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PREFACE

BY Spherical Astronomy I mean that part of Mathematical
Astronomy which lies between the vast domain of Dynamical

Astronomy on the one hand and the multitudinous details of

Practical Astronomy on the other.

I have aimed at providing for the student a book on Spherical

Astronomy which is generally within the limits thus indicated,

but I have not hesitated to transgress those limits now and then

when there seemed to be good reason for doing so. For example

I have just crossed the border of Dynamical Astronomy in

Chapter Vll., and in two concluding chapters I have so far

entered on Practical Astronomy as to give some account of the

fundamental geometrical principles of astronomical instruments.

It has been assumed that the reader of this book is already

acquainted with the main facts of Descriptive Astronomy. The
reader is also expected to be familiar with the ordinary processes

of Plane and Spherical Trigonometry and he should have at least

an elementary knowledge of Analytic Geometry and Conic Sections

as well as of the Dififerential and Integral Calculus. It need hardly

be added that the student of any branch of Mathematical Astro-

nomy should also know the principles of Statics and Dynamics.

As a guide to the student who is making his first acquaintance

with Spherical Astronomy, I have affixed an asterisk to the titles

of those articles which he may omit on a first reading ; the articles

so indicated being rather more advanced than the articles which

precede or follow.

Such articles as relate to the more important subjects are

generally illustrated by exercises. In making a selection from the

large amount of available material I have endeavoured to choose

exercises which not only bear directly on the text, but also have

some special astronomical or mathematical interest. It will be

seen that the Tripos examinations at Cambridge and many College

examinations at Cambridge and elsewhere have provided a large

proportion of the exercises. I have also obtained exercises from

many other sources which are duly indicated.

a 3



VI PKEFACE

The work ou the subject to which I have most frequently

turned while preparing this volume is Briinnow's Spherical

Astronomy, a most excellent book which is available in English

and French translations as well as in its original German.

Among recent authors I have consulted Valentiner's extensive

Handworterbuch der Astronomie which no student of astronomy

can afford to overlook, and I have learned much from the

admirable writings of Professor Newcomb.

I have to acknowledge with many thanks the assistance which

friends have kindly rendered to me. Mr Arthur Berry has fur-

nished me with many solutions of exercises, more especially of

Tripos questions. Dr J. L. E. Dreyer has read over the chapter

on Aberration and made useful suggestions. Mr W. E. Hartley

has helped in the correction of the proofs as well as in the revision

of parts of the manuscript. Mr A. R. Hinks has given me help in

the correction of the proofs and I am also indebted to him for

assistance in the chapter on the Solar Parallax. Dr A. A.

Rambaut has devoted much time to the reading of proofs and has

assisted in many other ways. Mr F. J. M. Stratton has revised

some of the pages, especially those on the rotation of the moon.
Dr E. T. Whittaker has given me useful suggestions especially in

the chapter on Refraction, and he has also helped in reading proofs,

and my son, Mr R. S. Ball, has drawn many of the diagrams.
Lastly, I must acknowledge my obligation to the Syndics of the
University Press, who have met all my wishes in the kindest
manner.

The list of parallaxes of stars (p. 328) is based on more exten-
sive lists given by Newcomb in The Stars and Kapteyn in the
Groningen publications No. 8. The results stated for a Centauri,
Sirius and a Gruis have been obtained by Sir D. Gill ; those for

Procyon, Altair, Aldebaran, Capella, Vega, Arcturus, by Dr Elkin
;

that for Cordoba Zone 5'' 243, by Dr De Sitter; that for 1830
Groombridge by Professor Kapteyn; that for 21185 Lalande by
Mr H. N. Russell; that for Polaris by Pritchard ; and that for

61 Cygni is a mean result.

I ought to add that when I use the word ephemeris I refer, so
far as works in the English language are concerned, either to the
British Nautical Almanac or to the American Ephemeris.

ROBERT S. BALL.

Observatory,

Cambridge,

18ih October, 1908.
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FUNDAMENTAL FORMULAE.

PAGE

§ 1. Spherical Trigonometry 1

§ 2. Delambre's and Napier's analogies for solving spherical triangles 8

§ 3. Accuracy attainable in Logarithmic Calculation . . . 11

§
4. Differential formulae in a Spherical Triangle .... 12

§ 5. The Art of Interpolation 14

1. Spherical Trigonometry.

Let a, b, c, A, B, C be as usual the sides and angles of a

spherical triangle. It is proved in works on spherical trigono-

metry that

cos c = cos a cos b + sin a sin b cos G (1),

sine cos J. = cos a sin 6 — sin a cost cos C (2),

sin c sinA = sin a sin C (3).

Formula (2) may be conveniently obtained from (1) as

i

follows.

Produce AG (Fig. 1) to H so that

GH= 90° -b,

y

C 90-6

Fig. 1.

\hen from the triangle BAH, we have by (1)

j / cos BH = sin c cos A,

B. A.
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and from triangle BCH
cos BH = cos a sin 6 — sin a cos h cos C^.

Equating these values of cos BH we have formula (2).

The various formulae of the type (2) can thus be written down

as occasion may require with but little tax on the memory.

The equations (1), (2), (3) are the simplest which can be

employed when two sides a and b and the included angle C are

given and it is required to find the parts A and c of the spherical

triangle. It may at first be a matter of surprise that three

equations should be required for the determination of only two

quantities. But a definite solution cannot be obtained if the

equations for finding A and c be fewer than three.

Suppose, for example, that only the pair of equations (1) and

(2) had been given and that values for A and c had been found

which satisfied those equations. It is plain that the same equa-

tions would be equally well satisfied by three other sets of values,

namely

180° + ^, 3C0°-c; 360°-^, c; 180° - ^, 360° - c.

If, however, we require that the values to be adopted shall also

satisfy the equation (3) then the last two pairs of values would be

excluded. We thus see that when (1), (2) and (3) are all satisfied

hy A,c the only other solution is 180° + J., 360° - c.

As to this remaining ambiguity it must be remembered that

the length of the great circle joining two points A and B on

a sphere is generally ambiguous. It may be either AB or

360° — AB. In like manner if the angle between two great circles

is even defined as the arc between two particular poles there

will still be an ambiguity as to which of the two arcs between
these poles is the measure of the angle. The circumstances of

each particular problem will generally make it quite clear as to

which of the two solutions A, c or 180°+A, 360°-c is that required.

If one side and the two ad.jacent angles are given then we
require two new formulae (4) and (5) to be associated with (3)

cos C = — cos 4 cos 5 + sin ^ sin 5 cos c (4),

sin C costs = cos^ sin5 + sin A cos £cos c (5),

sin C sin a = sin J. sin c (3)_

The formulae (4) and (5) are obtained from (1) and (21
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respectively by the general principle of the Polar triangle, viz.,

that any formula true for all spherical triangles remains true if,

instead of a, b, c, A, B, G, we write

180°-^, 180°-^, 180° -0, 180° -a, 180° -6, 180° -c.

If we are given two sides and the angle between or two angles

and the side between the triangle may also be solved by formulae

easily deduced from (2) and (3) and of the type

cot a sin 6 = cot A sin G + cos 6 cos C (6).

If a, b and G are given this will determine cot^, and thus A
is known for there will always be one value of A between 0° and

180° which will correspond to any value of cot A from + oo to

— 00. Of course 180° + jd is also a solution.

In like manner if A, C, b were given, this formula would

determine cot a.

It may be noted that formula (6) shows the connection

between four consecutive parts of the triangle

as written round a circle (Fig. 2). As we may

commence with any one of the elements

there are six formulae of this type.

The following rule has been given* for

remembering the formulae of the type (6).

" Of the angles and sides entering into

any one of these formulae, one of the angles

is contained by the two sides and may be

called the iniier angle, and one of the sides lies between the

two angles and may be called the inner side. The formula may

then be stated thus :

—

(cosine of inner side) (cosine of inner angle)

= (sine of inner side) (cotangent of other side)

— (sine of inner angle) (cotangent of other angle)."

For example, in writing down the formula involving the four

parts a, b, C, B we have G as the inner angle and a as the inner

side, whence we obtain (6)

cos a cos G = sin a cot b — sin G cot B.

If two sides a, c and the angle A opposite to a are given, then

from (3) we obtain sin G. If sin (7 > 1 the problem is impossible.

* In Leathem's edition of Todhunter's Spherical Trigonometry (1903), p. 27.

1—2
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If siu < 1 there is still nothing to show which of two supple-

mentary values is to be given to G, and unless some additional

information is obtainable, showing whether C is acute or obtuse,

the problem is ambiguous.

If two angles and a side opposite to one of them are given,

then, from formula (3) the side opposite the other angle will be

determined, subject as before to an ambiguity between the arc

and its supplement.

When the ambiguity in either case is removed the problem is

reduced to that in which two sides and the angles opposite to both

are known. From equations (1) and (2) the following formula is

easily deduced

, tan a cos G + tan c cos A
tan =

^i—7 ?7T T

.

1 — tan a cos G tan c cos A

and (2) will show whether h or 180° + 6 is to be used. The

calculation may be simplified by taking

tan 6 = tan a cos C ; tan
(f>
= tan c cos A,

whence we find b = 6 +
(f>.

By means of the polar triangle we obtain

tan A cos c + tan C cos a
tan£ =

1 — tan A cos c tan G cos a

'

from which B may be determined for (5) removes the ambiguity

between B and 180° +B. Also if we take

tan 6' = tanA cos c and tan
<f>'
= tan G cos a,

we find 5 =180°-^' -(/>'.

When the three sides are given, a spherical triangle may be

solved as follows. Let 2s=a + b + c, then

tani4=,/^SSi^ (7,V sm s sin (s — a) ^ '

by which A is found, and by similar formulae we obtain B and C.

If the three angles A, B,G were given, then making

28 = A+B+G,

, , , / cos S cos, (S— A)
we have tania=A/ t^—rjT-^^

—

,ci ^ (8)^ V cos (;S - 5) cos (/S - (7) ^ ''

by which a is found, and similarly for h and c.
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In the important case when the triangle is right-angled we
make (7=90°, and from formulae like (1), (2), (3), we can show
that

sin c cos A = cos a sin 6 (9),

cos c = cos a cos b (10).

sin csin J. = sin a (11),

cos 4 = taa b cote (12),

tan J. = tan acosec6 (1.3),

cos a = cos J. cosec B (14),

sec c = tan^ tan 5 (15).

These formulae may be easily written down by the help of

Napier's rules, for the enunciation of which

the quantities a, b, (90° - A), (90° - c), ^ ^
(90° - B), often called the "circular parts," V"'^ \ ^^
are to be arranged inside a circle as shown / " \ * ^--\
in Fig. 3.

( ^/<fC,Any one of the circular parts being 'gVgO"'^ /'^\ M
chosen as a "middle," the two on each \^y\ / ^ \/^
side are termed "adjacents," and the two ^"^HSo"
others are "opposites."

p^^ g

Formulae (10) to (15) are written down
from Napier's rules which are as follows

:

sine of middle = product of tangents of adjacents,

sine of middle = product of cosines of opposites.

Ten formulae can thus be obtained, for each of the five parts

may be taken as a middle.

It is easy to show that whenever two sides and an angle, or

two angles and a side of any spherical triangle are given, the

triangle can be solved by Napier's rules if divided into two right-

angled triangles by a perpendicular from one angle on the opposite

side (see Ex. 2 on p. 8).

The formulae for a quadrantal triangle (c = 90°) can be written

down also from the same diagram (Fig. 3). Napier's rules applied

to the circular parts on the outside of the circumference give

the ten formulae for the quadrantal triangle. As examples

we thus find sin .4 = sin a sin G and cos 6 = — tan A cot G where

A and 90° — b are respectively the middle parts.
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The relation here implied between the right-angled triangle

and the quadrantal triangle is shown by Fig. 4. I{AB = 90°, and

BG is produced to C" so that BG' = 90°, then / C" = 90°. Napier s

rules, applied to the right-angled triangle AG'G, give the formulae

belonging to the quadrantal triangle ABG.

Logarithms:—The usual notation employed in writing log-

arithms of the trigonometrical functions may be illustrated by

an example.

The natural cosine of 25° is 0-9063078 and

log cos 25° = log 9-063078 - log 10 = - 0-042724.

To obviate the inconvenience of negative logarithms this is some-

times written 1-957276 which stands for

-H- 0-957276.

We shall however generally follow the more usual practice of

the tables and add 10 to the logarithm of every trigonometrical

function. When this change is made we use L instead of 1 in

writing the word log. Thus in the preceding case the Log would
be written 9-957276 and more generally

Log cos 6 = log cos ^ -I- 10.

If it is necessary to state that the trigonometrical function of

which the logarithm is used is a negative number it is usual to

write (w) after the logarithm.

For example, if cos 155° occurred as a factor in an expression
we should write 9957276 {n) as its Logarithm, where the figures

denote Log cos 25°.
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It frequently happens that after an angle 6 has been deter-

mined in the first part of a computation we have to employ

certain trigonometrical functions of in the second part of the

same computation. In this second part we have often a choice as

to whether we shall employ one formula depending on Log sin

or another depending on Log cos ^. It is generally immaterial

which formula the calculator employs, but if be nearly zero

or nearly 90° one of the formulae will be uncertain and the

other should be used. It is therefore proper to consider the

principles on which the choice should be exercised in so far as

any general principles can be laid down.

We may assume that, proper care having been taken, the work

is free from numerical error so far as the necessary limitations of

the tables will permit. But these very limitations imply that the

value of we have obtained is only an approximate value. The

calculator may, generally, protect the latter part of the work from

becoming appreciably wrong notwithstanding that it is based on

a quantity which is somewhat erroneous. The practical rule to

follow is a very simple one. The two quantities Log sin and

Log cos are not generally equal and the formula containing the

greater should be used in the remainder of the calculation.

This follows from the consideration that if be > (<) 45° a

small error in will have less effect on sin (cos 0) than on

cos (sin 0).

Ex. 1. Show how the side a may be determined by the formula

cot a sin b= cot A sin C+ cos b cos G

if we are given

^ = 117° 11' 6"; C= 154° 13' 54"; 6= 108° 30' 30".

Log cot ^ 9-7106244 (n), Log cos 9-9545123 (»),

Log sin C 9-6382230, Log cos 6 9-5016652 (w),

Log cot 4 sin C 9-3488474 («), LogcosCcosft 9-4561775;

(Nat.) cot J sin C - 0-2232789,

„ cos C cos 6 +0-2858759,

„ cot a sin 6 +0-0625970;

LogcotasinJ 8-7965535,

Log sin b 9-9769354,

Log cot a 8-8196181. a=86°13'24".
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Ex.2. Being given 6= 57°42'39"; c= 19°18'2"; 4 = 120° 12' 36", find «

and B by the method of right-angled triangles.

Draw GP ( =p) perp. to AB ;
then

Log sin 6 9-9270432 C
sin^ 9-9366077

sin p 9-8636509 p= 46° 55' 58"

tan 6 10-1993454

cos (180- 4) 9-7017154

tanm 9-9010608 m.= 38°31'45"
pj

\b \«

cos p 9-8343291

cos(c+»i) 9-7262684

cos a 9-5605975 a= 68° 40' 48"

tanjo 10-0293218 P" ^__^p

cosec(e+ OT) 10-0723887 '» ^

tan 5 10-1017105 i?= 51°38'55"
^^°- ^^

2. Delambre's and Napier's analogies.

The following equations are of great utility in spherical

astronomy

:

sin^csin^(ul-5) = cosi(7sin^(a-6) (16),

sin |c cos ^ (J. - 5) = sin I C sin ^ (a + 6) (17),

cos ^c sin ^(^ +£) = cos ^ cos J (a — 6) (18),

cos |c cos ^ (A + 5) = sin I C cos |(a + 6) (19).

These equations are often described as Gauss' analogies, but their

discovery is really due to Delambre*.

As Delambre's analogies are more convenient for logarithmic

calculation than (1), (2), (3) and (4), (5), (6), they are often

preferred for the solution of spherical triangles when a, b and C
are given or when A, B and c are given.

It is frequently troublesome to remember these formulae

without such assistance as is given by Rambaut's rulef.

We write the two rows of quantities

1{A+B), \{A-B\ \G',

\{a + b), ^{a - b), Jc,

* For this statement as well as for the proofs of these formulae, reference may
be made to Mr Leathem's edition of Todhunter's Spherical Trigonometry (1903),

p. 36.

t See Dr A. A. Eambaut, Astronomische Nachrichten, No. 4135.
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where C= 180° — C. Then Kambaut's rule is as follows

:

Sum {difference) in one row is always to he associated with

cosine {sine) in the other row.

For example to obtain the Delambre analogy which contains

sva.\{A— B) we conclude from Rambaut's rule:

(1) that Jc must enter with a sine because A and B enter

as a difference

;

(2) that a and h must enter as a difference because ^{A—B)
enters with a sins

;

(3) that \{a — h) must enter with a sine because A and B
enter as a difference

;

(4) that \G' must enter with a sine because a and h enter

as a difference.

Hence the analogy may be written down

sin ^c&m\{A — B) = sin ^ G' sin \{a — h)

= cos I (7 sin^(a — 6).

As an example of the use of Delambre's analogies we may
employ the spherical triangle in which

a = 62° 48' 54", A = 93° 46' 36",

6=57 42 39, 5 = 71 29 30,

c=25 46 6, C=29 11 13.

We shall suppose that a, b, G are given and find A, B and c.

The numerical values here set down are the Logs of the

corresponding trigonometrical functions

:

^0=14°35'36"-5

1 (a + 6) = 60° 15' 46"-5
; ^ (a - 6) = 2° 33' 7"-5

sin ^{a — b)

cos^G
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COS i (a + 6) 9-6954999

sin^O 9-4013301

9-0968800 = cos ^c cos ^(A+B)

cos ^c sin 1(4 +5) 9-9853268 H^ + ^) 82° 38' 3"

coslccosl(A+B) 9-0968300 1{A-B) H 8 33

tanJ(4+-B) 0-8884968 A = 93 46 36

sm^csiu^(A-B) 8-6343864 H^+S) 82° 38' 3"

sin I c cos 1^(4 -5) 9-3400053 1(4-5) 11 8 33

tan I (4 -5) 9-2943811 5 = 71 29 30

* sin ^c cos ^(4 -5) 9-3400053

cosl{A-B) 9-9917352

sin |c 9-3482701

tcos|csinH^+5) 9-9853268

sinl(A+B) 9-9964012

cos ic 9-9889256

sin ic 9-3482701

cos Jc 9-9889256

tan|c 9-3593445 ^c 12° 53'
3"

Hence

4 = 93° 46' 36"; 5 = 71° 29' 30"; c=25°46'6".

From Delambre's analogies we easily obtain the following four

formulae, known as Napier's analogies :

,, ,, cos A (4 -5),tanHa + ^) = eos|(4+5)^^"^^ <20),

tanH«-&) =
:;:|;j;g

tanio (21),

*^^*<^+^) =Sl{^-HO (22),

-*(^-^) = :f|{^]-*^ (23).

As an example of the solution of a triangle by Napier's
analogies we may take

4 = 23° 27'; 5=7° 15'; c = 74=29';

* We use this rather than am ^c ain i{A-B), because cosJM_B) is
>sinl(A-B) as already explained on p. 7.

t We use this rather than cos Jc cos J(4 +£), because simij.m
>ooai(A + B).

3l^+^j IS
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and use four-figure logarithms which are quite accurate enough
for many pui-poses.

cos ^(A-B) = 9-9956 sin l(A-B) = 9-1489

sec 1{A+B) = 0-01.58 cosec i{A+B) = 0-5772

tan ^c= 9-8809 tan ^c = 9-8809

tan Ha + 6) = 9-8923 tan ^ (a - 6) = 9-6070

i(a + &)=37°58' i(a-6)=22°2'
a = 60°0'; 6 = 15° 56'.

As ^ (a - b) and ^(a + b) are both < 45° the proper formula

for finding C is (22) which may be written

tan ^0 = cos ^(a — b) sec ^(a + b) cot ^(A+B)

cos^(a - 6) = 9-9671

sec I (a + 6) = 0-1033

cot i(^+^) = 0-5614

tan ^0= 0-6318

0=153" 44'.

3. Accuracy attainable in Logarithmic Calculation.

When the logarithm of a trigonometrical function is given it

is generally possible to find the angle with sufficient accuracy.

But we often meet with cases .in which this statement ceases to

be quite true.

For example, suppose we are retaining only five figures in our

logarithms and that we want to find & from the statement that

Log sin e = 9-99998.

This tells us nothing more than that 6 must lie somewhere

between 89° 23' 7" and 89° 31' 25". Nor will the retention of so

many as seven places of decimals always prevent ambiguity. We
note, for example, that every angle from 89° 56' 19" to 89° 57' 8"

has as its Log sin the same tabular value, viz. 9-9999998.

We thus see that angles near 90° are not well determined from

the Log sin, and in like manner angles near zero are not well

determined by the Log cos. But all angles can be accurately found

from the Log tan as will now be proved.

If ^receive a small increment h" or in circular measure h sin 1"

and the increment in Logio tan ^ be a; units in the 7th place of

decimals, we have to find the equation between h and x.
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if they are to possess this property. This is obvious from the

consideration that if these six quantities were indeed the parts

of a triangle, then any three of them being given the other three

could be determined.

Let us however assume that these six quantities are indeed

the parts of a spherical triangle, and let them all receive small

changes Aa, A6, Ac, AA, AB, AC respectively. The quantities

as thus altered a + Aa, &c. will in general no longer be the

parts of a spherical triangle. If they are to be such parts

they must satisfy three conditions, which it is now proposed to

determine.

Differentiate the fundamental formula (1)

cos a = cos b cos c + sin b sin c cos A,

and we have

— sin aAa = — sin & cos cAb — cos b sin cAc

+ cos b sin c cos AAb + sin b cos c cos A Ac

— sin b sin c sin AAA.

But from the formula (2) in | 1

sin a cosB = cos b sin c — sin b cos c cos A,

sin a cos G = sin b cos c — cos b sin c cos A
;

whence by substitution, and writing the similar formulae

Aa= cos CAb + cos BAc + if sin 6 sin cAA)

Ab = cosAAc +C0S CAa + H sine sinaA£> (i),

Ac = COS BAa + cos AAb + if sin a sin bAC]

where H= sin J. /sin a = sin B/sin b = sin C/sin c.

Proceeding in like manner from formulae (4), (5) we obtain

the equivalent equations

AJ. = - cos cAB - cos bAC + H-^ sin B sin GAa\

AB = - cos aAG - cos cAA + H'^ sin C sin J.A6 > (ii).

AC = - cos bAA - cos aAB + H'' sin A sin BAc]

We have thus proved that if a, b, c, A, B, C are the parts of

a spherical triangle, either set of equations (i) or (ii) expresses the

three necessary and sufficient conditions that

a + Aa, b + Ab, c + Ac, A + AA, B + AB, C + AC

shall also be the parts of a spherical triangle.
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If three of the differentials be zero, then the other three will

also in general vanish. This is evident from the equations as it

is also from the consideration that if three of the parts of a

spherical triangle remain unaltered, then generally the other

parts must also remain unaltered.

As an illustration of an exception to this statement let C= 90°,

and A6 = 0, Ac = 0, AB = 0. The second equation of (i) will in

this case not require that Aa = 0.

Ex. 1. Under what conditions can a spherical triangle undergo a small

change such that Aa=0, a6=0, AA=0, aB=0 while both Ac and AC are not

zero?

From (ii) we see that a!= 90°, 6= 90°, whence .4= 90°, 5=90°.

Ex. 2. If a spherical triangle receive a small change which does not

alter the sum of its three angles, show that- the alterations in the lengths of

the sides must satisfy the condition

Aasm{S-A) + Abam{S-B)+ Acam{S-C) = 0,

where S=i{A+B+C).

*5. The Art of Interpolation.

In the calculations of astronomy use is made not only of

logarithmic tables but also of many other tables such, for example,
as those which are found in every ephemeris. The art of
interpolation is concerned with the general principles on which
such tables are to be utilised.

Let 2/ be a quantity, the magnitude of which depends upon
the magnitude of another quantity sc. We then say that y is

a function of w and we express the relation thus

y=f(^) (i),

where /(a;) denotes any function of x. This general form would
include as particular cases such equations as

y = \ogx or 2/ = Log tan a;.

Suppose that the value zero is assigned to x, then the corre-
sponding value y, of y is given by the relation y^ =/(0). Let us
next substitute successively h, 2h, Sh, ... for x in (i), and let the
corresponding values of y be respectively y„ y„ y„ &c. Then the
essential feature of a table is that in one column we place the
values of x, viz. 0, h, 2h, 3h, &c., and in another column beside it

the corresponding values of y, viz. y„ y^, y,, y,, &c.
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The value of x, often called the argument, advances by equal

steps h, and each corresponding value of y, often called the

function, is calculated with as much accuracy as is demanded by
the purpose to which the table is to be applied.

Table for

2/ =/(«')

X
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formula y=f{x). Then we erect ordinates ^iPi, A^P^, &c.,

at ^1, ^2, &c., (Fig. 6) equal to the corresponding values y-^, y^, &c.

The points Pi, P^, Ps, &c., will

generally be found so placed that a

curve can be drawn to pass smoothly

through them. If the points A, , A^,

&c., are sufficiently close together, i.e.

if h be small enough, the trend of the

curve will be so clearly indicated that

there will be little ambiguity, and the

curve y=f{i^) passiug through Pi, P^,

Pg will not, in general, appreciably

differ within these limits from the

curve just drawn through the same points. The true curve will

of course depend upon the character of the function which y is

of X. As however, in the art of interpolation, we are concerned

with only a small part of the curve, it will be unnecessary

to consider the particular characteristics of the special curve

involved.

We need not therefore make use, for our present purpose, of

the true curve y =/(*) but of any osculating curve. We employ

at first the osculating circle which, so far as the needs of inter-

polation are concerned, is sufficiently accurate. It is generally

possible to draw this circle, whose arc coincides so nearly with

that of the given curve at a given point that for a small distance

the departure of the circle from the curve is insensible. We may,

therefore, whatever be the true curve, regard that small part which

concerns us as a circular arc. Accordingly, we describe a circle

through Pi, Pa and Pg, and we assume that for any point P
between Pj and Pg the ordinate to the circle is the value of y
for the corresponding x. Thus if ^P be the ordinate then AP
is the value of the function when x = OA. We shall make
use of the circle to determine an expression for AP which

shall involve only its abscissa and the coordinates of P^, P^, P^.

This may not, of course, be the value of y as obtained from
the formula y =f{x), but it will not differ appreciably there-

from.

Let TMM'N'N be a circle and TLL' the tangent to it at T.

Let LN and L'N' be two lines which are both perpendicular
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to the axis of X. We have, by the property of the circle

(Fig. 1),

LM .LN = LT\
L'M'.L'N' = L'T^;

whence

LM LT^ L'N'

I'M' L'T'^ LN
Let us now suppose that LN and

X'iV^' approach indefinitely close to

T, then L'N'ILN=\ and we have

LM : L'M' :: LT^ : L'T\ Fm. 7.

Remembering that the arc of the

curve is indistinguishable from that of its osculating circle in the

vicinity of the point of contact, we obtain the principle on which

interpolation is based and which may be thus expressed.

If a tangent TL be drawn touching a curve at T, and LM
be an ordinate contiguous to T, then the intercept LM on that

ordinate between the tangent and the curve is proportional to

the square of TL.

In Fig. 8, is the origin, y is the ordinate of P, and y^ that

of T, then, as we have shown, FB
varies as BT'^, and therefore, as

CT"", also CB varies as GT; hence,

if X be the abscissa of P
y-y^ = lx + ma?,

where I and m are constants for

points in the neighbourhood of T.

This is of course the equation of

a parabola.

With a change in the con-

stants to V and m we may write Piq_ g.

the equation as follows

y = y^+l'a; + m'x (x — h);

we find I' and m' from the consideration that (h, y^ ;
(2/i, y^ are

to be points on the curve. The first gives

V =
h '

B. A.
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while x=2h, y^y^ gives

2/2
=

2/o + 2(3/i-yo) + 2AW,

or m
2^,

and the equation becomes

y = y^+liyi-y^) + "' %'^^ (y^-^yi+Vo) (i).

Let 2/0,2/1, 2/2 be three consecutive values of the function y, where h

is the difference of the arguments between the second and the

first value and also between the third and the second. Then for

any argument which is greater by x than the first argument but

less than the third argument the above formula gives the required

function.

The constants of this formula are very easily obtained from

the table by the method of differences

:

1st Diff. 2nd Diff.

2/0

2/1-2/0

2/1 2/2 - 22/1 + 2/0

2/2-2/1

2/2

The first column contains three consecutive values of y.

The second column shows the differences between each value and
the preceding one. The third gives the differences between con-

secutive terms in the second. The third and higher differences

are to be similarly formed if required.

If for brevity we write 2/i-2/o = A and 2/2 - 2yi + 2/0 s A',

and if we replace a; by < as the time is generally the independent
variable in astronomical work, and if we make the difference h

the unit of time, then the equation becomes

2/ = 2/„ + «A+*i^)A'.

The rate at which y changes with respect to t obtained by
differentiating the last equation with respect to t, is

| = A-iA' + .A',

from which it appears that the rate of increase will itself increase
uniformly.
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In two time-units the function increases from y^ to y^, hence
its average rate of increase per time-unit is iC^a — ^o), and as

the rate increases uniformly it will attain its average value when
half the time has elapsed, i.e. when the function has the value y^.

Hence we deduce the following result

:

The rate at which the function is changing per unit of time

at any epoch t is half the difference between the values of the

function at one unit of time after t and at one unit of time before t.

Provision is often made in the Ephemeris for a more rapid

process of interpolation by giving an additional column indicating

the rate of variation of the function at the corresponding moment.

We shall illustrate this by finding the South Declination of the

Moon at 15 + ^ hours after Greenwich mean noon on Sept. 6,

1905.

The Ephemeris gives the South Declination of the Moon at IS*"

G.M.T. to be 18° 38' l"-2 and the variation in 10 minutes as 23""55,

the moon moving south. At IG*" on the same day, the next line

of the table shows the variation in 10" to be 22''
'41, and as the

rate of variation may be regarded as declining uniformly, the

variation per ten minutes at {\.b + \t) hours after noon is

23"-55 - 0"-b1t.

This may be assumed to be the average rate of variation for

the whole interval between 15'' and 15'' H- 1, and since t is ex-

pressed in hours the total variation in that interval is found by

multiplying the average rate by 6^. We thus find for the South

Declination of the Moon at Ib^ + t on Sept. 6, 1905,

18° 38' l"-2 -f-
141"-3« - 3"-42il

Formulae of interpolation are also used for the inverse

problem of finding the time at which a certain function reaches

a specified value. Suppose, for example, that it is required to

know the time on September 6th, 1905, when the Moon's South

Declination is 18° 40'. We have from the equation just found

18° 40' = 18° 38' l"-2 -f 141"-3« - 3" -42^1

This is a quadratic for t, and by neglecting the last term the

root we seek is found to be approximately 0'86. Substituting

this value in t^ in the original equation it becomes

118-8 = 141-8!! - 2-53,

2—2
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whence t = 0-859 and the required time is IS" Sl-^-o. The other

root of the quadratic is irrelevant.

It is easy to generalize the fundamental formula of interpola-

tion given above.

Let us assume

y = A, + A,t+A,t(t-l) + A,t{t-l){t-2)

+ A,t{t-l){t-2){t-3),

where ^o, ^i. ^2> ^s, ^4 are undetermined coefficients, to be so

adjusted that when t becomes in succession 0, 1, 2, 3, 4, then y

assumes the values 1/0, 2/i, y^, 2/3. 2/4
respectively.

Hence by substitution we have

y, = A, + A^,

y^ = A, + 2A^ + 2A„

y, = Ao + 3^1 + 6A., + 6^3.

y,= Ao + iA, + 12A^ + 2iA, + 24>A,
;

from which,

•4o=2/o,

^i = 2/i-2/o>

^2 = i (2/2 - 2yi + 2/0).

-is = U2/3-3y!. + 32/i-yo),

^4 =^ (y4 - 4ys + 6^2 - 4yi + 2/0).

By this means we obtain the general formula of interpolation

^ t(t-l). t{t-l){t-2) .

t{t-l)(t-2)(t-S)
+ 1.2.3.4 ^* ^''^.

where Aj, A2, Ag, A4 are the successive differences.

Generally the last term may be neglected as

2/4-42/3 + 62/2-42/1+2/,

will usually be very small. If we make it equal to zero we have

2/2 =1(2/1 + 2/3)- M2/0 + 2/4)-

The quantities given in the tables are of course generally

erroneous to an extent which may amount to almost half a digit
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in the last place. If y-^ and y^ were each too large by half a

digit in the last place, and y^ and 3/4 were each too small by the

same amount, then even under these most unfavourable circum-

stances the combination can give an error of barely a single digit

in the last place in y^.

We have also from the same equation

2/4 = 4ys-6y2-l-42/,-y„,

from which it might appear that from knowing y„, y^, y^, y, we

could compute y^. But this "extrapolation" would be unsafe,

for if 2/1 and y^ were each half a digit too large, and y^ and y,,

each half a digit too small, as might conceivably happen, the total

error in 3/4 would amount to 7 or 8 digits of the last place.

The following method of interpolation due to Bessel should

also be noted.

Let t be the argument measured from a point midway

between two tabular arguments, and set down that part of the

table as far as two tabular arguments on each side of the origin.
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Expanding we obtain

4.8y=~ 2/i(8«'-12<2- 2t + 3)

+ Sy^{8t^- 4«^- 18^+9)

-3y,(8t'+ U'-l8t-9)

+ y,(8t'+12t'- 2<-3),

and consequently,

4,8y = (8f - 2t) {d + 36) + (12«^ - 3) (2c + 2a)

+ (54« - 24f) 6 + (54 - 24i») a,

or 2/ = a + 6«+c'^ '-^ ' + d-^
24

'

If i = we have y=a— ^c,hy which we see that the value of

the function for an argument halfway between two consecutive

arguments is equal to the mean of the two adjacent values less

one-eighth of the mean of the two second differences on the same

horizontal lines as these values.

As an illustration of this method we may take the followiag

problem. The Moon's mean longitude at Greenwich mean noon

being given as under for 1st, 2nd, 3rd and 4th March, 1899, it is

required to find its mean longitude at midnight on March 2nd.

Moon's mean
1899 longitude at noon 1st Diff. 2nd Diff.

March 1st 205° 38' 38"-l

+ 12° 58' 6"-9

„ 2nd 218 36 45 -0 + 13' ll"-2

+ 13 11 18 -1

„ 3rd 231 48 3 -1 + 14 40 -6

+ 13 25 58 -7

„ 4th 245 14 1 -8

The required result is

^(218°36'45"-0+23r48'3"-l)-3V(13'll"-2 + 14'40"-6)

= 225° 10' 39"-5.
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*EXEKCISES ON CHAP. I.

Ex. 1. Show that in any formula relating to a spherical triangle a, h, c,

A, B, C may be changed respectively into a, 180° -6, 180° — c, A, 180° — 5,
180°— C and hence deduce the second of Napier's analogies (21) from the

first (20).

Ex. 2. Explain in what sense Delambre's formula (16)

sin^csin^ (4 - B)= +cos §Csin \{a-h)

may be also written in the form

sin^csin J(4 — 5)= — cos^Csin^(a-6)

and show that there is a similar ambiguity of sign in the remaining three

formulae.

Ex. 3. Show that

coiada+ cotBdB= Q,othdb+cot AdA,

sin adB= sin Cdh - sin B cos ado-smh cos CdA.

Ex. 4. If when * assumes the values <o, <i, h the corresponding values of

y are y^,, yi, y^ respectively, show that a formula of interpolation based on

these data is given by the equation

{t-t^){t-h) {t-h)(t-to) {t-h){t-h)

^"^"(«0-ifl)«0-<2) ^'(«l-«2)(«I-«o) ^'fe-<0)(«2-*l)'

It is sufficient to observe that this is the simplest expression of y in

terms of t which obviously gives for y the values ya,yi, yz when <o, <i, h are

substituted for t.

Ex. 5. Show that if <i
—

<o= '2— *i=^ the formula of interpolation in the

last example will reduce to the fundamental formula

2'=yo+^(yi-yo)+'-^|^(y2-2yi+yo)

if the time be measured from the Epoch ^o-

Ex. 6. Extracting the following from the Ephemeris :

Greenwich mean noon.

N. Decl. of Sun

1905. April 7th 6° 40' 49" -9

„ 8th 7 3 22 -4

„ 9th 7 25 47 "7

Show that the Sun's declination at 6 p.m. Greenwich mean time on Apr. 7

is6°46'28"-7.
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Ex. 7. The Moon's semi-diameter is as follows :

Oreenwich mean noon.

Semi-diameter
of Moon

1909. Sept. 3 16' 29"-44

„ 4 16 18 -61

„ 5 16 5 -97

„ 6 15 52 -69

Show that the Moon's semi-diameter at midnight on Sept. 4 is 16' 12"-44.

Ex. 8. From the following data find the mean time on Aug. 11th, 1909,

when Venus and Jupiter have the same k.a.

1909
Mean noon
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6. Graduated great circles on the sphere.

The circumference of a great circle is supposed to be divided

into 860 equal parts by dividing marks. Starting from one of

these marks, which is taken as zero, the succeeding marks in regular

order will be termed 1°, 2°, 3° and so on up to 359°, after which the

next mark is zero so that this point may be indifferently termed
0° or 360°. Thus we obtain what is known as a graduated great

circle, and it may have subordinate marks by which each interval

of 1° is further divided as may be required.

In starting from zero the numbers may increase in either

direction, so that there are two perfectly distinct methods of

graduating the same circle from the same zero mark.

A man walking on the outside of the sphere along a graduated

great circle in the direction in which the numbers increase, i.e.

from 0° to 1° not from 0° to 3.59°, will have on his left hand that

pole of the great circle which may be distinguished by the word

nole'f, and on his right that pole of the great circle which may
be distinguished by the word antinole.

t The ancient word note being obsolete in its original sense of head or neck seems

available for the purpose now proposed. There being a choice of various spellings

that one is preferred which most immediately suggests north pole.
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Thus when the terrestrial equator is considered as a graduated

great circle for longitudes eastward from Greenwich or Paris,

the north pole of the earth is the nole of that circle so graduated

and its antinole is the south pole of the earth. If on the other

hand the equator be graduated so as to show longitudes increasing

as the observer moves westward, then the nole of the circle so

graduated is the south pole of the earth, and the north pole of

the earth is the antinole.

When a point on a sphere is indicated as the nole of a graduated

great circle, then, not only is the position of that great circle

determined, but also the direction of graduation round it.

If the given point on the sphere had been indicated as the

antinole of the graduated great circle, then the direction of

graduation would be reversed, for by definition the antinole is

on the right hand of a man walking along the great circle in the

direction of increasing graduation.

To indicate the direction 0° to 1° on a graduated circle it is

sufiBcient to attach an arrow-head to the circle

as shown in Fig. 9 and Fig. 10, and it will be con-

venient to speak of the direction of increasing —

:

graduation as the positive direction, and the ^'8- ^•

direction of diminishing graduation as the negative direction.

0°1°2°S°

7. Coordinates of a point on a sphere.

Any great circle of the sphere graduated from 0° at an origin

being chosen for reference, we can

express the position of any point on

the sphere by the help of two co-

ordinates a and S with respect to

that graduated great circle.

When specific values are given

to a and S, the corresponding point

S on the sphere is obtained in the

following way. We measure from

along the great circle in the direc-

tion of increasing graduation to a point P so that OP = a.
At P a great circle is drawn perpendicular to OP, and on this
an arc is to be set off equal to S. If 8 is positive, then the

Pig. 10.
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required point S is to be taken in the hemisphere which

contains the nole. But if S is negative, then the required point

S' is in the hemisphere which contains the antinole. Thus when

a, S are given, the place of a point on the sphere is definitely

indicated. It is often convenient to speak of the hemisphere

which contains the nole as the positive hemisphere and that

which contains the antinole as the negative hemisphere.

Negative values of a need not be considered, for though a point

Q might be indicated as - 90° if OCQ = — 90°, yet it would generally

be more conveniently indicated by + 270°, the measurement

being made in the positive direction. We hence establish the

convention that all values of a are to lie between 0° and + 360°.

It is convenient to restrict the values of B between — 90° and

+ 90°, for this dispels some ambiguity while still preserving perfect

generality. Two coordinates will indeed always determine one

point, but without this limitation of 8 it will not follow that one

point will have only a single possible pair of coordinates. For

example a = 30°, B = + 20° will indicate a point not different from

a = 210°, 8 = + 160°. Tf however we establish the convention that

S shall never lie outside the limits — 90° and + 90° we are able to

affirm that not only does one pair of coordinates determine one

point, but that one point, in general, has but one pair of co-

ordinates. The only exceptions then remaining will be the nole

and antinole of the fundamental circle. In the former 8 = + 90°,

and in the latter 8 = — 90°, but in each a is indeterminate.

Ex. 1. Abandoning the restrictions that 0>a:J>360° and -90°:t*8>90°,

show that the point a= 40°, 8= 30° would have been equally represented by

any of the following pairs of values for a, 8 respectively :

220°, 150°; -320°, 30°; -140°, 150°; 400°, 30°; -680°, 30°;

580°, 150°; 40°, 390°.

We can always apply ± 360° to either or both of the coordinates without

thereby altering the position of the point to which these coordinates refer.

Ex. 2. Show that the following pairs of coordinates

a; 8

360°+ a; 8

180°+ a; 180° -8
180°+ a; -180°-8

all indicate the same point, and thus verify that for every point on the sphere

a pair of coordinates can be found such that J'o :^360° and - 90° :^8 :t*90°-
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8. Expression of the cosine of the arc between two

points in terms of their coordinates.

Let AA' he the great circle of reference and P its nole, and

let S and S' be the two points. As AS =B p

we must have SP = 90° - 8, and in like

manner ,S'P = 90°-S'. We have also

AA' = «'-«, and as PA and PA' are

each 90°,

Z ,SfP,S' = a' - a.

Applying fundamental formula (1) to the

triangle SPS' we have if SS' = d

cos = sin S sin S'

+ cos S cos S' cos (a' — a) (i).

When the points S, S' are close together

on the sphere a more convenient formula

for the determination of their distance is

found as follows.

We have

cos 6 = sin B sin S' + cos S cos 8' cos (a — a')

= sin 8 sin 8' {cos" -g (a — a') + sin" i (« — «')}

+ cos S cos 8' (cos" |(a — a') — sin" |^ (a - a')}

= cos (8 - 8') cos" ^ (a - a') - cos (8 + 8') sin" ^ (a - a').

Subtracting this from

1 = cos" |(a - a) + sin" |(a - a'),

we have

sin" ^6 = cos" ^ (a - a') sin" ^ (8 - 8') + sin" ^ (a - «') cos" ^ (8 + 8').

This is of course generally true, and when is very small it gives

the approximate solution

^" = (8 - 8')" + (a - «')" cos" i (8 + 8').

We can prove this formula geometrically as follows (Fig. 11).

Let SN and S'N' be perpendicular to .Sf'P and SP respectively.

As SN'S' is a very small triangle

SN'' + ]sr's'^=ss'\

whence approximately

(8 - 8')" + (a - a')" cos" 8' = SS\
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In like manner from triangle SNS'

(S - BJ + (a - aj cos'' 8 = SS".

These approximate values of SS'^ only differ in that one

contains cos 8 and the other cos S'. Genei-ally one is too large and

the other too small and for an approximation we may write in-

stead of cos S or cos 8' their mean found as follows:

i (cos 6 + cos 8') = cos i (8 + 8') cos ^ (8 - 8') = cos |(8 + 8'),

which gives by substitution the desired result.

Rectangular Coordinates:—We can determine from (i) the

rectangular coordinates of the point a, 8 on a sphere of radius r,

with reference to axes defined as follows:

+ a; is from the centre of the sphere to the point a' =0, 8' = 0.

+ 2/ a' = 90°, 8' = 0.

+ g 8' = 90°.

We thus see by substitution in (i) that the cosines of the

arcs from P to the extremities of the three positive axes are

respectively

cos a cos 8, sin a cos 8, sin 8,

and hence the rectangular coordinates are

a; = r cos a cos 8 ; y = r sin a cos 8 ; z = r sin 8.

Ex. 1. Find the distance 6 between S and S' when it is given that

S= 12° 24' 45"; 8'= 24° 15' 40"; a'-a=42° 38' 41".

We calculate the distance directly from the formula (i)

cos 8' 9-959844

sin 8' 9-613731 cos 8 9-989728

sin 8 9-332334 cos (a -a) 9-866623

8-946065 9-816195

1st term 0-088321

2nd „ 0-654930

cos e 0-743251

(9=41° 59' 27".

Ex. 2. If 8=27° 11' 6", 8'= 32° 17' 21" and a'-a=29° 11' 13", show that

^= 25° 46' 6".

Ex. 3. The coordinates of two stars are ai, 8i and 02, 82 respectively.

Show from (i) that the coordinates a, 8 of the poles of the great circle joining

them are given by the equations

— tan 8= cot 81 cos (a — ai)— cot 82 cos (a — 02),

and obtain the same equations geometrically.



30 THE USE OF SPHERICAL COORDINATES [CH. II

Ex. 4. Explain how the solution of the last question applies to both

poles, and show how to distinguish the nole from the antinole if the positive

direction be from the first star to the second.

Ex. 5. Show that if L be the length of the arc of a great circle on the

earth (supposed a sphere of radius R) extending from lat. Xi, long, ^i to

lat. X2, long. ?2, then
Z=^ COS"' (sin Xi sin X2 sec^ ^),

where tan^ ^= cot Xi cot Xg cos (?i
— l^ ;

and that the highest latitude reached by the great circle will be

cos-i ( cos Xi cos X2 sin (?i
~ l^ coseo -^ j

.

Let S181 be the two points (Fig. 12),

OPxPi the equator, N the north pole
;

then

cos /Si (52= sin Xi sin X2

+ cos \x cos X2 cos (^1 — Z2).

To prove the second part the highest

latitude on S\Si, produced if necessary,

equals lSxOP\.

From LNOSx we have

cos .SjOPi = sin NOSx= sin NSi sin NS^O

= sin MSi sin iVSj sin Si iV/S'2 coseo Si S2

.

Pig. 12.

Ex. 6. Verify that in the expression of the distance between a point a, 8

aud another point oo, 80 there is no change if a and 8 be altered into 180°+

a

and 180° — S respectively, and explain why this is necessary.

9. Interpretation of an equation in spherical coor-

dinates.

When a and B are given, then as we have shown a point of

which these quantities are the coordinates is definitely determined

on the sphere. If we know nothing with regard to a and 8, except

that they satisfy one equation into which they enter in conjunction

with other quantities which are known, we have not sufficient

data to determine the two unknowns.

Any value of a substituted in the equation will give an
equation in 8 for which, in general, one or more roots can be
found. Repeating the process with different values of a we can
obtain an indefinitely numerous series of pairs of coordinates a, 8,

each of which corresponds to a point on the sphere. If several

of these points be constructed, they will indicate a curve traced on
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the spherical surface. The original equation may be described as

the equation of that curve just in the same way as an equation

in X and y indicates a plane curve in analytic geometry.

We shall first show that if the coordinates of a point a, 8

satisfy the equation

A sin 8 + S sin a cos 8 + C cos a. cos 8 = 0,

where A, B, G are constants, the locus of the point will be a

gi-eat circle of which the poles will have coordinates a', 8' and

180° + a', -8', where

tana' = 5/<7; sin S' = A/'^A^+ B'+ G\

We can make A positive, because if necessary the signs of all

the terms can be changed. Assume three new quantities H, a, 8'

such that A=n si.nS, B =H sin a' cos 8', G =H cos a! cos 8', then

by squaring and adding H = ± vA^+W+G^. Taking the upper

sign we obtain from the first equation sin 8' = a positive quantity,

:^ 1, hence 8' is positive and. as 8'
:^ 90° there is no confusion

between 8' and 180° — 8'. The second and third equatiouvS give

cos a.' and sin a', and thus a' is found without ambiguity, and we

have obtained one solution a', 8'. If however we had taken the

negative value of H, then instead of 8' we should have had — 8'

from the first equation, and the two last can only be satisfied by

putting a' + 180° instead of a'. Thus there are two solutions,

a, 8' and 180° + a', — 8'. And these are two antipodal points.

The original equation then reduces to

H {sin 8' sin 8 + cos 8 cos 8' cos (a' — a)} = 0,

whence a, 8 must be 90° from the fixed point a', 8' and therefore

its locus is a great circle.

Ex. 1. Show that if the following equation is satisfied :

—

A sin S+£ sin a cos 8+ Coos a cos 8= Z),

the locus of the point a, 8 wiU be in general a small circle of which the radius is

and that if D^= A^+ B'^+C^ the equation represents no more than a point.

Ex. 2. If a, 8 are the current coordinates of a point on a sphere and a, b

are constants, show that the equation

tan 8=tan b sin (a - a)

represents a great circle which has the point a= as+ 270' and 8= 90° — 6 as

a pole.
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10. The inclination of two graduated great circles is the

arc If-
180° joining their noles.

The inclination of two ungraduated great circles is in general

unavoidably ambiguous, for it may be either of two supplemental

angles, and it is only when the two circles cross at right angles

that this ambiguity disappears.

But the inclination of two graduated great circles need not be

ambiguous because we can always distinguish that one of the two

supplemental angles which is to be deemed the inclination of the

two circles. The inclination is defined to be the angle :^ 180°

Fig. 13.

between those parts of the circles in which the arrow-heads

are both diverging from an intersection or cJonverging towards

an intersection.

In Fig. 13 the two segments of the circles diverging from

are OA^ and OA^, and consequently the angle is to be AfiA^ = e.

If however we simply change the direction of the arrow-head on

OA-i without any other alteration in the figure, we have the

condition shown in Fig. 14, where the diverging segments OA-^ and

OA^ now contain the angle AfiA^ = 180° - e, which is accordingly

to be taken as the inclination of the two graduated circles in

this case.

If A^Ao.N^N^ (Fig. 13) is the great circle perpendicular both

to 0^1 and OA^, then since OA^, = 90° and OA^ = 90°, we have
A^A^ = 6. If iVi and N^ be the noles of OA^ and OA., respectively,

we have A^N^ = 90° and A^N^ = 90°, and hence

In like manner in Fig. 14 the nole N-^ of OA^ is now the
antinole of the former case. Since J.2 0iV2 = 90°, we have
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A, Olf, = 90" - 6, and as A, ON^ = 90° we have N,ON, = 180° - e,

which as already explained is the inclination of the two graduated
circles in this', case. Then we obtain the important result that

the inclinafion\ between two graduated great circles is always
measured hy th^g arc between their noles.

No doubt &\ question may arise as to the arc N^N^ (Fig. 13).

Is it the lesser o¥ the two arcs which we should naturally take, or

is it the arc reck(>)ned the other way round the circle from iVi by

Ai and A^ ? Theye are thus two arcs together making 360°, of

which either rmay in one sense be regarded as the inclination. We
can^ibwever remove any ambiguity thus arising by the conven-

tion that the inclination of two graduated great circles is never to

exceed 180°.

Ex. 1. If BC, GA, AB be the positive directions on three graduated great

circles which form the triangle ABC and if A', B', C be their respective noles,

show that

(1) If B'C, C'A', A'B' be the positive directions on the sides of the

polar triangle A'B'C the noles of those sides are A, B, C respectively.

(2) The sides and angles of A'B'C are respectively supplementary to

the angles and sides of ABC.

Ex. 2. If ai, 8i and a^, 8^ b* the noles of two graduated circles show that

if e is the inclination of the two circles

cos e= sin Si sin §2+ cos 8i cos 82 cos (aj — 02),

and that if a, 8 are the coordinates of the intersection of the two circles

. ^ . cos 81 cos So sin (ao — ai)
sm 8= ± ? ^-^

,

cos 8 cos a= +

smc

cos 81 sin 82 sin aj — sin 81 cos S2 sin 02

. . sin 81 cos 82 cos ao— sm 82 cos 81 cos oi
cos 8 sin a= + :

,
sine

where the upper and lower signs refer to the two intersections.

11. On the intersections of two graduated great circles.

Let G and C (Fig. 15) be two graduated great circles which

intersect in the two diametrically opposite points V and V. Let

N be the nole of G and N' the nole of G'.

A point moving along G' in the positive direction crosses at V
into the positive hemisphere bounded by G. Thus V is described

as the ascending node of G' with respect to G.

B. A. 3
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A point moving along G' in the positive direction crosses at V
into the negative hemisphere bounded by C. Thus V is described

as the descending node of G' with respect to G. '

If be the origin on G from which coordinates are measured

and OP = a, FN' = S, then a and 8 are the coordihates of N' the

nole of G' with respect to G.

As the angle between two graduated great csircles is the arc

between their noles (§ 10) we see that 90° - 8 'is the inclination

between G and G'. <

We have OV = OP + Pr =a + 90°,

OF'=OF+ 180° = + 270°,

and thus we obtain the following general statement

:

If a, 8 be the coordinates of the nole of one graduated great

circle G' with respect to another G, then the inclination of the two

circles is 90° — S, the ascending node of G' on G has coordinates

90° + a, 0, and the descending node of G' on G has coordinates

270° + a, 0.

If, as is often convenient, we take 12, as the coordinates of the

ascending node of G' on G and e as the inclination of the two
circles, we have (fi + 270°), (90° - e) as the coordinates of the nole

of G', the circle of reference being C
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In general to fix the position and direction of graduation of
one great circle with respect to another, we must know three
parameters of the second circle with regard to the first. We
may, for instance, be given the two coordinates of its nole.

For this fixes the nole, and then not only is the great circle de-
termined of which that nole is the pole but also the direction

in which the graduation advances on the second circle is known.
If we had merely been given the coordinates of a pole of the
great circle, then no doubt the place of the great circle would
be defined, but so long as it is unknown whether the given pole

is the nole or the antinole the direction of graduation will remain
unspecified. The third parameter is required to fix the origin of

the graduation on the second circle.

Or we may be given £2 the ascending node of the second circle

on the first and also e the inclination. Starting from the origin

we set off n in the positive direction and thus find the ascendino-

node. The second circle is then entering the positive hemisphere
of the first. If we make the two diverging arcs from the node
contain the angle e there is no ambiguity as to the exact place

of the circle required.

Ex. 1. Show that the ascending node of C with regard to C is the

descending node of C with regard to C".

Ex. 2. Show by a figure the difference between two graduated great

circles which, having equal inclinations to the great circle of reference, have
respectively 6 and 180°+ 5 as the distances of their ascending nodes from the

origin.

Ex. 3. If Q be the longitude of the ascending node of a graduated great

circle L and e its inclination to a fundamental circle, and if a', t' be the

corresponding quantities with regard to another great circle L', determine the

coordinates of the ascending node V of L' upon L.

Let N, N' (Fig. 16) be the nodes on the fundamental circle ONN', then

V is the ascending node of X' upon L; let a: be the distance NV. We have

to find X in terms of e, e' and Q' — a.

From fonnula (6) in § 1 we obtain

cot X sin (Q' — O) — cos (Q' — Q) cos e= — sin e cot e',

, , cos(Q' — O) cose — sin € cot f'

whence cot :;;=—^
. ,„,
—-r .

sm(Q — Q)

To find which value of x is to be taken observe that as

sin X : sin (O' - O) : : sin e' : sin F

and V and e' are both :^180°, sin* must have the same sign as sin(Q'-Q),

which shows whether a; or :2;+ 180° is the angle required.

3—2
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When X is known we determine a, 8 the coordinates of V with respect to

the fundamental circle from the equations

sin 8= sin«sinf,

cos 8 cos (a — Q)= cos X,

cos 8 sin (a — J2)= sin x cos c.

Fig. 16.

Ex. 4. With the data of the last example find the inclination p between

the two great circles specified by a, e and Q', e' respectively.

We have found that the coordinates of the noles are O + 270°, 90° - e and

a' + 270°, 90° -e', and hence by § 10 Ex. 2 we have

cos p = cos e cos e + sin c sin e' cos (a — a').

Ex. 5. If X be the length of the common perpendicular to the two great

circles defined by a, f and a', e show that

cos X= cos e cos c + sin e sin e' cos (a - a').

12. Transformation of coordinates.

Being given the coordinates of a point with regard to one

graduated great circle it is often necessary to determine the

coordinates of the same point with regard to a different graduated

great circle.

Let a, S be the original coordinates of a point P and let a', S'

be the coordinates of the same point P in the new system. In

like manner let a„, S„ and «„'. So' be the original and transformed

coordinates of some other point P„. Since the transformation

cannot affect the distance PP^ we must have that distance the

same whichever be the coordinates in which it is expressed, and
consequently (§ 8)
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sin 8' sin So' + cos S' cos 8,,' cos (a' — a„')

= sin 8 sin So + cos S cos So cos (« — «„) (i).

All the formulae connected with the transformation are virtually

contained in this equation.

If we know the coordinates of any point P„ in both systems,

i.e. Ho, So, oJo', So' and substitute these values in (i) we obtain an

equation connecting in general a, S and a, S'. In like manner if

the coordinates of a second point are known in both systems

we obtain another equation in a, S and a, 8'. Thus we have two

equations for the determination of a, S' in terms of a, S.

But two equations are not sufficient for finding «', 8' uniquely

in terms of a, S. The distances PPo, PPi do not fix P with-

out ambiguity. There are obviously two positions which P
might occupy. Their distances from a third point P^ will not

however be equal unless indeed P^ happens to lie on the great

circle through Pt,Pi- Excluding this case we may say that a

point is determinate if its distance from three given points is

known. Hence we have to obtain a third equation between a, 8

and a!, 8' by taking some third point of which the coordinates

tto, So and Ho', So' in both systems are known and which does not

lie on the great circle passing through the two points previously

selected.

Fig. 17.

Let OA (Fig. 17) be the original great circle graduated in the

direction of the arrow from the origin and having its nole at N.
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Let O'A' be the graduated great circle with nole at N' and origin

0' to which the coordinates are to be transformed. Let il, D.' be

the distances from and 0' respectively of V the ascending node

of the second circle on the first. Let e be the inclination of the

two graduated circles. Then fl, il', e are the three parameters

which completely define in every way the second graduated great

circle with reference to the first (§ 11).

We have now to select three points, not on the same great

circle, and such that their coordinates in both systems can be

directly perceived.

The points we shall choose are respectively V, A and N. It

is obvious from the figure that as VA = VA' = 90° the coordinates

of these points in the two systems are as follows

:

ForFa„ = fl; B, = 0. and«„' = fl'; So' = 0.

„ ^ a„ = 90° + n; «„ = 0. „ a„' = 90° + fi'; 8o' = -e.

„ i^a„ = 0; S„ = 90°. „ a„' = 90° + fl'; S„' = 90°-e.

Substituting these coordinates successively in the equation (i)

we have the general formulae of transformation

cos S cos (a — O) = cos 8' cos (a' — D,') (ii),"

cos S sin (a — fl) = — sin 8' sin e + cos S' cos e sin (a — fi'). . .(iii),
•

sin 8 = sin 8' cos e + cos 8' sin e sin (a' — XI') . . .(iv).

From these we derive

cos 8' cos (a — fi') = cos 8 cos (a — fi) (ii),

cos 8' sin (a' — fl') = sin 8 sin 6 + cos 8 cos e sin (a — O) . . .(v), •

sin 8' = sin 8 cos e — cos 8 sin e sin (a - D) . . .(vi),

for, by multiplying (iii) by cos e and adding (iv) multiplied by sin e

we obtain (v), and by multiplying (iv) by cos e and subtracting (iii)

multiplied by sin e we obtain (vi).

The first set of equations determine the coordinates a, 8 when
a, 8' are known and the second set determine a', 8' when a, 8 are

known.

Another proof of the fundamental formulae for the trans-

formation of spherical coordinates may be obtained in the follow-

ing way.

Since Fis the pole of MN' (Fig. 17) we have z VNN' = 90''

also Z VND = a - XI, whence Z N'NP = 90° -I- a - fl. We also see
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that a'-fi' = z FiVD' whence Z iV^iV'P = 90° - a' + fl'. The
figure also shows that NP = 90° - 8, N'P = 90° - S' and NN' = e.

In the triangle NM'P we thus have expressions for the three

sides and two angles, and hence from the fundamental formulae

(3), (2), (1) of § 1 we deduce (ii), (iii), (iv) on the last page.
• The necessity already pointed out for having three equations

in the formulae of transformation may be illustrated from the group
(ii), (v) and (vi).

Suppose that we sought a' and B' from equations (ii) and (v)

;

we have at once

tan (a' — D,') = {sin 8 sin e + cos B cos e sin (a — D,)} sec B sec (a — il).

As all the quantities on the right-hand side are known, tan (a' — fl')

is known. Let 6 be the angle if-
180° which has this value for its

tangent, then (a'— ii') must be either 6 or 0+180°: we can

decide which value is to be taken for a' — fl' by equation (ii).

For as B and B' are always between the limits —90° and +90°,

cos B and cos B' are both necessarily positive. The sign of

cos («' — O') must therefore be the same as the sign of cos (a — fi).

It is thus ascertained whether a' — H' is to be 6 or 180° + 6, for

only one of these angles will have a cosine agreeing in sign

with cos (a — fl).

Thus the two equations (ii) and (v) determine (a' — D,') without

ambiguity and therefore a' is known. We then find cos B' from (ii).

At this point the insufficiency of two equations becomes apparent,

for though the magnitude of B' is known its sign is indeterminate.

Hence the necessity for a third equation like (vi) which gives the

value of sin B' and hence the sign of B'.

The problem of finding a', B' from (ii), (v) and (vi) might also

be solved thus.

Equation (vi) determines sin B' and thus shows that B' must be

one or other of two supplemental angles. It is however understood

that - 90° ifB' if
90° and we choose for B' that one of the supple-

mental angles which fulfils this condition. Thus B' is known

and hence cos B'. Equation (ii) will then give cos (a' - O') and

(v) will give sin (a' - 12'), hence a' - il' is determined without

ambiguity as both its sine and cosine are known.

Ex. 1. If a'= 90°+ O', 8'=0, show that a=90°+fl, 8= e, and find the

point indicated on the sphere.
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Ex. 2. Show that the coordinates of the nole of ffA' in the first and

second systems respectively are

a= 270° + O, 8= 90°- c ; a indeterminate, S"= 90°

;

and verify that these quantities satisfy the equations (ii), (iii), (iv).

Ex. 3. As a verification of the equations (ii), (iii), (iv), show that the sum

of the squares of the right-hand members is unity.

Ex. 4. Show that the equations (v), (vi) might have been written

down at once from (iii), (iv).

For V is the descending node of OA with respect to 0'4'. This implies

that a and 8 may be interchanged with a and 8' if at the same time Q and Q'

be each increased by 180°.

Ex. 5. If the planes of two graduated great circles are coincident show

the connection of the coordinates a, 8 on one graduated great circle and a, H
on the other of the same point on the sphere.

In the general formulae (ii), (v), (vi) we make f=0 if the two circles are

graduated in the same direction, and e= 180° if they are graduated in

opposite directions. In the first case

cos 8* cos (a - Q') = cos 8 cos (a - Q)

cos 8' sin (a' — Q') = cos 6 sin (a — n)

sin 8'= sin 8,

whence S'= 6 and a'= a+ Q'- J2.

