Rigid Body.—
Let Pi, F2 , . . . Fn denote the given forces and let the xy-

plane be their plane of action. Then, if R, X, and Y denote

the resultant force and its components, respectively, we have

Z = Xi + X2 + • • + x„
Y=Y1+Y2 + •

•
• +Yn ,

R = Vx 2+Y 2
,

Y
tan = —>

A

(VII)

.
• (VIII)

and tan B = ~ > (IX)
A

where the terms in the right-hand members of the first two
equations are the components of the given forces, and 9 is

the angle R makes with the x-axis.

On the other hand if G denotes the resultant torque and

dh ch, . . . , dn denote the distances of the origin from the

lines of action of the forces, then

G = F1d1 + F2d2 + • • • + Fndn . (X)

If we represent this torque by the moment of the resultant

force about the 2-axis, then

RD=F1d1 + F2d2 + • • • +Fndn

2Fd
or D = (XI)

R

gives the distance of the line of action of the resultant force

from the origin.

ILLUSTRATIVE EXAMPLE.

Find the resultant of the six forces acting along the sides of the hexa-

gon of Fig. 36.

Taking the sum of the components along the x and y directions, we
have
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X = 2F + 3Fcosf-i2Fcosf-F-2^cosf + ^cosf
o o o o

= F.

F = 0-3^sinJ-2^sinf + + 2Fsinf + ^sinf
o o o o

= -fVs.
... R = V^ 2 + 3 F 2

= 2F
and tan d = — V3.

Therefore the resultant force has

a magnitude 2 F and makes an angle

of —60° with the x-axis.

Taking the moments about an

axis through the center of the hexa-

gon, we obtain Fig. 36.

RD = (2F + 3F + 2F + F + 2F + F)a
= 11 Fa,

therefore D = 5.5a,

where a is the distance of the center from the lines of action of the forces.

56. Resultant of a System of Parallel Forces.— Let R be the

resultant of the parallel forces Fi, F2 , . . ., F„, which act

upon a rigid body. Then, since the forces are parallel, the

resultant force equals the algebraic sum of the given forces.

Thus
R = Fl+F2+ . . . + Fni

and RD = F1di + F2d2 + • • • + Fndn .

Now take the 2-axis parallel to the forces and let x { and y {

denote the distances of F { from the yz-plane and the xz-

plane, respectively. Then the last equation may be split

into two parts, one of which gives the moments about the

x-axis and the other about the y-axis. Thus,

Rx^=F1Xi + F2x2 -\- • • • +Fnxn ,

)

Ry = Fly1 + F2y2 + • • • +FnyH,)

where x and y are the coordinates of the point in the xy-

plane through which the resultant force passes. In other
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words, (x,y) is the point of application of the resultant force.

The resultant force is evidently parallel to the given forces.

The last two equations may be written in the following

forms
ZFx

X
R

y R

(XIII)

ILLUSTRATIVE EXAMPLE.

Find the resultant of two parallel forces which act upon a rigid body

in the same direction.

Let the ?/-axis be parallel to the

forces.

Then R = FX + F2 ,

and

or

x =

F,

F2

F&x + F2x2

F, + F2

'

x2 — x

X — X\

But since x2
— x and x — x x are the

distances of F2 and Fi from R, we have

F\ = d_2

F2 dx

or Fxdx = F2d2 .

Therefore the distances of the resultant from the given forces are in-

versely proportional to the magnitudes of the latter.

PROBLEMS.

1. Find the resultant force and the resultant torque due to the forces

P, 2 P, 4 P and 2 P which act along the sides of a square, taken in order.

2. Three forces are represented in magnitude and line of action by

the sides of an equilateral triangle. Find the resultant force, taking the

directions of one of the forces opposite to that of the other two.

3. The lines of action of three forces form a right isosceles triangle of

sides a, a, and a V2. The magnitudes of the forces are proportional to

the sides of the triangle. Find the resultant force.

