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PREFACE TO PART II.

THE delay in the appearance of this volume finds an apology
partly in circumstances of a private character, partly in
public engagements that could not be declined, but most of
all in the growth of the work itself as it progressed in my
hands. I have not, as some one prophesied, reached ten
volumes ; but the present concluding volume is somewhat
larger and has cost me infinitely more trouble than I
expected.

The main object of Part II. is to deal as thoroughly as
possible with those parts of Algebra which form, to use
Euler’s title, an Introductio in Analysin Infinitorum. A
practice has sprung up of late (ehcouraged by demands for
premature knowledge in certain examinations) of hurrying
young students into the manipulation of the machinery of
the Differential and Integral Calculus before they have
grasped the preliminary notions of a ZLimit and of an
Infinite Series, on which all the meaning and all the uses
of the Infinitesimal Calculus are based. Besides being to
a large extent an educational sham, this course is a sin
against the spirit of mathematical progress. The methods
of the Differential and Integral Calculus which were once
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an outwork in the progress of pure mathematics threatened
for a time to become its grave. Mathematicians had fallen
into a habit of covering their inability to solve many
particular problems by a vague wave of the hand towards
some generality, like Taylor's Theorem, which was. sup-
posed to give “an account of all such things,” subject only
to the awkwardness of practical inapplicability. —Much
has happened to remove this danger and to reduce d/dz
and fdr to their proper place as servants of the pure
mathematician. In particular, the brilliant progress on the
continent of Function-Theory in the hands of Cauchy,
Riemann, Weierstrass, and their followers has opened for us
a prospect in which the symbolism of the Differential and
Integral Calculus is but a minor object. For the proper
understanding of this important branch of modern mathe-
matics a firm grasp of the Doctrine of Limits and of the
Convergence and Continuity of an Infinite Series is of much
greater moment than familiarity with the symbols in which
these ideas may be clothed. It is hoped that the chapters
on Inequalities, Limits, and Convergence of Series will help
to give the student all that is required both for entering
on the study of the Theory of Functions and for rapidly
acquiring intelligent command of the Infinitesimal Calculus.
In the chapters in question, I have avoided trenching on
the ground already occupied by standard treatises: the
subjects taken up, although they are all important, are
either not treated at all or else treated very perfunctorily
in other English text-books.

Chapters xxix. and xxx. may be regarded as an
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elementary illustration of the application of the modern
Theory of Functions. They are intended to pave the way
for the study of the recent works of continental mathe-
maticians on the same subject. Incidentally they contain
all that is usually given in English works under the title of
Analytical Trigonometry. If any one should be scandalised
at this traversing of the boundaries of English examination
subjects, I must ask him to recollect that the boundaries in
question were never traced in accordance with the principles
of modern science, and sometimes break the canon of
common sense. One of the results of the old arrangement
has been that treatises on Trigonometry, which is a geometri-
cal application of Algebra, have been gradually growing into
fragments more or less extensive of Algebra itself: so that
Algebra has been disorganised to the detriment of Trigono-
metry ; and a consecutive theory of the elementary functions
has been impossible. The timid way, oscillating between ill-
founded trust and unreasonable fear, in which functions of a
complex variable have been treated in some of these manuals
is a little discreditable to our intellectual culture. Some
expounders of the theory of the exponential function of an
imaginary argument seem even to have forgotten the obvious
truism that one can prove no property of a function which
has not been defined. I have concluded chapter xxx. with
a careful discussion of the Reversion of Series and of the
Expansion in Power-Series of an Algebraic Function—
subj.ects which have never’ been fully treated before in an
English text-book, although we have in Frost's Curve Tracing
an admirable collection of examples of their use.
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The other innovations call for little explanation, as they
aim merely at greater completeness on the old lines. In
the chapter on Probability, for instance, I have omitted
certain matter of doubtful soundness and of questionable
utility ; and filled its place by what I hope will prove a
useful exposition of the principles of actuarial calculation.

I may here give a word of advice to young students
reading my second volume. The matter is arranged to
facilitate reference and to secure brevity and logical
sequence; but it by no means follows that the volume
should be read straight through at a first reading. Such
an attempt would probably sicken the reader both of
the author and of the subject. Every mathematical book
that is worth anything must be read “backwards and
forwards,” if I may use the expression. I would modify
Lagrange’s advice a little and say, “ Go on, but often return
to strengthen your faith.” When you come on a hard or
dreary passage, pass it over; and come back to it after you
have seen its importance or found the need for it further on.
To facilitate this skimming process, I have given, after the
table of contents, a suggestion for the course of a first
reading.

The index of proper names at the end of the work will
show at a glahce the main sources from which I have drawn
my materials for Part II. Wherever I have consciously
borrowed the actual words or the ideas of another writer
I have given a reference. There are, however, several
works to which I am more indebted than appears in the
bond. - Among these I may mention, besides Cauchy’s
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Analyse Algébrigue, Serret’s Algébre Supérieure, and Schlo-
milch’s Algebraische Analysis, which have become -classical,
the more recent work of Stolz, to which I owe many indica-
tions of the sources of original information—a kind of help
that cannot be acknowledged in footnotes.

I am under personal obligations for useful criticism, for
proof-reading, and for help in working exercises, to my
assistant, Mr. R. E. ALLARDICE, to Mr. G. A. GIBSON, to
Mr. A. Y. FRASER, and to my present or former pupils—
Messrs. B. B. P. BRANDFORD, J. W. BUTTERS, J. CROCKETT,
J. GoopwiLLIE, C. TWEEDIE. '

In taking leave of this work, which has occupied most
of the spare time of five somewhat busy years, I may be
allowed to express the hope that it will do a little in a
cause that I have much at heart, namely, the advancement
of mathematical learning among English-speaking students
of the rising generation. It is for them that I have worked,
remembering the scarcity of aids when I was myself a
student ; and it is in their profit that I shall look for my

reward.
G. CHRYSTAL.

EDINBURGH, 1st November 1889.
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SUGGESTION FOR THE COURSE OF A FIRST READING
OF PART IIL

Chap. xxiii., §§ 1-15.  Chap. xxxvi.,, §§ 1-4.  Chap. xxiv., § 1-9.
Chap. xxv. Chap. xxvi., §§ 1-5, 12-19, 32-35. Chap. xxvii. Chap. xxviii.,
§§ 1-5, 8-15. Chap. xxix., §§ 1-19, 23-81. Chap. xxxi. Chap. xxxii.
Chap. xxxiii., §§ 10-14. Chap. xxxv. Chap. xxxvi., § 5-22.

CORRIGENDA.

P. 122, 1. 20, for “ as n increases” read *as n increases and has the same sign.”
P. 133, 1. 16, for “mod =R " read “mod x=R (R<1).”
P. 243, 1. 25 and 27, for “win" read “ 3/ w.”



ADDITIONAL CORRIGENDA.

P. 48, L. 14, delete lines 14-16, and substitute as follows : —
“aplizpIt . twm<(p-gqht;
9142924, . L +1 > gqzil;
but since 2 - 1 is now negative, the rest of the above reasoning
remains as before.”
P. 51, 1. 20, for ““ <" read “ & "
P. 77,1 19, for ““y,” read *‘y,".
P. 229, 1. 8, for “log (B/A)" read “log(B/A)/".
P. 378, 1. 5, insert at the end “provided there occur no term of the form
il/{a+b(n+m—1)}|”b".

P. 466, L. 17, for “ppisofay, @a, . . ., Qu; ba, b3, . . ., by read
“Parisofar, @y, . . ., @uoy; by, by, . . bpy.”

P. 581, 1. 4, for ¢* 408408 " read ‘‘ 408688 .
P. 582, 1. 21, for ““} cosn” read “‘cosa’.

arranged In a Certaln Oraer, In a Stralgnu lne. AN N-periiuva-
tion, which means all the letters in a certain order, is sometimes
called a permutation simply.

Example. The 2-permutations of the three letters a, b, ¢ are be, ¢b; ac, ca';
ab, ba. The permutations of the three letters are abc, ach ; bac, bea ; cad, cba.

By an r-combination of n letters we mean r of those letters
considered without reference to order.
} Example. The 2-combinations of a, b, ¢ are b, ac, ab.
VOL. II.



2 MODES OF PROOF OHAP.

¢ - Unless the contrary is stated, the same letter is not supposed
to occur more than once in each combination or permutation.
In other words, if the n letters were printed on n separate
counters each permutation or combination could be actually
selected and set down before our eyes.

Another point to be attended to is that in some problems
certain sets of the given letters may be all alike or indifferent ;
that is to say, it may be supposed that no alteration in any
permutation or combination is produced by interchanging them.

§ 3.] The fundamental part of every demonstration of a
theorem in the theory of permutations and combinations is an
enumeration. It is necessary that this enumeration be systematic
and exhaustive. If possible it should also be simplex, that is,
each permutation or combination should occur only once; but it
may be multiplex, provided the degree of multiplicity be ascer-
tained (see § 8, below).

Along with the enumeration there often occurs the process
of reasoning step by step, called mathematical induction.

The results of the law of distribution, as applied both to
closed functions and to infinite series, are often used (after the
manner of chap. iv., § b, 11, and exercise vi 30) to lighten
the labour of enumeration.

All these methods of proof will be found illustrated below.
We have called attention to them here in order that the student
may know what tools are at his disposal.

PERMUTATIONS.
§ 4.] The number of r-permutations of n letters (,P,) is
an-1)(n-2) ... (m-r+1).

1st Proof.—Suppose that we have r blank spaces, the problem
is to find in how many different ways we can fill these with n
letters all different.

We can fill the first blank in n different ways, namely, by
putting into it any one of the » letters. Having put any one letter
into the first blank, we have n — 1 to choose from in filling the
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second blank. Hence we can fill the second blank in n - 1 differ-
ent ways for each way we can fill the first. Hence we can fill
the two first in n(n — 1) ways.

When any two particular letters have been put into the first
two blanks, there are n — 2 left to choose from in filling the third.
Hence we can fill the first three blanks in n(n — 1) times (n — 2)
ways.

Reasoning in this way, we see that we can fill the r blanks in
nn-1)(n-2) ... (n—r+1) ways.

Hence aPr=n(n-1) ... n-r+1)

2nd Proof—We may enumerate, exhaustively and without
repetition, the , P, r-permutations as follows : —

1st. All those in which the first letter a, stands first ;

2nd. All those in which g, stands first: and so on.

There are as many permutations in which @, stands first as
there are (r — 1)-permutations of the remaining n — 1 letters, that
is, there are ,_,P,_, permutations in the first class. The same
is true of each of the other # classes.

Hence wPr=np_,P,_..

Now this relation is true for any positive integral values of
n and 7, so long, of course, as 7 n Hence we may write
successively

aPr=ny_.Pr_,,
n1Proy = (" - l)n—aPr-n
n-resBa=(n =7+ 2)y_, P,

If now we multiply all these equations together, and observe
that all the P’s cancel each other except ,P, and ,,_,,P,, and
observe further that the value of ,_,.,P, is obviously n—r+ 1,
we see that

wPr=n(n-1) ... @-r+2)(n-r+1) (1)

The second proof is not so simple as the first, but it illustrates

a kind of reasoning which is very useful in questions regarding
permutations and combinations.



4 LINEAR AND CIRCULAR PERMUTATIONS OHAP.

Cor. 1. The number of different ways in which a set of n lelters

can be arranged in linear order is
nn-1) ... 3.2.1,
that is, the product of the first n integral numbers.

This follows at once from (1), for the number required is the
number of n-permutations of the n letters. Putting r=n in
(1), we have

wPa=n(n-1) ... 2.1 2).

The product of the first n consecutive integers may be re-
garded as a function of the integral variable n. It is called
factorial-n, and is denoted by n!.*

Cor. 2. ,Pr=n!/(n-1).

For aPr=n(n-1) ... (n-7r+1),
nn-=-1) ... (e-r+Hm-7)...2.1
- -7 ...2.1 ’
n!
=(—nT1:)—!.

Cor. 3. The number of ways of arranging n letlers in circular
order is (n — 1)), or (n - 1)!/2, according as clock-order and counter-
clock-order are or are not distinguished.

Since the circular order merely, and not actual position, is
in question, we may select any one letter and keep it fixed. We
have thus as many different arrangements as there are (n — 1)-per-
mutations of the remaining n —~ 1 letters, that is (n — 1)!.

If, however, the letters written in any circular order clock-
wise be not distinguished from the letters written in the same
order counter-clock-wise, it is clear that each arrangement will
be counted twice over. Hence the number in this case is
(n-1)1/2.

§ 5.] When each of the n letters may be repeated, the number of
r-permudations is n'.

* This is Kramp's notation. Formerly |» was used in English works, but
this is now being abandoned on account of the difficulty in printing the |_.
The value of 1! is of course 1.  Strictly speaking, 0! has no meaning. It is
convenient, however, to use it, with the understanding that its value is 1 ; by
so doing we avoid the exceptional treatment of initial terms in many series.
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Suppose that we have r blanks before us. We may fill the
first in n ways ; the second also in n ways, since there is now no
restriction on the choice of the letter. Hence the first two may
be filled in n x m, that is, n* ways. With each of these n’ ways
of filling the first two blanks we may combine any one of the =
ways of filling the third ; hence we may fill the first three blanks
in ' x n, that is, n* ways, and so on. Hence we can fill the
blanks in " ways.. ’

§ 6.] The number of permulations of n letters of which a group
of a are all alike, a group of B all alike, a group of v all alike,
., is

n!/alBly! . ..

Let us suppose that z denotes the number in question. If
we take any one of the z permutations and keep all the rest of
the letters fixed in their places, but make the a letters unlike
and permutate them in every possible way among themselves,
we shall derive a! permutations in which the a letters are all
unlike. Hence the effect of making the a letters unlike is to
derive za! permutations from the z permutations.

If we now make all the 3 letters unlike, we derive za!@3! per-
mutations from the za!.

Hence, if we make all the letters unlike, we derive za!B!y!. ..
permutations. But these must be exactly all possible permuta-
tions of n letters all unlike, that is, we must have

zalBly! . .. =nl
Hence z=n!la!Bly! . ..

Cor. The number of ways in which n things can be put into r
pigeon-holes, so that a shall go into the first, B into the second, y into
the third, and so on, is

nlfalBly! . ..

N.B.—The order of the pigeon-holes is fixed, and must be attended
to, but the order of the things inside the holes is indifferent.

Putting the things into the holes is evidently the same as
allowing them to stand in a line and affixing to them labels
marked with the names of the holes. There will thus be a
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labels each marked 1, 8 each marked 2, y each marked 3, and

80 oN.

The problem is now to find in how many ways n labels, a of
which are alike, 3 alike, y alike, &c., can be distributed among
n things standing in a given order. The number in question is
n!/a!Bly! . . ., by the above proposition.

Example 1. In arranging the crew of an eight-oared boat the captain has
four men that can row only on the stroke-side and four that can row only on
the bow-side. In how many different ways can he arrange his boat—I1st,
when the stroke is not fixed ; 2nd, when the stroke is fixed ?

In the first case, the captain may arrange his stroke-side in as many ways
as there are 4-permutations of 4 things, that is, in 4! ways, and he may
arrange the bow-side in just as many ways. Since the arrangements of the
two sides are independent, he has, therefore, 4! x 4 !(=576) different ways of
arranging the whole crew.

In the second case, since stroke is fixed, there are only 8! ways of arrang-
ing the stroke-side. Hence, in this case, there are 8!x 4!(=144) different
ways of arranging the crew.

Example 2. Find the number of permutations that can be made with the
letters of the word ¢ransalpine.

The letters are traannsipie, there being two sets, each containing
two like letters. The number required is therefore (by § 6) 111/212!=
11.10.9.8.7.6.5.8.2=9979200.

Example 8. In how many different ways can n different beads be formed
into a bracelet !

Since merely turning the bracelet over turns a clock-arrangement of the
stones into the corresponding counter-clock-arrangement, it follows, by § 4,
that the number required is (n-1)!/2.

COMBINATIONS.

§ 7.] The number of ways in which s things can be selected by
taking one out of a set of n,, one out of a set of n,, &c.,isnm, . . . n,

The first thing can be selected in n, ways ; the second in n,
ways; and so on. Hence, since the selection of each of the
things does not depend in any way on the selection of the
others, the number of ways in which the s things can be selected
187, XNy X.. XNy

§ 8.] The number of r-combinations of n letters (,C,) is
Mn-1) ... (w-r+1)/1.2 ...
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1s¢ Proof.—We may enumerate the combinations as fol-
lows :—
1st. All those that contain the letter a, ;
2nd. ” » » as 5

nth. ” ”» » On
In each of these classes there is the same number of com-
binations ; namely, as many combinations as there are (r—1)-
combinations of n — 1 letters; for we obviously form all the -
combinations in which a, occurs by forming all possible (r - 1)-
' combinations of @, a, . . ., a, and adding a, to each of them.
This enumeration, though exhaustive, is not simplex; for

each r-combination will be counted once for every letter it
contains, that is, r times. Hence

#2Cr =t _,Cr_, Q).

This relation holds for all values of # and r, so long as rHn.
Hence we have successively—

n
nCr= ;n-lcr-u
n-1
n-lcr—l = m n-ncr-b
n-2
»-:Cr-s= r—9 n-acr-n
n —.r +.2 o
u—r+nca= 9 n-r+lcp

If we multiply these r — 1 equations together, and observe that
the C’s cancel, except ,C, and ,_,4,C,, and that the value of
n-r4+:C, 18 obviously n —r + 1, we have

”Cr=n(n—ll)..2.'..(r'z;r+1) @).

2nd Proof—Since every r-combination of = letters, if permu-
tated in every possible way, would give r! r-permutations, and
all the r-permutations of the n letters can be got once and only
once by dealing in this way with all the r-combinations, it follows
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that ,Cr!=,P,. Hence ,C,=,P,/ri=n(n-1)...(@n-r+1)/
1.2...mn

Cor. 1. If we multiply both numerator and denominator of
the expression for ,C, by (n—r)(n—r-1) . . . 2.1, we deduce

aCr=n!/ri(n - r)! 3).

Cor. 2. 2Cr=nCn_n

This follows at once from (3). It may also be proved by
enumeration ; for it is obvious that for every r-combination of
the n things we select we leave behind an (n - r)-combination ;
there are, therefore, just as many of the latter as of the former.