In the second case

cos 8' cos (a' - Q!) = cos 8 cos (a - Q)

cos S' sin (a' - Q') = - cos 8 sin (a - 12)

sin 8'= -sin 8,

h'=-b, a'= J2-|-a'-a.

The coordinate 8 here changes sign because the reversal of the direction

of graduation interchanges the positive and negative hemispheres.

Ex. 6. Let (S be a fundamental graduated great circle and let /3, \ be the

coordinates of any point P with respect to S. Let S' be another graduated

great circle and let /3o, Xq be the coordinates of its nole with respect to S.

Let Qq denote the degrees, minutes and seconds marked on *S" at its ascend-

ing node on S. Let ^', V be the coordinates of P with regard to S'. Show
that for the determination of ^', X' in terms of /3, X

( cos 0' cos (X' - Qq)= cos ^ sin (X - Xo)

j
cos /3' sin (X' - Qo)= sin j3 cos ^o - cos |3 sin /3o cos (X - Xq)

V sin /3'= sin ^ sin 00+ cos /3 cos /3o cos (X - Xq),

and that for the determination of ft X in terms of /3', X'

I cos ;3 sin (X - Xq)= cos 0' cos (X' - Qq)

j
cos |3 cos (X - Xo)= sin /3' cos /3o

- cos ft sin 0o sin (X' - Qo)

V sin /3= sin ft sin /3o -H cos ft cos /3o sin (X' - J2o)-
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Ex. 7. Let ai, 8i and as, Sg be the coordinates of two stars in the first

system and ai, 8i' and 02', 82' the corresponding coordinates in the second
system. As the distance of the two stars must be the same in both systems
we have

sin 81 sin 82+ cos 81 cos 82 cos (aj - 02)

=sin 81' sin 82'+ cos 81' cos 82' cos (aj' - 02')

;

verify this from the equations (ii), (iii), (iv).

Ex. 8. Explain the changes in the coordinates on the celestial sphere

according as the sphere is supposed to be viewed from the interior or the

exterior and show that the formulae remain unaltered.

Fig. 17 is supposed to be drawn as usual from the appearance of the

sphere as seen from the outside.

But if we wish Fig. 17 to represent a portion of the sphere as seen from

the inside then V is the descending node. Instead of a and 8 we should write

180° + Q and -8 and similarly 180°+ Q' and -8' for Q', 8'. These changes

make no alteration in the formulae (ii), (v), (vi).

Ex. 9. If a, 8 and a', 8' are the coordinates of two points show that the

nodes of the great circle joining them are distant from the origin by quantities

i audi+ 180° where

L=i {a+ a') - tan-i g^g+
g

tan i (a' - a)) .

13. Adaptation to Logarithms.

If, in calculating the transformed coordinates a, S', the equa-

tions (ii), (v), (vi) (§ 12) be used as they stand, the two terms in

(vi) should be evaluated logarithmically and then S' is taken from a

table of natural sines. The equation (ii) determines cos (a' — O')

and (v) is used only to determine the sign of a' — fl' ; for this we
need calculate only the logarithms of the two terms on the right-

hand side even when they are of opposite signs.

It is, however, often thought convenient to effect a transfor-

mation of the formulae (ii), (v), (vi) (§ 12) by the introduction of

auxiliary quantities which will make them more immediately

adapted for logarithmic calculation. This may be best effected as

follows.

Let m be a positive quantity and M an angle between 0° and

360° such that

sin 8 =m cos Jlf ; cosSsm{ci — fl)=m sin M.

Hence tan If= cot S sin (a — O). If Mo is the smallest angle

which satisfies this, M is either Jf„ or M„ + 180". As m is
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positive we must choose that value for M which gives cosM with

the same sign as sin S. Thus logm and M become known. By

substitution of these auxiliary quantities in (ii), (v), (vi) (§ 12)

these equations become

cos S' cos (a — fl') = cos S cos (a — O)'

cos S' sin (a - XI') = m sin (^ + 6) (i).

sin S' = m cos (M + e)

From the last of these formulae 8' is obtained both as to mag-

nitude {if 90°) and as to sign. This value substituted in the two

other formulae determines both cos (a' — H') and sin (a' — Q,').

The first gives the magnitude of a' — Q' and the second gives

its sign.

Ex. 1. The coordinates of a point are a=75°, S= 15°. Show by the

formulae (ii), (v), (vi), that when transformed to a circle of reference

defined by the quantities = 215°, c=23° 30', Q' = 115° the coordinates

become a'=327° 1.3', 8'= 29° 0'.

Ex. 2. If the problem of Ex. 1 be solved with the help of the auxiliary

quantities Mund m show that Jf=292° 38' and LogTO=9'8278.

Ex. 3. If VP (Fig. 17) when produced meets NN' in K show that

m =cosP^and M=NK, and obtain the formulae (i) from the right-angled

triangle N'PK.
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14. Introductory.

That the earth is globular in form would be suggested by the

analogous forms of the sun and moon, and it is demonstrated by

familiar facts as set forth in books on geography.

Accurate measurements of the figure of the earth are of

fundamental importance in Astronomy and this chapter will be

devoted to the elementary parts of this subject as well as to

explaining how curved surfaces, such as that of the earth, can

be depicted on flat surfaces, as in the art of map making.

It is necessary to explain that by the expression "figure of

the earth " we do not mean its irregular surface diversified by con-

tinent and ocean as we actually see it, but a surface, part of which

is indicated by the ocean at rest, and which in other parts may be

defined as coincident with the level to which water would rise at

the place if freely communicating with the sea by means of canals

which we may imagine traversing the continents from ocean to

ocean.
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15. Latitude.

If the earth be regarded as a sphere, then the latitude of any

station on the earth's surface is the inclination to the plane of the

terrestrial equator of the terrestrial radius to that station. But the

true figure of the earth is not spherical. It rather approximates

to the spheroid of revolution obtained by the rotation of an ellipse

about its minor axis. The lengths of the semi-axes of this ellipse

as given by Colonel Clarke f are

a = 20926202 feet [7-3206904],

= (approximately) 3963-3 miles [3-59806],

= 6378-2 kilometres [3-80470],

b = 20854895 feet [7-3192080],

= (approximately) 3949-8 miles [3-59657],

= 6356-5 kilometres [3-80322].

The figures in square brackets deoote the logarithms of the

numbers to which they are attached.

If the normal PN to the earth's surface (Fig. 18) meet the

plane of the equator in N and ONA be the semi-axis major, then

z PNA = ^ is the geographical latitude of P and z PGA =
(f)'

is

its geocentric latitude.

Fig. 18.

/y>2 rt#2

If the equation of the ellipse be — -|- 1^ = 1, and x' and y' be

the coordinates of a point P of which X is the excentric angle,

then we easily see that

tan ^ = a tan \/b, tan (j)' = b tan \/a,

t Geodesy, Clarendon Press, 1880, p. 319.
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and <!>' and ^ are connected by the relation tan
<f)'
= ¥ tan <^/a«,

by which the geocentric latitude is obtained when the true

or geographical latitude is known or vice versa.

We obtain r, the geocentric distance of P, as follows

:

y2 :;;; /^.'S
/- , /„ „ , ^ , I, • - ^ «* cos^ d} + ¥ sin^ d>

^
a' cos^ <^ + 6^ sin= (^

, cos^ <f) + (1 - 6")^ sin^ (A

:a2(l-e2sin''^),
1 — e^ sin'^ cj)

if powers of e above the second may be neglected.

Under the same conditions

,, ,,, tand> — tanrf)' <a^ — ¥)taTad> „ . ,

tan (d, - <b) = :;

—

/^
J ^—^, = i-

—

~-—-~j- = e^ sm A cos A,\r -K/
i + tan^tan^' a^ + ft^tan^c^ ^ ^

and consequently we obtain the following result.

If the earth be regarded as produced by the revolution of

an ellipse of eccentricity e about its minor axis, and if the

equatorial radius of the earth be taken as unity, then, a point

having the geographical latitude ^ on the earth's surface will

have for its approximate geocentric latitude and radius vector

<j>' = (ji- i[e^ cosec 1" sin 2(/)]",

r = l-|e^+ie2cos2^.

Using Clarke's values for a and b we easily find

and we obtain

4>'=^- 702" sin 2^ = <f>- [2-846] sin 2^,

r = -9983 + [7-2306] cos 2^.

Thus 702" sin 20 is the amount to be subtracted from the

geographical latitude to obtain the geocentric latitude.

If we desire a higher degree of approximation we may proceed

as follows

:

_ A'\ _ (a'-feptan^ _ (a" - b") sin
2(f)tan(0 0)- ^2^j,.tg^j^.^ ~(a^ + b^) + {a^-¥)cos2(f>'

from which we easily obtain the approximate formula

d) — <f)' = n cosec 1" sin 2d) — ^i ——j- ) cosec 1" sin 4(f).

For the accurate calculation of ^' and r the following is the

method most generally used.
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Taking a as unity we have

r cos <j>' = x' = cos \ = cos ^/Vl - e" sin^
<f>,

r sin <}>' = y' = bsm\ = (l- e^) sin <^/Vl - e^ sin^*
<f>.

If therefore we make

X = -(^-^'>
, F= 1

Vl-e''sin^^' Vl - e^ sitf </)

we obtain r sin <j>' = X sin 0, r cos
(f>'
= Y cos ^.

The quantities logX and log Y are given in the Ephemeris

for each degree of <j>. As sur'if) is multiplied by e^ in X and F,

a small error in ^ will make no appreciable effect on X and Y.

Thus log X and log F may be obtained by inspection of the

table without troublesome interpolation. Then the accurate

values of log sin <j> and log cos (p being added to logX and log F
respectively, we obtain log r sin <^' and log r cos ^' and thence r

and c^'f. We may note that logX and log F have a constant

difference.

As an illustration of the application of this method we may
take the following case.

The geographical latitude of Cambridge being 52° 12' 52",

show that the reduction to be applied to obtain the geocentric

latitude is — 11' 22", and find the distance of Cambridge from the

earth's centre when the earth's equatorial radius is taken as unity.

Log X = 9-9979599 log F= 0-0009247

Log sin (^ 9-8977972 Log cos ^ 9-7872534

Log r sin ^'
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Ex. 1. Using Clarke's elements for the figure of the earth, show that

tan </)'=[9-9970352] tan <|>,

the figures enclosed in brackets representing a Logarithm, and show that as

the geographical latitude of Greenwich is 51° 28' 38" its geocentric latitude is

5ririi".

Ex. 2. If powers of e higher than the second are neglected, show that

X=l-ie2-Je2cos2(^,

Ex. 3. Show that the tables for LogX and Log Y so far as five places are

concerned may be computed from

LogX= 9-99778 - -00074 cos 2(j>,

log r= 0-00074 - -00074 cos 2(p.

*16. Radius of curvature along the meridian.

The curvature of the eaith along a meridian at any point is

the curvature of the circle which osculates the ellipse at that point.

If a cos 6, b sin 6 be the coordinates of a point on the ellipse

a^/a" + y'/b^ = 1, then the equation of the normal at that point

is

aa;sin^ — by cos 6 = (a^ — 6^)sin 8 cos 6 (i),

and for the latitude <j>, or the angle which the normal makes with

the major axis

tan ^ = a tan 6/b.

The centre of curvature is the intersection of two consecutive

normals. Differentiating (i) with regard to 6 we see that the co-

ordinates of the centre of curvature must satisfy the equation

aa}cos0 + bysmd = (a^-b')cos20 (ii).

Solving for x and y from (i) and (ii) we have for the co-

ordinates of the centre of curvature

x=(a'- ¥) cos' 0/a, y = {b^- a?) sin' djb,

and for the radius of curvature we then find

p = {a" sitf e + b'' cos^ Ofjab,

or in terms of the latitude ^,

p = a'b^ {b" sin^ + a' cos^ <j>)~^.

Hence we see that if s be the distance between two points on
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the same meridian whose geographical latitudes expressed id

radians are <fi and </>i
respectively, we have

: = /' ;#
' * (b^ sin^

<f)
+ a^ cos-= (j))^

It easily follows that if powers of the eccentricity above the

second are neglected, we have, as an approximate value of the arc

between the latitudes
(f>
and ^i,

s = (a - |c) ((^1 - ^) - f c sin (^j - <f>)
cos (^i + 0),

where c = a- b. The quantity c/a is often called the ellipticity.

We also obtain the approximate expression

a — Jc — fccos2^

for the radius of curvature of the meridian at the latitude ^,

and the approximate length of the quadrant of the meridian is

TT (a + &)/4.

Ex. 1. If the lengths of a degree of the meridian measured at latitudes

60° and 45° be Si and s^ respectively, prove that the ellipticity of the earth

regarded as a spheroid of revolution is |(1 — sjsi). [Math. Trip. I. 1892.]

The radius of curvature of the meridian at lat. is a-\c-^c cos 2(^.

Hence the length of 1° at lat. <^ is

(a - 1 c- |c cos 20) 27r/360.

Si= (a4-ic)27r/360,

«2=(a-^c)2jr/360.

Hence s^jsi= 1 — 3o/4a.

Ex. 2. If the powers of e up to the fourth are to be retained, show that

for the radius of curvature p of the meridian at a point of geographical lati-

tude we have the expression

P = a(l-ie2_^e4_(|g2 + ji^e*)cos20-|-j{e*cos40).

Ex. 3. Adopting Clarke's constants as the semi-axes of the earth

regarded as a spheroid of revolution, show that the number of metres

in a quadrant of the meridian from the pole to the equator is 10000186.

(log metre in feet=0-5159889.)

Ex. 4. In Clarke's Geodesy, p. 112, we read " It is customary in geodetical

calculations to convert a distance measured along a meridian when that dis-

tance does not exceed a degree or so into difference of latitude by dividing the
length by the radius of curvature corresponding to the middle point or rather
to the mean of the terminal latitudes."
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Show that if ^+ia and (^- Ja be the extreme latitudes the error of this
assumption will be about i{a-b) sin^ a cos 20.

For as shown above the arc «=(a-^c)a-f csinacos2(/), while the as-
sumed arc is (a - ^ c) a - f ca cos 20. The difference is

|c cos 20 (a- sin a)= J c sin^ a cos 20
%^a is small. The expression for this difference in inches is approximately

214000 sin3 a cos 20,

which, if 0=60° and a=l°, would be about half an inch.

Ex. 5. Measuring along the meridian from the latitude until the
latitude + 1' is reached the number of feet to be traversed will be

6077-31 cos 20.

Ex. 6. If x be the radius of the parallel of latitude 0, and y be the height
of the parallel above the equator, both expressed in miles, show that with
Clarke's data

^=3966-7 cos - 3-4 cos 30,

2^= 3946-4 sin - 3-4 sin 30,

and that if p be the radius of curvature of the meridian at the latitude

p= 3956-6 -20-2 cos 20.

Ex. 7. Show from Clarke's data that at latitude the length in feet

of a degree on the meridian is expressed by

364609 - 1867 cos 20 + 4 cos 40,

where is the latitude of the middle of the arc. Show also that the

length of a degree of longitude is

365543 cos 0-312 cos 30.

17. The theory of map making.

By the word map is here meant a plane representation of

points or figures on a sphere. We have first to consider the

methods by which we are to assign to each point on the sphere

its corresponding point on the map. We must obtain either a

geometrical construction by which each point on the map is

connected with the point on the sphere which it represents, or

two formulae from which, when the spherical coordinates of a

point on the sphere are given, the rectangular coordinates of

the corresponding point on the map are determined. Both of these

methods are used. We shall commence with the latter.

Let /3, \ be respectively the latitude and longitude of a point

on the sphere referred to a fundamental great circle. Let x, y
be the coordinates of the corresponding point in a plane refeiTed

B. A. 4
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to a pair of rectangular axes. If /8 and X are given the problem

requires that we must have some means of finding x and y.

There is also the converse problem to be considered. If x and y
are given we must have some means of finding yS and \. These

considerations imply the existence of relations such as

where /i and f^ are known functions. This is perhaps the most

general conception of the art of map making.

Considerable limitations must however be imposed on the forms

of the functions fi and /j when we bear in mind the practical

purposes for which maps are constructed. For a useful map of,

let us say, Great Britain, the shapes of the counties on the map
must be as far as possible the shapes of the same counties on the

spherical surface of the earth. We also expect that the distances

of the several towns as shown on the map shall be, at least approxi-

mately, proportional to the true distances measured in arc along the

earth's surface. It is admitted that the conditions her^ indicated

can under no circumstances be exactly complied with. It is not

possible that any plane map could be devised which should repre-

sent in their true proportions the distances between every pair of

points on the sphere. It is however possible in various ways to

arrange a correspondence such that every spherical figure, of which

each dimension is small in comparison with the diameter of the

sphere, shall be represented on the map by a figure essentially

similar.

If a spherical triangle is to be represented in a map by a plane

triangle, it is obvious that their corresponding angles cannot be

equal ; indeed as the sum of the three angles of a spherical triangle

exceeds 180°, its angles cannot be those of any plane triangle.

If however the spherical triangle be small in comparison with the

entire surface of the sphere, the spherical excess (A+B+G— 180°)

is small, and if it may be neglected we can then in various ways

obtain functions fi and /a such that every small spherical triangle

on the sphere shall be similar to the triangle which represents it

in the plane.

A map which possesses the property thus indicated is said to

be a conformal representation of the spherical surface. Let A', B',

G' on the map be the representations of three points A, B, G on
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the sphere and let us assume that these points are adjacent. If

the map is conformal, then

ABjA'B' = BC/B'G' = OA/C'A',

and, unless these relations are generally true for adjacent points

A, B, C on the sphere, the map is not conformal.

*18. Conditions that a map shall be conformal.

The general conditions that a map shall be conformal are thus

found.

Let A, B, G be three adjacent points on the sphere, the

coordinates of A being /3, X, of B being + h, X + k, and of

y8 + A', X + k', where h, k, h', k' are small quantities. Then from

§ 8, we have

AB'- = a' {h? + k' cos^ /S) ; 50^ = a' {(h - hj + {k- kj cos'' jS)

;

GA^ = a^{h'^ + k'^cos'^),

where a is the radius of the sphere.

If A', B', C be the correspondents of A, B, C and if x, y be

the coordinates of A', then we have for coordinates of B'

dx , dx , dy , dy ,

" + a^'^+ax^' y + i^'-A^'
and for the coordinates of G'

If the triangles ABG and A'B'G' are similar and H'^ is a common

factor not depending upon h, k, h', k',

= H^a' {{h - hJ + ik- kJ cos'' /3}

These equations will be satisfied for all values of h, k, h', ¥
if the following equations are satisfied:

dx_ dx di dy_^^ .j->.

9/3 ax
*

9;8 SX ^
"

(ij-dr—Md)' -(!)'} «
4—2
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These are the conditions with which x and y must comply when

expressed in terms of y8 and \ if the representation is to be

conformal.

When one conformal map has been drawn it is easy to obtain

various others as follows.

Let w denote the complex variable x + iy where i is as usual

a square root of — 1. If we form any function of w, e.g. w^ or

sin w or log tan w, &c. or more generally /(w), we obtain another

complex variable which may be represented thus

f{x + iy) — u + iv,

and also

f{x — iy) = u— iv.

Differentiating both these equations with regard to /8 and X

dx . dy \ du . dv

,9/8 d^J dl3^ d/3'

Multiplying the first and last and adding the product of the second

and third, we have

/-(...W-(.-«(|.g.3|.|)=,1.|.|.|,

and as the left-hand side is zero from (ii) because (x, y) is a con-

formal representation, so must also the right-hand side be zero.

Multiplying the second equation and the last

/(«..,,/(.-« ((|)V(|)>(|)%
(I)-,

and from the first and the third

.r(...w'(«-.)((|)V(|)V(|)%(g
We thus see from (iii) that

©•-©=-^{(S)^(|)1.
Thus we prove the following important theorem.
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If X, y be any functions of /3, \ which give a conformal
representation of the surface of a sphere on a plane, then the
coordinates u, v defined by any equation of the form

f(x + iy) = u ±iv

will also be in conformal correspondence with 0, X.

Ex. If a conformal representation of the points on a sphere is to have
for x and y formulae of the type x = £7"cos X, y = Uain X, where C?" is a function
of 0, show from the general conditions for conformal representation that

U~kta.nm-
Substituting for x and y we see that (ii) is identically satisfied and (iii)

becomes

Z7-cos^^(^D\

*19. The scale in a conformal representation.

The geometrical signification of IT (§ 18) should be noted. It is

termed the scale of the projection under consideration, for it is

plain from the first of the equations (i) in which H is introduced

that this is the factor to be applied to a small arc on the sphere

to give the length of the corresponding arc on the projection.

To obtain the expression for II we may (as the projection is

conformal) compare any small arc on the sphere in the vicinity of

the point with its correspondent. We shall take as the simplest

a small arc of length h between the points /S, \ and /8 + A, \.

Then from (i) we obtain

K|)"+'-(l)"=^-*'.

whence we obtain the following theorem.

If oc, y be the plane rectangular coordinates of a point repre-

senting in any conformal map the point with coordinates /8, \ on the

sphere of radius a, then the scale or factor to be applied to each

short arc on the sphere to show the length of the corresponding

short line in the projection is
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20. Mercator's projection.

We have now to consider that representation of the sphere

known as " Mercator's projection " which is so useful in navigation.

The essential features of this projection are :

(1) That the abscissa of a point on the map is directly

proportional to the longitude of the corresponding point on the

sphere.

(2) That the ordinate of a point on the map is a function of

the latitude (but not of the longitude) of the corresponding point

on the sphere.

(3) That the representation is conformal.

To express the first condition we make x= h'X. To express the

second condition we make y =f{0), and to comply with the third

we have to determine the form of / so that the representation

shall be conformal. The projection would not be conformal if we

simply made y proportional to yS.

The fundamental conditions (ii) and (iii) § 18 must be satisfied.

We have

I-". I-*', %'rm. 1-0.

With these substitutions (ii) vanishes identically and (iii) becomes

A'2 = cos»/8(/'/3)S

and we have

^= + /.'sec^.
dp

If we desire that the positive direction oi y shall correspond

to northwards on the sphere we take the upper sign and

/(/3) = h' loge tan
(
t + ^) + constant.

The constant may be made equal to zero, for then the ordinates on

the map are zero for points on the equator. Thus we learn the

fundamental theorem on which Mercator's projection depends, and

which is thus enunciated.

If X, yS be the longitude and latitude of a point on the sphere,

then a map constructed with rectangular coordinates

X = h'\ y = h' loge tan (^ + f
will be conformal with the sphere.



§ 20] THE FIGURE OF THE EARTH AND MAP MAKING 55

As X is here expressed in radians and the logarithm employed

is Napierian it is convenient to transform the equations so that \
shall be expressed as usual in degrees of longitude, and that the

logarithms shall be changed to common logarithms with the help

of the modulus 0'4343. With these changes

2irh' h'
, fir B\

^=360'^' 2/ = 0^4343 ^°^"*^°U + 2j-

Introducing instead of h' a new constant h such that 360^ = 27rh'

we have

x = h\, y=lS2hlog,,Un(^ + ^^ .(i),

where X is in degrees and ordinary logarithms are employed.

Ex. 1. Show that the scale in the Mercator projection

x=h'\, y= k' loge tan ^| + gj
is expressed by h' sec ^/a.

Ex. 2. If in a Mercator chart of the Atlantic ocean the parallel for north

latitude 70° is 185 mm. from the equator, what must be the distance of the

parallel of 20°, and the length of 50° on the equator ?

We have 185= 132A logio tan (^ + 35°
j ,

whence h is found to be 1'86 and the equation for the chart is

y=245 mm. logio tan (^ + gj >

which when ^=20° gives y= ^& mm.

As .j;=l-86\ we have 1-86x50=93 mm. for the answer to the second

part.

Ex. 3. What difference would be produced in a Mercator chart if instead

of taking

y=A'logtang +
|)

we had taken y=h' log tan (| -
gj

^

Ex. 4. If 4 be a small terrestrial arc at latitude (3 and if s' be its

Mercator projection, show that sjs' is the ratio of the length of the terrestrial

circle of latitude through j3 to the length of the equator on the projection.

Ex. 5. In the Mercator projection show that the length of the nautical

mile (1' in latitude) varies as the secant of the latitude.

Ex. 6. In the practical use of Mercator's charts in coasting navigation

the mariner, desiring to find by how many nautical miles {i.e. minutes of

arc) two points A and B are separated, places the points of his dividers on
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the two points corresponding to A and B on the chart and then by applying

the dividers to the graduation for latitude on the margin of that same chart

at about the latitude of A and B ascertains what he desires. Give the justifi-

cation for this procedure.

The chart being conformal and representing but a small part of the sphere

may be used as if every distance on the chart including the scale of latitudes

were strictly proportional to the corresponding distances on the sphere. But

the minutes of latitude on charts representing various parts of the earth will

generally differ in length even though those charts are all part of the same

Mercator projection. Hence the mariner should take his distance scale from

the chart he is considering and from about the same latitude as the points

whose distance he is measuring.

Ex. 7. Show that on a Mercator map the length of a degree of latitude

about Cambridge (Lat. 52° 12' 52") is 2'06 times the length of a degree of

longitude on the equator.

From the formulae (i) we see that if A be one degree of longitude on the

equator the distance between the parallels of latitude ft and iSg on the

Mercator map is

132A(log,„tan(^ + |)-logi„tan (^ + |)) .

Substituting for jS, the value 52° 42' 52" and for ^2 51° 42' 52" the ex-

pression becomes 2'06A.

Ex. 8. Prove that the equation of the trace on a Mercator's chart of a

great circle will always be of the form

'(i^-y
){ea — e a),

where 2n-a is the length on the map of the equatorial circumference, and c, k

are constants defining the great circle.

Ex. 9. If /3 is small enough for tan^ J^ to be neglected, show that the

difierence of the distances of a place, whose latitude is ft from the equator on
Mercator's chart, and on a chart obtained by projecting from the centre of the

earth on the enveloping cylinder touching the earth along the equator is

I tan' J /3 X the earth's diameter.

The projection on the cylinder of a point on the surface of the sphere gives

X

=

27raX/360, y= a tan ft

where p and X are the latitude and longitude of the point and a the radius of

the sphere.

For the Mercator projection

a;=2naX/360, y= cs log tan (45-1- |j3).

The difference of the distances from the equator in the two cases is

f, „ , l-l-tania\
a tan 8 - log r-^-; f^ 1

V
'^ ^l-tan^/3;

= a(2tan^/3-)-2tanS|3 - 2 tan J^ - § tan^ ^j3 )

=f tan3|3x2a.
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*21. The loxodrome.

If we assume the earth to be a sphere, then the course taken

by a ship which steers constantly on the same course, i.e. always

making the same angle with the meridian, is called the loxodrome

or sometimes a Shv/mh-line.

If X be the longitude and ^ the latitude and if 6 be the angle

at which the curve cuts the successive meridians, then the differ-

ential equation of the loxodrome is tan 6 = cos ^ dXjd^, whence
(by integration)

X = tan 6 loge tan (•1 + 2)+ const.

If we substitute this value of \ in the Mercator projection,

00 = h'\, y = h' \oge tan (|- + g ) '

we have x = 2/tan 6 + const., showing that the Mercator projection

of a loxodrome is a straight line cutting the projections of the

meridians at the same angle as that at which the loxodrome is

inclined to the meridians on the sphere.

The property just mentioned is of the utmost importance in

navigation, for when the mariner joins two points on the Mercator

chart by a straight line, the constant angle at which this line cuts

the projected meridians indicates the course that is to be steered

from one place to the other.

Ex. 1. If r be the radius of a sphere, if 6 be the constant angle at which

the meridians intersect a loxodrome, if + « be the axis from the centre to the

north pole, and if the axes +x:, +y be the radii to the points on the equator

of longitudes 0° and 90° respectively, then the equations of the loxodrome are

r tan 6 . dz-\-ydx—xdy=0,

Ex. 2. If r be the radius of a sphere, if 6 be the constant angle at which

the meridians intersect a loxodrome, and if s be the length of the arc of the

loxodrome whose terminal points are in latitudes /Sj, fi^, then

rOi-/32)=acos5.

Ex. 3. If the earth be regarded as a spheroid produced by the rotation of

an ellipse of small eccentricity e about its minor axis, show that the equation

connecting X the longitude and /3 the latitude of a point on the loxodrome

intersecting meridians at the constant angle 6 is

X=tan (9 Hog tan
( | + 1) - e^ sin ^ j + const.
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If p be the radius of curvature of the point in the ellipse, and p' the

intercept on the normal between the curve and the minor axis,

vl — e^sm^^ »

The differential equation of the loxodrome is

d\ p tan 6 tan ^. „ „ ,
-=- = —, = -, — e^ tan 6 cos a very nearly.
rf(3 p'oosiS cos (3

^^ J J

Ex. 4. Show that on a Mercator chart on which the unit of length is

taken to be 1' of equatorial longitude the ordinate to the parallel of latitude

^ will be

7916 logio tan (?+!)- 3438e2 sin ft

where e is the eccentricity of the ellipse given by a meridional section of the

earth.

From Ex. 3 we see that the point a;, y in the projection corresponding to

X, |3 is given by the equations

y=A^logetan^|+-j-e2sin;3j.

As X is in circular measure x is given in minutes by making A= 3438 and
3438/0-4343 = 7916.

*22. Stereographic Projection.

One of the most important methods of representing the points

on a sphere by a conform al projection is that known as the stereo-

graphic, which is thus described.

A point on the sphere having been chosen as the origin of

projection, the plane of projection is the plane of the great circle

of which is the pole, or any parallel plane. If P be any other

point on the sphere and OP cuts the plane of projection in P',

then P' is said to be the stereographic projection of P.
Draw the plane OP'PC where G is the centre of the sphere.

The tangent plane at P will cut the plane of projection in a line

through if perpendicular to the plane of the paper. Let M^ be any
point on that line. To show that the projection gives a conformal
representation we shall consider the inclination of any arc through
P to the meridian FPO and the corresponding angle in the
projection.

From the properties of the circle MP = MP' and therefore

M^P = M^P'. Hence the triangles M,PM and M^P'M are equal



§§ 21-22] THE FIGURE OF THE EARTH AND MAP MAKING 59

and thus /:M^PM = zM,P'M. But ZM.PM is the angle of

intersection of two circles on the sphere and Z M^P'M is the

angle of intersection of their projections.

Perhaps the simplest proof that stereographic projection is

conformal is this. The ratio of a line-element at P' to the corre-

sponding line-element at P is OP'jOP, as is at once seen by

similar triangles : and the fact that this ratio does not depend on

the direction of the line-element shows that the representation

is conformal. We also see that the scale is OP'jOP.

It is instructive to show how the stereographic projection can

be deduced from Mercator's projection by the principle of § 18,

that if u + iv=f{x + iy) then the coordinates u, v give a repre-

sentation conformal to that given by x, y.

In Mercator's projection

x = h\, y = h log tan
|

therefore

y£+«.i»gu.(^-f)+.X

and hence

H/m+n) , a.

= a tan ( -T
-
I j cos \ + ia tan

I

4."^2).

ae (M) sinX.
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The left-hand member is a function of a; + iy and consequently

by §18

M = atan [-J— ^jcosX and v = atan f-j — „-) sinX

are also the coordinates of a conformal representation, and it is

easy to show that they correspond to a stereographic projection.

For if the plane of the equator be taken as the plane of projection,

then the angle FOP in Fig. 19 is [|^ - ^ j
, and

aP' = COtang-f).

If X is the longitude of P the projections of GP' in the direction

of, and at right angles to, the zero of longitude are

CO tan [j — ^j cosX and 00 tan
(
j — ^j sin \ respectively.

From the formulae of § 19 we can determine the scale at

the point /3, X on the sphere in the stereographic projection when,

the apex being at the antinole of the fundamental circle, the pro-

jection is defined by the equations

2y
i» = acosXtan (-J — ^j , ;y

= asinX tan f-j — '

in which a is the radius of the sphere. We have

dx acosX dy asinX

8;8"-l-sin/3' a^""-! -sinyg'
and hence

lU^j^\\fty.W- L
a\\d^) WJ ] l-|-sin;S

Ex. 1. Determine the value of the scale at the point ;3, X on the sphere

in the stereographic projection, when, the apex being at the point X= 180°,

/3=0 on the fundamental circle, the projection is defined by the equations

_ a cos ^ sin X _ "' ^™ ^
1 -I- cos /3 cos X ' ^"~H-cos^cosX'

Ex. 2. Show that in the stereographic projection of the earth any point

and its antipodes will have as their correspondents two points coUinear with

the centre of the map and such that their distances from the map's centre

have a constant product.

Ex. 3. Let X, y be the point in the stereographic projection corresponding

to the point of latitude /3 and longitude X on the sphere. Let x-\-^^ y+ i^y
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be the point corresponding to /3+Aft X+ ^X. Show that when Ax, Ay, Aft
AX are small,

Ax= — 3^AX -a; sec A/3,

Ay= a;AX—y sec(3Aft

Ex. 4. A map of the world is to be constructed in three parts, two
circumpolar, on the stereographic projection, and one equatorial, on Mercator's

projection. The circumpolar maps are to be such that the scale in latitude a

is the same as that of the other map at the equator, and the scale at the

bounding latitude
(f)

is to be the same for all the maps. Prove that

2 tan </) (1 + sin a)= sin a (2+ sin a),

and that the scale in latitude ^ is that at the equator multiplied by

1 +
2(l+sina)'

From the scales already shown in § 20, Ex. 1 and § 22, for the Mercator

and stereographic projections respectively

A/(l+sin a)=h'/a, A/(l + sin <^)=A'sec^/a,

whence eliminating h'/ah,

tan (j>+ y/l + tan''' (/>= 1 + sin a.

Solving for tan <^ the result given is obtained.

The ratio of the scale in lat. <j) to that at the equator is sec 0, and solving

sec <j)+ \/sec^ ^ — 1 = 1 + sin a,

we obtain sec as required.

*23. The stereographic projection of any circle on the

sphere is also a circle.

Let G be the centre of the circle on the sphere and draw the

plane through the origin of projection, the centre of the sphere

and G.

Let PQ be the intersection of this plane with the plane of the

circle. The cone whose apex is and which passes through all

points on the circumference of the circle must have OG as its axis,

for since CP is equal to GQ, Z. GOP = Z GOQ. This must be true

for every plane through OC, but this could only be the case if

OG were the axis of the cone.

Every cone has two planes of circular section which make

equal angles with the axis and whose intersection is perpendicular

to the axis. The tangent planes to the sphere at G and make

equal angles with GO and their intersection is perpendicular to

GO. But the tangent plane at G is parallel to one circular section
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PQ and therefore the tangent plane at must be parallel to the

other. Thus the fundamental property of stereographic pro-

jection is proved.

As a cone has only two systems of circular sections there

can be no other planes except those parallel to the tangent at

which give the characteristic feature of stereographic projection.

The same theorem may also be proved as follows.

The generators of a cone touching the sphere in the given

circle are each perpendicular to the tangents to the circle drawn

at the point of contact. Small portions of the generators at the

point of contact may be considered as lying on the sphere. In

the projection this cone becomes a pencil of straight lines passing

through a point, and as angles are preserved, the projection of the

circle must be a curve cutting all these lines at right angles,

i.e. another circle.

Ex. 1. Show that in the stereographic projection the centre of a circle

on the sphere is projected into the centre of its corresponding circle if the

diameters of the original circle are small enough to be considered as right

lines.

For by the preservation of angles a right-angled triangle inscribed in the

original circle becomes a right-angled triangle in the projection, and therefore

every diameter of the original circle is projected into a diameter of the corre-

sponding circle.

Ex. 2. Show that in the stereographic projection of the sphere from any
point on the surface a system of meridians projects into a system of coajdal

circles.
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Ex. 3. Show that by the stereographic projection a system of concentric
smaU circles on the sphere project into a system of circles whose centres are
collinear and each of which cuts orthogonally the same system of coaxial
circles.

For all the great circles through the centre of the concentric circles
invert into a set of coaxial circles, and as angles are preserved in inversion,
the inverses of the concentric circles must intersect these coaxial circles
orthogonally, and their centres must lie on the line which is the inverse of
the great circle OC where is the centre of projection.

*24. General formulae for stereographic projection.

Let 270°, /3o be the coordinates of the origin of the stereo-

graphic projection and let \, be the coordinates of any other
point P, both referred to the same graduated great circle S.

Let >S' be the graduated great circle of which is the nole.

Let the straight line OP intersect the plane otS' in P'. Thus
the stereographic projection of P is P' and we assume the co-

ordinates of P' in the plane S' to be X, Y. The axis -(-Z is from
the centre of the sphere to the ascending node of S' on S. The
axis 4- Y passes through 90° on S', it being assumed that this

node is the origin of graduation on S' as well as S.

"We have to find expressions for X and Y in terms of 0, X.

We assume three rectangular axes from the centre of the

sphere as follows:

axis -ha; to the point /8= 0, \ = 0,

„ +y „ „ iS=o, x=90°,

„ +z „ „ /8 = 90°, \ is indeterminate.

With reference to these axes the coordinates of 0, P', P are as

follows

:

ui y z

— acos/3„ asin/3„

P' X FsinySo Fcos/3„

P a cos /3 cos \ acos;Ssia\ asiuyg.

We express that 0, P' and P are cpllinear and obtain

a cos /8 cos \ —X _ a cos /3 sin \ — Fsin jSo _ « sin ^S — Fcos /3o

cos /8 cos \ cos y8 sin X + cos /3„ sin yS — sin /S,,

Solving for X and F we have

y_ cosyScosX

1 — sin ;S sin yS, -|- cos /S cos ySo sin A, ^ "

„_ sin /3 cos y8o -f- cos ;S sin /8o sin \
1 — sin /3 sin /So -I- cos ;8 cos /3o sin

\ ^
''
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If be the nole of S, then /3o = 90°, and we have

„ cos;8cos\ „_ cos /3 sin \

l-sin/3 1 — sm/B

If be the antinole of S,^o = - 90° and

„ cos ;S cos A- „ cos;8sin\

1 + sm ^ 1 + sin /8

If lie on /S, ;8o=Oand
cos )S cos \X = a

Y=a

1 + cos ^ sin X.

'

sin/8

1 + cos ;8 sin \
*

We have assumed in these formulae that the zero of graduation

on )S coincides \\^ith the ascending node of S' on S. If the zero of

graduation had been elsewhere let us suppose that the longitude

of the ascending node is ft. Then in the formulae (i) and (ii)

we must put A, — Q instead of X and thus obtain

X^a cos^cos(X-fl)

1 — sin yS sin /So + cos /3 cos ^„ sin (\ — fl)
'"^

''

-,- sin /8 cos /3o + cos /S sin /3o sin (\ — O) ,. .

Y = (I r-
• -^ (iV)

1 — sin/3sin/3o + cosyScos/8oSin(A, — n) '"^ ^'

By the formulae (i) and (ii) or (iii) and (iv) we can computeX
and Y for any given values of X and /3, and thus construct by

rectangular coordinates the stereographic chart of any figure on

the sphere.

Ex. 1. Show that when the stereographic projection is from the nole of

the fundamental circle, and when the axis +Xis from the centre to the point

X= 0, /3= 0, and the axis + Fis from the centre to the point X= 90°, ^=0,
then the relations between ^Y, V and X, ^ are

X=acos\tan(^ + |j, r=asin\ tan [^ + |V

Ex. 2. Show that when the stereographic projection is from the antinole of

the fundamental circle, and when the axis +Zis from the centre to the point

X=0, |3=0, and axis -f Fis from the centre to the point X= 90°, ^=0, then
the relations between X, Y and X, /3 are

jr=acosX tan
(^

-
f) , ^= -asinX tan (^ -

f
) •

Ex. 3. If the origin of projection be at Greenwich and the earth be
assumed to be spherical, show how the formulae (iii) and (iv) will enable
a stereographic map of Australia to be drawn.
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Substitute for jS^ the latitude of Greenwich and assuming that the longi-

tudes X are measured from Greenwich make 12= 90°. Then if X, be the

longitude and latitude of any point on the coast of Australia, the correspond-

ing plane rectangular coordinates X and Y will be determined from (iii) and

(iv), when a convenient value for the desired size of the map has been assigned

to the constant a.

Ex. 4. If X, ^ be regarded as variable coordinates but subject to the

relation

it cos X cos ^ +5 sin X cos ^H-C sin ^=0,

where A, B, C are constants, show from (iii) and (iv) that all the points

indicated by X, Y will lie on the circumference of the same circle.

25. On the construction of a map in which each area on

the sphere is represented by an equal area on the map.

li X, y; x', y'
; x", y" be three points on the chart, then the

area they contain is

h{«=W'-y')+«='iy-y")+^"iy'-y)] a)-

We take as the three corresponding points on the sphere ^, \

;

^ + k, X and /3, X + h, where \ and h are small quantities. The

area formed by these points on the sphere is ^a%kcos^.

We then have for the coordinates x', y'

(ioc 01/

and for x'\ y"

Thus by substitution in (i) we have for the area in the plane

Equating these two expressions for the area and noting that all

surfaces can be built from such elementary areas, we have the

following theorem.

If a plane projection of a sphere be such that x and y the

coordinates corresponding to the point X, ^ on the sphere fulfil

the condition

?^.9|_^.|^ = a='cos^ (ii),

dx d^ a/3 dX

then any area on the sphere projects into an equal area.

5
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MISCELLANEOUS EXERCISES ON CHAP. III.

Ex. 1. If the points on a sphere be projected from the centre of the

sphere on a plane (Gnomonio Projection), examine by the principles of § 18

whether this projection is conformal.

Ex. 2. If
((f),

I) be the latitude and longitude of any point lying on a

great circle of a sphere, then

tan <I)=A cos ?+5sin I,

where A and B are constants. If then we put

(1) «=cot<^cosZ, ^= oot(t)sinl,

or (2) X=ta,n(j)seol, Y=tanl,

we get a linear relation between x and y (or X and Y). Plotting x and y
(or X and F) as Cartesian coordinates, all great circles would be therefore

straight lines.

Show how both of these charts may be obtained by a perspective projec-

tion of the sphere on a plane.

Ex. 3. A circle on the earth's surface has an angular radius p, and its

centre A is in latitude j3o ; show that in a stereographic projection from the

north pole on the plane of the equator this circle is represented by a circle

(radius p'), the distance of its centre from the point which represents A being

p'tan|tang+|).

Ex. 4. In Gauss' projection of the sphere the meridians are represented

as straight lines passing through a point 0, and the angle between any two

such lines is AX, where X is the difference of longitude between the two cor-

responding meridians. The parallels of latitude are circular arcs with their

centres at 0. If the projection is to be conformal, show that the radius of

the arc corresponding to colatitude v, must be k (tan ^u)'' where /{: is a

constant.

We must have x= Ucos (hX), y= JZsin (AX) where C" is a function of the

latitude. By substitution in equation (iii), § 18 we have

A2{72= cos2/3('|^') .

Ex. 5. If

prove that

x+ iy
tan , =u + iv,

where
M=cos/3cosX/(H-cos/3sinX), D = sin/3/(l-t-cos0sinX),

and hence show that u, v are coordinates giving a conformal representation.
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Ex. 6. If the point |3, \ on the sphere be represented on a plane by the

point whose coordinates are

cos (3 cos \ sin S

1 + cos fj sin X

'

1 + cos /3 sin X

'

show that a circle on the sphere with radius p and centre ^0) ^o will be repre-

sented by a circle on the plane having for radius sinp/(cos/)-(-cos(3osinXo),

and for the coordinates of its centre. cos^oCOsXo/(*50Sp+coS|3osinXo) and

sin 0o/(cos p + COS j3o sin ^^o)-

Eliminate /3 and X with help of the equation

COS p= sin p sin /3o + cos )3 cos ^o cos (X — Xq).

Ex. 7. A map of the northern hemisphere is constructed in such a way

that parallels of latitude become concentric circles and meridians radii of

these circles, and that equal areas on the earth become equal areas on the

map. Find the equation of the curve which a loxodrome becomes on the map,

and trace it.

From the conditions of the problem we have

x=pcosX, y=psinX,

where p is a function of /3.

As areas are to be preserved we substitute these values in the condition

given in § 25 and find

where h is some constant connected with the ratio of. the areas on the sphere

and in the projection.

Integrating and determining the arbitrary constant by the condition that

p=0 if 8=90°,
p2= 2A(l-sin/3),

and p= 2\''Asin(^- gj.

The projection of the loxodrome cutting the meridians at angle e (§ 21)

is the result of eliminating /3 and X between

X= tan c loge tan [j-^h
tan \=yja:,

N/^^qrp= 2 v^A sin f
I - 1j

,

and the result in polar coordinates is

y2(l4.e2« cote) ^4^2.

Ex. 8. Show that the greatest distance that could be saved in a single

voyage by saihng along a great circle instead of a parallel of latitude is

a\ 2sin-i- + 'Jir'^-i-ir ,

where a is the earth's radius.
5—2
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It is obvious that in the case supposed the ports of arrival and departure

should have a difference of longitude of 180° so that the great circle joining

them should pass through the pole. If (jj be the latitude the difference of the

two voyages is a (jr cos ^— n- + 2</)) and for this to be a maximum sin </>= 2/7r.

Ex. 9. Show that in sailing from one meridian to a place in the same

latitude on another meridian, the distance saved by sailing along a great

circle instead of sailing due E. and W. is a maximum for latitude

cos ~ 1
(
V^^ - sin^ X/\ sin X),

where \ is the difference of longitude of the two meridians.

Ex. 10. Describe the shortest course of a steamer which is to go from

one point to another without going beyond a certain latitude, supposing the

great circle course to cross that latitude.

Ex. 11. Cape Clear is in latitude 51° 26' N., long. 9° 29' W., and Cape Race

is in lat. 46° 40' N., long. 53° 8' W. ; verify that the great circle course between

them would require a vessel to sail in a course from Cape Clear about 17J°
further north than the straight course on a Mercator's chart, and that the

former course is the shorter by about 28 miles. [Math. Trip. I, 1887.]

Ex. 12. If a be the radius of the sphere, m the distance of the plane of

the stereographic projection from the origin, P and P' a pair of corresponding

points, r the distance of P' from the diameter through the origin, show that

a small arc p on the sphere near P will project into a small arc near P' and
of length p {m^+ r^)/2ma.
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26. The celestial sphere.

Let A, B, C (Fig. 21) be three stars and the position of

the observer.

Fig. 21.

With centre and radius any length OA' a sphere is described

cutting OA, OB, OG in A', B, C respectively, thus giving the

spherical triangle A'B!G'.

The angle AOB is the angle which the stars A and B subtend

at the observer. This is conveniently measured by J. '5' the side
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of the spherical triangle. In like manner, B'C and G'A' measure

the angles BOG and COA respectively.

The apparent distance of two stars is measured by the angle

they subtend at the eye. For example, the apparent distance of

A and G is measured by ZAOG, i.e. by A'C. The apparent

distance of two stars from each other, which is of course only an

angle, affords no clue to the real distance between them which is,

of course, a linear magnitude. To determine the real distance

we should also know the linear distance of each of the stars from

the observer. The stars in the Pleiades appear to be much closer

together than the stars in Ursa Major, but it does not necessarily

follow that the Pleiades is the lesser group of the two.

Astronomical measurements of the relative positions of celestial

bodies generally determine only apparent distances, and these, as

we have seen, may be taken as arcs on the sphere described

round 0. Thus the geometry of astronomical measurements of

position is the geometry of the sphere.

The sphere we have been considering shows the apparent

distances of the celestial bodies just as they are seen on the

heavens. This sphere is termed the celestial sphere. The length

of its radius is immaterial, and in comparing different celestial

spheres we shall assume all the radii to be equal.

The centre of a celestial sphere is the station of the observer,

and for each station there will be of course a different celestial

sphere. We have to consider to what extent the celestial spheres

at different stations differ from one another.

Suppose, for instance, an observer was situated at the star

Arcturus, the celestial sphere that he would construct would not

be the same as the celestial sphere constructed for a terrestrial

observer. The apparent distances of the same pairs of stars would
be generally quite different in the two cases.

The nearer the two stations the more closely do the two
celestial spheres resemble each other which have those stations

as their centres. So far as the fixed stars, usually so called, are

concerned it is correct to say that the celestial spheres constructed
for all points on the earth's surface are practically identical.

This is because the distances of the fixed stars from the earth
are so great that the diameter of the earth is quite inappre-
ciable by comparison. As an illustration we may state that the
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alteration in the apparent distance of two stars, by a shift of

the observer's place from any station on the earth to its antipodes,

could in no case exceed the 16,000th part of a second of arc so far

as we at present know Stellar distances. An angle would have to

be about a thousand times larger than this before it could be

appreciable by our measuring instruments.

By the annual motion of the earth round the sun the station

of a terrestrial observer is carried round a nearly circular path

of mean radius 92,900,000 miles. A terrestrial observer is there-

fore shifted in the space of six months through a distance about

double this amount. But even under these circumstances the

great majority of apparent star places are without appreciable

alteration and in no case, so far as we know, does the greatest

alteration from this cause exceed l"'o. (See Chap, xv.)

What has been said so far relates only to the fixed stars. We
shall see in Chap. xii. that the apparent places on the celestial

sphere of the sun and the planets, to some extent, and that of

the moon to a large extent, are affected by the position on the

earth's surface occupied by the observer.

We are not now considering the individual motions certain of

the heavenly bodies possess ; these of course affect their positions

on the celestial sphere of every observatory.

If we have marked on the celestial spheres only those celestial

bodies, such as most of the fixed stars, which are so far off that

the apparent distances by which they are separated from each

other are sensibly the same from all parts of the solar system, we

may make the following statements with regard to the celestial

spheres, it being supposed that the radii of all the spheres are

equal.

For every station in the solar system there will be a celestial

sphere of which that station is the centre.

Every celestial sphere is the same as every other celestial

sphere not only as to radius but also as to the stars marked

on it.

At any given moment the celestial spheres are all similarly

placed, i.e. any radius of one sphere to a particular star is parallel

to the corresponding radius of any other sphere. It is often

convenient to treat of the celestial sphere as if its centre were

coincident with the centre of the earth.
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Ex. 1. Show that any point at a finite distance may be regarded as the

centre of the celestial sphere of which the radius is indefinitely great.

Let he the centre of the celestial sphere and let X be any point at

a finite distance from and She a. point on the celestial sphere,

XS-'=0Si-20S . OX cos XOS+ OX^

=0S^(l-2^cosX0S+^.

As OX is finite, we see that as OS approaches infinity OXI
OS approaches

zero, whence in the limit XS/0S=1. But as OS is constant for all points S
on the sphere so must XS he constant, whence X may be regarded as the

centre without appreciable error.

Ex. 2. Show that the directions of XS and OS tend in the limit to

become identical.

27. The celestial horizon.

Let P be the station of an observer on the earth's surface

and let us suppose his celestial sphere to be drawn, the radius

of which is incomparably greater than the radius of the earth.

A tangent plane drawn to the earth at P will cut this celestial

sphere in a great circle, which is known as the celestial horizon

of P.

The plane of the horizon at any place is also the plane of the

surface of a liquid at rest in an open vessel at that place. This

plane is normal to the direction of terrestrial gravitation, and con-

sequently the direction of a plumb-line at any place P on the

earth's surface is perpendicular to the plane of the horizon at P.

The points on the celestial sphere to which the plumb-line points,

when continued in both directions, are of the utmost importance in

spherical astronomy. The point Z thus indicated overhead is

called the zenith of P. The other point N in which the direction

of the plumb-line supposed continued beneath our feet cuts the

celestial sphere is called the nadir.

28. The diurnal motion.

The daily rotation of the earth on its axis in the approximate
period of 23 hrs. 56 m. 4 sees., which is usually called the sidereal

day (see § 33), causes the celestial sphere to have an apparent
rotation in the opposite direction, i.e. from east to west, which is

known as the diurnal motion.

The most direct method of demonstrating that the earth
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rotates upon its axis is afforded by Foucault's beautiful pendulum
experiment. If we assume the earth to be a perfect sphere with

centre the principles of Foucault's pendulum are as follows.

Let (j) be the north latitude of the observer at P and a the-

angular velocity of the earth round its axis. We may suppose co

to be resolved into components a sin </> round OP and a cos <j}

round OQ, where Q is the point with south latitude 90° —
<f}
and on

the meridian of P. So far as P and places in its neighbourhood are

concerned this latter rotation has only the effect of a translation, so

that for our present purpose this component may be neglected. The

other component produces a rotation of the plane of the horizon at

P round OP with an angular velocity a sin
<f).

If therefore a

vertical plane at P did not partake in the rotation about OP, the

angle made with it by any vertical plane which did partake of

the rotation about OP would increase with the velocity a sin
(f).

Foucault's pendulum provides the means of verifying this experi-

mentally. Without entering into practical details the essential

feature of the experiment is as follows.

A heavy weight is suspended by a long wire from a fixed point.

The weight being drawn aside is carefully released and oscillates

slowly to and fro. The plane in which the pendulum oscillates

does not partake in the rotation about OP- As however the

observer is unconscious of the terrestrial rotation about OP, the

plane of oscillation appears to revolve with reference to the

terrestrial objects around. The direction of this motion and

measurements of its magnitude demonstrate the diurnal rotation

of the earth. The experiment would be best seen if it could be

performed at one of the poles. At a station on the equator the

plane of oscillation would have no apparent inotion.

All points on the celestial sphere, except two, participate in

the diurnal motion ; these are of course the North and South

Poles of the celestial sphere. The line joining these points

passes through the centre of the earth and is the axis about

which the earth rotates. It is always to be remembered that

the dimensions of the earth are inappreciable in comparison with

the celestial sphere, so that for present purposes we regard the

earth as no more than a point at the centre of the celestial

sphere. The special convenience of this stipulation is that we may

not only consider the axis of the celestial sphere as passing through
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the centre of the earth, but we may always consider also that

it passes through the station of any observer wherever he may be

situated on the earth's surface. The pole which lies in that part

of the celestial sphere within view of the dwellers in northern

latitudes, is known as the North Pole. Fortunately for northern

astronomers, the locality of the North Pole is conveniently in-

dicated by the contiguous bright Pole star. The similar point

in the southern skies and known as the South Pole is not so

conveniently indicated, as there is no bright star in its vicinity.

The plane of the earth's equator will, of course, be unaffected

by the diurnal rotation. Its intersection with the celestial sphere

forms the great circle known as the celestial equator, and the

poles of this great circle are the north and south poles of the

heavens. Any plane parallel to the equator and at a finite

distance cuts the celestial sphere in the celestial equator which

is the vanishing line of all such planes. Any diameter of the earth

(or indeed any straight line rigidly connected with the earth and

prolonged indefinitely both ways) will intersect the celestial sphere

in two points which as the earth rotates will describe what are

called parallel-circles. They are in general small circles of the

celestial sphere which, when the line producing them is parallel

to the earth's axis, merge into the north and south poles re-

spectively; and when the line is perpendicular to the earth's

axis coalesce to form the equator.

The celestial horizon divides the celestial sphere into the

visible hemisphere and the invisible hemisphere. In the act of

passing from below the horizon to above, the star is said to be

rising ; when passing from above to below it is said to be setting.

If the observer were at the north pole of the earth the celestial north

pole would then be in his zenith and his horizon would be the

celestial equator. In this case the diurnal motion would make the

stars appear to move parallel to the horizon and the phenomena of

rising and setting would be unknown
; of one half of the celestial

sphere no part would ever come above the observer's horizon and

no part of the other half would ever set. If the observer were on

the terrestrial equator the north and south poles would be on his

horizon and the hemispheres into which the horizon divides the

celestial sphere would be continually changing. The stars rise

perpendicularly to the horizon and each star in the heavens will
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be above the observer's horizon for one half the sidereal day and

below it for the other halff. Thus a contrast between the

circumstances of an observer at the pole and an observer at

the equator would be that, from the former station, no part of the

celestial sphere visible to him at any moment can ever become

invisible by diurnal rotation, while to an observer at the equator

every portion of the celestial sphere becomes at times invisible.

At a terrestrial station which is neither one of the poles

nor on the equator part of the celestial sphere is always above

the horizon, part of it is always below the horizon, and the re-

mainder is sometimes above and sometimes below the horizon.

Each star in consequence of the diurnal motion revolves in a small

circle of the celestial sphere of which one of the celestial poles is

the centre. If this circle should lie entirely above the horizon,

then the star never sets and is therefore always visible (apart

from such interferences as clouds or daylight, which are not at

present considered). If the circle should lie entirely below the

horizon, then the star never rises and must be permanently in-

visible from the station in question. If however the circle cuts

the horizon, then the star will sometimes be above the horizon

and sometimes below.

29. The meridian and the prime vertical.

The great circle which passes through the two celestial poles

and the zenith and the nadir of the observer is called the

meridian of the place where the observer is stationed. The

celestial meridian is also the intersection of the plane of the

terrestrial meridian of the observer with the celestial sphere.

Thus the celestial meridian is the great circle which, starting at

right angles to the horizon from the north point iV(Fig. 22), meets

the horizon again perpendicularly at the south point 8 and then

continues its course below the horizon back to N.

Each star must pass twice across the meridian in the di-

urnal revolution of the celestial sphere, and on each occasion the

star is said to transit. The meridian is divided by the north

and south poles into two semicircles of which one contains the

zenith and the other the nadir. A star in the transit across

the first semicircle is said to be at its iipper culmination, while

t Eefraotion is not here taken into account.
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in transit across the other half of the meridian the star is said

to be at its lower culmination.

Among the great circles of the celestial sphere the meridian

is the most important because it passes through the two most

remarkable points of the sphere, namely, the pole P and the

zenith Z (Fig. 22). There are also three other points to be

specially noted. They are the north point N and the south point

8 in which the meridian intersects the horizon, and E in which

it intersects the celestial equator.

The latitude ^ is the angle between the direction of a plumb-

line and the plane of the equator. Hence (Fig. 22) the latitude

P (Norih Pole)

(Equator) E

Meridian in Northern Hemisphere at North latitude

Fig. 22.

of the observer is the angle ZOE, i.e. that between the zenith and

the equator. Since POE and ZON are both right angles we

must have NOP equal to
<f),

and the angle NOP being the eleva-

tion of the pole above the horizon is, as we shall see in § 30, called

its altitude. Thus we obtain the fundamental proposition that

the altitude of the pole is the latitude of the observer.

The arc ZP = 90° — <p from the zenith to the elevated pole is

generally called the colatitude.

It is obvious that a star X does not set unless its distance PX
from the elevated pole exceeds the latitude of the observer. A
star which does not set is called a circumpolar star and its distance

EX from the equator towards the north pole, that is to say, its 7iorth

declination (§ 31) must not be less than 90°—
(j). A star does not

rise if its south declination is more than 90° — <^.
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The corresponding diagram showing the meridian in the

southern hemisphere is given in Fig. 23. It may be remarked
that southern latitudes are often expressed by attaching a minus
sign to the numerical value of the latitude. Thus this figure

shows the meridian of latitude — <^.

Equator

South

Pole

Meridian in Southern Hemisphere at South Latitude tj)

Fig. 23.

The great circle through the zenith and at right angles to

the meridian is called the prime vertical. It passes through the

east and west points of the horizon.

Ex. 1. Show that with reference to a station in latitude <\> the greatest

and least zenith distances of a star of declination & are respectively

180°-{0°~((^+ 8)} and 0~8.

Ex. 2. If the zenith distance of a star is to remain always the same,

show that either the observer's latitude is 90° or the star's declination is 90°.

Ex. 3. Show that if a star is always above the horizon, {0° ~ (0+ S)} > 90*,

if it is never above the horizon (f>~S > 90°, and that if it rises and sets,

{0°~(<^+ S)} <90° and 0~8 < 90°.

Ex. 4. If the latitude of the observer be known, show how the declination

of a star can be obtained from observations of its zenith distance at the

moment of transit.

Ex. 5. The latitude of Greenwich being 51° 28' 38"
-1, show that for the

meridian of Greenwich (Fig. 22)

SE=ZP=Z&' 31' 21"-9 and EZ=PJSr=n\'' 28' 38"-l.

Ex. 6. Show that 51° 29' is the lowest latitude at which all stars having

a north declination exceeding 38° 31' are circumpolar. Show that all stars

having a south declination exceeding 38° 31' must be there invisible.

Ex. 7. On Nov. 13th the sun is 108° from the north pole, show that

in any north latitude exceeding 72° the sun does not rise above the horizon.
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Ex. 8. The observatory at Stockholm is in latitude 59° 20' 33"-0 N.,

and that at the Cape of Good Hope in latitude 33° 56' 3"
-5 S. The declina-

tion of Sirius is -16° 35' 22"-0. Find the altitudes of Sirius when in

culmination in Stockholm and at the Cape of Good Hope respectively.

The distance along the meridian from the north pole to the south point

of the horizon is 180° -cj), where (/> is the north latitude (Fig. 22). The

distance from the pole to a star of declination 8 is 90° - 8 (the proper sign

being given to 8), whence the distance from the south point of the horizon

to the star is

180° - ^ - (90° - 8)= 90° - <|)+ 8.

Hence in the case of Stockholm (the declination of Sirius being negative),

the altitude of Sirius is 90° -(59° 20' 33"-0)-(16° 35' 22"-0)= 14° 4' 5"-0.

At a southern latitude (Fig. 23) the arc from the south pole to the north

point is 180° — <^, and to a north declination 8 is 90°+ 8. Hence the altitude

at culmination is

180° - (^ - (90°+ 8)= 90° - (^ - S,

and for Sirius at the Cape

90° -(33° 56' 3"-5)-|-16° 35' 22"-0= 72° 39' 18" -5.

Ex. 9. If 2i, Zj be the zenith distances of a circumpolar star at upper and

at lower culmination respectivelyj and both culminations are to the north

of the zenith, show that the north latitude of the observer is 90° - ^ {^i+zi).

30. Altitude and azimuth.

Perhaps the most obvious system of celestial coordinates is

that in which the horizon is used as the fundamental circle.

We shall suppose that the star is above the horizon, and that

a great circle is drawn from the zenith through the star and

thence to the horizon, which it cuts at right angles. Such

a circle is called a vertical circle. The arc of this circle between

the horizon and the star is called the altitude of the star and is

one of the coordinates defining the place of the star. The second

coordinate is the azimuth, which is reckoned along the horizon

in various ways. It seems desirable to adopt a uniform practice

in this matter. We shall therefore always measure the azimuth

of a celestial object from the north point round by east and

south to the foot of the vertical circle through the starf. Thus

the azimuth may have any value from 0° to 360°, and the

nole of the horizon so graduated is the nadir,—not the zenith.

When the azimuth and altitude of a star are known, its position

is determined.

t This mode of reckoning azimuths has ancient authority. I have seen it on a

compass card of date 1640 kindly shown to me by Professor Silvanus Thompson.
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For example, if the azimuth of a star be 310° and its altitude

is 15°, then the star can be found as follows. We start from the

north point of the horizon and proceed round to the east at the

azimuth 90° and thence to the south and the west at azimuths

of 180° and 270° respectively, and then 40° further in the same

direction indicates the azimuth 310°. The vertical circle thus

reached might, no doubt, be described as having an azimuth of

— 50°, that is, as lying 50° to the westward of the north point.

But it is convenient to avoid negative values in this coordinate

as can always be done by adding 360°. The point in which the

vertical circle meets the horizon being thus defined by its azimuth,

a point is then to be taken on the vertical circle at the proper

altitude, in this case 15° above the horizon, and we obtain the

required position of the star.