4. The sum of the moments of a system of coplanar forces about any

three points, which are not in the same straight line, are the same. Show

that the system is equivalent to a couple.
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5. Three forces are represented in magnitude, direction, and line of

action by the sides of a triangle taken in order
;
prove that their resultant

is a couple the torque of which equals, numerically, twice the area of the

triangle.

6. Three forces act along the sides of an equilateral triangle, find the

condition which will make their resultant pass through the center of the

triangle.

FRICTION ON JOURNALS AND PIVOTS.

57. Friction on Journal Bearing.— If the horizontal shaft

of Fig. 38 fits perfectly in its bearing the friction which comes

into play is a sliding friction, therefore the laws of sliding

friction may be assumed to hold good. The most important

of these laws is : the frictional force which comes into play

is proportional to the normal reaction, that is, in the relation

n is independent of N. We will assume therefore that this

law holds at each point of the surface of contact and thus

reduce the problem under discussion to one of sliding fric-

tion. There is an important difference, however, between

the problem of friction on journal bearing and the problems

on friction which we have already discussed. In the present

problem the normal reaction is not the same at the points

of the surfaces in contact. We must apply, therefore, the

laws of friction to small elements of surfaces of contact over

which the normal reaction may be considered to be constant.

Let the element of surface be a strip, along the length of

the shaft, which subtends an angle dd at the axis of the shaft.

Further let <iN be the normal reaction over this element of

surface, and dF be the corresponding frictional force; then

we have
dF = m dN

= /xp -l -add,

where p is the normal reaction per unit area or the pressure,

a is the radius of the shaft and I the length of the bearing.
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Therefore the total frictional force and the total frictional

torque are, respectively,

and

F = fxal
f
pdd

T

G = fxaH f
2

p do.

In order to carry out the integral of the foregoing expressions

we have to make some assumption with regard to the nature

Fig. 38.

of dependence of .p upon 6. But whatever the relation

between p and it is ^obvious that the sum, over all the sur-

face of contact, of the vertical component of the normal

reaction must equal to the load which rests upon the bear-

ing. If P denotes this load, then p must satisfy^ the condi-

tion

£ p sin • dA

= at
j

psin.6 dd,

where A is the total area of contact.

ILLUSTRATIVE EXAMPLE.

The normal pressure on the bearing is given by the relation p
find the total frictional force and the total frictional torque.

Posin 0:
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Substituting the given value of p in the expression for F we obtain

IT

sin. 6 dQ

r""
? = fxalpo.

In order to determine po in terms of the total load on the bearings we

make p satisfy the condition

P = alCp sin • dB.

Substituting the given value of p in the right-hand member of the pre-

ceding equation we have

P = alpof
2

sm 2 ddd
•2

'0

_ TTdlpo

4P

Therefore F = ^P
7T

and G =— aP.
x

It will be observed that the total frictional force varies with the load and

is independent of the radius and of the length of the bearing; in other

words it is independent of the area of contact.

PROBLEMS.

1. Supposing the normal pressure to be the same at every point of the

surfaces of contact, derive the expressions for the total frictional force and

the resisting torque due to friction.

2. Supposing the vertical component of the normal pressure at every

point of the surfaces of contact to be constant, derive the expressions for

the total frictional force and the resisting torque due to friction.

3. Derive expressions for the total frictional force and the resisting

torque upon the assumption that the normal pressure is given by the

relation p = p sin2 0.

58. Friction on Pivots. — The problem of friction on

pivots also is a problem of sliding friction. The feature
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which distinguishes the pivot from the journal bearing is

this : in the former the lever arm of the frictional force varies

from point to point, while

in the latter it is constant

and equals the radius of the

shaft.

Let dN be the normal

reaction upon dA, an ele-

ment of area at the base of

the flat-end pivot of Fig.

39; then if dF denotes

the corresponding frictional

force, we have

dF=tidN
= fip • dA,

where p is the normal pres-

sure. Evidently p is con-

stant; therefore we can write

»p£ dA

= -Ka
l
[ip. Fig. 39.