CO!'. 3. nCr “n- |Cr +n- 1Cr-l (4)

This can be proved by using the expressions for ,Cy, »-,Cy,
n-1Cry, and this is important, because it shows that the pro-
perty holds for functions of n having the form (2) irrespective of
any restriction on the value of ».

The theorem (when n is a positive integer) also follows at
once by classifying the r-combinations of » letters a,, a,, . . ., a,
into, 1st, those that contain @,, ,,_,C,_, in number, and, 2nd,
those that do not contain a,, ,_,C, in number.

Car. 4. 4 Co+psCot0-sCo+. . . +,C=,Coypy (5).

Since the order of letters in any combination is indifferent, we
may arrange them in alphabetical order, and enumerate the
(s + 1)-combinations of = letters by counting, 1st, those in
which a, stands first; 2nd, those in which a,"stands first, &c.
This enumeration is clearly both exhaustive and simplex; and
we observe that a, cannot occur in any of the combinations of
the 2nd class, neither a, nor a, in any of the 3rd class, and so on.
Hence the number of combinations in the 1st class is ,_,C,; in
the 2nd, ,,_,C,; in the 3rd, ,_,C,; and so on. Thus the theorem
follows. . '

Cor. 5. ;C;+ pCs1 gCi+ pCag Ca+. . . +,C gCoy +4Cs
T piqe (6)-
If we divide p + ¢ letters into two groups of p and ¢ respect-

ively, the ,,,C, s-combinations of the p+gq letters may be
classified exhaustively and simplexly as follows :—
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1st. All the s-combinations of the p letters. The number
of these is 2Cs
2nd. All the combinations found by taking every one of the
(s — 1)-combinations of the p things with every one of the 1-
combinations of the ¢ things. The number of these is
2Cs-1 % ¢Cu.
3rd. All the combinations found by taking every one of the
(s — 2)-combinations of the p things with every one of the 2-
combinations of the ¢ things. The number of these is
pCs-s % ¢Cs
And so on. Thus the theorem follows.
It should be noticed that Cor. 4 and Cor. 5 furnish proposi-
tions in the summation of series. For example, we may write
Cor. 5 thus—

pp-1) . (p-Hl) p(p 1) -(p-5+2) ¢
1. 2 . (s-1) T 1
p(p—l) - (p-s+3) glg-1)
(s—2) "T1.2

;g q(q (9—8+2)
1° . (s-1)
L9 1) (q—8+1)
1. 2
=(p+q)(p+q—lv) .. ._(p+q s+1) e
1.2...5 g

It is obvious that (7) is an algebraical identity which could
be proved by actually transforming the left-hand side into the
right (see chap. v., § 16). If we take this view, it is clear that
the only restriction upon p, ¢, s is that s shall be a positive integer.
Thus generalised, (7) becomes of importance in the establishment
of the Binomial Theorem for fractional and negative indices.

Cor. 6. If we multiply both sides of (7) by 1.2 .
and denote p(p—1) . . . (p—s+1) by p,, we deduce

P+9e=2s+CiPss @i+ CaPa-sa+. - -+, (8),
which is often called Vandermonde’s theorem, although the result
was known before Vandermonde’s day.
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§9.] To find the number of r-combinations of p+q letters p
of which are alike.

1st. With the ¢ unlike letters we can form ,C, r-combina-
tions.

2nd. Taking one of the p letters, and r — 1 of the ¢, we can
form (C,_, r-combinations.

3rd. . Taking two of the p, and r — 2 of the g, we can form
¢Cr-s r-combinations ; and so on, till at last we take r of ke
p (supposing p>r), and form one r-combination.

We thus find for the number required

Cr+Croi+Crgt+. o . +Ci+1

=gq! ! + ! + +-—1— +l }
“lrlg-r) (-1 g-r+ 1) T T 1g-1) ¢!
Cor. The number of r-permutations of p + q things p of which
are alike is
'r'{ L + 1 + ! +
TTUrg-n " T -Dg—r+ 1)1 " 2(r— 2)i(g 7 + 2)!

g .1 }
T (=D g-1) T rigt )
For, with the ,C, combinations of the 1st class above we can form
¢Cr 7! permutations ;

With the ,C,_, combinations of the 2nd class, ,C,_, 7! permu-
tations ;

With the ,C,_, combinations of the 3rd class (in each of
which two letters are alike), ,C,_, r!/2! permutations: and so
on.

Hence the whole number of permutations is

Crrl+ Crly 14 Cryrtf20 4. L L+ Cirtf(r=1)1 41,
whence the result follows.

A similar process will give the number of r-combinations,
or of r-permutations, when we have more than one group of
like letters ; but the general formula is very complicated.

§ 10.] The number of r-combinations of n letters (,H,), when
each letter may be repeated any number of times up to r, is

wn+1)(n+2) ... @+r-1)1.2.3...r (1)
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In the first place, we remark that the number of (r+ 1)-com-
binations, in each of which the letter a, occurs at least once, is
the same as the number of r-combinations not subject to this
restriction. This is obvious if we reflect that every (r+ 1)-
combination of the kind described leaves an r-combination when
a, is removed, and, conversely, every r-combination of the n
letters gives, when a, is added to it, an (r + 1)-combination of
the kind described.

It follows, then, that if we add to each of the r-combina-
tions of the theorem all the n letters, we get all the (n + 7)-com-
binations of the = letters, in each of which each letter appears at
least once, and not more than 7+ 1 times. We may therefore
enumerate the latter instead of the former.

This new problem may be reduced to a question of permuta-
tions as follows. Instead of writing down all the repeated letters,
we may write down each letter once, and write after it the letter
s (initial of same) as often as the letter is repeated. Thus,
we write asssbsses . . . instead of aaaabbbec . . . With this
notation there will occur in each of the (n +r)-combinations
the n letters a,, a,, . . ., a, along with r s's. The problem now
is to find in how many ways we can arrange these n + r letters.
It must be remembered that there is no meaning in the occur-
rence of s at the beginning of the series; hence, since the order
of the letters a,, a,, . . ., a, is indifferent, we may fix a, in the
first place. We have now to consider the different arrange-
ments of the n -1 letters a,, a;, . . ., @, along with r s's. In so
doing we must observe that nothing depends on the order of
Gy Gyy . . ., Gy tnter s¢; so that in counting the permutations
they must be regarded as all alike. We have, therefore, to find
the number of permutations of n — 1+ r things, n — 1 of which
are alike, and r of which are alike. Hence we have

_(n+r-1)!

nHr = '(n—_l‘)“!‘ﬁ' (2)1

_an+1) ... (n+r-1)
- 1.2...r )
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Cor. 1. ,,H,. = n+r-|Cr-
This follows at once from (2).
Cor. 2. 2Hy =0 H, + H,_..

For the r-combinations consist, 1st, of those in which a, occurs
at least once, the number of which we have seen to be ,H,_, ;
2nd, of those in which a, does not occur at all, the number of
which is ,_,H,.

Cor. 3. H,=,_ H,+,_H,_,+,_Heo+...+, H+1.
This follows from the consideration that we may classify the
-combinations into

1st. Those in which @, does not occur at all, ,_.H, in
number ;

2nd. Those in which @, occurs once, ,,_,H,_, in number ;

3rd. Those in which a, occurs twice, ,_,H,_, in number :
and so on.

Cor. 4. The number of different r-ary products that can be made
with n different letters is n(n+1) . . . (n+7-1)/1.2 .. .71,
and the number of terms in a complete integral function of the rth
degree in n variables is (n+ 1)(n+2) . . . (n+7)/1.2 ... 17

The first part of the corollary is of course obvious. The
second follows from the consideration that the complete in-
tegral function is the sum of all possible terms of the degrees
0,1,2, .. . rrespectively. Hence the number of its terms is

1+,H+,H+...+,H,.
But, by Cor. 3, this sum is ,4,H,.

‘We have thus obtained a general solution of the problems suggested in
chap. iv., §§ 17, 19. As a verification, if we put n=2, we have for the
number of terms in the general integral function of the rth degree in two
variables 3.4 . . . (r+2)/1.2 . . . r, which reduces to (r+1)(r+2)/2, in
agreement with our former result.

Exercises I.
Combinations and Permutations.

(1.) How many different numbers can be made with the digits
11122333450 ¢

(2.) How many different permutations can be made of the letters of the
sentence Ut tensio sic vis?
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(3.) How many different numbers of 4 digits can be formed with 0123456 ?

(4.) How many odd numbers can be formed with the digits 3694 ?

(5.) If 2aCn-1/am—2Ca =132/35, find n.

(6.) If m=,Cs, show that 4Cy=3,41Cs

(7.) In any set of n letters, if the number of r-permutations which con-
tain a be equal to the number of those that do not contain a, prove that the
same holds of 7-combinations.

(8.) In how many ways can the major pieces of a set of chess-men be
arranged in a line on the board ?

If the pawns be included, in how many ways can the pieces be arranged
in two lines?

(9.) Out of 13 men, in how many ways may a guard of 6 be formed in line,
the order of the men to be attended to?

(10.) In how many ways can 12 men be selected out of 17—1st, if there be
no restriction on the choice ; 2nd, if 2 particular men be always included ;
3rd, if 2 particular men never be chosen together?

(11.) In how many ways can a bracelet be made by stringing together 5
like pearls, 6 like rubies, and 7 like diamonds

How many different settings of 3 stones for a ring could be selected
from the above ?

‘What modification of the solution of the first part of the above problem
is necessary when two, or all three, of the given numbers are even ?

(12.) In how many ways can an eight-oared boat be manned out of 31
men, 10 of whom can row on the stroke side only, 12 on the bow side only,
and the rest on either side?

(13.) In a regiment there are 10 captains, 20 licutenants, 30 sergeants,
and 60 corporals. In how many ways can a party be selected, consisting of
2 captains, 5 lieutenants, 10 sergeants, and 20 corporals ?

(14.) Three persons have 4 coats, 5 vests, and 6 hats between them; in
how many different ways can they dress?

(15.) A man has 12 relations, 7 ladies and 5 gentlemen ; his wife has 12
relations, 5 ladies and 7 gentlemen. In how many ways can they invite a
dinner party of 6 ladies and 6 gentlemen so that there may be 6 of the man's
relations and 6 of the wife's ?

(16.) In how many ways can 7 ladies and 7 gentlemen be seated at a
round table so that no 2 ladies sit together?

(17.) At a dinner-table the host and hostess sit opposite each other. In
how many ways can 2n guests be arranged so that 2 particular guests do
not sit together?

(18.) In how many ways can a team of 6 horses be selected out of a stud
of 16, so that there shall always be 3 out of the 6 ABCA'B'C’, but never AA’,
BB', or CC’ together ?

(19.) With 9 consonants and 7 vowels, how many words can be made, each
containing 4 consonants and 3 vowels—1st, when there is no restriction on the
arrangement of the letters; 2nd, when two consonants are never allowed to
come together ?

(20.) In how many ways can 52 cards, all different, be dealt into 4 equal
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hands, the order of the hands, but not of the cards in the hands, to be
attended to?

In how many cases will 13 particular cards fall in one hand ¢

(21.) In how many ways can & set of 12 black and 12 white draught-men
be placed on the black squares of a draught-board ?

(22.) In how many ways can a set of chess-men be placed on a chess-board ?

(23.) How many 3-combinations and how many 3-permutations can be
made with the letters of parabola t

(24.) With an unlimited number of red, white, blue, and black balls at
disposal, in how many ways can a bagful of 10 be selected ?

In how many of these selections will all the colours be represented ?

(25.) In an election under the cumulative system there were p candidates
for ¢ seats ; (1) in how many ways can an elector give his votes; (2) if there
be r voters, how many different states of the poll are there? ‘

If there be 15 candidates and 10 seats, and a voter give one minute to the
consideration of each way of giving his vote, how long would it take him to
make up his mind how to vote?

BINOMIAL AND MULTINOMIAL THEOREMS.

§ 11.] It has already been shown, in chap. iv,, § 11, that
(@+d)r=a+,Ca" b+, . . +,Cam 0" +. .. +"
where ,C,, »Ci, . . ., sCr . . . denote the numbers of 1-, 2-,

., r-combinations of n things. Using the expressions just
found for ,,C,, »C,, &c., we now have

(a+b)"=a"+m"'1b+ﬂ(n l)a,"'zbz+. -

n(n 1) . (n r+1)
1. 2
This is the Binomial Theorem as Newton discovered it, proved,
of course, as yet for positive integral indices only.

§ 12.] We may establish the Binomial Theorem by a some-
what different process of reasoning, which has the advantage of
being applicable to the expansion of an integral power of any
multinomial.

Consider

an-Thr 4. . L+ b (1).

(@ +a+. . .+ap)" (2).
We have to distribute the product of n factors, namely,
@ +a+. ... +ap)(@+a+...+ap) ... (@ +qG+... +an) (3);
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and the problem is to find the coefficient of any given term, say
a®1a’ ... g™ ) (4),
where of course a, +a, . . . +a,=n In other words, we have
to find how often the partial product (4) occurs in the distribu-
tion of (3). ,
We may write out (4) in a variety of ways, such as
0,0, 0,0,1,050,8, . . . (5),
there being always a, a's, @, a,s, &c.

Written as in (5) we may regard the partial product as
formed by taking a, from the 1st and 2nd brackets in (3); a,
from the 3rd, 4th, and 5th; a, from the 6th; and so on. It
appears, therefore, that the partial product (4) will occur just as
often as we can make different permutations of the n letters, such
as (5). Now, since a, of the letters are all alike, a, all alike, &c.,
the number of different permutations is, by § 6, n!/a,!a,! . . . ap!.

Hence we have
n!
(a,+a,+. .o +%)”=Emlalal a. .. a, ™ (6):
wherein a, a;, . . . @, assume all positive integral values con-
sistent with the relation
g tag+. . .tap=n (7).

This is the Multinomial Theorem for a positive integral index.

The Binomial Theorem is merely the particular case where
m=2. We then have, since a, + a, = n, and therefore a; =2 - a,,

(a,+a,)" Eml

=3 n(n 1) (n —-a + 1) a’lal a’n-al,
a,!

1 a’n-a] ,

which agrees with (1).
Cor. To-find the coefficient of 27 in the expansion of
(B +dz+ . .. 4 by )n (8)
we have simply to pick out all the terms which contain z". The
general term is

n!
_T—'blal b.da e bm“mzaa-i-ﬂlg-i-- . Hm-1)am
G Qg: o o o Gyp. .
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Hence we have to take all the terms which are such that
a+2a+ ... +(m=-1ay=r 9).
The coefficient of 2™ in the expansion of (8) is therefore
n!
mm!b,‘Jll [ R (10),

-
alag! . ..

where a,, a5, . . ., a;, have all positive integral values subject
to the restrictions (7) and (9).
Example 1. The coefficient of a®)? in the expansion of (a+b+c+d)° is
5!

g1210101~ 1%
Example 2. To find the coefficient of 23 in (1 + 2x +22)%.
Here we must have a;+az+ag=4,
ag+ 2a3=>5.
Hence a=az3-1, ag=>5-2a;3.

Since a; and e must both be positive, the only two admissible values of ag
are 1 and 2. We have therefore the following table of values :—

ay a2 ‘ ag
0 3 ’ 1
1’ 1 1 2
The required coefficient is therefore
A qegnay 4 qiouage
ot o Frprey A E06

The correctness of the result may be easily verified in the present case for
(14 2z + 2% =(1+z)% the coefficient of «® in which is ¢C5=56.
Example 3. To find the greatest coefficient, or coefficients, in the expansion
of (m+as+. . . +am)™
This amounts to determining «, y, 2, . . . so that n!/ax!y!z! . . . shall
be a maximum, where x+y+z+ ... =n. This, again, amounts to deter-
mining z, ¥, 2, . . . so that
u=zlylz!. .. (1)
shall be a minimum, subject to the condition
z+y+2+ ... =n (2).
Let us first consider the case where there are only two variables, z and y.
We obtain all possible values of z!y! by giving y successively the values
01,2 ... n « taking in consequence the values n, n-1,n-2, . .., O.
The consecutive value to «!y! is (z-1)!(y+1)!, and the ratio of the latter
to the former is (y+1)/z; that is (since z+y=mn), (n+1-2)/x, that is,
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(n+1)/z-1. This ratio is less than unity so long as (n+1)/x <2, that is, so
long as z>(n+1)/2. Until z falls below this value the terms in the series
above mentioned will decrease ; and after z falls below this limit they will
begin to increase.

If n be odd, =2k + 1 say, then (n+1)/2=Fk+1. Hence, if we makez=%k+1,
the ratio (n+1)/z—1=1, and two consecutive values of z!y!, viz. (k+1)!k!
and k!(k+1)!, are equal and less than any of the others.

If » be even, =2k say, then (n+1)/2=k+4. Hence, if we make 2=%, we
obtain a single term of the series, viz. k!k!, which is less than any of the
others.

- Returning now to the general case, we see that, if « be a minimum for all
values of 2, y, z, . . . subject to the restriction (2), it will also be & minimum
for values such that = and y alone are variable, z, . . . being all constant.
In other words, the values of x and y for which «!y!z! ... is a minimum
must be such as render z!y! a minimum. Hence, by what has just been
proved, z and y must either be equal or differ only by unity. The like follows
for every pair of the variables , y,2, . . . Let us therefore suppose that p of
these are each equal to {; then the remaining m —p must each be equal to
£+1. Further, let g be the quotient and r the remainder when = is divided
by m ; so that n=mg+7. We thus have

pE+(m-p)(§+1)=mg+n

Hence mE+(m-p)=mg+r;
so that £+ (m-p)m=q+r/m.
Now (m - p)/m and 7/m are proper fractions ; hence we must have
(=g, m-p=r.