Instead of the altitude of a star it is often convenient to use

the complement of the altitude which is known as the zenith

distance. Thus in the case in question, when the altitude is 15°

the zenith distance is 75°.

For approximate measurements of azimuth the magnetic

compass is used. The needle points to the magnetic north, which

deviates from the true north by what is called the magnetic de-

clination. This varies both for different times and for different

places. For the British Islands in A.D. 1908 the needle points

on an average 18° west of the true north. Thus the azimuth of

the magnetic north, i.e. the azimuth measured from the true north

round by east, south and west, is about 342° for the British Isles

in 19081.

t The following information has been kindly communicated by the National

Physical Laboratory

:

Mean magnetic declinations for 1906 :

Kew 16°28'-5W.

Stonyhurst 17° 48' -3 W.

Valencia 21° 6'-3W.

The magnetic declination is decreasing, and for the annual amount of change

the mean values at Kew have been as follows for the series of years indicated

:

1870 to 1880 ... -8'-l 1890 to 1900 ... -5'-8

1880 to 1890 ... -6'-8 1900 to 1906 ... -4'-0

Valencia observations commenced in 1901 : for the five years 1901 to 1906 the

mean values of the annual changes in Declination were :

Stonyhurst ... -4'-3 Falmouth ... -4'-0

Kew -4''1 Valencia -4'-3
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In the mariner's compass the indications are shown on a card

by the division of the circumference into 32 equal points of 11 J°

each. The four chief points on the card are marked N. (at the

magnetic north), E., S., W. at intervals of 90°. Each of these

intervals is bisected by points marked NE., SE., SW., NW.
respectively. Thus the circumference is divided into eight equal

parts of four points each. Each of these parts is again bisected

:

the bisection of N. and NE. is marked NNE., that of NE. and

E. is ENE., and so on. In this way half the points receive their

designations. The remaining sixteen points are derived from the

first eight, viz. N., E., S., W.; NE., SE., SW., NW. by simply

adding the word "by" and appending one of the letters N., E.,

S., W. For example, "W. by N." means one point from west

towards north ;
" W. by S." in like manner means one point from

west towards the south, and "SE. by E." means one point from

SE. towards E.
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Ex. 1. Find the azimuth measured from the magnetic north of the point
NE. by N.

NE. is four points from magnetic north, and " NE. by K." means one
point back again towards N. Hence the answer is three points or 33|°.

Ex. 2. Show in like manner that the azimuth from the magnetic north
of WNW. is 292°-6.

Ex. 3. If the azimuth of a point as shown by the compass is 73°, find the

true azimuth when the magnetic declination is 18°-5 W.

Ex. 4. Find the true azimuth of the magnetic bearing SE. by S. if the
magnetic declination is 17° W.

MISCELLANEOUS EXERCISES ON CHAP. IV.

Ex. 1. If ri, ^a be the real distances of two stars from the observer, and
if 6 be the apparent distance between the stars on the celestial sphere, show
that the square of the true distance of the stars from each other is

Ti^ — 2ri ?-2 cos 5 + r^^.

Ex. 2. Show that the prime vertical, the horizon, and the equator
intersect in the same two points.

Ex. 3. If a, 6 be the equatorial and polar radii of the earth, assumed a

spheroid, show that the greatest angular difference possible at any point on
the earth's surface between the plumb-line and the radius to the earth's

centre is

tan'-1

:

2ab

Ex. 4. If the declination 8 of a star exceeds the latitude (p, show that

the azimuth of the star must oscillate between

sin~i (cos S sec <^)

on one side of the meridian and the same angle on the other.

Ex. 5. Show that the cosine of the angle which the path of a star as it

sets makes with the horizon is equal to the sine of the latitude multiplied

by the secant of the declination.

Ex. 6. Two places are of the same latitude and the distance of the pole

from the great circle through them is equal to the sun's declination. Prove

that at these places the length of the night is equal to their difference of

longitude.
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31. Right ascension and declination. Though the altitude

and azimuth are, in one sense, the simplest coordinates of

a star, certain other systems are generally more convenient.

The altitude and azimuth of a star are continually changing with

the time on account of the diurnal motion, and even at the same

moment the altitude and azimuth of a star are different for two

different observatories. It is often preferable to employ co-

ordinates which remain unaltered by the diurnal motion and are

the same whatever may be the latitude and longitude of the

observer's station. We can obtain coordinates possessing the

required qualities by referring the star to a great circle fixed

on the celestial sphere.

The celestial equator as already pointed out (§ 28) remains

unaltered in position notwithstanding the diurnal rotation. The
equator also possesses such a natural relation to the diurnal

motion that it is specially suited to serve as the fundamental

circle, and the coordinates most generally useful in spherical

astronomy are accordingly referred to the celestial equator. When
referred to the equator, the coordinates of a point on the celestial

sphere do not change by the diurnal motion, nor do they change
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when the station of the observer is changed unless the object
be near enough to the earth for what is known as parallax to be
appreciable. This will be discussed in Chap, xii., and need not
be further considered here.

To construct the coordinates of a star with respect to the
celestial equator we proceed as follows.

A great circle NP, Fig. 24, is drawn
from the north celestial pole N through

a star S and meets the celestial equator

at P. The arc PS intercepted on this

circle between the equator and the

star is the declination of the star. The
arc TP measured from a certain point

f on the equator and in the direction

which has N for its nole is the right

ascension of the star.

The Right Ascension, or " r.a." as it is often written for brevity,

is generally expressed by the letter a, and measured from 0° to 360°.

The Declination or "Decl." as it is often written, is generally

expressed by S, and a negative sign is attached to 8 when S
is south of the equator. SN or 90° - S is the " North Polar

Distance " and is sometimes used instead of 8 as the second

coordinate of the star.

Fig. 24.

32. The first point of Aries or T. In a subsequent chapter

we shall consider the sun's apparent annual movement with respect

to the fixed stars. We may, however, here anticipate so far as to

say that the sun describes a complete circuit with reference to the

stars once in a year in the direction of the diurnal rotation of

the earth, i.e. from West through South to East. In this move-

ment the centre of the sun appears to follow very closely a great

circle on the celestial sphere. This great circle is known as the

ecliptic, and was so called by the ancients because when Eclipses

take place the moon is crossing this circle.

Observing the direction in which the sun moves round the

ecliptic, we can distinguish between the two nodes or inter-

sections of the ecliptic and the equator. These nodes are to

be designated as follows. That at which the sun crosses from

S. to N. of the equator is called the first point of Aries and is

6—2



84 EIGHT ASCENSION AND DECLINATION [CH. V

represented by the symbol If. The sun passes through T at the

moment known as the vernal equinox. This occurs each year

about March 21. For example, in the year 1909 the vernal

equinox is on March 21 at &" 13"°, Greenwich Mean Time.

The other node, or that at which the sun crosses from N. to S.

of the equator, is called the first point of Libra and is represented

by the symbol ii . The sun passes through Cz at the moment

of the autumnal equinox (1909, Sept. 23, 4" 45'°, G.M.T.).

By universal agreement the origin on the equator from which

right ascensions are to be measured is the first point of Aries,

or IP. The positive direction along the equator is such that

the right ascension of the sun, constantly altering by the sun's

motion, is always increasing. Thus since the path of the sun

among the stars is from W. through S. to E., T is the ascending,

ii the descending node of the ecliptic on the equator.

As the "first point of Aries" occupies a place of such exceptional

importance in astronomy, it may be proper to observe that the

word "Aries" has in this expression but little more than historical

significance. The node through which the sun passed at the

vernal equinox was no doubt at one time in the constellation

Aries, but it is not so at present. We shall see in the chapter on

Precession (viii.) that while the plane of the ecliptic shifts only

slightly in space, the plane of the equator rotates so that while it

makes a nearly constant angle with the ecliptic, its intersection

with the ecliptic moves along that circle in the negative direction at

the rate of about 50" annually, so that from this cause alone, in

the greater part of the heavens, the R.A. of a celestial body is

always increasing.

The present position of T may be approximately indicated

as follows. When the great square of Pegasus is towards the

south imagine the left vertical side produced downwards to a

distance equal to its own length; from the point thus found draw

a line to the right, parallel to the lower horizontal side of the

square and one-fourth of its length. This terminates at about the

present position of "the first point of Aries."

In Fig. 25 'VHH' is the equator, and 'VKK' is the ecliptic,

P and P' are respectively the nole and antinole of the equator,

and Q and Q' are the nole and antinole of the ecliptic. The
arrow-head on TiT shows the direction of the apparent motion
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of the sun relative to stars on the celestial sphere, the arrow-

head on TZf shows the direction in which the right ascensions

are measured.

The great circle HKH'K' is known as the solstitial colure

and K, K' are the points at which the sun is found at the summer

and winter solstices respectively. The great circle through Pf ii

is called the equinoctial colure.

The inclination between the ecliptic and the equator is generally

known as the obliquity of the ecliptic. The mean value of the

obliquity of the ecliptic as given in the Ephemeris for 1909

is 23° 27' 4"'04. It is subject to small temporary fluctuation

by nutation (see Chap, viii.), and it has also a slow continuous

decline at the rate of 46""84 per century.

Ex. 1. If a be the right ascension and 8 the declination of a point on the

celestial sphere, show that the values of u, 8 for certain points (Fig. 25) on

the sphere are as follows, a being the obliquity of the ecliptic

:

s
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Ex. 2. Show that the right ascension a and the declination 8 of the sun

will always be connected by the equation

tan 8 = tan a sin a.

Ex. 3. On the 9th May, 1910, the sun's right ascension is 45° 30', and

the obliquity of the echptic is 23° 27'. Show that the declination of the

sun is +17° ll'-5.

33. The hour angle and the sidereal day. It is sometimes

convenient to take as the origin from which coordinates are

measured on the equator that point, above the horizon, where the

equator is intersected by the meridian of the observer. Owing to

the diurnal motion which carries the meridian round the celestial

sphere in the course of a sidereal day, this origin is not a fixed

point on the celestial sphere, but moves steadily round the equator

so as to complete its revolution in a sidereal day. One of the co-

ordinates of an object fixed on the celestial sphere measured from

this moving origin must necessarily change with the time. If

a great circle, called an hour circle, be drawn from the pole to

a star, the angle this hour circle makes with the meridian is

termed the hour angle, and the hour angle of a star and its

declination or its polar distance form a system of coordinates which

are often convenient.

The declination of an object does not vary in consequence

of the diurnal rotation. The hour angle of a star is incessantly

altering. Since the star appears to move from upper culmination

towards the west we shall measure hour angle from the meridian

to the westward. Thus the hour angle is zero when the object

is at upper culmination, and gradually increases to 180° as the

object passes to lower culmination. From thence the hour angle

is continually increasing until it reaches 360° at the next upper

culmination. To the west of the meridian an hour angle is

therefore between 0° and 180°. On the east of the meridian the

hour angle is between 180° and 360°. With this understanding

hour angles are always increasing, and, since 360° can always be

added to or subtracted from any angle when used in a trigo-

nometrical function, we may say that all hour angles are between
— 180° and -t-180° and that hour angles west are positive, and
hour angles east negative.

The hour angle (unlike the declination in this respect also)

changes with the station of the observer. For example when
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a star is passing the meridian at Greenwich its hour angle is there

zero. But at the same moment the star will have passed the

meridian of easterly stations and will therefore to such stations

show hour angles west. At a place where the longitude is 2 hours

east of Greenwich, the star would appear to have an hour angle

two hours west at the same moment as an observer at Greenwich

has the star on his meridian. More generally we may say that

at two places with east longitudes I and I' respectively, the hour

angles west of the same object would be simultaneously and

e + i'-i.

A sidereal day is the interval between two consecutive transits

of the first point of Aries across any selected meridian. If we
remember that the stars are practically fixed on the celestial sphere,

and if we overlook for the present certain small irregularities, we

may also say that the time interval between two consecutive

transits of the same star across the meridian is a sidereal day.

It is also accurate enough for all practical purposes to define the

sidereal day as the period of rotation of the earth on its axis

(see § 28). Expressed in mean solar time the sidereal day is

23" oe" 4=0906.

Like the solar day the sidereal day is divided into 24 equal

periods, which are called sidereal hours. A sidereal hour is

divided into sixty minutes, and each minute is subdivided into

sixty seconds.

In one hour of sidereal time after the meridian passage of

a star its hour angle measured in degrees would be 15°, this being

the 24th part of the circumference. It is usual to express the

hour angle in sidereal time rather than in degrees. If, for example,

the star be 3 hours (sidereal) past the meridian, and the secondary

frorn the pole to the equator which passes through the star have

an intercept of 35° between the star and the equator, we could

express the position of the star at that particular place and at

that particular moment by saying that it had a west hour angle

of three hours and a north declination of 35°.

The hour angle west of the first point of Aries when turned

into time at the rate of 15° per hour is the sideral time.

When the first point of Aries is on the meridian at upper cul-

mination the sidereal time is 0" 0" 0^ When the first point

of Aries has passed the meridian so that its hour angle is
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15°, then the sidereal time is Ihr., and when it has passed the

meridian so long that the hour angle is 285°, then the sidereal

time is 19hrs.

Let o be the right ascension expressed in time of a star S, and

let h be the hour angle west

and ^ the sidereal time.

Let NZ be the meridian

(Fig. 26), N'V the equinoctial

colure, then the sidereal time ^,

as already defined, is measured

by Z-rNZ.

The right ascension of S is

TNS, and there can be no am-

biguity about the sign, for iV is

the nole of the equator and the

R.A. is measured in the positive

direction from the equinoctial

colure; also ZNS is the hour

angle of S; and hence

A = ^ - a.

Thus we obtain an important

relation connecting the hour angle and the right ascension of a

body with the sidereal time.

Ex. 1. Show that the sidereal time can be determined by measuring the

hour angle of a star whose right ascension is known.

Ex. 2. If the hour angle east of a star be 98° 11' 15" and its R.A. be

21k g™ 23=, show that the sidereal time is li^ 36" 38".

The hour angle west is 360° - (98° 11' 15") = 261° 48' 45" which turned into

time at 15° per hour is l?"" 27™ 15", whence

^ = a+h= 38'^ 36" 38" = 14h 36" 38",

as 24'' may always be rejected.

Ex. 3. If 6 be an hour angle measured in degrees, show that the angle

expressed in circular measure is 27r5/360°.

Ex. 4. If t be the number of hours in an hour angle, show that the

circular measure of that angle is 7r</12.

Ex. 5. At any place of north latitude <^ the interval between one of the

transits of a star across a vertical circle of azimuth A and one of its transits

across the other vertical circle, which makes the same angle with the meridian, is

the same for all stars, and equal to oot~i (sin cj) tan A)/ir of a sidereal day.

Fig. 26.
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Let N (Fig. 27) be the celestial pole, ^the zenith, ZP, ZQ the two vertical

circles, NP, NQ great circles perpendicular thereto, P^, P^ the points at which
any given star crosses ZP and ft, §2 the points where it crosses ZQ. Then
from symmetry

L PiN^P= L PNPi= L QiNQ= L QNQ^,

and therefore l. PiNQi= L P2NQ2= LPNQ,

and is therefore independent of the star chosen.

Fig. 27.

Further ootPNZ=am<^ta.nA and the required interval is

cot"' (sin (^ tan 4)/7r

of the sidereal day.

Ex. 6. If at a place in latitude 0, a pair of stars whose coordinates are

respectively a, 8 and a, 8' ever come on the same vertical, show that

cos ^ > cos 8 cos 8' sin {a — a!) cosec 6,

where 6 is the arc joining the stars.

Let S, S' (Fig. 28) be the two stars. Then the triangle SNS' rotates

about N. Let fall NT{=p) perpendicular on SS'. Then no point on the

great circle SS' can be at less distance than p from N. But if S, S' are

to be on the same vertical, then this arc must pass through the zenith.

Therefore 90°-(^>jo or cos^>8injo. But cos 8 sin i\'SiS' = sin p and
am NSS' sm 5= cos8'sin(a— a'), whence sinjp= cos 8 cos 8' sin {a -a) cosec 6.

Ex. 7. Show that a"" 23™ 24s-92 of mean solar time is equivalent to

Sh 23" 48=48 of sidereal time and that 15'' of sidereal time will be turned

into mean solar time by subtracting 2" 27'"44.

Ex. 8. Show that 1465 sidereal days are very nearly the same as 1461

mean solar days.
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34. Determination of zenith distance and azimuth

from hour angle and declination. The required formulae may

be written down from the general equations of transformation of

Pig. 28.

coordinates. By our convention for the measurement of azimuth

from the north point a is taken in such a direction (§ 30) that the

nadir is the nole of the horizon when regarded as a great circle

graduated for azimuth. The north pole is of course the nole

of the equator when graduated for right ascension. From the

definition of a nole (§ 6) it follows that if N and N' are the

noles of two graduated great circles L and L', then the nole of

NN' {if- 180°) is the ascending node of L' on L and the nole of

JV'iV (:|> 180°) is the ascending node of L on L'. Thus the

ascending node of the horizon on the equator is at the point

due west, and consequently fl', i.e. the azimuth of the ascending

node, is 270° when measured from the origin at the north point.

The sidereal time ^ is the hour angle by which T is to the west

of the meridian. Hence remembering the direction in which

right ascensions are measured we must have XI, i.e. the right

ascension of the ascending node of the horizon on the equator,

equal to 270° + ^. The angle between the equator and horizon

is 90° + ^, for this is the angle between their two noles (§ 10).

Finally as the zenith is the antinole of the horizon, S' is negative

and equal to z— 90°. Making the requisite substitutions in the
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formulae (ii), (iii), (iv), (v), (vi) of § 12, we have the desired

equations

— sin asmz = cos S sin (^ — a)

cos a sin ^^ = cos </) sin S — sin </> cos S cos (^ — «) !- ...(i),

cos z = sin
<f>

sin S + cos ^ cos S cos (^ — a)

and the equivalent group

— sin (^ — a) cos 8 = sin a sin z

cos (^ — a) cos S = cos
<f>

cos ^ — sin ^ cos a sin ^ [ . . .(ii).

sin 8 = sin ^ cos z + cos <^ cos a sin z

By the equations (i) we can calculate the zenith distance and

azimuth when the declination and the hour angle (^ — a) are

known, and conversely by (ii) we can find the declination and

the hour angle when the zenith distance and the azimuth are

known.

For a determination of the zenith distance when the hour

angle and the declination are known the following process is very

convenient. The angle subtended at the star by the arc joining

the zenith and the pole is called the parallactic angle. This we

shall denote by r] and for its determination we have from the funda-

mental formulae, (1), (2), (3) § 1, the following equations in which

h is written instead of (^ — a) for the hour angle :

cos z = sin
(f)

sin S + cos <ji cos S cos h
]

sin t; sin ^ = cos </) sin A } (iii).

cos r) sin z = sin <j) cos S — cos ^ sin 8 cos h
'

When h and B are known, the parallactic angle r] and the zenith

distance z can both be found from these equations. As sin z and

cos
(f)

are both always positive, it follows from the second equation

that rj and h have the same sign. They are both positive to the

west of the meridian and negative to the east.

It is often desirable to make these calculations by the help

of subsidiary quantities. We introduce two new angles m and

n by the conditions

cos n = cos
(f>

sin h \

sin w cos m = sin ^ J- (iv).

sin n sin m = cos
<f)

cos h J

If Wo, m„ be a pair of values of n and m which satisfy these

equations they will be equally satisfied by 360° — «„ and 180° + mo.
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It is a matter of indifference whether in the subsequent work

we use «„, »i„ or 360° - w„, 180° + w„. Taking one of these two

pairs as n, m, we have by substitution in (iii)

cos z = sin n sin (S + m)'\

sin r] sin z = cos n > (v).

cos 7] sin 2 = sin n cos (8 + m)>

These equations may also be

written thus

tan rj = cot n sec {B + m)]

tan z = sec rj cot {8 + m)\

From the first of these r) is found

and then the second gives z. Of

course e could also be found from

the first of (v), but it is always

preferable to find an angle from

its tangent rather than its cosine

(§ 3).

The formulae (iv) and (v) may

be obtained at once geometrically.

For if ZL be perpendicular to NP
in Fig. 29 we have NL = m and

ZL = 90° - n. Fig. 29.

It is plain from equations (iv) that as n and m depend only on

the latitude and the hour angle they are the same for stars of

all declinations. It is therefore convenient to calculate once

for all for a given observatory, or rather for a given latitude, a

table by which for each particular hour angle at any station

on that latitude the values of m and Log cot n can be imme-

diately obtained.

'Ex. 1. Verify that the equations

tan )) = cot n sec (8+m) and tan 2=sec rj cot (S+m),

undergo no change when m and n are changed respectively into 180°+m and
360° -M.

Ex. 2. Determine the zenith distance And parallactic angle of the star

61 Cygni when it is S"™ E. of the meridian, its declination heing +38° 9',

and the latitude of the observer being 53° 23'.

From equations (iv) we find mi= 27° 43' and Log cot ?i= 9'6676 (n). Hence
8 + TO= 65° 52' and (vi) 7/= - 48° 41', z= 34° 10'.
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35. Applications of the differential Formulae.

It is convenieDt to bring together the six differential formulae

obtained by applying the fundamental formulae, § 4, to the triangle

(Fig. 29) of which the vertices are the Pole N, the Star P, and
the zenith Z. The arc NP is the polar distance, 90° — 8, the

colatitude is NZ or 90° — <j) ; PZ is the zenith distance z, and, of

course, the altitude is 90° — z. The parallactic angle, rj, is at P
This angle is positive because it is on the west side of the meridian.

The hour angle h is equal to ^ — a, where ^ is the sidereal time

of observation and a is the right ascension of the star. The

azimuth a is measured from the north round by east so that PZN
is 860° -a.

The six differential formulae of § 4, of which only three are

independent, may be written

AS + cos 17A^: — cos AA^ — sin A cos ^Aa = (1),

Az + cos aA^+ cos 77AS + cos </>sinoAA = (2),

A<^+cosaA^ — cos hAS +cos BsinhArj =0 (3),

Aa — cos zAt] — sin <j)Ah — sin k cos <^AS = (4),

Ah + sin BAt] — sin <j)Aa — sin rj cos BAz = (5),

A17 — cos zAa + sin BAh — sin a sin zA^ = (6).

There can be fifteen combinations of four out of the six elements

which -enter into a triangle. Each set of four are connected by an

equation (§ 1). In most cases where variations of the elements are

required, two of the elements remain constant, and we seek the

relative variations of two other elements. We therefore select

that one of the fifteen equations which contains just those two

elements that are to be constant and those two whose relative

variations are required. The differentiation of that equation with

respect to the two variables gives the required relation.

As an example we may take a case which frequently occurs

in the determination of latitude by the observation of the zenith

distance of a star. Suppose that we know the hour angle and the

declination of a star with accuracy, but that there is an error

Az in the assumed zenith distance. We require to see what error

will arise in the calculated latitude because the erroneous zenith

distance is used in association with the correct hour angle and
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declination. Here the four quantities concerned are h, S, z, (j>,

and the formula is therefore

cos 2 = sin ^ sin S + cos
<l>
cos S cos h.

Differentiating and supposing h and S constant,

— sin zAz = (cos
<f>

sin 8 — sin
(f)

cos 8 cos h) ^4>,

and substituting sin z cos a for the coefficient of A(^ we obtain

A(^ = — sec a^.

Of course this might have been obtained directly from formula

(2) as just given, by making A8 = 0, Ah = 0.

As another illustration and one involving the parallactic angle,

we shall determine when the parallactic angle of a given star

becomes a maximum in the course of the diurnal rotation. The

conditions are that while ^ and B are both constant, h, z and a

shall vary in such a way that there shall be no change in t;,

i.e. At? must vanish. The formula involving 0, 8, t), h is

tan (^ cos 8 = cot r)smh-\- sin 8 cos h.

Differentiating we have

(cot r) cos h — sin 8 sin h) Ah = 0,

and as the coefficient of A^ must vanish, cot rj = sin 8 tan h, from

which we find cos a = 0, and the star must be on the prime

vertical.

In this we have another illustration of those exceptional cases

in which though three of the variations are zero the formulae

do not require that the other three variations shall also be zero

(§4).
_

The differential formulae are specially instructive in pointing

out how observations should be arranged so that though a small

error is made in the course of the observation, the existence of

this error shall be as little injurious as possible to the result that

is sought.

Suppose, for instance, the mariner is seeking the hour angle of

the sun in order to correct his chronometer. What he measures

is the altitude of the sun. But from refraction and other causes

which no skill can entirely obviate there will be a small error

in the altitude and consequently in the zenith distance. The
observer measures the zenith distance as z, and concludes that the
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hour angle is h. But the true zenith distance is ^ + ^z, i.e. Az
is the quantity which must be added to the observed zenith

distance to give the true zenith distance. The true hour angle is

therefore not h but some slightly different quantity, h + Ah, where

Ah is the correction to be applied to h, so that Ah is the quantity

now sought.

The formula containing only the parts z, ^, S, h is

cos z = sin
(f>

sin S + cos <^ cos S cos h.

Differentiating this and regarding <p and B as constant,

— sin zAz = — cos ^ cos 8 sin hAh,

and substituting — sin a sin ^: = sin h cos S,

— Az = sin a cos (f>Ah,

whence Ah = — sec ^ cosec aAz.

The following is a geometrical proof of this formula:

If the sun moves from P to P' (Fig. 30) about the pole H,

PP' being a very small arc, its zenith distance changes from ZP

Fig. 30.

to ZF. If PT be perpendicular to ZP', Az = TP'. As Z NPP'
and /LZPT are both 90°, Z.TPP'='n, and Ah sin N'P=PP'
= Az cosec 7], whence if NK is perpendicular to ZP we shall have

Az= Ah sin NK, by which we learn that the rate of change of the

zenith distance of the sun with respect to the time is proportional
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to the sine of the perpendicular from the pole on the vertical circle

through the sun. We have also

sin NK = sin ZN sin (a — 180°) = — cos (^ sin a,

whence as before AA = — sec </> cosec a^z.

The observation should be so timed that cosec a shall be as

small as possible, for then the error A^ will have the smallest

possible effect on the determination of the hour angle. It follows

that a should be near 90° or 270°. Hence the practical rule

so well known to the mariner that for the determination of the

time the altitude of the sun should be observed when the sun

is on or near the prime vertical.

If the sun does not come to the prime vertical, the smallest

value of Ah/Ajs is sec B.

Ex. 1. By solving the formulae (1), (2), (3) for AS, As and A0, show how
the formulae (4), (5), (6) can be deduced.

Ex. 2. Show geometrically that if the assumed declination of the sun be

erroneous to the extent A8, the error thence produced on a determination of

the hour angle from an observation of the sun's zenith distance will be

cot rj sec 8 . A8.

Ex. 3. Under what circumstances is the change of zenith distance of a

star by the diurnal motion proportional throughout the day to its change of

hour angle?

We have from (2) AzlAh= —sin a cos <^, and this must be constant, whence

a must be constant and the observer must be on the equator and the star

must be an equatorial star.

Ex. 4. If the hour angle is being determined from an observed zenith

distance of a celestial object of known declination, show geometrically that a

small error A(^ in the assumed latitude <^ will produce an error — cot a sec (jjArj)

in the hour angle, where a is the azimuth.

Show also that this error will generally be of little consequence provided

the object be near the prime vertical.

The triangle PSZ is formed from the polar distance PS (=90° — S), the

zenith distance ZS {=s) and the colatitude P^(= 90°-^). Fig. 31. The
parallactic angle rj is negative because it is to the east of the meridian (§ 34).

The triangle FS'Z' is formed from the polar distance PS {= PS'), the

zenith distance ZS{=Z'S') and the colatitude PZ' {= 90° - (fi - A<p).

Draw Z'M and S'L perpendicular to SZ, then as SZ and S'Z' are very
close together S'Z'=LM, but as 8'Z'=SZ we must have SL=ZM.

lSZZ' is the azimuth a, so that SL=ZM= - cos aA<^.

lPSZ= -t) and SS'=SL sec (90° + );)= + cos a cosec 7;A(^.
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But i^h=SS' oosec PS, whence

Ah= cos a cosecPS cosec rjA^= — cot a sec (^A<^.

(iii)

(iv)

Fig. 31.

Ex. 5. A star of declination 8 is observed to have zenith distances z^, z^

at instants separated by an interval 2t ; show that the colatitude c can be

determined from the equation

sin^c= sin^ (2 4-.2;) sin ^6 cosec e,

where x, d, z, 6, e are auxiliary angles given by

(i) tan X= cot 8 cos t,

(ii) sin(^=cos8sinr,

cos 3= cos J (2i+ 22) cos i (zi — 22) sec «^,

sin 6= sin -^(Z] +22) sin J (% — z^ cosec 2 cosec £^,

tan e= sin ^ (2 +^) cosec -K^-^) tan ^5. [Math. Trip.]

Ex. 6. If A be the N. p. D. and 2 the zenith distance of Polaris observed

below the pole at an hour angle h from the meridian, show that the colatitude

c may be determined from the equations

siny=sin AsinA, tan .«= tan A cos A,

tan2^(c+^)= tan^(2+2/)tan J(2-y).

What is the geometrical significance of the auxiliaries x and y 1

[Math. Trip.]

Ex. 7. If 8 be a star's declination and A its maximum azimuth, show that

in t seconds of time from the moment when the azimuth is A the azimuth

has changed by
^ Ib'^fi sin 1" sin^ 8 tan A seconds of arc.

If there be a maximum value of the azimuth, the star culminates between

pole and zenith, and for the maximum azimuth, the zenith distance is tangent

to the small circle described by the star in its apparent diui'nal motion.

B. A. 7
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Differentiating — cot A = coa (p tan 8 cosec h— sin (j) cot h,

dA
we obtain cosec^ 4 -tt = cos d) tan 8 cosec h cot h - sin </> cosec^ h

ah ^

= — cot A cot A — sin cj).

dA
dh'

dA
Differentiating again and making -yT=% we have

coseo^ A -jpi =cot A cosec^ h,
dn?

and -fT? = *aii -4 sin^ 8.
dh^

Therefore if x be the change of azimuth in t seconds from the moment

of maximum azimuth

A sin 1"= ^ 1 52<2 sin2 1" sin^ 8 tan ^

.

[Math. Trip.]

*36. On the time of culmination of a celestial body.

At the moment of upper culmination (§ 29) the right ascension

of the body is the sidereal time. The problem of finding the time

of upper culmination reduces therefore to the discovery of the right

ascension of the body at the moment when it crosses the meridian.

The time of a star's upper culmination.

In the case of a star, the computation is a very simple

one ; for as the apparent right ascension alters very slowly we

can always find it by inspection from the tables, and so have

at once the sidereal time of upper culmination.

For instance, suppose we seek the time of culmination of

Arcturus at Greenwich on 1906 Feb. 12, which for this particular

purpose is conveniently reckoned from apparent noon on Feb. 12

to apparent noon on Feb. 13. We find in the ephemeris for 1906

that the R. A. at upper culmination on Feb. 10 is 14'' 11™ 22= -42.

It increases 0°"29 in 10 days; and therefore at culmination on

Feb. 12 the R.A. is 14^^ ll" 22^-48. On that day the sidereal time

at mean noon for Greenwich is 21" 26°' 29=-91 (| 69).

We thus see that Arcturus will reach the meridian at

24" +(14" ll-" 22»'48) -(21" 26'° 29'-91) = 16" 44"° 52» '57 of sidereal

time after mean noon on Feb. 12. We transform this into mean
time by the tables given in the nautical almanac.

16" 15" 57°" 22=-73

44"' 43 52 -79

52= 51 -86

•57 -57

16 42 7 -95
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The culmination of Ai-cturus therefore takes place at

16^42"'7'-95 on Feb. 12.

In the case of a moving body such as a planet or the moon,

whose right ascension changes rapidly from hour to hour, we
proceed as follows.

Let the right ascension of the body be Oj, a^, as, at three con-

secutive epochs ^, ^2, ta, for which the tables give the calculated

values, and such that culmination occurs between t^ and ^3. Then
taking either of the equal intervals t^ — ti or tg — t^ as the unit of

time, and supposing culmination occurs t units after ti we have

by interpolation for the E.A. at culmination

«! + < (02 - Hi) + ^* (< - 1) («! - 2a2 + at,).

This will be the sidereal time of the body's culmination. Let

^1 be the sidereal time at the epoch ti, and let S be the value of

the unit in sidereal time. Then at the moment of culmination

the sidereal time is

0, + Ht.

But this must be equal to the expression already written ; whence

e-, + Ht = a^ + t {<h - Hi) + \t{t- 1) («! - 2a2 + a,).

From this equation t is to be determined. The equation is a

quadratic; but obviously the significant root for our purpose is

indicated by the fact that ^t (t - 1) («! - 2a2 + a,) is a small

quantity. To solve the equation we therefore deduce an ap-

proximate value t' for t by solving

0, + Ht' = a^ + t' (a^ - ai)

;

and then we introduce this value t' into the small term and

solve the following simple equation for t

d^ + Ht = a, + t(a^ - oi) + \t' (f - 1) («! - 2a2 -I- as).

The time of a planet's upper culmination.

To illustrate the process we shall compute the time of culmi-

nation of Jupiter at Greenwich on Sept. 25, 1906.

From the nautical almanac, p. 247, we have

:

Mean noon b.a. of Jupiter 1st diff. 2nd diff.

1906. Sept. 25 Q^ 39"" 53= -59

-0»-68

7—2
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Hence the R.A. of Jupiter t days after noon on Sept. 25 is

e'^ 39" 53»-59 + 26=-90t - 0=-34« {t - 1).

At the moment of culn;ination this equals the sidereal time,

which is

12" IS"" 34«-62 + 1 [24" 3-" 56»-55],

whence the equation for t is

30" 39"' 53»-59 + 26»-90« - 0»-34< {t - 1)

= 12" IS-" 34»-62 + 1 [24" 3"° 56'-55].

Neglecting the last term on the left-hand side, and omitting

all seconds in the first solution, we have

18" 26"° = t (24" 3"),

whence « = 0'77.

Introducing this approximate value of t into — 0'"34^(t— 1),

it reduces to +0"*06.

The equation therefore becomes

30" 39"" 53=-66 + 26'-90« = 12" IS"" 34=-62 + t (24" 3"" 56=-55),

^ 18" 26"" 19= -03 ^H^^„^
whence t = ^4" 3-29-65

= 0-766416.

Jupiter's culmination will therefore be 0"766416 of a mean solar

day after noon, i.e. at 18" 23" 38^34 G.M.T. (see N. A., 1906, p. 272).

The time of the moon's upper culmination.

In the case of the moon the motion is so rapid that the places

from hour to hour, as given in the ephemeris, are required. For

the sake of illustration we shall compute the time at which the

moon culminates at Greenwich on 1906 Oct. 29.

The sidereal time at mean noon on that day is 14" 27"37°-42

{N. A., 1906, p. 165). The moon's r.a. at noon {N. A., p. 175) is

0"23'" 23=-62. If there were no motion this would mean that the

moon must culminate about ten o'clock in the evening. At
10 o'clock the R.A. of the moon is about 0" 43™, and this shows

that the interval between noon and the moon's culmination is

about 10" 16"° of sidereal time, or about 10" 14"" of mean solar

time. We are therefore certain to include the time of culmina-

tion by taking from the ephemeris the following:

Moon's K.A. 1st diff. 2nd diff.

-OS -06

1. Oct. 29.
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It follows that the B.A. of the moon at (10 + t) hours after

noon is

Qh 42m 52»03 + 116'-40< - 0=03i (t - 1).

Since t is about J, the last term amounts to about one two-
hundredth of a second, and may be neglected. We thus have the
following equation for finding t

:

0'' 42°' 52»-03 + 116=-40«

= sidereal time at 10*' mean time + t [V" 0"° 9°
-86],

the coefficient of t on the right-hand side being the sidereal value
of one mean hour. The sidereal time at mean noon on the day
in question is 14'> 27"° 37='42, if we add to this 10" l" 38»-56 which
is the sidereal equivalent of lO*" of mean time we see that the
sidereal time at lO"" g.m.t. is 0'' 29°' 15= -98; the equation is

therefore

0" 42"" 52= -03 - 0" 29'° 15=-98 = t (1" 0-° 9=-86 - 1-° 56=-40),

13-° 36-05

58- 13-46
~"'^'^^'^*-

This is the fraction of one mean hour after 10 P.M., at which the

culmination takes place ; that is, at 10" 14" 0^94 {N. A., 1906,

p. 167).

The TIME OF CULMINATION AT LONGITUDE \.

Suppose it be required to find the time of upper culmina-

tion of a heavenly body at a place P in longitude \ to the west

of Greenwich.

The K.A. of the body at the moment of culmination will of

course be equal to the sidereal time at the place. Let 6 be the

local mean time ; then the mean time at Greenwich at the same

instant is + \, and the e.a. of the body can be expressed by

interpolation as a function of + \.

We have therefore only to find the sidereal time at P corre-

sponding to the mean time 0. The ephemeris gives the sidereal

time at mean noon at Greenwich, which must be increased by

\/24" X (the difference in sidereal time between the mean solar and

sidereal day) to give the sidereal time at mean noon at P. To
this we must add 0, increased in the ratio of the duration of the

mean day to the duration of the sidereal day. The resulting

sidereal time is to be equated to the Right Ascension, and is

determined.
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For example, let it be proposed to find the time when the

moon culminates at the Lick Observatory, Mount Hamilton,

California, on Dec. 25, 1906. The longitude is here 8'^ G"" 34»-89

;

and if 6 is the local mean time of culmination, the Greenwich

mean time is S"" 6"" 34^-89 + 5.

The ephemeris shows that on Dec. 25 the sidereal time at

Greenwich mean noon is IS"" 12™ 21°-13 ; and the moon's r.a.

varies from 2"^ ig"" 29»-84 at 0"^ to S"" 3° 40= "32 at 23" and it is

also seen that the culmination at Greenwich takes place about

8^ 22" G.M.T. In the following 8'' the moon's K.A. increases

about 15""; hence culmination will take place at Lick at about
8'' 37" local mean time, or about 16''43" g.m.t. The portion of

the tables to be employed in the accurate calculation is therefore

as follows

:

o.M.T. Moon's B. A. 1st d iff. 2nd diff.

1906. Dec. 25. 16 h. 2'' SO-" 9=-73

+ 1™ 55»-55

17 52 5-28 +0«-08

+ 1 55-63
18 54 0-91

Let 8" 6" 34^-89 + = 16" + «, where * is a fraction of an hour.

Then 0= 7" 53" 25»-ll + «.

The sidereal time at Lick corresponding to the local mean
time 6 is found as follows.

The sidereal time at Greenwich

mean noon = 18" 12" 21=-13

The Longitude of Lick

X (3" 56^-56)/24" = 119 "93

(7"53"25=-ll + expressed in

sidereal time = 7 54 42 •88h-(1" 0" 9'-86)«

Adding these three lines we obtain the sidereal time of the moon's

upper culmination at Lick = 2" 8" 23^-94 + (1" 0" 9=-86) t.

The E.A. of the moon at g.m.t. (16 + <)" is

2" 50" 9'-73 + 1 (115=-55) + 0'-04>t{t - 1).

As t is about 0"-7 the third term in this expression is - O^'Ol,

and to find ^ we have

2"8"23'-94 + «(l"0"9=-86)

= 2" SO'" 9'-72 + < (115^-55),
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41" 45''78
or t = ggm ^^B.g^ = -717103 hours

= 43° l'-57.

Hence the culmination of the moon at Lick took place at
16''43"l°-57 Greenwich mean time, or at S"" 36° 26° -68 local

mean time.

37. Rising and setting of a celestial body.

The time of rising or setting of a celestial body is much
affected by refraction. Postponing the consideration of the effect

of refraction to a later chapter (vi.) we here give the formulae for

finding when a celestial body, atmospheric influences apart, is on
the horizon, i.e. 90° from the zenith.

Fio. 32.

In Fig. 32 the points JSf and Z are the north pole and the

zenith respectively. P is a star at the moment of rising or

setting when ZP= 90°. We have therefore

= sin
<f>

sin S + cos
<f>

cos S cos h,

whence cos h = — tan tan 8.

Provided the star be one which rises and sets at the latitude of

the observer there are two solutions, h (< 180°) corresponding to

setting, and 360° — h corresponding to rising.

Ex. 1. Unless tan^taa8<l (sign not regarded) show that an object of

declination 8 neither rises nor sets in a place of latitude (j).

Ex. 2. If the N. decl. of a star is 40°, show that the number of hours in

the sidereal day during which it will be below the horizon of a place which

has latitude 30° is 8-136.

Ex. 3. The declination of Arcturus in 1909 is 19° 39' N. and the latitude

of Cambridge is 52° 13', find the hour angle through which the star moves

between the time at which it rises and that at which it culminates.
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Ex. 4. Let S be the sidereal time of rising of a star whose coordinates are

a, 8 and S' be the time of setting. Show that <S=a+<»', S'=a+a>", where a

and a" are the two roots of the equation

cos a= —tan
<f)
tan S.

Ex. 5. Under what conditions would the azimuth of a star remain

constant from rising to transit ?

If the star is to have a constant azimuth it must move along a great

circle passing through the zenith. Hence the star must be on the celestial

equator and the pole on the observer's horizon, i.e. the observer on the

terrestrial equator.

Ex. 6. If <j) be the latitude, 8 the declination of a celestial body and h
its hour angle when rising or setting, show that when refraction is not

considered

2 cos^ 1^A= sec sec 8 cos (^+ 8).

Ex. 7. Show that in latitude 45° the interval between the time at which
any star passes due East and the time of its setting is constant.

[Math. Trip.]

Let E be the position of the star when due East, Z the zenith and P
the pole (Fig. 33). Then lEZP=90'', ZP=4:5°, and ZP is produced to /
so that ^7 = 45°, and ZIl = 90° is inflected from Z on EPM. Since

Fig. 33.

ZJ=ZH=^(f, we have lZJH=^% and therefore in the triangles ZPE
and JPH, we have ZP=PJ and EZP=HJP= m°. Hence the triangles
are equal and EP=HP, and as E is 90° from the zenith it is the position of
the star at setting, so that half a sidereal day elapses while the star moves
from E to H.

Ex. 8. Two stars whose declinations are 8i, 82 are observed to be in the
East at the same time and also to set at the same time ; show that the
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latitude of the place of observation is 45°, and that if t be the number of

hours between the times at which they rise,

2 cos
• = V(l+tan 8,) (1 +tan 82)+V(l -tan 8i) (1 -tan 82)-

The length of the perpendicular from the pole on the great circle joining

the two stars being unaffected by the diurnal motion, we see that the pole

is equidistant from the prime vertical and the horizon, i.e. the latitude

is 45°.

Further the time during which a star is above the horizon is twice the

hour angle at setting, or
2 cos" I

( - tan <p tan 8).

Since the stars set together, and <{> is 45°, the interval between their

risings is

2 cos~i ( — tan 81) — 2 cos"' ( - tan 82),

whence the required result.

Ex. 9. If two stars whose coordinates are respectively a,'b and a, 8'

rise at the same moment at a station of latitude ((>, show that

sin^ (a— a) cot^ (j)= tan^ 8 + tan^ 8' — 2 tan 8 tan 8' cos (a — a').

Ex. 10. If A be the area of the celestial sphere, show that to an observer

in latitude (jj the stars in a portion A sin^^c^ will never be above his horizon,

the stars in another portion A sin^ i<^ wiU always be above his horizon, the

stars in a portion A cos
(f>

will daily rise and set, and a portion A cos^^<^ will

include all the stars with which he can become acquainted.

If a be the radius of a sphere the area cut off by a small circle of radius <})

is 2^0^ (1 - cos
<f>).

Small circles of radius
(f>

about the north and south

poles respectively show the portions of the sphere always above and always

below the horizon.

Ex. 11. If at a place whose north latitude is (j), two stars whose n.p.d.

are respectively A and A', rise together, and the former comes to the meridian

when the fetter sets, prove that

t^n^^ 1
_ 2tan^'^

_
.^^^^_ ^^.jp -j

tan A tan^ A'

It is plain that if h be the hour angle of the second star at rising, that of

the first must be 2h, whence we have

= cos A sin (^+ sin A cos <^ cos 2A,

= cos A'sin(/>+sinA'cos(^cosA,

and the elimination of A gives the desired result.

Ex. 12. If at any instant the plane of vibration of a Foucault's pendulum

pass through a star near the horizon, prove that the plane will continue to

pass through the star so long as it is near the horizon. [Math. Trip.]

The plane of a Foucault's pendulum appears to rotate round the vertical

with an angular velocity found by multiplying the angular velocity of the
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celestial sphere by the sine of the latitude. In the small time dt the star S
(Fig. 34) moves over SS'= cos Sdt. If S'T be perpendicular to ZS we have

S'T=S'Ssm S'ST=coa 8coa7idt=am<l>dt.

Hence S'ZS= sin «/> dt.

Fig. 34.

38. Celestial latitude and longitude. For certain classes

of investigation we have to employ yet another system of co-

ordinates on the celestial sphere. Just as the equator has

furnished the means of defining the right ascension and the

declination of a star, so the ecliptic is made the basis of a system

of coordinates known as celestial longitude and latitude. We
employ in this new system the same origin as before. The first

point of Aries If is the origin from which longitude is to be

measured and the direction of the measurement is to be that of

the apparent annual movement of the sun along the ecliptic as

indicated by the arrow-head on Fig. 35.

A great circle is drawn from the nole K of the ecliptic through

the star S, and the intercept TS on this great circle between the

star and the ecliptic is that coordinate which is called the latitude

of the star. The latitude is positive or negative according as the

star lies in the hemisphere which contains the nole or the antinole

of the ecliptic. The arc on the ecliptic from the origin T to T,

the foot of the perpendicular, is called the longitude, which is
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the second coordinate. This is measured round the circle from

0° to 360°, so that if the right ascension of an object on the

ecliptic is increased its longitude is also increased.

The reader will of course observe that the meanings of the

words latitude and longitude as here explained in their astrono-

mical significance are quite different from the meanings of the

same words in their more familiar use with regard to terrestrial

matters. It is usual to employ the letter X to express astrono-

mical longitude and /8 to express astronomical latitude, thus

TT = \ and TS = /3.

The arc of the solstitial colure LH intercepted between the

equator and the ecliptic is equal to the obliquity of the

ecliptic.

Fig. 35.

If a, B be the b.a. and decl. of S, then the formulae for

transformation are obtained either from the general formulae of

§ 12 or directly from the triangle SKN (Fig. 35), and for the

determination of the latitude and longitude we have the equations

sin /8 = cos &) sin S — sin w cos B sin a'j

cos ;8 sin X = sin wsinS + cos wcosSsina^ (1),

cos /8 cos \ = cos B cos a J

by which we can determine /8 and X when a and B are known.

It is generally easy to see from the nature of the problem whether

the longitude is greater or less than 180°. When this is known

one of the last two equations may be dispensed with.

We can make these equations more convenient for logarithmic
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work by the introduction of an auxiliary quantity M= Z. STL, so

that tan ilf= cosec a tan S (§ 13), and we have

sin yS = sin S sin (M— co) cosec M,

cos /3 sin \ = sin 8 cos (M— a>) cosec M,

cos jS cos \ = cos B cos a.

The form of the equations shows that a change of 180° in the

adopted value of M does not aflFect the result.

If we represent by 90° — E the angle subtended at S by KN
we have from Delambre's formulae

cos i (£^ + A,) cos (45°- i /3) = cos (45° - H^ + «)} cos (45° + i a),

sin H^+>-) cos(45°-iyS) = cos {45° - ^(8- w)) sin (45° + ^ a),

sin H^-'^) sin (45°- i yS) = sin {45° - H^ + <•>)} cos (45° + ^ a),

cos ^(E-\) sin (45°- ^^) = sin {45° - i (S - »)} sin (45° + ^ a),

by which X and /3 as well as ^ can be determined.

If it be required to solve the converse problem, namely, to

determine the R.A. and decl. when the latitude and longitude are

given, we have by transformation of (1)

sin 8 = cos to sin /3 + sin to cos /S sin X \

cos 8 sin a = — sin to sin /3 + cos m cos /8 sin X^ (2).

cos 8 cos a = cos /3 cos X j

Ex. 1. Show that the right ascension and declination of the nole of the

ecliptic are respectively 270°, 90° -m and that the right ascension and

declination of the antinole are 90°, a - 90°.

Ex. 2. If a, 8 are the r. a. and decl. of the point of the ecliptic whose
longitude is X, show that

cos X= cos a cos 8,

sin X sin (0= sin 8,

sin X cos a>= sin a cos 8.

Ex. 3. If ai, 8] and 02, 82 be the r.a. and decl. of two stars which have
the same longitude, prove that

sin (02— 01)= tan w (tan 81 cos oa — tan 8200301).

Ex. 4 The right ascension of a Orionis is 5 h. 49 m., its declination is

+ 7° 23', and the obliquity of the ecliptic is 23° 27'. Show that the longitude
and latitude of the star are respectively 87° 10', - 16° 2'.

Ex. 6. If o= 6° 33' 29", 8= - 16° 22' 35", a= 23° 27' 32", show that

X= 359°17'44", /3=- 17° 35' 37".
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MISCELLANEOUS EXERCISES ON CHAP. V.

Ex. 1. Show that to an observer at the north pole of the earth the

altitude of a star would be its declination and would be unaltered by the

diurnal motion. Show that in the same case the azimuth of a star (measured

from any fixed meridian) would differ from its right ascension only by an
arc which would be the same at a given instant for all stars.

Ex. 2. A star of right ascension a and declination 8 has a small latitude 0.

Prove that the longitude of the sun when its r.a. is a, differs from the

longitude of the star by ^ sin 8 cot a approximately.

Ex. 3. Show that for a place within the arctic or antarctic circle the points

of intersection of the ecliptic with the horizon travel completely round the

horizon, during a sidereal day, but that for any other place they oscillate

about the East and West points. [Math. Trip.]

Ex. 4. The East point is denoted by £!, the pole by P, and the places

of two stars by A, B. PA meets EB in A', and PB meets EA in B'. The
declinations of A, B, A', B' are 8i, 82, 81', 82' respectively, show that

tan 81' tan 82'=tan 81 tan 82.

Let EA and EB intersect the meridian at distances X, ji respectively from

the pole. Then since jS is the pole of the meridian, tanX/tan /i=tan Si'/tan 81

and tan ^/tan X=tan bijian 82

.

Ex. 5. If z be the zenith distance of a star as seen from a station P,

then at the same moment at a station P' which is at a small distance s

from P the zenith distance will be very nearly ^ where

^=z — scos 6+\s^sm \" ootzsiv? 6,

6 being the difference between the azimuths of the star and P' as seen

from P.

We assume that z!-z and s are both expressed in arc, their measures

in radians are therefore (/ - z) sin 1" and s sin 1". We have

cos z*= cos z cos «+ sin sin s cos fl

= cos2(l-is2sin2 1")+ssinl"8in2Cos5.

But we also have

cos 2*= cos (2' - z) cos z - sin {if - z) sin z

= cos z {1 - i (2'- 2)2 sin2 1"} -{z!-z) sin 1" sin z,

and equating these two values of cos z' gives

z'-2=-«cos5+Js2sinl"cot2-|(z'-z)2sinl"cot2;

as a first approximation z'-2=-« cos 5, and with this substitution in the

last term the desired result is obtained.

Ex. 6. Let a', S', ij' be respectively the azimuth, the declination and the
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parallactic angle of a point on the horizon. Show that for a given latitude
(f>

these quantities can be calculated for any hoiir angle by the formulae

tan 8'= — cot (^ cos ^, sin a'= —sin A cos S', cosa'= +sec<^sin8',

tana'= +sin(^tanA, cosi)'= +sin(^sec8', sin 17'=+ sin A cos 0.

Ex. 7. If 8, h be respectively the declination and the hour angle of a star,

obtain the following formulae by which its azimuth a and zenith distance z

•can be easily determined when for that latitude the values of a', 8', 17'

{as defined in the last example), corresponding to h are known.

cos 2= sin (8' - 8) cos 77',

sin (a' — a) sin z= sin (8' — 8) sin rj',

cos (a' — a) sin = cos (S' — 8)

.

Ex. 8. Show that with the quantities used in the last example we

have for determining r) the star's parallactic angle :

sin r; = sin (a — a') cosec (8' — 8),

cos j;= cot z cot {8^ ~S).

Ex. 9. As an illustration of the formulae of Exs. 6 and 7, calculate the

zenith distance and azimuth of Arcturus at the West hour angle 2^ 35", being

given that the declination is + 19° 44' and the latitude 52° 13'.

Ex. 10. Show that the latitude can be determined by an observation

of the altitude a of the pole star which at the time of observation has an hour

.angle h and a polar distance p and that the formula is approximately

= a-pcos A+^sin 1" p^ sin^Atan a.

Ex. 11. Show that the hour angle h and the zenith distance z when a star

is due East or due West may be found from the equations

sin8=sin^cos2; sin Acos 8= + sin^ ; cos Acos8= cos0cosz
;

by using the upper sign in the former case and the lower sign in the latter.

Ex. 12. Find the first and second diflferential coefficients of the zenith

•distance z of a star with respect to the hour angle.

We can investigate this either from the fundamental formulae or geo-

metrically as follows. Fig. 36.

N is the north pole, Z the zenith, P the star. In the time dh the star

has moved to IT, where PS is perpendicular to NP and NH. If PQ be
perpendicular to ZII, then

dz=HQ=SPamr]=cos 8 smridh= -cos^ siaadh.

We have also

da=PQcoaeoz=PH cos77Cosecz= cos8cosi;cosec2c?A,

da

dh'
whence ^ = cos 8 cos i; cosec 0.
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To find the second differential coeflScient we differentiate dzjdh as above

found with respect to h and assuming that a and h are both expressed in

radians,

d^z . da
-Tri= — cos d) cos a -n-

,

dh' ^ dh

= — cos </) COS a cos 8 cos r\ cosec z.

90-<t>

Fig. 36.

Ex. 13. If the declination of a star exceed the latitude, show that the

most rapid rate of change in zenith distance by diurnal motion is equal to

the cosine of the declination. If the declination be less than the latitude,

;show that the most rapid rate of change in zenith distance is equal to the

•cosine of the latitude.

Ex. 14. If 0, be the zenith distance of an object at the hour angle h^ and

;if z be the zenith distance of the same object at the hour angle h which is

very near to \, show from Ex. 12 that

.2 - 2^= - 15 (A - Aj) cos^ sin a - J 225 sin 1" (A - Aq)^ cos <^ cos a cos 8 cos r) cosec z,

where the zenith distances are expressed in arc and the hour angles in time.

Ex. 15. A series of measurements of zenith distances zj ... i!„ of the same

:star are made at closely following hour angles hi...h„. Let /, Ap be the

arithmetic means of the zenith distances and hour angles. Show that zp, the

value of 2 corresponding to Ap , is obtained by applying to z' the correction

1
"

H 225 sin 1" cos d) cos a cos 8 cos n cosec zS (A^ - h^Y-
2n 1
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Making ^ = - cos sin a, 5= - J 225 sin 1" cos </> cos a cos 8 cos ?; cosec z,

we have from the last question

Zi=Zq+A {hi -ha) +B (Ai - ho)\

Z2=e„+A{h2-k„) +B (Aa - h^f.

0„= 00+^ (A„- A,)+5 (A„ - A„)2,

adding and dividing by n

z'=z,+lBi(hr-h,y,

which proves the theorem.

This formula is useful when it is desired to obtain the best result from a

series of zenith distances taken in rapid succession.

Ex. 16. Show that if the hour angle of a star of declination S be A

when it has the azimuth a and h' when it has the azimuth 180°+a the

latitude <^ can be found from the equation

J 1.
»cos-i(A'+A)

tan d)= tan 8 f^,—jr.^ cos ^ (A - A)

Ex. 17. In north latitude 45° the greatest azimuth attained by one of the

circumpolar stars is 45° from the north point of the horizon. Prove that the

star's polar distance is 30°. [Math. Trip.]

Ex. 18. Show how to find the latitude if the local sidereal time be

observed at which two known stars have the same azimuth.

The hour angles A, A' at which the two stars have the azimuth a are

known and (p. 3)

cot a sin A = — cos <^ tan 8 + sin cos A,

cot a sin A'= — cos tan S'+ sin (j) cos A',

whence eliminating a

tan 8 sin A' — tan 6' sin A
tan <^= 7—7T7—n

.

sm (A — A)

Ex. 19. Two altitudes of the sun, /3 and (3+ A)3, are simultaneously

observed at two neighbouring places on the same meridian at a time when

the declination of the sun is 8. Prove that, if ^ be the latitude of one of the

places, the difference of their latitudes is approximately

A/3 cos cos <|)/{sin 6 — sin j3 sin 0}.
[Coll. Exam.]

Ex. 20. Show that if a is the sun's altitude in the prime vertical, L its

longitude, and a> the obliquity of the ecliptic, the latitude of the place is

sin ~ ' (sin o) sin X/sin a).

Ex. 21. Show how <^ the latitude may be accurately found from an

observed zenith distance of a body of known declination 8 when near the

meridian, assuming as an approximate value ^i^—z+ h.



§ 38] RIGHT ASCENSION AND DECLINATION 113

From the fundamental formula

cos 2= sin sin 8+ cos tf) coaSooah

=co3 (0 - 8) - 2 sin^ J A cos cos 8
we obtain

sinJ(2+ 8-</))sini(z-S4-<^)=cos8cos08in2JA,

in which the hour angle h is known from the local sidereal time and the
right ascension of the body. If we make x= z+8-<f), we obtain

. , cos 8 cos (b . „ , ,sm ^3!= ^—rr—> ,T V sm2 iA.

But as the star is near the meridian x is small, whence we obtain very

nearly (§ 3, Ex. 3)

2cos8cos<l> . ,,, sin(<i-8) , , ,i

am((t>-8) - sm((^-8+ |a;)^ ^ '

, . , 2 cos 8 cos rf)o . ., ,

,

ormakmg f=-j-^^_^sm^P,

and observing that f is very nearly x, we have

sin (.^0-8) , 1 ..1

*-^sin(.^„-8+if)(''°^f)'.

whence ^=z+ b-x becomes known.

Ex. 22. If R be the sun's radius vector, ©, (3 its true longitude and
latitude, a> the obUquity of the ecliptic, X the coordinate measured along the

line from the earth's centre to the true vernal equinox, T the coordinate

measured along the line in the plane of the equator perpendicular to X and

towards the first point of Cancer, i.e. to a point whose K. a. is G\ and Z the

coordinate perpendicular to the equator and towards the north pole, show

that (p. 618, N.A. 1906),

X=^cos©,

T=R sin © cos <a - 19-3 R^,

Z=R sin © sin m +44-5 R0,

where the sun's mean distance is the unit of length and the numerical

coefficients are in units of the seventh place of decimals.

From the general formulae of transformation we have

sin 8=sin j3 cos m+cos ^ sin a> sin ©,

cos 8 cos a= cos^ cos ®,

cos 8 sin a= —sin 3 sin m+ cos/Scosusin ®,
whence

B. A.

X= iJcos^cos ®,

F= -5sin^sin<a+ iJcos0cos<usin ©,

Z= i^sin|3cos<B+i^cos^sincu^in ®.



114 RIGHT ASCENSION AND DECLINATION [CH. V

In the case of the sun |3 is extremely small and making sin|3= /3sin 1",

sin a)= '3980 and cos ia
= -9174 we obtain* the desired result. Tables of X, Y,

and Z for each day throughout the year are given in the ephemeris.

Ex. 23. Assuming the Milky Way to be a great circle of stars, cutting

the equator in k.a. 18'' 30", and making an angle 65°, measured northwards,

with the equator, determine the r.a. and decl. of its pole.

Ex. 24. A planet's heliocentric orbit is inclined at a small angle i to the

ecliptic ; show that if its declination is a maximum, either the motion in

latitude vanishes, or the longitude is approximately 90°+icot a> sin a where a

is the longitudeW the ascending node.

As the declination is a maximum the planet P must be 90° from the

intersection N of its orbit with the equator. The projection of NP on the

ecliptic will also be nearly 90°. Let NT be the perpendicular from N on

^ S the ecliptic, where T is the vernal equinox and 63 the ascending node.

In the small triangle JVT'V we have tan iV?"= sin TT tana, and in the

triangle NTH we have tan NT=sin (a-'^T) tan i.

Hence sin TT= tan i sin (a - TT) cot to,

and approximately ^T= i cot a sin a,

whence the planet's longitude is in general 90°+icot<Bsina.

Fig. 37.

Ex. 25. Show that the true distance between Regulus and the moon at

4 p.m. Greenwich mean time on Jan. 6, 1909 is 41° 59' 31", being given

Eight Ascension Declination

Moon 7h 12"" 56=-9 N 24° 15' 40"

Star 10 3 31 -6 N 12 24 45
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Ex. 26. Prove that for a star which rises to the north of east, the rate at

which the azimuth changes is the same when it rises as when it is due east,

and is a minimum when the azimuth is sin~i (tanX . sin— ) north of
V 2 V cos a)

east, where X is the latitude and a the altitude of the star when due east.

[Math. Trip. 1902.]

Ex. 27. Show that observations of the altitudes of two known stars

at a known Greenwich time are sufficient to determine the latitude and

longitude of the observer. Show how from these observations the position

of the observer may be found graphically on a terrestrial globe.

If the stars chosen for obseiration are on opposite sides of the meridian,

show that the errors in latitude and longitude due to the small error c in the

observed altitude of each star are respectively

e sec (ai+ 02) cos (oi — 02) and t sec sec (01+02) sin (01 — 02),

where is the estimated latitude and 2ai , 2a2 are the azimuths of the stars..

[Oxford Second Public Examination, 1902.]

8—2
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39. The laws of optical refraction.

If a ray of light AO (Fig. 38) moving through one transparent

homogeneous medium HH enters at a different transparent

homogeneous medium KK the ray generally undergoes a sudden

change of direction and traverses the new medium in the direc-

tion 00'. This change is known as refraction. The ray AO is

called the incident ray and the ray 00' the refracted ray, and

both the incident ray and the refracted ray lie in the same plane

through the normal at to the surface separating the media.

Let MON be the normal at to the surface separating the two

media, then Z NOA = y{r is known as the angle of incidence and

/.MOO' = <^ as the angle of refraction, and the fundamental law

of refraction is expressed by the formula

sim|r = y[4 sin ^,

where ;u, is a certain constant depending on the character of the

two media. If by a change in the direction of the incident ray
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the angle i/r alters, then (/> must alter correspondingly in such
a way that the ratio of the sines of the two angles shall remain
the same. We call fi the index of refraction from the first

medium into the second.

Fig. 38.

It should in strictness be noted that while /i varies, as stated,

with the nature of the two media, it also varies with the character

of the light. For example,
fj,

would be different for a ray of blue

light from what it is for a ray of red light, the media being the

same in both cases. We have to consider however only atmospheric

refraction and in this case the dispersion, as this phenomenon
is called, is not great enough to make it necessary to attend to

it for purposes of practical astronomy. We therefore take a mean
value of

fj,
which will be sufficiently accurate even though the

rays of light with which we have to deal are of a composite

nature. The refractive index of the atmosphere at the earth's

surface at the temperature 0° C. and pressure 760 mm. is taken

to be 1'000294 (Everett, Units and Physical Constants, p. 75).