The expression for the resisting torque due to the friction

is obtained as follows

:

G-£

Jo Jo

r-dF

fxpdA

r»p

= ittip j r2 dr

= lira?up

= I «mP,

where P is the total load on the pivot.

-dr
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PROBLEMS.

1. Derive an expression for the resisting torque due to friction in the

collar-bearing pivot of the adjoining figure.

i^^~^

2. Supposing the normal pressure to be constant, derive an expression

for the resisting torque due to friction in the conical pivot of the adjoining

figure.

3. In the preceding problem suppose the vertical component of the

normal pressure to be constant.

4. In problem 2 suppose the horizontal component of the normal

pressure to be constant.

5. Taking the normal pressure to be constant derive an expression

for the resisting torque, due to friction in the spherical pivot of the adjoin-

ing figure.
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6. Prove that the resisting torque due to friction is greater for a hollow

pivot than for a solid pivot, provided that the load and the load per unit

area are the same in both cases.

7. Show that the resisting torque due to friction for a hemispherical

pivot is about 2.35 times as large as that for a flat end pivot.

ROLLING] FRICTION.

59. Coefficient of Rolling Friction. — Consider a cylinder,

Fig. 38, which is in equilibrium on a rough horizontal plane

under the action of a force S- y
In addition to this force the

cylinder is acted upon by its

weight and by the reaction of

the plane. Applying the con-

ditions of equilibrium we ob-

tain

2X = S-F=0,
27 = -W+N=0,
2G = ND-Sd=0,

where F and N are the com-

ponents of R, the reaction of

the plane, while D and d are,

respectively, the distances of

the point of application of R and S from the point 0, about

which the moments are taken. These equations give us

Fig. 40.

and

r=Vf 2+n2

= Vs 2+w2
,

sD w d.

(1)

(2)

If the cylinder is just on the point of motion then

F=nN,
a

and consequently At= w* ®
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Combining (2) and (3), we obtain

D = fid. (XIV)

The distance D is called the coefficient of rolling friction.

Equation (XIV) states, therefore, that the coefficient of the

rolling friction equals the coefficient of the sliding friction

times the distance of the point of contact from the line of

action of the force which urges the body to roll.

60. Friction Couple. — It is evident from the above equa-

tions that a change in the value of d does not affect the values

of N and F, consequently it does not change the value of /x.

This is as it should be, since, according to the laws of sliding

friction, y depends only upon the nature of the surfaces in

contact. A change in d, however, changes the value of D;

in other words, it changes the point of application of R.

When d = 0, that is, when S is applied at the point of con-

tact, D= 0, in which case the body is urged to slide only.

But when d is not zero the force S not only urges the body

to slide but also to roll; therefore, in addition to the resist-

ing force F, a resisting torque comes into play. This torque,

which is due to the couple formed by N and W, is called

friction couple.

PROBLEMS.

1. A gig is so constructed that when the shafts are horizontal the

center of gravity of the gig is over the axle of the wheels. The gig rests

on a perfectly rough horizontal ground. Find the least force which,

acting at the ends of the shafts, will just move the gig.

2. Find the smallest force which, acting tangentially at the rim of a

flywheel, will rotate it. The weight and the radius of the flywheel, the

radius of the shaft, and the coefficient of friction between the shaft and

its bearings are supposed to be known.

3. A flywheel of 500 pounds weight is brought to the point of rotation

by a weight of 10 pounds suspended by a string wound around its rim.

Find the coefficient of friction between the axle and its bearings. The

diameters of the wheel and the axle are 10 feet and 8 inches, respectively.
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4. A wheel of radius a and weight W stands on a rough horizontal

ground. If ^ is the coefficient of friction between the wheel- and the

ground find the smallest weight which must be suspended at one end

of the horizontal diameter in order to move the wheel.

GENERAL PROBLEMS.