It follows, therefore, that 7 of the variables are each equal to ¢+1, and the

rest are each equal to'q. The maximum coefficient is therefore
alf(g)yri(g+1)1};

that is, n!f(g!)y™(g+1) (3)
This coefficient is, of course, common to all terms of the type a)?as? . . .
G I O™ . . T

As a special case, consider (a;+as+as)%. Here 4=8x1+1; ¢=1, r=1.
Hence the terms that have the greatest coefficient are those of the type a1aas?,
and the coefficient in question is 4!/(1!)%2'=12. This is right; for we find
by distributing that

(@1 + @2+ as)d = Zay* + 4Za,%ay + 62a,aq? + 12Zar%azas.
Example 4. Show that
nl+z n(n-1) 1+2z a(n-1) n-2) 1+3z

“Iiinet 1.2 @rmp  1.2.8 QFmp ="
( Wolstenholme.)
The left-hand side may be written
1-" 1 n-1) 1 n(n-1)(n-2) 1 +

“1T+mz’ 1.2 (d+map  1.2.8  (1+nap
n n(n-1) 2= _u(n—l)(n—Z) 3z +
“1T7met 1.2 (Q+mzp  1.2.8  (l+mep "
YOL. I c
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n 1 aa-1) 1  am-1)n-2) 1

=1 iirmet 1.2 Gemp  1.2.85 (smpt "
_ {1 n-1) 1 (r-1)(n-2) 1 }
142”7 1 (1+mx) 1.2 Q4nzp """ )"

1 LI %7 1 n-1
={1‘1+u} '1+nz{1'1+nz} '
R fr= e =
T W U¥nz) T1ime \ T4z ’

:j%’a}'-{%}"'

§ 13.] The Binomial Theorem can be used in its turn to
establish identities in the theory of combinations; as the two
following examples will show :—

Example 1. We have

1=I+z-z)
=(1+z)" - ,C 21 +2)-1+,Co2%(1+2)™2~ . . . (- ) Crx".

On the right-hand side of this identity the coefficient of every power of z

must vanish. Hence, s being any positive integer less than », we have
rCex 1= 1Cr1 X 01 +¢-9Ce-a X yCo =0 o .+ (-~ )'_lr-o+lcl X G414+ (= ¥4Co=0.

Example 2. To find the sum of the squares of the binomial coefficients.

We have (1+2)P=(1+x"x (x+1)"

=(1+aC1Z+nCa®+ . . . +aCo2®)
X (@ + fCrz" 14+ Cat™ 24 . o . +nCa)

If we imagine the product on the right to be distributed, we see that the
coefficient of 2 18 124 ,C3+,Cs®+ . . . +4Cn?; the coefficient of 2* on the
left i8 3nCn. Hence .

124,02 +,C34 . . . +..C,.’=2,.C,.=2n!/n!n!.

Since
2n!=2n(2n-1)(2n-2) ... 4.8.2.1=2%1.2...2x1.8...(2n-1),
we have 13+,C2+,C2%+ . . . +,C?=2".1.3 ... (2n-1)/n!.

A great variety of results can be obtained by the above process of equating
coefficients in identities derived from the binomial theorem ; some specimens
are given among the exercises below.

Exercises II.

(1.) Find the third term in the expansion of (2 + 3z)®.

(2.) Find the coefficient of ® in the expansion of (1 +x+?) (1 - )1,

(3.) Find the term which is independent of z in the expansion of
(z+1/x)™.
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(4.) Find the coefficient of z% in the expansion of (z - 1/z)™.

(5.) Find the ratio of the coefficients of z2» in (1+ ) and (1 +z)%,

(6.) Find the middle term in the expansion of (2 + 3z)".

(7.) The product of the coefficients in (1+xz)*+: the product of the co-
efficients in (14+z)*=(n+1)*:n!.

(8.) The coefficient of z* in {(r — 2)x?+nx — r} (x+1)" is 7 4Cps.

(9.) If I denote the integral part and F the proper fractional part of
(3+4/5)", and if p denote the rational part and ¢ the irrational part of the
same, show that

1=2{3"+,C38"2.5+,C3"4.5%+. ..} -1,
F=1-(3-+/5)",

p=4§I+1),

e=3(I+2F-1).

(10.) If (n/2+1)***1=1+F, where F is a positive proper fraction and I
is integral, show that F(I+F)=1.

(11.) Find the integral parts of (24/3 +3)*™, and of (24/3 + 8)* 1,

(12.) Show that the greatest term in the expansion of (a+=z)* is the
(r+1)th, where r is the integral part of (n+1)/(a/z+1).

Exemplify with (2+3)1° and with (2+$)°.

(13.) Find the condition that the greatest term in (@ + z)" shall have the
greatest coefficient. Find the limits for z in order that this may be so in
(1+z)1,

(14.) If the pth term be the greatest in (a+z)™, and the gth the greatest
in (a+z)", then either the (p+g)th or the (p+¢-1)th is the greatest in
(a+zy~in,

(15.) Sum the series

w1 5aC1  .aCs nCn
+2“ +3,.C,+' . ‘+".C,.-1'

(16.) Sum the series
1+2,C1+3,C3+4aCs +. . .
(17.) If p, denote the coefficient of z* in (1 +z)", prove the following rela-
tions : —
1°% p1-2m+3ps—. . .+n(-1)"1p,=0.

2°. dm-dp2  +. . .+ e =—0

o 1 PP
3.1+2+3 +. ..+

(18.) If p, have the same meaning as in last question, show that

(it 11
n-tptip-. ot p=lhgtgt. Lt

(19.) Show that
Lox 14,901 % ;01 +4-2Ci2 X Cat+. . . +,—pt1C1. X (Co1 +1 x,C,=,C,2
(20.) Show that
(1-aCa+aCi=- « P+(C1=nCat. . . P=1+4C1+aCat+. . .
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(21.) Show that
1xaCs+aCixnCs+. . .« ..C..-zx,. n=(20)![(n+2)! (n - 2)".

(22.) Show that 1- n=+(”(” ”) ("(” Dn- 2’) +...=0if nbe
- odd, and =(-1)*3(n+2)(n+4) . .. 2n/2.4 . . . nifn be even.

(23.) Show that
1.n(n+l)+%(n-l)u+"(n+l)(n 2)(n-1)+

+. . .=222+1)!/(n+2)! (n-1)!.
(24.) If u, stand for z"+1/2*, show that
o1+ ,h1C1 U1 + 1 Cattrs +. o = U(Up+Crtira+ 4 Catlegt. . . ).

"("+1)("+2)(n-3) (n-2)

(25.) If a, denote the coefficient of z# in (1+x)**-7)(1 - )%, show that
9 - nC1 @1+ nCaag—. . . =0 for all values of p except p=n, in which case the
right-hand side of the equation is 4™

(26.) Show that

1 uCl uci (" 1)'n n__ n!

z z+1 z+2 """ z+m  xx+l). .. (z+n)

(27.) Find the coefficient of 27 in (1+z+2+. . . )3

(28.) Find the coefficient of 2® in (1 + 2 + 2%+ %)%,

(29.) Find the coefficient of 2* in (1 +x+2¢*+32%+. . . )%

(30.) If ag, @1, . . ., @zn be the coefficients of the powers of z in
(1+4+2x+223)", show that aoon-M@am-1+. . . +a2ao=0 if n be odd,
=2"n!/{(4n)!}? if n be even.

(31.) If a, be the coefficient of 2r in (1+z+:c’+ .+x?)", show that

- nC18r1+nC28p—2~-. . .=0, unless # be a multiple of p+1. What does
the equation become in the latter case?

(82.) Find the coefficient of z' in (1 + 2+ 32%+ 42%)11,
(83.) Write out the expansion of (a+ b+c+d).

(34.) Show that
1720, . .k {n(n+l)}
risl ...kl p!

where 7, s, . . ., k have all values between 0 and p, both inclusive, subject
to the restriction 7+s+. . . +k=p.
(35.) If 4H, have the meaning of § 10, above, prove that
1°% M—nHr=er+ mHr1 X aHy + er—ﬂ XoHg+. . . +mH1xHp.
2% 1-aCi X nH1+aCox nHa—nCs x oHs+. . . +(- 1)"..0,".H”=0. i
(86.) If z,=2(x+1) . . . (x+r-1), show that
(z+y)r=2,+,C zr-lyl'*'r‘c'zxr-nyz'i'- T
(87.) Find the largest coefficient in the expansion of (a+b+c+d+e)B.
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EXAMPLES OF THE APPLICATION OF THE LAW OF
DISTRIBUTION.

§ 14.] If we have r sels, consisting of ny, ng . . ., n, different
letters respectively, the whole number of different ways of making com-
binations by taking 1, 2, 3, . . . up to r of the letters at a time, but
never more than one from each set, is

m+1)(m,+1) ... (n,+1)-1
Consider the product
(1+a,+b+ .. .n, letters)
x (1 +a,+by+ . . .n, letters)
x (1 +a,.-|'-b,.+ . . . n,letters).
In the distributed product there will occur every possible com-
bination of the letters taken 1, 2, 3, . . ., r at a time, with the
term 1 in addition. If we replace each letter by unity, each
term in the distributed product will become unity, and the sum

of these terms will exceed the whole number of combinations by
unity. Hence the number required is

Q+n)(Q+m) ... (A+n)-1
=30, +20N+. . ANy . . . Ny

This result might have been obtained by repeated use of § 7.
§ 15.] If we have r sefs of counters, marked with the following
numbers—

ayy ﬂn s e Ky
Ay By - o o K

an B . oy Kn
the number of counters not being necessarily the same for each set, and
the inscribed numbers not necessarily all different, then the number of
different ways in which r counters can be drawn, one from each set, so

that the sum of the inscribed numbers shall be n, is the coefficient of z®
in the distribution of the product
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Y )
x @+ 2P+ .42
x (@ +Pra .+ 2.

This theorem is an obvious result of the principles laid down
in chap. iv.

Cor. 1. If in the first set there be a, counters marked with the
number a,, b, marked with B,, &c., in the second a, marked with a,,
b, marked with B,, d&c., the number of ways in which r counters can
be drawn so that the sum of the numbers on them is n, is the coefficient
of «® in the distribution of

(@2 + 5P+ . . . + kM)
x (4,7 + b+ . . . +k,2t)
x (a2 + baPr + | . .+ k).

Cor. 2. In a box there are a counters marked a, b marked B, de.
A counter is drawn r times, and each time replaced. The number of
ways in which the sum of the drawings can amount o n is the co-
efficient of z™ in the distribution of

(az® + 58 + . . ..

DISTRIBUTIONS AND DERANGEMENTS.

§ 16.] The variety of problems that arise in connection with
the subject of the present chapter is endless, and it would be
difficult within the limits of a text-book to indicate all the
methods that have been used in solving such of these problems
as mathematicians have already discussed. The following have
been selected as types of problems which are not, very readily
at least, reducible to the elementary cases above discussed.*

§ 17.] To find the number of ways in which n different letters can
be distributed among r pigeon-holes, atlention being paid to the order
of the pigeon-holes, but not to the order of the letters in any one
pigeon-hole, and no hole to contain less than one letter.

Let D, denote the number in question.

* For further information sce Whitworth’s Choice and Chance.
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If we leave s specified holes vacant and distribute the letters
among the remaining r —s holes under the conditions of the
question, we should thus get D,_, distributions. Hence, if ,C,
have its usual meaning, the number of distributions when s of
the holes are blank is ,C, D,_,.

Again, the whole number of distributions when none, one,
two, &c., of the holes may be blank is evidently 7, for we can
distribute the n letters separately among the r holes in #* ways.

Hence

D,+,C,D,,+,C,D, s+ ... +,C, D=1 (A)
The equation (A) contains the solution of our problem, for, by
putting r =2, r = 3, &c., successively, we could calculate D,, D,,
&c., and D, is known, being simply 1.

We can, however, deduce an expression for D, in terms of n
and r, as follows. Writing r — 1 in place of » we have

Dy +4CDp g+ oo +,.,CyDy=(r-1" (B).
From (A) and (B), by subtraction, remembering (§ 8, Cor. 3)
that
*Ce=+-1Co-1 =1-.Cp
we derive
D, +4..C.Dpy 44 Co Dy + . .« +,,C D,
=r—-(r-1)y (1).
From (1), putting r — 1 in place of 7, we derive
Dri44-CiDps+ . o0 +,.,0,,D,
=(r-1)"-(r-2)» (1°).
From (1) and (1’), by subtraction, we derive
D" + '-'CI Df-l + f-lC' Df-’ +...+ f-'Cf-lD'
=rm-2r-1)"+(r-2) (2).
Treating now (2) exactly as we treated (1) we derive
Dr+,CiDry +5CiDp g+ . o o +,.5Cry Dy
=r-3r-1"+3(r-2)"-(r-3)" (3).

The law of formation of the right-hand side is obvious, the
coefficients being formed by the addition rule peculiar to the
binomial coefficients (see chap. iv., § 14). We shall therefore
finally obtain
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" Dp=rm-C(r-1)"+,Ci(r-2)"- ... (-)%C,.,17

-1
o Ve-gp- . (-re ().

=r"-}(r— 1)+

Cor. If the order of the pigeon-holes be indifferent, the number
of distributions is D,/ r!. In other words, the number of partitions of
n different letters into r lots, no vacant lots being allowed, is D,[r!.

We shall discuss the closely-allied problem to find the
number of r-partitions of n—that is, to find the number of
ways in which n letters, all alike, may be distributed among
r pigeon-holes, the order of the holes being indifferent, and no
hole to be empty—when we take up the Theory of the Partition
of Numbers.

§ 18.] Given a series of n letters, to find in how many ways the
order may be deranged so that no one out of r assigned letters shall
occupy s original position.

Let ,A, denote the number in question.

The number of different derangements in which the r assigned
letters do all occupy their original places is (n —7)!. Hence the
number of derangements in which the r assigned letters do not
all occupy their original places is n! — (n—-7)!. Now, this last
number is made up of—

1st. The number of derangements in which no one of the r
letters occupies its original place ; that is, ,4,.

2nd. The number of derangements in which any one of the r
letters occupies its original place, and no one of the remaining
r—1 does so; that is, ,C, ,_,A,_,.

3rd. The number of derangements in which any two of the r
letters occupy their original places, and no one of the remaining
r — 2 does 80 ; that is, ,C, 5-,A,_,. And so on.

Hence

n!—(n_"')!=nAr+rC|n-lAr-l+rC|n-:Ar—|+- .. .
+ rCr—l n-r+|Al (A>
If we write in this equation n -1 for #, and r — 1 for r, and
subtract the new equation thus derived from (A), we deduce’
nt—(n—1)1=p8p + 4 ,CinosBpos + r-1Cain-sBrgt. . .
+ - lCr-x n-r-HAl (l)
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We can now treat this equation exactly as we treated equa-
tion (1) of § 16. We thus deduce

WA =nl - fl(n- 1)! +’(; _21)(n- W= (=)Y@m-1) (2).

If we remember that (n —r)!, above, stands for the number
of derangements in which the r letters all occupy their original
positions, we see that, when r =, (n — r)! must be replaced by 1.
Hence

Cor. The number of derangements of a series of n letters in
whick no one of the original n occupies its original position is

1 1 - 1"
n!{l—-ﬁ+2—!—...+( n!) } (3).

The expression (3) may be written '

(... .(4B2A-1)+1)-1)+1)...—(-1)®+(-1)~

Hence it may be formed as follows :—Set down 1, subtract 1;
multiply by 2 and add 1; multiply by 3 and subtract 1; and
soon. The function thus formed is of considerable importance
in the present branch of mathematics, and has been called by
Whitworth subfactorial n. He denotes it by |[». A more con-
venient notation would be #]. -

SUBSTITUTIONS.

§ 19.] Hitherto we have merely counted the permutations of

a group of letters. If we direct our attention to the actual per-

mutations, and in particular to the process by which these per-

mutations are derived from each other, we are led to an order of

ideas which forms the foundation of that important branch of
modern algebra which is called the Theory of Substitutions.

Consider any two permutations, becda, beade, of the five letters

a, b, ¢, d, e. The latter is derived from the former by replacing

abye bby b,¢c by a, d by d, e by ¢. This process may be
represented by the operator (Z%z) ; and we may write

(ebadc

z l)beoda:bcade:
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or, omitting the letters that are unaltefed, and thus reducing the
operator to its simplest form,

(g) beeda = beade.

The operator (ZZ:), and the operation which it effects, are called

a Substitution ; and the operator is often denoted by a single
capital letter, S, T, &c.

Since the number of different permutations of a group of »
letters is !, it is obvious that the number of different substitu-
tions is also n!, if we include among them the identical substi-

tution (%: T ‘), (denoted by S’ or by 1), in which no letter

is altered.

We may effect two substitutions in succession upon the same
permutation, and represent the result by writing the two symbols
representmg the substitutions before the permutation in order

from right to left. Thus, if S= ( c)’ T= (ea)

ae
STaebed = ecabd.
We may also effect the same substitution twice or three times
over, and denote SS by S, SSS by §°, &c. Thus, S being as
before,
S'aebed = Sceabd = becad. .

It should be observed that the multiplication of substitution
symbols is not in general commutative. For example, S and T
being as above, STaebcd = ecabd, but TSaebed = caebd. If, when
reduced to their simplest form, the symbols S and T have no
letter in common, they are obviously commutative. This condi-
tion, although sufficient, is not necessary ; for we have

(Zba;li)) (zﬁ) abede = cdbae = (ng;) (Zg‘;g) aboée.

§ 20.] Since the number of permutations of n letters is
limited, it is obvious that if we repeat the same substitution, S,
.sufficiently often we shall ultimately reproduce the permutation
that we started with. The smallest number, p, of repetitions
for which this happens is called the order of the substitution S.
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Hence we have S# =1, and SP*=1, where p is any positive
integer.

We may define a negative index in the theory of substitu-
tions by means of the equation S9=S8P¥9, u being the order of
S, and p such that pp>¢g. From this definition we see that
S9S9 = 89SP#-9=SPL = 1. In other words, S? and S are inverse
to each other ; in particular, if

5= (), then 8-1=(300) = (Ui2e).

A set of substitutions which are such that the product of
any number of them is always one of the set is called a group ;
and the number of distinct substitutions in the group is called
the order of the group. The number of letters operated on is
called the degree of the group.

It is obvious from what has been shown that all the powers
of a single substitution, S, form a group whose order is the
order of S.

§ 21.] A substitution such as (zzdcg;), where each letter

is replaced by the one that follows it, and the last by the first, is
called a Cyclic Substitution, and is usually denoted by the symbol
(abedef).*

The cyclic substitution (a), consisting of one letter, is an
identical substitution ; it may be held to mean that a passes into
itself.