If the direction of the ray were reversed, i.e. if a ray went

from 0' through the medium KK to and thence emerged into

the medium HH the ray would traverse HH precisely along the

path OA. This is only a particular case of the general property

that the curved or broken line which a ray follows in the course

of a series of refractions through any media and at any in-

cidences would also be followed if the direction of propagation

of the light were reversed. Hence we see that if the lower surface
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of the medium KK is parallel to the upper surface, the ray

on its emergence at 0' into a second layer of the medium HH
will pursue a direction O'A', which is parallel to the incident

direction AO. Thus we learn that a ray of light on passing

through a parallel-sided homogeneous plate is not changed in

direction though it will no doubt be shifted laterally. As we are

now only concerned with the directions of rays the lateral shift

need not be attended to.

Let /ti be the refractive index from a medium H^ into H^

(Fig. 39). Let fji^ be the refractive index from Ho into H^,

it is required to find the refractive index from the medium H^

into Ho.

Fio. 39.

A ray from H^ through parallel plates of H^ and H emerges

in H„ parallel to its original direction ; and if t^, 0, 6 be the

successive angles of incidence, then from the first incidence and

the last emergence we have the equations

sin i|r = yLii sin <^ and sin \^ = fi^ sin 0,

wheuce /Uj sin
<f>
= /jl-, sin 6.

We thus obtain the following result.

If fii be the index of refraction from a standard medium
into another medium H^, fi^ the index of refraction from the

standard medium into another medium H2, and if <p be the angle

of incidence of a ray passing direct from Hi to H^, and 6 the

angle of refraction, then /t, sin
<f>
= fi^ sin 0, and the index of re-

fraction for a ray passing directly from Hi to H^ is fi^l/jUi.

40. Astronomical refraction.

The rays of light from a celestial body on passing from outer

space through the earth's atmosphere undergo what is known as
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astronomical refraction. In the upper regions of the atmosphere
the density of the air is so small that but little is there con-
tributed to the total refraction. The refraction with which
astronomers have to deal takes place mainly within a very few
miles of the earth's surface. In consequence of refraction a ray
of light from a star does not pass through the atmosphere in

a straight line. It follows a curve, so that when the observer
receives the rays the star appears to him to be in a direction

which is not its true direction.

Fia. 40.

A ray of light coming towards us from a distant star in the

direction SA (Fig. 40) pursues a straight path until it enters the

effective atmosphere at A, and from thence the path is no longer

straight. From A to the observer at the ray is passing through

atmospheric layers of which the density is continually in-

creasing, so that the ray curves more and more till it reaches 0.

To the observer the rays appear to come from T, where OT is

the tangent to the curve at 0. If through a line OR be drawn

parallel \,o AS this line will show the direction in which the

star would appear if there had been no refracting disturbance.

Thus the effect of refraction is to move the apparent place of

the star through the angle TOR up towards Z, the zenith of the

observer. Refraction is greatest at the horizon where objects are

apparently elevated by this cause through about 35'.

The observed coordinates of a heavenly body must, in general,

receive coiTections which will show what the coordinates would

have been had there been no refraction. The investigation of

the effects of refraction is therefore an important part of practical

astronomy.
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An approximate table is here given showing the amount by

which refraction diminishes the apparent zenith distances of stars.

The barometer is supposed to stand at 30 in. and the thermometer

at 50° F. See Newcomb's Spherical Astronomy, p. 433.

Apparent
Zenith
Distance
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Let G be the earth's centre,

yfr= Z SQP, <^, = Z QPC, 4>,= z RQC, CP = r„ GQ = r,.

Then from the principles of refraction (§ 39) because GQ is

normal to the surface of separation we have

fii sin yjr = fu sin (jy^.

But from the triangle PGQ
sin yfr : sin c^i :: rj : r^,

whence eliminating i^ we obtain

ri/ii sin ^1 = r^Hi sin ^2 •

The same would of course be true for any two consecutive layers,

and thus we obtain the following general theorem.

Let the atmosphere be regarded as constituted of a number of

thin spherical homogeneous layers, concentric with the earth and

varying in density from one layer to another. As a ray of light

traverses successive layers, the product of the sine of the angle of

re&aetioa-iy the radius of the layer and by its refractive index is

constant.

We may express this theorem in the following formula

:

rfi sin
(f)
= ttfio sins (i),

where z is the apparent zenith distance, a the radius of the earth

and /la the index of refraction of the lowest layer.

^^ X

Fig. 42.

If we suppose the layers to be indefinitely thin, then the path

of the ray instead of being a broken line would be a curve. Let

XTO (Fig. 42) be the curve as it passes through the successive
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layers and reaches the earth at 0. Draw the tangent TQP to

the curve at T, where the ray enters a layer whose refractive

index is /i, and radius r. The tangent coincides with a small

part of the ray and consequently Z GTQ = <^, the angle of

refraction. When the ray first enters the atmospheric strata the

tangent to the curve must coincide with the true direction of the

star. On the other hand the tangent to the curve at indicates

the direction in which the ray enters the eye of the observer.

The angle between these two tangents shows the total change in

the direction of the ray. This is the quantity which we seek to

determine, for this is what we commonly call the refraction.

If p be the refraction then dp is the angle between two con-

secutive tangents = dO - d<f) ii =/. ACT and
<J3
= Z GTP. From

geometry we see that d^ = — tan (f>drjr, whence

dp = — tan ^dr/r — d<f>.

We can now transform this equation by (i), which may be

written

log r + log fi + log sin
(f>
= const.,

differentiating we have

dr/r + d/j./fi + cot (f)d<}> = {) (ii),

whence dp = tan (fyd/ji//j, (iii).

Eliminating tan 4> by the help of (i) we find

, 1 aa^sinz
,

dp = 7 dfi.

fjL (r^fj.^ - a^'fi,^ sm= z)i

Thus we obtain the differential equation for the refraction.

*42. Integration of the differential equation for the

refraction.

To determine the refraction accurately this equation would have

to be integrated between the limits of /x = ;u.„ and yit = 1 the value

of fx at the upper layer of atmosphere. It is at this point that

the difficulty in the theory of refraction makes itself felt-f.

t The general discussion of the integration of this equation is too difficult

for insertion here. Reference may be made to Professor Newcomb'a Compendium

of Spherical Astronomy and to Professor Campbell's Practical Astronomy. An
account of Bessel's elaborate investigation will be found in Briinnow's Spherical

Astronomy. I am indebted to Prof. E. T. Whittaker for calling my attention to

the elegant approximate method here given.
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The expression to be integrated contains two variables r and fi

which must be related. If the law of this relation were known
then we could express r in terms of fi so that the problem would

be the integration of a certain function of /t. But we have not

precise information as to the law according to which the index

of refraction varies with the elevation above the earth's surface.

It is however most interesting to find that it is possible to obtain

an approximate solution of the problem quite sufficient for most

purposes without any knowledge of the law according to which

the density of the atmosphere diminishes with the elevation above

the earth's surface.

We shall assume rja = \+s where s is a small quantity because

the altitude of even the highest part of the atmosphere is small

in comparison with the earth's radius. We shall substitute this

value for rja in the expression of dp and disregard all powers of

s above the first. We thus have

fia sin zdfi-

Ji fiifi^- fi,^ sin^ z + ^sn'f

r,j^ /jlq sin zdfi /

/•^ /i„ sin zdfi _ f"

^Jifi(fM''-fJ-o^sin'z)^ Ji

fiQ sin zdfi (^ 2sfi'

Ijp
— fi^ sm'' zj

**» s/A/io sin zdfji

{fi' -fi,' sin' zf'

The refraction is thus expressed by two integrals of which the

first and most important part expresses what the refraction would

be if s = 0, i.e. if the earth's surface was a plane. This is of course

a well-known elementary integral and its value is

sin~' (/j,Q sin z) — z.

If we denote by x the small quantity (/*» — 1) the integral may
be written

sin~' {(!+;») sin z\— z

and this when developed in powers of x by Maclaurin's theorem

will be convenient for calculation. If we neglect all powers of

X above the second we see that (/^o— 1) tan^ + ^(/Lt„ — l)Han^^

is the approximate value of the first integral.

In evaluating the second integral we are to notice that s

enters as a factor into the integrand and therefore we shall make
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no appreciable error by putting /[i = /lio = 1, for quantities of the

order s (fi,,
— 1) are so small that they may be neglected. Thus

the second integral assumes the simple form

sin z f^
cos^ Z J 1

Let m be the density of that atmospheric shell which has /x as

its refractive index, then by Gladstone and Dale's law fi and m are

connected by an equation of the form

^ — 1 = cm,

where c is a constant quantity, so

dfi = c . dm.

If wio be the density of the air at the surface of the earth, then

the integral becomes
s\nz 1 - ,— c—^ s . dm.

IJcos" ZJ Q

Integrating by parts this becomes

sin z
-c—^ I

m.
cos'^^Jo

for the terms independent of the integral vanish at both limits

;

we also make s = s' when m=0 and s = when m=m^. The

integral in this expression has a remarkable significance, for it

is obvious that it expresses the total mass of air lying vertically

over a unit area on the earth's surface and is therefore propor-

tional to the pressure of the atmosphere, i.e. to the height of

the barometer. Thus the actual law by which the density of the

atmosphere may vary with the altitude is not now required in the

problem.

The theoretical expression of the refraction has therefore

assumed a remarkably simple form. It is the difference between

two integrals whereof the first has been found and the second must

be proportional to tan ^ + tan' z. From this we learn that the

total refraction must be of the form A tan z->r B tan' z where z is

the apparent zenith distance and A, B are certain constants.

The values of these constants are to be determined by observation

as is shown in § 46.

We can also assume various hypotheses as to the relation

between r and /ti and compare the results so calculated with
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those of actual observation. It is noteworthy that several

different relations between r and fi each give a theory of refrac-

tion the results of which are in fair accordance with observation.

43. Cassini's formula for atmospheric refraction.

By the hypothesis of Cassini, who assumed that the atmo-

sphere is homogeneous, we can obtain an expression for the refrac-

tion practically identical with that just found. Of course this

hypothesis is untrue, but it should be observed that if the surface

of the earth were a plane instead of being a curved surface the

successive atmospheric layers would be parallel-sided, and there-

fore the refractive index of the lowest layer alone would determine

the total refraction (§ 39). It is therefore only the curvature of the

earth which prevents the formula derived from Cassini's theory

from being strictly true.

There are excellent grounds for believing' that at an altitude

of twenty miles the atmospheric density would be less than a

thirtieth part of its amount at the earth's surface. We may
therefore conclude that almost all the refraction is produced

within twenty miles of the earth's surface.

Let (Fig. 43) be the place of the observer and OH a ray

reaching in a horizontal direc-

tion : such a ray has of course

experienced more refraction than

any other ray.

Let a be the radius of the

earth, and a + 1 the radius of

the shell of atmosphere which

the ray first strikes at H. If

6 be the angle between the

tangents to the shells at and

H, and if HO be taken to be a

straight line we have

sin''^^ = 1 - a^j{a -|- Vf

= 2Z/a = 40/4000 = 1/100,

wjience 6 is about 6°.

Hence the effective layers of air of various densities through

which the rays have to pass are so nearly parallel that none

of them would have to be altered through an angle exceeding

Fio. 43.
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6° to make them strictly parallel. We might therefore antici-

pate that no wide departure from truth will arise by assuming

the atmosphere to be in horizontal layers, in which case the non-

homogeneity produces no effect on the total refraction.

The formula connecting the refraction with the zenith distance

in the case of a supposed homogeneous atmosphere has been thus

obtained by Cassini.

We shall assume that the atmosphere is condensed into

the space between the two

spherical shells of radii OS
and GV respectively. The

atmosphere is considered of

uniform density and of refrac-

tive index /i.

The ray LI impinges at / '

on the atmospheric surface to

which GIH is normal and

reaches the observer on the

earth's surface at S, so that

Z LIH = i|r is the angle of

incidence and Z SIC = ^ is

the angle of refraction.

The ray reaches the ob-

server in the direction IS, so that ZISV=z is the apparent
zenith distance of the object. If a denotes as before the radius

of the earth, and I the thickness of the atmosphere SV, we have
from the triangle SCI

(1 + Ija) sin = sin z,

and also sin i^ = /i sin <^.

Hence sin i/r = ^a (1 - Ija) sin z,

very nearly, since Ija is a small quantity estimated at less than

1/800.

If p be the whole refraction, i.e. the angle through which the

incident ray is bent from its original direction, we have \jr = <p + p,

and assuming p to be expressed in seconds of arc

p sin 1" = (sin yjr — sin (j>) sec <^.

Substituting for sin i|r, sin
<f),

cos (j) respectively the expressions

/i (1 - l/a) sin z, (1 - l/a) sin z, Vl -(l-l/afsm^z,

Fig. 44.
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we obtain

p = (u. - 1) cosec 1 ^^ '-—^

= (/u, — 1) cosec 1" {tan z — (tan z + tan' z) l/a]

= A tan ^+5 tan*^ (i),

where A = (/jl-1){1 -l/a)cosecl",

B = — {iJ,— l)l/a cosec 1".

For the practical application of the formula which has thus

been derived by the different processes of this and the preceding

article, we must obtain numerical values for A and B. This has

to be done from actual observation of the refraction in at least

two particular instances (see § 46), and we shall assume it has

been thus found that at temperature 50° F. and pressure 30 in.

the refractions at the apparent zenith distances 54° and 74° are

80"-06 and 200"-46 respectively.

The formula (i) will thus give for the determination of A and

B the two equations

80"-06 = A (tan 54°) + B (tan 54°)',

200"-46 = A (tan 74°) + B (tan 74°)'.

Solving these equations we obtain the following general

expression for the refraction at mean pressure 30 in. and tempera-

ture 50° F.,

p = 58"-294 tan ^ - 0"-06682 tan'^ (ii).

Thus B/A is only 1/873 so that unless tan''^ becomes very

great, i.e. unless the object is near the horizon, we may neglect

the second term.

If the zenith distance does not exceed 70°, the refraction may
be computed with sufficient accuracy for many purposes where no

extreme temperatures are involved by the simple expression

k tan z,

and where we are using only the first term, that is neglecting the

term containing tan' z, it is slightly more accurate to take k = 58"'2

rather than 58"'294. The quantity k is called the coefficient of

refraction.

Ex. 1. What ought to be the thickness of a homogeneous atmosphere

which would give an expression for refraction in accordance with obser-

vation ?

-B/A=l/a,



128 ATMOSPHERIC REFRACTION [CH. VI

whence ;/a=0-0668/58-3= l/873,

so that taking a=3957 miles, we find 1=4-5 miles.

Ex. 2. Show that the refractive index of. the atmosphere would be

1-000283 at pressure 30 in. and temp. 50° F. according to Cassini's theory of

refraction.

Ex. 3. Show from formula (ii) that l'48"-3 is the refraction at the

apparent zenith distance 61° 48' (^= 30 in., temp.= 50°r.).

Ex. 4. Show that if quantities less than the fifth part of a second be dis-

regarded the second term in the expression for the refraction may be omitted

whenever the zenith distance does not exceed 55°.

.Ex. 5. If we express the refraction as i' tan z' where z' is the true zenith

distance instead of in the usual form k tan z where z is the apparent zenith

distance, show that if k and k' are both expressed in seconds of arc

F = *(l-*seo2 2sinl").

44. Other formulae for atmospheric refraction.

It is obvious that the density of the air constituting the

atmosphere diminishes as the distance from the earth increases.

The index of atmospheric refraction will in like manner diminish

from 1 "000294 its value at the earth's surface to the value 1

at the upper limits of the refracting atmosphere.

We take o as in § 41 to be the radius of the lowest atmospheric

layer for which /t = /j.^, and r' the radius of the layer when /jl has

declined to unity. Simpson assumed that r/i"+'=r', where n is

a quantity at present unknown. The assumed equation gives

r = r' when /i = 1 as already arranged. As r increases /t is

to diminish, and this will be the case provided {n + 1) be

positive.

We have seen (§ 41) that fir sin <^ = const. Equating the ex-

pressions of this product for the upper and lower limits of the

atmosphere
/jL^a sin z = r' sin /,

where z' is the angle of incidence at the uppermost layer and z

at the lowest. Substituting for r' we have

/Ltott sin z = ayLt|,"+i sin z',

whence sin z = /^o" sin z',

, . , sin ^^

or z = sin-' —— .

,, n



§ 4-1] ATMOSPHERIC REFRACTION 129

Taking the logarithmic differential of r/i,''+' = r', we have

(

whence from (ii) (§ 4)1)

and from (iii) (§41)

n
. ,d<l>- = cot V- .

dp _l
d(j) n

'

To find the refraction we have only to integrate this expression

between the values of
(f>

at the atmospheric boundaries. The

angle of refraction is z at the earth's surface, and

, sin z

at the upper boundary of the atmosphere, whence we have

Simpson's formula for the refraction

1 r . [sinz\
P = - iz — sm ' —

—

Ex. 1. Show that if /io''= 1 +<»j where m is a small quantity of which powers

above the second may be neglected, we can obtain from Simpson's formula the

following approximate expression for the refraction

p= { tan z— ;^tan^.i

Ex. 2. Assuming that observation has shown the law of refraction to

be (S 42)

p= 58"-294 tan ? - 0"-06682 tan^ s,

show that Simpson's formula would give for /x„ the index of refraction of the

air at the earth's surface the value 1-00028, and also that n= 8 and

fjfi=r'lr.

Ex. 3. Show that if Simpson's formula were correct the height of the

atmosphere so far as it is effective for refraction would be about ten miles.

A convenient formula due to Bradley may be deduced from

the expression just obtained:

1 / . sin^:\
p = -{z-sm 1—r I

which may be written

sin {z — np) = sin zjp,^^,

,
sin .sr — sin (z — np) y,^' — 1

whence —.
;—:

—

-, r =—s~rT

'

sin z + sm {z — np) ^o + A

a
B. A.
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-tan(« — ^np).

or, as the refraction is small,

2 A<„"
-

1

'^ M /to" + 1

If we introduce the values of /ij and n used in Ex. 2, p. 129, we

should find as the approximate formula

p = 59" tan (z — 4p).

We can correct this formula so as to make it exact for two

known refractions at standard temperature and pressure, if for

example we take

z = 50°, p = 69"-36 and ^ = 75°, p = 214"-10

(see Greenwich Tables), we get the final form

p=58"-361tan(^-4-09p).

By this formula all refractions up to the zenith distance of 80° can

be determined approximately.

Bradley's formulae is suited for observations near the horizon,

because tan (^ — 4-09/3) does not become indefinitely large as z

approaches 90°.

Ex. 1. Show that the formula for refraction given by Bradley and

Cassini, viz.

p= 58"-361 tan {z - 4-09p)

and p = 58"-294 tan z - 0"-06682 tan^ z,

are practically equivalent until the zenith distance becomes very large.

Ex. 2. On the supposition that the (m + l)th power of the index of

refraction of the atmosphere varies inversely as the distance from the

centre of the earth, prove Bradley's approximate formula for astronomical

refraction p=ata.n{z — ^np). Oxford Senior Scholarship, 1903.

Ex. 3. If in the atmosphere the index of refraction vary inversely as the

square of the distance from the earth's centre, being p^ at the earth's surface

and unity at the limit of the atmosphere, show that the corresponding

correction for refraction is given by

sin(2+^p)= Vfosin2. Mathematical Tripos, 1906.

45. Effect of atmospheric pressure and temperature on
refraction.

In the formula (ii) for the refraction already obtained (§43) we

assumed that the barometer stood at 30 inches and the external

air at the temperature 50° F. We have now to find the formula

to be used when pressure and temperature have any other known
values.
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We assume that the refraction is proportioual to the density of

the air at the earth's surface, so that if p be the refraction for

pressure p and temperature t and p^ the refraction at the

standard pressure 30 inches and temperature 50°, we obtain from

the properties of gases

p _ jj 460 + 50 _ 17p
/j„~30 4Q0 + t ~4>G0 + t'

Introducing the value of p,, already found (§ 42) we obtain

the approximate formula for atmospheric refraction at pressure p
and temperature t for the apparent zenith distance z.

P = .1..^ .
(58"-294 tan z - 0"-06682 tan'

4

'^ 460 + ^
^ '

In the appendix to the Greenwich, Observations for 1898, Mr
P. H. Cowell has arranged tables of refraction which are used in

Greenwich observatory. These tables contain the mean refractions

for the pressure 30 inches and temperature 50° F. for every minute

of zenith distance from 0° to 88° 40'. The corrections which

must be applied for changes in temperature and pressure are given

in additional tables.

46. On the determination of atmospheric refraction from

observation.

We describe three of the methods by which the coefficients

A aud B in the expression for the refraction, A tan z + B tan' z

can be determined by observation of meridian zenith distances.

The first and second methods can be carried out at a single

observatory provided its latitude is neither very great nor very

small. The third method requires the cooperation of two obser-

vatories, one in the northern and one in the southern hemispheref.

First Method. A star is selected such that it will be above

the horizon both at upper and at lower culmination. If z, z' be

the apparent zenith distances at lower and upper culmination

respectively and positive to the north of the zenith, then

the true zenith distances will be z + A tau z + B tan' z and

^' + A tan z -i- B tan' /. The mean of these two zenith distances

t Of the remaining methods of observing refractions we may mention that

of Loewy described by Sir David Gill in the Monthly Notices of the Royal Astro-

nomical Society, Vol. xlvi. p. 325.

9- -2
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is, of course, the distance from the zenith to the north pole,

i.e. the colatitude. Hence we obtain the equation

^{z + z' + A (tan z + tan z') + B (tan" z + tan" z')] = 90° - ^.

Substituting the observed values of z and z' we obtain a linear

equation between the three quantities A, B and ^.

Other stars are also observed in the same way and each star

gives an equation in the same three unknowns. Three of such

equations will suffice to determine A, B, (j). The result will, how-

ever, be much more accurate if we observe many stars and then

treat the resulting equations by the method of least squares to

be subsequently described.

As a simple illustration we shall take a case in which the

latitude is known and in which, as neither of the zenith distances

is excessive, we may assume that the refraction is expressed by

the single term k tan z.

At Dunsink in N. latitude 53° 23' 13" the star a Cephei is ob-

served to have the apparent zenith distance 8° 48' 37" at upper

culmination. At lower culmination 12 hours later its apparent

zenith distance is 64° 22' 47".

The true zenith distances will be

8° 48' 37" -h A; tan (
8° 48' 37"),

64° 22' 47"
-I- k tan (64° 22' 47").

The sum of these must be double the colatitude (36° 36' 47"),

whence
73° 11' 24" + k (0-155 -I- 2-085) = 73° 13' 34",

from which A;=58"-0.

Second Method. The constants of refraction can also be

determined by observation of the solstitial zenith distances of

the sun.

Let Zi, Z2 be the apparent meridional zenith distances of the

sun at the solstices. Let p^ and p^ be the corresponding refractions.

Then the true zenith distances are Zi + p^ and z^ + p^. Assuming
that the sun's latitude may be neglected, or in other words, that

the sun's centre is actually in the ecliptic as is always very

nearly true, we obtain for the mean of these zenith distances the

arc from the zenith to the equator, i.e. the latitude. Hence
we have

2<j)=^Zi+Z2+ pi + pi.
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If the latitude be known and if we assume

Pi=k tan z, and p^ = h tan z^,

we obtain an equation for k.

Third Method. In this we require observations of the zenith
distances SZ^ and SZ^ of the same star S, both from a northern
observatory at N. latitude (^„ and a southern observatory at
S. latitude <p^ (Fig. 45).

If P and P' be the north and south celestial poles we have

SZ, = SP-Z,P =<^,-S,
SZ, = SP'-Z,P' =4,^ + 8.

If Zi and z^ be the observed zenith distances, and if we assume
the refractions to be k tan z^ and

k tan «2 respectively, then

SZi = Zj + k tan Zi,

8Z2 = Z2+ k tan Z2,

whence

Zi + k tan Zi+z^ + k tan 22

from which k can be found.

We shall take as an example

^ Andromedse, which was ob-

served to culminate at Green-

wich at an apparent south

zenith distance 16° 20' 3", the latitude of Greenwich being
51" 28' 38" N. The culmination of the star was also observed

at the Cape of Good Hope Observatory in 33° 56' 4" south lati-

tude, and the apparent north zenith distance was 69° 1' 50''.

We thus have the equation

16° 20' 3"+k tan (16° 20') + 69° 1' 50" + k tan (69° 2')

= 85° 24' 42",

whence k = 58"'3.

47. EflFect of refraction on hour angle and declination.

We may make use of the differential formulae of § 35 to

determine the effect of refraction on the hour angle and declina-

tion of a star. The effect of refraction is to throw the star upwards

towards the zenith. If the observed zenith distance be z the true

Fig. 45.
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zenith distance is z + Ae where Az=ktanz. We assume that

the latitude is known so that A(f> = 0, and as the azimuth does not

alter by refraction Aft = 0.

To find the effect on declination we write the formula con-

necting Aa, Atf,, Lz, AS, § 35 (1),

AS + cos TjA^ — cos /iA(^ — sin h. cos ^Aa = 0,

which with the substitution Aa = 0, A^ =0, Az = k tan z gives

AS = — ktSkUZ COST], i.e. if S is the observed declination then

S — k tan z cos tj is the true declination.

To find the effect on hour angle we have (§ 35 (2))

Az + cos aA^ + cos 77AS + cos <^ sin aAh = 0,

from which by the same substitutions

Ah = k sin rj tan z sec S.

For the effect on parallactic angle we use (§ 35 (6))

At; — cos zAa + sin SAh — sin a sin zA(j) = 0,

and find At; = —k sin rj tan S tan z.

The results just obtained may be otherwise proved as follows.

In Fig, 46 N is the North Pole, Z the zenith, P the true place

of the star, and P' the apparent place of the star as raised

P

Fig. 46.

towards the zenith by refraction, and PP' = k tern ZP' = k tan z.

P'Q is perpendicular to PN and provided the Z PNP' is small, as

will be the case unless P is near the pole, the change in polar

distance is

PQ = PP' cos 1] = k tan z cos tj.

The observed declination is 90° - NQ, but the real declination is

90° — iVP. Hence the observed declination is too large, and



§§ 47-48] ATMOSPHERIC REFRACTION 135

consequently the correction AS to be applied to the observed

declination to obtain the true declination is given by

AS = — k tan z cos r).

We have also

AA = P'NQ = k tan z sin r; cosec P'N = k tan z sin 97 sec S.

As sin 7j cos S is unaltered by refraction we must have

cos 7; cos SA77 = sin r] sin SAS,

whence by substituting for AS we find

A77 = — k sin 7} tan S tan z.

48. Effect of refraction on the apparent distance between

two neighbouring celestial points.

We shall first show that if the refraction be taken as k tan z,

then the correction to be added to the apparent distance D in

seconds of arc between two neighbouring stars is in seconds of arc

kD{l + cos= 6 tan^ z) sin 1",

where z is the zenith distance of the principal star and is the

angle between the arc joining the two stars and the arc from the

principal star to the zenith.

Let Z be the zenith, ZA = x, ZB = y, AB = B, zAZB = a,

ZAB = 6. The effect of re-

fraction is to move the arc

AB up to A'E where

AA' = kta,noc

and BB' = k tan y.

Then

cos D = cos xcosy + sin x sin y cos a.

Differentiating with a as constant, and making

Aa; = — k tan x

we find ^.y = -k tan y,

- sin D . AD = A; sin a; cos yt&nx + k cos x sin y tan y

-kcosa cos X sin yt&nx-k cos a sin x cos y tan y

= k sin^ (« - 2/) sec a; sec y + 44 sin' ^a sin a; sin y.

As both these terms are small we may put x = y = z, the zenith

distance of either star, in the expressions sec a; secy and

sin X sin y. Also since a.D are small we may put

Sin D = D and siv? {x - y) = D'' (io&^
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also isin' ^a = a^ — D^ sin'' cosec^ z

and we thus obtain for the decrease in D due to refraction

kD (1 + cos^ tan'' z)

or if k, D, AZ) are expressed in seconds of arc

yi;i)(l + cos2^tan^^)siii 1"

gives the seconds by which D has been lessened by refraction ; this

is consequently the correction to the measured distance between

two neighbouring stars to clear from the effect of refraction.

We have next to show that 6, the angle which the line joining

the two stars makes with the vertical, is increased by refraction

to the extent k sin 6 cos 6 tan^ z.

Taking the logarithmic differential of the equation

Dsin 6 = %ma sin y

we have AD/D + cot 6M = cot yAt/,

which becomes by substitution

- A (1 + cos^ 6 tan^ z) + cot OM = -k,

whence AO =k sin cos 6 tan^ z,

and this is the quantity which must be subtracted from the

apparent angle B'A'Z to get the true angle BAZ.
The deformation of the circular disc of the sun or moon

by refraction is obtained as follows

:

Let S (Fig. 48) be the sun's centre, a its radius, P a point ou

its limb, and Z the zenith, and let ZS = z.

Let k be the coefficient of refraction which

displaces P to F , and let PQ and P'Q' be

perpendiculars on ZS. From what we have
just seen PQ is displaced by refraction to P'Q'.

If we take S as origin, 8Z as axis of x, and
X and y the coordinates of P', then

y = P'Q' = (l-k)PQ = ail-k)sm0.
Also X = SQ' = acos0+ QQ'

= a cos 0+ k tan (z— a cos 0)

= acos0 + k (tan ^ — a cos ^ sec^^),

and by eliminating we have for the equation

of the refracted figure of the sun

(x — k tan zY
+ r

{a - ak sec^ zf a' {I- kf
= 1.

Fig. 48.
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The major axis is a(l—k) and the minor a (1 - A; sec^ ^), and
their ratio is 1 — k tan'' z. Of course k is here in radians.

We reiay note that any short horizontal arc is diminished by
refraction in the ratio 1 — k: I, and any small vertical arc at a

considerable zenith distance is diminished in the ratio

1 — A;sec^^ : 1.

Ex. 1. If i) be the difference of declination between two adjacent stars,

and if z be the zenith distance and rj the parallactic angle of one of these stars,

then the effect of refraction is to diminish the difference of declination by

^Z)(l+tan2 2cos2j;)sin 1",

it being assumed that the refraction is proportional to the tangent of the

zenith distance and that k is its coefficient.

I) is then the projection of the arc joining the two stars on the hour circle

through one of them, and the hour circle makes the angle r] with the zenith

distance.

Ex. 2. A telescope at an observatory in N. lat. 53° 23' 13" is directed to

a point on the parallel of 38° 9' N. decl, and is fixed at an hour angle of 7''".

Two stars trail successively through the field, and their apparent difference

of declination is 68"-02 ; show that to correct for the effect of refraction this

difference .should be increased by 0"-09.

(One of the stars is 61 Cygni and the other is one of the comparison stars

used at Dunsink in determining the parallax of 61 Cygni by the method of

differences of declination.)

Ex. 3. In their unrefracted positions a number of stars lie on a small curve

of which the polar equation is p=f(d), where p is the great circle distance

from a point taken as origin to a point P on the curve, and where 6 is the

angle between OP and OZ where Z is the observer's zenith. Show that on

taking account of refraction the polar equation of the curve will be found

by the elimination of p and 6 from the equations

P =fW,
p' =p-kp (l+tan^zcos^^),

^'= ^-f ^sin 5 cos dta,n^2,

in which p' is the radius vector joining the points 0' and P, which are the

refracted positions of and /' respectively, and 6' is the angle which O'P

makes with O'Z.

Ex. 4. It is proposed to determine the angular diameter of the sun. The

arithmetic mean of two measured diameters at right angles to one another

is D ; the coefficient of refraction is k, here expressed in radians ;
the zenith

distance of the sun's centre is z. Show that the true diameter is

J)(l+i:+^kta,n^z), whatever may have been the position angles in which

the two diameters at right angles to one another were measured. (Based on

a result in the introduction to the Greenwich Observations.)

The distance from the centre of the ellipse to the point 6 is
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a(l — ^ — ^ cos''^ tftan^^). Hence the arithmetic mean of the radii measured

at right angles, i.e. at 6 and 6 + 90°, is a{l-k-^i:ta,n^z)= ^D, whence

*49. Effect of refraction on the measurement of the

position angle of a double star.

Let A, B be respectively the principal star and the secondary star

of the pair which form the double star and let P be the north pole.

Imagine a circle with centre A on the celestial sphere and

graduated so that the observer is the nole and that J.P(<180°)

cuts the circle at 0°. The point in which AB meets the graduated

circle is said to be the position angle of the star B with respect to A.

The mode in which the position angle is measured may be further

illustrated as follows. Suppose the double star is on or near the

meridian and at its upper culmination, and the secondary star is

due east of the principal star. Then the position angle is about 90°.

If, however, the secondary star had been due west when the

principal star was on the meridian, its position angle would be

about 270°, for in each case the direction of measurement from

the arc drawn to the pole is the same. Astronomers generally

know this as the N.F.S.P. direction, for the measurement proceeds

from the north point towards the part of the sky which is following

from the diurnal movement round by the south and then back to

the north by the preceding part of the sky.

If P be the pole, Z the zenith, and A the principal star of

the double AB (Fig. 49), then the position

angle as we have just defined it is Z PAB.
The refraction changes the position angle

into PA'B'. Thus the refraction changes

the position angle in two ways, first by

altering the parallactic angle PAZ =^7]

and secondly by altering BAZ. Both
these angles are altered by refraction, and

the correction to apply to an observed

position angle in the case represented in

the figure must be negative. We denote

the true position angle by p.

We have ZBAZ=p- 1}, and hence

(§48)
Z B'A 'Z =p - Tj + k sin {p - r)) cos {p — r}) tatf z,

/. PA'Z = 7j + k tan z tan 8 sin rj.

Fig. 49.
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If therefore p^ be the position angle as affected by refraction,

Pr=p + k tan z tan S sin j; + ^ sin {p — t)) cos (p — 77) tan^ z.

If pr and p' be the corresponding quantities with respect to

another star with reference to the same primary,

Pr =p' + k tan z tan 8 sin 77 + A; sin (p' — 17) cos (p' — r)) tau^ z.

Subtracting we easily find

p' — p = Pr' — pr — k tan^ z sin {p' — p) cos (2ri—p —p').

The true position angle p of the direction in which A moves by

the diurnal motion is 270°. If therefore pr be the observed

position angle for the movement of A when carried by the diurnal

motion,

^=^^ + 270° —pr'+ fc tan^^rcos^sin (27;— p).

Summari/. From the last article and the present we obtain

the following result for the correction of the observed distance and

position angle of a double star for refraction f

.

Let I) be the distance of the two stars expressed in seconds of

arc, z the zenith distance, p the position angle, t) the parallactic

angle, and k the coefficient of refraction in seconds of arc, then the

correction to be added to the apparent distance to obtain the

true distance is

kB {1 + tan^ 2 cos= (p - n)} sin 1",

and the correction to be added to the measured position angle

to obtain the true position angle is

k tan^ z cosp sin (2?; — p).

Ex. If the declination of a Lyrse is 38° 40' and the position angle of

an adjacent star is 150° 58'
-0, find the correction for refraction to be applied

to the position angle when the hour angle is 7 hours west, the latitude

is 53° 23' 13", and the coefficient of refraction is 58"-2.

It is first necessary to compute the zenith distance 67° 36' and the

parallactic angle 38° 32', whence the formula gives 4'-6 as the correction

to be added to the observed position angle to clear it from the effect of

refraction.

t For tables to facilitate the application of these corrections see Monthly

Notices of the Royal Astronomical Society, Vol. xli. p. 445.
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MISCELLANEOUS QUESTIONS ON BEFRACTION.

Ex. 1. Show that refraction reduces the sine of the zenith distance of an

object in the ratio of (1 - ^) : 1 where h is the coefficient of refraction.

Ex. 2. The north declination of a Aquilse is 8° 37' 39". Show that its

apparent zenith distance at culmination at Greenwich (lat. 51° 28' 38" N.) is

42° 50' 5" and at Cape of Good Hope (lat. 33° 56' 4" S.) is 42° 32' 50".

Ex. 3. If the horizontal refraction be 35', show that the formula for the

hour angle h of the sun's centre at rising or setting when its declination is 8 is

cos^p =sec0 sec 8cos(45°+ 17'-5-^<^-^8) sin (45° - lT-h~\<f>-\b).

Ex. 4. Assuming that the moon is depressed at rising by parallax

through 59' and elevated by refraction through 35', show that if A be the hour

angle and 8 the declination we have at Greenwich

C082 i/j=[-2056] sec 8 cos (19° 3'-7 -\b) sin (19° 27' -7 - P).

Ex. 5. At sunrise at Greenwich (lat. 51° 28' 38"-l) on Feb. 8th, 1894, the

sun's declination is 14° 39' S. Find its apparent hour angle assuming that

the horizontal refraction is 35'.

Ex. 6. The apparent path of a star not far from the pole, projected on

the plane of the horizon, is an ellipse of excentricity cos
<f),

where ^ is the

latitude. Show that if the zenith distance of the star is not very great, the

same will be the case for the apparent path as altered by refraction.

[Coll. Exam.]

Ex. 7. The north declination of a Oygni being 44° 57' 17" (1909), show

that its apparent zenith distances at upper and lower culmination at the

latitude 53° 23' 13" are respectively 8° 25' 49" and 81° 33' 18", assuming

that the refraction may be taken as

58"-294 tan z - 0"'06682 tan^ z,

where 2=tbe apparent zenith distance.

Ex. 8. Prove that if at a certain instant the declination of a star is

unaffected by refraction the star culminates between the pole and the zenith

and the azimuth of the star is a maximum at the instant considered.

[Math. Trip. I.]

A great circle drawn from the zenith to touch the small circle described

by the star round the pole will give the point in which the zenith distance of

the star is at right angles to its polar distance. It is obvious that the star

can never have an azimuth greater than when situated at the point of

contact.
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Ex. 9. Prove that, within the limits of zenith distance in which the

refraction may be taken as k tan (zen. dist.) the apparent place of a star

describes each sidereal day, a conic section, which is an ellipse or hyperbola

according as sin^ ^ J cos^ 8, where 8 is the declination of the star and ^ the

latitude of the place.

The great circle from the star's true place to the pole being the axis of x,

we have as the plane coordinates of the refracted place

a;=A tan 2 cos j;, y= kta,ms,mri,

where z and r) are respectively the zenith distance and the parallactic angle.

From the spherical triangle

sin sin i;= cos <^ sin t, sin z cos t;= cos 8 sin <^ — sin 8 cos cos t,

cos z= sin 8 sin </>+ cos 8 cos ^ cos t,

k cos 6 sin (^ — i sin 8 cos (/> cos t k cos sin t

' " sin 8 sin <^ + cos 8 cos <^ cos « ' '' sin 8 sin + cos 8 cos (^ cos J

'

from which we have

sin«= tand) .
,

, .—r,^ .j;cos8+«sm8

, h cos h — x sin 8
cos«= tand)

., ,
, .—;,^ ^cos8 + A;sm8

whence eliminating t

y2+ (;i;cos6-a'sin8)^= cot^ ^ (^ cos 8+A sin 8)''

,

which may be written

:c2(8in2 0-cos2 h)^-y'^ wa^^-xk sin 28 + ^^ (sin^ ^- sin^ 8)=0,

and this is an ellipse or a hyperbola according as sin2(^-cos^8 is positive

or negative.

Ex. 10. Assuming that refraction is small and proportional to the

tangent of the zenith distance, show that if the same star is observed simul-

taneously from different stations on the same meridian its apparent places lie

on an arc of a great circle.^
[Coll. Exam.]

This follows at once from the following geometrical theorem which is

easily proved from the rules for quadrantal triangles, p. 5. If J. be a

quadrant and a variable great circle through cut two fixed great circles

through 4 in P, § respectively, then tan OPIta.n OQ is constant.

Ex. 11. If 8 be the declination of a star, show that, if the horizontal

refraction be r", the time of a star's rising at a place in latitude ^ is changed

approximately by a number of seconds equal to

15\^cos''8-sin2<|)

With the usual notation

cos2=sin(|)sin8-|- cos <|) cos 8 cos <.
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Differentiating Az= cos </) cos 8 sin < At,

but as the star is on the horizon sin 2=1 and

= cos 2= sin 0sin S + cos<^cos8oos<,

cos (j) cos 8 sin <= (cos^ (f '^oa^ ^ ~ ^'^^ ^°^ ^ <^os^ t) 2

= (cos''' (^ cos^ 8 — sin^ (^ sin^ 8) 2

= (cos2 8-sin2^)^;

whence A2=(cos^8-sin20) aAi.

If A2 = be expressed in seconds of arc and At be n seconds of time we put

Az = r'\ A<= ]5n", whence we find for n the required result.

Ex. 12. Assuming that the alteration in the zenith distance of a star

owing to refraction is h tan z, where h is small, show that in latitude <^ the

change produced in the hour angle of a circumpolar star is greatest when the

angle PSN is a right angle, where P is the pole, S the star, and N the north

point of the horizon ; and that its maximum value is

h cos (^ sec 8 v'sec z-^ sec z^

,

where zj and z^ are the greatest and least zenith distances of the star.

[Coll. Exam.]

The change in the hour angle h by refraction is ^ sec S cos sin A sec s,

and if sin h sec 2 is a maximum the point S' found by producing SP through

P till SS' = 90° is 90° from N.

Ex. 13. Assuming that the refraction of any object S is equal to

^ tan ZS, prove that the resolved parts of the refraction in r.a. and n.p.d.

expressed respectively in seconds of time and seconds of arc are very nearly

k ta,n ZL , , , , „-.,
and K tan (A - PL),

15 sin A cos (A — PL)

where A is the north polar distance of the object, P the pole, and ZL an arc

of a great circle drawn from Z perpendicular to PS.

[Math. Trip. II.]

*Ex. 14. Let (j> be the latitude of the observer, 8 the declination of a star

and h its west hour angle, and let the coefficient of refraction be 58"-4 (its

value for the photographic rays). Show that refraction diminishes the

apparent rate of change of hour angle by

24» -5 sin m cosm (tan 8 + cot <^ sec h) cosec^ (8+ m) per day,

where tan m = cot (j) cos h.
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Show also that the rate of change of refraction in declination is

+ 15"'3 cot (ji sin h cosec^ (8+ m) cos^m per hour.

[Mr A. R. Hinks, Monthly Notices R.A.S., vol. lx. p. 544.]

Refraction raises the star towards the zenith Z from its true place S
to an apparent place S'. Let the true hour angle be h and the apparent

hour angle h'. Draw the arc ZL—9Q°-n perpendicular to PS (Fig. 50)

{h - h') cos S = ^ tan z sin ZSL

= k cos n sec 2

_ k cos
(f)

sin h

sin ^ sin S + cos <j) cos S cos A

'

Differentiating with respect to t

\dt dt

)

cos 8

= ^cos

= ^cos (^

cos h (sin <^ sin 6+ cos <^ cos 8 cos h) + cos cos 8 sin^ h dh

(sin (^ sin 8 + cos ^ cos 8 cos A)^ c?<

cos
<f>

cos 8+ sin <^ sin 8 cos h dh

cos^ 2 rf<

sin cos 8 cos h (tan 8 + cot (^ sec A) rfA

sin^ (8+m) sin^ % rf<

sin0 cos<^ cos8cos Acos^TO (tan 8 + cot0 sec A) dh

8in2(8+ m)sin2 dt

tan 8+ cot sec A dh

sin2(8 + iM) di'

= kcoB(f>

=k

=k cos 8 sin »i cosm

Fio. 50.
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The number of seconds in a sidereal day is 86400. Let 86400+ ?• be the

number of seconds which would be required for a complete revolution if

the apparent hour angle of the star continued to increase for the whole

day at the same rate as at the moment under consideration. Hence we
have

dh _ 27r cW _ 2ir

rf< ""86400' 'dt ~86400+ r'

and thus

/ 27r 27r \ , . tan S+ cot d) sec A 27r
'

' — '^ sin m cos m ~ll7 \

V86400 86400 + ?-;
""""""'""'""

sin2(8+ »i) 86400'

As r is very small we have by making i= 58'4/206265,

r= 24» '6 sin m cosm (tan S + cot <^ sec A) cosec^ (5+ m),

in which tan to= cot cos h.

The case of an equatorial star is instructive,

S = and »=24' -5 cot moot sec A

= 24»-5sec2A.

Thus even in the neighbourhood of the meridian on either side an equa-
torial star is so affected by refraction that it will only keep time with a
sidereal clock when that clock is losing at the rate of 24»-5 sees, daily.

If X be the refraction in declination expressed in seconds then

x= h tan z cos Z8L

=*tan(90°-8-m) = /;cot(8+ TO).

Hence differentiating and regarding Aic, Am and AA as all expressed in

seconds of arc

A^= - ^cosec^(8 + TO) ATOsin 1",

but tan TO= cot (^ cos A,

sec^ m Am= - cot (ft sin h Ah,

whence sec^ to A-c=^ cosec^ (8+ to) cot <^ sin A AA sin 1 ".

If iV is the hourly rate expressed in seconds of arc at which the declina-

tion is changing then A^/AA = iV7l5 x 60 x 60. With these substitutions we
find on introducing the values of k and sin 1" the desired result namely

iV= 15"-3 cot
<f>

sin h cosec^ (8 -I- to) cos^ to.

These results are of practical importance in the art of celestial photo-
graphy.
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50. The laws of Kepler and Newton.

The laws according to which the planets move round the

sun and which always bear the name of their discoverer Kepler,

are as follows.

(1) The orbit of a planet round the sun is an ellipse; in

one focus of which the centre of the sun is situated.

Let S in Fig. 51 be the

centre of the sun. Then the

orbit ABPQ of any planet

is an ellipse of which S is

a focus. The velocity of the

planet is not constant and

the law according to which

the speed varies is given by

Kepler's second law.

(2) The radius vector,

drawn from the centre of the

sun to the planet, sweeps over equal areas in equal times.

For example take any two points AB on the ellipse and also

two other points PQ, then if the area ASB = area PSQ the

time taken in describing AB will equal the time taken in

describing PQ. From this it follows that, with the points as

represented in the figure, the velocity of the planet is greater while

describing PQ than while describing AB.

B. A. 10

Fig. 51.
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In the first two laws of Kepler we are concerned with the

motion of a single planet only. In Kepler's third law we obtain

a remarkable relation between the movements of two different

planets. We define the mean distance of a planet to be the

semi-axis major of its orbit, and the periodic time to be the period

in which a planet completes an entire circuit of its orbit. Kepler's

third law is then stated as follows.

(3) The squares of the periodic times of two planets have the

same ratio as the cubes of their mean distances from the sun.

Example:—The periodic times of the earth and Venus are

365'3 and 224'7 days respectively, and the ratio of the squares

of these periodic times is (36.5-3)V(224-7)2 = 2-643. The corre-

sponding mean distances are 1 and '7233 and as l/(7233y= 2 643

we have a verification of Kepler's third law for these two planets.

The three laws of Kepler given above were deduced by him

entirely from observations of the movements of the planets and

without any reference to the nature of the forces which control

these movements. For more than three quarters of a century

they remained isolated facts without explanation until Newton

showed them to be consequences of the law of universal gravitation

which appears to govern the movement of every particle of

matter in the universe.

The three aocioms or laws of motion, on which the science

of dynamics is built, and which are generally known as Newton's

Laws-f-, may be stated as follows :

Law I. Every body continues in its state of rest, or of uniform

motion in a straight line, except in so far as it may be compelled to

change that state by impressed forces.

Law II. Change of motion is proportional to the impressed

force and takes place in the direction of the straight line in

which the force acts.

Law III. To every action there is always an equal and

contrary reaction; or the Tnutual actions of any two bodies are

always equal and oppositely directed.

By change of motion Newton denoted what is often called the

rate of change of momentum, or the product of the mass of the

t The reader who desires a fuller development of Newton's Laws and their

applications may refer to Routh's Dynamics of a particle, 1898, where the laws as

here expressed are given on p. 18.
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moving body by the rate of change of its velocity, which may be

otherwise expressed as the product of the mass by the acceleration.

Law II enables us to say that, in the case of a planet for example,

the change of motion is proportional to the impressed force and

takes place in the direction of the straight line in which the force

acts.

Kepler's first and second laws enabled Newton to prove that

each planet moves under the control of a force always directed

towards the sun and varying inversely as the square of the

distance from the sun. Kepler's third law enabled Newton to

compare the acceleration of one planet with that of another, and

from this he was led to the doctrine of universal gravitation with

which his name is identified and which states that every 'particle

of matter attracts every other particle with a force varying as the

product of their masses and inversely as the square of the distance

between them.

We shall first prove that if the radius vector drawn to a

moving particle from a fixed point sweeps over equal areas in

equal times then the force on the particle must always be directed

towards the fixed point.

If r is the radius vector, SP, (Fig. 52) and 6 the angle it

Fig. 52.

makes with any fixed direction, SO, then the velocities along and

at right angles to SP are respectively,

dr , rdd

di ^""^ -dt-

After the short time A< the velocity along and at right angles

to the consecutive radius vector will be

dr ^d'r rde
,

.,d / dd\

dt+^*if'' -dt+^'dtV-dt)'
10—2
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resolving these velocities along the original radius vector with

which the consecutive radius vector makes the angle A^ . dd/dt,

we obtain

dr .d^r rdO dd

dt^^^ dt^~^*~df di'

whence if — ^ be the acceleration towards S we have

d'r fde\

dt' \dt)

In like manner resolving these velocities perpendicular to the

original radius vector we find for the resolved part in this

direction

de
^
.d( de\ .drdO

'Tt^^'dtVdtj'-^'dtdt'

whence for the acceleration perpendicular to the original radius

vector we have the expression

rdt\ dtJ

'

Twice the area swept over by the radius vector in the time

dt is r^d6, and if these two quantities are in a constant ratio, as

Kepler's second law informs us is the case in the motion of a

planet, we have

"^ dt~^
a constant, and therefore

1 d I dQ
(4:)='rit^-
-'-"

Hence there is no acceleration, no change of motion, and there-

fore, by Newton's 2nd law, no force at right angles to the radius

vector. The whole force is, therefore, directed towards S. Thus
Kepler's second law proves that the planets move under the

action of a force directed continually towards the centre of the

sun.

The next step is to show that if a body moves in a conic section

under a force directed to one of the foci and if the body moves in

such a way that the radius vector drawn to it from that focus

describes areas proportional to the time, then the force must vary

inversely as the square of the focal radius vector.

The equation of a conic referred to the focus is

»'=jp/(l-|-ecos0).
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where p is the semi-latus rectum, e the eccentricity, and 6 the

angle which the radius vector (r) makes with the line joining the

focus to the nearer apse (§ 52).

We have tlius the following three equations

r=pl{\ + e cos 6) (i),

r'[dt)=-^ (")

dd
a°d

''d^='*
(iii)'

from which to determine F, i.e. the acceleration towards the snn.

Differentiating (i) we find

dr _ pe sin 6 d0_esm0 ^dO _he .

dt ~ {I + e cos Of di jT^^ di~'p^^^

J d^r he ^dd h^ecosO
and jiT = — cos -=- = —

.

dt" p dt pr"

AT (ddy h?
Also r -T- = -

:

and therefore

dV_ fdev _ h? (e cos 11

dt'
''

[dt) ~
r' [^ r]

_ h^ fe cos e _ 1 + e cos g
] _ _^ ^

r' \ -p P ) W^

'

Thus we see that the acceleration, and therefore the force, at

every point of the orbit varies inversely as the square of the

distance from the focus. This is of course true whatever be the

value of e and consequently we see that this result holds whether

the orbit be an ellipse, an hyperbola or a parabola.

If we denote the acceleration by fijr', where fi is the accelera-

tion at unit distance due to the sun's attraction, we have from

the formulae just given

h' = /j,p (iv).

We are now in a position to prove from Kepler's third law

that the constant, /j,, is the same for all the planets. For h is

twice the area described in the unit of time, and therefore by

Kepler's second law if the periodic time be P we must have

h = 2Trab/P.

But p = b'/a. Hence by means of (iv) we find

47rW/P'' = fi.
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But according to Kepler's third law a^jF^ is the same for all the

planets and hence we find that /t is a constant throughout the

solar system.

If a perpendicular be drawn from the centre of a planet to the

ecliptic, then the angle through which a line from the sun's

centre through T would have to be turned in the positive direction

in the plane of the ecliptic to meet this perpendicular is termed the

heliocentric longitude of the planet. The geocentric longitude of the

sun increased by 180° is the heliocentric longitude of the earth.

By the synodic period of two planets is meant the average

interval between two successive occasions on which the planets

are in conjunction, i.e. have the same heliocentric longitude. If

they move uniformly in circular orbits in the same plane and in

periods P, p respectively, and if L, I be the heliocentric longi-

tudes of the planets at the time t, then

L = 27rt/P+L'

I = 2Trt/p + I',

where L', I' are the longitudes at the time ^ = 0.

Let X be the synodic period and to the time when L — l = 0, then

to + X is the time when the planets have next the same longitude,

and {Up>P) L — I is then 27r. We thus have the equations

= 27rto/P - 27rto/p + L'- r

2ir = 2iT {to + x)IP - 2tt {to + x)lp + L'- V,

whence by subtracting

x = Ppl{p-P).

If one of the planets is the earth, the year the unit of time,

the earth's mean distance the unit of length, and a the mean dis-

tance of the other planet from the sun, then from Kepler's third

law, we have for an outer planet

a; = a^/(a2-l),

and for an inner planet

x=a^j{\-a^.

Ex. 1. Assuming the meau distance of the earth from the sun to be

92'9 (the unit being 1,000,000 miles) and the eccentricity of the earth's orbit

to be -OieS, find the side of a square equal to the area swept over daily by the

radius vector.

N.B. The year may always be taken to be 365-25 mean solar days unless

otherwise stated.
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Ex. 2. If vi, v^ be the velocities of a planet at perihelion and aphelion
respectively and if e be the eccentricity of its orbit, show that

Ex. 3. Show that the velocity of a planet at any moment may be resolved

into a component h/p perpendicular to the radius vector and a component
eh/p perpendicular to the major axis of the orbit.

Ex. 4. Show from Kepler's 2nd and 3rd laws that two planets in the
system describe areas in a given time which are in the ratio of the square
roots of their latera recta.

Ex. 5. The mean distance of Jupiter from the sun is 5-203 when the
unit of length is the mean distance of the earth from the sun. The periodic

time of Jupiter is 11-862 years and of Mercury 0-2408 years : show that the
mean distance of Mercury from the sun is 0-387.

Ex. 6. The eccentricity of the orbit of Mars is 0-0933 and its mean
distance from the sun is 1-5237 times that of the earth from the sun.

Assuming that the earth's distance from the sun is 92,900,000 miles and
that the eccentricity of its orbit may bo neglected, determine the greatest

and least possible distances of Mars from the earth.

Ex. 7. If the periodic time of a planet be P and the length of its

semi-axis major be a, show that a small change Aa in the semi-axis major

will produce a change 3PAaj2a in the periodic time.

Ex. 8. Show that in the motion of a planet in an elliptical orbit about

the sun according to the law of nature the angular velocity round the

unoccupied focus varies as the square of the sine of the angle between

the radius vector and the tangent.

Let ds be an elementary arc of the ellipse at a distance r from the sun

and Z from the unoccupied focus. Let p, p' be the perpendiculars from the

foci on the tangent at ds. Let 6 be the angle which either focal radius makes

with the tangent.

From Kepler's second law it follows immediately that p is inversely

proportional to the linear velocity of the planet, and hence the time of

describing ds oc pds. The angle described about the unoccupied focus is

ds sin dy and hence the angular velocity round the unoccupied focus

oc ds sin dypds= sin B/r^p

=

sin^ 6/p'p.

But from the property of the ellipse p'p is const, and thus the theorem

is proved.

Ex. 9. If in an elliptical orbit of a planet about the sun in one focus the

square of the eccentricity may be neglected, show that the angular velocity

of the planet is uniform about the other focus.

*Ex. 10. Prove by means of the annexed table, extracted from the
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Nautical Almanac for 1890, that the eccentricity of the Earth's orbit is -0168

approximately.
Sun's longitude

Jan. 1 281° 5' 30"-6

„ 2 282 6 39 "7

July 1 99 32 19 -1

„ 2 100 29 29 -6

[Coll. Exam.]

*Ex. 11. If the orbit of a minor planet be assumed to be a circle in the

ecliptic, prove that two observations of the difference of longitude of the planet

and the sun, with a knowledge of the elapsed time are sufficient to determine

the radius. Show also that three such observations will determine the orbit

if it be assumed to be parabolic. [Math. Trip. I.]

A single observation of the difference of longitude shows that the planet

must lie on a known straight line, i.e. the line through the earth's centre to

the point of the ecliptic at the observed distance from the sun. When two

such lines are known a circle with centre at the sun will cut each of these

lines in two points. If a point of intersection on one line and a point of

intersection on the other subtend the angle at the sun's centre which for

that radius gives the observed time interval the problem is solved. Trial

will thus determine the radius. An equation could also be found for the

radius but this again could only be solved by trial.

*Ex. 12. Prove that in a synodic period an inferior planet crosses the

meridian the same number of times as the sun, but that a superior planet

crosses it once oftener. [Math. Trip. I. 1902.]

*Ex. 13. The fourth satellite of Jupiter has an orbital period of

\Qi 18k 5m 6"-9= 16*-753552,

while the fifth satellite has a period of Qd ll^ 57" 27»-6=0'J-498236. Find

from Kepler's third law the ratio of the mean distances of these two satellites

from the primaiy.

*Ex. 14. Assuming that Deimos and Phobos, the satellites of Mars, revolve

in circular orbits and that at the opposition of Sept. 23'''^, 1909, the observed

greatest distance of Deimos from the centre of Mars is 1' 23"'l, show from

Kepler's third law that the greatest apparent distance of Phobos is 33"'2,

it being given that the periodic time of Phobos is 7'' 39™ 13'-85 and of

Deimos 30'^ 17"" 54''-86.

51. Apparent motion of the Sun.

The revolution of the earth about the sun causes changes both

in the apparent place and the apparent size of the sun as seen

from the earth. We have now to show that the phenomena with

which we are concerned in- this chapter would be exactly re-
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Fig. 53.

produced if the earth were indeed at rest and if the sun revolved

round the the earth in an orbit governed by Kepler's laws,

and identical in shape and size with the earth's orbit round

the sun.

Let S, Fig. 53, be the sun, and E^ and E^ two positions of the

earth. From Ei the sun is seen

in the direction EiS and at the

distance £"1^.

Draw ^jSi from E in Fig. 54

parallel and equal to E^S. In

like manner let ES^ be equal

and parallel to E^S. If this

be repeated for other pairs of

points Es, Sg, &c., the ellipse

traced out by S^, S^, &c. will be

exactly the same shape and size

as that traced by E^, E^, &c.

The latter is the true path of

the earth round the sun, the

former is the path which the

sun appears to describe round

the earth. At every moment

the apparent direction of the sun and the distance of the sun

are the same, whether we regard the earth as going round the

fixed sun as in Fig. 53, or the sun going round the fixed earth as

in Fig. 54.

If a be the radius of the sun and r the distance of the sun's

centre from the earth, which we shall here regard as a point,

then the angular value of the apparent semi-diameter A of the

sun as seen from the earth is sin -'a/r. As this angle is small

we may with sufficient approximation take A = a/r sin 1" as its

value in seconds of arc. Thus we see that r varies inversely

as A, so that if A be determined by observation at two different

dates during the year, the relative distances of the sun at those

two dates are immediately obtained.

Ex. On Jan. 3'-'', 1909, the sun, being then at its least distance from the

earth, has the angular semidiameter 16' 17"-58. On July 4*, 1909, the sun,

being then at its greatest distance, has the angular semidiameter 15' 45" -37.

Show from these data that the eccentricity of the Earth's orbit is -0167.
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Fig. 55.

52. Calculation of elliptic motion.

Let F be tlie earth's centre and OPO' the ellipse, with

F as focus, in which the sun

appears to make its annual

revolution. 00' is the major

axis of the ellipse and G its

centre. The circle OQO' has

its centre at G and its radius

GO = \00' = a. The line

QPH is perpendicular to 00'

;

and FP = r. Let Z OFP = v,

and z OGQ = u. Thus v, r

are the polar coordinates of

P with respect to the origin

F and axis FO. The angles

V and M are called respectively

the true anomaly and the eccentric anomaly.

The points and 0' being the extremities of the major axis

of the ellipse are termed the apses of the orbit. That apse

which is nearest the earth is termed the perigee. The other

apse 0' is called the apogee. The time is to be measured from

that moment known as the epoch, at which the sun passes

through the perigee 0. If we had been considering the true

motion of the earth round the sun, then the points and 0'

would have been termed the perilwlion and the aphelion respec-

tively. We should also note that GF = eGO = ea.

We have now to show how the polar coordinates of the sun are

to be found when the time is given. It is not indeed possible

to obtain finite values for r and v in terms of t. We can, how-

ever, with the help of the eccentric anomaly u, obtain expressions

in series which enable the values of r and v to be calculated to any

desired approximation.

From Kepler's second law we see that if t be the time in which

the sun moves from to P, and if T be the periodic time of the

orbit,

t : T :: area OFP : area of ellipse.

Introducing n to signify the mean motion, i.e. the circular measure

of the average value of the angle swept over by the radius vector
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in the unit of time, we have n = 2Tr/T, and as the area of the

ellipse is irab we have

nt = 2 area OFFjab.

The angle nt is of much importance ; it is called the mean anomaly,

and is usually denoted by m.

From the properties of the ellipse PHjQH = b/a, whence

area OHP = b . OHQja = b (OCQ - HCQ)/a = ^ a6 (m - sin u cos u).

Also

area FHP = b . QH . FH/2a = ^ at (sin u cos m — e sin u),

whence OFF = OHF + FHF = ^ab(u-e sin u),

and finally m=u — esinu (i).

Thus m is expressed in terms of u, and we express v in

terms of u as follows:

From the ellipse we see at once

r cos v = a cos u — ae,

r sin v = b sin u,

whence, squaring and adding, we obtain

r = a(l — ecos u) (ii).

2r sin^ ^v = r (1 — cos v) = a {1 — e cos u — cos u + e)

= a (1 + e) (1 — cos u),

2r cos'' \v = r(\+ cos w) = a (1 - e cos w + cos m — e)

= a (1 — e) (1 + cos u),

and finally

tan J« = /y/j--^tan|M (iii).

*[Application of Lagrange's theorem. Ifwe could eliminate

u from (i) and (iii) we should have the relation between m and v,

but owing to the transcendental nature of the equations such

an elimination in finite terms is impossible. With the help of

Lagrange's theorem we may, however, express v in terms of m by

a series ascending in powers of e which for given values of m and e

will enable us to compute v with any degree of accuracyj-equired.

Lagrange's theorem may be thus stated :—If we are given

z = x+y<l){z) («).
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in which x and y are independent variables, and if F {z) be any

function of z, then

F{z) = F{x) + y<l>{co)F'{x) +^^ ^^[{<l> {x)Y F' (x)] + . .

.

+ \:f—n ^.[{</>(^)}"^'(-^)]+etc....(A),

in which F'{x) as usual denotes -j- {F{x)]

.

To apply this to the case before us we see that, if we write

u for z, ni for x, e for y, and if we make ^ («) = sin u, equation (a)

is identical with equation (1). If further we write (iii) in the

form v = F{u) then we have from equation (A)

v=F (m) = F (m) + e sin m F' (vi) + us ;j— {sin^^ mF(m)}

+ J j^ {sin''m F{m)} + etc (B).