1. A table of negligible weight has three legs, the feet forming an

equilateral triangle. Find the proportion of the weight carried by the

legs when a particle is placed on the table.

2. A rectangular board is supported in a vertical position by two

smooth pegs in a vertical wall. Show that if one of the diagonals is

parallel to the line joining the pegs the other diagonal is vertical.

3. A uniform rod rests with its two ends on smooth inclined planes

making angles a and (3 with the horizon. Where must a weight equal to

that of the rod be clamped in order that the rod may rest horizontally?

4. A uniform ladder rests against a rough vertical wall. Show that

the least angle it can make with the horizontal floor on which it rests is

given by tan 6 == —
, where /jl and yJ are the coefficients of friction

2 ix

for the floor and the wall respectively.

5. A uniform rod is suspended by two equal strings attached to the

ends. In position of equilibrium the strings are parallel and the bar is

horizontal. Find the torque which will turn the bar, about a vertical

axis, through an angle 6 and keep it in equilibrium at that position.

6. The line of hinges of a door makes an angle a with the vertical.

Find the resultant torque when the door makes an angle /3 with its equi-

librium position.

7. The lines of action of four forces form a quadrilateral. If the

magnitude of the forces are a, b, c, d times the sides of the quadrilateral

find the conditions of equilibrium.

8. A force acts at the middle point of each side of a plane polygon.

Each force is proportional to the length of the side it acts upon and is

perpendicular to it. Prove that the polygon will be in equilibrium if all

the forces are directed towards the inside of the polygon.

9. A force acts at each vertex of a plane convex polygon in a direc-

tion parallel to one of the sides forming the vertex. Show that if the

forces are proportional to the sides to which they are parallel and if their

directions are in a cyclic order their resultant is a couple.

10. A uniform chain of length I hangs over a rough horizontal cylinder

of radius a. Find the length of the portions which hang vertically when
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the chain is on the point of motion under its own weight, (1) when a is

negligible compared with I, (2) when it is not negligible compared with I.

11. Two equal weights are attached to the extremities of a string

which hangs over a rough horizontal cylinder. Find the least amount

by which either weight must be increased in order to start the system to

move. The weight of the string is negligible.

12. Three cylindrical pegs of equal radius and roughness are placed

at the vertices of a vertical equilateral triangle the two lower corners of

which are in the same horizontal line. A string of negligible weight is

attached to two weights and slung over the pegs. Find the ratio of the

weights if they are on the point of motion.

13. A sphere laid upon a rough inclined plane of inclination a. is on the

point of sliding. Show that the coefficient of friction is f tan a.

14. A uniform ring of weight W hangs on a rough peg. A bead of

weight w is fixed on the ring. Show that if the coefficient of friction

W
between the ring and the peg is greater than— the ring will

VW* + 2wW
be in equilibrium whatever the position of the bead with respect to the

peg.

15. A uniform rod is in equilibrium with its extremities on the interior

of a rough vertical hoop. Find the limiting position of the rod.

16. A weight W is suspended from the middle of a cord whose ends are

attached to two rings on a horizontal pole. If w be the weight of each

of the rings, /jl the coefficient of friction, and I the length of the cord, find

the greatest distance apart between the rings compatible with equilibrium.



CHAPTER IV.

EQUILIBRIUM OF FLEXIBLE CORDS.

61. Simplification of Problems.— The simplest phenome-

non in nature is the result of innumerable actions and

reactions. The consideration of all the factors which con-

tribute to any natural phenomenon would require unlimited

analytical power. Fortunately the factors which enter into

dynamical problems are not of equal importance. Often the

influence of one or two predominate, so that the rest can be

neglected without an appreciable departure from the actual

problem. Any one who attempts to solve a physical problem

must recognize this fact and use it to advantage by repre-

senting the actual problem by an ideal one which has only

the important characteristics of the former. This was done

in the last two chapters in which bodies were treated as single

particles and rigid bodies, and thereby simplified the prob-

lems without changing their character.