The cyclic substitution of two letters (ab), or what is the
same thing (ba), is spoken of as.a Transposition.

The effect of a cyclic substitution may be represented by
writing the n letters at equal intervals round the circumference
of a circle, and shifting each through 1/ath of the circumference.
Thus, or otherwise, it is obvious that the order of a cyclic sub-
stitution is equal to the number of the letters which it involves.

§ 22.] Every substitution either is cyclic or is the product of a
number of independent cyclic substitutions (cycles).

Consider, for example, the substitution

* Or, of course, by (bedefa), (cdefad), &e.
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S= (bfdogaeh)

~ \abedefgh)
This replaces a by b, b by f, f by a; these together constitute
the cyclic substitution (adf). Next, ¢ is replaced by d, and & by
¢; this is equivalent to the cycle (cd). Again, ¢ is replaced by
g, and g by e; this gives the cycle (¢g). Finally, 4 is unaltered.
Hence we have the following decomposition of the substitution

S into cycles—
S = (abf)(cd)(eg)(R).

The decomposition is obviously unique ; and the reasoning
by which we have arrived at it is perfectly general. It should
be noticed that, since the cycles are independent, that is, have
no letters in common, they are commutative, and it is indifferent
in what order we write them.

§ 23.] Every cyclic substitution of n letters can be decomposed into
the product of n — 1 transpositions.

For example, we have (abed) = (ab)(bc)(cd) ; and the process
is general.

Cor. Every substitution can be decomposed info n —r transposi-
tions, where n is the number of letters which it displaces, and r the
number of its proper cycles.

Thus, (Yjdeaaek) = (abfedea)
= (ab)(bf)ed)(eg)

This decomposition into transpositions is not unique, as will
be seen presently, but the above gives the minimum number,

§ 24.] The following properties of a product of two trans-
positions are of fundamental importance.

1. The product of two transpositions which have two letters in
common is an identical substitution.

This is obvious from the meaning of (ab).

II. In the product of two transpositions, TT', which have a letter
in common, T' may be placed first, provided we replace the common
letter in T by the other letter in T'.
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For we have (ab)(bc) = (m), (be)(ac) = (Z?::)’

therefore (ab)(be) = (be)(ac).
Cor. 1. (¢f)(af) = (ae)(ef).
Cor. 2. (ae)(af) = (af)(¢f).

II1. If two transpositions, T and T", have no letter in common, they
are commutative.

This is a mere particular case of a remark already made
regarding two independent substitutions.

§ 25.] The decomposition of a given substitution info transposi-
tions is not unique.

For we can always introduce a pair of factors (ab)(ab), and
then commutate one or both of them with the others, in accord-
ance with the rules of § 24.

In this way we always increase the number of transpositions
by an even number. In fact, we can prove the following im-
portant theorem—

The number of the transpositions which represent a given substitu-
tion is always odd or always even.

We may prove this by reducing the product of transpositions
to a standard form as follows—

Select any one of the letters involved, say a ; take the last
transposition, T, on the right that involves a, and proceed to
commutate this transposition successively with those to the left
of it. So long as we come across transpositions that have no
letter in common with T, neither T nor the others are affected.
If we come to one that has a letter in common with T which is
not a, we see (§ 24, IL, Cor. 1) that the a in T remains, the other
letter being altered, and the transposition passed over remains
unaltered. If we come to a transposition that has a, and a only,
in common with T, by § 24, IL, Cor. 2, T passes to the left un-
altered, and the transposition passed over loses its a. Lastly, if
we come to a transposition that has both a and its other letter
in common with T, then both it and T may be removed. If
this last happen, we must now take that remaining transposition
containing a which is farthest to the right, and proceed as
before.
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The result of this process, so far as a is concerned, will be,
either that all the transpositions containing a will have dis-
appeared, or that some even number (including 0) will have done
so, and one only, say (ab), will remain on the extreme left.

Consider now 5. If among the remaining factors b does not
occur, then we have obtained a cycle (ab) of the substitution;
and we now proceed to consider some other letter.

If, however, b does occur again, we take the factor farthest
to the right in which it occurs, and commutate as before; the
result being, either that all the transpositions (even in number)
containing b disappear, or that an even number of them do, and
we are left with, say (bc), in the second place. We now deal
with ¢ in like manner; and obtain in the third place, say (cd).
This goes on until all the letters are exhausted, or until we
come to a letter, say f, that disappears from the factors not yet
finally arranged. We thus arrive at a product (ab)(bc)(cd)(de)(ef)
on the left.

bedefa

Now (@)oo e)de)(o) = (o)
= (abcdef).
We have, in fact, arrived at one of the independent cycles of
the substitution. If we now take any other letter that occurs in
one of the remaining substitutions on the right, we shall in like
manner arrive at the cycle to which it belongs, after losing an
even number, if any, of the transpositions; and so on, until all
the letters are exhausted, and all the cycles arrived at. Since
the whole number of transpositions lost is even, the truth of the
theorem is now obvious ; and our proof furnishes a method for
reducing to the minimum number of transpositions.

It appears, therefore, that we may divide all the substitutions
of a set of n letters into two classes—namely, even substitutions,
which are equivalent to an even number of transpositions, and
odd substitutions, which are equivalent to an odd number of
transpositions.

Cor. 1. If n be the number of letters altered by a substitution, r
the number of ils cycles, and 2s an arbitrary even inleger, the number
of factors in an equivalent product of transpositions is n ~ r + 2s.
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Cor. 2. The number of the even is equal to the number of the
odd substitutions of a set of n letters.

For any one transposition, applied in succession to all the
different odd substitutions, will give as many even substitutions,
all different. Hence there are at least as many even as there
are odd subpstitutions. In like manner we see that there are at
least as many odd as there are even. Hence the number of the
even is equal to the number of the odd substitutions.

Cor. 3. A cyclic substitution is even or odd according as the num-
ber of the letters which it involves is odd or even.

For example, (abc) = (ad) (bc) is even.

Cor. 4. The product of any number of substitutions is even or odd
according as the number of odd factors is even or odd. In particular,
any power whatever of an even substitution, and any even power of any
substitution whatever, form even substitutions.

Cor. 5. All the even substitutions of a set of n lelters form a
group whose order is n!/2.

§ 26. If we select arbitrarily any one, say P, of the n! per-
mutations of a set of n letters, and call it an even permutation,
then we can divide all the »! permutations into two classes—
1st, n!/2 even permulations, derived by applying to P the n!/2
even substitutions; 2nd, n!/2 odd permutations, derived by
applying to P all the n!/2 odd substitutions.

The student who is familiar with the theory of determinants
will observe that the above is precisely the classification of the
permutations of the indices (or umbrz) which is adopted in
defining the signs of the terms in a determinant.

It is farther obvious, from the definitions given in chap.
iv.,, § 20, that symmefric functions of a set of n variables are
unaltered in value by any substitution whatever of the variables; or,
as the phrase is, they are said to “admit any substitution whatever.”
Alternating functions, on the other hand, admit only even substitutions
of their variables, the result of any odd substitution being to alter
their sign without otherwise affecting their value.

§ 27.] The limits of the present work will not permit us to
enter farther into the Theory of Substitutions, or to discuss its
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applications to the Theory of Equations. The reader who desires
to pursue this subject farther will find information in the follow-
ing works: Serret, Cours d Algébre Supérieure (Paris, 1879);
Jordan, Traité des Substitutions (Paris, 1870); Netto, Substitu-
lionen-theorie (Leipzig, 1882).

Exercises III.

(1.) There are 10 counters in a box marked 1, 2, . . ., 10 respectively.
Three drawings are made, the counter drawn being replaced each time. In
how many ways can the sum of the numbers drawn amount—1st, to 9 exactly ;
2nd, to 9 at least ?

(2.) Out of the integers 1, 2, 3, . . ., 10 how many pairs can be selected
so that their sum shall be even ?

(8.) How many different throws can be made with » dice?

(4.) In how many ways can 5 black, 5 white, 5 blue balls be equally dis-
tributed among three bags, the order of the bags to be attended to ?

(5.) A selection of ¢ things is to be made partly from a group of a, the
rest from a group of b. Prove that the number of ways in which such a set
can be made will never be greater than when the number of things taken
from the group of & is next less than (a+1)(c+1)/(a +b+2).

(6.) In how many ways canp +’s and n —'s be placed in a row so that no
two —’s come together?

(7.) In the Morse signalling system how many signals can be made with-
out exceeding 5 movements ?

(8.) In how many ways can 3 pairs of subscribers be set to talk in a tele-
phone exchange having n subscribers !

(9.) There are 3 colours, and m balls of each. In how many ways can
they be arranged in 3 bags each containing m, the order of the bags to be
attended to? ' :

(10.) If of p+g+r things p be alike, g alike, and » different, the total
number of combinations will be (p+1)(g+1)2"-1.

(11.) In how many ways can 2n things be divided into » pairs?

(12.) The number of combinations of 3n things (n of which are alike),
taken 7 at a time, is the coefficient of 2* in (1+z)*/(1 - z).

(13.) N boat clubs havea, b, ¢, 1,1, . . ., 1 boats each. In how many
ways can the boats be arranged subject to the restriction that the 1st boat
of any club is to be always above its 2nd, its 2nd always above its 3rd, &ec.?

(14.) If there be p things of one sort, ¢ of another, r of another, &c., the
number of combinations of the p+g¢+7+. . . things, taken k at a time, is
the coefficient of z* in (1 —zPt)(1-2rt) . . . J1-2)(1-2) . . .

(15.) In how many ways can an arrangement of n things in a row be
deranged so that—1st, each thing is moved one place ; 2nd, no thing more
than one place?

(16.) Given n things arranged in succession, the number of sets of 3
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which can bo formed under the condition that no sct shall contain two things
which were formerly contiguous is (n-2)(n - 8) (n - 4), the order inside the
sets to be attended to.

(17.) In how many ways can m white and » black balls be arranged in a
row so that there shall be 27— 1 contacts between white and black balls ?

(18.) In how many ways can an examiner give 80 marks to 8 questions
without giving less than 2 to any one question ?

*(19.) The number of ways in which = letters can be arranged in r pigeon.
holes, the order of the holes and of the letters in each hole to be attended to
and empty holes admitted, is {7 +1) (r+2) . . . (r+n-1).

(20.) The same as last, no empty holes being admitted, n !(n-1)!/(n-7)!
(r-1)1.

(21.) The same as last, the order of the holes not being attended to,
n!(n-1)/(n-r)lr!(r-1)1.

(22.) The number of ways in which » letters, all alike, can be distributed
into r pigeon-holes, the order of the holes to be attended to, empty holes to
be excluded, is .-10,—1.

(23.) Same as last, empty holes being admitted, n4r1Cr-1.

(24.) Same as last, no hole to contain less than g letters, p—1—yng—1)Cr1.

(25.) The number of ways of deranging a row of n letters so that no letter
may be followed by the letter which originally followed it is 7j +(n-1);.

(26.) The number of ways of deranging m+n terms so that m are dis-
placed and n not displaced is (m+n) !m;/min!.

(27.) The number of ways in which r different things can be distributed
among 7 +p persons so that certain » of those persons may each have one at
least is

8,=(n+py-nintp-1y+"22D)
Hence prove that .
Bi=th=. .. =81=0, Su=n!, Sen=(j+p)m+1!.
( Wolstenholme.)

(28.) Fifteen school-girls walk out arranged in threes. How many times
can they go out so that no two are twice together ? (See Cayley's Works, vol.
1, p. 481.)

(n+p-2)y-. ..

Exeroises IV. .
Topological.
(1.) The number of sides of a complete n-point is §n(n—-1), and the
number of vertices of a complete n-side is the same.
(2.) The number of triangles that can be formed with 2x lines of lengths
1,2, ... 2¢nisn(n-1)(4n-5)/6.
(8.) There are n points in a plane, no three of which are collinear, How

* Exercises 19-25 are solved in Whitworth’s Choice and Chance ; q.v.
VOL. II D
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many closed r-sided figures can be formed by joining the points by straight
lines t

(4.) If m points in one straight line be joined to » points in another in
every possible way, show that, exclusive of the m+n given points, there are
mn(m — 1) (n - 1)/2 points of intersection.

(5.) On three straight lines, A, B, C, are taken I, m, »n points respectively,
no one of which is a point of intersection. Show that the number of triangles
which can be formed by taking three of the I+ m+n points is §(m+n)(n+1)
(l+m)-mn-nl-Im. .

(6.) There are » points in a plane, no three of which are collinear and no
four concyclic. Through every two of the points is drawn a straight line and
through every three a circle. Assuming each straight line to cut each circle
in two distinct points, find the number of the intersections of straight lines
with circles.

(7.) In a convex polygon of » sides the number of exterior intersections of
diagonals is gyn(n — 8) (n - 4) (n - 5), and the number of interior intersections
is #en(n-1) (n-2)(n-38).

(8.) There are » points in space, no three of which are collinear, and no
" four coplanar. A plane is drawn through every three. Find, 1st, the num-
ber of distinct lines of intersections of these planes ; 2nd, the number of these
lines of intersection which pass through one of the given » points; 3rd, the
number of distinct points of intersection exclusive of the original n points.

(9.) Out of n straight lines 1, 2, . . ., n inches long respectively, four can be
chosen to form a pericyclic quadrilateral in {2n(n - 2) (2n - 5) - 3+ 8( - 1)} /48
ways.

(10.) Show that n straight lines, no two of which are parallel and no three
concurrent, divide a plane into }(n*+n+2) regions. Hence, or otherwise,
show that » planes through the centre of a sphere, no three of which are co-
axial, divide its surface into n?- n+2 regions.

(11.) Show that two pencils of straight lines lying in the same plane, one
containing m the other , divide the plane into mn +2m+2n -1 regions, it
being supposed that no two of the lines are parallel or coincident.

(12.) If any number of closed curves be drawn in a plane each cutting all
the others, and if n, be the number of points through which r curves pass,
the number of distinct closed areas formed by the plexus is

14+na4+2n8+. .. +r2u+. . .



CHAPTER XXIV.

General Theory of Inequalities.
Maxima and Minima.

§ 1.] The subject of the present chapter is of importance in
many branches of algebra. We have already met with special
cases of inequalities in the theory of Ratio and in the discussion
of the Variation of Quadratic Functions of a single variable ; and
much of what follows is essential as a foundation for the theory
of Limits, and for the closely allied theory of Infinite Series. In
fact, the theory of inequalities forms the best introduction to the
theory of infinite series, and, for that reason, ought to be set as
much as possible on an independent basis.

§ 2.] We are here concerned with real algebraical quantity
merely. As we have already explained, no comparison of com-
plex numbers as to relative magnitude in the ordinary sense can
be made, because any such number is expressed in terms of two
absolutely heterogeneous units. Strictly speaking, there is a
similar difficulty in comparing real algebraical quantities which
have not the same sign; but this difficulty is met (see chap.
xiii, § 1) by an extension of the notion of inequality. It
will be remembered that a is defined to be algebraically greater
or less than b according as the reduced value of a — b is positive
or negative. An immediate consequence of this definition is
that a positive quantity increases algebraically as it increases
numerically, but a megative quantity decreases algebraically as
it increases numerically. The neglect of this consideration is a
fruitful source of mistakes in the theory of inequalities.

§ 3.] From one point of view the theory of inequalities runs
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parallel to the theory of conditional equations. In fact, the
approximate numerical solution of equations depends, as we have
seen, on the establishment of a series of inequalities. *

The following theorems will bring out the analogies between
the two theories, and at the same time indicate the nature of
the restrictions that arise owing to the fact that the two sides of
an inequality cannot, like the two sides of an equation, be inter-
changed without altering its nature. For the sake of brevity,
we shall, for the most part, write the inequalities so that the
greater quantity is on the left, and the sign > alone appears.
The modifications necessary when the other sign appears are in
all cases obvious.

L IfP>Q,Q>R, R>S, then P>S.

Proof —(P - Q) + (Q — R) + (R — S)=P - S,hence,sinceP - Q,
Q-R, R -8 are all positive, P - S is positive, that is, P> S.

IL IfP>Q,then PtR>Q+R.

For (P£R)-(Q+R)=P - Q; hence the sign of the former
. quantity is the same as the sign of the Iatter

Cor. 1. If P+ Q>R + 8§, then

‘"P+Q-R>8, -R-8>-P-Q -P-Q<-R-8S

It thus appears that we may transfer a term from one side of
an inequality lo another, provided we change its sign ; and we may
change the signs of all the terms on both sides of an inequality, pro-
vided we reverse the symbol of inequality.

Cor. 2. Every inequality may be reduced to ome or other of the
Jorms P>0 or P<0.

In other words, every problem of inequality may be reduced
to the determination of the sign of a certain quantity.

IIL. IfP,>Q, P,>Q,, . . ., Pr>Qy,
then P+P,+...+Py > Q+Q+ ... +Qu;
for (P+P+ P - (Q Qe . L +Qy)

=P -Q)+P:-Q)+ ... +(Pn—-Qy),
whence the theorem follows.

It should be noticed that it does not follow that, if P,>Q,,

P,>Q, then P, - P,>Q, - Q,

* See, for example, the proof that every equation has a root.
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IV. If P>Q, then PR>QR, and P/R>Q/R, provided R be
positive ; but PR <QR, P/R <Q/R, if R be negative.

For (P-Q)R and (P -Q)/R have both the same sign as
P-Q if R be positive, and both the opposite sign if R be
negative.

Cor. 1. If P>QR, and R>S, then P>QS, provided Q be
positive.

Cor 2. Every fractional inequality can be integralised.

For example, if P/Q>R/S, then, provided QS be positive,
we have, after multiplying by QS, PS> QR ; but, if QS be nega-
tive, PS <QR. 4 ;

If there be any doubt about the sign of QS, then we may
multiply by QS", which is certainly positive, and- we have
QPS*> Q'RS.

V. IfP,>Q, P,>Q, . . ., P,>Qy, and all the quantities be

positive, then
PP,...P,> QQ,... Q,u
For pPPP,...P,>QPP, ... P,
since P,>Q, and P,P, . . . P, is positive ;
>QQPs . . . Py,
since P,>Q, and QP, . . . P, is positive ; and so on. Hence,

finally, we have
PP,... P> QQ ... Qp

Cor. 1. If P>Q, and both be positive, then P*> Q" n being
any positive integer.