But from equation (iii) we find by a well-known trigono-

metrical expansion which is proved on p. 160,

v = F{u) = u + 2 [c sin?i-|-^c^sin 2m + |c'sin 3m + etc....},

where c = (1 — Vl — e'^}/e. Hence

F(in) = m + 2 {csin m + |c^sin2m + ^c' sin 3m + etc....},

and therefore

F' (m) = 1 + 2 {c cosm + c'' cos 2m-(-c'cos3m + etc....}.

Hence all terms on the right-hand side of equation (B) may be

evaluated, and thus v may be obtained with any required degree

of accuracy. See formula (vii), p. 161.]

Kepler's Problem. To effect the solution of equation (i), i.e.

to determine u when m is known is often called Kepler's problem.

Suppose Mo is an approximate value of u, which has been

arrived at by estimation or otherwise, and let

Mo — e sin i/o = in„.

If the true value of u be Mo + Am„, then by substitution in (i)

we have 'approximately

Am„=- '— (iv).
1 — e cos Mo ^ '
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Cagnoli has shown that this method of approximation is

improved if instead of the formula (iv) we use

. m — Too

1 —ecos{u^+^(m—mf,)l

As pointed out by Adams f, both these methods are virtually

given by Newton.

Many processes have been employed for the solution of

Kepler's problem by the assistance of graphical methods. I

shall here give one of these graphical solutions, for which I am
indebted to Dr RambautJ.

Draw three concentric circles (Fig. 56) with radii respectively

Fig. 56.

GB = b, CF= ae and GM= a. These circles are referred to as the

minor circle, the focal circle, and the major circle respectively.

Draw the involute ATJ to the major circle starting from any

point A. Let CA be the direction from which the mean anomaly

m= ZACM is measured. The values of r, u, v corresponding

to m can now be found.

Let CM cut the focal circle in F. The normal to the involute

at y is a tangent to the major circle : let U be its point of

contact : then GU which crosses the minor circle at Q is parallel

t Collected Works, Vol. i. p. 291.

J Compare Monthly Notices B.A.S., Vol. lxvi. p. 619.



158 kepler's and Newton's laws [ch. vii

to FT. From the essential property of an involute it follows

that the arc AU is equal to UT, but

UT = OF sin FGU = ae sin FCU,

whence ae sin FGU= a ( Z FGU - / AGF)

which, if we make zFGU=u, becomes simply

m = M — esinw.

Drawing perpendiculars UR from U on GF and QV from Q
on Z7J? we have

i^Fcos Z MFV= GU cos w - (7i^= a cos w - ae,

FV sin /LMFV=GQs\nu =lsmu.

Thus when the three circles and the involute ATJ have been

drawn the solution of Kepler's problem may be summaiized as

follows

:

Take a point M on the major circle so that zAGM=m.
From F the intersection of GM with the focal circle, draw

the tangent FT to the involute, and through G draw GQU parallel

to FT, cutting the major and minor circles in U and Q
respectively.

Then zAGM=m; zMFV=v; zMGU=u; FV= r,

and the problem is solved.

*[Tables such as those of Bauschingerf greatly facilitate the

solution of the problem of finding u when m and e are given.

We illustrate their use in the following question.

Being given the following assumed elements for the orbit of

Halley's Comet,
Eccentricity, e = 0-961733,

Time of Perihelion Passage = 1910, May 24,

Period, P = 76-085 years,

find the eccentric, and true anomalies of the comet on 1900,

May 24.

We have the mean motion equal to 360°/P, and since the time

to perihelion is 10 years we have

m==
^^>-7^.;3^^»x^Q"

= 170335-8 = 47° 18- 55"-8.

t Astronomical Tables by Bausohinger, published by Engelmann, Leipzig.
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Entering Bauschinger's Tables of double entry with the

arguments m = 47°-3 and e = 0-96 we find the approximate value

of the eccentric anomaly
M„=101°-3.

Then from formula (iv) we calculate Am,, as follows

Log sin Mo =9-9914984 Log cos «„ = 9-29214 n
Log e = 9-9830547 Log e = 9-98305

logcosecl" = 5 3144251 Log e cos ?^o
= 927519 n

log e sin u^ = 52889782 .-. 1 - e cos m„= 1-1884

e sin M„ = 194526"-2

= 54° 2' 6"-2 log (m - m„) = 2-26007

Mo= 101 18 -0 log (1 -e cos Mo) = 0-07496

7K„ = 47 15 53 -8 log Am„= 2-18511

m= 47 18 55 -8 Am„= 153"-15

.-. m-mo= 182"-0 = 0° 2' 33 -15

u, = 101 18 -00

.-. Ml = 101 20 33 -15

This must be very nearly the true value of u. To verify it we
proceed to a second approximation :

Log sin Ml = 9-9914338

Log e = 9-9830547

logcosecl" = 53144251

log e sin Wj = 5-2889136

e sin Ml = 194497"-31

= 54° 1'37"-31

Ml = 101 20 33 -15

mi = 47 18 55 -84

w= 47 18 55 -80

m — OTi = — 04

This small difference is quite negligible, but if it were to be

attended to we remark that 1 — e cos lii will not differ sensibly from

1 — e cos Mo already calculated, and we have

m-mi_^ m-mi_^-0:^^_
1— ecosMi 1 — ecosMo 1-2

and thus finally u = 101° 20' 33"-12.

Having found the eccentric anomaly m = 101° 20'33"-12 we

substitute this in equation (iii) to find v. For this purpose it is

convenient to write equation (iii) in the form

tan ^v = tan (Jtt + i ^) tan ^u,

where sin
<f)
= e.
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Although Bauschinger's Tables are useful as enabling us at

once to obtain a good approximation to the required value they

are not indispensable. Any of the graphical methods would

readily determine u to within three or four degrees of the true

value. We may then obtain a value as accurate as that of the

tables by the help of four place logarithms. If, for example, we

have found u^ = 105° by a graphical process the next step may
be conducted as follows

:

Log sin Mo = 9'9849 Log cos «„ =9'4130n
logecosecl" = 5-2975 Loge = 9-9831

log e sin m, = 5-2824 Log e cos Mq = 9-3961 n
e sin ?((, = 191600" 1 — e cos Mq = 1-249

= 53° 13' -3

M„ = 105 0-0 log (m - ni„) = 0-6493 n

jHo = 51 46-7 log (1 - e cos «„) = 00966

m= 47 18-9 logAwo = 0-5527 n

m-m„=-4 27-8 Aw„ = -3°-6

= _ 4'=-46 Mo = 1050

Mj = 10r4

The problems which arise in the majority of cases are those in

which the eccentricity is very small; for example in the motion of

the earth about the sun the eccentricity is no more than 1/59-7.

For such cases it is best to obtain an approximate expression for

the sun's true anomaly v in terms of m in the form of a series

which need not for most purposes be carried beyond e^]

Writing sin (p instead of e we have from § 52 (iii)

tan ^v = tan ^u (1 + tan ^<}>)I{1
— tan ^<ji),

whence if e be the base of Napierian logarithms,

= (1 + tan 1^) (e™'^ - e-''"2)/(l - tan |</)) (e""^ + e-*"""),

or 6" = 6*« (1 - 6-^" tan ^(/>)/(l - e™ tan ^<^),

and by taking logarithms of both sides

v = u+2 (tan ^<f>smu+^ tan'' -^(^ sin 2u+ ...).

To express the formula in terms of the eccentricity e, we have

tan i^ = (1 - Vl - e')/e = ^e + ^e' + ...

and by substitution

V = u + {e + le') sinu + le^ sin 2« + -^e^ sin 3m (v).
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It remains to eliminate u between this formula and

m = M — e sin M.

As a first approximation

M = m + e sin m.

If terms beyond e^ are neglected,

u = m + e sin (m + e sin m)

= m + e sin m + ^e' sin 2m,'

and from this we have

sin w = (1 — ^e^) sin m+^e sin 2m + ^e' sin 3m.

By substitution of this in

u = m + e sin u,

we find

u = m + {e — ^e^) sin m + |e^ sin 2m + fe' sin 3m . . .(vi).

We have also to the first power of e,

sin 2m = sin 2m + e (sin 3m — sin m).

Introducing these values into (iv) we obtain

v = m + (2e — \^) sin m + f e^ sin 2m + ^^e^ sin 3m. . .(vii).

This is a fundamental equation in astronomy. It gives the true

anomaly of a planet in terms of its mean anomaly. It has been

here computed to the third power of the eccentricity, but for our

present purposes the third power is generally too small to require

attention and consequently

v =m + 2esmm + |e^ sin 2m

will be here regarded as a sufficiently accurate formula.

The difference between the true anomaly and the mean
anomaly, or v — m, is called the equation of the centre, and is

represented by
2e sin m + 1 e" sin 2m.

Expression of the mean anomaly in terms of the true. The

elementary area swept over by the radius vector when the planet's

true anomaly increases by dv is ^r^dv. If dt be the time required

to describe this area, and if T be the periodic time of the planet

then from Kepler's second law

^r'dv : irah :: dt : T.

B. A. 11
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If dm be the increase in the mean anomaly in the time dt

then
dm : 'inr :: dt : T,

(viii).
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the constant of integration being zero since m and v vanish

together. The first four terms of this series are

m = t) — 2 tan ^^ (1 + cos ^) sin v

+ tan' ^0 (1 + 2 cos ^) sin 2v

- I tan'* ^ (/) (1 + 3 cos </>) sin 3v.

If powers of e above the third may be neglected we have

<f)
= e + l^e', cos = 1 — ^e^ and tan ^^ = |e + ^^

and therefore we obtain as before

m = 1) — 2e sin !) + fe" sin 2v—^^ sin Sv.]

Ex. 1. Being given that

m= v -2e sin V +^e^ sia2v— ^e^ ainSv,

where e is a small quantity of which all powers above the third are neglected,

show by reversal of the series that

«;= OT+ (2e - J e^) sinm+ f e^ gJq 2m+^^ e^ sin 3m.

Ex. 2. Show that the angle between the direction of a planet's motion

and the planet's radius vector has as its tangent Vl — eV« sin u.

Ex. 3. If the eccentricity sin (p be very nearly imity, show that the mean
anomaly m can be expressed in terms of the true anomaly v by the following

formula in which A'=tan ^v,

_ 2 cos^
(f)

/ x^ \ — sin
(f)

fx^ ^\\
'"~(I+sin<^)2l^^+3~^l+sin<^l^3'*'"5;y-

Ex. 4. Prove the following graphical method given by J. C. Adams t of

solving for u from the equation m=u — e sin u.

Draw the curve of sines y= smx. From the origin measure OM^m
along the axis of x. Through M draw a line inclined to the axis of x at the

angle cot~' e, and let P be the point in which it cuts the curve, then u is the

abscissa of P.

Ex. 5. Prove Leverrier's rule for the solution oi m=u- e sin u if powers

of e above the third may be neglected,

e sm mu=m+ -
, / e sin m y
'

\1 - « cos m)
'

Ex. 6. If 6' be the longitude of a planet measured from an apse round

the empty focus, prove that

ff=nt-'r\e^ sin '2,nt,

if powers of e above the second be neglected.

t See also Eouth, Dynamics of a particle, p. 225, and Monthly Notices E.A.S.,

Vol. L. p. 301.

11—2
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*Ex. 7. If G{6) is an abbreviation for \ (5+ cos 6) show that the equation

m=u-e&\nu may be written m=C(0+ M)- C(<^-?i) if e= sin^, and show

how a table of the values of C{6) will facilitate the solution of Kepler's

problem.

See the paper by Mr Aldis in Monthly Notices R.A.S. Vol. lxii. p. 633,

where the table is given with illustrations of its use.

53. Formulae of elliptic motion expressed by quadratures.

We take vs to be the longitude of the perihelion of the planet

measured from a fixed direction in the plane of the orbit, 9

the longitude of the planet and v = {6 — •as) the true anomaly.

The quantity Ifja is represented by p. The periodic time is P.

From the properties of the ellipse we have for the radius

vector r,

l + ecos(6l-OT) ^'

For any body moving round the sun, we have (§ 50)

r''dd/dt = '\/]^ (ii).

Solving (ii) for dt, substituting for r from (i) and integrating,

we have

d0

Vw Jcrfl
.(iii).

•JH J Ts {I + e cos {d — i!r)Y

where t is the time in which the planet moves from perihelion to

the true anomaly v = {6 — zr) in an orbit of which e is the eccen-

tricity and p the semi-latus rectum. The equation may also be

written in the homogeneous form

« _ pt rv 1
^p ,1 7^- v., dv,

^0 27ra„

where a^, Pq are the mean distance and the periodic time re-

spectively of the earth.

Differentiating (i) with regard to t we obtain

dr pe sin (6 - is) dd . „ ,r-'d0 r ,n m /-

d^= {i+ecos(g-^)r^'^^^^"(^-">p^=^^^^^"(^-")/^y>

j^ _
also r-j- = '^fi{l + ecos{6 — 'bt)]J'^p,

and for the square of the velocity of the planet

fe)
+ '''

[dij
= /^{l + 2« cos (6-^) + e^}/p = 2Wr - /x/<x,
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which may be expressed more conveniently for calculation in the

homogeneous form

Po' \r a)-

In the case of a parabolic orbit such as that in which the

great majority of comets revolve, e = l and a = oo , so that the

formulae (i) and (iii) become

r = \p sec^ ^ {6 — -as)

t = ^^ (tan i (6' - ot) + ^ tan^ ^{6- -sr)] f
••(^^)-

47rao*

The result at which we have arrived may be thus stated.

Let Po, «„ be respectively the periodic time and the mean
distance of any planet, for example, the earth. If the semi-latus

rectum of the parabolic orbit of a comet be p, then the time

in which the comet passes from perihelion to the true anomaly v is

Pop^ (tan ^v + ^ tan^ jD)/47ra„^.

Euler's Theorem. A remarkable property of parabolic motion

is expressed in Euler's theorem, which is thus enunciated.

If r and r be the radii vectores from the sun to two points C
and C in the parabolic orbit of a comet, and if k be the distance

CO', the time required by the comet to move from G to C is

Pq Wr + r' + k-\^ /r + r- h'^')

12^ |V «» } \ a, I
\

where Po is the length of the sidereal year and a^ the earth's

mean distance.

For brevity we make

g = P„2)2/47ra„2 ; x = ta,-a.\v; a;'=tan^w'; s = (r +r' + A;)/2;

then t'-t==q{x'-x + l{x'^-x^)}

= lq{x'-x){\+x^ + l+x'^+\+xx').

But from the properties of the parabola

l+x^ = 2rjp; l+x''==2r'/p;

1 + xx' = sec ^v sec ^v' cos ^(v —v) =
P

whence

2 >Jrr' Is (s — k)

V rr'

tf- t = 2q (x'- x) (r + r'+ Vs . s - k)/Sp

= 2q (a/- x)[s + s-k + '\/s.s- k}/Sp.
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But we have also

(x'-xy=l+x'+l+ x"- 2 (1 + xa/)

= 2[s + s-k-2 \/s{s-k}lp

= 2 {Vs - v'J^YIp,

whence t'-t=2q^/2{s^ - {s - kf}/3pi

= q{(r+r' + k)^ -(r + r'-k)^}/3p^,

and by restoring the value of q the desired result is obtained.

*Lambebt's Theorem. An important extension of Euler's

theorem for motion in a parabola to the more general case of

motion in an ellipse is given by Lambert, and may be stated

as follows.

If t is the time occupied by the planet in moving from the

position indicated by the radius vector r to the position indicated

by the radius vector r', and if k is the chord between the two

positions, then

2-7rt/P = (i? — sin tj) — {t}'— sin t)'),

where
. , ,

/r + r' + k . , , , /r + r'—k
sini'? = i^ ~

; sm^T? =^^ ;

and P is the periodic time of the planet.

We havef

r = a(l — ecosw), r'=a(l — ecosw'),

k'^ = a^ (cos u — cos u'y + a^ {1 — e^) (sin m — sin u'y,

2Trt/P = u — u' — e (sin u — sin u'),

= u — u' — 2e sin^ (u — u') cos \{u-\- u),
whence

(r + r')/2a = 1 - e cos -g («+ u) cos ^(u — u'),

k^jia' = sin" ^(u- u') {1 - e" cos ^ (m + u')},

2Trt/P = M — m' — 2e cos ^{u + u') sin \{u — u').

We thus see that if a and therefore P are known then

(r + r'), k, and t are functions of the two quantities u — u and

e cos ^{u + u').

t The proof here given is due to Adams, Collected Papers, Vol. i. p. 411. See

also Bouth, Dynamics of a particle, p. 228.
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Let us now make

M — w' = 2a and e cos \{u+ u') = cos /3,

then {r + r')/2a = 1 - cos a cos /S ; kjia = sin a sin yS,

therefore {r + r' + k)/2a = 1 - cos (/8 + a),

(r+r'- k)/2a = 1 - cos (/3 - a),

also 27rt/P = 2a - 2 sin a cos /S

= {/8 + a - sin (;8 + a)} - {/3 - a - sin (;S - a)},

whence making /3 + a = ); and ^—a.= ri' we have Lambert's

theorem as enunciated.

Ex. 1. Show that m the mean anomaly in an elliptic orbit of which
the mean distance is a may be variously expressed as follows

where a^, P„ are respectively the mean distance of the earth from the sun and

the length of the sidereal year.

*Ex. 2. If m be the mean anomaly, v the true anomaly, and e the

eccentricity, show that

im={l-e)Q-^^ tanJ.-LJf(lz_ytan3|

-Se/
5 V

and transform this equation into

'=
I
tan*ii)-&c.

1+eJ ^

+^^'(rT5^t^"H''-&c

[Edinburgh Degree Examination, 1907.]

We have m= u — esmu

= 2i

l + e

tan J«

tan^ Jv I

/l — e
For »/= tan^y write X and we have

A' l+e

i»i= tan-iX-ej--j-p

=\-^\3+lX^-&c -eX{l-X2+ x4_x«+ &c.

=(l-«)X-1^^3+L_^«X5_&e
,
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But we have

Hence

This equation corresponds for the ellipse or hyperbola to equation (iv) of

§ 53 for the parabola. If we put e= l in this expression we get simply

sf/it=^pi {tan ^v+^t&n^^v},

since all terms after the second have (1 — e) as a factor.

Ex. 3. Show that the time spent by a comet within the earth's orbit is

V2 (1 — OT)2(l+2m.)/37r parts of a year where m is the perihelion distance of

the comet the unit being the earth's heliocentric distance regarded as constant.

The orbit of the comet is presumed to be parabolic, and in the plane of the

ecliptic.

A3p=2m we find for the time from perihelion to a true anomaly v

ni^ (tan ^v+ ^ tan^ ^v)/tt \/2,

we have also

»-=msec2-^v,

so that coa^^v= m, will determine the true anomaly of the point where the

comet crosses the earth's orbit. Hence substituting for tan^t; we have

as the time from the earth's orbit to perihelion, and double this period gives

the answer to the question.

This expression has its greatest value S/Sn- when ni= l/2.

*Ex. 4. Two planets are moving in coplanar orbits. Show that when

these planets are nearest to each other their longitudes 6 and 6' must satisfy

the two following equations

:

and

^ J„{l+eooa{e--uj')f ^ jv(l+e'cos(e'-s7'))2 '

e e'-= sin (6 -^){r- r' cos {6 - &)) + -p= sin (0 - ot') {V - r cos {6- ff))

Np Np'

+sin(5-5')(v^7-\/y^)=0.

in which T and T' are the epochs at which the planets pass through

perihelion.

The first equation merely expresses that the planets have the longitudes

6 and 6' at the same moment.
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To find the second equation we note that r^-2rr' co& (d-d') +1^^ is to be

a minimum whence

dr
T
dt

/_eos(5-5)-.^cos(^-5') +/^
,

, . ,. .,.(de dff\ ^

dr do _\lpSubstituting -=- = —^sin (fl — or), jt = —I- we obtain the second equation.
NP

If « and e' are both small, 6 and & are nearly equal and the second

equation may be written

{a - a') {e^/af sin (5 - nr) - e' ^a sin {& - w')] + (a'* - a*) sin (5 - 5') =0.

*Ex. 5. Show that the distance of the earth from a planet, whose orbit

is in the ecliptic, will not in general be a minimum when the planet is in

opposition unless the earth is at one or other of two points in her orbit, but

that if the perihelia of the two orbits have the same heliocentric longitude

and the latera recta are in the duplicate ratio of the eccentricities, the

distance will be a minimum at every opposition.

[Math. Trip. I. 1900.]

This may be deduced from the last question or obtained otherwise as

follows.

Let P, § Fig. 57 be the simultaneous positions of the two planets at the

time t and P' ,
§' their positions

at the time t-'rdt. If then PQ is a

minimum or maximum we must

have PQ=P'q whence

pp cos PPN= qq COS qQN.

Let LAFP=e, LAFQ= ff,

LANP=m, LFPP'=<t>,FQQ' = (t,',

FP=r, FQ=r',

then

PP COS (/)= - dr, PP' sin ^

=

rdd,

whence Fia. 57.

PP cosP'PN=PP COS {(t>- d+ a>)= -dr cos {d-a)+ rd0 sin (^ - a>)

= {-eain{d - -or) coa (d - a>)l'Jp+ "Jp sin {6 - a>)lr) s]^ dt

. = {e sin (or - ii>)j>lp+ sin {6 - a>)j-Jp} sfjldt.

If therefore PQ=Pq we must have

e sin (ot - (o)l>/p +ain {6 - a,)l>lp=e' sin (ot' - ai)j^p'+ sin {ff - a)l^'.

If 6=6'= 10 the planet is in opposition, and we have

e sin ( or - d)l'Jp = e' sin (izr' - 6)l^p'.
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Hence there are two values for 6 differing by 180°. This is the first part

of the question. Also if cj'= ot' and el'Jp= ^\Jp', the condition is satisfied at

every opposition.

Ex. 6. Show how Euler's theorem for the time of describing the arc

of a parabola can be deduced from Lambert's theorem.

In this case both ^ and a will become indefinitely small.

Ex. 7. The sun passed through the first point of Aries on March 20, 1898,

at 2'' 5°>, and through the first point of Libra on Sept. 22 at 12'' 35™; show

that the interval is consistent with the facts that the eccentricity of the

earth's orbit is about 1/60, and that the apse line is nearly at right angles

to the line of equinoxes. [Coll. Exam.]

If the sun is at an Equinoctial point and if e^ is negligible it can easily

be shown that
sin (ra- + M)= esin cr,

whence we have the two values of m, namely e sin m—'oi and n — ss — e sin cr.

If tx and «2 tie the times of passage through T" and £i respectively, T the

time of passing through perihelion and P the length of the year,

t —T
27r ^

p =esin or — or — e sin (e sin cr - nr),

h-T
27r p =ir-'is -e sin c? - e sni (t<r + e sin or),

2
whence itj— i,=JP— Pesinor.

TT

If ra- be near 90°, e be ^, and P=365J, we see that <2-'i differs from

half a year by 3'8 days.

Ex. 8. Assuming that the orbit of the earth relative to the sun is a plane

curve show that for every set of three observations of the solar coordinates

u, S ; a', 8' ; a", 6" the following equation is satisfied

tan S sin (a - a") + tan 8' sin (a'' - a) +tan 8" sin (a - a)= 0.

[Coll. Exam.]
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54. How luni-solar precession is observed. The important

phenomenon which we know as the precession of the equinoxes is

most easily made apparent when the observed right ascension and

declination of any fixed star at one epoch are compared with the

observed right ascension and declination of the same star at a later

epoch sufficiently distant from the earlier one. For example the

coordinates of Polaris (the Pole Star) were determined as follows

:

R.A. 1" 5"" 23=
Polaris 1st Jan. 1850 1 g go g^, ^g„

These are now to be compared with the coordinates of the

same star as determined 50 years later:

Polaris 1st Jan. 1900
1 ^ gg„ ^^, ^^„

The differences between these two sets of coordinates amounting

to more than a quarter of an hour in right ascension and more than

a quarter of a degree in declination must receive close attention.

At first it might appear that the change in the apparent

position of Polaris must be attributed to actual movements of
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that star. But we can show that the phenomena cannot be thus

explained. Changes in the coordinates of a point may be caused

by changes in the axes with regard to which those coordinates are

measured as well as by absolute changes in the position of the

point itself. We have to show that the changes in the place of

Polaris are only apparent. They are to be attributed to changes

not in the place of the star but in the place of the great circle

with reference to which the star's place is determined. These

changes are due to the phenomena known as Precession and

Nutation.

Consider first the declination of Polaris which in the course of

half a century is shown by observation to have increased no less

than 16' 4", or at the average rate of 19" annually. This means

that the distance between the Pole and Polaris has been

diminishing 19" annually. It follows that either the Pole or

Polaris, or both, must be in movement'.

But no appreciable portion of the change in the polar distance

of Polaris can be attributed to the proper motion (§ 60) of that

star. Measurements of the distance of Polaris from other neigh-

bouring stars show no variation comparable with that in the dis-

tance from Polaris to the Pole. Any true proper motionwhich Polaris

may possess is far too small to account for the changes observed in

its declination. It is also to be noticed that while, in the course of

fifty years, other stars generally exhibit large changes in their polar

distances they do not show considerable changes in their distances

from each other. We are thus led to the conclusion that the

changes in the distance between Polaris and the Pole are not to

be attributed to the movement of Polaris itself, but to a move-

ment of the Celestial Pole, and we have now to study the

character of this movement.

If the Pole shifts its position continually on the celestial

sphere the celestial equator must also be in constant motion,

because under all circumstances every point on the equator

must be 90° from the Pole. But though the equator moves

yet it always preserves the same average inclination to the

ecliptic. The angle only fluctuates some seconds to one side or

the other of its mean value. The declination of the sun at mid-

summer is the obliquity of the ecliptic, and this was practically

the same in 1850 as in 1900 (see p. 187). Hence we see that
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the equator must move so that it cuts the ecliptic, regarded as
fixed, at a nearly constant angle, while the equinoctial points
move along the ecliptic in the opposite direction to the earth's

motion. The pole of the ecliptic may be regarded as fixed on
the celestial sphere, and the motion with which we are at present
concerned causes the pole of the equator to describe a small
circle around the pole of the ecliptic. This is the movement
which is known as the luni-solar precession of the equinoxes.

It manifests itself most simply by a continuous increase in the

longitude of a star, while the star's latitude remains unaltered.

In general luni-solar precession produces change both in the

declination and the right ascension of a celestial body.

55. Physical explanation of luni-solar precession and
nutation.

The direction of the axis about which the earth performs its

diurnal rotation undergoes very slow changes, and these changes

produce the phenomena of precession and nutation. The dis-

turbance of the earth's axis from the constant direction it would

otherwise retain is due to the fact that the resultant attraction of

an external body (moon or sun) on a spheroidal body like the earth

is not a single force through the centre of gravity of the earth.

If the earth were a truly spherical rigid body, and if the

density along the surface of each internal concentric spherical

shell was constant, then the attraction of any external body, such

as the moon or the sun, would be equivalent to a force acting at

the centre of the sphere. A force whose line of action passes

through the centre of gravity of the body on which it acts would

be without effect on the rotation of the body about its centre of

gravity. But under the conditions existing in the solar system

the attraction of neither sun nor moon passes in general through

the earth's centre of gravity. Hence arise those disturbances of

the earth's rotation which we are now to consider.

Although for reasons indicated later, the moon is more effective

than the sun in producing precession, we consider first the effect

of the sun because its motion relative to the earth is simpler than

that of the moon.

If we assume that the earth is a solid of revolution and

symmetrical about the equator, then NS, Fig. 57, being its axis
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and G its centre, P any external particle, the plane N8P divides

the earth symmetrically, and therefore the resultant attraction of

P on the earth lies in the plane NSP: further if P be in the

plane of the equator, the resultant attraction will also be in that

plane. Hence if P lies in the equatorial plane AB the resultant

attraction will be along GP.

If P were in the axis NS (a case we need not consider) it is

clear that the resultant attraction would be along GP, but for

any other position of P, such as that indicated in Fig. 57, it can

be shown that the resultant attraction does not pass through G
but along a line such as HP in the plane NSP.

Fig. 57.

At first sight it might seem as if this force would tend towards

turning NS into a direction perpendicular to HP, in other words

as the sun is the attracting body, the immediate effect would seem

to be to force the earth's equator towards the ecliptic. But the

fact that the earth is in rapid rotation produces the apparently

paradoxical effect that the axis NS at each instant moves in a

direction not in the plane NSP but at right angles thereto.

This is a phenomenon well illustrated by the common pegtop,

though in this case we are dealing not with the rotation about

the centre of gravity of a body free in space, but with rotation

about a fixed point—which is mathematically a very similar

problem. While the pegtop is in rapid rotation about its axis of

symmetry that axis is itself slowly describing a cone round the

vertical. Thus the axis of the pegtop is at each instant moving

in a direction at right angles to that in which the force of gravity
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would appear to urge it and which it is only prevented from

following by the fact that the top has a rotation about its axis

very much more rapid than the conical motion of the axis itself.

The diurnal rotation of the earth appears very rapid when
compared with the conical motion of the earth's axis inasmuch

as the period of the latter is about 24,500 years. Applying the

analogy of the conical rotation of the axis of the pegtop to the

case of the rotation of the earth as disturbed by the sun we should

expect to find that the terrestrial axis J^S would slowly describe

a right circular cone about the normal to the plane of the ecliptic.

The precessional action of the moon is more important than

that of the sun, for though the total attraction of the moon on

the earth is very much less than that of the sun, yet as the pre-

cessional effect depends upon the difference between the attractions

eocerdsed by the disturbing body on different parts of the earth

the greater proximity of the moon raises its precessional effect

to double that of the sun.

The plane of the moon's orbit is very near the ecliptic, being

inclined thereto only at the small angle of 5°, and the moon's orbit

while preserving this inclination is in continuous motion, so that

each of its nodes accomplishes a complete circuit of the ecliptic in

about 19 years, a very small quantity in comparison with the

precessional period of 26,000 years. As the moon is always near

the ecliptic and is as much below the ecliptic as above, and as the

average position of its orbit coincides with the ecliptic, it follows

that the principal part of the moon's precessional action is of the

same general tendency as that of the sun. The sun's action and

this part of the moon's action together constitute what is called

luni-solar precession by which T moves on the ecliptic in the

opposite direction to increasing longitudes at the rate of oOJ"

annually. About two-thirds of this quantity is due to the action

of the moon and the remainder to that of the sun. The obliquity

of the ecliptic w remains unaltered by luni-solar precession.

But the moon has also an important influence from the

circumstance that its movement, though near the ecliptic, is not

exactly in that plane. The precessional action of the moon tends

to make the axis of the earth describe a cone round the pole

of the lunar orbit, which is itself describing a circle of radius 5°

about the pole of the ecliptic. The influence of this on the plane

of the equator is twofold. lb gives to T a small periodic movement
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of oscillation to and fro on the ecliptic about its mean place as

determined by luni-solar precession. It also gives to <» a small

oscillation to and fro about its mean value. These phenomena are

known as nutation, and their discovery was one of Bradley's great

achievements. The sun has also some effect in producing nuta-

tion, but it is very small' compared with that of the moon.

*56. Planetary precession. The luni-solar precession and

nutation relate, as we have seen, to change in the relative position

of the equator and the ecliptic due to the motion of the former.

We have now to learn that the ecliptic is itself not quite a fixed

plane, and its changes have to be taken into account, though these

E
Fig. 58 (after Brunnow).

changes are so small that they may for many purposes be regarded

as non-existent and the ecliptic be treated as absolutely fixed.

The movements of the ecliptic are due to the attractions of

the other planets on the earth. The irregularity thus caused in

the positions of the equinoctial points is accordingly known as

Planetary precessionf.

We must take some standard position of the ecliptic to which

its position at other dates shall be referred and we use for this

purpose the great circle with which the ecliptic coincided at

the beginning of the year 1850, EE^, Fig. 58. Let EE' be

t The reader who desires to learn more about Planetary Precession than is con-

tained in the slight sketch here given is referred to Newcomb's Compendium of

Spherical Astronomy, from which source the numerical values here used have been

obtained.
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the position of the ecliptic in the year 1850 + 1. Let AA^ be the

equator at the commencement of 1850 and let the equator have

moved by luni-solar precession to A'A" at the time 1850 + it.

Let SL and SL' be perpendiculars from a star S on EE„ and EE\
Let DB' be drawn perpendicular to EE' from the intersection of

EE(, and AA,,. Then we have the following statements.

BD is the Luni-solar Precession in t years,

Z B'GA" is the obliquity of the true ecliptic in 1850 + 1,

Z DBA" is the obliquity of the fixed ecliptic in 1850 + t.

BG being the distance along the equator through which the

node has been shifted by the motion of the ecliptic in t years is

known as the Planetary Precession and its magnitude has been

found to be 0"-13<.

Ciy is the General Precession in longitude. It is the displace-

ment of the intersection of the equator with the apparent ecliptic

on the latter, and its annual increase at the date 1850 + t is

50"-2453 + 0"-0002225«.

This quantity is known as the constant of precession. It changes

with extreme slowness, thus in 1900 its value is 50"'2564 and in

1950 it is 50"'2675. It will be accurate enough for our purposes

to take the present constant of precession as 50""26.

At the date 1850 + 1 the angle between the equator and the

ecliptic of the same date (neglecting periodic terms) is

23° 27' 32"-0 - 0"-47<,

and the second term is called the secular change in the obliquity.

Observing the directions of the arrow heads we see that E is the

descending node of the true ecliptic on the fixed ecliptic and con-

sequently 180° — EG is the longitude of the ascending node of the

true ecliptic on the fixed ecliptic.

The longitude of the star S which was DL in 1850 becomes BL
in 1850 + thy the luni-solar precession. The latitude of S, or SL,

is unaltered by the luni-solar precession.

If planetary precession as well as luni-solar precession be

considered then the longitude of S, which was BL at the date

1850, becomes GL' at the date 1850 + 1, and in like manner the

latitude changes from SL to SL'.

B. A. 12
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57. General formulae for precession and nutation in

right ascension and declination.

We shall generally assume that the plane of the ecliptic is

unchanged, and that the position of the equator with respect to

the ecliptic is subjected to slow changes due to precession and

nutation in the only ways in which a great circle of the sphere

can change, i.e. the line of nodes changes and the obliquity of the

ecliptic also changes. Any alterations in the great circles with

respect to which the coordinates of a star are measured neces-

sarily involve changes in those coordinates even though, as we

shall at present suppose, there is actually no change in the place

of the star on the celestial sphere.

Consider two positions of the equator: the first cutting the

ecliptic at an equinoctial point T, with obliquity m, the second

cutting the ecliptic at an equinoctial point T', which has moved

along the ecliptic through an arc k, in the direction of diminishing

longitude, while the obliquity has changed from m to a>' (Fig. 59).

Let a and S be the R.A. and declination of a star S referred to

the first equator and equinox (System I.) ; and let a' and S' be the

coordinates of the same star referred to the second equator and

equinox (System II.).

Let tti. Si and a/, 8/ be the corresponding coordinates of

a second star S' referred to the two systems.

Then since the length of the arc SS' is the same whichever

system of coordinates be used, we have the fundamental equation

as used in § 12,

sin S sin Sj + cos S cos 8i cos (a — aj)

= sin 8' sin S/ + cos 8' cos 8/ cos (a' — Uj).

We shall now introduce into this equation three cases in

which «!, §1 and «/, 8/ are at once evident and thus obtain the

three equations of transformation.

If the second star >Sf' is at T its coordinates in System I. are

ai = 0, Si = 0.

The coordinates of the same star in System II. are given by

the equations

sin 8/ = sin k sin a>'

,

cos 8i' sin «/ = sin k cos w',

cos 8i' cos Ui = cos k.
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And making these substitutions in the fundamental equation
we have

cos S cos a = sin fe sin <»' sin 8'

+ cos k cos S' cos a' + sin k cos &>' cos 8' sin a' (i).

In the same way by taking S' at T' we find

cos S' cos a = — sin k sin to sin S + cos k cos S cos a

— sin k cos a) cos 8 sin a (ii).

Finally, suppose the second star S' is at the pole of the
ecliptic.

Its coordinates in System I. are

«! = 270°, Si = 90° -
,

and in System II.

(O.

a; = 270°, 8/ = 90° - a,'.

Fig. 59.

Making these substitutions in the fundamental equation we have

sin 8 cos ft) — cos 8 sin. a sin a

= sin 8' cos (o' — cos 8' sin eo' sin a! (iii),

and we thus obtain the three general equations connecting a, 8

with a, 8' and the necessary constants k, a>, m'.

We may note that (iii) is symmetrical in accented and

unaccented letters and it is easily seen how (ii) might have

been obtained from (i) by the interchange of accented and un-

accented letters and by changing the sign of k.

If the known quantities are a', 8', then from (i), (ii), (iii) we can

express sin 8 and cos 8 sin a each in terms of a', 8' and we thus

12—2
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group the three equations (iv), (i), (v) from which a, 8 can be

found without ambiguity

:

sin S = sin 8' (cos k sin o) sin a>' + cos eo cos <»')

— cos S' cos a sin &> sin k

+ cos S' sin a' (cos A; sin w cos m' — cos to sin to')... (iv),

cos S cos a = sin S' sin A; sin co'

+ cos 8' cos a' cos A;

+ cos S'sin a' sin A; cos m (i)

cos B sin a = sin S' (cos k cos « sin a>' — sin « cos to')

— cos S' cos a' cos o) sin A;

+ cos S' sin a' (cos A; cos co cos to' + sin m sin eo') (v).

If it be desired to determine a, S' when a and S are given,

we find in the same way

sin 8' = sin B (cos k sin to sin a' + cos to cos to')

+ cos 8 cos a sin to' sin k

+ cos 8 sin a (cos k sin m' cos co — cos to' sin co) . . .(vi),

cos B' cos a' — — sin 8 sin A; sin to

+ cos B cos a cos k

— cos 8 sin a sin A; cos a> (ii)

cos 8' sin a' = sin 8 (cos A; cos co' sin to — sin to' cos (o)

+ cos 8 cos a cos eo' sin A;

+ cos 8 sin a (cos k cos to cos w + sin to sin m') .. .(vii).

For the calculation of precession we may usually regard k as

so small that powers above the first may be neglected and we also

take to = to', so that the formulae (vi), (ii), (vii) become

sin 8' = sin 8 + A; sin to cos 8 cos a,

cos B' cos a' = cos 8 cos a — A; sin to sin 8 — A; cos to cos 8 sin a,

cos 8' sin a' = cos 8 sin a + A; cos to cos 8 cos a.

From which we easily obtain the approximate results

a.' — a. = k cos to + A; sin to tan 8 sin a (viii),

8' — 8 = A; sin to cos a (ix>

These are the fundamental formulse for precession.
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Ex. 1. Show that, if u, 8, be the r.a. and decl. of a star, its annual

increase of right ascension in consequence of precession when expressed in

seconds of arc will be very nearly 46"+ 20" tan S sin o and in declination

20" cos a.

Ex. 2. k is the angular velocity of the pole of the equator round the pole

of the ecliptic, L is the longitude of the instantaneous axis of rotation of the

ecliptic, and tj its angular velocity. Show that these changes in the planes

of reference produce annual rates of change

m + n sin a tan 8 and n cos a

in a, S, the r.a. and decl. of a star, where

m= i: cos m — >; sin X cosec a

and »= A sin a,

a> being the inclination of the equator to the ecliptic.

[Sheepshanks Exhibition, 1903.]

Ex. 3. Prove that the points on the celestial sphere whose declinations

undergo the greatest change in a given period, owing to the precession of the

equinoxes, lie on two arcs of a great circle ; and that the points whose

declinations are, at the end of the period, unchanged lie on another great

CItcIg
[Math. Trip. I. 1901.]

Let P, P be the poles of the equator at the beginning and end of the

period. Then it is obvious geometrically that the greatest possible change of

declination by precession in this period is equal to the arc PP', and that the

stars which undergo this greatest change lie on the great circle throiigh PP',

outside the limits of the arc PP' and its antipodal arc. The stars whose

declinations are, at the end of the period, unchanged lie on the great circle

bisecting the arc PP' at right angles.

Ex. 4. Show that if a star lie on the solstitial colure it has no preces-

sion in declination, and that all stars on the equinoctial colure have the same

precession in right ascension and also in declination.

Ex. 5. Prove that if 5 be a star without precession in r.a., and P, K
the poles of the equator and the ecliptic respectively, then SP and 8K will

be at right angles.^
[Math. Trip.]

Ex. 6. Show that all stars whose e.a. is not at the moment being

altered by precession lie on an elliptic cone passing through the poles of the

equator and the ecliptic. r^ „ „^
[Coll. Exam.]

The condition is, see (viii),

cos <a+sin at tan 8 sin a = 0.

If we make a;= r cos a cos 8,

y=rsin a cos 8,

z= rsin 8,

and eliminate r, a, 8, we have as the equation of the cone

yz sin 0)+ {x^ +y^) cos m= 0.
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Ex. 7. Show that for all stars for which the rate of variation in the

declination due to the motion of the node of the equator along the ecliptic has

its greatest value A, the rate of variation in right ascension due to the same

cause is A cot a, where a is the angle between the ecliptic and the equator.

Ex. 8. Show from the formulae (i), (ii), (iii) that we have the following

expressions for the differential coefficients of a, 8' with respect to <»' and k

8a' ... , as' . ,5—= —tan 8 cos a ; ;^-;=sina:
00) o<a

9a'
, ,

• ,^ s, • , 3S' . ,

CT= cos <o + sin o) tan 8 sm a
; ^= sm a> cos a

.

Differentiating (vi) with regard to <a' and regarding a, 8, k, a> as constants

we have from (vii)

cos 8 ^ -,= cos 6 sm a
oa

whence excluding the case of 8' = 90°

38' . ,

5—,=sm a.
0(0

Differentiating (ii) with regard to a

cos 8 sm a 5—,+sm 8 cos a 5—,=
0g> CQ}

whence after substituting for 98'/3o>' we have

9a'
.. .,5—,= — tan 8 cos a.

00)

Differentiating (vi) with regard to k we have

cos 8'^ = sin a)'(-sin 8 sin kain o)+cos 8 cos a cos /;- cos 8 sin a sin kcos a)

= sin 0)' cos 8' cos a'

T,
98'

. , ,whence 5^ =sm m cos a

.

Finally differentiating (iii) with regard to k and substituting the value

just found for d&'/dk

O=cos 8' cos to' sin a>' cos a'+sin 8' sin a>' sin a sin a>' cos a'

!,' / / 9a'— cos 8 sm <B cos a ^
whence ^=coso)' + sin<B' tans' sina'.

Ex. 9. Show that notwithstanding the precessional movement the celestial

equator always touches two fixed small circles.

Ex. 10. If there be a change in the obliquity Am without any change in
ip prove that

cos a cos 8= cos oq cos 80

,

sin a cos 8= sin ao cos 80 cos Am - sin 80 sin A<o,

sin 8= sin qq cos 80 sin Am + sin 80 cos Aa>,

where a, 8, and ao, 80 are the right ascension and declination of a star as

affected and unaffected respectively by the alteration.
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Ex. 11. Let a, S be the right ascension and declination of a star at a given

epoch, k the constant of precession, and <b the obliquity of the ecliptic.

If A denote the expression sin <» sin 8 + cos <u cos S sin a and B denote

cos a cos S, then after t years the values of these expressions for the same
star will be

A cos kt+B sin kt, and B cos &t — A sin kt.

Also if the declination change to 8' in this period,

sin8-sinS'=sino) {A{l-coskt)-Bainkt}.

[Coll. Exam. 1901.]
We note that

(sin 0) sin 8+ cos m cos 8 sin aY+ (cos a cos 8)^

is an invariant so far as precession is concerned and it is easy to see that

this expression is always the square of the cosine of the latitude. The
expression

sin 8 cos 01 — cos 8 sin a sin <a

being the sine of the latitude is of course also an invariant, and from this

circumstance Eormula (iii) might have been at once written down.

Ex. 12. Show that, owing to precession, the r.a. of a star at a greater

distance than 23J° from the pole of the ecliptic will undergo aU possible

changes, but that the r.a. of a star at a less distance than 23^° will always

be greater than 12 hours.

If a;=tan J&, then from (ii) and (vii) we obtain

a;^(2 sin 8 sin m cos m + cos 8 sin a cos 2<» — tan a cos 8 cos a)

- 2x (cos 8 cos a cos a> + tan a sin 8 sin m + tan a' cos 8 sin a cos a)

+ tan a cos 8 cos a — cos 8 sin a~0,

the condition that this quadratic shall have real roots is easily seen to be

tan2a'cos2^+ cos^<a-sin2^>0,

where (3 is the latitude of the star. If /3< (90° — w) a real value of k can be

found for every value of a'.

We have also (Ex. 11)

sin 8' cos a — cos 8 sin a sin to= sin p.

If ^> (90° — 0)) we must have sin a always negative.

*Ex. 13. Let X, y, z be the coordinates of a star referred to rectangular

axes, the axis of x through the vernal equinox, the axis of _y at right angles to

it in the plane of the equator, the axis of s the polar axis of the earth.

Assume that the ecliptic is fixed, and that precession may be represented as

a revolution of the pole of the equator round the pole of the ecliptic at an

angular rate q. After an interval of t years let the coordinates of the star,

referred to the new positions of the axes, be |, rj, f.

Show that the relations between the two sets of coordinates are

^=:j;cos qt—ycos a sin qt — zsiu a> sin qt,

r)=x cos a> sin qt-{-y {ooa^ a cos qt+ sin? a) -\rZ COS a> sin m (cos qt—Vj,

f=.*'sin a sin qt+y cos a sin a> (cos qt- 1) +0 (sin^ a cos ji+cos^ a),

where a is the obliquity of the ecliptic.

[Prof. H. H. Turner, Monthly Notices, R.A.S. lx. 207.]
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We have

X

=

cos 8 cos a, ^= cos 8' cos a'

y= cos S sin a, i;= cos 8' sin a',

0=sinS, f=sinS'.

Hence putting k= qt and letting a)=a> the results follow at once from (ii),

(vi), (vii).

*Ex. 14. Supposing the pole of an orbit progresses with uniform velocity

in a small circle, find on what great circles the motion of the nodes is

(1) uniform, (2) continuous but variable, (3) oscillatory ; and show that in

the last case the progressive motion of the node takes longer than the

regressive.

Let to be the radius ;:j>90° of the circle described by the moving pole P about

the fixed point Pq- Then the great circle C of which P is pole intersects Co of

which Pq is pole at the constant angle a>'. The node moves uniformly along Cq

and there is no other great circle except Co on which the node moves uniformly.

Draw two small circles Ci and C^ parallel to Cj and on opposite sides of it at

the constant distance <»' from Co . Then as no point on C can be at a distance

Fig. 60.

from Co greater than a we see that all the points on C must be confined to

the zone Z between Ci and Cj. Hence all possible nodes of C with any other

circle are limited to this zone Z,

The circle C is intersected by its consecutive position at its points of

contact with Ci and Cj. Hence if the node in which C intersects any other

circle be stationary that node must lie on either Ci or Cj.

If the node in which a fixed circle is intersected by C is to advance

continuously it must not become stationary at any point, and consequently

must have no real intersections with Cj and Cj ; it must therefore be confined

within the zone Z.

If be not confined within Z then the nodes can only oscillate, for as we

have seen that the nodes lie within Z it follows that they can never enter

the portions of exterior to Z, and consequently each node must oscillate in

one of the two arcs intercepted on by Z.

Let Ti and T^ be the points of contact of C with C\ and C2 and let Oi and

•O2 be the points in which an arc of terminates in Cj and Cj. Let the arc

from Oi to O2 make an acute angle with that direction in which the nodes of

€ on Co are moving. When T^ becomes coincident with Oi then direct
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motion of the node will be commencing on 0^0^. But this will not be
completed till T^ becomes coincident with Oj, and for this G will have to
be turned more than half-way round, i.e. the direct oscillation takes more than
half the whole period of C. But after T^ has passed Og then the retrograde
motion commences, and it will be finished when T^ again reaches Oi and
therefore requires less than half the complete revolution.

We can also investigate the question thus. Let E'FH (Fig. 60) be the
circle Co, HN be C and FN be 0. Then from the triangle PEN we have by

§ 1 (6)

cosasin^+sinacos^cos w-sin a cot co' sin a)= (i).

To find the corresponding changes of a and h we differentiate, treating a and
a as constant, and obtain

Aa cos a COS h — sin a sin k cos <»

Ak sin a sin k — cos a cos i; cos cb+cos a cot to' sin a>

'

If iV is a stationary node then cosacos^-— sinasinAcosa)= or HJV=90°,
which means that m' is the perpendicular from N on FB, this being of course

the same condition as that N shall lie on Cj. We hence find that

cos ^= tan a>' cot a, and thus we see that II moves over an arc 2k, while the

node retrogrades from the stationary node N' on Cj to JV. As tan a' cot a is

positive in the case represented we have ^<90° and 2^ is less than half the

circumference, so that the regression of the nodes in the oscillatory movement
takes less time than the progression.

*Ex. 15. On account of precession the interval between two passages of

a given meridian through the same star differs from a mean sidereal day. If

the colatitude of the star be less than that of the pole, show that this

difference will vanish when the difference of longitudes of the pole and star is

_ J
tan (colat. of star)

tan (colat. of pole)

'

*Ex. 16. If jBo te the position angle of the smaller component of a double

star at the epoch Tq, show that if the effect of precession only be considered,

the position angle p at any other epoch T will be given by the equation

p=pa+0'-3342 {T- T^) sin a sec 8,

where a, 8 are the e.a. and decl. of the principal star of the pair and where T
and Tq are expressed in years.

58. Movement of the first point of Aries on the ecliptic.

In consequence of precession and nutation the intersection of

the equator and ecliptic, which we call the first point of Aries

(T), is in motion on the ecliptic supposed fixed. Its position is

therefore a function of the time, and if il be the distance of T
measured from some fixed point on the ecliptic we may write

D, = a + bt + P.
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In this equation t is the time measured from some fixed epoch

and a and b are constants, while P consists of periodic terms only.

These terms contain t in the expressions of angles which enter P
solely by their sines and cosines. There is thus a fundamental

difference between the quantities bt and P ; the former is capable

of indefinite increase in proportion to the time, and b is in fact the

constant of precession. The value of P, on the other hand, is

restricted between limits—it can never become greater than some

quantity + P^ nor less than — P„ where P,, is a finite quantity.

The quantity P is the nutation by which d fluctuates about the

uniformly moving position it would have if the nutation were

absent.

Let N be a point moving uniformly on the ecliptic so that its

distance from at any time t is represented by a + bt. If will be

sometimes in advance of JSf and sometimes behind If, but the

distance TiV can never exceed P,,. The movement of T will be

the same on the average as that of N, and consequently N may
be regarded as the mean vernal equinoctial point which moves

uniformly along the ecliptic and in the immediate neighbourhood

of which the first point of Aries is always to be found.

As the longitude of a star is measured from T along the

ecliptic it is clear that the longitude must be generally increasing

by the motion of T even though the star itself be devoid of proper

motion. Introducing the numerical valuesf of the principal terms

we have the following expression for the true longitude X of a star

on the ecliptic

\ = X„ + 50"-26« - 1 7"-235 sin S3 - l"-27 sin 2L,

where

\„ is the longitude of the star at the beginning of the year

with reference to N
;

t is the fraction of the year which has elapsed at the time

under consideration

;

63 is the geocentric longitude of the moon's ascending node;

L is the sun's mean longitude which for our present purpose

may with sufficient accuracy be regarded as the sun's

true geocentric longitude.

t The values of the coefficients in this expression were adopted by a conference

of astronomers which met in Paris in May 1896 and are those now used in the

Nautical Almanac.
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The second term in the expression of X is due to preces-

sion. It corresponds to an annual increase of 50""26 in the

longitude of the star. As this term contains ^ as a factor, it

is capable of indefinite increase and may become by far the most

Important of the three variable terms.

The third term involves S8, the longitude of the moon's

ascending node on the ecliptic. This term may make the

longitude of the first point of Aries vary from + 17"'235 to

— 17""235 on either side of its mean value. As the moon's nodes

revolve round the ecliptic in about 18^ years, nutation causes T to

be in advance of its mean place for about 9 years and then to be

behind its mean place for about 9 years. The last term is the

nutation in longitude due to the sun, it is expressed in terms of L
the mean longitude of the sun, and has a period of about six months.

Besides its effect on longitude, nutation has also a periodic

effect on the obliquity of the ecliptic so that to find the true

obliquity at any given time the mean obliquity for the beginning

of the year must be increased by 9"21 cos S3 + 0"'55 cos 2Z. We
should here remember that there is another minute variation in

the obliquity of the ecliptic namely that due to the planetary

precession (| 56). The whole amount of the variation so caused is

a diminution at the rate of 0""468 per annum.

The joint effect of the nutation (omitting the small terms)

and the planetary precession gives for the date T the following

value for the obliquity of the ecliptic
-f:

23° 27' 3"-58 - 0"-468 {T- 1910) + 9"-21 cos 53 + 0"-55 cos 2Z.

The last two terms represent the nutation with sufficient

accuracy for almost every purpose. The complete expression

is given in the ephemeris. (See Ex. 5.)

Ex. 1. Newcomb's value of the constant of Precession as used in N.A.

(see p. v) is

50"-2453+0"-0002225<,

where t is the interval in years from 1850'0.

Show that this gives 50"'2584 for the constant of precession in 1909.

t The following values of the mean obliquity for the eight equidistant epochs

from 1750 to 2100 are given by Newcomb, Spherical Astronomy, p. 238 :

1750 23° 28' 18"-51 1950 23° 26' 44"-84

1800 23 27 55 -10 2000 2.S 26 21 -41

1850 23 27 31 -68 2050 23 25 57 -99

1900 23 27 8 -26 2100 23 25 34 -56
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Ex. 2. If the origin of longitudes is the position of the mean equinoctial

point at 1908'0, find the longitude of the first point of Aries and the obliquity

of the ecliptic on June 29, 1908, being given that 63 =94°'9, Z=97°, and that

<=0-493.

Precession in longitude for the interval is 24"'8 and the nutation terms

are - 17"'l and +0"'3 respectively, so that the answer is 8"'0. In like manner

the obliquity is shown to be 23° 27' 2"-96.

Ex. 3. Show that on 7th November, 1909, the precession in longitude

from the beginning of the year is 42"'7 and the nutation is — 17"'3, being

given that Z= 226°-l and S3 =68°-7.

Ex. 4. If 23° 27' 4"-04 be the mean value of the obliquity of the ecliptic

in 1909'0, show that the apparent value on June 10th, 1909, when £3 =76°'6

and i= 78°-2, will be 23°27'5"-48.

*Ex. 5. If the nutation of the obliquity of the ecliptic Au is computed

from the more complete expression {N.A. 1910, p. v)

Ao)=+9"-210cosg3 - 0"-090 cos 2 £3 +0"-551cos2Z

- 0"-009 cos {L - 78°-6) + 0"-022 cos (3X+ 78°-6),

in which S3 is the longitude of the moon's ascending node and L is the mean

longitude of the sun, show that the nutation of the obliquity on 1st May,

1909, is +l"-97, being given E3 =78°-7 and i = 38°-8.

*Ex. 6. If the nutation of longitude Ai is computed from the more

complete expression {N.A. 1910, p. v)

Ai= -17"-235sin 83 +0"-209sin2S3 -l"-270sin2Z

+ 0"-107 sin (X+ 74°-3) -0"-05 sin (3X+ 78°-6),

show that its value on 27 December, 1909, is - 15"-37, being given S3 =66°'00

andi= 275''-3.3.

*59. The independent day numbers.

Even if a star is devoid of any proper motion (§ 60), as we

shall at present suppose to be the ease, its coordinates must be

continually altering by precession and nutation. We may now

assume that the ecliptic is a fixed circle and the mean equinoctial

point is defined as moving uniformly on the ecliptic so that its

average distance from the first point of Aries is zero. The mean

equator at the date T intersects the ecliptic at the mean equi-

noctial point and as above explained is inclined to the ecliptic at

the angle
23° 27' 3"-58 - 0"-468 {T- 1910).

By the mean right ascension and declination of a star we are

to understand the E.A. and declination of that star as referred to
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the mean equator at the commencement of the year. The problem

now before us is to determine a', S' the apparent coordinates of

a star on any particular day when we are given its mean coordinates

a. and S for the year in which that day is contained.

The general formulae (vi), (ii), (vii) of § 57 will provide us with

the required equations and for our present purpose we may regard

both k and &>' — o) as small quantities whose squares or product

may be neglected. Under these circumstances the equations

reduce to

sin S' = sin S + sin k sin a cos S cos a + sin (m' — &>) cos 8 sin a,

cos 8' cos a! = cos S cos a — sin k sin to sin 8 — sin k cos m cos S sin a,

cos S' sin a' = cos 8 sin a + sin k cos o) cos S cos a — sin (w' — a) sin 8.

From which we obtain

cos 8 sin (a' — a) = sin k (cos w cos 8 + sin to sin 8 sin a)

— sin (o)' — o)) sin 8 cos a,

2 sin ^ (8' — 8) = sin A; sin lu cos a + sin (a>' — <o) sin a.

We thus have approximately, if a' — a be expressed in seconds of

time and 8' — 8, k, w —ca in seconds of arc,

a! — a = -^k cos ay-\-^[k sin eu sin a — (&>' — (u) cos a} tan 8)

8' — 8 = A; sin a> cos a + (to' — w) sin a )

We now assume three new quantities /, g, G determined by

the equations

f=-^k cos 03 ;
gcosG = ksiii(o; ^ sin G = — (&)'- to)... (ii),

and the equations (i) become

a'-«=/+TV5'sm(G! + a)tan8)

8' — B=g cos (G + a.) )

It will be observed that f, g, G are independent of the co-

ordinates of the star, they only vary with the day of the year

and they are called the independent day numbers.

To facilitate the computation of the effects of precession and

nutation upon the coordinates of a star, tables are provided

in the ephemeris in which the values of the independent day

numbers will be found for each day of the year. The accurate

formulae are given each year in the ephemeris (see for example

I^.A. 1910, p. 233) by which the computation of the day numbers

/, g, G as well as other day numbers to which we have not as yet
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referred is to be effected. So far as we are at present concerned

the following approximate equations will suffice

/=^ cos o) (50"-26< - l7"-2 sin 63 - 1"-3 sin 2Z)n

= 3=-073 {t - 0-342 sin 63 -0-025 sin 2X)

gcosG = sin to (50"-26* - l7"-2 sin 63 - l"-3 sin 2Z) I. . .(iv).

= 20"-05 (t - 0-342 sin 63 - 0025 sin 2Z)

^sin(? = -9"-2cos63-0"-6cos2i: /

In these equations L and 63 are (as on p. 186) the sun's mean

longitude and the longitude of the moon's ascending node on the

ecliptic.

The time t is the fractional part of the year which has elapsed

since the commencement of the yearf

.

We can obtain the annual precession in R.A. and declination

directly from formulae (iii) by writing instead of/, g, G the values

of those quantities that would be derived from formulae (iv) if we

omitted the terms due to nutation. We thus substitute in (iii)

3'-073^ for /, 20"05« for g and zero for Q, and find for the star a, h

that as in Ex. 1, § 57

one year's precession in E.A. changes a into

a + 3^-073 + 1-336 sin a tan S

„ Decl. changes S into

8 + 20"-05 cos a

...(V).

We are now able to solve the general problem of precession and

nutation which may be stated as follows.

Being given a.^. So the mean B.A. and decl. of a star at the

beginning of the year T^ it is required to find ai, Sj the apparent

E.A. and decl. of the same star for a certain day in the year T-^ so

far as precession and nutation are concerned.

We have first to find the coordinates of the star referred to the

mean equator on Jan. 1st in the year Ti(> T^). These are obtained

by adding to the given mean R. A. and Decl. the following precessions

+ It should be noted that if the strictest accuracy is required the beginning of

the year is taken to be the moment when the sun's mean longitude is exactly 280°.

In the year 1910 this is at 5^ 40"" a.m. on Jan. 1st which may also be expressed as

Jan. O'l-TSS. For the Greenwich mean time of the beginning of each adopted

tropical year between the dates 1900 and 2000, see Appendix to Newcomb's
Spherical Astronomy, p. 403, where other useful tables will also be found.
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Precession in r.a. (3=-073 + P-3:36sin OotanSoXT,- To),

„ Decl.(20"-05cos«„)(ri-r„).

Having thus obtained the mean place for Jan. 1st in the year

Ti we obtain from the ephemeris for that year the values /i, g^, Gi

for the particular day for which the coordinates a^, Sj are required

and apply formulse (iii), which give

ai = a„ + (3«-073 + l'-336 sin «„ tan S„) (T, - T,y

+/i + TSS'i sin (ffi + a„) tan S„ ... .(vii).

81 = So + 20"-05 cos «„ (Ti - To) + g^ cos {G-, + «„)

As an example of the application of these formulse we shall

calculate the apparent K.A. and Decl. of /3 Geminorum at Green-

wich mean midnight on 1910, Nov. 7th, so far as precession and

nutation are concerned
-f".

In the Greenwich second Ten-Year Catalogue of 6892 stars

we find for the mean place of /3 Geminorum for 1890

a = 7" SB"" 35= -06, S = 28° 17' 28"-4.

Substituting these values in 3° '073 + l'"336 sin a tan S we see

that the annual precession is 3='727 so that as T^—To is in this

case 20 years the precession in r.a. from the mean place for 1890

to the mean place for 1910 is 1™ 14''54. In like manner the

annual precession in declination is 20""05 cos a = — 8"'36 so that

in 20 years it amounts to — (2' 47"'2). Thus we see that the

mean place of /3 Geminorum for 1910 is

= 7" 39"^ 49= -60, h = 28° 14' 41 "-2.

We have now to apply the corrections for giving the apparent

place on 1910, Nov. 7th. From the N.A. p. 250 we obtain for

that day
/=l-75, log^= 1-1099, (? = 332°10'.

The equivalent of a in arc is 114° 57' 24" so that (? + a = 87° 7',

whence ^p'sin((?-l- «) tan 8 = 0='46 and thus the correction to a

is l=-75 -I-
0»-46 = 2»-21. The correction to S is ^^ cos {G + ol) = 0"-7

so that we have finally for the desired apparent place on 1910,

Nov. 7th

a' = 7" 39-" 51' -81, S' = 28° 14' 41"-9.

t See N.A. 1910, p. 583, where the further corrections for aberration and

proper motion are also attended to. See also Chap, xi, § 91.
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If at the time t = 0, a„ be the right ascension with reference

to the mean equinox of a star on the equator then the true

right ascension of that star at the time t (when t is expressed in

years) will be so far as the motion of T is concerned

« = «„ + 3^-07.3« - 1=-06 sin 53 - 0=-08 sin 2L.

In this formula 3^'073 is the annual change in R.A. due to pre-

cession and the first two terms form the 'mean right ascension

at the time t. The last two terms are due to nutation. We
thus see that the variations of the right ascension of an equa-

torial star from its mean value are comprised between the limits

+ 1°"14 and — 1"'14. So far as concerns the principal term of the

nutation a complete cycle of the possible changes is run through

in 18^ years, this being, as already mentioned, the period in which

£3 increases through an angle of 360°.