The same procedure will be followed in discussing the

equilibrium of flexible cords, such as belts, chains, and ropes.

These bodies will be represented by an ideal cord of negli-

gible cross-section and of perfect flexibility. The solution of

the idealized problems gives us a close enough approxima-

tion for practical purposes. If, however, closer approxima-

tion is desired smaller factors, such as the effects of thickness

and imperfect flexibility, may be taken into account.

62. Flexibility.— A cord is said to be perfectly flexible if it

offers no resistance to bending; in other words, in a perfectly

flexible cord there are no internal forces which act in a

direction perpendicular to its length.

60
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63. Suspension Bridge Problem.— The following are the

important features of a suspension bridge which should be

considered in order to simplify the problem:

1. The weights of the cables and of the chains are small

compared with that of the road-bed. {

2. The road-bed is practically horizontal.

3. The distribution of weight in the road-bed may be

considered to be uniform.

We can, therefore, obtain a sufficiently close approxima-

tion if we consider an ideal bridge in which the cable and

the chains have no weight and the distribution of weight in

the road-bed is uniform in the horizontal direction. With

these simplifications consider the forces acting upon that

part of the cable which is between the lowest point and any

point P, Fig. 41.

Fig. 41.

The forces are: The tensile force, T , acting horizontally

at 0. The tensile force, T, acting along the tangent to the

curve at P. The weight of that part of the bridge which

is between and P. If w be the weight per unit length

of the road-bed and x denotes the length OP, then the third

force becomes wx.

Therefore the conditions of equilibrium give

SZ= -To + T
7
cos 0=0; /. Tcos6=T . (1)

27 = -wx+ Tsin 0=0; /. Tsin = wx. (2)
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It is evident from equation (1) that the horizontal compo-

nent of the tensile force is constant and equals T . Squaring

equations (1) and (2) and adding we get

T2 = T 2+ w 2x2
. (3)

Thus we see that the smallest value of T corresponds to

x = and equals T , while its greatest value corresponds

to the greatest value of x. If D denotes the span of the

bridge then the greatest value of T, or the tensile force of

the cable at the piers, is

= \Jt<
2 ,

™ 2D 2

o
2 -1

4

In order to find the equation of the curve which the cable

assumes we eliminate T between equations (1) and (2).

This gives

tan d = — x. (4)
To

Substituting -y- for tan and integrating we get
ax

1 w 9 .

V = - — ar+ c,y
2 T '

where c is the constant of integration.

But with the axes we have chosen, y=0 when #=0,
therefore c = 0. Thus the equation of the curve is

u
2 To

which is the equation of a parabola.

Dip of the Cable.— Let H be the height of the piers

above the lowest point of the cable. Then for x = —
, y = H,

therefore

H=~D'. (6)

It is evident from the last equation that the greater the

tension the less is the sag.
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Problem. A bridge is supported by two suspension cables. The
bridge has a weight of 1.5 tons per horizontal foot and has a span of 400

feet. Supposing the dip of the bridge to be 50 feet find the values of

the tensile force at the lowest and highest points of the cable.

64. Equilibrium of a Uniform Flexible Cord which is Sus-

pended from Its Ends.— The problem is to determine the

nature of the curve which a

perfectly uniform and flexi-

ble cable will assume when
suspended from two points.

Let AOB, Fig. 42, be the curve.

Consider the equilibrium of

that part of the cable which

is between the lowest point

and any other point P.

The part of the cable which

is under consideration is

acted upon by the following three forces:

The tensile force at the point 0, T .

The tensile force at the point P, T.

The weight of the cable between the points and P.

Since the cable is perfectly flexible T and T are tangent to

the curve. Therefore we have

2X= -T + TcosO = 0, or T cos = T
, (1)

2F = -ws+Tsin d= 0, or T sin d = ws, (2)

where w is the weight per unit length of the cable and s is

the length of OP.