Cor. 2. If P>Q, and both be positive, then PVn>QYn n being
any positive inleger, and the real positive value of the nth root being
taken on both sides.

For, if PUn2QYn, then, since both are real and positive,
(PYm)nZ(QY™)™, by Cor. 1; that is, P3Q, which contradicts our
hypothesis.

Cor. 3. If P> Q, both being positive, and n be any positive quan-
tity, then P~ <Q-", where, if the indices are fractional, there is the
usual understanding as lo the root to be taken.

Remark.—The necessity for the restrictions regarding the
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sign of the members of the inequalities in the present theorem
will appear if we consider that, although -2> -3, and
- 3> — 4, yet it is not true that (- 2)(-3)>(-3)(-4).

These restrictions might be removed in certain cases ; for
example, it follows from — 3> — 4 that (- 3)*>( - 4)’, in other
words, that — 27> — 64 : but the importance of such particular
cases does not justify their statement at length.

Cor. 4. An inequality may be rationalised if due atlention be paid
to the above-mentioned restrictions regarding sign.

§ 4.] By means of the theorems just stated and the help of
the fundamental principle that the product of two real quantities
is positive or negative according as these quantities have the
same or opposite sign, and, in particular, that the square of any
real quantity is positive, we can solve a great many questions
_ regarding inequalities.

The following are some examples of the direct investigation
of inequalities ; the first four are chosen to illustrate the paral-
lelism and mutual connection between inequalities and equa-
tions :—

Example 1. Under what circumstances is
(8z-1)/(z-2)+ (22— 8)/(x-5)>or <51
1st. Let us suppose that = does not lie between 2 and 5, and is not equal
to either of these values. Then (z - 2)(x - 5) is positive, and we may multiply
by this factor without reversing the signs of inequality.

Hence F=(3z-1)/(z- 2)+(2x - 3)/(x - 5)> <5,
according as
(Bz-1)(z-6)+(2x-3) (- 2)> <b(x-2)(x- b),
according as 6a? - 23z + 11> <ba? - 85z + 60,
- according as 12> <39,
according as z> <38}

Under our present supposition,  cannot have the value 3} ; but we con-
clude from the above that if z>5, F>5, and if z<2, F<5.

2nd. Suppose 2<z<5. In this case (z-2)(x-5) is negative, and we
must reverse all the signs of inequality after multiplying by it.

We therefore infer that if 2<z<3}, F>5, and if 3}<x<5, then
F<5.

The student should observe that, as x varies from — o to + o, the sign of
the inequality is thrice reversed, namely, when z=2, when x=3%, and when
z=5; the first and last reversals occur because F changes sign by passage
through an infinite value; the second reversal occurs because F passes
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through the value 5. The student should draw the graph of the func-
tion F.*
Example 2. Under what circumstances is
F=(3z-4)/(z-2)> <1? .
Multiplying by the positive quantity (z— 2)2, we have
Bz-4)/(z-2)> <1,

according as 8z - 4) (x—-2)> <(z~-2),
according as {(8z-4)-(z-2)}(z-2)> <O,
according as 2(x-1) (x-2)> <0.
Hence F>1,ifz<lor >2;

F<1, ifl<z<2.
Example 3. Under what circumstances is 23+ 252> <8x3+26 ¢

28+ 252> <823+ 26,
according as * - 823+ 25z - 26> <0,
according as (z-2) (23— 6z+13)> <0,
according as (z-2) {(x-8)*+4} > <0.

Now (x - 38)2+4 is positive for all real values of = ; hence

=8+ 25z > <823+ 26,
according as z> <2,

Example 4. If the positive values of the square roots be taken in all

cases, is
A/ (22 +1)+a/(z-1)> <a/(32) 1
Owing to the restriction as to sign, we may square without danger of re-
versing the inequality. Hence
(22 +1)+a/(z-1)> <a/(32),
according a8 2c+1+z-1+24/{(22+1)(z-1)} > <8z,
according as T2 /{(2241) (z-1)} > <O,
Now, provided z is such that the value of A/{(2z+1)(z~-1)} is real, that is,

provided z>1,
24/{(22+1)(x-1)} >0,

therefore N(22+1)+a/(z—1)>n/(32), if 2>1.

Negative values of x less than -4 would also make A/{(2x+1)(z-1)}
real ; but such values would make /(2 + 1), A/(x~ 1), and A/(82) imaginary,
and, in that case, the original inequality would be meaningless.

Example 5. If z, y, z . . . be n real quantities (n - 1)2z? < 22ay.

Since all the quantities are real, 2(z-y)?<0.

Hence, since z will appear once along with each of the remaining n-1
letters, and the same is true of y, z, . . ., we have

(n—1)Za? - 2Zay <0,
that is, (n-1)Z? < 22y

* The graphical study of inequalities involving only one variable will be
found to be a good exercise.
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In the case where z=y=z= ... we have Zz’=n23, 2Z2y=2,Cix?
=n(n - 1)2% so that the inequality just becomes an equality.

‘When n=2, we have the theorem

’ T +yie2zy;
or, if we put 2=4/a, y=4/b, a and b being real and positive,
a+b<2+/(ab),
a theorem already established, of which the preceding may be regarded asa
generalisation. A more important generalisation of another kind will be
given presently. i

Example 6. If 2, ¥, z, . . . be n real positive quantities, and p and ¢ any

two real quantities having the same sign, then
P+ Pty g Pyt + oy,
nZaPte ¢ ZaxrZam,

We have seen that zP - yP and 27 -y will both have the same sign as
z -y, or both opposwe signs, according as p and ¢ are both positive or both
negative. Hence, in either case, (x?-y*)(x2— y') has the pomtxve sign.
Therefore

(z? - #) (@ - 9) 40,
whence TP yPH S Pyt 4 2AyP,

If we write down the ,C, inequalities like the last, obtained by tzkmg
every possible pair of the n quantities z, y, z, . . ., and add, we obtain the
following result— .

(n - 1)Zaerte 4 Zxrys,

If we now add Sz*t¢ to both sides, we deduce

nZxrte 4 SxrZae,

N.B.—If p and ¢ have opposite signs, then

© nZxptep TxprZal,
These theorems contain a good many others as particular cases. For
example, if we put ¢= —p, we deduce
ZSarZrr4nd,
which, when n=3, p=1, gives
(z+y+2)(1/2+1/y+1/2)49;

whence (x+y+2) (yz+zx+2y) < 9zy2;
and so on.
Example 7. If z, ¥, z be real and not all equal, then 223> <3xyz, accord-
ing as x> <0.
For Za® - 8y = Za(Za? - Zzy),
=§22Z(z-y)%

Hence the theorem, since Z(x —y)? is essentially positive,
Example 8. To show that
1 (211,-1) \/(n+1)
»\/(2u+1) 2.4 . 2n 2n+1"’
where n is any positive integer. -
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From the inequality a + b> 24/(ad) we deduce
(2n-1)+(2n+1)>24/{(2n-1) (20 +1)} ;

whence (2n - 1)/2n <A/ {(2n - 1)/(2n+ 1)} (1);
similarly (2n 3)/2(n-1)<a/{(2n - 3)/(2n 1)} (2);
" b2 8<n/{5T) (n-2);
3/2.2<+/{8/5} : (n-1);
1/2.1<+/{1/8} (n).
Multiplying these inequalities together, we get '
1.3.5... (2n—l) 1 (A)
2.4.6... (20 _~@n+]) :
Again, n+(n+1)>24/{n(n+1},
that is, : 2n+1>2+/{n(n+1)}.
Hence we have tho following inequalities—
(2n+1)/2n> A/ {(n+1)/n} (1),
(2n 1)/2(n ~1)>A/{n/(n - 1)} @),
BRI (n-2),
5/2.2>A/{3/2} (n-1Y,
3/2.1>4/1{2/1} (n).

Maltiplying these n mequnhtles together, we get
1.3.5. (2n+1)

2.4.. >N/(n+1).
1.8.5. . (2n-l) Nn+1)
Hence 2.4.6...27 ~ on+l (B).

(A) and (B) together establish the theorem in question.
Since A/(n+1)/(2rn +1)>A/(n+1)/(2n + 2)>1/24/(n+1), we may state the
above theorem more succinctly thus,

_1 J18...@-1) 1
A/(2n+1) 2.4...2n 2+/(n+1)

DERIVED THEOREMS.

§ 5.] We now proceed to prove several theorems regarding
inequality which are important for their own sake, and will be
of use to us in following chapters.

If by by . . ., by, be all positive, the fraction (a, + as + . . .+ a,)/
(b +b,+. . . +by)is not less than the least, and not greater than
the greatest, of the n fractions a,[b,, a.fby . . ., an[bp.

Let f be the least, and f’ the greatest of the n fractions,

then
a/b<f, afby<f, .. ., ay/bp<Lf.
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Hence, since b,, b,, . . ., b, are all positive,
al¢.fbl’ %<ﬁ|) v ooy Gp <t by
Adding, we have
(G+as+. . . +a))<Lflb,+b+. . .+b,);

(@ +ag+. .. +apg)/b+b+. . .+b)<f

In like manner, it may be shown that

(@, +ag+. . .+ag)/(b+b+. . . +b,) > 1"

Remark.—This theorem is only one among many of the same
kind.* The reader will find no difficulty in demonstrating the
following : —

Ifayay. . . ag byby . . ., by beasbefore,and 1, 1, . . ., 1,
be n positive quantities, then =l,a,[ZLb, is not less than the least, and
not g'reater than the greatest among the n fractions a,[b, a,fb,

3y Gn/bp.

Ifa,, Qg o o oy Oy by by o o oy by By . L L, Uy e all positive,
then {Zha,™/Z1Lb™P™ and {aa, . . . an/bb, . . . b}V" are,
each of them, not less than the least, and not greater than the greatest,
among the n fractions a,[b, a,/by . . ., @n[by.

Example, to prove that

<J{ - (n 1)}<1

Since the fractions 1/2, 3/4, . (2n-1)/2n are obviously in ascending
order of magnitude, we have, in the second part of the last of the theorems
just stated,

whence

1_a(1.8...@2n-1)) 20-1
a<v { 2.4...2 2n
Now, (2n-1)/2n=1-1/2n<1, hence the theorem follows ; and it holds, be it
observed, however great » may be.
§6.] If =, p, ¢ be all positive, and p and q be integers, then
(22 - 1)/p> <(29 - 1)/q according as p> <gq.
Since p and ¢ are positive,
@ -1)[p> <(=-1)/g,
according as 9@@?-1)> <p(z?-1),

* See the interesting remarks on Mean Values in Cauchy’s Analyse
Algébrigue.
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according as ,
(z-1){g(zP ' +2P2+...+1)-p(e? '+ 2972 +.. .+ 1)} ><0.
If p>gq, we have
X=(z-1){glePt+2P2+. ..+ 1) - p(@?~ 1 + 292+ . . . + 1)},
=(z-1){gP1+2? 2+, .+ ) - (p- )@t + 2272+ ...+ 1)}
Now, if z>1,

2Pl P24, | +29>(p—qnl;

29 1429724, . L +1 < e

therefore,
X>(-1){gp-92 - (p- e},
>g(p-g9)t Yz - 1)}
> 0.
Again, ifz <1,

X>@-1){gp-9=? - (p-94},
>g(p-9q)(z-1)(@=*1-1)
> 0. (§ 3, Th. V., Cor. 1.)

Hence, in both cases,
(@ -1)/p> @ -1)/g.
By the same reasoning, if ¢> p,

(@ - 1)/g> (=2 - 1)/p,

(@ - 1)[p < (- 1)/g.
§ 7.] If = be positive, and + 1, then
' ma™z-1)>zm-1>mz - 1),
unless m lie between 0 and + 1, in which case
© ma™ Yz —1)<z™-1<m(z-1).
From § 6, we have

that is, if p<g,

(E7-1)> <(p/9)(¢7-1) 1)
according as p> <g, where £ is any positive quantity =1, and
p and ¢ positive integers. In (1) we may put 24 for £ where z
is any positive quantity =+ 1 (the real positive value of the gth
root to be taken), and we may put m for p/g, where m is any
positive commensurable quantity. (1) then becomes

Z™-1> <m(z-1) (2),



44 ma™~Yz - 1)72™ - 17 m(z - 1) CHAP.

according as m> <1, which is part of the theorem to be
established.
In (2) we may replace z by 1/z, where z is any positive
quantity #+ 1, and the inequality will still hold.
Hence 1/e™-1> <m(ljz-1) (3),
according as m> <1.
If we multiply (3) by — 2™, we deduce
@™ - 1< >mam™ Yz - 1),
that is, mzmYz—-1)> <a™-1,
according as m> <1.
We have thus established the theorem for positive values
of m.
Next, let m = —n where n is any positive commensurable
quantity. Then
“n-1> <(-n)(z-1),
according as 1-at> < —nat(z - 1),
according as 2 —-1< >na(z - 1),
nettl - et > <2t - 1.
Add z#*! - 2 to both sides, and we see that
n-1> <(-n)(z-1),
according as
C(n+)aMz-1)> <antl-1.
Now, since n is positive, n+1>1, therefore, by what we
have already proved,
(n+1aMz—-1)>2"+1- 1.
Hence zm-1>(-n)(z-1) 4).
In (4) we may write 1/z for 2 ; and then we have
1/z)m-1>(-n)(1/z-1).
If we multiply by — z-7, this last inequality becomes
-1 <(-n) " iz-1),
that is, (-nxYe-1)>z"-1.
Hence, if m be negative,
ma™ Yz - 1) > 2™ —1>mz - 1);
which completes the demonstration.
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Cor. If z and y be any two unequal positive quantities, we
may replace z in the above theorem by z/y. On multiplying
throughout by ™, we thus deduce the following—

If x and y be positive and inequal, then

mz™ Yz — y) > 2™ — Y > my™ Nz - y),
unless m lie between 0 and + 1, in which case
M1z — g) < 27 — Y™ < my™-Y(z — y).

We have been careful to state and prove the inequality of
the present section in its most general form because of its great
importance : much of what follows, and many theorems in tbe
following chapter, are in fact consequences of it.*

Example 1. Show that, if = be positive, (1+x)™ always lies between
1+mz and (1+2)/{1+ (1 -m)z}, provided mx<1+a.
Suppose, for example, that m is positive and <1. Then, by the theorem

of the present section,
m(l +z)"z<(l+z)™-1<me.
Hence (1+z)*<1+ma.
Also, ) (1+2)™-1>ma(l +2)™/(1+2),
11-mz/(1+2)}(1+zy™>1.
If mz<1+z, 1-mx/(1+z) is positive, and we deduce
(1+2y>1/{1 - mz/(1 +2)},
>(1+2)/ {1 +(1 - m)}.

The other cases may be established in like manner.

Remark.—It should be observed that

(1xz)m> <1tma,

according as m does not or does lie between 0 and +1.

Example 2. Show that, if u;, u3 . . ., us be all positive, then
(T+u)(14ug) o . . Q+up)>l+up+ug+...+us;
also that, if u;, 43 . . ., u, be all positive and each less than 1, then
A-wm)A-u) . .. Q-up)>1-w~t0a—...~u,.
The first part of the theorem is obvious from the identity
(1+w)(1+us) . . . (1+up)=1+Zuy+ Zugug+ Zugugg+. . . +Uslig. « . Uy.
The latter part may be proved, step by step, thus—

1-uyy=1-y.
(l ) (1 -ua)=1-u - s+ Uy 24z,
>1-u -y,

* Several mathematical writers have noticed the unity introduced into
the elements of algebraical analysis by the use of this inequality. See especi-
ally Schlomilch’s Handbuch der Algebraischen Analysis. The secret of .its
power lies in the fact that it contains as a particular case the fundamental
limit theorem upon which depends the differentiation of an algebraic function.
The use of the theorem has been considerably extended in the present volume.
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Hence, since 1 - us is positive,
(1 =) (1 -us) (1~ us)>(1-us) (1-w - us),
>1-u; - ug— us+ us(uy + u2),

>1-uy - ug—us.
And so on.

These inequalities are a generalisation of (1*z)*>1%nz(z<1 and n a
positive integer). They are useful in the theory of infinite products.

§ 8.] The arithmetic mean of n positive quandities is not less than
their geometric mean.

.Let us suppose this theorem to hold for = quantities
a, b, ... k and let 7 be one more positive quantity. By
hypothesis,

@+b+c+. .. +k)nd(abe . . . k),

that is,
a+b+e+. . . +kgn(abe . . . k),
Therefore
a+b+e+. . . +k+ldnfabe . . . B)Vr 41
Now,

n(abe . . . E)m+ld(n+1)(abe . . . K)UntD)
provided . .
niabe . . . kM4 14 (n+ 1) {abe . . . RIfI+1}Kn+)
<(n+1){abe . . . kjInjlnt))
that is, provided

nfM 4+ 14 (n + 1)E7,
where S+t =qabe . . . kfIn,
that is, provided
(n+ 1)EME- 1)1 -1,
which is true by § 7.
Hence, if our theorem hold for n quantities, it will hold for
n+1. Now we have seen that (a +b)/2< (ab)}, that is, the

theorem holds for 2 quantities ; therefore it holds for 3 ; there-
fore for 4 ; and so on. Hence we have in general

(@+b+c+. . . +k)/nd(abc . . . k)n,

It is, of course, obvious that the imequality becomes an
equality when a=b=c¢=. . .=k
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There is another proof of this theorem so interesting and
fundamental in its character that it deserves mention here.*

Consider the geometric mean (abc . . . k). Ifa, b,¢, . . .
be not all equal, replace the greatest and least of them, say a
and k, by (a + k)/2; then, since {(a+k)/2}*> ak, the result has
been to increase the geometric mean, while the arithmetic mean
of the n quantities (a + k)/2, b, ¢, . . ., (a +%)/2 is evidently the
same as the arithmetic mean of @, b,¢, . . ., k. If the new set
of n quantities be not all equal, replace the greatest and least as
before ; and so on.

By repeating this process sufficiently often, we can make all
the quantities as nearly equal as we please; and then the
geometric mean becomes equal to the arithmetic mean.

But, since the latter has remained unaltered throughout, and
the former has been increased at each step, it follows that the
first geometric mean, namely, (abc . . . k)", is less than the
arithmetic mean, namely, (@ +b+c+. . . +k)/n.