Let As and Ai be the daily changes in the longitude of the

moon's node and in the sun's mean longitude respectively, then

the daily change in T due to nutation is

- l»-06 cos s . A £3 - 0'-16 cos 2Z . AZ,

The values of A 63 and Ai expressed in radians are approximately

— 0000927 and 0'0172, and consequently the diurnal change in T
is very nearly

O'-OOl cos S3 - 0=003 cos 2L.

This expression must lie between the limits — 0='004 and + O^'OO^

and consequently the difference between any sidereal day and the

mean sidereal day cannot exceed 0' 004 (excess or defect).

We have already (§ 33) defined the sidereal day as the interval

between two successive transits of IP, and now it appears that

owing to the fact that the movement of T is not absolutely uniform

all sidereal days would not be strictly equal. It might therefore be

thought that we should distinguish the average sidereal day frum

the apparent sidereal day included between two transits of T, and

therefore slightly variable. We are reminded of the distinction

between the apparent solar day and the mean solar day to be

subsequently considered, but there is no real analogy. The
difference between two apparent solar days in the same year

may be several thousand times as much as the greatest difference

between two sidereal days (see p. 215).

If we had an ideally perfect clock which would keep time
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without any correction whatever for 18^ years, so that throughout

that period the hands showed O'' 0" 0' at the completion of each

average sidereal day, then T would culminate daily for 18J years

at various clock times which would lie between 23'' 59" 58^ 'SG

and 0'' 0™ 1°14. But as even the best clocks require frequent

correction by comparison with observation, the errors arising

between one correction and the next, and attributable to the

irregularities in T are neglected because they are inappreciable in

comparison with the other sources of error. Thus we define the

sidereal day as commencing with the culmination of the true first

point of Aries.

To illustrate the actual extent of the influence of the move-

ment of T on the measurement of sidereal time we take the case

of 1909, June 10 and 20. On the first date the ephemeris gives

for the nutation — l^'Oo and on the second — 1°02. Assuming all

other sources of error absent this would be equivalent to a daily

clock rate averaging "003 sees. So small a quantity would be

masked by the much larger changes in the rate of the clock

arising from ordinary mechanical or climatic causes. Nor would

the error arising from the irregularity of T accumulate, for on

Oct. 18 the nutation is again — 1^"05, so that from June 10 to

Oct. 18 the average apparent change of rate of the clock from

this cause would be zero.

Thus the frequent determination of the error of the clock will

obviate not only the small irregularities unavoidable in a piece

of mechanism however carefully made, but will at the same time

allow us to assume that the sidereal time as shown by the clock

after the correction has been applied is with all needful accuracy

the hour angle of the first point of Aries.

It will be useful to investigate the effects of precession and

nutation on the place of a star in another manner as follows.

As the longitude of a star is measured from the first point

of Aries the precessional movement of the equator will alter the

longitude of a star while its latitude remains unaltered. Thus if

X be the longitude of a star at any time, and if the first point of

Aries move so that the longitude of the star becomes X + AX,

while at the same time the obliquity « becomes <o + Am, we have

the two following systems of equations. Of these (i), (ii), (iii) give

the values of a and S at the first Epoch, and then (iv), (v), (vi) give

B. A. 13
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Aa and AS by which the coordinates are changed by precession

in the interval

cos S sin a = sin \ cos /3 cos <» — sin /3 sin « (i),

cos 8 cos a = cos \cos /8 (ii),

sin 8 = sin \ c4s /3 sin m + sin /3 cos a (iii),

and

cos (8 + A8) sin (a + Aa) = sin (\ -Vf-^X) cos /3 cos (m + Am)
— sin y8 sin (&> + A<o). . .(iv),

cos (8 + A8) cos (a + Aa) = cos (\ + A\) cos /3 (v),

sin (S + A8) = sin (A, + AX) cos /3 sin (© + Ata)

+ sin /3 cos (to + A&))...(vi).

These equations determine Aa and A8 when A\ and Am are given,

and the solution is effected without ambiguity in the most general

case. But in the case of most general use in astronomy the four

quantities AX, Am, Aa, A8 are all small quantities, and we proceed

directly as follows.

Differentiating (iii) and dividing by cos 8 (for we need not

consider the case of 8 = 90") we have after a slight reduction

A8 = cos a sin &)Ax + sin aAw
;

also differentiating (i) and dividing by cos 8

cos aAa — tan 8 sin aA8 = cos a cos «AX — tan 8 Ao),

we thus obtain the following results by which the effects of pre-

cession and nutation on right ascensions and declinations can be

calculated with suflScient precision for most purposes.

If the position of the first point of Aries be displaced along

the ecliptic so that all longitudes are increased by the small

quantity AX, and if the obliquity be increased by a small angle

Aft), then the corresponding changes, Aa and A8, in the right

ascension and declination of a star are given by

Aa = (cos ftj + sin a tan 8 sin m) AX — tan 8 cos o Aft),

A8 = cos a sin m AX + sin oAo).

Ex. 1. Show that on any given day the stars whose declination are

increased by precession are divided from those whose declination is diminished

by precession by a great circle the stars on which have on that day no
precession in declination.

For if cos(G'+ a)=0 then all stars whose r.a. is 90° -C or 270° -G* are

unchanged as to declination by precession.
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Ex. 2. Show how the independent day numbers will enable the" apparent

obliquity of the ecliptic to be readily computed.

From (ii) § 59 we have g sin G=—{a>' — a) and therefore a>'= ai — g sin G.

For example on March 2nd, 1910, we find, N.A. p. 245, that logs'=0-7232

and <?= 243° 49', hence ^'sin (7= — 4"''74, and conseqviently as the mean
obliquity 1910-0, N.A. p. 1, is 23° 27' 3"-58 the obliquity when corrected for

nutation is 23° 27' 8" 32. As however the mean obliquity steadily diminishes

by 0"-468 annually we must further apply a reduction of 0"'08 so that the

apparent obliquity on March 2nd is 23° 27' 8"-24 as in N.A. p. 217.

Ex. 3. Show how to compute from the independent day numbers the

position of T" the apparent equinoctial point on the ecliptic with respect to

the mean equinoctial point T^ at the beginning of the year.

TTq is the quantity k which we see from §59 (ii) is (225/2+p'2cos2(r)4.

For example 1910, Dec. 25th (midnight) we have /"= 2-274, log (/'= 1-2018,

6«= 338 47° {N.A. p. 251), whence /f;= 37"-20.

Ex. 4. Show that — 6*-30 is the annual precession in right ascension of

f Ursae minoris, being given that a=16'' 56°" 12»; 8= 82° 12' (1900).

Ex. 5. Explain how to find out, by the aid of a celestial globe, what

constellations visible in the latitude of Cambridge 2000 years ago are no

longer visible there; and indicate in what part of the heavens they lie.

[Math. Trip. I.]

60. Proper motions of stars. Besides those changes in

right ascension and declination which arise from changes in the

great circles to which the coordinates of the star are referred there

are in the case of many stars real changes of place arising from

the actual movements of the stars themselves. Such changes are

called proper motions. The star in the northern hemisphere with

the largest known motion of this kind is a small star of 6-5

magnitude in the constellation Canes Venatici. It bears the

number 1830 in Groombridge's catalogue and its coordinates for

1900 are

a=lP47"'-2, S = + 38°26'.

This star moves over an arc of 7" annually, and as its distance is

also known it can be shown that its velocity must be not less than

150 miles per second. This motion is exceeded by that of a small

star (magnitude 8-5) in the southern hemisphere, which was dis-

covered by Kapteyn and Innes to have a proper motion of 8"-7

annually: its coordinates for 1900^0 are

a = 5''7"'-7, S = -45°3'.

13—2
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Among the bright stars the largest proper motion is that of

a Centauri {a = 14" 32»-8, S = - 60° 25' (1900)} which amounts to

3""7 annually and it is so directed as to produce an annual change

- 0^-49 in K.A. and +0"-7 in Declination. Arcturus {a=14'' ll'^'l,

S=+ 19°42'(1900)} has a proper motion of 2"-3 per annum, cor-

responding to a speed of 257 miles per second, and the annual

effect on the E.A. is -0^-08 and in decl. - 2"-0. In giving the

apparent places of the stars throughout the year in the ephemeris

the proper motion, if appreciable, is of course taken into account.

The proper motions just referred to are those which affect the

cooi'dinates of a star on the celestial sphere. If a star is moving

in the line of sight the spherical coordinates are not changed by

that motion and the existence of such a motion can be deduced

only from spectroscopic observations. Thus Groombridge 1830, is

found to be approaching our system at the rate of 59 miles per

second. We have already seen that the tangential speed of this

star is 150 miles per second so that its total velocity in space

relation to the sun appears to be about 160 miles per second.

61. Variations in terrestrial latitudes. The axis about

which the earth rotates was found by Kiistner to be affected by a

small motion with respect to the earth. The effect of such a

change in the earth's axis is to alter the positions of the terrestrial

poles and consequently of the terrestrial equator, and hence the

latitude of any point on the earth's surface undergoes changes

not due to actual motion in the point, but to changes in the base

from which the latitudes are measured. The first systematic in-

vestigation of this subject was made in 1891 by Chandler, who
showed that the observed changes in latitude could apparently be

explained by the supposition that the pole of the earth described

a circle with a radius of thirty feet in a period of about fourteen

months. Later investigations by Chandler himself and others,

while substantiating the general fact that the pole is in move-

ment, have shown that the character of that movement is not

quite so simple as had been at first supposed. We reproduce here

the diagram (Fig. 61) given by Professor Albrecht in Astrono-

mische Nachrichten, Nr. 4187, as a provisional result of the work

of the International Geodetic Association. Reference may also be

made to an account given by Mr Sidney D. Townley in the Publi-

cations of the Astronomical Society of the Pacific, Vol. xix. p. 1.52.
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In this diagram the origin at the centre of the figure is the
mean position of the north pole in the earth, and the points

marked on the curves indicate the actual positions of the pole

at the corresponding dates. Thus for example the curve nearest

the centre shows the movement of the pole from 1899'9 to 1901-0,

from whence it can be traced forward in its various convolutions

up to 1907-0. It will be seen that the positions of the pole are

included within a square, each side of which subtends about 0"-50

at the earth's centre. The movements of the pole during the six

years are thus comprised within a square of which the sides are

not more than 50 feet. The individual positions are no doubt
subject to considerable uncertainty.

-ti'io

6.00

^ 6.10 d'OO

Fig. 61.
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EXERCISES ON CHAPTER VIII.

Ex. 1. Assuming that tlie constant of precession is 50"-2453+ 0"-0002225«

where t is the interval in years from 1850'0, find the number of years that

must elapse before T makes a complete circuit of the ecliptic.

Integrating we find the movement of T in « years and if x be the number
sought we have

50-2453^+0-00011125.j;2=1296000.

Of the two roots of this quadratic one is negative and irrelevant, the other

root is 24468 or in round numbers 24,500.

*Ex. 2. Show that the points on the celestial sphere where the correction

to R.A. for precession and nutation is zero on any given day lie on the cone

f{x^+2/^) +^gz {x sin G+y cos 0)=0,

where the origin is at the sun's centre and the axes +X, +T, 4-.^ pass re-

spectively through the points whose e.a. and 8 are (0°, 0°)
;

(90°, 0°), (0°, 90°)

and where /, g, O are the independent day numbers for the day in question.

If the nutation be omitted deduce Ex. 6, § 57.

Ex. 3. Neglecting nutation show that the interval between two successive

returns of the star (a, 8) to the meridian will exceed by 0"'00366 sin a tan 8

the sidereal day as defined by successive transits of f, it being svipposed

that the star has no proper motion.

Ex. 4. The right ascension of a star on the ecliptic is a, its declination 8,

its longitude I. The precessions in right ascension, declination, and longitude

are respectively a, 8', V. Prove the relations

a cot b= l' cot I= n' cot a cos^ 8.

[Coll. Exam.]

Ex. 5. The stars on the celestial sphere regarded as a rigid system are

supposed to be subjected to three rotations as follows.

(1) Through a small angle ?; round T as nole,

\^) JJ » 3J 53 S )) -O ,, ,,

\°> 1! JI " II f )5 ' II JI

where P is the north pole and B the point a=90°, 8=0.

Show that if Aa, A8 are the changes thus produced in the a and 8 of

a star, then
Aa= — i)Cosatan8-|sinatan8-|-f,

a8= I) sin a - 1 cos a.

This is proved most easily by infinitesimal geometry each of the three

rotations being considered separately.

*Ex. 6. Show that the apparent place of the equator as affected by pre-

cession and nutation at any date T during the year can be obtained by
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applying to the position of the equator at the commencement of the year

the three following rotations.

(1) Through the small angle gsinO round T as nole,

(2) „ „ „ „ gcoaG „ B „ „

where P is the north pole and B the point a= 90°, 8=0.

The point where If was situated at the commencement of the year has as

its coordinates with respect to the equator of the date T, d=\bf ; S'=gcos O
where / is expressed in seconds of time. In like manner the point B at the

beginning of the year has as its coordinates with respect to the equator at

time T, a'= 90°+ 15/, 8'=—gsinG. It is obvious from geometry that rota-

tions g sin G, g cos G, - 15/ round noles T, B, P will convey the two points

in question from the equator at the beginning of the year to the equator at

the date T.

Ex. 7. Show geometrically that the effect of precession and nutation

upon the r.a. and decl. of the stars during an interval t is equivalent to

that produced by rotating the celestial sphere {i.e. the sphere containing the

stars but not the circles of reference), about a diameter passing through the

point whose longitude is zero and latitude is

the angle of rotation being

and its direction retrograde, where p is the constant of prece.5sion, and aL, Am
are the nutations in longitude and obliquity respectively.

The effect of precession and nutation in longitude could be produced by

rotating the celestial sphere round P the pole of the ecliptic through the

angle pt-^6.L= VPV^ (Fig. 62). Thus any point R on PF is conveyed to R^

on PVi. The direction of this rotation is determined by the necessity that

Fig. 62.
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it shall increase the longitude of each point. To effect the change arising

from the increase of a by the nutation Am the celestial sphere is to be

rotated round V. The movement of the equator through the angle Am

increases the angle between the ecliptic VS and the equator while the

ecliptic remains fixed. The effect will be the same as if all points had

an anti-clockwise rotation Am round V. Each point on PVi will be moved

to the left and there will be some point R, which will be moved back to its

original place R. Thus so far as this point is concerned the two rotations

neutralize. The two rotations round V and P will therefore compound into

one rotation about R.

If 6 be the latitude of R, then VR=6 and

RRi= {pt+ £iL) cos 5= Am sin d,

whence tan5=(^<-|-AZ)/Am, and as the component rotations are at right

angles the resultant is the square root of the sum of their squares, i.e.

Ex. 8. Show that on a given day the greatest displacement of apparent

position which a star can have by precession and nutation is

that all stars which have this displacement must lie on a great circle, whose
equation is

cos a cos SAm + (sin 8 cos m - sin a cos S sin m) (pt + AL)= 0,

and finally that the displaced position lies also on the same great circle.
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62. Sidereal time.

We have already seen (Ex. 1, p. 198) that in the course of about

24,500 years T accomplishes a complete revolution of the heavens,

and in such a direction that in this period the stars have made

one complete apparent revolution less than T. The duration of

the earth's rotation bears to the sidereal day (§ 33) the ratio of

24,500 years + 1 day to 24,500 years. Thus the period of rotation

of the earth exceeds by about one hundredth of a second the

sidereal day as actually used in the observatory. It has been

pointed out (§ 59) that the variations in the length of the sidereal

day, due to the irregularities in the motion of T, are too small to

be perceptible.

The sidereal clock, by which we mean a clock regulated

to keep sidereal time, carries a dial divided into 24 equal spaces

by figures marked to 23. When T is on the meridian of the

observer, then if the sidereal clock has no error it will show

O*" 0" 0', and if in addition the rate of the clock is correct it will

again show O"" 0" 0' when T returns to the meridian.
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The special convenience of sidereal time in the observatory is

due to the fact that, subject to certain small corrections, the same

star crosses the meridian each day at the same sidereal time f

.

Ex. 1. If the proper motion by which a star shifts its place on the

celestial sphere amounts to p seconds of arc annually, show that so far as this

is concerned the interval between two successive transits of this star could

never differ from a sidereal day by more than '00018/) sec 8 seconds, where

6 is the declination of the star.

Ex. 2. If the distance of the first point of Aries measured from a fixed

equatorial star is

p+qt+A cos mt +B sin mt,

where p, q, A, m, B are constants and where t is the time expressed in years,

show that the interval between two successive upper transits of the first point

of Aries will have as its extreme limits

24i>+ TO \/^2+ ^2/366-24 and 24^ - mVlH 52/366-24.

Let t' be a moment of culmination of If, then the next culmination will

take place approximately at <'+ . The distance of 'V from its original

position will have changed by the amount

P^^ (''+ 36^24) + ^ °°^ ™''- "^^ 36^^ ^'"^ ™''

-(p+qt'+ A 00s mt'-'rB sin mt!).

-\-Bwaint' + niB ^^tttt, cos mi'
366-24

Of this the periodic part is {Bcoamt' —A sin mt'), and there is no

value for t' which can make this numerically greater than \'A''+ B''.

63. The setting of the astronomical clock.

The practical method for determining the correction of the

astronomical clock, is, in its simplest form, as follows.

The ephemeris shows for every tenth day the apparent right

ascensions of some hundreds of fundamental stars, so distributed

over the heavens that at every place and at every hour one or

more of these stars is approaching the meridian. The correction of

the clock is obtained by subtracting the clock time of transit over

the meridian as found by observation from the Eight Ascension of

the star as deduced by interpolation from the ephemeris. Thus

+ In the ephemeris tables will be found for transforming intervals of sidereal

time into the corresponding intervals of mean time and vice versa.
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the correction is positive when the clock is slow, for an addition

has then to be made to the clock time to obtain the true time.

When the clock is fast the correction is negative.

Suppose, for example, that an observation of the transit of the

star /3 Eridani is made on 1910, Feb. 10, and that when all due
corrections have been applied we have

:

Clock time of transit of /3 Eridani S^ 3" 42''-6

Ephemeris gives for the apparent R. A. of /3 Eridani ."> 3 2.5 '6

Correction of clock —0 17'0

If therefore the correction — 17' is applied to any reading of

the clock the correct corresponding time is obtained. Thus at the

moment when the first point of Aries is on the meridian this

clock, which ought to show O"" O" 0^ does in fact show O*" O" l7'-0.

To obtain greater accuracy the mean of the corrections derived

from a number of fundamental stars should be used.

The rate of the clock is found by comparing the corrections to

the clock found at suitable intervals. Thus suppose

on June 14, at 20'' S.T. the correction is + 18' '64,

on June 15, at 21 „ „ „ +20-80.

The rate per day at which the clock has been losing during

the interval is therefore || x 2'-16 = 2'-07.

When the rate of the clock is known the difference of Right

Ascensions of two stars is determined by observing the difference

of their times of transit and then applying the correction for the

rate of the clock in the interval.

Thus if the Right Ascension of even one celestial body is known

we can determine, subject to certain qualifications, the Right

Ascensions of other celestial bodies. We have therefore to show

bow a single fundamental R.A. is to be ascertained, and as the

position of T is determined by the sun's motion, it is obvious that

the sun must be the body to be observed for this purpose.

If ft) be the obliquity of the ecliptic and a, h the R.A. and

Declination of the sun, the centre of which is supposed to be in the

ecliptic, then
sin a = tan B cot to (i).

We shall assume that o) is known (§ 64) and that B has been ob-

served. Then a can be calculated from this equation. If t be the
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time of transit as shown by the astronomical clock, then a — t, the

error of the clock, is known.

As an example of this process we may take the following.

Suppose that on the meridian of Greenwich the clock time of

the transit of the sun on March 28, 1909, is 0'^ 26" 49»'2 and the

observed declination of the sun's centre is 2° 51' 1"'3 N. The

obliquity of the ecliptic is known to be 23° 27' 6"'l, and we seek

the correction to the clock. We find the R.A. of the sun at transit

by the formula (i), and the calculation is as follows

:

Log tan 2° 51' l"-3 8'6971357

log cot 23 27 6 -1 0'3627002

Log sin 0'' 26-° 2r-7 =9-0598359.

The correction of the clock is therefore

Qh 26"' 2r-7-(0'' 26"'49»-2) = -27=-o.

By the application of this correction to any clock time and

allowing for the rate of the clock (assumed constant) the true

corresponding sidereal time is found.

In the following method of finding the right ascension of a

star we shall suppose the effects of precession and nutation to

have been already allowed for.

Let a be the unknown R.A. of a star, and on a certain day at a

certain place let ti be the interval in sidereal time by which the

transit of the sun precedes the transit of the star. The R.A. of the

sun is therefore a — <i, and if 8 be its declination and a the obliquity

of the ecliptic

sin (a — ti) = tan Sj cot a> (ii).

On another occasion in the course of the year let the transit of

the sun with declination 82 precede that of the same star by the

time 4 and we have

sin (a — ^2) = tan 83 cot a (iii),

subtracting these equations and then adding them we easily

deduce

cot {a - J (ti + 1^)} = cot ^ («2 - i,) sin (Sj - B^) cosec (Sj + 8^). . .(iv).

Hence from observing S^ and B^ and the time intervals ti and t^

we have the means of finding a without a previous knowledge
of Q).
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Ex. 1. If E(^ be the correction to the astronomical clock at a clock time

To and if r be the gaining rate of the clock, expressed in seconds per day,

show that the correction to be applied to any clock time T to obtain the

true time is £q-{T- T„)r/24, where T and T„ are expressed in hours.

Ex. 2. On a little shelf attached to the middle of the pendulum of a

mean time clock a number of small equal masses are carried, each just so

heavy that an addition of one to their number causes an increase in the rate

of the clock of one second daily. It is arranged that any small number of

these masses may be placed on the shelf or removed from the shelf while the

clock is going without disturbing the clock's motion.

If the correction of the clock at noon yesterday was E^ seconds and at

noon to-day is E^, show that the number of the masses to be added to the

shelf at noon to-day to make the clock right at noon to-morrow is 2E2 — E^

.

Ex. 3. On March 25, 1909, the sun crosses the meridian S^ 34"° 47» before

a Orionis, and on September 17 the sun crosses the meridian b^ 47" 28^ after

a Orionis, the corresponding declinations of the sun being -1-1° 40' 27" and
-1-2° 24' 37".

Show that the r.a. of n Orionis is approximately b^ 50" 14^

[Math. Trip. I. 1901.]

64. The obliquity of the ecliptic.

The obliquity of the ecliptic (see p. 187) is found by measure-

ment of the declination of the sun about the time of a solstice. If

this measurement could be made exactly at the time of the solstice

then the obliquity would be equal to this measured declination.

But an observation will not generally be feasible actually at the

moment of the solstice, so the problem we have to consider is how
the obliquity is obtained from an observed declination of the sun

about the time of the solstice and at a known Right Ascension.

We have as in last section

tan o) = tan S cosec a (i).

It would at first seem that there could be no more simple

formula than this for the determination of on when h and a are

given. We have however to show that a more practical formula

for the actual calculations can be obtained, even though its form

is more complicated and even though it is only an approximate

formula, while the formula (i) just written is exact.

We have from (i), for the summer solstice,

, -x tan 8 (1 — sin a)
tan ((0 — 0)=—-. —r^-

^ ^ sin a -f tan'' 6

= sin 8 cos 8(1— sin a), since sin a is nearly 1,

whence to - 8 = sin 2S sin^ (45°- ^a) cosec 1" (iij.
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This is the proper formula to be used in this calculation, because

in (ii) we are computing not w but only m — h; and as w is very

nearly equal to S we have only to find the small quantity w — S.

This will be illustrated by taking a particular case.

On 22 June, 1909, at apparent noon at Greenwich, the sun's

apparent Declination is 23° 27' 4""3. Its Right Ascension is

gh jm 438-29 (= 90° 25' 49" -35). We now calculate (« - S) from

formula (ii), using only three decimal places in the logarithms

:

Log sin 28 = 9-863

Log sin (45° - ^a) = 7-574)i

= 7-574?i

log cosec 1" = 5"314

log(«-S) =0325 <«-S = + 2"l

<B=23°27'6"-4.

There would be no advantage in using more than three figures

in the logarithms, for neglect of the remaining figures could by

no possibility make a difference of 0"'l in to. It also appears

that S need be taken to only the nearest minute when log sin 28

is being written down.

If we attempted to find to by using logarithms of three figures

in formula (i) we have

Log tan a = 9-637

Log sin a = 0000

Log tan o) = 9-637

from which it would seem that m may be any angle between

23° 24' 48" and 23° 27' 42". Thus we see that while formula (ii)

determines &> correctly to 0"-l, formula (i) gives a value of <o which

may be wrong by nearly 3', although the same number of decimal

places has been used in the logarithms in each case. A few further

trials will show that the 3-figure logs applied to an approximate

formula (ii) actually give a more correct result than 4, 5 or even

6-figure logs applied to an exact formula (i) ; and this is true not-

withstanding that formula (ii) has been deduced from formula (i).

Of course (i) must give the accurate result if a sufiicient

number of decimal places in the logarithms be employed. For

example, using 7 figures,

Log tan h = 9-6372895

Log sin a = 9-999987.S

Log tan ft) = 9637 30 17
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and we obtain the correct result w = 23° 27' 6"-4. This however

cannot be obtained without interpolation even if we employ

Bagay's tables which give the logarithms of the trigonometrical

functions for each second of arc.

The point here illustrated is important not only in connection

with the determination of the obliquity of the ecliptic but in other

astronomical problems in which an unknown quantity is sought

and in which a choice of the most suitable formula for the cal-

culation has to be made.

In general we should select a formula which, as in (ii), gives

an expression not exactly for the unknown itself but rather for

the difference between the unknown and a known approximate

value. When such a formula is obtained, troublesome interpola-

tion in the calculation can generally be dispensed with, and a

small number of decimal places suffices in the logarithms.

Ex. 1. Show that near the time of the winter solstice the obliquity of the

ecliptic Q> is given by the formula <a= S+ cosec 1" sin 2S sin^ (45° + Ja), a being

the right ascension and 8 the southern declination of the sun and apply this

formula to show that when S =23° 26' 58"-2 S. and a= 17'> 57"" 47»-98 (22 Dec.

1907) the obliquity of the ecliptic is 23° 27' l"-9.

Ex. 2. Prove from the following observation and data that on Jan. 1,

1893, the mean obliquity of the ecliptic was 23° 27' ll"-36 :—
Observed :

—

® 's apparent declination June 19 at apparent noon 23° 26' 42"'90 N.

Extracted from Nautical Almanac :

—

®'s apparent r.a, June 19 at apparent noon b^ 52" 52='ll.

®'s apparent latitude June 19 is 0"'45 N.

Nutation in obliquity June 19 -|-7"-73.

Secular change in obliquity — 0"'476 annually.

[Math. Trip. II.]

In consequence of the planetary perturbations the earth swerves to a

small extent now to one side of the ecliptic and now to the other, thus the

centre of the sun has apparently a very small latitude which though

generally neglected is taken account of in this question. The value of o> on

June 19 is easily seen to be

(B=S- ^ sin m cosec 8+ sin 28sin2 (45° - ^a) cosec 1".

Introducing the given values we have

(»= 23° 26' 42" -90+ 35" -95= 23° 27' 18" -85.

Applying the nutation and the secular change of the obliquity for half a year

we must correct this by -7" "73 and +0""24 and we thus have for the mean

obliquity at the beginning of the year 23° 27' 11 "'36 as proposed.
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Ex. 3. If the observed right ascension of the sun be 90° -m, and its

declination 8, find the following formula for the determination of the

obliquity of the ecliptic from observations taken near the solstice

„ tan^itt . „ tan^-^M . ,

m - = —.—^ sin 2(0 :—^ sin 4a+ ...
sm 1 sm 2

where a> is the required obliquity, and w - 8 is measured in seconds.

Discuss carefully the following questions arising from the formula :

—

(1) A knowledge of the position of the first point of Aries is required in

order to determine u. (2) A correction is required for 8 owing to the small

latitude of the sun. (3) The sought quantity o> appears on the right-hand

side.

[Coll. Exam.]

65. Estimation of the accuracy obtainable in the deter-

mination of Right Ascensions.

It is useful to examine the degree of accuracy attainable in

the determination of the origin from which Right Ascensions are

measured.

Let us first suppose that there was an error Ata in the value

of the obliquity of the ecliptic assumed in calculating the R.A. of

the sun from observed values of the Declination. Dififerentiating

the equation sin a = tan S cot m and regarding S as constant,

cos aAa = — tan 8 cosec^ a>A(t>,

or Aa = — 2 tan a cosec 2coAca.

Substituting in this for co its approximate value 23° 27', we
have

Aa = - 2-74 tan aAo).

We thus see the advantage obtained by making these observa-

tions as nearly as possible at the equinox. The greater is a the

greater becomes Aa for a given value of Aoj. As therefore we
want Ao) to produce the smallest possible effect on a, we should

have a as small as possible.

Suppose the adopted value of the obliquity were erroneous to

the extent of one second of arc then Am = 1", and if this produce
an error of x seconds of time in a we have Aa = 15a;, whence

« = - 0^-183 tan a.

If then the R.A. is to be correct to within O^'l we must have
tana::|>-548 or a :} l*" 54"". This is the R.A. of the sun on the

20th April. Heuce we see that for about a month on either side
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of the equinox this method may be relied on to give the position

of T accurately to the tenth part of a second, provided the assumed

value of the obliquity of the ecliptic is known to within a second

of arc. It is, of course, in this assumed that there is no error in

the observed value of the declination.

We must next consider what would have been the effect of an

error in the observed Declination on the concluded value of the

R.A. of the sun.

Differentiating sin a = tan S cot to with respect to a and S, and

regarding w as constant, we obtain

Aa = sec a sec^ S cot coAS.

which may also be written in the form

Aa = sec a (1 + sitf a tatf to) cot to AS.

As S is the measured quantity we must take care to arrange our

observations so that any error AS (and, of course, such errors are

unavoidable) shall not unduly affect a. The factor cot co is con-

stant, and as the declination of the sun never exceeds m there

will be no great variations in sec^ S. As however sec a may have

any value from 1 to oo it is plain that we must have sec a at its

lowestr value to keep Aa as small as possible, i.e. a should be nearly

zero or 180°, and hence the sun should be near T or £!:, and con-

sequently the observations must be made near either the vernal or

the autumnal equinox.

Substituting its numerical value for a> we easily find that the

values of Aa, corresponding to different Right Ascensions of the

sun, are as follows

:

B,.A. of sun. Aa.

O*- 2-3 AS
2^ 2-8 AS
4'' 6-3 AS

and at the solstice the coefficient of AS would be infinite.

Thus we see how important it is to minimize errors by

making the observations near one of the equinoxes.

If the right ascension be required within the tenth part of

a second Aa = 0''l = l"'5, and consequently an error of a tenth

of a second of time may arise from an error of 0"'65 in the deter-

mination of the sun's declination even close to the equinox.

B. A. U
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66. The sidereal year and the tropical year.

In consequence of the revolution of the earth the sun appears

to a terrestrial observer to make a complete circuit of the heavens

once a year. It is important to distinguish the different meanings

which may be assigned to the word year.

The sidereal year is the time interval in which the sun's

centre performs a complete revolution with reference to the stars,

or more precisely with reference to any one star situated in the

ecliptic and devoid of proper motion. The sidereal year is also the

periodic time in which the earth completes one sidereal revolution

round the sun, when the earth is regarded as a planet belonging

to the solar system. At the epoch 1900 the duration of the

sidereal year is 365"2o64 mean solar days.

The tropical year is the average interval between two successive

returns of the sun to the first point of Aries. This point moves

on the ecliptic by precession and advances to meet the sun at

the rate (1900) of 50"-2564. annually (Newcomb). The tropical

year is therefore less than the sidereal year in the ratio of

(360° - 50"-2564)/360°, and is found to be 365-2422 mean solar

days. We have already mentioned (see note on p. 190) that in

astronomical reckoning the commencement of the tropical year is

the moment when the sun's mean longitude is exactly 280°, which

in the year 1910 corresponds to Jan. 0'^'735.

It is the tropical year and not the sidereal year which is adopted

as the basis in determining the civil year. According to the

Julian Calendar the tropical year was assumed to be 365"2.5 days

and it was arranged that of every four consecutive civil years three

should have 365 days each and the fourth year, i.e. that divisible

by 4, should be leap year and have a 29th of Februarj'^ added to

make the number of days 366. This arrangement made the

average civil year about 11 minutes longer than the tropical year.

The Gregorian correction to the Julian Calendar was introduced

to bring about a closer correspondence between the average civil

year and the tropical year. By this correction three of the leap

years given by the Julian rule in every four centuries were
suppressed. If the number expressing a year terminated in two
cyphers, then such a year being divisible by 4 would be of course

a leap year according to the Julian rule. But according to the

Calendar with the Gregorian correction such a year is not to be
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a leap year unless the number formed by its two first digits is to

be divisible by i. Thus 1800, 1900, 2100, 2200, 2300 though

Julian leap years are not Gregorian leap years but 2000 and 2400

are leap years in both systems. It is the Julian Calendg-r with the

Gregorian correction that we now employ.

The present Calendar thus contains 97 leap years in every four

centuries, and consequently the number of days in the four centuries

is 365 X 400 + 97 = 146097 so that the average length of the civil

year according to our present system is 365'2425 days. This

agrees with the tropical year to within 0'0003 of a day. This

approximation is so close that an error of a day in the reckoning

would not be reached for some thousands of years.

Ex. 1. Show that at any observatory the number of upper culminations

of the first point of Aries in the course of a tropical year (i.e. the number of

sidereal days between two consecutive passages of the sun through T)

exceeds by unity the number of upper culminations of the sun at the same

observatory and in the same year.

At the first transit of T after the year has commenced the sun must

culminate somewhat later than IT. At the second, third, and subsequent

culminations of T" the sun will be ever more and more behind until when the

year draws near its completion the sun will have fallen behind by nearly the

whole circumference. The «th culmination of the sun will then be speedily

followed by the {n+l)th culmination of T. If the sun overtakes T when 'V

is not in culmination the year is complete but the number of culminations of

the sun is one short. If the sun overtakes T" at the moment of its culmina-

tion then at the expiring moment of the year one more ciilmination is added

to both sun and T, thus leaving the sun still one short.

Ex. 2. In a certain country the rule for leap year is :—If there are any

cyphers at the end of the number for the year, strike off as many pairs of

cyphers as possible ; then if the remaining number is divisible by 4, it is leap

year. In another country the rule is :—Divide the number of the year by 33,

then if there is a remainder and if that remainder is divisible by 4, it is leap

year. Prove that the reckoning will never differ by more than a day in the

two countries.
[Math. Trip.]

In 33 consecutive periods each of 400 years there must be one period but

only one which commences with a year of which the number is divisible

by 33. That year will not be a leap year, and the total number of leap years

in the second country in that period of 400 years will be 96 and it thus falls

1 day in arrear. In each of the other 32 periods the number of leap years

is 97. Hence the total number in 33 x 400= 13200 years is 33 x 97 - 1.

In the first country there will be generally 97 leap years per 400 years,

but in a period of 13,200 years there will be according to the condition no

14—2
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leap year in the year 10,000 and the count will fall one day in arrear. Hence

the total rnunber of leap years in each 13,200 years is 33x97-1 = 3200.

Thus we see that each cycle of 13,200 years contains exactly 3200 leap years

in either country.

67. The geometrical principle of a mean motion.

A point P is moving in the circumference of a circle (Fig. 63),

and in such a way that at the time t the angle OCP = 6, measured

from a fixed radius CO, is defined by the equation

e = a + -=r + A^ sm
27r« 27ri\
jn- + Bi cos -™-

+ A^ sm -yp- + B^ cos -yjT y
-'-0 J-o

,
. . Qirt

, „ Qirt
+ -43 sm -y=r + Bs cos -^

•(i)

where a, To, A^, B^, A^, B^, A^, -S3... are constants. The very

general expression of 6 in terms of t here given will include as a

particular case the formula for the longitude of the sun in terms

of the time.

Fig. 63.

If t + Ta be written in the expression for 6 instead of t, then 6

becomes 6 + 27r, i.e. P returns to the point from which it started.

Thus To is the periodic time of the motion of P.

Differentiating 9 with respect to t we have

de

dt
''

27r 27r4i 2-7rt

-rp +-75— COS
Lo J-o To To

2TrB^ . 2Trt
sm-=-

•'•0

+
4!7rA„ 4<Trt 4nrB,

T-'0
cos -7=

To

2 . 4<Trt
- sm^ .

•(")>
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an expression which is not altered by changing t into t + T^.

Thus we see that if v be the velocity with which P passes through

any point X in one circuit, then v will also be the velocity with

which P passes through the same point X on every circuit.

It thus appears that every circuit exactly reproduces every

other circuit. Not only is the time taken for the circuit the

same but the actual velocity at every point is the same in every

circuit.

That part of the expression of dO/dt, namely ^ttJT^, which is

obtained by omitting the trigonometrical functions, is termed the

mean angular velocity. Let Pt, be a point moving uniformly round

the circle with the angular velocity Stt/To, and so that at every

moment CPq makes with the fixed radius GO the angle a + 2irtjT„,

then we have the following properties of the mean position P^ and

the true position P

:

(1) The periodic times of P and Pq are identical.

(2) The distance between P and Po can never exceed a

certain finite limit.

(3) The average difference between P and P^ in the course

of a complete circuit is zero.

(1) is evident because each of these periodic times is T^.

(2) follows because the distance from P to P,, can never

exceed the sum + J.i + ^a ± ^a ± -Bi + £3 + P3 &c. where each sign

is so taken that the corresponding term is positive.

(3) For whenever n is an integer we have

I sin „ dt — O and I cos ^ dt = 0.

Jo -'o Jo 'a

Hence it follows that if we subtract the angle representing the

position of Po from the corresponding 6 the average value of the

difference is zero, for that difference consists of periodic terms

only, and the average value of each one is zero.

It follows that in moving uniformly round the circle Po is

sometimes in advance of P and sometimes behind P, and that on

the average Po will be just as much before P as it is behind.

Thus the movement of Po is rightly described as the mean motion

of P. We may regard the true motion of P as an oscillatory

movement about the mean place Po.
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Ex. 1. If 6a, 6i, ..., 6I5 be the values of 6 at the times 0, To/G, %Toi% S^o/e,

42;/6, ST'o/e respectively, show that for a the part of 6 independent of t we

have
a= J (50+ ^1 + ^2+ 53+ ^4+ ^6)- 150°,

if Ai, Bi and all higher terms be omitted.

By successive substitutions in the general formula (i)

eo= a +£1 +B2 +Bi,

ei=a+ 60°+^i^3/2 +A/2 + ^2v^3/2-£2/2 --B3.

52= a+ 120 +A^^^/2-Bl/2,-A2^3/2-B2/2 +B3,

53= ce+ 180 -Bi +B2 -Bi,

54= a + 240 -^iv/3/2-5i/2+^2n/3/2-52/2 +Bz,

56= a+ 300 -^iV3/2+5i/2-^2n/3/2-.B2/2 -B^,

whence by addition

a=\{6a^el + e2+ 63+ e^+6i)-lm'^.

If therefore we know the values of 6 at the six epochs which divide a

whole period of revolution Tq into six equal parts we can determine a and

thence a+2irtlTf, or the mean position Pq at any time t is known.

Ex. 2. Show how the general formula (i) is simplified if the motion is

symmetrical about the axis CO.

In this case d6/dt will be the same for t and To — t, if t be measured from

the time of passage through 0, whence by substitution in (ii)

-fjr~ sm ^p + -=- sm -^ + ^H sm •=- =0,
-'0 -'0 -^0 -io J-o -'0

as this must be true for all values of t, Bi= B2= B3= 0, and thus the formula (i)

reduces to

6= 2irt/Tf, + AiSm27rtjTo+A2sm4irt/To+ A3Sm6nt/To.

Ex. 3. Assuming that the movement is symmetrical and that the axis

of symmetry is the axis from which d is measured and that .4 3 and higher

coefl&cients may be regarded as zero, show that if ^i<242 there will be three

real points in which the mean position of P coincides with its true position.

Ex. 4. From the Nautical Almanac for 1909 we obtain the following

values for the apparent longitude of the sun at mean noon :

—

1909 Apparent longitude

Mean noon of o
Jan. 1st 280° 28' 1"-1

Ap. 2nd 12 6 30 -9

July 2nd 99 55 40-4

Oct. 1st 187 39 27 -2

Show that 280°•499+ 360° i/To is the mean longitude of the sun where t is

the number of mean solar days elapsed since mean noon on Jan. 1st, 1909, and
where Tg is the length of the tropical year expressed in mean solar days.
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In applying formula (i) we discard Ag, S3 and higher terms. In the
periodic terms we may, with sufficient accuracy, make t successively 0, JTq)
^7o, f lo) and we must obviously increase each of the apparent longitudes on
the last three dates by 360°. Thus we have from (i)

280° 28' 1"-1 = C6 +Bi +B2,

372 6 30 -9= + 360° X 9l/To +Ai -B2,

459 55 40 -4= 01+ 360 x ISa/yo -Bi +B2,

547 39 27 -2= a+ 360 x 273/^0 -A --B2,

whence by addition and making 7o=365-2422,

1660° 9' 39" -6= 4a +538° 9' 48"
-6,

and finally a=280°-499.

The daily increase of mean longitude of the sun is 0°-98565 and the mean
longitude is zero 80-656 days after the commencement of the year, i.e.

March 22ud.

When several small terms which are here omitted have been attended to

the sun's mean longitude is

280°-49942 + 360°«/yo-

Ex. 5. Show from the last example that on Nov. 7th, 1906, the mean
longitude of the sun is 226°'05.

Ex. 6. Being given that the sun's mean longitude is 9°-20768 on

April 1st, 1909, and that the daily increase is 0°-98565, show that the sun's

mean longitude on Jan. 0*-493 was 280°.

68. Mean time.

Though it is essential for the special work of the observatory

to employ sidereal time, yet it is obvious that the astronomical

clock would not serve the ordinary purposes of civil life. For

this latter object a day of which the length is regulated by the

sun and not by the stars is required. We therefore use what is

known as the mean solar day for our ordinary time measurement.

Since the movement of the sun in Right Ascension is not

uniform, the interval between two successive returns of the sun's

centre to the meridian is not constant. As an illustration we here

give the sidereal length of the solar day at four equidistant

dates throughout the year 1909

:

1909. Sidereal interval.

Apparent noon Jan. 1st to apparent noon Jan. 2nd 24'' 4" 24°"9

„ April 2nd „ „ „ April 3rd 24. 3 38 -5

„ July 3rd „ „ „ July 4th 24 '4 7 '5

„ Oct. 2nd „ „ „ Oct. 3rd 24 3 37 -6
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The first line of this table states that if the time at which the

sun's centre crosses the meridian of the observer be taken by an

astronomical clock on Jan. 1st, 1909, and the observation be re-

peated on the following day, the astronomical clock, if due

allowance be made for its rate, will show that an interval of

24'! 4" 24" '9 of sidereal time has elapsed between the two

transits.

We observe that the apparent solar day, commencing at

apparent noon on Jan. 1st, is 47'3 sidereal seconds longer than

that commencing at apparent noon on Oct. 2nd. It thus ap-

pears that the length of the apparent solar day is not constant

throughout the year, and its variations certainly exceed three-

quarters of a minute. On account of these irregularities the true

solar day is not a suitable unit for ordinary time measurement.

We adopt as the unit a mean solar day, the length of which is

the average duration of the apparent solar days in a large number
of years. The average duration of the four days in the list just

given for 1909 is 24*" 3" 5T'l, and this is an approximate value

of the mean solar day. When the mean of an exceedingly large

number of consecutive apparent solar days has been taken it is

found that the equivalent in sidereal time to one mean solar day

is 24'' 3" 56='555.

To avoid circumlocution astronomers have found it convenient

to imagine a fictitious body (or point rather) which at every

moment is on the apparent equator, and has an apparent right

ascension equal to the mean longitude of the sun. This imaginary

body is called the mean sun. It will be shown in § 74 that the

apparent right ascension of the sun is equal to the sum of the

mean longitude of the sun and periodic terms. Thus the apparent

E.A. of the sun and the apparent R.A. of the mean sun differ by

periodic terms only. Hence in a long interval of time the average

difference in apparent E.A. between the true sun and the mean

sun will tend to zero. If we could overlook the movement of

the equator by precession and nutation then the mean sun

might be described as a body moving uniformly in the equator

so that at every moment its R.A. is equal to the sun's mean
longitude.

When the mean sun is in the meridian a clock properly

regulated to show local mean time will read 0'' 0" 0^ Thus the



§ 68] SIDEREAL TIME AND MEAN TIME 217

time shown by the mean time clock indicates at any moment the

hour angle of the mean sun from the meridian. For civil purposes

the day commences at midnight, and the hours are counted from

l*" to 12'' (noon), and then again from l*" to 12'' (midnight), the

former hours being distinguished by the letters A.M. and the latter

by P.M. In astronomical reckoning the day extends from noon to

noon : noon is called 0'', and the following hours are numbered

consecutively, up to 23^ Thus 12.30 p.m. civil reckoning is

called 0'' 30"" in astronomical reckoning.

Ex. 1. Find the length of the mean solar day in sidereal time from the

following data :

—

On 4th July, 1836, the apparent r.a. of the centre of the sun was

found by observation at transit at Greenwich to be e"" 54™ 7"'03.

Similarly on 4th July, 1890, the apparent r.a. of the centre of the

sun was found to be Q^ SS"" 54»-61.

We have first to determine the sidereal interval between Q^ 54" 7'-03

sidereal time on 4th July, 1836, and 6'' 53™ 54»-61 sidereal time on

4th July, 1890.

This is an interval of 54 years and therefore there will be 54 more

transits of the first' point of Aries than of the sun (§ 66, Ex. 1). Of the latter

there are 19723, so that there are 19777 of If, and consequently the total

interval expressed in sidereal time is

19777d 6h 53m 54s-6i_(6i' 54™ 7"-03).

Dividing this by 19723 we find the sidereal value of the mean solar

day to be 24'' 3™ 56"-555.

Ex. 2. The length of the mean solar day in sidereal time is determined

as in the last example by comparing the right ascensions of the sun at two

epochs of which one is 30 years later than the other. Show that errors

as great as 5' in both of the right ascensions cannot afiect the value found

for the mean solar day by more than the thousandth of a second.

Ex. 3. An approximate rule for converting mean solar time into sidereal

may be stated thus :—For every 1^ 1™ add 10" ; for every remaining 1™ 1'

add J' ; for every remaining 4» add O^'Ol. What is the error in finding by

this rule the length of a mean solar day ?

[Sheepshanks Exhibition.]

Ex. 4. If in the expression of the duration of the tropical year in days,

hours, minutes and seconds of mean solar time the number of days is

increased by unity while the hours, minutes, and seconds are left unaltered,

the result expresses the duration of the tropical year in days, hours, minutes

and seconds of sidereal time.
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69. The sidereal time at mean noon.

The right ascension of the mean sun or more precisely the

distance at a given moment of the mean sun from T is as already

explained (§ 68) the mean longitude of the sun and we have

for this the expression (Ex. 4, | 67)

280°-4.9942+360°«/ro,

where T^ is the length of the tropical year and where tjT^ is the

fractional part of the tropical year which has elapsed since noon

on Jan. 1st, 1909.

Transforming this expression into time at the rate of 15° to

an hour we find that at t mean solar days, after Greenwich

mean noon on 1909, January 1, the right ascension of the mean
sun is

18"^ 41°' 58^-84 + 236=-5554i.

We may explain as follows the nature of the observations

by which a the first term of this expression has been obtained.

Divide the year T^ into a sufficient number of equal parts. At
each point of division we shall suppose the R.A. of the sun to be

observed with results «!, a^, a.^... respectively. We shall assume

that the average of these right ascensions is the average of

the right ascensions of the mean sun at the same epochs.

This assumption is justified because each of the chief periodic

terms runs through a complete cycle of changes in an interval

which is contained an exact number of times in a year. If

therefore we take a number of instants dividing the year into

equal parts the average value of any one of these terms for

those instants will be zero (provided the number of instants

taken be sufficiently large, § 67). Hence the average right

ascension of the true and the mean sun at these instants

will be equal. We may illustrate the process by taking 6 such

epochs for which the sun's mean longitudes are respectively

a, (a +4''), (a + 8''), etc.

where a is the unknown to be found. If we determine the

right ascensions («!, Hj ... a^) of the true sun at these epochs

we have

a + (a + 4") + (a + 8") + (a + 12") + (a + le"") + (a + 20'^)

= «! + Mj + as + 04 + tte + Me-
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To obtain a we take as a particular case the values of Mj . . . Me as

shown in the following table

:

1909.

Equidistant
dates
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70. Determination of mean time from sidereal time.

The determination of the mean solar time at any station must,

of course, depend directly or indirectly on observations of the sun.

The mariner usually obtains the time from observations of the

sun made with his sextant in the morning or the evening. This

is an example of the direct method. But the astronomer, who has

the use of fixed instruments of much greater power and precision

than the sextant, generally deduces the mean time by calculation

from the sidereal time, which, as already explained (§ 63), he

obtains from observation of certain so-called " clock stars." The

places of the clock stars he finds from the ephemeris. Those

places depend on the position of T, which is determined from solar

observations. Hence in the clock star method of finding the mean
time the observations of the sun are only indirectly involved.

The ephemeris gives the true sidereal time at which the clock

star culminates and the observer notes the time shown by his

sidereal clock. The difference is the correction to his clock, and

thus the sidereal time is known. The ephemeris also gives the

sidereal time at Greenwich mean noon, so that a comparison of

the mean time clock with the sidereal clock if made at noon will

show the error of the former. The comparison of the mean clock

and the sidereal clock cannot however generally be made at noon,

nor will the longitude of the observer generally be zero. We
therefore proceed as follows :

Let 8 be the local sidereal time,

„ T be the simultaneous local mean time,

„ I be the longitude of the observer west of Greenwich,

„ n be the number of mean solar days in a tropical year

= 365-2422,

„ M be the sidereal time at preceding mean noon at

Greenwich.

There are n+1 sidereal days in n mean solar days, hence an

interval of solar time is transformed into the equivalent sidereal

time by the factor (n + l)/m, and an interval of sidereal time

into the equivalent solar time by the factor n/(n + 1). In the

case proposed the longitude is I, and we notice that this implies

both of the following statements

:

(1) The first point of Aries will move, in I hours of sidereal time,

from the meridian of Greenwich to the meridian of the observer.
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(2) The mean sun will move in I hours of mean time from the

meridian of Greenwich to the meridian of the observer.

As S and T are the local sidereal and mean times at the

instant considered, it follows that S + l and T -\- 1 are the

corresponding Greenwich sidereal and mean times.

The interval T +1 oi mean time is reduced to sidereal time by

the factor (n+l)/n. By subtracting this from >S+Z we must

obtain the sidereal time at mean noon at Greenwich the same

day, hence

M= S+l-{n-vl){T+l)ln,

which may be written in the equivalent forms often found con-

venient for use with the tables in the Ephemeris

T+l = {8^-l-M)nl{n + \),

8+l = M+{T + l){n+l)ln.

Probably the most practical method for determining mean
time from sidereal time is as follows

:

If we put 2'= in any one of the three equivalent equations

just written and make Mi the local sidereal time of local mean
noon we shall have

M = Mi + l-l{n + l)ln,

or Mi = M+l/n.

This l/n is a constant quantity for the particular meridian. It

is added to the sidereal time at mean noon at Greenwich to obtain

the local sidereal time at local mean noon.

Then we have simply

T={S-Mi)nl{n+l),

which may be very simply computed by the tables for converting

intervals of sidereal time into the corresponding intervals of mean

time.

Ex. 1. If M be the sidereal time at mean noon at Greenwich, show

that Ml, the sidereal time at mean noon on the same day, at a station of

which I is the longitude west from Greenwich, expressed in hours, is given by

J/;= J/+9»-8565xZ.

Ex. 2. Show that if an interval of time is expressed by t when reckoned

in mean time and by If when reckoned in sidereal time, then
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where t and If are expressed in hours and fractional parts of an hour in

the last term of each expression.

Ex. 3. On 1909, Feb. 18th, the sidereal time at Greenwich mean noon is

21'' 51"» 13=-55. Show that the transit of the first point of Aries takes place

at 2'! 8" 25"-35 mean time.

Ex. 4. Show that the Greenwich mean time of sidereal noon at Greenwich

is (24''- Jf)ra/(ra+l), where M is the sidereal time at mean noon and n the

number of mean solar days in the tropical year.

Show also that the local mean time of sidereal noon at west longitude I is

obtained by subtracting ^/(ii+ l) from the Greenwich mean time of sidereal

noon at Greenwich.

N.B. By sidereal noon is meant the moment of culmination of T.

Ex. 5. Show that 21'> 2™ 39» is the sidereal time at Madras (longitude
5h 2]^m 0= E.) at 1 P.M. Greenwich mean time on 1908, Nov. 1, being given

that the sidereal time at Greenwich at mean noon is 14'' 41™ 29^

Ex. 6. Columbia College, New York, is in longitude 4'' SS" 54» West
of Greenwich. The sidereal time at mean noon at Greenwich on 1908, Dec. 12,

is Vl^ 23°" 8'. Show that on the same day when the sidereal time at

Columbia College is 20'' 8"° 4» the local mean time is 2'' 43"" 41'.

Ex. 7. The sidereal time in which the sun's semidiameter passes the

meridian on 1908, July 1, being l"" 8^-73, show that the corresponding

mean time is found by subtracting 0''19 from the sidereal time.

71. The terrestrial date line.

The notion of the terrestrial date line may be conveniently

introduced by a particular illustration as follows

:

Suppose the epoch to be 10 a.m. at Greenwich on Wednesday,

June 14th, 1905. We have to consider for the same epoch

what is the hour and more especially the name of the day on

every other meridian east or west.

On the meridian 9'' 59™ west of Greenwich the time at the

stated epoch is just after midnight, i.e. Wednesday has commenced.

But on the meridian 10" 1" W. the time is iPSg^'P.M., and

therefore on this meridian it is still Tuesday, June 13th. If we
imagine each meridian all round the globe to be labelled with

the day of the week (or month) pertaining to it at the epoch

10 A.M. June 14th, 1905, at Greenwich, there will be an abrupt

change in the names on the labels when we come to the meridian

10'' W. from Greenwich.

But it is easily seen that another breach of continuity must

present itself at some other meridian. For imagine we could move



§§ 70-71] SIDEREAL TIME AND MEAN TIME 223

with the quickness of thought westward from the meridian

lO*" W. all round the globe, we should begin by crossing meridians

labelled Tuesday, but when the journey was near completion and we
were approaching the meridian of IC W. from the east, we should

find ourselves crossing meridians labelled Wednesday. There must

therefore have been some other transition from a meridian labelled

with one day to that labelled with another day.

This second breach' of continuity in the labels on the meridians

cannot have arisen as the first did by the occurrence of midnight.

The change at a midnight point would be in the wrong direction,

and indeed lO** W. is the only meridian on the whole globe then

at midnight. Every parallel of latitude must therefore possess

a second point at which there is a breach of continuity in the

dates pertaining to different places along that parallel. Any
point on the parallel might be assigned for this purpose : we
therefore choo.se it arbitrarily to suit general convenience. The

convention followed is that the point shall be as near as is

convenient to the meridian 12'' from Greenwich if it cannot be

actually taken on that meridian. The actual " date line " as it

is called is drawn from pole to pole. In so far as the meridian

of 12'' passes through the open ocean, as it does during the

greater part of its course, the date line coincides with that

meridian. At other places the date line may swerve a little to

one side or the other of the meridian of 12*", so as not to pass, for

example, across inhabited land in Alaska or to divide the

Aleutian Islands in a way which would be inconvenient to their

inhabitants.

In the case proposed the day is Wednesday, June 14th, at all

west longitudes up to 10'' W. For two hours more of west longi-

tude, i.e. from 10'' W. to 12'' W., or more accurately from 10'' W. up to

the point where the date line crosses, the day is Tuesday, June 13th.

But as the parallel crosses the date line the date suddenly alters.

From being about 10 P.M. on Tuesday, June 13th, on one side of

that line the date becomes about 10 p.m. on Wednesday, June 14th,

on the other side of the line. Thus Wednesday, June 14th, prevails

over all E. longitudes from 0'' to about 12''. It thus appears that

at the moment considered about 22 hours of longitude have the

date Wednesday, June 14th, and 2 hours have Tuesday, June 13th.

As another example let the hour be 6 P.M. at Greenwich on
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Sunday. Then at 5" 59" E. long, the time is 11" 59"^ p.m. on

Sunday. At 6'' 1" E. long, the time is 0'' 1"" A.M. on Monday.

Thus as we move eastwards from 6'' E. long, to 12'' E. long., or

more accurately to the date line on this parallel the day is

Monday, but at the date line (where the actual time is about

6 A.M.) the date suddenly changes to Sunday at the same hour,

and Sunday prevails at all west longitudes from the date line

to Greenwich.

EXERCISES ON CHAPTER IX.

Ex. 1. If X be the longitude of the sun, a its r.a. and a the obliquity of

the ecliptic, show that the greatest value ofX — a occurs when tan X= v'sec a> and

tana= vcos a.

Ex. 2. On the 22nd of September the sun's declination at transit was
observed to be 17' 2"-80 N., and on the 23rd it was observed to be 6' 21"-56 S.

;

also the sidereal interval of the two transits was 24"^ 3™ 35»'50. What was

the sun's r.a. at the second observation ?

Where would the chief errors be likely to occur in determining the first

point of Aries by the method of this example ?

[Coll. Exam.]

Ex. 3. The h.a. of Polaris is l*" 21" 18' ; the sidereal times of meau
noon at Greenwich on April 11 and 12 are respectively I'' 19™ 50''60 and

Ih asm 478-15. Find the mean times of the three transits of Polaris at

Greenwich on April 11.

[Coll. Exam.]

Ex. 4. Given from the Nautical Almanac

Sidereal time of mean noon March 21, 1898 231' 56™ 5s-87

Sidereal time of mean noon March 22, 1898 2 -42,

find approximately the mean time at which the mean sun passed the vernal

equinox.
[Coll. Exam.]

Ex. 5. On Feb. 7 a star, the h.a. of which is b"*^ 9™ 43^-9, is in transit at

Sydney (longitude 151° 12' 23" E.), when the time by the observer's watch

which should keep local time is S^ 0™ 3=. Given that the mean sun's r.a. at

mean noon at Greenwich on Feb. 7 is 21'' 8°" 36''1, and that \^ of sidereal

time is equivalent to 59"" 50»"2 of mean time, find to the nearest second how
much the watch is fast or slow.

[Math. Trip.]

Ex. 6. Show that a single altitude of a known star is sufficient to deter-

mine the latitude if the local sidereal time be known, and to determine the

local sidereal time if the latitude be known.

If the observed altitude have an error x minutes of arc, then the deduced



§ 71] SIDEREAL TIME AND MEAN TIME 225

sidereal time will have an error ^ x sec X ooseo a minutes of time ; where

X is the latitude of the place and a the azimuth of the star at the instant of

observation. [Math. Trip.]

Ex. 7. If a star of declination d has a zenith distance z when observed

near the meridian at an hour angle t, show that unless (^ — A is very small the

latitude (j) may be determined accurately by the equation

, ,
. acosdcosrf) . „,^

in the last term of which an approximate value of </> may be used.

*Ex. 8. If the sidereal clock times when the sun arrives at equal altitudes

on each side of the meridian are «' and u, and if the change of declination S

of the sun in the interval be dd, and the right ascension of the sun at culmi-

nation is a, show that the correction to be applied to clock time to obtain the

true sidereal time is

1 / .V 1 / tan 8 tand) \ ,.,

^ ' " \tanj(«'-tt) smJ(M'-M)/ '

and explain why no account need be taken of the sun's movement in right

ascension between the two observations.

*Ex. 9. Show that, if ?- 8 is the zenith distance of the sun observed near

the meridian when it is in declination 8, and h is its hour angle measured in

seconds of time, the latitude of the place is approximately

, cos?cos8sinl" ,„..,
^

2sin(;-8) (^^^)-

Show also that, if the observation is made from a ship in motion in a

direction making an angle 6 with the meridian, the greatest altitude occurs

when the sun is approximately h seconds of time from the instantaneoiis

meridian, where
, sin {8-<t>) / V cos ^ \ 1p) / V cos 6 \

cosq&cos8 \psinl" / IS^.GO^.sinl"'

V is the space described by the ship per hour, p the radius of the earth, <^ the

latitude of the place, 8 the declination of the sun, and m the change of decli-

nation per hour measured in seconds of arc. [Math. Trip.]

15
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72. The reduction to the equator.

As the sun performs its annual circuit of the ecliptic its true

longitude © measured of course from T and in the direction of

the sun's motion is continuously, though not uniformly, increas-

ing. In like manner the sun's right ascension a is continuously,

though not uniformly, increasing. The difference between the

right ascension and the longitude, that is to say the quantity

(a—©) which must be added to the sun's longitude to give the

sun's right ascension, is called the reduction to the equator. We
are now to consider the variations in the reduction to the equator

in the course of the year. The centre of the sun is presumed to

be in the ecliptic, as we need not here take account of its small

latitude which is < 1".

Let a, S be the right ascension and declination of a point on

the ecliptic. The longitude of the point is © and if a be the

obliquity of the ecliptic we have

tan a = cos a tan © (1),

and we can transform this equation into

sin(a — ©) = -tan''^ to sin (a + ©) (2).

Thus we see that a — © must lie between the limits - sin~" tan'^^w
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and +sin~'tan^ia» or if we take for o) its mean value for 1910,

viz. 23° 27' 4", we may say that the reduction to the equator

varies between — and + 6 where 6 = 2° 28' 8". The variations

of the reduction as © increases from 0° to 360" may be indicated

as follows

:

As a and © start together from T where they are both zero

© is at first the greater so that the reduction is at first negative

and attains a minimum — 6 when © is 45° + ^0. Then the right

ascension begins to gain on the longitude so that and a reach

90° together and the reduction is zero. In the second quadrant

a gradually increases its lead over © until a becomes 125° + ^6
when © is 135°—^^ and the reduction has its maximum value

of +6. In the third quadrant there is another minimum — 9 when

© = 225° + ^6 and in the fourth quadrant there is another

maximum oi +6 when © =315° — J 5. Finally the values of

and a coincide at 360° when the circuit is complete.

For the calculation of the reduction we use the formula (3)

which is easily derived from (1)

tan (a - ©) = - tan^cc sin 2©/(l + tan^^co cos 20). . .(3)

by which the reduction is obtained at once for any given longitude.

It is also convenient to obtain an expression for (a — ©) in a series

ascending by powers of the small quantity tan^^m. This is most

readily deduced from equation (1) by a well known expansion.

(See Todhunter's Plane Trigonometry, p. 238.)

a — © = — tan^Jo) sin 2© +^tan*J(osin4©

-itan''^(Bsin6©+ (4).

The terms in this formula are expressed in radians but the

reduction to the equator is more conveniently expressed by putting

for each radian its equivalent of 86400/27r = 13751 seconds of

time. If we multiply the expression for (a — ©) given in (4) by

13751 and if we further reduce it by substituting for «u its mean

value already given we have

a- © = - 592^-38 sin 2© + 12'-76 sin 4© - 0'-36 sin 6©...(5).

The coefficients of the terms in series (5) decrease so rapidly

that there is no need to take account of more than the three

terms there written and even the last of these may be generally

omitted.