Squaring equations (1) and (2) and adding we obtain
'2 _ JV -\-w 2

s'

Eliminating T between equations (1) and (2) we get

To

IV
s = tan0,

(3)

(4)

which is the intrinsic equation of the curve.
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In order to express equation (4) in terms of rectangular

coordinates we replace tan by -^ and obtain
dx

s =
w dx

(5)

But ds 2 = dx 2+ dy 2
, therefore eliminating da; 'between this

equation and equation (5) and separating the variables

and then integrating

, sds
dy = —=^=>

Vs 2+ a 2

y = Vs 2+ a 2+ c,

(6)

where a = — and c is the constant of integration.

Let the o>axis be so chosen that when s= 0, y = a, then

c= 0. Therefore

y = Vs 2 -\-a
2
, or s= ^y 2 — a'' (7)

Differentiating equation (7), squaring and replacing ds 2 by

(dx 2 + dy 2
) we have

,

dx 2 +dy 2 = ^\.
y

2 — a2

Solving for dx,

dx= —
v^/ 2 — a 2

ady

dy

v-i V?-
ady

iVa 2 — y
2

(8)

where i = V — 1. Integrating equation (8) we get

— = cos 1 - +c .

a a
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But y — a, when x= 0, therefore d = 0. Thus we get

%x
y = a cos—> (9)

= a cosh -,
a

(10)

= l(ehe^\ (11)

rp 1 wx wx\

(12)

which are different forms of the equation of a catenary.

Discussion.—Expanding equation (12) by Maclaurin's

Theoremf we obtain

In the neighborhood of the lowest point of the cable the

value of x is small, therefore in (13) we can neglect all the

terms which contain powers of x higher than the second.

Thus the equation

V=a+fa (14)

represents, approximately, the curve in the neighborhood

of the lowest point. It will be observed that (14) is the

equation of a parabola. This result would be expected

since the curve is practically straight in the neighborhood

of O and consequently the horizontal distribution of mass

is very nearly constant, which is the important feature of

the Suspension Bridge problem.

The nature of those parts of the curve which are removed

from the lowest point may be studied by supposing x to be
X

large. Then since e a becomes negligible equation (11) re-

duces to

V=\e% (15 )

* See Appendix A. f See Appendix.
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The curve, Fig. 43, denned

by equation (15) is called an

exponential curve. It has an

interesting property, namely,

its ordinate is doubled every

time a constant value P is

added to its abscissa. This

constant is called the half-value

period of the curve. The value

of P may be determined in

the following manner. By the

definition of P and from equa-

tion (15) we have

2 y = -e

Dividing (16) by (15) we get

X+P
(16)

2 = e
a

,

or P = a log e 2.

Length of Cable.—In order to find the length in terms

of the span eliminate y between equations (7) and (11).

This gives
~f * _*\

e
a -e a (17)

*+
2.3 a 2

+ 2.3.4 5 a'
+ (18)

where the right member of equation (18) is obtained by

expanding the right-hand member of equation (17) by

Maclaurin's Theorem.

If D and L denote the span and the length of the cable,

respectively, we have s = ^L when x=\D. Therefore sub-

stituting these values of s and x in (18) and replacing a by

its value we obtain

^ 2
(*
D+ f8 f> + ---> (19)
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When the cable is stretched tight T is large compared with

w. Therefore the higher terms of the series may be ne-

glected and equation (1) be put in the following approxi-

mate form.

4+ilH- (20)

l_ w^_

24 TV

1 w 2

Hence the increase in length due to sagging is — —
2
D 3

,

approximately.

PROBLEMS.

1. A perfectly flexible cord hangs over two smooth pegs, with its ends

hanging freely, while its central part hangs in a catenary. If the two

pegs are on the same level and at a distance D apart, show that the total

length of the string must not be less than De, in order that equilibrium

shall be possible, where e is the natural logarithmic base.

, 2. In the preceding problem show that the ends of the cord will be

on the x-axis.