As an illustration of this reasoning, we have (1.3.5.9)4
<(5.3.5.5)t<(5.4.4.5) <(45.45.45.45)<45<(1+3
+5+9)/4

Cor. Ifa, b, . . ., k be n positive quantities, and p,q, . . ., t be
n positive commensurable quantities, then -

pa+gh+. . '+tk¢(aﬂb‘1 .. RUereE .. 4D,
pHg+. . .+t
It is obvious that we are only concerned with the ratios
p:q:...:t Hence we may replace p, ¢q,. . ., ! by positive
integral numbers proportional to them. It is, therefore, suffi-
cient to prove the theorem on the hypothesis that p,gq,. . ., ¢
are positive integers. It then becomes a mere particular case of
the theorem of the present paragraph, namely, that the arithmetic
mean of p+ g +. . .+1¢ positive quantities, p of which are equal
toa,qgtod,. .., ¢ tok is not less than their geometric mean.

* See also the ingenious proof of the theorem given by Cauchy (4nalyse
Algébrique, p. 457), who seems to have been the first to state the theorem in
its most general form.
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Example 1. S8how that, ifa, b, . . ., % be n positive quantities,
2 b4. . .
(a +03+. . . +E\a+b+ +k“‘b’ R

a+b+. . .+k " o
< a+b+.n. .+k)a +. ..
The first part of the proposition follows from the above corollary by taking
r=a,q=b, ..., k=
To prove the second part let us assume that
athh ... k4 {(@a+d+. . .+k)mjotdt. . 4k

Then asbt . . . ROl {(a+b+. . . +k)[n}otdt. . HE

But .

Fla+b+. . .+h)ajotdr AE g fa1bt, . +E+D)/(n+1)}o+dH . HRHE
provided 1¢{n(1+z)/(n+1)} {(1+1/x)/(n+1)}%,

that is, {1+1/2)/(n+1)} =+ (n+1)/n(1 +z),

where z=1/(a+b+. . .+k), which we may suppose + 1, since there is no loss
of generality in supposing a, b, . . ., k, I arranged in descending order of
magnitude. '
Now, by § 7, since 2+ 1,
{1+1/z)/[(n+ 1)} =+ 1+ 2{(1 +1/z)[(n+1) - 1},
+(n+2-nzx)/(n+1).
Also, (n+2-nz)/(n+1)+(n+1)/n(1+2),
provided n(n+2-nx)(l+2)+(n+1)3,
73+ 2n+ 2z - ni3 03+ 20+ 1,
0% (nz—1)3,
which is true.
Hence, if the proposition hold for n quantities, it will hold for n+l
But, obviously, a® 4 (a/1), hence &c.
Example 2. Prove that 1.3 . . . (2n-1)<nan. .
Wé have {148+. . .+(2n—l)}/n>{].3 v oo (20 =1)}1n)
that is, n?n>{1.3 . .. (2n-1)}1m
Hence > 1.3...(2n-1)
§9.] If a,b,. . ., k be n positive quantities, and p, g, . . ., ¢
be n positive quantities, then
pa™+ g™ +. . . +tk"‘ (pa+qb+. . ™
pHgt. . . +* p+q+...+t) M,
awordingasmdoesnotordoeslwbetweenOand +1.
If we denote
plp+g+. . .+8), q/lp+g+. . .+1), &e,
by A p. ., and
afAa+pb+. . .+7k), blAa+pb+. . .+7k), &c.,
by z 9. . ., w so that
Atp +.. . +7 =1 (2),
M+py+. . . +1mw=1 (3),
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then, dividing both sides of (1) by
{(pa+gb+. ..+tk)(p+qg+. .. .+t)}™
we have to prove that

AZ™ 4 py™+ .+ P (4),
according as m does not or does lie between 0 and + 1.

Now, by § 7, if m does not lie between 0 and + 1, 2™ -1
<m(z - 1), y* - 1<Lm(y - 1), &e. Therefore, since A, y, &c., are
positive,

ZA@™ - 1) S Zam(z - 1),

4m {Shz - S},
<$m(1 - 1),
by (2) and (3), that is,
Saa™ — ZA 0.
Hence I 1.
In like manner, we show that, if m lies between 0 and + 1,
Samp 1.

Cor. If wemake p=q=. . .=t, we have
am+dm . LA™ a+b+...+k\™
TR ()T e
that is to say, the arithmetical mean of the mth powers of n positive
quantities is not less or not greater than the mth power of their arith-
metical mean, according as m does not or does lie between 0 and + 1.
Remark.—1It is obvious that each of the inequalities (1), (4),
(5) becomes an equality if a=b=. . .=k if m=0, orif m=1.
Example. Show that Z\a™, considered as a function of m, increases as m
increases when m > +1, and decreases a8 m increases when m < -1,
ANw,» ... %72 ... beingasabove.
1st. Let m>1. We have to show that ZAxm™tr>Z\zm, where r is very
small and positive, that is,
EAam(zr - 1)> 0,

Now, Ihe™(z” - 1) > Enemrar—Y(z - 1),
>rZNemtr=l(z - 1),

* The earliest notice of this theorem with which we are acquainted is in
Reynaud and Duhamel’s Problémes et Dévelopmens sur Diverses Parties des
Mathématiques (1823), p. 165. Its surroundings seem to indicate that it
was suggested by Cauchy’s theorem of § 8. The original proof rests on a
maximum or minimum theorem, established by means of the Differential
Calculus ; and the elementary proofs hitherto given have usually involved
the use of infinite series. :
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Since m>1, m+r>1, therefore (m+r)z™trY(z-1)>(m+r)(x-1), that
is, ™Yz -1)>(z-1).

Hence T Iazm™(xr-1)>rINz-1),
’ >7r(ZX\z - 2\),
>0.
Therefore Ihgmtr > Iz,

2nd. Let m< -1,
Iz - 1) <rZAe™(z - 1).

Now (m+1)™(z-1)>(m+1)(x-1), since m+1 is negative. Hence,
dividing by the negative quantity m+ 1, we have

™Mz-1)<(z-1)
Hence INem(zr - 1)<rZN(z - 1),
<r(ZAz-ZN),
_ <0.
Therefore, Azt < Zha™,

ExXERCISES V.*

"(1.) For what values of z/y is (a+ b)zy/(az +by) + (az + by)/(a+b) !

(2.) If z, y, z be any real quantities, and z>y>3z, then z'y+y'z+ 22>
2yh 4yt + 2t

(3.) If x, y, 2 be any real quantities, then Z(y-=z)(z- z)$+0 and Zyz/
eyl

(4.) If 2+ y*+234+2zyz=1, then will all or none of the quantities z, y, =
lie between —1 and +1:

(5.) If  and m be positive integers, show that
2 < (x4 1) (22 +1) (32 + 8z + 1)™/2.. B < (+ 1 )23,
(6.) (@)} + (B/a)t ¢ at + 3. .
(7.) If 2y, 25, . . ., @nall have the same sign, and 1+, 1+ 23, . . .y 1+ 2
be all positive, then .
I(1+2)>1+2a.
(8.) Prove that 8zyz+ II(y +2)+ §=a3.

9)Ifx, 9,2 ...,ab c... betwo sets, each containing n real
quantities positive or negative, show that

Zatad 4 (Zaz)?;
also that, if all the quantities be positive,

2(z/a)/Zx < Zz[Zaz ;
and, if Zz=1, Zl/x<4nd

(10.) If =, @2, . . ., 2, and also g1, ¥s, . . ., Yn be positive and in
ascending or in descending order of magnitude, then

Za iy [Zayy, > 2oyt 2y, : (Laplace.)

* Unless the contrary is stated, all letters in this set of exercises stand
for real positive quantities.
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(11.) Ifa, b, . . ., Lbein A,P., show that
a?t . .. B>arln,

(12.) For what values of = is (x- 8)/(2*+2+1)>(x - 4)/(2?-2+1)?
(13.) Find the limits of z and y in order that

c>ax+by>d,
a>cx+dy>b;
where ad —-bc % 0.

(14.) 28 — 2Py + 4x*y? — 22993 + 4yt — a® + > O, for all real values of
z and y.

(15.) Is 1022+ 5y +1322> = < 8yz+ 2xy + 18z ?

(16.) If p4 2~ A/2, then A/(x?+3*) +pa/(zy) >z +y.

(17.) Is A/(a®+ab+ b)) — A/(a® - ab+ b%) > = < 2+/(abd) ?

(18.) If z and a be positive, between what limits must x lie in order that
z+a>A/{}(22+za+a?)} +4/{§(22 - 2za+a?)}?

(19.) If 2<1, then {z+/(2 - 1}¥+ {z— A/(2? - 1)} <2

(20.) If all the three quantities n/{a(b+c-a)}, A/{b{c+a-b)}, A/{da+
b —c¢)} be real, then the sum of any two is greater thm the third.

(21.) If the sum of any two of the three z, ¥, z be greater than the third,
then $ZzZa?> 223 + zyz.

(22.) Z1/z< 2[5

(23.) If p, denote the sum of the products r at a time of a, b, ¢, & (each
positive and <1), then p, + 2p,> 2p,.

(24.) Zt ¢ zyeZa.

(25.) If s=a+b+c+ . . .n terms, then Zs/(s—a)<¢n?/(n-1).

(26.) If m>1, z<1, and mz<1+z, then I/(1Fmz)>(1xz)™>1tnz.

If m<l, z<1, mx<l+z, then (1+2)/{1x(1-m)x} <(1Lz)"<

1tmae.

(27.) If #=am+y~, then 2> <a™+ y™ according as m> <n. -

(28.) If = and y be unequal, and =+ y < 2a, then 2™+ y™> 2a™, m being a
positive integer.

(29.) ni{(n+10m -1} <1+1/2+. . . +1/n<n{l-1/(n+1}m+1/(n+1)}.

(Schlomilch, Zeitschr. f. Math., vol. iii. p. 25.)

(30.) If ;yzs . & . Zu=y™, II(14+21) < (1 +y)~
(31.) Ifa, b, . . ., k be n positive quantities arranged in ascending order
of magnitude, and if M, = {Za"/n}"", N,= {Za¥r}"/n, then
(ab... k)n<M;<My<... <k

(@ab...kWm<...<Ns<Ny<N,.
(Schlomilch, Zeitschr. f. Math., vol. iii. p. 301.)

(32.) If p, g, r be all unequal, and = % 1, then Zpx1-7>Zp.
(33.) If n be integral, and z and n each >1, then

2 — 1> (ziwHIR - v 13),
(34.) Prove for z, y, z that (2Zyz - %)% ¢ (Zz)¥TI(Zz - ).
(35.) If s=a,+G2+ . . . +a, then Ii(sfa, - 1)%r +(n-1)%
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(36.) Sm(3m +1)2> 4(Sm!)i/m,

(87.) If s be the sum of the nth powers of a), as, . . ., @y, and pm the
sum of their products m at a time, then (n—1)!s,< (2 —m)!Mipm

(38.) Ifay>a;>. . . >ay, then

(a1- @) 1> (n - 1) Yay - ag) (22— ag) . . . (Gn-1~ )

Hence, or otherwise, show that {(n-1)!}2>n=-9,

(39.) Which is the greatest of the numbers /2, +/3, &/4, . . . !

(40.) If there be n positive quantities 2y, 23, . . ., @, each>1, and if
&1, &, . . ., & be the arithmetic means,.or the geometric means, of all but

21, all but 23, . . ., all but 2, then Ix ¥ 3 1150,

(41.) If @, b, c be such that the sum of any two is greater than the third,
and z, y, z such that 2z is positive, then, if Za?/z=0, show that zyz is
negative.

(42) If A=y +aq+. .. +as, B=b+8+. .. +b,, then Z(a,/A-
b,/B) (ay/b,)" has the same sign as = for all finite values of n. .

(Math. Trip., 1870.)

APPLICATIONS TO THE THEORY OF MAXIMA AND MINIMA.

§ 10.] The general nature of the connection between the
theory of maxima and minima and the theory of inequalities
may be illustrated as follows :—Let ¢(z, 9, z), f(z, 3, 2) be any
two functions of z, y, 2z, and suppose that for all values con-
sistent with the condition

f& g 2)=A (1),
we have the inequality
Nz 9, )P Sz 9, 2) (2)-
If we can find values of %, y, 2, say @, b, ¢, which satisfy the
equation (1) and at the same time make the inequality (2) an
equality, then ¢{a, b, c) is a maximum value of ¢z, 3, 2). For, by
hypothesis, ¢{a, b, ¢) = A and ¢z, 9, 2) A ; therefore ¢(z, 9, 2)
cannot, for the values of z, y, z considered, be greater than A,
that is, than ¢(a, b, c).
Again, if we consider all values of z, ¥, z for which
¢(:t, Y z) =A (ll):
if we have Rz, 9, 2) <, 9, 2)
* {A (2')7

it follows in like manner that, if a, b, ¢ be such that ¢(a, b, ¢) = A,
f(a, b, ¢)=A, then f(a, b, c) is a minimum value of f(2, y, 2).
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The reasoning is, of course, not restricted to the case of three
variables, although for the sake of brevity we have spoken of
only three. The nature of this method for finding turning
values may be described by saying that such values arise from
exceptional or limiting cases of an inequality.

§ 11.] The reader cannot fail to be struck by the reciprocal
character of the two theorems deduced in last section from the
same inequality. The general character of this reciprocity will
be made clear by the following useful general theorem :—

If for all values of z, y, 2, consistent with the condition

S (27, Y z) =4,
&(2, 9, 2) have a mazimum value ¢{a, b, ¢) =B say (where B depends,
of course, upon A), and if when A increases B also increases, and
vice versa, then for all values of z, y, z, consistent with the condition

$(z, 9, 2)=B,
Sz, y, 2) will have a minimum value f(a, b, c) = A.

Proof—Let A’'<A, then, by hypothesis, when f(z, y, z) = A’,
$(z, 9, 2) p B’ where B'<B.

Hence, if ¢(z, ¥, 2) =B, f(z, ¥, 2)< A ; for suppose if possible
that f(z, y, z) = A'<A, then we should have ¢(z, 9, 2) B/, that
is, .since B'<B, ¢(z, 9, 2) could not be equal to B as required.
Hence, if a, b, ¢ be such that ¢(a, b, ¢)=B and f(a, b, ¢) = A,
f(a, b, ¢) is & minimum value of f(z, ¥, 2).

By means of the two general theorems just proved, we can
deduce the solution of a large number of maximum and minimum
problems from the inequalities established in the present chapter.

§ 12.] From the theorem of § 8 we deduce immediately the
two following :—

L Ifz,9,2 ... ben positive quantities subject to the condition
Zz=k,
then their product TIx has a mazimum value, (k[n)*, when z=y=
.. .=k

IL Ifz, 9,2 . .. be n positive quantities subject to the con-
dition
Iz =k,
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then their sum 3z has a minimum value, nk\/", when z=y= . . .
= kln,

The second of these might be deduced from the first by the
reciprocity-theorem.

From the corollary in § 8 we deduce the following :—

IIL. If @, 9,2 . . . be n positive quantities subject lo the con-
dition
Zpz=kh
where p, q, 7, . . . are all positive constants, then TIzP has a marimum
value, {k/Zp}*, when z=y= . . . =k/Zp.
IV. If 2, 9, 2, . . . be n positive quantities subject to the restric-
tion :
Iz? =k,
where p, q, 1, . . . are all positive constants, then Zpx has a minimum
value, (Sp)kM3r, when x=y= . . . =k,

From the last pair we can deduce the following, which are
still more general :—

V.IfNpw, .o hbmn, . p,q 1 . . . beall positive
constants, and z, y, z, . . . be all positive, then if
Eat =k,

IIz? is a maximum when
INF[p = mpy™[q = nvzfr = .

VI And if TLe? =k,
Azt is a minimum when

I\l [p = mpy™/q = nv2*[r = .
Proof.—Denote pfl, g/m, r/n, . . . by a, Byy, . . .;

and let AMl=af, py™=PBy, vi"=y{ &e.
So that z=(a/A, &e.; 2P = (af/N), &e.
We then have in the first case
Sof =k (1),
ITzP = TI(a/A)~T1= (2).
Hence, since (a/A)*, (B/n), . . . are all constant and all positive,

IIz? is a maximum when IT¢* is a maximum. Now, under the
condition (1), IT{* is a maximum when £=9= . .. =k/Za.
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Hence I1z?is a maximum:when Ao =py™/B=. . ., that is,
when Ip =mpy™lg=. . .

The maximum value of ITx? is II(a/A)*(k/Za)*, and the
corresponding values of z, 9, 2, . . . are given by

z = (ak/AZa)! . . .
Applying the reciprocity-theorem, we see that, if
IIz? = II(a/A)*(k/Za)>,
the minimum value of Az is %, corresponding to
z = (ak/AZa)® ., . .
Whence, putting j = II(a/A)*(k/Za)®, we see that, if IIz? = j,
the minimum value of ZA2? is Za{;j/II(a/))*}'/®s, corresponding

to
2= [a {j/T(a/ Xy} P=/AT1 . .
Cor. If we put I=m=n=...,=1, p=gq=r=...=1,
we obtain the following particular cases, which are of frequent
occurrence :—
If Zhx =k, Tz is a mazimum when Az =py= . . .;
If Nz =k, Az is a minimum when Az =py= . . .

Example 1. The cube is the rectangular parallelopiped of maximum
volume for given surface, and of minimum surface for given volume.

If we denote the lengths of three adjacent edges of a rectangular parallelo-
piped by z, y, 2, its surface is 2(yz+2x+xy) and its volume is zyz. If we
put i=yz, n=2x, {=xy, the surface is 2({+n+¢) and the volume A/(£n¢).
Hence, analytically considered, the problem is to make £9¢ a maximum when
§+n+¢{is given, and to make {47+ ¢ a minimum when ¢ is given. This,
by Th. L, is done in either case by making {=n=¢, that is, yz=22=cy;
whence z=y=z. :

Example 2. The equilateral triangle has maximum area for given peri-
meter, and minimum perimeter for given area.

The area is A=~/s(s—a)(s—-b)(s—c). Let z=s—a, y=s-b, z=s—c;
then 2+y+z=8; and the area is o/szyz. Since, in the first place, s is given,
we have merely to make zyz & maximum subject to the condition z+y+z=s.
This leads to z=y=2z (by Th. 1.)