15—2
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If we had assumed that no more than two terms of (4) would

be required, then those terms could have been obtained otherwise

from (3) for we have by Gregory's series

a-© = tan(a-©)-^tan8(a-©)+ ...

= - sin 20 tan4« (1 + cos 2© tan^'^m)-' + ^ sin' 2© tano^w

which gives the desired expression when quantities smaller than

tan"^ CO are neglected.

Ex. 1. Prove the following graphic method of obtaining the reduction

to the equator for any given longitude ©.
Describe a circle with centre G (Fig. 64) and radius CA=ta,a'^a, and

take a fixed point so that C0=1. Find the point P on the circle such

that Z. OOP=2® and let P' be the point on the circle diametrically opposite

to P. Then lP'OC is the reduction with its sign changed.

Let A and B be the points in which CO cuts the circle. Join AP' and

Fig. 64.

BP'- Draw CD perpendicular to AP' and produce it to meet OP' in K
Then the anharmonic ratio of the pencil P'{OACB) is

0^/05=(l-tani'^<B)/(H-tan2^a))= coso>.

But since AP' is perpendicular to BP' and to CD we have the same an-

harmonic ratio also equaLto

JED/DC=ta.n EP'DjtaaDP'G.

Hence tan JSP'D=cos <o tan DP'C=cos a> tan ®.

Therefore EP'D=a, and since CAP'= CP'A = ® we have P'OC=®-a.

Ex. 2. Prove the following construction. Take any line AB and cut off

a part AG such that AC=ABco& m. At A erect AL perpendicular to AB.

Draw the line CP to meet AL in P so that lAGP= ®. Join BP. Then

i_ABP=a, and lBPC is the reduction to the equator.

Ex. 3. Show from Ex. 1 that the greatest value of the reduction is

sin-i(tan2|co) and that in this case AP in Ex. 2 is a tangent to the circle

circumscribing GBP and that a and © are complementary.
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Ex. 4. Show that, if the sun be supposed to move uniformly in the

ecliptic and another body to move at the same uniform rate in the equator,

the difference of their right ascensions will vanish four times in the year

only if the interval between their passages through the first point of Aries

be less than sin~i (tan2^(o)/27r of a year. [Coll. Exam.]

Let t be the fraction of a year that has elapsed between the passage

of the sun through T and the passage of the body moving in the equator

through T. Then, when their right ascensions are both a,

tan (2n-<+ a) cos <a= tan a.

We thus have for a the equation

tan^ a tan 27r< — (1 — cos a) tan a+ tan 2irt cos u= 0.

The roots of this will be real if

27r«sin-i (tan^lm).

There will thus be two real values of tan a and four of a.

Ex. 5. Assuming the sun's apparent orbit to be circular, show that the

ratio of the sidereal times occupied by the passage of the sun's diameter

across the meridian at an equinox and at a solstice is approximately

(cos a — "0027 sin^o>), where a is the obliquity of the ecliptic.

[Math. Trip.]

If R be the sun's radius and 8 its declination, then at the moment when

the preceding limb is on the meridian the hour angle of its centre is

- R sec 8. If tx denote the sidereal time and a^ the sun's r.a. at this moment
we have

<i
- ai= - iJ sec 8.

Similarly, when the following limb is on the meridian, we have

<2 — a2=+i2sec8.

And therefore (<2 — <i)
— (02— oj)= 2iJ sec 8.

Differentiating the equation tana= cos(o tan ©, and remembering that

cos © = cos a cos 8, we find

da 9 & i^®
-=- = cos a> see's —7- .

at at

But since t increases 360° in one day, whereas © increases by the same

amount in about 365 days, we have of® /«?<= 1/365 = '0027. Hence

daldt= -0027 cos m sec^S.

And a2-ai— (t2-ti)da/dt,

therefore (is - <i) {1 - "0027 cos <a sec^ 8} =2R sec 8,

or <2-<i= 2^/{cos8--0027cos(»sec8}.

At the equinoxes 8= and at the solstices 8=±a, hence the sidereal time

occupied by the passage of the sun's diameter across the meridian at the

equinox is to that at the solstice in the ratio

(cos a> - •0027)/(l - -0027 cos <n) =cos a> - -0027 sin^a.
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73. The equation of the centre.

Let TJ. be the equator, and 'VB, Fig. 65, be the ecliptic, where

S is the position of the sun and P the perigee of the sun's

apparent orbit, i.e. the point occupied by the sun when nearest to

Fig. 65.

the earth

'VP = -CT, the longitude of the perigee,

PS = V, the sun's true anomaly,

T/S = Q = 'S7 + v, the sun's true longitude.

Let n be the average value for the whole year of the apparent

angle daily swept over by the radius vector drawn from the

earth's centre to the sun's centre. The sun's mean longitude is

expressed by L = nt+ e, where t is the time in days and e is the

value of the mean longitude at the epoch from which the time is

measured. The sun's mean anomaly is i — ot and the correspond-

ing true anomaly is © — or.

In § 52 we have determined the relation between the true

anomaly and the mean anomaly in an elliptic orbit, and substituting

in the formula there given (© — in-) for v and L — is for m, we
obtain

© = i + (2e - \&) sin (Z - it) + |e» sin (2Z - 2it)

+ ^e«sin(.3Z-3CT) (1),

where e is the eccentricity of the earth's orbit.

The terms involving e' are too small to require attention for

most purposes. We shall neglect them as before and write

simply

© = L + 2esin(Z-'5r) + |e''sin(2Z-2ra) (2).

We have thus obtained the expression for the true longitude

of the sun in terms of its mean longitude.
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Reversing this series we obtain by omitting powers of e above

the second

i = © - 2e sin (© - nr) + f e' sin (2© - 2^) (3),

which expresses the sun's mean longitude in terms of its true

longitude.

It is now necessary to know the numerical values of e and -bt,

and we have to show how continued observations of the sun's right

ascension enable us to determine these quantities. This is done

by formula (3) which we shall transform by making x = e cos ot,

y = e sin tr, L = nt + e, and in the first instance neglecting e" as

very small, we have

«* +£=© -2a; sin© +2ycosQ) (4),

as the approximate formula.

In this equation there are four unknowns, n, e, x, y, and to

determine them we must suppose that a series of determina-

tions of the longitude ©i, ©2, ©3, ©4 have been calculated

from observations of the right ascension made at certain times

*i, U, 4. U Each of these quantities represents the number

of mean solar days since a moment taken as the epoch. Each

value of © and its corresponding date t when substituted in (4)

will give a linear equation connecting n, e, x, y. Four such equa-

tions would therefore make these quantities determinate, though

for increased accuracy the result should be based on very many
observations extended over many years. Thus x and y and

therefore e and •cr become known approximately. At the same

time n and e become known and the expression for the mean

longitude L is determined. We now substitute the approximate

values for e and ot in the term involving e? in equation (3), for as

this term is so small there will be no appreciable error in its

value even though e and vr may not be quite correct. Thus a

more accurate linear equation between n, e, x, y is obtained and

each observation will supply one such equation. In this way

e and ot may be obtained with all desirable precision.

The length of the tropical year is 360/w days, and of course

if we had been at liberty to assume as we have so often done

already that the tropical year is 365'2422 days we should not have

described n as an unknown. But it is necessary to point out that

it is by such an investigation as that now given that this value of
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the tropical year has been itself determined so that having found

n from the system of equations we obtain 360/w. The quantity e

is the sun's mean longitude at the epoch. We thus obtain the

formula for L which has been already determined in a more ele-

mentary manner in § 67, Ex. 4.

It remains to give equations (2) and (3) their numerical forms

by introducing the actual values of e and •sr for the earth's orbit.

These are for the year 1900

e = 0-01675, tT = 281°13',

and though on account of the perturbations caused by the other

planets these quantities are not strictly constant, their changes

from year to year are far too minute to be of any consequence

for our present purpose. Substituting these values and using

the value 3438' for one radian we obtain

© = Z + 115'-2 sin (L - 281°-2) + l'-2 sin (2Z - 202°-4)...(5),

i =© - 115'-2 sin(© - 281°-2) + 0'-7 sin (2© - 202°-4)...(6).

We may thus make the approximate statements

:

The true longitude © of the sun at any epoch is obtained by

adding to the mean longitude L of the sun at the same epoch

the quantity which has been defined in § 52 as the equation of the

centre, and for which we have now found the expression

115' sin (Z- 281°).

The mean longitude L of the sun at any epoch is obtained by

adding to the true longitude © of the sun at the same epoch the

quantity

-115' sin (©-281°).

Ex. 1. Show that the equation of the centre is never zero unless the

sun is at one of the apsides.

*Ex. 2. Show that if attention is paid to the seconds of arc, the formula

(5) is to be written

© =Z+ 1344" sin L+ 6778" cos L - 67" sin 2i + 28" cos 2Z.

74. The equation of time.

We can now express a, the right ascension of the sun, in terms

of its mean longitude L, for if © be the true longitude then

from §§ 72, 73,

a = © — tan? ^ to sin 2© + 1 tan" ^ tu . sin 4©,

© = X + 2e sin (X - ot) + |e^ sin (2Z - 2^).
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The expression of a in terras of L involves a number of terms

with small coefficients. As the formulae need not be encumbered

with terms which are too small to produce an appreciable effect

we shall not retain any power or product of powers of e and

tan^^o) which is less than 1/10,000. This condition excludes all

except tan2|a) = 1/23-21, e = 1/59-70, tan* ^tu= 1/538-7, etatf^w

= 1/1385 and 6^=1/3564.

Eliminating © we obtain

a = i + 2e sin (L - tn-) + fe'' sin 2 (X - -nr)

— tan^ ^Q) {sin 2L + 4e sin (Z — ot) . cos 2L] + 1 tan* ^eu . sin 4X,

which may be written

a = Z + 2e sin (i — -ot) — tan" ^co . sin 2Z + 2e tan" ^o) sin (L + ot)

+ f e" sin 2 (i - 1!7) - 2e tan" ^co sin (3Z - ct) + 1 tan* ^o) . sin 4Z.

As the quantities e", etan"^© and tan* ^6) are very small, the

first two terms of the expression (a — L) are by far the most im-

portant, and the others may for our present purposes be neglected,

so that we have
a = L + E,

where E =2e sin (i — ct) — tan" ^<b sin 2L.

The quantity E is called the equation of time. It is to be added

to the mean longitude of the sun to give the sun's right ascension.

E is here expressed in radians. We transform it into time at

the rate of 2^ radians to 24 hours, and consequently for the

equation of time in hours, we have

12 {2e sin (i — tn-) — tan" ^w sin 2L}/'rr,

or in seconds of time

13751 \2e sin (L - -sr) - tan" |co sin 2L}.

If in this we make e= -001675, ot = 281°-2, we obtain the approxi-

noate result

a = Z + 90= sin X + 452» cos L - 592' sin 2L,

which is equivalent to the statement that

^=90'sini + 452=cosi-592»sin2£ (i)

is the equation of time when small terms are omitted.

At any sidereal time ^ the hour angle of the true sun is

^ — a, or

apparent solar time = ^ — «.
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At the same instant the hour angle of the mean sun is equal

to ^ — X, or

mean solar time = ^ — X = (^ — 2) + (a — £).

The equation of time is therefore defined to be the connection

to he added algebraically to the apparent solar time to find the

mean solar time.

Ex. 1. Determine approximately the equation of time at mean noon on

Dec. 27, 1910, being given that the ami's mean longitude is then 275°.

By substitution in (i) we find E= + 53'. If all the terms now neglected

had been taken account of we should have obtained 52' -81 as given in the

ephemeris. The r.a. of the true sun a is thus 53' greater than L, which is

the R.A. of the mean sun. At apparent noon the mean sun is already past

the meridian by 53', so that to obtain the mean time we have to add 53' to

the apparent time.

Ex. 2. Show that the equation of time is about 7^" at the vernal equinox

and about - 7^ at the autumnal.

Ex. 3. Find the sun's true r.a. at apparent noon on Nov. 1st, 1902,

given that the equation of time at mean noon that day is —16™ 18', and

that the sidereal time of mean noon on June 14 is 5'' 27" 23'. (Take a

tropical year to be 365J days.)

[Oxford Second Public Examination, 1902.]

Ex. 4. Show that at the summer solstice, the equation of time has an

hourly increase of about 0'53 seconds, it being assumed that the daily motion

of the mean sun in arc is 59' 8"'32.

We have (1) 90* sin Z+ 452' cosi- 592' sin 2X for the equation of time.

For a small change AX in L this increases by

(90' cos L- 452 sin X - 1184 cos 2X) AX.

In one hour aX= 147"'85,. or, in radians, '000717. Hence the hourly change

in the equation of time is

aX'= 0» -064 cos X - 0' -324 sin X - 0' -849 cos 2X.

In the particular case supposed X=90°, and A-£?=0'"525.

Ex. 5. Show that the greatest value of the equation of time arising from

the eccentricity is 24e/n- hours.

75. Formulae connected with the equation of time.

It is convenient to bring together various formulae connected

with the equation of time. The observer is supposed to be in

longitude I west of Greenwich, and at a certain moment he
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observes the apparent solar time. The following is the notation

employed

:

a is the sun's R.A. at the moment of observation,

A „ apparent time „ „ „

T „ local mean time „ „ „

^ „ local sidereal time „ „ „

E „ equation of time „ „ „

Eg „ equation of time at the preceding g.m.n.,

El „ „ „ „ following

ifo .r Greenwich sidereal time at preceding g.m.n.,

i/i „ „ „ „ following „

We have from the definition of E (see p. 234)

T=A+E (i).

At the moment of observation the g.m.t. is A + E + 1, and

assuming that E changes uniformly, we have

E = E, + (A+E+l)(Ei-E,)l24f^ (ii).

We have also

a = ^-^ (iii).

When the Greenwich mean time is T+l the Greenwich

sidereal time is ^ + 1. The sidereal interval since the preceding

Greenwich mean noon is therefore ^ + 1 — M^, and this is con-

verted into mean time by applying the factor 24^/(24'' + M^ — Mo).

We thus have the equation

T+l = 24f'{^ + l- Mo) I
(24:'' + Mi- M„),

from which we obtain

T='^-M,-{Mi- M,) (^ - ilf„ + 0/(24^ + M,-M,).. .(iv).

From the equations (i), (ii), (iii), (iv) involving the six

quantities cl, A, T, ^, E, I we can determine any four when the

two others are given. It is understood that E^, E^, Mq, Mi are

constants for the day obtained from the ephemeris.

Ex. 1. Show that at any place and at any moment the sidereal time .9,

the mean time T, the right ascension of the sun a and the equation of time

E are connected by the relation

9-a+E-T=0.

Ex. 2. If t he the Greenwich mean time, M^, i/j, £!q, E^ the sidereal

times and the equations of time at the preceding and the succeeding

Greenwich mean noons, and if A be the observed apparent solar time, find

the longitude, and show that the local sidereal time is

M^+E„-\-t{Mi + Ei-M^-E^)l%i^+A.
[Coll. Exam.]
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Ex. 3. If at Greenwich a, a are the hour angles (in degrees) of the sun at

t and t' hours mean time, show that the equations of time at the preceding

and following mean noons expressed in fractions of an hour are respectively

a't-at' a'(24-<)-a(24-0
\5(f-t)'

^
16 (f-t)

[Math. Trip.]

Ex. 4. Show from (ii) that

JE= 24h Eo/(M^+ E„-Ei) + {A+l){Ei- ^o)/(24''+ ^o - A),

and prove from the formulae given on the last page that the corresponding

mean time at Greenwich is

24^{A + Eo+ l)l{ii^+ Eo- El).

Ex. 5. Find the sidereal time at New York, in longitude 73° 58' 24" -6

West at apparent noon on October 1, given that the numerical values of the

equation of time at Greenwich mean noon on October 1 and October 2

are 10™ 23= '28 and 13™42»-28 respectively, and that the sidereal times at

Greenwich mean noon on those days are 12'' 40™ 57=-62 and 12'» 44™ 54»'17

respectively.

[Math. Trip.]

Ex. 6. On April 15th and 16th, 1895, at Greenwich mean noon, the

equation of time is given as 1''57 and 13' -09, to be subtracted from and

added to mean time respectively. Find the apparent hour angle of the

sun at a place 4° E. of Greenwich at \1^ 58™ local mean time on April 16.

[Coll. Exam.]

76. Graphical representation of the equation of time.

It appears from § 74 that the equation of time, E, when ex-

pressed in hours of mean solar time is with suEBcient approximation

E=12 {2e sin (i - -nr) - tan^ ^co sin 2ij/7r.

Making in this expression the following approximate substitu-

tions,

tan^ ^ ft) = 1/23-2, e = 1/59-7, ^ = 360° - 79°,

we obtain after reduction (or directly from (i), p. 233)

E = 0''-128 sin (L + 79°) - O^-ies sin 2L

= 7"" -68 sin (L + 79°) - 9"" -90 sin 2L.

We then plot (Fig. 66) the two curves of which the equations
are

2/ = 7"'-68sin(Z + 79°) (i),

and y = 9 90sin2L (U),

where the mean longitude L is taken as abscissa, the ordinates

being laid off positively and negatively as shown in the left-hand
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margin. The curves are plotted for every longitude from 0° to

360°, and are thus available from the vernal equinox of one year

to that of the next. The diagram can be used without appreciable

alteration for a great number of successive years.

;\

9<

Q,--.

lO ISO

Fig. 66.

The use of the curves depends upon the fact that the equation

of time is equal to the ordinate of curve (i) minus the ordinate

of curve (ii), it being understood that in accordance with the

usual convention, ordinates on the upper side of the horizontal

axis are positive and those below are negative.

Thus on May 22nd the equation of time is QiPi and is

negative. On July 22nd it is Q2-P2 and positive. On Oct. 22nd

it is Q3P3 and negative, and on Jan. 22nd it is Q4P4 and positive.

In this way, taking as ordinate the difference of the ordinates

of curves (i) and (ii) with its proper sign, we obtain the continuous

curve in Fig. 66, the ordinates of which represent the equation of

time for every day in the year.
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There are four places at which the curves (i) and (ii) intersect

and at which consequently the equation of time is zero. Thus

we learn that the equation of time vanishes four times a year and

the continuous curve cuts the horizontal axis at four points which

show the corresponding dates.

That the equation of time must vanish at least four times in

the year may be shown otherwise as follows. We shall suppose

that t is the part of the equation of time due to the obliquity of

the ecliptic, and t' that due to eccentricity. Let k be the greatest

value of t without regard to sign, then k is greater than any

value of t'. The value of k is, as we have seen, 9™"90, while t'

never exceeds 7™ "68.

From the vernal equinox to the summer solstice t must be

negative, because so far as the inequality arises from obliquity,

the E.A. of the mean sun exceeds that of the true sun. Hence

the mean sun crosses the meridian after the true sun, and thus

a subtraction has to be made from the apparent time to find the

mean time. From similar reasoning it appears that from the

summer solstice to the autumnal equinox t is positive, from the

autumnal equinox to the winter solstice t is negative, and from

the winter solstice to the vernal equinox t is positive. At both

the equinoxes and both the solstices t is zero. As to the part

of the equation of time which arises from the eccentricity we

observe that If is zero both at apogee and perigee, and since

from perigee to apogee the true sun is in advance of its mean

place, the value of t' must be continuously positive. In like

manner t' must be negative all the way from apogee to perigee.

Let P, A (Fig. 67) be the perigee and apogee respectively,

;Si, W the positions of the sun at the summer and winter solstices,

and T, :D= the equinoctial points.

Let M be the point occupied by the sun at the moment when

t, which is zero at T and at S, has its greatest negative value.

Then remembering that E, the equation of time, is t + lf, we see

that from P to T the value of E must be continuously positive,

for t and t' are both positive.

At M we have E=f — k, and as t' can never equal k, we must

have E negative at M. Since E is positive at T, negative at M,
and again positive at S, there must be some point between T and

M, and also another between M and S, where E = 0. Thus the
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equation of time must vanish at least twice between the vernal

equinox and the summer solstice.

From S to J. both t and tf are positive, and therefore E is

continuously positive from the summer solstice to the apogee.

But from A to :0z t' is negative, and as t is zero at d^ and t' is

still negative, E must be negative at ii and positive at A. It

follows that E must be zero somewhere between A and £!:, and

thus the equation of time' must vanish at least once again between

apogee and the autumnal equinox.

Pig. 67.

From £h to W both t and t' are continuously negative, and

thus the equation of time cannot vanish between these points of

the orbit. At P we find E has become positive again, and there-

fore it must vanish at least once between W and P-

We thus learn that the equation of time vanishes at least

twice between the vernal equinox and the summer solstice, at

least once between the apogee and the autumnal equinox, and at

least once between the winter solstice and the perigee.

Ex. 1. If we take x as the tangent of the sun's mean longitude L,

show that the days on which the equation of time vanishes can be found

graphically as the intersections of the curve i/=x{l+3ifi)~^ with a straight

line; and if the equation of this line be

y= 0-07a;+ 0-38,

estimate roughly the dates in question.
[Coll. Exam.]

In the equation tan^J<Bsin2Z= 2e sin(Z — la') we make tanZ=a; and the

equation in x thus obtained is obviously the result of eliminating y between

the two equations
y=ex cos nr cot^ \<i> — e sin izr cot^ \a,

y=x{l+x'^)~^.

Ex. 2. It has been shown that the equation of time expressed in seconds is

90 sin Z + 452 cos i - 592 sin 2Z,
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where L is the mean longitude of the sun. Prove from this expression that

the equation of time vanishes at least four times annually.

If we substitute successively 0°, 45° for L in the expression, the sign

changes from + to - , hence there must be some value for L between 0° and

45* which is a root of the equation

90 sin X + 452 cos i - 592 sin Si= 0.

We have fiu^her changes of sign for values of L between 45° and 90°,

between 90° and 180° and between 180° and 360°. Hence there must be four

real roots, and when some other small terms are taken account of it is found

that the roots are approximately

23°, 83°, 159°, 272°,

and the corresponding dates on which the equation of time vanishes are

15th Ap., 14th June, 31st Aug., 24th Dec.

Ex. 3. Show that the sum of the solar longitudes on the four occasions

on which the equation of time vanishes must be 540° if the square of e and

the 4th power of tan \a are neglected.

We have 2e sin (Z— nr) = tan^ ^ m sin 2Z,

and making
:!;=tanX, ?n = e cos or cot" ^ <a, »=esinizr cot^^o),

we find m2.r*-2TOn^+ («i2+m2— l):j;2-2»i»i:r+ 71^=0.

The coefficients of ifi and x in the equation are equal, and if we express

this fact in terms of the longitudes ij, i2) -^3) L^ corresponding to the four

roots, we have the condition

tan (Zi+ Z2+ -^3+ A)= 0.

This equation shows that Zi+Z2+Z3+Z4=i. 180°, where i is an integer.

But we have seen (Ex. 2) that i3>90° and Z4>270°, hence i>2. Also

Zj+Z2<180°, Z3<180° and Z4<360°, hence ^<4. Thus the only admissible

value of k is 3, and accordingly

Zi+Z2+ Z3+ Z4= 540°.

It is also easy to show that

sin Zi+ sin Z2.+ sin Z3 + sin Z4+ sin Zj sin Z2 sin Z3 + sin Z, sin Zs sin Z4

+ sin Zi sin Z2 sin Z4+ sin Zi sin Z2 sin Z3= 0.

Ex. 4. If the eccentricity of the earth's orbit be 1/60, the oo.sine of the

obliquity 11/12, and the line of equinoxes be taken as perpendicular to the

major axis of the orbit, prove that the longitudes of the sun when the equa-

tion of time due to both causes conjointly is numerically a maximum are

angles whose sines are approximately 0-617 and —0-809.

[Math. Trip. I.]

The equation of time being

2e sin (Z- ra-) - tan^ \ai sin 2Z,

becomes a maximum for w = 90° when

esinZ— tan^^o) cos2Z=0.

Introducing the given constants the equation is^ sin L —^ cos 2Z= 0, whence

we obtain a quadratic for sin Z whose roots are the given numbers.
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77. General investigation of stationary equation of time.

We shall now determine when the equation of time is a

maximum or a minimum independently of any assumption with

regard to the obliquity of the ecliptic or the eccentricity of the

earth's orbit. We shall however suppose that the movement of

the earth about the sun takes place in a fixed ellipse and that the

movement of the ecjuator is neglected. We obtain the necessary

equations from | 52, and they are as follows

:

tan t) = Vl — e^ sin u/(cos u — e); m = u — e sin u
;

tan a = cos co tan ©

;

© = « + ot
;

where v, m, u are the true, mean, and eccentric anomalies, © the

sun's true longitude, e the eccentricity of the orbit, and zr the

longitude of perihelion.

Differentiating these equations with regard to the time t, we

obtain

dv _ Vl-e'' du

dt \ — ecosu' dt
''

,, .du dm ....(l_,cos«)^=^ (^0,

(cos^© + cos'' ft) sin^©) -r- = cos (o
-^ (iii).

The equation of time is obtained by subtracting the meau
longitude of the sun (m + w) from its right ascension a, and when
the equation of time is stationary its differential coefficient with

regard to the time is zero whence

da _ dm
di~'dt'

or by elimination of the differential coefficients

(1 — e cos uy (cos^© + cos^ft) sin^©) = Vl — e^ cos a>.

From the geometrical properties of an ellipse we have

(1 — e^) = (1 — e cos u){l + e cos (© — ot)),

whence

(1 - e^)^(cos2© + cos^ft) sin^©) = cos to {1+ e cos (© - ct)}^.

This formula involves no limitation in the magnitude of e and is

a general equation for the determination of © when the equation

of time is stationary.

B. A. 16
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Ex. 1. Show that the stationary values of the equation of time occur

when the projection of the sun's radius vector on the plane of the

equator is (1 - e2)*(costo)2 times the mean distance, a, where e is the ec-

centricity of the orbit, <u the obliquity of the echptic.

Let p be the projection, then if 8 be the sun's declination,

p=a (1 - e^) cos 8/{l + e cos (© - nr)},

but cos 8= (cos2 © + cos2 w sin^ 0)4,

and from what has just been proved,

(cos^ S + cos^ 0) sin^ © )2 _ (cos of
l-|-ecos(©-a7) ~(i_g2j|

'

whence p= a (1 - e^)! (cos m)'

.

Ex. 2. In general, supposing the sun's path relative to the earth to be

an exact ellipse with the earth in the focus, and a second ellipse to be con-

structed by projecting the former on the plane of the equator, then the

projections of the sun's position when the equation of time is greatest are

the intersections of the second ellipse with a circle whose centre is at the

earth, and whose area is equal to the area of this ellipse.

[Math. Trip. 1905.]

Ex. 3. In the general case show that whatever be the eccentricity the

equation of the centre is a maximum, when the radius vector is a geometric

mean between the major and minor axes.

78. The cause of the seasons.

The apparent annual path of the sun in the heavens is divided

into four quadrants by the equinoctial and solstitial points. The

corresponding intervals of time are called the seasons, Spring,

Summer, Autumn, and Winter. Spring commences vfhen the

sun enters the sign of Aries, that is to say when its longitude is

zero. When the sun reaches the solstitial point (longitude = 90°)

Summer begins. Autumn commences when the sun enters Libra

(longitude = 180°) and Winter, commencing when the sun's longi-

tude is 270° continues until the vernal equinox is regained.

The changes in the meteorological conditions of the earth's

atmosphere, which constitute the phenomenon known as the

variation of the seasons, are determined chiefly by the changes in

the amount of heat received from the sun as the year advances.

The amount of heat received from the sun at any place on

the surface of the earth depends upon the number of hours during

which the sun is above the horizon and its zenith distance at noon.

At a place situated in latitude <j) the interval from sunrise to
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sunset is equal to i^hjiv, where h is the angle, expressed in

radians, given by the equation

cos h = — tan tan 8 (i),

and the zenith distance at noon is <^ ~ S, S being the declination

of the sun.

As the sun moves along the ecliptic from the first point of

Aries its declination is positive (see Fig. 68) and increases to a

maximum at the summer solstice, when the sun is at the first

point of Cancer marked by the symbol <s>, the declination being

Fig. 68.

then equal to the obliquity of the ecliptic, viz. 23° 27'. From
this point the solar declination diminishes until it vanishes at the

autumnal equinox ^, from which the declination becomes negative

diminishing until a minimum (— 23° 27') is reached at the winter

solstice in Capricornus, marked by the symbol Yf , after which it

begins once more to increase and vanishes again at the following

equinox.

In considering the seasonal changes it is convenient to divide

the earth into five zones which are bounded by circles parallel to

the equator in latitudes + 23° 27' and + 66° 33'. The zone in-

cluded between the parallels of 23° 27' north and south is called

16—2
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the Torrid Zone, and its northern and southern bounding circles

are termed the Tropics of Cancer and Capricorn respectively.

The parallels of latitude 66° 33' north and south are called the

Arctic and Antarctic Circles respectively. The zone included be-

tween the Arctic Circle and the Tropic of Cancer is known as

the North Temperate Zone, while that bounded by the Tropic of

Capricorn and the Antarctic Circle is the South Temperate Zone.

Lastly, the regions round the North and South Poles bounded by

the Arctic and Antarctic Circles respectively, are known as the

North and South Frigid Zones.

At the time of the summer solstice 8 = + 23° 27' and we have

then for any point on the Arctic Circle tan^tanS=l. Under

these circumstances the hour angle of the sun at rising or setting

is 180°. That is to say the diurnal course of the sun is then a

circle parallel to the equator, touching the horizon at the north

point, so that at midnight one-half of its disc would be visible (we

are not here taking the effect of refraction into account). Within

the frigid zone the sun will remain above the horizon without

setting for a continually increasing number of days, as the

observer approaches the pole. To an observer at the pole itself

the sun would appear to move round the horizon at the equinox,

after which it will describe a spiral round and round the sky,

gradually increasing its height above the horizon until at the

solstice its diurnal track will be very nearly a circle parallel to

the horizon at an altitude of 23° 27'. After the solstice it will

return in a similar spiral curve towards the horizon, which it

reaches at the autumnal equinox. In the winter half of the year

the sun will be continuously below the horizon.

The phenomena in the south temperate and south frigid

zones will be similar to those in the corresponding northern

zones, but they will occur at opposite epochs of the year. Thus

the spring of the southern hemisphere coincides in point of time

with autumn in the northern hemisphere, the summer of the

North with the winter of the South, and vice versa.

In the torrid zone the conditions are as follows. On the

equator, since ^ = 0, we have from (i) cos h = Q whatever may be

be the value of S. Hence h = Itt, or the length of the day is

12 hours all the year round. The meridian zenith distance of

the sun will however vary from day to day. At the vernal
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equinox the sun's meridional zenith distaace will be nearly equal

to zero (it would be exactly zero if the sun crossed the meridian

of the place at the moment when it was passing through the

first point of Aries). As spring advances the meridian zenith

distance will gradually increase until the solstice, when the sun

culminates about 23° 27' north of the zenith. At the autumnal

equinox the sun again passes nearly through the zenith at noon,

and at the winter solstice it culminates 23° 27' south of the

zenith. At places situated between the equator and either tropic

the amount of heat received from the sun will, so far as it is

affected by the sun's zenith distance at noon, reach a maximum
twice a year when the sun's declination is equal to the latitude

of the place.

Though the four parts into which the great circle of the

ecliptic is divided by the equinoxes and solstices are equal in

length, the times occupied by the sun in passing over them are

not equal.

To find the lengths of the seasons we employ equation (3)

of § 73, connecting the mean and true longitudes of the sun,

namely
Z = © - 2e sin (© - ot) + f e" sin 2 (© - w).

For our present purpose we may neglect the third term in this

expression, and write simply

X = © - 2e sin (© - m).

When the sun is in T we have © = 0, and putting L^ to repre-

sent the mean longitude at that moment, we have

i/o = 2e sin w.

In like manner, putting L^, L^, L^, and L^, respectively to denote

the mean longitudes at the summer solstice, autumnal equinox,

winter solstice, and vernal equinox next succeeding, we find

Li = \Tr — 2e cos w,

Li= TT — 2e sin ct,

ij, = |7r + 2e cos or,

i/4 = 2-77 + 2e sin ct.

The lengths of the seasons are found by multiplying the

difference between each consecutive pair of the five mean longi-
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tudes by the factor 365-24/27r. Writing K for this factor we have

for the northern hemisphere

No. of days in

Spring =K(L^- i„) = 91-310 - 2eir(sin w + cos ct)

Summer = ^(X2 — Xi) = 91'310 — 2eir (sin w — cosot)!
...(i).

Autumn = K(Ls— L^ = 91-310 + 2eir (sin ot + cos ot)

Winter =K{Li- L,) = 91 -310 + 2eK (sin ^ - cos th)

Taking the vahies of e and to- as given in § 73 we obtain

2eK sin ra- = — 1-910 days,

and 2eK cos ^ = + 0-379 „

from which we deduce the lengths of the four seasons as follows:

—

Days Hours

Spring contains ... ... 92 20-2

Summer „ ... ... 93 14-4

Autumn , 89 18-7

Winter „ 89 0-5.

Thus we see that the spring and summer seasons together last for

186 days 10-6 hrs., whereas the autumn and winter together

contain only 178 days 19-2 hrs. The reverse of this is the case

in the southern hemisphere, the summer half of the southern

year lasting for 178 days 192 hrs., whereas the southern winter

lasts for 186 days 10-6 hrs.

Ex. 1. Assuming that or increases uniformly show that in the course of

time the lengths of the four seasons will have as their extreme limits

91-310 ± \/2 X 365-24 x ejn.

Ex. 2. If P he the number of days in the year and if summer is longer

than spring by Q days and longer than autumn by R days, find the eccen-

tricity of the orbit and the longitude of perigee.

EXERCISES ON CHAPTER X.

Ex. 1. On the assumption that the earth's orbit is a nearly circular

ellipse and that the apsidal and solstitial lines have the same longitude,

prove that the eccentricity is approximately equal to

where E^, E^ are the hourly variations in the equation of time at perigee

and apogee, and a is the obliquity of the ecliptic.

[Math. Trip. I. 1900.]
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Ex. 2. A clock at Cambridge keeps Greenwich mean time. Find what

time it indicated when the sun's preceding limb arrived on the meridian on

Jan. 6, 1875, having given

Longitude of Cambridge 22'-75 E.,

Time of ©'s semi-diameter passing meridian ... 1™ 10 '62,

Equation of time ... ... 6 2 -SS.

Ex. 3. Show that the columns in the Nautical Almanac which give the

'Variation of the sun's right ascension in one hour' and the 'Time of the

semi-diameter passing the meridian' increase and diminish together, the

former quantity being practically proportional to the square of the latter.

[Math. Trip. I.]

Ex. 4. If the eccentricity of the earth's orbit be e and if the line of

equinoxes be perpendicular to the axis major of the orbit, show that the

number of days' difference in the time taken by the earth in moving from

T to £t and from :0: to T is 465e very nearly.

Ex. 5. Show that the greatest equation of the centre is 2e-t-lle'/48 and

that when this is the case
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79. Introductory.

We have already learned that in consequence of atmospheric

refraction there is generally a difference between the true place of

a celestial body and the place which that body seems to occupy.

We have here to consider another derangement of the place of a

celestial body which is due to the fact that the velocity of light,

though no doubt extremely great, is still not incomparably

greater than the velocity with which the observer is himself

moving. Any apparent change in the place of a celestial body

arising from this cause is known as aberration. The true co-

ordinates of a celestial body cannot therefore be ascertained

until certain corrections for aberration have been applied to the

apparent coordinates as indicated by direct observation f. The

nature of these corrections is now to be investigated.

t That this must be the case was perceived by Boemer, when he discovered the

gradual propagation of light in 1675. This appears in a letter he wrote to Huygens

(Oeuvres computes de C. Huygens, T. vHi. p. 53). Though a periodic change in

the place of the Pole Star, really due to aberration, was announced in 1680 by

Picard, the credit of discovering the general phenomenon of aberration is due to

Bradley (1728), who also gave the correct explanation of it.
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80. Relative velocity.

Let AB (Fig. 69) represent both in magnitude and direction

the velocity of a body P. Let GB, in like manner represent the

velocity of a body Q. On account of his own movement an

observer on P will attribute to Q a movement different from

that which Q actually possesses. We have therefore to consider

the movement of Q relative to P.

Two points moving with equal velocities and in parallel direc-

tions have no relative motion, for their distance does not change,

nor does the direction of the line joining them. It follows that

any equal and parallel velocities may be compounded with the

original velocities of two particles without affecting their relative

motion.

Observing the directions of the arrows in Fig. 71, it is plain

from the triangle of velocities that the velocity CB may be

resolved into the two velocities CA and AB. But P has the

velocity AB. If we take away the velocity AB from both P and

Q we do not alter their relative motion, but this operation would

leave P at rest, and show that GA is the relative velocity of Q.

We therefore learn that the velocity' of Q relative to P is to be

obtained by compounding the true velocity of Q with a velocity

equal and opposite to that of P.

81. Application to aberration.

From what we have just seen it follows that to an observer

who is himself in motion, the apparent direction of a star will

be obtained by compounding the velocity of the rays of light

from the star with a velocity equal and opposite to that of the

observer.
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Thus, although the real direction of the star C is BG (Fig. 70),

yet its apparent direction will be AC, if the observer moves

uniformly along AB, with a velocity which bears to the velocity

of light the ratio AB/BC. The angle ACB is called the aberration

and is denoted by e, while AC the apparent direction of the star

makes with AB, the direction of the observer's motion, an angle

GA which we shall denote by i^. The point on the celestial

sphere towards which the observer's motion is directed is termed

the apex.

Let V be the velocity of the observer and /a the velocity of

light, then v/fj, = AB/BC, whence sin e = Vfj,~^ sin i/r, which is the

fundamental equation for aberration.

The angle e is the inclination between the actual direction of

the telescope when pointed by the moving observer to view the

star, and the true direction in which the telescope would have

to be pointed if the observer had been at rest. As e is always

small we may use its circular measure instead of its sine. We
have taken yjr to be the angle between the apparent place of the

star and the apex. As, however, sini|f is multiplied in the equa-

tion by vjjjk, which is a small quantity, we may often without

sensible error in the value of e use, instead of -v/r, the angle

between the true place of the star and the apex.

Ex. 1. Show that the aberration of a star S, resolved in any direction

SS' (Fig. 70), is K cos AS', where A is the apex, iS'/S'=90°, and k = W^.

co% AS'= s,m AS cos, 6,

K cos AS'= K sin AS cos 6.

But K sin AS is the aberration, and multiplied by cosfl it gives the com-

ponent in the direction SS'.

Ex. 2. Let Si, S2 be the true places of two stars, be the point bisecting

S1S2, and A the apex of the earth's way. Show that aberration diminishes

S1S2 by 2k sin ^SiSi cos OA.
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On the great circle <S'i<S2 produced, take points Si'SiCy, so that

Then it follows from Ex. 1 that the change in .Si<S'2 owing to aberration is

(((cosjl<S'i'-cos.4iS'2')=2KsinO'<S'i'sinO'^ cos 00'^= 2k sin^<S'i*S2Cos OA.

Ex. 3. Show that stars on the circumference of a great circle will be

apparently conveyed by aberration to the circumference of an adjacent small

circle, and that the planes of the two circles are parallel.

82. Effects of aberration on the coordinates of a celestial

body.

Let fi be the velocity of light, rj, t; the true coordinates of

the star on the celestial sphere ; we are to seek the apparent

coordinates of the star as affected by aberration. Let rj^, ^o be

the coordinates of the apex towards which the observer is moving

with a velocity v. Let t, t' be the moments at which a ray of light

coming from a star, supposed at rest, passes through first the

object-glass and secondly the eye-piece of a telescope supposed to

be in motion parallel to itself.

Let w, y, z be the rectangular coordinates of the centre of the

eye-piece at the time t, referred to axes +X, + F, + Z through

the earth's centre and towards the points whose spherical co-

ordinates are (0°, 0°), (90°, 0°), (0°, 90°) respectively. At the

time t' the coordinates of the eye-piece will therefore be

x + v{t'-t) cos ^„ cos 7?„, y + v («' - 1) cos ^o sin ?;„, z + v (t' - 1) sin ?"„.

Let I be the length of the telescope, i.e. the length of the line

from the centre of the eye-piece to the centre of the object-glass,

(?;', ?') the coordinates of the point on the celestial sphere to

which this line is directed or the apparent direction of the star.

Therefore at the time t

x-\-lcos, f' cos r)', y + 1 cos f' sin 17', z + l sin ^'

are the coordinates of the centre of the object-glass.

In the time (t'-t) the ray of light has moved over the

distance from the object-glass at the time t to the eye-piece at

the time t' ; this length is fi (f - t), and its components parallel

to the axes are

fj,
{f - t) cos V cos t, fi («' - sin n cos C, V (*' - sin ?

But these quantities when added to the corresponding co-

ordinates of the centre of the eye-piece must give the coordinates
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of the centre of the object-glass. Hence if we write
fj,'
= l/(t' —t)

we obtain the equations

+ fJ- cos f cos r] = + fj,'
cos 5" cos 7}' — V cos fo cos Vo •••(!)•

+ fi cos ^ sin 7] = + fi' cos f' sin rj' — v cos f, sin % • • -(2),

+ M sin f = + fi' sin f — « sin ?'o
. . .(3).

Multiply (2) by cos ->)' and subtract it from (1) multiplied by

sin 7]', and we have

fi cos ^sin (t)' — Tj) = — V cos f„ sin (tj' — r]„) (4).

Multiply (2) by sin i(v + v) and add it to (1) multiplied by

cos ^(v + v') aiid then divide by cos ^ (rj' — rj), and we have

/j.cos^ = fi! cos ?' — y cos f„ cos {r)„ — ^ {rj + 1]')] sec | (»;' — rj). . .(5).

Again, multiplying (3) by cos §" and subtracting it from (5)

multiplied by sin f, we have

/u. sin {^' — ^) = v sin fo cos f

'

-y cos ^0 sin f ' cos {i^o -

i

(t; + V)} sec |(i;' -?;)... (6).

Equations (4) and (6) can be much simplified by taking

advantage of the fact that vlfi is a very small quantity. This

shows that 17' — »/ is small, and consequently we may replace >;'

by r) in the right-hand member of (4), and thus obtain the effect

of aberration on the coordinate 77 in the form

7) -7) = — •yyii~'cos 5'csec ^sin (t) —t)^ (7).

We thus find t) —7], and thence ;;' with sufficient accuracy for

most purposes. If a further approximation be required, as might,

for example, be the case if i^ were nearly 90°, we can introduce the

approximate value of r) found from this equation into the right-

hand side of (4), and thus obtain again sin {t) — t]).

In like manner, we can find f' — f from (6). The first

approximation, quite sufficient in most cases, is obtained by

replacing %' and t) by f and 77 in the right-hand side. We thus

obtain

f' - f = y/i-i {sin f„ cos t, - cos f„ sin % cos {t)^ - »;)} . . .(8).

If further approximation is required, the approximate values of

tf' and T), obtained in (7) and (8), may be introduced into the

right-hand side of (6). If Q be the angle whose cosine is

sin fo sin ^-1- cos ^'o cos ^cos (tjj — •»;), then Viir^ sin is the distance

that aberration has apparently moved the star.
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The formulae (7) and (8) are fundamental results for aberration

whether the observer's motion be the annual movement of the

earth round the sun or be of any other kind.

83. The different kinds of aberration.

The expressions we have given in § 82 show in what way the

aberration depends on r)(,< ?o, the coordinates of the apex. If tj^

and fo change, then in general, the effect of aberration on the

apparent place of the star will also change. If tjq and fo change

periodically, then the effect of aberration on the coordinates of the

apparent place will also be periodic. If however »;„ and ^„ do not

change, then the effects of such an aberration would be constant

for each star. Aberration of 'this type would no doubt displace

a star from the position in which it would be seen if there were

no such aberration, but it would always displace the same star in

precisely the same way. This being so, observation could not

disclose the amount or even the existence of the aberration,

for what the coordinates of the star would be if unaffected by

aberration are unknown.

Aberration of the class here referred to, does undoubtedly

exist. It must arise from the motion of the solar system as a

whole. So far as our present knowledge is concerned, the position

of the apex of this motion is presumably constant, nor have we
any grounds for supposing that the velocity is otherwise than

uniform, so far at least as the few centuries during which accurate

observation has been possible are concerned. The amount of

aberration of each star from this cause is therefore constant, and

its effect is not by us distinguishable in the coordinates of the

star's place. Nor can we calculate the amount of this aberration,

because we do not know the velocity of the solar system, nor the

position of the apex with suflficient accuracy. All we can affirm

is that the right ascension and declination of each star as they

appear to us, are different by unknown amounts from what they

would be if this aberration were absent.

The aberrations which are of practical importance in Astronomy

are those in which the motion of the observer is such that the

apex has a periodic motion on the celestial sphere. There is

thus a periodical alteration in the apparent position of any star,

which is of the greatest significance and interest. The annual
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motion of the earth in its orbit is one of these periodic move-

ments, and it produces what is known as annual aberration.

Another aberrational effect arises from the rotation of the

earth on its axis, and this causes what is known as diurnal

aberration ; of these the first is by far the more important, and

whenever the word "aberration" is used without the prefix

"diurnal," it is always the annual aberration which is to be

understood.

84. Aberration in right ascension and declination.

We shall now apply the general formulae (7) and (8) of § 82

to obtain the expressions for the aberration of a star in those

particular coordinates which we term right ascension and declina-

tion. If the point (0^ 0") be T, if (90°, 0°) be that point on the

celestial equator of which the R.A. is 90°, and if (0°, 90°) be the

north celestial pole, then 17 is the right ascension a, and f is the

declination 8, and we have

a' — a = Vfx"^ cos S(, sec S sin (a„ — a) (1),

S' — 8 = t)/i~' [sin So cos 8 — cos 80 siii S cos («„ — a)l (2),

from which we obtain the effect of aberration on the R.A. and

declination respectively.

We assume for the present that the orbit of the earth is a circle.

In other words, we take the velocity of the earth as constant and

equal to the mean velocity in the actual elliptic orbit. The ratio

y/yu, is called the constant of aberration and is denoted by k as

before. Let © be the longitude of the sun; then, since the earth

is moving in the direction of the tangent to the orbit and longitudes

increase in the direction of the sun's apparent motion, it follows

that © — 90° is the longitude of the apex, while its latitude is

zero. To illustrate this, suppose the time to be noon at the

summer solstice. As the apparent annual motion carries the

sun among the stars from west to east, the true motion of the

earth to which this apparent solar motion is due must be from

east to west. At noon in the summer solstice IP is in the westerly

point of the horizon. This is the apex, and its longitude is zero,

while the longitude of the sun is 90°.

Let T (Fig. 71) be the first point of Aries, A the apex and S the

sun. Then TS = © and T^ = © - 90°. Let fall a perpendicular
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AP on the equator TP. Then AP = S„ and TP = a„. From the

right-angled triangle ^AP, we have

sin So = — cos © sin m,

cos So cos Oq = sin ©,

cos So sin Oo = — cos © cos to.

Making these substitutions in (1), we see that if a and S be

the true R.A. and decl. of a star, « the constant of aberration

and © the longitude of the sun, then the apparent R.A. and

declination as affected by aberration are respectively

a — Ksec S (sin a sin © + cos a cos a cos ©) (8),

S— /c(cos S sin tocos© -I- sin S cos a sin © — sin S sin a cos « cos ©)...(4).

Ex. 1. If the aberration of a star in r.a. is stationary, prove that the r.a.

of the star equals that of the sun ; and that if qq be the r.a. of the apex,

tan a tan oq + cos^ w= 0,

where a is the obliquity of the ecliptic.

If the aberration in r.a. is stationary then by equating to zero the

differential coefficient of (3) we have

sin a cos © = cos a cos 0) sin ©,

whence tan a=tan © cos o), which shows that u must be the r.a. of the

sun no less than of the star. In general the r.a. and declination of the

apex, i.e. a^ and 8q, are respectively

— tan" 1 (cot © cos m), — sin- 1 (cos © cos a),

and when the aberration in r.a. is stationary tan a tan oq becomes

— tan ® cos a cot © cos a>= — oos^ m.

We have also in the same case

sin 8q= — cos a cos co sin ajy/ (sin^ a+ cos^ a cos^ m),

cos 8o cos Oo= sin a/V (sin^ a+ cos^ a cos^ a>),

cos 8|) sin oq= - cos a cos^ a/^ (sin^ a + COS^ a cos"'' a>),

whence we easily verify that

sin 8(, cos do tan (aj — a) cos a,, tan w= 1.
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Ex. 2. If a, 8 be the r.a. and declination of a star and if © be the longi-

tude of the sun and a the obliquity of the ecliptic, show that when the star's

aberration in declination has its greatest value,

tan © (sin a> cos 8 - cos a sin 8 sin a)= sin 8 cos a.

By § 81, Ex. 1, the aberration in declination of S (Fig. 71) is k cos AS',

if A be the apex and SS' (= 90°) passes through the pole P. If AS' is a

minimum it must be the perpendicular from S' to the ecliptic at A and

must therefore contain K, the pole of the ecliptic, whence the result follows

from the triangle S'KP.

Ex. 3. Prove that when the aberration in declination attains its greatest

numerical value for the year the arcs on the celestial sphere joining the star

to the sun and to the pole of the equator are at right angles.

Ex. 4. Prove that for a given position of the sun the abeiTation in right

ascension of a star on the equator will be least when

tan a = tan © sec lo,

a being the right ascension of the star, © the sun's longitude, and a the

obliquity of the ecliptic.

Ex. 5. Prove that all stars, whose aberration in r.a. is a maximum at

the same time that the aberration in declination vanishes, lie either on a.

cone of the second order whose circular sections are parallel to the ecliptic

and equator, or on the solstitial colure.

[Math. Trip.]

As the aberration in declination is zero, we have

tan 8 cos(ao-a)= tan8o=tano)sinao,
whence

tan oo= tan 8 cos a/(tan u> - tan 8 sin a),

tan So= tan &> tan 8 cos a/(tan^ <o + tan^ 8 — 2 tan a> tan S sin a)4

.

But as the aberration in r.a. is a maximum, we have (Ex. 1)

sin Sq cos 8o tan (og — o) cos oq tan m= 1,

and eliminating ao, 8o and reducing, we obtain

(tan^ (0-2 tan <o tan 8 sin a+ tan^ 6) (1 + tan m tan 8 sin a) =0.

It is impossible for the first factor to vanish unless

sina= + l, and tan 8= sin a tan <d.

Thus there are two points on the solstitial colure which satisfy the con-

dition.

If we transform the second factor by making

A'=?'C088cosa; y=?-cos8sina; 2= rsin8;

we obtain x'^+y'^+yz tan ci)= 0, which may be written thus :

—

oc'^+y^+z^-z{s— ytaxLa>)=0,

which is the equation of a cone whose circular sections are parallel to

z=0 and z—y taxia> = Q,

i.e. the equator and the ecliptic.
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Ex. 6. Show that the effect of annual aberration on any coordinate of a

star may be expressed in the form

acos(® + A),

where ® is the longitude of the sun and a, A constants depending upon the

position of the star.

85. Aberration in longitude and latitude.

To apply the formula of § 82 to this case we must make

T/o = © — 90° and ^o = 0- Then \ and /3, the longitude and lati-

tude, replace rj and ?' respectively, and thus we find that aberration

increases the longitude of the star by

— K sec /S cos (© — X),

and increases the latitude of the star by

— K sin /3 sin (© — X).

It will be remembered that in these expressions it is assumed

that the earth's orbit is circular.

Ex. 1. The angular distance between two stars which have the same

latitude (3 is 6, and the mean of their longitudes is <^ ; show that the incre-

ment of 6 due to aberration is

2k ta,n\6 sin (^- ®) (cos^/S-sin^^^)*,

where ® is the sun's longitude.

[Math. Trip. I.]

If ^ be the latitude of the point bisecting the arc between the two

stars, then the increment oi 6 (§81,Ex.2)is 2KsinJ5cos|3'sin(0-®), and

eliminate /3 by help of sin /3=sin ^' cos ^5.

Ex. 2. Show that the distance between two stars at ft X and ^o, X^

respectively is not altered by aberration if the sun's longitude ® satisfies the

equation
cos (3 sin (® -X)+cos/3osin(0-Xo)=O.

Ex. 3. The apparent longitude and latitude, X' and ^', of a star being

given, show that, when the earth's orbit is taken as circular, the terms in

the aberrations in latitude and longitude depending on the square of < are

J k2 sin 1" tan ^' cos 2 (® - X'),

and iK2gini"tan2^'sin2(®-X');

where ® is the true longitude of the sun. To what stars would these cor-

rections be applied ?^^
[Math. Trip. I.]

Ex. 4. If {x, y, z) be the direction cosines of a star referred to rect-

angular axes, {I, m, n) direction cosines of the point towards which the

earth is travelling, show that the direction cosines of the star's apparent

place as affected by aberration are x+k{1-xcos6), and two similar ex-

pressions when K is the quantity vjii. (p. 250) and cos6= lx-\-my-\-nz.

B. A. 17
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If on a great circle three points Ri, Ri, Rg be set off at distances pi, pi, pz

respectively from an origin on the circle, and if ^i, yi, zi ; ^zi ^Z' ^2 ; *'3i 3^3 > ^s

be the direction cosines of Ri, R^, R3 respectively from the centre of the

sphere, then
^1 sin (p2-p3)+^2 sin (p3-pi)+'»3 sin (pi -p2)= 0,

yi sin (pi-ps) +1/2 sin (pa - pi)+ 1/3 sin (pi - pz) =0,

zi sin(p2-p3) + 22 siii(p3-pi)H-23 sin(pi— p2)=0.

To apply this to the present case, we make

p2 — p3= Ksin5; p3-pi=-5; pi — P2=^-Ksin5.

86. The geometry of annual aberration.

We now investigate the shape of the small closed curve which

the star appears to describe on the celestial sphere in consequence

of annual aberration.

Let ST be the perpendicular from S, the true place of the

star, to the ecliptic AT, where A is the apex (Fig. 72), and

Fig. 72.

produce T to T' so that ST' = 90°.

Let S' be the point to which the star is displaced by aberra-

tion, then since S8' is small we may regard the locus of S' as a

plane curve. If x, y be the rectangular coordinates of S' as

indicated in the figure, we have (§ 81)

2/
= K cos AT' = K sin (© — X) sin j3,

and x = Ksin SA sin AST = k cos (© — X),

whence x^ + y^ cosec* /3 = «^.
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We thus obtain the following results with regard to the effect of

annual aberration on the apparent position of a star.

In consequence of annual aberration the apparent place of each

star describes an ellipse, known as the ellipse of aberration, in the

course ofayearand the centre of theellipseisthetrueplaceof thestar.

The axis minor of the ellipse is perpendicular to the ecliptic.

The semi-axis major of the ellipse is the constant of aberration

and is therefore the same for all stars.

For a star on the ecliptic the ellipse becomes a straight line.

For a star at the pole of the ecliptic the ellipse becomes a circle,

and in general the semi-axis minor of the ellipse is the product

of the sine of the star's latitude and the constant of aberration.

Ex. 1. Assuming that the sun's motion is uniform, show that at four

consecutive epochs at intervals of three months, the apparent place of the

star will occupy successively the four extremities of a pair of conjugate

diameters of the ellipse of aberration.

Ex. 2. Let \ be the longitude of a star and /3 its latitude, show geo-

metrically that the effect of aberration will be to displace the star by a

distance which is the square root of

^ ic2 {1 -f sin2 (3+ cos2 j3 cos 2 (© - X)}.

Ex. 3. Show that the ellipse of aberration is the orthogonal projection

of a circle in the plane of the ecliptic on the tangent plane touching the

celestial sphere in the true place of the star.

Ex. 4. Show that the effect of annual aberration upon the apparent places

of the fixed stars would be produced if each star actually revolved in a small

circular orbit parallel to the plane of the ecliptic and if the earth were at rest.

*87. Effect ofthe elliptic motion ofthe earth on aberration.

We have now to consider the influence of the eccentricity of

the earth's orbit on the annual aberration.

Let © be as usual the sun's geocentric longitude, then 180° -f-

is the earth's heliocentric longitude, ct the longitude of perihelion

and d the true anomaly, so that © -1- 180° = in- + ft The earth's

radius vector is r and if v, So: "fo have the significations already

given to them (§ 84), we must have

V cos So cos "o = — t; (^ cos ©), '

V cos So sin tto = — -T, {r sin cos ca),

t; sin S„ = - -j- (r sin © sin a).

(i)

17—2
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The first of these equations is obtained by identifying two ex-

pressions for the velocity of the earth parallel to the line £i T.

The third equation is obtained from identifying expressions for

the velocity of the earth parallel to the earth's polar axis, and

the second equation is obtained in like manner from the axis

perpendicular to those already mentioned.

To make use of equations (i) we must obtain from the elliptic

motion the values of drjdt and of — rdQ/dt = rdOjdt. Kepler's

second law shows that rddjdt oc 1/r (§ 50), and hence from the

polar equation of the ellipse, viz. r= a(l — e^)/(l + ecos^), we

obtain

rdeidt = G{l + eco^e),

where C is a constant ; by substituting this in the logarithmic

differential of the polar equation of the ellipse, we find

drjdt = Ge sin 0.

Expanding (i) and making these substitutions

V cos 8(1 cos a^— G[—es\n6 cos © + sin © (1 + e cos 6)},

V cos So sin a„ = (7 cos (o{—e sin ^ sin © — cos © (1 + e cos ff)],

V sin S„ =G sin ta {— e sin 6 sin © — cos © (1 + e cos 6)],

whence, remembering that 180° + © = ^ + sr, we obtain

V cos So cos aQ=-G (sin © — e sin -ar), "i

«cos So sin a„= (7 cos oj (— cos © + e cos •sr), I (ii)

V sin So = G sin &> (— cos © + e cos sr).J

Substituting in equations (i) and (ii) (§ 84), and making

G/fj, = K, which is called the constant of aberration,

a! — a= K sec S (— sin a sin © — cos a cos © cos «)

+ KB sec S (sin a sin ot + cos a cos or cos m),

S' — S= K (cos (o sin a sin S cos © — sin to cos S cos ©
— cos a sin S sin ©)

+ KB (+ sin o) cos iCT cos S + sin ar cos a sin S

— cos (o cos -ar sin a sin S).

As e is only about 1/60 it is plain that the eccentricity of the

earth's orbit has but a very small effect on the aberration. The
peculiar character of that effect is however worthy of notice.

The terms in a' — a and S' — S which contain e do not contain ©.
Consequently these terms do not change during the course of the
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year, and indeed it is only after the lapse of many centuries that

any change in such terms would be large enough to be appreci-

able. The effect therefore of these terms is to produce changes

in the R.A. and S of each star which are quite different ia

character from the annual effect which is the chief result of

aberration. We might allow for these by means of the values

just found, but since they are constant for many centuries it

is more convenient to include this part of the aberration in the

adopted r.a. and declination. The catalogued mean coordinates

of stars are therefore to a very minute extent distorted in

consequence of the eccentricity of the earth's orbit.

Ex. 1. The apparent positions of a star when the earth is in perihelion

and aphelion are P and Q respectively ; show that the true position of the

star is at a point R in PQ, such that PR : RQ : : 1+e : 1 — e, where e is the

eccentricity of the earth's orbit. Prove that PQ is conjugate to the diameter

of the ellipse formed by drawing a great circle through its centre and the

apses of the earth's orbit.

[Math. Trip. I.]

Ex. 2. Prove that in the case of a star the result of replacing the usual

assumption of the earth's orbit being a circle with the mean radius by that

of the elliptic form is equivalent to (1) modifying the constant in the dis-

placement towards the point ninety degrees behind the sun in the ecliptic,

and (2) regarding as included in the star's mean position a constant aberra-

tional displacement to a point on the ecliptic in the direction at right angles

to the apse line of the orbit.

[Math. Trip. I.]

Ex. 3. Show that the constant of aberration C/^i (see p. 260) is

'i.iTaifiTil - e^)^ sin 1", where a, T, e are the mean distance, the periodic

time, and the eccentricity of the earth's orbit, and /i the velocity of light.

Ex. 4 By a well known theorem in elliptic motion the velocity of the

observer P relative to the sun S is compounded of a velocity C perpendicular

to SP, and a velocity eC perpendicular to the axis major when C is the con-

stant on p. 260. Deduce from this the equations (ii).

88. Determination of the constant of aberration.

The investigation of the constant of aberration is now most

frequently based on the observation of zenith distances of stars

specially selected to meet the requirements of the problem. These

observations are preferably made with an instrument known as a

zenith telescope. We shall take a simple case in which only two

stars are employed.

Let Si and S^ be two stars which culminate as nearly as
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possible at the zenith, one a little north and the other a little

south of the zenith. The stars are to be chosen so that their

right ascensions differ by about 12 hours. The first observations

of zenith distance of both stars are to be made on a day when S^

has its upper culmination at 6 A.M., and S^ will on the same day

have its upper culmination at 6 P.M. These are to be combined

with observations made six months later, when S^ culminates at

6 P.M. and S^ at 6 A.M. These conditions can hardly be exactly

realized, but they indicate the most perfect scheme for an accurate

result when only two stars are used. The reasons for these

requirements will presently be made clear.

Let ttj, Si be the mean values of the right ascension and

declination of 8i for the beginning of the year taken from some

standard catalogue. Even the most excellent determinations of

star places must be presumed to be in some degree erroneous.

No doubt the errors of the coordinates are very small, and for

most purposes they may be quite overlooked. But such minute

errors as are unavoidable in the declinations adopted for the

stars would be quite large enough to vitiate a determination of

the coefficient of aberration which depended on the declination.

In the present method the observations are so combined that the

declinations disappear from the result and consequently their

errors are void of effect.

We shall assume for the moment that a value of the constant of

aberration is approximately known. We may, for example, take

the constant to be 20""o + atj, where «, is some very small fraction

of a second. The determination of Ki is then the object of the

investigation. By this device we secure the convenience that the

quantity sought is very small in comparison with the total

amount of aberration, and consequently in computing the co-

efficients by which k^ is to be multiplied we are permitted to use

approximate methods that would not be valid if these coefficients

were to be multiplied by any quantity other than a very small

one.

The first operation is to deduce the apparent places of 8^ and

S2 for the days of observation. We must by the known processes

compute the precession and nutation. We must further calculate

the aberration, using the approximate value 20"- 5 for the co-

efiicient. The correction thus obtained for the declination of S^
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on the first day of observation we denote by p^,. It is a complete

correction except in so far as we have used an incorrect value of

the constant of aberration. We must therefore increase p^ by A^k^,

where A^ is the coefficient of vfjr'^ as given in equation (1), § 84.

Thus we see that the apparent declination of 8^ on the first day
of observation is b^+p^ + AiK-^. We assume, however, as above

explained, that there may be an unknown error in Sj.

Let z-i be the observed zenith distance, which we shall suppose

cleared from refraction (Chap. VI.). Then since the latitude ^
is the sum of the zenith distance (in this case supposed to be

south) and the declination, we have

4> = z^ + d^+p,+A,K^ (1).