3. Supposing that a telegraph wire cannot sustain more than the

weight of one mile of its own length, find the least and the greatest sag

allowable in a line where there are 20 poles to the mile.

4. Find the actual length of the wire per mile of the line in the pre-

ceding problem.

5. The width of a river is measured by stretching a tape over it.

The middle point of the tape touches the surface of the water while the

ends are at a height H from the surface. If the tape reads S, show that

/S 2 — H 2

the width of the river is approximately i/

6. Show that the cost of wire and posts of a telegraph line is mini-

mum if the cost of the posts is twice that of the additional length of wire

required by sagging. The posts are supposed to be evenly spaced and
large in number.

7. A uniform cable which weighs 100 tons is suspended between two
points, 500 feet apart, in the same horizontal line. The lowest point of

the cable is 40 feet below the points of support. Find the smallest and
the greatest values of the tensile force.

8. In the preceding problem find the length of the cable.

65. Friction Belts.— The flexible cord AB, Fig. 44, is in

equilibrium under the action of three forces, namely, T
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and T, which are applied at the ends of the cord, and the

reaction of the rough surface of C, with which it is in con-

tact. It is desired to find the relation between T and T
when the cord is just on the point of motion towards T .

Fig. 44.

Consider the equilibrium of an element of that part of the

cord which is in contact with the surface. The element

is acted upon by the following three forces:

The tensile force in the cord to the right of the element.

The tensile force in the cord to the left of the element.

The reaction of the surface.

Let the tensile force to the left of the element be denoted

by T, then the tensile force to the right may be denoted by

T+ dT. On the other hand if R denotes the reaction of

the surface per unit length of the cord, the reaction on the

element is R ds, where ds is the length of the element. We
will, as usual, replace R by its frictional component F and

its normal component N.
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Taking the axes along the tangent and the normal through

the middle point of the element and applying the conditions

of equilibrium we obtain

2X = (T + dT) cos— - T cos ^ - F ( - ds) = 0,

2Y = N ds - T sin^ - (T + dT) sin ~ = 0,

rfft

or dT cos- +Fds = 0,

Nds-2Tsm—-dTsm- = 0,
2 2

where dd is the angle between the two tensile forces which

act at the ends of the element. The negative sign in F (—ds)

indicates the fact that F and ds are measured in opposite di-

rections. But since the cord is supposed to be perfectly

flexible the tensile forces are tangent to the surface of con-

tact. Therefore is the angle between the tangents, and

consequently the angle between the normals, at the ends of

the element. As an angle becomes indefinitely small its

cosine approaches unity and its sine approaches the angle

itself,* therefore we can make the substitutions

de , , . de de
cos— = 1 and sin— = —

2 2 2

in the last two equations, and obtain

dT+Fds=0, (1)

and Nds-Td6 + idTdd=0. (2)

Neglecting the differential of the second order in equation

(2) and then eliminating ds between equations (1) and (2)

we get

Y =
"N de= ~ M ^' (3)

where m is the coefficient of friction. Integrating the last

* See Appendix A.
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equation and passing from the logarithmic to the exponen-

tial form, we have
T = ce~»\

where c is the constant of integration. If d is measured from

the normal to the surface at the point where the right-hand

side of the cord leaves contact we obtain the initial condition,

T = To when 0=0, which determines c. Applying this con-

dition to the last equation we have

T = T e-»e
. (4)

Discussion. — Equation (4) gives the relation between the values of

the tensile force at any two points of the cord. It must be observed that

is measured in the same direction as F; in other words, opposite the

direction towards which the cord is urged to move. Therefore T or T
has the larger value according to whether is positive or negative. As

a concrete example suppose a weight W to be suspended from the right-

hand end of the cord and to be held in equilibrium by a force F applied at

the left-hand end. If F is just large enough to prevent W from falling

then the cord will be on the point of moving to the right, therefore is

measured in the counter-clockwise T
direction and is positive. In this

case

F = We' 116
.