Next, let A be given.

Then (z+y+2)xyz=A3 i (1);
s=Axyz (2).

If we put {¢=2%z, n=2xy%, {=xy2? we have )
E+n+¢=A7 )

8= A%(gng) (@)
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Hence, to make s a minimum when A is given, we have to make ¢n¢ a maxi-
mum, subject to the condition (1'). This leads to §=9=¢, that is, 2%yz=
xy=zy2*; whence x=y=z.

Example 3. To construct a right circular cylinder of given volume and

" minimum total surface.

Let « be the radius of the ends, and y the height of the cylinder. The
total surface is 2x(22+zy), and the volume is wz%.

We have, therefore, to make u=x?+zy a minimum, subject to the con-
dition 2%y =¢. We have

u=x*+zry=cly+cfz (1);
. Py=c (@)
Let 1)x=2¢, 1ly=n;
then u=c(2£+7) 1);
n=1/4c @).

‘We have now to make 2f + 7 (that is, £ +£+%) & minimum, subject to the
condition $¥n= constant. This, by Th. II., leads to {=¢=9, which gives
2z=y. Hence the height of the cylinder is equal to its diameter.

By the reciprocity theorem (applied to the problem as originally stated in
terms of z and y), it is obvious that a cylinder of this shape also has maximum
volume for given total surface. '

§ 13.] From the inequality of § 9 we infer the following :—

VIL. If m do not lie between O and + 1, and if p,q,7, . . . be all
constant and posilive, then, for all positive values of z,y,2, . . . such

that
Spz=Fk

Zpa™ (m unchanged) has a minimum value when x=y=2=. . .

If m lie between O and + 1, instead of a minimum we have a
mazimum.

In stating the reciprocal theorem it is necessary to notice
that, in the inequality, Zpz occurs raised to the mth power; so
that, if m be negative, a maximum of Zpz corresponds to a mini-
mum of (Spz)™. Attending to this point, we see that—

VIIL If m> +1,and if p, g, 7, . . . be all constant and posi-
tive, then, for all positive values of 7, y, 2, . . . such that

Zpa™ = k (m unchanged),
Spz has a maximum value when z=y=2= . . .

If m< + 1, we have a minimum instead of a maximum.

Theorem VIII. might also be deduced from Theorem VII. by
the substitution § =2™, n=9y™, {=2™ &c. . . .
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§ 14.] Theorem VIL may be generalised by a slight trans-
formation into the following : —

IX. If m/n do not lie between O and + 1, and if p, g, 7, . . .,
A p, v, . . . beall constant and positive, then, for all positive values
of z, 9,2, ... such that

Szt =k (n unchanged),

Spz™ (m unchanged) has a minimum value when pe™[Az=
= .

If m[n lie between O and + 1, instead of a minimum we have a
mazimum.

The transformation in question is as follows :—

Let Ah=pf, pft=oy () -
e =pf), q=ay/ @)
From the first two equations in (1) and (2) we deduce
&/ = pam-n/), pf-1 = Mz/n-m[p, &c.  Hence, if we take fn=m,
that is, f=m/n, p, o, . . . will be all constant and obviously all
positive ; we have, in fact,
§=(pr™MI=D, g = (qym-n[p)IU-D, L (3),
p=(Mp}-D, o=@gQhu-b, ... (4)
and we have now to make Zp£/ a maximum or minimum, subject
to the condition
Zpt=k.
Now, by Th. VIL, 2p{/ is a minimum or maximum, according
as f does not or does lie between 0 and + 1, when £=9=. . .
Thus the conditions for a turning value are

(G- = D=
which lead at once to
A" = gy = L

Cor. A very common case is that where n=1, A=p=. ..
=1L

We then have, subject to the condition 2z = &, Zpz™, a mini-
mum or maximum when pa™-l=gym-1= . . , according as m

does not or does lie between 0 and + 1.
§ 15.] We have hitherto restricted p, ¢, 7, . . . in the in-
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equality of § 9 to be constant. This is unnecessary ; they may
be functions of the variables, provided they be such that they
remain positive for all positive values of z, y, 2.

We therefore have the following theorem and its reciprocal
(the last omitted for brevity) :—

X Ifpgr, ... befunctions of x,y,2, . .. which are real
and positive for all real and positive values of z, y, 2, . . ., then, for
all positive values of @, y, 2, . . . which satisfy

. Zpx = ,
(Zpz™) (Zp)™-1 (m unchanged) has a minimum or maximum value
when z=y=. .., according as m does not or does lie between
0and +1. '
For example, we may obviously put p=\29, g=p9?, . . .
We thus deduce that if m> +1 or <0, then, for all positive values of

2,9, % . . . consistent with ZAzxetl=Fk, (SAxm™te)(ZAz%)™-1 is a minimum
when z=y=. ..

Theorem X. may again be transformed into others in appear-
ance more general, by methods which the student will readily
divine after the illustrations already given.

Also the inequalities of § 8 may be used to deduce maxima
and minima theorems in the same way as those of § 9 were used
in the proof of Theorem X.

Example 1. To find the minimum value of u=xz+y+2 subject to the
conditions a/z+ b/y +¢/z=1, >0, y>0, 2> 0, a, b, ¢ being positive constants.
Let z=pt/, y=on’, z=1¢’;

alz=pt, bly=om, cfz=r%.
Hence p/~!=af[z/+1. If we take f= -1, we therefore get
z=a/af"l, y=a/bn7Y, z=a/cs;
afe=njaf, by=nfbn, cz=n/et.

The problem now is to make u=2Za/at~! a minimum subject to the con-
dition Za/af=1. By Th. VII. this is accomplished by making ¢é=n=¢.
Hence ¢=n=¢=1/2a/a. The minimum value required is therefore
(Z4/a)?; the corresponding values of z, y, z are a/aZr/a, A/bZr/a, A/cZr/a
respectively. i

Example 2. To find a point within a triangle such that the sum of the
mth powers of its distances from the sides shall be a minimum (m>1).

Let a, b, ¢ be the sides, z, y, = the three distances ; then we have to make
u=2Za™ a minimum, subject to the condition Zax=2A, where A is the area
of the triangle.
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If pp™=2am, pt =ax, then p™-1=am, p=am™/m-1,
Hence, if we put ax=am™/"-V¢, by=>bm/m-lly cz=cm{m-1{, we have

w=Zam/m-1pm,
2A=Zam/m-1g,
The solution is therefore given by {=7={=2A/Zam/m-1),
Whence x=2Aa/m-1)[Zqm(m-1),  y=&ec,, z=&c.

Example 8. Show that, if z3+y*+28=3, then (x4 +y®+2%) (2 + 1+ 2%) has
a minimum value for all positive values of z, y, z when z=y=2=1.

This follows from Th. X., if we put m=2, p=2a3, ¢=33, r=2, which is
legitimate since z, y, 2 are all positive.

Example 4. If z, 9,2, . . . be n positive quantities, and m do not. lie
between 0 and 1, show that the least possible value of (Zz™-?) (21/x)™-1is n™,

This follows at once from the inequality of § 9, if we put p=1/z,
g=1/y, . . .

§ 16.] The field of application of some of the foregoing
theorems can be greatly extended by the use of undetermined
multipliers in a manner indicated by Grillet.*

Suppose, for example, it were required to discuss the turning
values of the function

u=(az + p)(lz + g)™(cx + 1) (1),
where /, m, n are all positive.
We may write
w=(haz + Ap)(uba + pg)"(vem + v/ Nmn (2),
where A, p, v are three arbitrary quantities, which we may sub-
ject to any three conditions we please.
Let the first condition be
I\ + mpb + nve =0 3);
then we have
U Aaz + Ap) + m(ubzx + pq) + n(vex + vr)
’ =IAp+mpg+mr=k (4),
where £ is an arbitrary positive constant.

This being so, we see by Th. IIL. that II(Aaz + Ap) is a

maximum when
Aaz + Ap = pbex + pg = vex + vr
=k/Zl (5).

* Nouvelles Annales de Math., ser. i., tt. 9, 16.
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The four equations (3) and (5) are not more than sufficient
to exhaust the three conditions on A, g, v, and to determine .

We can easily determine z by itself. In fact, from (3) and
(5) we deduce at once

la/(ax + p) + mb/(bx + g) + nef/(cx + 1) =0 (6).

This quadratic gives two values for , say z, and z,; and the
equations (5) give two corresponding sets of values for A, g, v,
in terms of %, say A, p, v, and A, py, v,

If, then, A,'x,™»,® be positive, z, will correspond to a maxi-
mum value of u; if A,}u,™»" be negative, z, will correspond to
a minimum value of % ; and the like for z,.

Example 1. To discuss u=(z+ 8)*(z - 8).

‘We have u= Az + 3\)}(ux - 3u)/A
Now 2z +3N) + (uz - 3p) =%,
provided 22 +u=0 (1),
6\ -8u=Fk .
Therefore (\z+ 3\)¥ux - 3x) will be a maximum, provided
Az +8A=pz - 3 (3).

Hence, by (1),
2/(z+3)+1/(x-8)=0;

which gives z=1. From (2) and (3) we deduce A=k/[12, u= —k/6 ; so that
A2 is negative.

‘We therefore conclude that % is a minimum when z=1.

The student should trace the graph of the function u; he will thus find
that it (has also a maximum value, corresponding to z= -3, of which this
method gives no account.

Example 2. For what values of z and y is
u=(az+by+a)+(ar+by+e)+ . . . +(aw+bay+ca)?

a minimum ?
Let Ay, Az, . . ., Aq be undetermined multipliers. Then we may write

u=ZN{(@z + by + )M} 1);
and k=Z\2{(arz+ by + 1)/} . (2),
where k is an arbitrary positive constant, that is, independent of = and y,
provided

S =0, Zh\=0, Zc\=k (8).
This being so, by Th. VII., « is a minimum when
(az+by+a) M= (age+by+a)ha=. . . =k[Z\? (4).

The n+2 equations, (3) and (4), just suffice for the determination of

xbhv .. -,M.x:y-
From the first two of (3), and from (4), we deduce
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Zay(arx + by +6)=0,
Zhi(ax+ by +¢)=0.
Hence the values of xz and y corresponding to the minimum value of n are
given by the system
Za’z + Zaybyy + Zaye, =0,
Zaybyx + Zh,%y + Zbc, =0.
This is the solution of a well-known problem in the Theory of Errors of
Observation.
§ 17. Method of Increments.—Following the method already

exemplified in the case of a function of one variable, we may

define

I=¢(z+h y+kz+l)- Pz, 9, 2)
as the increment of ¢(z,y,2). If, when z=qa,y=05, z=¢, the
value of I be negative for all small values of A, %, [/, then
¢{a, b, ¢) is a maximum value of ¢(z, y,2); and if, under like
circumstances, I be positive, ¢(a, J, ¢) is a minimum value of
=, ¥, 2)-

Owing to the greater manifoldness of the variation, the ex-
amination of the sign of the increment when there are more
variables than one is often a matter of considerable difficulty;
and any general theory of the subject can scarcely be established
without the use of the infinitesimal calculus.

We may, however, illustrate the method by establishing a
case of the following general theorem, which includes some of
those stated above as particular cases.

Purkiss’s Theorem.*—If §(z, 4,2, . . .) f(%, 4,2, . . .) be sym-
melric functions of , ¥, 2, . . ., and if 2,9,2, . . . be subject to an
equation of the form ' '

Sf&y2 .. )=0 (1),
then §(z, 9,2, . . .) has in general a turning value when z=y=2
=..., provided these conditions be mot inconsistent with the
equation (1).

In our proof we shall suppose that there are only three
variables ; and so far as that is concerned it will be obvious that
there is no loss of generality. But we shall also suppose both

* Given with inadequate demonstration in the Oxford, Cambridge, and
Dublin Messenger of Mathematics, vol. i. (1862).
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&(z, 9, z) and f(z, 9, z) to be integral functions, and this supposi-
tion, although it restricts the generality of the proof, renders it
amenable to elementary treatment.

We remark, in the first place, that the conditions

z=y=zand f(z,y,2)=0
are in general just sufficient to determine a set of values for z, ¥, z.
In fact, if the common value of z, ¥, z be @, then ¢ will be a root
of the equation f(a, a, a) = 0.
Consider the functions
I=¢(a+h a+k a+l)—¢(a aa), and fla+h, a+k a+l).

Each of them is evidently a symmetric function of A, £, /, and
can therefore be expanded as an integral function of the element-
ary symmetric functions Zh, Zhk, hkl. We observe also that,
since each of the functions vanishes when A=0, k=0, /=0,
there will be no term independent of A, £, I.

Let us now suppose &, k, I to be finite multiples of the same
very small quantity r, say h=ar, k=0r,l=9r. Then Sh=7Za
=ru say, Zhk =1"2af = 1", hkl=1"0. Expanding as above in-
dicated, and remembering that by the conditions of our problem
fa+h, a+k a+l)=0, we have, if we arrange according to
powers of r,

I=Aur+ (Bu' + Co)’ + &ec 1),
0 = Pur + (Qu* + Re)r® + &c. (2),
where the &c. stands for terms involving »* and higher powers.

From (2) we have

' ur= — (Qu* + Ro)r*/P + &e.,
w’r' =0+ &ec.,
2%afBr’ = — Za'r" + &e.,,
&c. as before including powers of r not under the 3rd.

Hence, substituting in (1) and writing out only such terms

as contain no higher power of r than 7%, we have
I=(C-AR/P)rr’ + &c,,
= - 3°(C - AR/P)=d’ + &e.

Now (see chap. xv., § 10), by taking r sufficiently small, we

may cause the first term on the right to dominate the sign of I.
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Hence I will be negative or positive according as (CP — AR)/P is
positive or negative ; that is, ¢{(a, @, a) will be a maximum or
minimum according as (CP — AR)/P is positive or negative.

Example. Discuss the turning values of ¢z, ¥, 2)=zyz+b(yz+22+zy),
subject to the condition 2%+ y?+2*=38a2

The system

z=y=2, 2I+y'+2’-8a*=0

has the two solutions z=y=z=a.

If we take x=y=2z= +a, we find, after expanding as above indicated,
I1=(a*+ 2ad)ur + (a + byvrd + &c.,
0=2aur +(u? - 20)r3,
In this case, therefore, A=a?+2ad, C=a+b, P=2a, R=-2; and (CP - AR)/
P=2a+3b. ’ )
Hence, when x=y=z= +a, ¢ is 2 maximum or a minimum according as
2a + 3b is positive or negative.
In like manner, we see that, when z=y=2=-a, ¢ is a maximum or a
minimum according as — 2a + 3b is positive or negative.

Eixitclszs VI.*

(1.) Find the minimum value of dcz + cay +abz when xyz=abc.

(2.) Find the maximum value of zyz when 2%/a?+ 3?/b? + 23/c3=1.

(8.) If Zx*=c, Ziz is a maximum when z:y:2: . ..=l:m:n:. ..

(4.) Find the turning values of Ax™s + uy™> + y2m, subject to the condition
px+qyt+rr=d.

(5.) Find the turning values of ax? + by? +c2* when zyz=d>
(6.) If zyz=aXx+y+z), then yz+2z+ay is a minimum when z=y=2=
~/3a. .

(7.) Find the turning values of (x+1)(y +m) (2+n) where a*b¥c*=d.

(8.) Find the minimum value of ax™ + b/z".

(9.) Find the turning values of (3z - 2) (z - 2)X(x - 3)%

(10.) If cx(b - y)=ay(c - z) =bz(a - z), find the maximum value of each.

(11.) Find the turning values of a™/y® (m>n), subject to the condition
x-y=c. (Bonuet, Nouv. Ann., ser. i., t. 2.)

(12.) If 277 + 29yP =a, then xP+9 + P+ has a minimum value when z=y =
(a/2)'/i#+9); and, in general, if ZxPy?=a, ZxP+? has a minimum value, a/(n - 1),
when z=y=2=. . . ={a/(n - 1)n}}/(P+9), Discuss specially the casc where
p and g have opposite signs.

(13.) If zPy1+zy*=c, then 2y is a maximum when zP—7/(ru - st) =y*~2/
(qt - pu), the denominators, ru - st and q¢-pu, being assumed to have the
same sign. (Desboves, Questions d’Algebre, p. 456. Paris, 1878.)

* Here, unless the contrary is indicated, all letters denote positive
quantities.
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(14.) If p>gq, and xP+yP=aP, then 27+y? is a minimum when z=y=
af2'/p, State the reciprocal theorem.

(15.) Find the turning values of (ax?+ by®)/a/(a%2® + b%?) when 2*+y*=1.

(16.) If =y, 22, . . ., x, be each >a, and such that (z;-a)(x2-a) . . .
(zn—a)="0", the least value of zjx3 . . . a4 i8 (a+d)", @ and b being both
positive,

(17.) If f(m) denote the greatest product that can be formed with » integers
whose sum is m, show that Am+1)/f(m)=1+1/q where g is the integral
part of m/n. .

(18.) ABCD is a rectangle, APQ meets BC in P, and DC produced in Q.
Find the position of APQ when the sum of the areas ABP, PCQ is a minimum.

(19.) O is a given point within a circle, and POQ and ROS are two per-
pendicular chords. Find the position of the chords when the area of the
quadrilateral PRQS is a maximum or a minimum.

(20.) Two given circles meet orthogonally at A. PAQ meets the circles in
P and Q respectively. Find the position of PAQ when PA,AQ is a maximum
or minimum.

(21.) To inscribe in a given sphere the right circular cone of maximum .

volume.

(22.) To circumscribe about a given sphere the right circular cone of
minimum volume.

(23.) Given one of the parallel sides and also the non-parallel sides of an
isosceles trapezium, to find the fourth side in order that its area may be a
maximum.

(24.) To draw a line through the vertex of a given triangle, such that the
sum of the projections upon it of the two sides which meet in that vertex
shall be a maximum.




CHAPTER XXV.
Limits.