In case F is just large enough to start

W to move up, then is measured in

the clockwise direction and is nega-

tive. Therefore ^

F = We>*.

The value of T drops very rapidly

with the increase of 0. This fact

is made clear by drawing the graph

of equation (4), Fig. 45. The graph

may be constructed easily by making use of the half-value period of the

curve. If P denotes the period, then, by definition, the ordinate is reduced

to one-half its value every time P is added to 0.* We have therefore
,

±T=T e-»
(e+P)

.

* The difference between this definition of P and the one given in the pre-

ceding section is accounted for by the difference in the signs of the exponents

in equation (4) and in equation (14) of the preceding section.
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(5)

Dividing equation (4) by the last equation we get

or P=iloge 2

= ^.

Thus if 6 = nP, then by equations (4) and (5)

T=|- (6)

Therefore taking 0.53 for hemp rope on oak and 6 = 2 w, we obtain

n = 4.76 and 2n = 27.3. Hence in this case T is 27.3 times as great

as T.

APPLICATION TO BELTS.

The tensile force on one side of a belt which transmits

power is greater than that on the other side. The relation

between the tensile forces on the two sides of the belt is

given by equation (4) . Thus if Tx denotes the tensile force

on the driving side and T2 that on the slack side, then

T2 = T&- 1* or 7\ = T2&*. (40

The difference between T\ and T2 is the effective force which

drives the pulley. Denoting the effective force by F, we
have

F = Tx - T2

= Tl (l- e~^) (7)

= !T2 (e^-l). )

We have neglected the cross-section of the cord in the

solution of the foregoing problem. Therefore the results

which we have obtained are applicable to actual problems

only when the cross-section of the cord is negligible com-

pared with that of the solid with which it is in contact.

PROBLEMS.

1. A weight of 5 tons is to be raised from the hold of a ship by means

of a rope which takes 3| turns around the drum of a steam windlass. If

(jl = 0.25 what force must a man exert at the other end of the rope?
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2. By pulling with a force of 200 pounds a man just keeps from surg-

ing a rope, which takes 2.5 turns around a post. Find the tensile force

at the other end of the rope, /x = 0.2.

3. A weight W is suspended by a rope which makes li turns around

a clamped pulley and goes to the hand of a workman. If /x = 0.2, find

the force the man has to apply in order (a) to support the weight, (b) to

raise it.

4. Two men, who can pull 250 pounds each, can support a weight by

means of a rope which takes 2 turns around a post. On the other hand,

one of the men can support it alone if the rope makes 2.5 turns. Find

the weight.

5. In order to prevent surging a sailor has to exert a force of 150

pounds at the end of a hawser, which is used to keep the stern of a boat

at rest while the bow is being turned by the engines. Find the pull

exerted by the boat upon the hawser under the following conditions

:

[Hint.— Make use of equations (5) and (6).]

(a) =
|

5 M = 0.2.

(b) = |, M = 0.5.

(c) = |, M = 0.5.

(d) d = 7T, m = 0.4.

(e) d =
^f,

M = 0.3.

(f) = ^, M = 0.2.

6. A belt has to transmit an effective force of 500 pounds. Find the

tensile force on both sides of the belt, under the following conditions

:

(a) = 135°, m = 0.5. (e) = 165°, ix = 0.2.

(b) 6 = 135°, /* = 0.4. (f) 6 = 180°, n = 0.3.

(c) = 150°, n = 0.3. (g) d = 180°, m = 0.5.

(d) = 165°, ju = 0.5. (h) = 195°
7

/* = 0.4.

7. In the preceding problem find the width of the belt, supposing

the permissible safe tensile force to be 50 pounds per inch of its width.

(g) B = 2ir, IX = 0.1.

(h) e =
^f,

ix = 0.4.

(i) e = 5

f, ix = 0.5.

(i) e = 3w, ix = 0.3.

(k) =^ ix = 0.4.

(i) e = 7

-f,
ix = 0.5.
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