§ 1.] In laying down the fundamental principles of algebra,
it was necessary, at the very beginning, to admit certain limiting
cases of the operations. Other cases of a similar kind appeared
in the development of the science; and several of them were
discussed in chap. xv. In most of these cases, however, there
was little difficulty in arriving at an appropriate interpretation ;
others, in which a difficulty did arise, were postponed for future
consideration. In the present chapter we propose to deal
specially with these critical cases of algebraical operation, to
which the generic name of “Indeterminate Forms” has been
given. The subject is one of the highest importance, inasmuch
as it forms the basis of two of the most extensive branches
of modern mathematics—namely, the Differential Calculus
and the Theory of Infinite Series (including from one point
of view the Integral Calculus). It is too much the habit
in English courses to postpone the thorough discussion of in-
determinate forms until the student has mastered the notation
of the differential calculus. This, for several reasons, is a
mistake. In the first place, the definition of a differential
coefficient involves the evaluation of an indeterminate form ;
and no one can make intelligent applications of the differential
calculus who is not familiar beforehand with the notion of a
limit. Again, the methods of the differential calculus for evalu-
ating indeterminate forms are often less effective than the more
elementary methods which we shall discuss below, and are
always more powerful in combination with them.

YOL. II F
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§ 2.] The characteristic difficulty and the way of meeting it
will be best explained by discussing a simple example. If in
the function (2* —1)/(z— 1) we put z =2, there is no difficulty
in carrying out successively all the operations indicated by the
synthesis of the function ; the case-is otherwise if we put z=1,
for we have 1°-1=0, 1 -1 =0, so that the last operation in-
dicated is 0/0—a case specially excluded from the fundamental
laws ; not included even under the case /0 (a =+ 0) already dis-
cussed in chap. xv., § 6. The first impulse of the learner is to
assume that 0/0 =1, in analogy with a/a=1; but for this he
has no warrant in the laws of algebra.

Strictly speaking, the function (z' — 1)/(z — 1) has no definite
value when z=1; that is to say, it has no value that can be
deduced from the principles hitherto laid down. This being so,
and it being obviously desirable to make as general as possible
the law that a function has a definite value corresponding to
every value of its argument, we proceed to define the value of
("= 1)/(zx—-1) when 2=1. In so doing we are naturally guided
by the principle of continuity, which leads us to define the
value of (£'—1)/(zx—1) when z=1, so that it shall differ in-
finitely little from values of ('~ 1)/(z - 1), corresponding to
values of z that differ infinitely little from 1. Now, so long as
z + 1, no matter how little it differs from 1, we can perform the
indicated division; and we have the identity (z*—1)/(z-1)=
z+1. The evaluation of z+ 1 presents no difficulty ; and we
now see that for values of z differing infinitely little from 1, the
value of (2' — 1)/(» - 1) differs infinitely little from 2. We there-
fore define the value of (z" —1)/(x— 1) when =1 o be 2 ; and we
see that its value s 2 in the useful and perfectly intelligible
sense that, by bringing = sufficiently near to 1, we can cause
(z" - 1)/(x—1) to differ from 2 by as little as we please.* The
value of (' — 1)/(z - 1) thus specially defined is spoken of as the
limiting value, or the limit of («'~1)/(z— 1) for z=1; and it is
symbolised by writing

* The reader should observe that the definition of the critical value just
given has another advantage, namely, it enables us to assert the truth of the
identity (22~ 1)/(x~1)=x+1 without exception in the case where z=1.
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7 -1

a=17—1

where L is the initial of the word “limit.” The subscript z=1

may be omitted when the value of the argument for which the
limiting value is to be taken is otherwise sufficiently indicated.

We are thus led to construct the following definition of the
value of a function, so as to cover the cases where the value
indicated by its synthesis is indeterminate :—

When, by causing z to differ sufficiently little from a, we can make
the value of f(x) approach as near as we please to I, then 1 is said to
be the limiting value, or limit, of f(x) when z=a ; and we write

L f(x)=1

Cor. 1. A function is in general continuous in the neighbourhood
of a limiting value ; and, therefore, in obtaining that value we may
subject the function to any transformation which is admissible on the
hypothesis that the arqument z has any value in the neighbourhood of
the critical value a.

We say “in general,” because the statement will not be
strictly true unless the phrase “differ infinitely little from ” mean
“differ either in excess or in defect infinitely little from.” It may
happen that we can only approach the limit from one side; or
that we obtain two different limiting values according as we in-
crease z up fo the critical value, or diminish it down to the critical
value. In this last case, the graph of the function in the neighbour-
hood of z=a would have the peculiarity figured in chap. xv.,
Fig. 5; and the function would be discontinuous. The latter
part of the corollary still applies, however, provided the proper
restriction on the variation of z be attended to.

When it is necessary to distinguish the process of taking a
limit by increasing x up to a from the process of taking a limit
by decreasing z down to a, we may use the symbol L for the

z=a-0
former, and the symbol L for the latter.
Cor. 2. If L f(@)= l thenf(a+h) l + d, where d is a function

of a and h, whose value may be made as small as we please by suffi-
ciently diminishing h.

=2

)
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This is simply a re-statement of the definition of a limit from
another point of view.
Cor. 3. Any ordinary value of a function salisfies the definition
of a limiting value.
For example, L (' - 1)/(x- 1) =(2"-1)/(2-1)=3. This re-

mark would be superfluous, were it not that attention to the
point enables us to abbreviate demonstrations of limit theorems,
by using the symbol L where there is no peculiarity in the
evaluation of the function to which it is prefixed.

§ 3.] It may happen that the critical value @, instead of
being a definite finite quantity, is merely a quantity greater than
any finite quantity, however great. We symbolise the process
of taking the limit in this case by writing L f(z),or L f(2),

=4 r=-®
according as the quantity in question is positive or negative.
For example,

{J('J:+l)/.z:= P (1+1/x)=1.

In this case, we can, strictly speaking, approach the limit from one side
only; and the question of continuity on both sides of the limit does not
arise. If, however, we, as it were, join the series of algebraical quantity
-0 ...-1...0...+41... +o through infinity, by considering
+o and - as consccutive values ; then we say that f{x) is, or is not, con-

tinuous for the critical value =, according as L f(z)and L f(x)have,
I=o I=-o

or have not, the same value. For example, (x+1)/x is continuous for xr=w ,
for we have L (z+1)jx=1= L (x+1)/z; but (z*+1)/r is not continuous
=0 I= - .
for z=00.
§ 4.] The value 0 may of course occur as a limiting value ;
for example, L z(z — 1)°/(«*— 1)=0. It may also happen, even
z=1

for a finite value of @, that f(z) can be made greater than any
finite quantity, however great, by bringing z sufficiently near to a.
In this case we write L f(x)=o. In thus admitting 0 and «

z=a
as limiting values, the student must not forget that the general
rules for evaluating limits are, as will be shown presently, sub-
ject in certain cases to exception when these particular limits
occur.
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ENUMERATION OF THE ELEMENTARY INDETERMINATE FORMS.

§ 5.] Let u and v be any two functions of 2. We have
already seen, in chap. xv.,, that u +% becomes indetermin-
ate when % and v are infinite but of opposite sign; that u x v
becomes indeterminate if one of the factors become zero and
the other infinite; and that u--v becomes indeterminate if
and v become both zero, or both infinite. @ We thus have
the indeterminate forms—(I.) @ - w0, (IL) 0 x o, (IIL) 00,
(IV.) © + .

Tt is interesting to observe that all these really reduce to (IIL.). Take
@ — o for example. Since u+v=(1+v/u)/(1/u), and Llju=1/0 =0, this
function will not be really indeterminate unless Lw/u= —1. The evaluation
of the form @ — oo therefore reduces to a consideration of cases (1V.)and (I1L.)
at most. Now, since u--v=(1/v)+(1/u), case (IV.) can be reduced to (IIL);
and finally, since  x v=u--(1/v), case (IL.) can be reduced to (IIL.).

To exhaust the category of elementary algebraical operations
we have to discuss the critical values of 4°. This is most simply
done by writing u”=a®°8"* where a is positive and >1. We
thus see that u” is determinate so long as slog,u is determinate.
The only cases where slog,u ceases to be determinate are those
where—(V.) v =0, loggu = + 0, that is9=0,u=0 ; (VL) 2=0,
loggu= — o, that is v=0, u=0; (VIL) v= % o, logu=0,
that is v= + o, u=1. There thus arise the indeterminate
forms—(V.) @, (VL) 0%, (VIL) 1¥°.*

All these depend on a’*= ; or, if we choose, upon a°/; so that it may

be said that there is really only one fundamental case of indetermination,
namely, 0--0.

EXTENSION OF THE FUNDAMENTAL OPERATIONS TO LIMITING
VALUES.

§ 6.] We now proceed to show that limiting values as above
defined may, under some restrictions, be dealt with in algebraical

* The reader is already aware that 1° gives 1; and he may easily convince
himself that 0t=, 0-=, o +=, - give 0, o, o, 0 respectively, no
matter what their origin.



70 FUNDAMENTAL OPERATIONS WITH LIMITS CHAP.

operations exactly like ordinary operands. This is established
by means of the following theorems :—
I. The limit of a sum of functions of = is the sum of their limits,
provided the latter does not take the indeterminale form o — 0.
Consider the sum f(r) — ¢(x) + x(r) for the critical value
z=a; and let Lf(z)=f, L¢(z) = ¢’, Lx(*) =x". Then, by § 2,

Cor. 2,

J@=f+a ¢2)=¢"+B, x(x)=x"+7
where a, B, y can each be made as small as we please by
bringing « sufficiently near to a.

Now,  f(0)-¢(@)+x(@) =S -¢'+x +(a=B+7)
But, obviously, @ — 8 + y can be made as small as we please by
bringing z sufficiently near to a. Hence

L{f(r) - (@) + Xx()} =F = ¢ + X’ .
that is, = Lf(x) — Lé(z) + Lx(x) (1).

This reasoning supposes f’, ¢/, x' to he each finite ; but it is
obvious that if one or more of them, all having the same sign,
become infinite, then f'— ¢ + x' and L {f(r) — ¢(z) + x(v)} are
both infinite, and the theorem will still be true in the peculiar
sense, at least, that both sides of the equality are infinite. If,
however, some of the infinities have one sign and some the
opposite, f'— ¢’ + x' ceases to be interpretable in any definite
sense ; and the proposition becomes meaningless.

II. The limit of a product of functions of z is the product of their
limits, provided the latter does mot take the indeterminate form
0xo.

Using the same notation as before, we have

J@) ¢(2) x(@) = (f + a)(¢' + BUX +7)
=X + X + ZaBx’ +afy.
Now, provided none of the limits f’, ¢', x be infinite, since q, 3,
y can all be made as small as we please by bringing z sufficiently
near to a, the same is true of Za¢'y’, Zafx’, and afy. Hence
Lf(x) $(2) x(z) =f'¢'x’ = 1f(#) L(z) Lx(v) (2)

If one or more of the limits f, ¢, x’ be infinite, provided none

of the rest be zero, the two sides of (2) will still be equal in the
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sense that both are infinite ; but, if there occur at the same time
a zero and an infinite value, then the right-hand side assumes
the indeterminate form 0 x «; and the equation (2) ceases to
have any meaning.

III. The limit of the quotient of two functions of = is the quotient
of their limits, provided the latter does not take one of the indeterminate
Jorms 0/0 or 0 [©. We have

IR ETENe ATI B L.

W) FAB F T EB F b S B
From this equation, reasoning as above, we see at once that, if
neither f’ nor ¢’ be infinite, and ¢’ be not zero,
WL L

#) " " Lgfa) @

It is further obvious that if f =, ¢'+ o, both sides of (3)
will be infinite ; if ¢' = @, f'# o, both sides will be zero; and
if ¢'=0, f'* 0, both sides will be infinite. In all these cases,
therefore, the theorem may be asserted -in a definite sense. If,
however, we have simultaneously f' =0, ¢’ = 0, the right hand of
(3) takes the form 0/0; if f'= o0, ¢'= w0, the form o /w ; and
then the theorem becomes meaningless.

§ 7.] If the reader will compare the demonstrations of last
paragraph with those of § 8, chap. xv., he will see that (except
in the cases where infinities are involved) the conclusions rest
merely on the continuity of the sum, product, and quotient.
This remark immediately suggests the following general theorem,
which includes those of last paragraph as particular cases :—

If F(u, o, w, . . .) be any function of u, v, w, . . ., which is
determinate, and finite in value, and also continuous when

u=Lf(z), v=L¢x), w=Lx(),. . .,
then

LF{f(x), $(=) x(2), - . -} = F{Lf(z), L), Lx (=), .
The reader will easily prove this theorem by combining § 2, Cor.
2, with the definition of a continuous function given in chap.
xv., §§ 5, 14.
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The most important case of this proposition which we shall have occasion
to use is that where we have a function of a single function. For example,

Ll - 1= 1}?={ L (- Dz -1)}2=4.

==}__:llog{(:6”-1)/(?':-1)}— g{ (w’-l)/(x 1)} =log 2.

ON THE FORMS 0/0 AND o /o IN CONNECTION WITH
RATIONAL FUNCTIONS.

§ 8.] The form 0/0 will occur with a rational function for
the value z=0 if the absolute terms in the numerator and
denominator vanish. The rule for evaluating in this case is to
arrange the terms in the numerator and denominator in order
of ascending degree, divide by the lowest power of x that occurs
in numerator or denominator, and then put =0. The limit
will be finite, and + O, if the lowest terms in numerator and
denominator be of the same degree; O if the term of lowest
degree come from the denominator; oo if the term of lowest
degree come from the numerator. All this will be best seen
from the following examples :—

Example 1.

2224328 4+24 _ _ 248z+a® _ 2
03¢)+Z‘+14 03+Iz+$€‘—. :

Example 2.
200+ 34 +25 L 2w+82x*+a® _ 0 _

. podxttaital T L 3+ =37

Example 3.
2A+28 . 2+2° 2

I R 0x‘+.z:‘

= oo,

§ 9.] The form /o can arise from a rational function when,
and only when, £=o. The limit can be found by dividing
numerator and denominator by the highest power of z that
occurs in either. If this highest power occur in both, the limit
is finite ; if it come from the denominator alome, the limit is O ;
if from the numerator alone, the limit is o .

Example 1.

83 4 ot 3f2+1  _ 041 _ 1
rmwd P 4 P43 2R+ 1[x+8  0+043 8
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Example 2.
4328 +4at 1aA 4334 4/22 0 _ 0
rmw2Z+B+688 ", 2/ +1/a8+6 T 6

Example 3.
224+ 32°+ 428 Vz+3/x+4 4 _

rmlZ I+ o, 2B+ 3+ 123 0

§ 10.] If the rational function f(z)/¢(z) take the form 0/0 for
a finite value of z, + 0, say for « = a, then, since f(a) = 0, ¢(a) = 0,
it follows from the remainder-theorem that z—a is a common
factor in f(z) and ¢(z). If we transform the function by remov-
ing this factor, the result of putting z=a in the transformed
function will in general be determinate; if not, it must be of
the form 0/0, and z — & will again be a common factor, and must
be removed. By proceeding in this way, we shall obviously in
the end arrive at a determinate value, which will be the limit of
f(x)/¢(x) when z=a.
Example. Evaluate (324 - 102° + 322 + 12 - 4)/(z* + 22 - 2227 + 32z - 8)
when 2=2. The value is, in the first instance, indeterminate, and of the
form 0/0 ; hence = - 2 is a common factor. If we divide out this factor, we

find that the value is still of the form 0/0 ; hence we must divide again. We

then have a determinate result. The work may be arranged thus (see chap.
v., §18):—

3-10+ 3412 -4 1+2-22+32-8
210+ 6- 8-10+4 2(0+2+ 8-28+8

3- 4-5+2+0 1+4-14 4 4'+0

0+ 6+ 4- 2 0+2 +12 - 4

3+ 2- 1/+ 0 146 - 2+ 0

0+ 6+16 0+2 +16

[ 3+ 8+15 1+8/+14

The process of division is to be continued until we have two remainders
which are not both zero. The quotient of these, 15/14 in the present case, is
the limit required.

The evaluation of the limit in the present case may also be
effected by changing the variable, an artifice which is frequently of
use in the theory of limits. If we put z=a + 2, then we have
to evaluate Lf(a +2)/¢(a +z) when 2=0. Since f(a +2z) and
¢la + 2) are obviously integral functions of 2, we can now apply
the rule of § 8. It will save trouble in applying this method if
it be remembered—1st, that in arranging f(a +2) and ¢(a + 2)
according to powers of z we need not calculate the absolute
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terms, since they must, if the form to be evaluated be 0/0, be
zero in each case; 2nd, that we are only concerned with the
lowest powers of z that occur in the numerator and denominator
respectively.

L 34 -102+ 322+ 122 -4 _ + 3(2+2)*-10(2+2P +3(2+2)7+12(2+2) — 4
g P+ 28— 2227 +322-8 .0 (2428 +2(2+2)°-22(2+2)*+32(2+2) - 8
_ ¢ 15224+ P2+ &c ¢
T a=0l42?+ Q8+ &e.’
_ 1 15+Pz+&ec
T a=ol4+Qz+&e.]’

=B
=11
This method is of course at bottom identical with the former ; for, since
z=x - a, the division by z? corresponds to the rejection of the factor (z - a)2.

*  §11.] The methods which are applicable to the quotient of
two integral functions apply to the quotient of two algebraic
sums of constant multiples of fractional powers of z. Each of
the two sums might, in fact, be transformed into an integral
function of y by putting z=14% where d is the L.C.M. of the
denominators of all the fractional indices. It is, however, in
general simpler to operate directly.
Example. Evaluate

ab 424322

=z=0-z§-2’t*+.’c.

If we divide by x¥, the lowest power of z that occurs, we have
-L 2 {2Y 4 3zt

l— T .
2=0 1+2ch a8

§ 12.] The following theorem, although partly a special case
under the present head, is of great importance, because it gives
the fundamental limit on which depends the “differentiation ” of
algebraic functions :—

If m be any real commensurable quantity, positive or negative,

z&(z"‘- D/z-1)=m (1).
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First, let m be a positive integer. Then we have

(@ -1)/(z-1)=zm1+am2+. . . +z+1.
Hence

L(z’" Diz-1)=1+1+...+1+1 (m terms),
=m.
Next, let m be a positive fraction, say p/q, where p and ¢ are
positive integers. Then the limit to be evaluated is L (:c”’q -1)/

(z-1).* If we put z=2