On the same day, about 12 hours later, we observe the second

star, and as in that titae the latitude will not have changed

appreciably, we have also,

(/) = 02+S2+iJ2 + -4i,/€i (2),

where by the changes in the suffices we indicate that this formula

relates to the second star. Six months later, the observations are

to be repeated on the same stars, and we must then suppose the

latitude has changed to <^', which generally differs from (j) on

account of certain minute periodic alterations (§ 61). The zenith

distances are different at the second epoch of observation, and so

are also p^, p^, A^, A^, but Sj and Sa being the mean values of the

declinations at the beginning of the year are the same at both

epochs. Using accented letters to distinguish the quantities

relating to the second epoch, we thus have

(^' =< + S2+p2' + ^/«ri (4),

from (1), (2), (3), (4) we easily obtain the following equation for k^

Zi-Zi- z( +< +^1 -p2-p(-^pi + (^1 - ^2 - A^ + Ai) Ki = 0,

and therefore the aberration is 20" '5 + «i, where

z^- Zi-z(-^zi-\-p-,-p2-p^ -^pi

Ai — A2 — Ai + A2

The numerator and denominator are both known quantities, and

hence k^ is found.
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If in the computation of p^, p^, px, pi no allowance had been

made for aberration the formula just given would have afforded

an approximate value of the aberration, and the approximate

value we have used, 20" "5, may be regarded as having been thus

obtained.

We are to notice that 8i and h^ have both disappeared. If

therefore these quantities had been affected by small errors as,

of course, will generally be the case, those errors will not have

imparted any inaccuracy to Kj, except in so far as A-^, p^, &c.

depend on the adopted values of S. As (/> and
<f>'

have also both

disappeared, any uncertainty as to the latitude at either the

first epoch or the last will also have very little influence.

It is by the observed quantities z^, z^, zl, z^ that errors of

observation are introduced into the expression for k-^. How far

these errors will influence the value of k^ depends upon the

denominator A^ — A^ — A-l + A^. The larger this denominator

the larger will be the quantity by which the errors will be

divided, and consequently the smaller will be the influence of

the errors of observation on the result. The observations are

therefore to be arranged so as to make this denominator as great

as circumstances will permit. To determine the most suitable

arrangement we may use approximate values for .dj, A^, A-l, A,^,

though of course the true values must be used in the actual deter-

mination of «i.

As the stars culminate near the zenith we may for our present

object suppose that their declinations are equal to the latitude <j),

and thus we have (§ 84)

A^ = sin 8(1 cos — cos So sin <^ cos (mi — Hq),

A^ = sin 8(, cos <^ — cos So sin <^ cos {ol^ — a^);

At, — A^ = COS So sin ^ {cos {a^ — a^ — cos (a, — a^]

= 2 cos So sin sin \ {aL^ — a^) sin ^ (a^ + a^ — 2oio).

In like manner

Ai — A^ = 2 cos So' sin </>' sin ^ (oj — a^ sin \ (oj + aj — 2ao'),

where a^, So' is the position of the apex at the time of the second

observation.

As the apex is on the ecliptic, cos So and cos So' have as extreme

limits 1"00 and 0'92. We shall therefore take with sufficient
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accuracy cos So = cos So' = 0-96. It is perhaps hardly necessary to

add that we may for this purpose take (p = (jj', and thus we have

(A, -A,) -(A,' -A,')

= 4 cos So sin ^ sin ^ (a^ - Oa) sin | («„' - a„) cos ^ («! + Oj - «„ - «„')•

To make this numerically as large as possible, we first put

sin ^ (Ml- 02) = + !,

whence «! — a2=180°, or the two stars should differ by 12 hours

in right ascension. Similarly to make the factor sin^(a„'-a„)

as large as possible the sun must, between the two sets of obser-

vations have moved 180° in right ascension and therefore 180°

in longitude. This requires that the interval between the

two sets of observations should be six months. The factor

cos J(ai + a2 — Ho — ao') will have unity as its greatest value,

in which case sin (ki + Ks — «» — Ko') will be zero or

sin {(«! - Oa) + (a„ - a„') + 2 (a^ - a„)} = 0.

Expanding this and noting the conditions already obtained we
see that sin 2 (03 — «„) = 0. This condition will be satisfied if

02 = Ok, which requires that the two stars shall lie on the hour

circle through the two antipodal positions of the apex. It follows

that the conditions will be most favourable when one of the stars

culminates about 6 a.m. and the other about 6 p.m. respectively.

In the application of this as well as in other methods of

determining this important constant there are many difficulties

and the results hitherto obtained are therefore somewhat less

accordant than the present state of astronomical work of precision

would lead us to desire, so that the exact value cannot be given

within a few hundredths of a second of arc, but it must be very

close to 20" "47, which is the final result of the best determinations

made up to the present.

*89. Diurnal aberration.

We have now to consider the particular kind of aberration

produced by that movement of the observer which arises from the

diurnal rotation of the earth. This aberration is described as

diurnal, to distinguish it fi:om the far more important pheno-

menon of annual aberration with which we have been hitherto

occupied.
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At the latitude 4> the velocity of the observer arising from

the earth's rotation is 463 cos ^ metres per second, and as the

velocity of light is about 300,000 kilometres per second we see

that the coefficient of diurnal aberration is

463 cosec 1" cos ^/SOOOOOOOO = 0"-32 cos (j).

This coefficient is so small that diurnal aberration may always

be neglected except when great refinement is required.

The diurnal rotation carries the observer towards the east

point of the horizon. Hence So = 0, a^id «„ — « = 90° + h, where h

is the west hour angle of the star. Making these substitutions

in § 84, we find that the R.A. and declination of the star when

affected by diurnal aberration become

a + 0"'32 cos ^ cos h sec S,

S + 0''"32 cos sin h sin S.

When a star is on the meridian, h = and the effect of diurnal

aberration in declination vanishes, while the transit is delayed

by the amount 0' '021 cos <^ sec S. For lower meridian transits

/( = 180°, and the transit is accelerated by 0^'021 cos0 secS.

To find the effect of diurnal aberration on the zenith distance

of a star which is not on the meridian, we differentiate the

equation

cos z = sin (j> sin S + cos
(f)

cos S cos h,

and substitute for dh and dS the values — 0" "32 cos (^ cos /i sec 8

and + 0""32 cos (/> sin h sin 8 respectively, and obtain

dz = — 0"'32 cos ^ cos S sin h cot z.

Ex. 1. Show that to an observer in latitude <j>, a star of declination §

will, owing to diurnal aberration, appear to move in an ellipse whose semi-

axes are m cos
<f>
and m cos sin S, where m is the ratio of the circumference

of the earth to the distance described by light in a day, and the angles

are in circular measure.
[Coll. Exam.]

Ex. 2. Show that the effect of diurnal aberration on the observed zenith

distance z of a star may be allowed for by subtracting t cos z seconds from

the time of observation, where t is the time in seconds that light would take

to travel a distance equal to the earth's radius.

[Math. Trip. I.]

*90. Planetary aberration.

Up to the present we have assumed that the star whose
aberration was under consideration was itself at rest.- But if
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the star be in motion, it is obvious that the formulae already

given must receive some modification. The general principle on

which planetary aberration depends may be best illustrated by

assuming for the moment the corpuscular theory of light.

Let «o> 2/0, •^0 be the coordinates of a planet at the time t„, the

velocity of which has as its components x^, y^, io. Let x, y, z be

the coordinates of the earth at the time t^ and x, y, z its com-

ponent velocities. We shall suppose that these components remain

unaltered during the time the light travels from the planet to the

earth, in other words we overlook for this brief period the curva-

tures of the orbits and the changes of velocity of both bodies.

Let X, Y, Z be the component velocities of a ray of light which

at the time t^ left the point x^, y„, z^, regarded as a fixed point.

As the ray of light regarded as a projectile from the planet

will start with a velocity which has components X -^ x^, F-|-y„,

Z + Zo it will in the time t have reached the position with co-

ordinates

X„ + {X + X^) T, yo-^{Y + yo)r, Za + (Z+Zo)T,

and if this fall on the earth we must have

Xo + (X + Xo)t = X + XT,

yo + (Y + y')T = y + yT,

Zo +{Z + Zo) T = Z + ZT.

These equations may be written in the form

Xo + Xt = x + {x—Xo) t,

yo+YT = y + {y- yo) r,

Zo+Zt =z +{z - io) T.

This proves that planetary aberration may be calculated by

compounding with the actual velocity of the earth a velocity

equal and opposite to that of the planets, and then regarding the

planet as at rest.

The formulae here arrived at by the corpuscular theory of

light have been shown to be equally true when the undulatory

theory of light is adopted.

It will be sufficient to take the case of the earth and a planet,

which are assumed to move uniformly in circular orbits in the

same plane.
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Let S (Fig. 73) be the sun, T the earth moving in the direction

TT', perpendicular to ST, with a velocity v. The planet V is

moving in the direction of the tangent VV and with a velocity

^Vr/V/, where r and r' denote ST and 8V. The elongation

of the planet from the sun, as seen from the earth, is Z STV,

and that of the earth from the sun as seen from the planet is

Z SVT. We shall denote these elongations by E and P.

Fig. 73.

If we write for brevity v 'Jr/'/r' = v' then the components of v'

parallel to TT' and TS are - v' cos (E+P) and +v'Bm{E+P)
respectively. To obtain the planetary aberration we are to

compound these velocities when their signs have been changed

with the velocity of the earth, which then has components

[v + v' cos (E+ P)} from T towards T' and -v'sia(E+P) from

T towards S. If TT', TS be the positive directions of axes x and

y then by making ^=0, ^' = 0, ?„ = 0, '»; = 90°-£^, r,' = 90''-E'.

V cos ri^ = v + v' COS {E + P), V sin r)o — — v' sin {E + P) we have from

equations (1) and (2) in § 82

/jiSmE = fi' sin E' -v-v cos {E + P),

ficosE= n' cos E' + v sin {E + P),

whence by eliminating fi and remembering that E' — E is very

small

/Li sin {E' — E) = vcosE + v' cos P
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Let Vo be a planet of the system at the distance r„, then we
have

V = Vo ^r^/^/r, v' = v„ Vro/Vr'.

With this substitution we have for the planetary aberration

(E'-E)

E'-E=^ V»^(cos Ej'Jr + cos P/Vr').

When the correction for planetary aberration has been applied,

we obtain the place of the planet as it was when the ray of light

left it. But this will not be the actual place of the planet at

the time the observation is made. It will be the place of the

planet at an epoch earlier by 498° "5 x A, where A is the distance

of the planet from the earth expressed in terms of the sun's mean

distance, because 498^-5 is the time occupied by light in moving

through a distance equal to the mean distance of the sun.

Ex. 1. The orbits of two planets are circular and in the same plane;

prove that when there is no aberration in the position of either of them

as seen from the other, the distance from the sun of the line joining them is

ab {a^+ ab+ b^)~^, where a and b are the radii of their orbits.

[Math. Trip.]

Ex. 2. Two planets move in coplanar circular orbits of radii R, r ; show

that when the difference of their longitudes is 6, the aberration is propor-

tional to

UR-^s]r) {{R-iJW+r) cos 6 - ^IRr)

'jRr {R^ -2Rr COS e+r^)

Ex. 3. If two planets move in circles round the sun, show that the

aberration of one as seen from the other will be less in conjunction than

in opposition in the ratio

JR-s/r
^R + ^r'

jB and r being the radii of the two orbits.^
[Math. Trip.]

*91. Formulae of reduction from mean to apparent places

of stars.

By the mean place of a star we are to understand the position

of the star as it would appear if it could be viewed by an

observer who was in the centre of the sun and at rest. The

apparent place of the star is the position which it seems to
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occupy to a terrestrial observer, and it differs from the mean

place both by refraction which we have already considered in

Chap. VI., and which need not be now referred to, and by aber-

ration which we are now to consider. When the mean place

of a star is expressed by its E.A. and decl., the equator and

equinox adopted are those of the beginning of the year, or more

strictly, of the moment when the sun's mean longitude is exactly

280°, as explained in | 59.

We have already explained in § 59 the compendious methods

by which we can calculate the changes in the coordinates of a star

caused by precession and nutation. We are now to explain the

more complete process in which the- effects of aben-ation as well

as those of precession, nutation and proper motion on the co-

ordinates of any particular star can be readily computed, so that

the apparent place can be obtained when the mean place is

known. The necessary formulae are given in the ephemeris for

each year, see, for example, p. 233 in the Nautical Almanac
for 1910. We shall here set down the formulae for what are

known as Bessel's day numbers A, B, G, D, the expressions for

which, retaining only the terms of chief importance, are as

follows :

A=- 20"-47 cos m cos ©, \

£=-20" -47 sin©,
|

) (i)

C =t- 0-342 sin s - 0-025 sin 2Z,

Z> = - 9" -210 cos £3 - 0"-551 cos 2i, )

where to is the obliquity of the ecliptic, © the sun's true longi-

tude, L the sun's mean longitude, S3 the longitude of the moon's

ascending node, each for the time t, which may be expressed

with sufficient accuracy for our present purpose as the fraction

of the year which has elapsed since noon of the preceding

January 1st. The quantities A, B, 0, D do not involve the star

coordinates, they are common to all stars and depend only on the

time. The logarithms of A, B, G, D are given daily throughout

the year in the ephemeris, and in forming them all the terms,

including those which on account of their smallness we have

here omitted, are duly attended to. To apply the day numbers to

finding the corrections for any particular star we have to calcu-

late certain other quantities a, b, c, d, a', b', c', d' which depend
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on the place of the star, but do not depend on the time. They
are as follows

:

<t = YE ^'^^ ** ^^^ ^' ^' = ^^^ ^ ''OS S — sin a sin B,

b =-Yi sin a sec S, b' = cos a sin 8,

c = 3^-073 + l'-336 sin a tan 8, c' = 20" "046 cos a,

d =^ cos a. tan 8, d' = — sin a,

where a, S are the mean right ascension and declination for the

beginning of the year.

We also take account of the proper motion of the star if it

be sufficiently large to be appreciable by assuming

Ac = the annual proper motion in right ascension,

Ac' = the annual proper motion in declination.

Then for the time represented by t, we have

Apparent R.A. in time = a + Aa +Bb +Cc + Dd + iAc ,"1

Apparent declination = S + Aa' + Bb' + Cc' + Di' + iAc'.j
""

The convenience of these formulae will be readily perceived,

for the quantities log a, log a', &c., log h, log V, &c. can be calcu-

cated once for all for any given star, and then for any particular

day on which the reductions are required, log 4, \ogB, &c. can be

taken from the ephemeris.

The proof of equations (iii) follows from formulae which have

already been given. The aberration in right ascension which has

been found in § 84, is precisely what we have here represented by

Aa + Bb, and in like manner the effect of precession and nutation

in R.A. is that which we have here expressed as Gc + Dd. The

second formula of (iii) can be explained in like manner.

For some purposes formulae (iii) may with much advantage

be superseded by others. The transformation is effected by intro-

ducing the independent day numbers/, log^, Q, log A, H, logi,

of which we have already discussed the use in § 59 so far as /, g, G
are concerned. For convenience we here collect all the formulae

showing how the independent day numbers are connected with

Bessel's day numbers by the equations

3^-0730=/, B = hcosH,

20»-046C = gcosG, A=hsmH,
\

(iv).

D = g ain G, A tan <b = i.
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With these substitutions we have

Apparent R.A. in time = a +f+tAc + -^^g sin ((? + a) tan S

+ j^Asin (if + a) sec 8 ...(v).

Apparent declination = S + »' cos h + ^Ac' + g cos ((? + a)

+ h cos {H 4- a) sin S. . .(vi).

The independent day numbers i, h, H which are connected

with the aberration can be directly calculated from the following

formulae

:

hcosH=- 20"-47 sin © ; hsinH = - 20"-47 cos ta cos © ;

i = - 20"-47 sin ta cos ©

;

in which we may without restriction of generality always take h

to be a positive quantity. It is easily seen that (180° — H) and

tan~^ (i/h) are respectively the R.A. and the decl. of the apex.

Ex. 1. Show that the displacement of a star by aberration when ex-

pressed in seconds of arc is the square root of the quantity

{i cos S+ A cos [B+a) sin Sf+ {h sin {S+ a)}^.

Ex. 2. If the mean r.a. of Capella on 1910 Jan. 1st be 5^ 10" 2= -31 and

its mean deohnation be +45° 54' 26" -5, show that for its apparent place on

1910 Nov. 27, the r.a. should be increased by 4" -68 and the declination by
7"

-7, it being given that on Nov. 27, /= 1-95, log^ = 1-145, (7 = 335° 32',

logA=l-305, 11=23° 16', logi=+0-539, and that the annual proper motion

is +0''009 in r.a. and -0"'4 in declination.

*Ex. 3. If D be the apparent distance on a certain day between a star

u, 8, and an adjacent star at the apparent position angle p, and if /, g, O, h,

ff, i be the corresponding independent day numbers for correcting the ap-

parent places of stars for aberration, precession and nutation, show that

the distance between the mean places of the two stars on the preceding

Jan. 1st was
I>+D{iamS — hcos(B+ a) cos S} sin 1",

and the position angle was

p— ff
sin {0 + a) sec 8 -A. sin (S"+a) tan 8.

To find the position angle at a date n years earlier than the Jan. Isfc

immediately preceding the observation, show that a further correction of

- 20""046 sin a sec 8 must be applied to p to allow for the precessional motion

of the pole.

Let a, 8 be the apparent right ascension and declination of the principal

star of the pair.

Let a+ <j), b+tjf be the corresponding mean coordinates when reduced

to the beginning of the year.
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Let a, 8' be the apparent r.a. and declination of the adjacent star, and
when the corrections are applied to a' and S' to bring them to the commenoe-
ment of the year they become by Taylor's theorem

a'+<^+|K-a) +|(8'-8) (1),

8'+^+|^(„'_„)+ 3^(S'-a) (2).

Let D+dD and p + dp be the corresponding distance and position of

the two stars when in their mean places for the commencement of the year.

Then we have approximately

Dcosp= b' -b,

J) sin p= (a -a) cos 8,

and by differentiating and substituting

cosp dD-D sin p dp =^ {a -a)+ -^{8' -8) (3)

sin jB rfZ)+ Z) cos^c^= -\^(a'- a) sin 8+ (a'- a) cos 8 ^+ (8' -8) cos S^... (4),
Oa o8

but these may be written

cospdD-D sin pdp= Dsinpsec8-^+Dcosp-~ (5),

sinp dD -irB cosp dp= - Dsinpt&n8.^+Dsinp ^ + Dcospoos8-^ ...(6).

Introducing for <^ and i/r their values

0= —f-gsin (G'+ a) tanS — Asin(Zr+a)sec8,

\\r= -icos8—gcos{G+ a)—hcos(S+a)sin 8,

performing the differentiations indicated and then solving for dB and dp the

result assumes the form

dl)= Z){isin8-Acos(jy+a)cos8}sinl" (7),

dp = —^sin {0+a)sec8—k sin {S+a) tan 8 (8).

The quantities g, O are absent from dB, for it is obvious that changes

in the equator cannot produce any effect on the distance between two stars.

Though these formulae are concerned with such small quantities they become
of importance in the investigation of the annual parallax of stars.

Por the last part of the question we have to reduce formula (8), so that it

shall contain the effect only of precession for n whole years, aberration and

nutation being both made zero. This is done by making

A= 0, Q= Q, 5-= 20" -04671,

whence the correction to reduce to the mean pole n years earlier is

- 20"-046re sin a sec S.

*Ex. 4. If by a small change in the equator the coordinates a, 8 of each

B. A. 18
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star become a+ <^, 8+ 1/' without any change in the position of the star, show

that <p and ^|r being functions of the coordinates

88 '

^—i/'tan 8= 0,
Oa

sec8^+cosS^= 0.
Oa 00

From Ex. 3 we see that that the change dD in the distance 2) of two

adjacent stars is given by

dD=Dcos^p 1^ +^ sinV (^ - V' tan b\

+ Dsva.pcosp I sec 8 -5^ + 008 8^1

,

and as dD must be zero whatever be the value of p the required result is

at once obtained.

*Ex. 5. Show that if a nximber of stars lie on a circle of which the arcual

radius is very small the effect of aberration on these stars is to convey them

to the circumference of an adjacent circle (Briinnow).

This follows from the absence of p from equations (7), (8), Ex. 3.

*Ex. 6. Let A aud B be two stars which appear to be conveyed by aber-

ration to A' and B' towards an apex C. Show that the .aberration changes

the angle at A into A-k tan ^c sinjo where c is the arc AB and p is the

perpendicular from C on AB.

Let the two stars at B and A be at distances a, h respectively from C
Then in the spherical triangle we have

cos 6cosC=sin 6 cot a -sin Coot A,

differentiating and making

Aa=-Ksina, A6=-Ksin6, aC=0,
we obtain

K sin h cosec a (sin a sin 6 cos C+cos a cos 6 — 1) = sin Ccosec^ .4A4,

whence
A2I = - K tan ^c sin A sin 6,

= — Ktan^csinp.

If the stars are adjacent c is small, so that when multiplied by k the

product is very small, and A4 becomes inappreciable.

*Ex. 7. From the star defined by (a= 59° 53'; 8=37° 45') the distance

237" '3 and position angle 207° 14' of an adjacent star were measured on

6th Jan. 1880. Show that the corrections to be applied to the distance

and position angle to reduce them to the date 1879'0 are — 0"'015 and
-0'"66 respectively.
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From K A. 1880, p. 303, we have for 1880 Jan. 6,

log gf= +0-8734, 6*= 343° 40', log A= +1-3079, ir=345°8', Logi= -0-3541.

Aberration iu distance, Log 1st term =-7-202, Log 2nd term = -8-116,

Log nutation in position - 9-036, Log aberration in position - 9-268.

Correction for one year's precession — 0'-366.

*Ex. 8. Show that the effect of aberration on the distance D between
two stars must always be < Z)/10000.

EXERCISES ON CHAPTER XL

Ex. 1. If the earth be supposed to move round the sun in a circle with

velocity v, and the velocity of an observer on the earth's surface due to its

rotation be nv, then x the aberration of any star n- is accurately given by the

formula

_ A (sin2 Oo-+ 2w sin Oa- sin a-E cos Oa-E+ n^ sin^ o-^)4

1+^cos Oo-+ nii;coso-^ '

where is a point on the ecliptic 90° behind the sun, E a point on the

equator differing in k.a. from the sun by the complement of the hour angle,

and k the ratio of the velocity of the earth's centre to the velocity of light.

[Math. Trip.]

If in a spherical triangle an arc CO of length s be drawn from the vertex

6' dividing the base into two segments BO=l and AO= m,, then

sin^* sin^ [l+m)= s\DL^ h sin^ ^+2 sin a sin h sin I sinm cos C+sin^ m sin^ a.

If the star be at C and if B be the apex of the rotational motion and A that

of the orbital, and if x be the resultant aberration, then fi.sinx=ps\u{s — x),

where p is the resultant velocity of the observer, and p. the velocity of light,

and we have

p cosec {l + m)= v oosec l — nv cosec m,

, , . , ,
h sin s sin II -{-m)

from which tan x = ^^

sin l+k cos s sin {l+ m)^

but cos s cosm= cos 6 - sin « sin m cos 0,

cos s cos I =cos a + sin s sin I cos 0,

whence cos s (cosm+ n cos I)= cos h+ n cos a,

which with the formula above proves the theorem.

Ex. 2. Show that the locus of all stars whose zenith distance at a given

place and a given instant are unaltered by aberration is an elliptic cone, one

of whose circular sections is horizontal, and the other is perpendicular to

the ecliptic.

[Coll. Exam.]

18—2
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In this case the angle subtended by the zenith and the apex at the star

must be 90°, from which the desired result is easily obtained.

Ex. 3. Prove that at every place there is always at a given instant one

position for a star for which the aberration is entirely counteracted by the

refraction. Show also that at midnight on the shortest day the zenith

distance of this position is given by an equation of the form

sin^z + X sin 2 = 1,

if the correction for refraction be assumed proportional to the tangent of

the zenith distance, and the earth's orbit be assumed to be circular.

[Math. Trip. I. 1900.]

*Ex. 4. If by any small change in the equator the coordinates a, 6 of

each point on the celestial sphere become a+ <j), S+ y}r, show that we must
have

<j)=C+A sin (a + B) tan 8,

yjf= A Goa (a+ B),

where A, B, C are constants independent of the coordinates, and verify that

this transformation leaves the distance between every pair of stars unaltered.
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92. Introductory.

By the word Parallax we mean the angle OSO' (Fig. 74)

between the direction O'S in which a point 8 is seen by the observer

at 0' and the direction in which the same point S would be

seen if the observer occupied a standard position 0. If iS be the

sun or the moon or a planet or a comet or, in fact, any body

iS

Fio. 74.

belonging to the solar system, then the standard position is

always taken to be the centre of the earth, and the parallax is

said to be geocentric. If »S be a star, then is taken to be the

centre of the sun and the parallax is generally described as

annual.
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The geocentric parallax of the sun is the angle OSO' where S

is the centre of the sun, p is the earth's radius 00', and ^', f

represent the angles SO'Z and SOZ respectively. Then the effect

of parallax may be said to throw the apparent place of the object

away from the direction 00' by the angle 5"' — f which we shall

represent by the symbol tt^ . Of course, if the earth were regarded

as a sphere, then f ' and f would be the apparent and real zenith

distances and the influence of parallax would merely depress

the apparent place of the object further from the zenith. As the

earth is not spherical, the effect of parallax is to depress the body

not exactly from the zenith but from the point in which the

earth's radius when continued will meet the celestial sphere.

The arc between this point and the true zenith is of course the

quantity already considered in § 15.

From the triangle OSO' we have

sin 7r( = p sin ^'/r (i).

We now introduce the angle tt^ defined by the equation

simr^ = p/r (ii),

and^ hence from (i),

sin TTf = sin tt^ sin f '.

Thus we see that rr^ is the greatest value of ir^ and this will be

attained when f ' is 90° which, if refraction were not considered,

would mean that the centre of the sun was on the horizon.

We accordingly term tt^ the horizontal parallax.

As the horizontal parallax depends on p as shown in (ii) and

as p is not the same for all latitudes owing to the spheroidal

form of the earth, it follows that the horizontal parallax must

vary with the latitude of the observer. Its maximum value is

attained when the observer is on the equator, and as
<f>

is then

zero we express by ttj what is known as the equatorial horizontal

parallax, so that if po is the equatorial radius of the earth we have

sin TTo = po/r.

If the sun be at its mean distance so that r equals a the semi-

axis major of the sun's apparent orbit, then the quantity tt^ is

defined to be the mean equatorial horizontal parallax of the sun,

and is given by the equation

sin TTo = po/a.

We shall always take tto = 8" 'SO.
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The symbols already given apply to the geocentric parallax of

the sun. By the addition of a dash to tt we denote the corre-

sponding quantities for the moon, thus

tt/ is the geocentric parallax of the moon, i.e. the angle which

the centre of the earth and the position of the observer subtend

at the centre of the moon.

ir^' is the angle whose sine is the ratio of the distances of the

observer and the moon's centre from the centre of the earth.

This is the horizontal parallax of the moon at latitude <j>.

TTj' is the value of tt^' when the observer is on the equator,

this is the equatorial horizontal parallax of the moon.

TTa is the value of ttq' when the moon is at its mean distance.

This is the mean equatorial horizontal parallax of the moon. We
shall take 7r„' = 3422".

The moon is here regarded as a sphere and the semi-vertical

angle of the cone which this sphere subtends at the earth's centre,

i.e. the apparent semi-diameter of the moon, varies from 16' 47" to

14' 43", and has a mean value of 15' 34".

From the formula (ii) we obtain

r = p cosec tt^'.

The radius of the earth is a known quantity, and if tt^' is also

known, then in this equation the right-hand side is known and

therefore r is known. Thus we obtain the important result that

the distance of a celestial body can be determined when its

horizontal parallax is known. It is in fact only by determining

the parallax of a celestial body by observation that we can ascer-

tain its distance, and as the determination of these distances is

of the utmost importance in Astronomy it is obvious that the

subject of parallax merits careful attention.

The geocentric parallax of a star properly so called is far too

minute to be sensible. In the case of even the nearest star

(aCentauri) the horizontal parallax would be only 0" '00003, and

no parallax could be detected by our measurements which was

not more than a thousand times greater than this quantity. It is

therefore impossible to determine the distance of a star by its

geocentric parallax. For such an investigation we have to resort

to annual parallax, and the consideration of this is deferred to

Chap. XV. Our present problem is that of geocentric parallax
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and especially in its application to the moon, the mean equatorial

horizontal parallax of which is 57' 2". In Chapters xill. and XIV.

we shall consider the geocentric parallax of the sun and other

bodies in the solar system.

Ex. 1. Show that

tan TT .' = sin n/ sin f/(l — sin rr,' cos f ).

Ex. 2. Show that parallax increases the apparent semi-diameter of the

moon in the ratio sin f : sin (f - nJ), where f is the apparent zenith distance

and the earth is assumed to be spherical.

Ex. 3. Show that if the horizontal parallax ttq' be a quantity whose

square may be neglected the apparent daily path of a celestial body as seen

from the earth's surface (supposed spherical), is a small circle of radius

90° - 8 + TTo' sin cos S described about a point depressed tto' cos (p sin 8 below

the pole. [Coll. Exam.]

From § 35 (1) we obtain if z be the zenith distance

AS+ cos 1) A^ - cos AA0 — sin h cos (f>Aa — 0.

In the present case Az= 7ro' sinz, Aa=0, and if A0= — wq cos <^ sin 8, we have

AS= — rro' (cos i; sin z+ COS <j> sin 8 cos A)= - ttq' sin <j> cos 8.

93. The fundamental equations of geocentric parallax.

To obtain the desired equations it is necessary to express the

coordinates of the points on the celestial sphere to which the

lines 0(7, OS, O'S (Fig. 74) are severally directed. It is con-

venient to take for this purpose the celestial equator as the

fundamental circle and T as the origin. Thus the coordinates

we employ are right ascensions and declinations.

In the general investigation to which we are now proceeding

the earth is to be regarded as a spheroid and p is the distance

from the observer to the earth's centre. The inclination of the

line 00' to the equator is the geocentric latitude <})' of the

observer, and therefore <^' is the declination of the point on the

celestial sphere to which 00' is directed. The right ascension

of the same point is the right ascension of the point where the

observer's meridian intersects the celestial equator, but this is

the sidereal time ^ which is of course the W. hour angle of T.

The directions of OS, O'S will be defined respectively by the

coordinates (a, 8), (a, 8').

If the parallax, i.e. Z OSO', be inappreciable then OS and O'S

are sensibly parallel and a', 8' are indistinguishable from a, 8. If
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the parallax be appreciable then the point a, S called the tnie place

is not the same as a', S' called the apparent place. We have first

to obtain equations from which a, 8' can be obtained in terms of

a, S or vice versa.

Draw through (Fig. 74) a line OQ (not necessarily in the

plane 00'8) to the point (X,
fj,)

and let O'Jf and 8N be perpen-

diculars on OQ, so that OM, ON are the projections of 00', OS on

OQ: then the projection of O'S is MN= ON- OM, and therefore

(§ 8) we have the general formula

r {sin S' sin /j, + cos S' cos fi cos (a' — X)} =

r {sin B sin
fj,
+ cos S cos /i cos (a — X)}

— p {sin </)' sin fi + cos 0' cos /j, cos (^ — X)} (1).

This equation must be true whatever be the line OQ. If

therefore we take in succession the three cases where X,
fj,

are

respectively (0, 0); (90°, 0); (0°, 90°); we obtain the three funda-

mental equations for parallax in the form

r' cos 8' cos a' = r cos S cos a — p cos ^' cos ^ (2),"

r' cos S' sin a' = r cos S sin a — p cos
<f>'

sin ^ (3),
-

r'sinS' =rsinS —psia<f)' (4).

These equations might also have been obtained by equating

to zero the coefficients of sin fi, cos /it cos X, cos /i sin X in the

equation (1), for these coefficients must vanish because the equa-

tions have to be true for all values of X, /j..

The formulae just obtained will perhaps appear to the beginner

to express all that could be necessary for the determination of

the effect of parallax on the coordinates of a celestial body. If

a, 8, r are given we have here three equations for a', S', r' or if

a', 8', r are given we have here three equations for a, 8, r. But
in their present form the equations are not nearly so easy to

employ or so accurate in their results as are certain other

equations which we shall deduce from them. It certainly might

seem at first sight that if two sets of equations are mathematically

equivalent the calculations from one set of equations should be

equally accurate with those made from the other set. But as

we had occasion to mention already in another problem (§ 64)

this is not necessarily the case. It must be remembered that

logarithms of the trigonometrical functions like other logarithms
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are only approximate. Thus every formula into which logarithms

are introduced becomes, to some extent, erroneous from this

cause. Equations which are mathematically correct in their

symbolic form generally part with mathematical accuracy when

numerical logarithms are introduced and the extent of the in-

accuracy varies according to circumstances. It is the art of the

astronomical computer to select from among the different possible

transformations of a given set of equations that particular set

which when solved shall afford results as little influenced as

possible by the inevitable logarithmic inaccuracies. Thus it

happens that though (2), (3), (4) are theoretically sufficient for

the determination of «', 8', r' yet we shall obtain greater accuracy

and have much less trouble with the logarithms if we employ

in our calculations certain other equations such as (7) and (15)

in which the unknowns are (a' — a) and (8' — S) instead of merely

a' and S'. It will be found that the work can be done more

accurately by using only five-figure logarithms in (7) and (15)

than by using seven-figure logarithms in (2), (3), (4).

The rationale of the matter may be thus illustrated. Let A
and B be two points one kilometre apart, and let it be desired

to set off on the line J.iJ a point which shall be one metre

from A and therefore 999 metres from B. If our instruments

of measurement were mathematically perfect we could set off

with equal precision by measuring either from A or from B.

But our instruments are not perfect, and this being so, it is no

longer a matter of indifference whether the measurements be

from A or from B. For suppose that our measuring instruments

habitually gave a result which was one millionth part in excess

of the truth. Then in setting off BO there would be an error

of almost a millimetre. But in setting off AO the error would

only be the thousandth part of a millimetre. Hence we should

make our measurements from A and not from B. Substituting

a for AB, a — a for AO, and a' for BO we see how much more

satisfactory it will be to proceed by calculating a — a' rather than

by making the more precarious calculation of deducing a' from

(2), (3), (4). "We must therefore obtain from (2), (3), (4) formulae

giving a' — a, and B' — S and employ these formulae rather than

the original formulae in the subsequent calculations.

The equation for (a' — a) will be obtained by multiplying (3)
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by COS a and subtracting from it (2) multiplied by sin a, thus

giving

r' cos S' sin (a' — a) = — p cos <^'sin(^- a) (5),

in which ^ — a is the moon's hour angle West.

This equation might indeed have been obtained directly from

(1) which has to be true for all values of X, /a. If we make
X = a + 90°, /i = 0, then (1) becomes (5).

Multiplying (2) by cos a. and adding to it (3) multiplied by

sin a, we find

r' cos S' cos (a' — a) = ?• cos S — p cos <!>' cos (^ — a) . . .(6),

and this might have been obtained at once from (1) by making

\ = a, /i = 0.

Dividing (5) by (6) we obtain the fundamental equation for

parallax in right ascension in the form

tan (a' — a)

= — sin TT^' cos ^' sin (^— a)/{cos 8 — sin ir^ cos <^' cos (^ — a)} • • .(7),

where we have replaced pjr by sin tt/.

All the quantities on the right-hand side being known, then

tan (a' — a) is determined. We shall assume that in all the cases

to which this equation is to be applied sin ir^' is a small quantity.

Hence the numerator of the expression for tan (a' — a) is a small

quantity. If S be small, i.e. if the body be near the equator, as

is of course the case with the sun and the moon and the principal

planets, which are the only bodies that concern us at present,

then the denominator is nearly unity, so that tan (a— a) must

be itself small and so is also (a' — a). But it should be remarked

that if the body had a very high declination so that cos 8 was

very small, then the denominator of tan (a' — a) would be very

small when sin tt^' was small, so that a' — a need not be a small

quantity. A comet which passed close to the pole would be a

case in point, and we would then have to distinguish between

the two roots of equation (7), viz. («'— a) and 180° + (a — a) by

observing that (5) had to be satisfied.

We have next to find (S' — 8), that is the correction to be

applied to the true declination to give the apparent declination.

This is not quite so simple a matter as the parallax in right

ascension. We multiply (2) by cos \ («'+ a) and (3) by sin ^ (a'+ a)

and add so that after division by cos ^ (a' — a) we obtain

/ cos 8' = r cos 8 - p cos (/>' sec | (a' - «) cos {^ - ^ («' + a)}. . .(8).
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This equation might also have been obtained directly from (1) by

introducing the values \ = |(a + a'), fi = 0.

We shall now employ two auxiliary quantities /3 and 7 defined

by the following equations

/3 sin 7 = sin (j)'
; /8 cos 7 = cos <j)' sec ^ (a' — a) cos {S- — ^ (a' + a)}.

Dividing one of these equations by the other we have tan 7
and we may choose between 7 and 180° + 7 by deciding that

/3 shall be positive. Thus /S and 7 are both definitely known

from the equations

tan 7 = tan 0' cos | («' — a) sec {^ — J (a' + a)} (9),

/8 = sin ^' cosec 7 (10)-

With these substitutions equations (4) and (8) assume the

form

r' sin 8' = r sin S — /3;8 sin 7 (11),

r'cos S' = r cos S — p0 cos 7 (12),

multiplying (11) by sin 8 and (12) by cos 8 and adding, we have

r' cos (S' - 8) = r - /3/8 cos (S - 7) (13),

multiplying (11) by cos 8 and subtracting from it (12) when mul-

tiplied by sin 8, we obtain

r'sin(8' — 8) = /)/3sin(8 — 7) (14),

whence dividing (14) by (13) and writing sin ir^' for p/r

tan (8' — 8) = /3 sin tt/ sin (8 — 7)/{l — /3 sin tt/ cos (8 — 7)} . . .(15).

From this we obtain 8' — 8, which, when applied to the true decli-

nation, will give the apparent declination as affected by parallax.

Fig. 75.

Ex. 1. If A' be the place of the moon as disturbed by geocentric paral-

lax, show that the displacement by parallax along any direction A'O will be
sin TTo cos .^0, where Z is the zenith A'0= 90°, and the earth is supposed
spherical.
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*Ex. 2. Show how the equations (11) and (12) by which the parallax in

declination is obtained can be deduced directly from geometrical construction

and explain the geometrical meaning of the introduced quantities ^ and y.

Let SU, O V (Fig. 75) be perpendiculars on the equatorial plane through

0: on £7^7 take 0" so that U0"= UO, and join 0"0', G'S.

The triangle 0" US is equal in all respects to US. Therefore

0"S0'=(S-8').

Let 0"0'=p^ and LUO"0'=y. Since 0"V, OFhave the same projection on

the bisector of i.OUV, we have

pPcoay=0"V=OVcos {S--^{a+a')} 8ecJ(a'-a)

= p cos 0' sec J (a - a) cos {S-i (a+ a')}.

Also piS sin y= VO =p sin (j>',

thus determining ft y. We take y of the same sign as 0' and numerically

< 180°, so that ^ is positive.

We now have from the triangle 0"0'S,

/ cos (8'- 8)= r- pj3 cos (8 - y),

/sin (8' -8)= p^ sin (8-7),
whence as before,

tan (8' - 8)

=

p^ sin (8 - y)/{r - p/3 cos (8 - y)}.

Ex. 3. Show that when seen from a latitude ^ the parallax in declination

of a celestial body vanishes when tan = tan 8 cos A in which 8 and k are the

declination and hour angle. The earth is supposed spherical.

Ex. 4. Show that if h', 8' be the hour angle and the declination of the

moon as seen from the earth's surface at a place of geocentric latitude 0',

and A, 8 the hour angle and the declination as seen from the centre, then

sin (Ji' -h) = a sec 8 sin h',

tan 8' cosec h'={\ — h cosec 8) tan 8 cosec h,

where a= sin jr
.

' cos </>', b

=

sin jr
,

' sin 0'.

[Coll. Exam.]
Writing a=5- A and a'=5- A' we find from (2) and (3)

r cos 8 sin A=/ cos 8' sin A',

and ?• cos 8 cos A - p cos (^'

=

r' cos 8* cos A',

which equations are otherwise obvious, since each side of the first merely

expresses the distance of the moon from the meridian, while the second

maybe obtained directly from equation (1), p. 281, by making n= and \= S,

for the equation has to be true for all values of p. and X. These equations

combined with (4) give the desired result.

Ex. 5. Show that the angular radii R' and R of a. planet, as seen from
a place P on the earth and from the centre of the earth respectively, are

connected by the relation

. 0, sin(8'-y) . „
sm R = —.—7=;^—4 sm R,

sm (8 - y)

where y is an auxiliary angle defined by the equation

cot y= sec ^ {a — a) Cot <(>' COS {S — ^(a+ a')},
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<!>' being the geocentric latitude of the place, B the sidereal time of the

observation, a and 8' the right ascension and declination of the planet as

seen from P, and a and S the right ascension and declination as seen from

the centre of the earth.

[Coll. Exam.]

Ex. 6. Show that the parallaxes in right ascension and declination of

the moon are respectively

TT^'= — tan ~^{a sin h/{l-a cos A)},

TTj' = -d-tan~i {(tanS-atan(^')sin5r^7'''sin A},

where n^' is the horizontal parallax, h the hour angle, 4>' the geocentric latitude

and a= sin tt,),' cos (^' sec S.

[Math. Trip. 1907.]

This follows at once from the equations (4), (5), (6).

94. Development in series of the expressions for the

parallax.

Assuming that sin ir^' is a small quantity and that the object

which has this horizontal parallax is sufficiently distant from

either of the celestial poles to prevent cos S from being very small

we may develop formula (7) § 93 as in (4) on p. 227

, _ sin tt/ cos <j)' sin (^ — a) sin^ ir^' cos^
(f>'

sin 2 (^ — a)

cos B sin 1" cos^ 8 sin 2"

_ sin^ tt/ cos' <f)' sin 3 (^ - a)

COS'' S sin 3" " ''

In like manner, we have from (15) § 98,

-, . /3sin7r/sin(8-7) /3^sin'^7r/sin2(8-7)
O — 6 = : :rr, h = ^,

sin 1 sm 2

^

/3'sin»7r/sin3(8-7)

sin 3" '"^

We have not written more than three of the terms of each series

because all the higher terms are far too small to be appreciable.

Formula (1) gives (a' — a) = 7r„', which is the correction which

must be applied to the true right ascension of the moon in order

to obtain the apparent right ascension. Formula (2) gives the

corresponding correction tts' for the declination.

The first term in each of the series is by far the most im-

portant, but the second must not be overlooked in the parallax

of the moon and even the third is appreciable when the highest

accuracy is sought. In the corresponding expressions for the sun

or the planets, only the first term is required.
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The equation Ex. 1, § 92, viz.

tan TTf = sin tt/ sin ^/(l - sin tt^' cos if),

cos f= sin S sin 0' + cos S cos
<f>'

cos (^ - «)

can also be expressed as a series, and we thus have for tr^' the
parallactic displacement

tt/= sin tt/ sin f cosec 1" + sin" tt/ sin 2^ cosec 2"

+ sin^ TT^' sin 3 f cosec 3"
(3).

For an approximate calculation of the moon's parallax in declina-

tion and right ascension we may regard the earth as a sphere
and consider only the two first terms of (1) and (2). If the

observer's latitude is <^ and the moon's hour angle = ^-a = A,

we have /3 sin 7 = sin ^ and /3 cos 7 = cos (j> cos h very nearly, whence

TTa' = a — a = — TTo' cos
(f)

sin h sec S (4),

its' =B' — S = TTo' (cos <p cos hsinS — sin <j) cos S) . . .(5).

We can obtain an approximate determination of the moon's

parallax in hour angle by the use of the following short table,

which is easily constructed from formula (4). The table is formed

on the supposition that the horizontal parallax is 60', and that

the declination of the moon is zero. Under these conditions the

parallax when expressed in minutes of time becomes 4 cos
(f>

sin h,

from which the table is calculated.

The parallax in hour angle for a given hour angle and latitude

is shown along the top line, and the use of the table may be

Minutes of parallax in hour angle

a 2

§ 4
o
M 5

6

0-5
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the amount to be subtracted from the apparent R.A. to obtain the

true R.A. If, as is generally the case, the moon's declination is

not zero, then a fractional addition must be made to the parallax

which is thus indicated:

Declination of moon whether + or - ... 10° 15° 20° 25°

Percentage to be added to parallax

given by table ... ... ... 2 4 6 10

It will of course not be generally true that the horizontal

parallax is 60', we must therefore add to (or subtract from) the

parallax of the table one-sixtieth part for each minute that the

parallax is greater (or less) than 60'. These points as well as

the necessary interpolations for latitudes other than those which

appear in the table are illustrated by the following example :

—

The latitude of the observer is 42°, the declination of the moon
is 10°, its hour angle is 5^'^, its horizontal parallax is 57'. Find

from the table the parallax in hour angle.

The table shows that for 5''" hour angle and 3" parallax the

latitude is 39°, while for 2^™ parallax the latitude would be 50°.

It is therefore plain that for 42° latitude the parallax would be

about 172 sees. The correction for declination adds 2 per cent.,

i.e. 3 sees., while -^th or 9 sees, has to be taken off because the

parallax is 57' and therefore 3' less than the standard taken in the

table. Hence we conclude that the parallax in hour angle is

2m 468608^ ^Q(j ^jjjg js ^;ijg amount by which parallax increases

the hour angle if the moon is west of the meridian and decreases

it if the moon is in the east, for we must remember that eastern

hour angles are negative.

Ex. 1. Show that in formula (3) for the moon's geocentric parallax

the second term sin^ n/ sin 2f cosec 2" may reach 33", but the third term

sin^ 77 ,' sin 3f cosec 3" must always be under 0"-5.

N.B. The greatest horizontal parallax of the moon is 61' '5.

Ex. 2. Show that when the hour angle of the moon changes by the

small quantity aA the corresponding change of the parallax in hour angle

is approximately — ttq cos
<f>

cos h sec 8 . Ah, and the change in the parallax in

declination is — ttq' cos <^ sin h sin 8.

Ex. 3. Show that if the geocentric latitude of the observer be 39° 45' 55",

and if the moon's declination be +26° 23' 3"
'6, its hour angle 32° 39' 49" 5,

and its horizontal parallax 57' 7" '5 then the parallax in r.a. will be 26' 46" '5,

whereof the 1st term of (1) contributes 1587" -2, the 2nd 19" -1 and the Srd
0"-2.
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*Ex. 4. Show that 16' 15" -8 is the moon's parallax in declination when
observed at the Western Reserve College, Ohio, in geographical latitude

41° 14' 42", being given that the moon's declination is + 26° 24' 31"
-5, its

hour angle 23° 13' 12"-0, its horizontal parallax 57' 7"
-7, and its parallax in

R.A. 19' 12"-6. [From Loomis' Practical Astronomy, p. 196.]

95. Investigation of the distance of the moon from the

earth.

The general expression for the effect of geocentric parallax on

the declination of the moon § 94 (2) becomes much simplified in

the particular case when the moon is on the meridian. The

true and the apparent R.A. of the moon are then coincident, being

both equal to the sidereal time. We thus have a'=a = ^, and

consequently from (9), (10), § 93 we see that /8 = 1 and 7 = ^'.

With this substitution we have

psin(S-f) p^sin2(g-./>0 p«sin3(g-0O
rsinl" r='sin2" "^ r'sinS"

'"^''

and we have now to show how by suitable observations made at

two observatories this equation will provide us with a determina-

tion of r.

As the moon is passing the meridian of a certain observatory

-4, it is observed with the transit circle, and as will be explained

in a later chapter, its apparent declination S' is thereby ascer-

tained. When this value is substituted in (1) we obtain a formula

which, as ^' and p are known, may be regarded as an equation

between two unknowns S and r.

Let the observation be also made at some other observatory

ill, and let the quantities Sj', Sj, p^, <j)i, r have the same

significations with regard to A-^ as 8', 8, p, ^', r have with regard

to A. It is desirable that A and Ai be nearly on the same

meridian, so that the interval between the two observations shall

be as small as possible, for as the moon is in motion its true

declination is generally changing and thus 81 and 8 are not the

same at the two stations.

Even if the meridians of the two observatories did not differ

by more than an hour Sj and 8 might differ by as much as 17',

which would be nearly a third of the whole parallax. In like

manner of course rj and r will in general differ. The rate per

hour at which the moon is changing its declination at each

B. A. 19
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particular date is however known, and the interval between the

two transits is known, so that if we make Si = S + AS we may

consider that AS is known. As to p^ and cj}i they are known

from the locality of the second observatory as p and (p are known

from that of the first, and if a be the earth's equatorial radius we

may make p = a{l—n) and pi = a(l— %), where n and Mj are

small known quantities. Finally, we may make ri = r{l + k)

where k is a. small quantity depending on the rate of change of

the moon's distance at the particular moment. This, like AS,

may be regarded as a known quantity in the present investigation.

With these substitutions the two equations for finding S and a/r

become

5,, J a(l-v) sin (S - ^')
6 — = —-,77

r sm 1

r^ sin 2" "

S' s AS ^(l-«a)sin(S + AS-.^/)
"' -^-^« =

r(l+/<;)sml"

a' (1 - n,y sin 2(8 + AS -(j>,')
"^

r^(l+A;)''sin2"
'•''^ '''

in which we have only written two terms in the right-hand side

of each equation, but the third may be added if extreme accuracy

be desired.

To solve these equations we first reject the terms containing

d'/r' and introduce for S the value ^ (S' + S/) = S„ into the terms

containing a/r, thus obtaining two simple equations in S and a/r

g' _ g = ffi(l -w)sin(So-(/>0

rsinl"

5, jj . a (1 - Ma) sin (So + AS -^)^'-^-^^ =
r(l+A;)sinl" ^'^'

from which the first approximate values of S and a/r are determined.

Substituting this value of S in both terms on the right-hand side

of (2) and (3) and this value of a/r in the final terms of (2) and (3)

we again obtain two simple equations by solving which S and a/r

are given with all desired accuracy. Thus the moon's distance is

determined.

It is important to consider how the stations should be chosen

so that r may be found with the highest accuracy. To study
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the conditions conducive to this object we may suppose the earth

to be spherical and the two observatories on the same meridian,

in which case (4) and (5) become

y_g^a sin (So -(/>')

r sm 1 ^ '

^g^asin(g„-c/,/)

r sm 1
'

Subtracting we have

ajr= i (8'- 8/) sin 1" cosec \ (<f>,'
- 4>') sec (S„ - J (<^/ + 0')} . . .(8).

Suppose that owing to errors in making the observations an error

of E seconds had crept into the value of ^ (S' — S/), then the

error thus arising in a/?' is

^Esin 1" cosec ^ (^/ - 0') sec {S„ - J (</>/ + 0')}-

The observations should be so arranged that errors like E which

are to some extent inevitable shall vitiate the concluded value of

ajr as little as possible. The smallest possible error in a/r would

be ^£'sinl", and this would require that ^i' = 90°, <])' = - 90°,

Bd = 0, in other words for this extreme case the observatory A
should be at the south, and A' at the north, terrestrial pole, and

the moon should be in the equator. These conditions are of

course impossible, but we learn that one of the two observatories

should be in the highest possible northern latitude and the other

in the lowest possible southern latitude and that the declination

of the moon should be as nearly J ((^/ + 0') as possible.

Ex. 1. If s be the semi-vertical angle of the tangential cone to the moon
from the earth's centre when the moon's horizontal parallax is p and if s', p'

he another similar pair, show that the earth being supposed spherical

sins : sins' :; sin^ : sinp'.

Ex. 2. At noon on Jan. 7th, 1904 it was found that s'= 16' 20" and

p'= 59'51"; determine the apparent semidiameter of the moon when the

horizontal parallax is 3422".

Ex. 3. Assuming that the earth's equatorial radius is 3963 miles and

that the moon's equatorial horizontal parallax is 57', show that the distance

of the moon from the earth's centre is 239,000 miles.

96. Parallax of the moon in azimuth.

If the earth were a perfect sphere the effect of parallax would

be solely manifested in depressing the moon in a vertical circle,

19—2
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SO that it would have no efifect on the azimuth. But when we

take into account the spheroidal shape of the earth the circum-

stances are somewhat different. The parallactic effect depresses

the moon from the point on the celestial sphere indicated by the

direction of the earth's radius to the place of observation, and

owing to the ellipticity of the earth this point is not generally

coincident with the zenith. Hence there is generally a parallactic

effect on the azimuth of the moon, though that effect is no doubt

a small one. An approximate calculation which is sufficiently

accurate for most purposes may be made as follows. Let Z
(Fig. 76) be the true zenith and Z' be the point of the celestial

sphere to which the radius from the earth's centre to the observer

is directed, then ZZ' = <p —
<f)',

the difference between the astro-

nomical latitude and the geocentric latitude. Parallax depresses

Fig. 76.

the moon from M to M', and if ML and Z'S be perpendicular to

ZM' the effect on azimuth is

Z MZL = sin ML cosec ZM = sin MM' sin LM'M eosecZM
= sin TT^' sin Z'M' sin LM'M cosec ZM
= sin TT^' ((ji -

(f)')
sin Z'ZS cosec ZM

= — sin TT^'
((f>

— (j)') sin a cosec z,

where a and z are respectively the azimuth and the zenith distance

of the moon and Z Z'ZS = a - 180°.
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We can also investigate this problem as follows. Draw through

the position of the observer 0' (Fig. 74) three rectangular axes

of which the positive directions are towards the north and east

points of the horizon and the zenith. Let a', / be the apparent

azimuth and zenith distance of the moon to the observer and

a, z the corresponding quantities for parallel axes through the

centre of the earth, then the direction cosines with reference to

these axes will be

of OS sin z cos a, sin z sin a, cos z,

of O'S sin z' cos a', sin z' sin a', cos z',

and of 00' -sin(0-f), 0, cos((f>-4>').

By equating the projection of O'S to the difference of the pro-

jections of OS and 00' on each of the three axes we obtain as in

equations (2), (3), (4) § 93,

r sin z" cos a' = r sin z cos a + p sin (^ — ^') (i),

/ sin / sin a' = r sin 2: sin a (ii),

r' cos / =r cos z — p cos
((f>
— ^') (iii).

From which we easily obtain as in (7) § 93,

tan (a — a)

= — sin jt/ sin (0 — (j)') sin a/{sin z + sin tt/ cos a sin {<j) — cf}')],

which gives the parallax in azimuth.

Multiplying (i) by cos J (a + a') and (ii) by sin^(a + a') and

adding, we obtain after dividing by cos ^ (a' — a)

r' sin z' = rsm z + p sin (0 — (j>') cos J {a' + a) sec ^ (a' — a).

Following the procedure of § 93, we now introduce two

auxiliary quantities /3', y' defined by the equations

/3' cos y = cos (0 — (j)')

;

/S' sin 7' = — sin (^ — if)') cos ^ (a' + a) sec ^ (a' — a),

and obtain

r' sin zf = r sin z — p0' sin y, r' cos z' = r cos z — /3/3' cos 7',

whence, as in (13), § 93,

tan (/ — ^) = /S' sin tt/ sin (a — y')l[\
— /3' sin tt^' cos (^^ — 7')},

which gives the parallax in zenith distance.
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The results at which we have arrived may of course be ex-

panded in series and we obtain

a' — a = — sin tt/ sin (^ — ^') cosec z sin a

+ \ sin^ TT^' sin^ (<^ — ^') cosec^ « sin 2a ...

,

z -z= ^' sin w^' sin {z - 7') + J/S'^ sin^ tt/ sin ^{z- 7'). . ..

Ex. Prove that parallax diminishes the moon's azimuth by

ie'^ sin 2<^ sin nj sin a cosec z,

where e is the eccentricity of the earth regarded as a spheroid, (j) the latitude,

TT .' the moon's horizontal parallax at the place, 2 the zenith distance, a the

azimuth of the moon.

97. Numerical value of the lunar parallax.

The movement of the moon is principally determined by the

attraction of the earth. But the disturbing attractions of the

sun, and to some extent of the planets, cause the actual motion

of the moon to be very much more complex than is the mere

elliptic motion already considered in Chap. VII. The theoretical

expression for the parallax of the moon has however been cal-

culated by mathematicians from the dynamical theory of the

moon's motion while duly taking the disturbances alluded to

into account. We cannot here discuss the researches by which

the result has been arrived at. It will however be useful to

know the theoretical value which has been found for this im-

portant quantity so we shall give the essential parts of the

expression determined by Adamsf. He finds for the number

of seconds of arc in the moon's equatorial horizontal parallax

TTo' = 3422" + 187" cos x + 10" cos 2x

+ 28" cos 2« 4- 34" cos (2« - x) + 3" cos {2t + x).. .(1).

In this expression t and x are functions of the time and therefore

constitute the variable elements in the expression. It should be

added that in the expression as given by Adams there are a very

large number of terms besides the six here written. As however

these terms have but little effect on the total result, we need

not now consider them. Each coefficient in the neglected terms

is under two seconds and even in the terms retained we have

discarded fractions of a second in the coefficients.

t Collected Scientific Papers, vol. 1. p. 109.
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The first term in (1) is the only term which does not contain

a sine or a cosine of the function of the time. We therefore

regard 3422" as the mean value of the moon's equatorial hori-

zontal parallax tt/, because in forming the mean value of the

other terms over a sufficiently extended period, the trigono-

metrical functions appear now with one sign and now with

another, so that their effect tends to vanish from the mean.

It is plain that for real values of x and t the expression for

the parallax can never become greater than 3684 (which is simply

3422 increased by the sum of the coefficients of the other terms)

nor less than 3160.

As so many small terms in 7r„' have been omitted, we cannot

conclude that its limits are exactly those just written, but we

may always assume 61'5 > tt/ > 53''9.

Ex. 1. Show that the distance of the moon's centre from the earth's

centre will always lie between 222,000 miles and 253,000 miles.

*Ex. 2. From the Nautical Almanac for 1896, we extract the following

values of the moon's equatorial horizontal parallax,

1896

Aug. 8th, noon 59' 2"-6

„ „ la"^" 59 21 -4

Aug. 9th, noon 59 37 -6

show that at t hours after noon on Aug. 8th we have for jto', the equatorial

horizontal parallax, the expression

TTo' = 59' 2" -6 -1- 1"-68« - -OOg^^.
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EXERCISES ON CHAPTER XII.

Ex. 1. The observed zenitli distance of the moon's hmb when corrected

for refraction is f , the equatorial horizontal parallax is ttq' and the geocentric

semidiameter D. Prove that, assuming the earth and moon spherical, the

geocentric zenith distance of the moon's centre z is given by

sin (
f— 2) = sin jro' sin f+ sin D.

Ex. 2. If 8 and S' are the true and apparent distances between a planet

and the moon, a and d the true and apparent altitudes (corrected for re-

fraction) of the planet, ^ and ^' of the moon, ttq', o-q, the equatorial horizontal

parallaxes of the moon and planet for the place of observation, then

. cos a cos 8 ., . . I n
cos 8= ; ~ cos 6 +sm a sm ira + sin a sm o-n

,

cos a cos |3^

very nearly. [Coll. Exam.]

Ex. 3. If m and s are the observed altitudes of the moon and a star,

\j. and (T the corrections to m and s for parallax and refraction, and A the

correction to be applied to the observed distance d to get the true distance,

prove that

A sin d cos m cos s=fi cos s (sin s — sinm cos d)-(T cosm (sinm - sin s cos d).

[Coll. Exam.]

Ex. 4. Taking the correction for refraction in the form kt^nz, show

that, when the zenith distance of the moon is coa~^{k/iro'), the horizontal

diameter is unaltered, and that, when the zenith distance is cos"i(^/7ro')4

the vertical diameter is unaltered, by the combined effects of refraction and

diurnal parallax ; ttq' being the horizontal parallax of the moon.

[Math. Trip.]

Ex. 5. Prove that, if R be the angular geocentric radius of the moon,

ro its apparent radius when on the meridian of a place in latitude <j), r its

apparent radius when the geocentric hour angle of its centre is A, then

sin^R (coseo^ r - cosec^ r^) = 4 sin ttq' cos ^ cos 8 sin^ ^ h,

where ttq is the horizontal parallax of the moon, 8 its geocentric declination,

and the earth is regarded as spherical.

[Coll. Exam.]
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98. Introductory.

The determination of the distance of the sun from the earth is

of unique importance in astronomy. When it has been found then

the dimensions of the sun are easily ascertained ; so are also the

distances of the planets and of their satellites ; and the sizes and

e^en the masses of these bodies are also deduced. But the

determination of the sun's distance is not important merely

because it gives us the measurements in the solar system. We
shall find that the distances of the stars can be determined only

with reference to the sun's distance, so that the sun's distance

forms as it were the base line by which sidereal measurements are

conducted. It is not indeed too much to say that almost all

lineal measurements relating to celestial bodies, those with respect

to the moon being excepted, are based on our knowledge of the

distance of the sun. This problem, at once so fundamental and at

the same time so difficult of accurate solution, must now engage

our attention.

We must first clear the problem before us from a certain

ambiguity. We are to seek the distance of the sun from the

earth. That distance is, however, constantly changing between

certain limits, so we have to consider what is meant by the
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mean distance of the sun, for this is indeed the element which we

have to determine by observation. As explained in § 50 the

earth moves round the sun in an ellipse and the sun occupies one

of the foci. Thus the distance of the sun fluctuates in corre-

spondence with the changes in the radius vector from the focus of

an ellipse to a point on its circumference.

The semi-axis major of the elliptic orbit of the earth is repre-

sented by a, © is the sun's true longitude, ot the longitude of the

sun at the time when nearest the earth or as it is often called the

longitude of the Perigree, then from the well-known polar equation

of the ellipse

r=^ a(l-e-) _ ^^^H-ecosCO-ra) ^ ^

As e is so small (0'0168) we may for our present purpose treat its

square and higher powers as negligible, so that the formula may be

written

r = (x{l — ecos (© — ay)} ('2),

which may be still further simplified, because as the true longitude

© differs from the mean longitude L only by terms involving the

eccentricity (§ 73), we may replace © by L, because we are

omitting terms introducing e^ and may use the equation

r = a{l — e cos (L — •sr)} (3).

By the mean distance of the sun we are to understand the

average value of r during the complete revolution. This average

value is to be computed as follows: Let to, ti, t^, t,, ... tn be a series of

epochs so chosen that ti — to = t2 — ti = ts — t2=... = tn— tn-i We are

also to suppose that tn—t^ is the whole period of revolution. Then
the mean distance is {r-y-^-r^ ... +rn)/n, where rj, ra, rj ... are the

distances at the respective epochs t^, 4, t^, ..., and where n is

indefinitely great. We can compute this quantitj' directly from

(2), because L increases proportionally to the time, so that the

mean distance is

/•2n- /•2ir

rdL^ dL,
Jo Jo

which by substitution for r reduces to a. Thus we learn that the

semi-axis major of the ellipse is also the mean distance of the

planet from the sun. We had already assumed this to be the

case in the statement of Kepler's third law § 50.
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We shall assume that the eccentricity of the sun's apparent
orbit is 0-0168, that the mean value of the sun's horizontal

parallax is 8"-80, that its mean semidiameter is 961", and that
281°-2 is the longitude of the perigee of the sun's apparent orbit

(§ 73), and hence we have the following approximate results

when the sun's mean distance is taken as unity

:

The sun's distance is jl - 0-0168 cos (i + 78°-8)},

hor. par. „ 8"-80 {1 +00168 cos (Z + 78°-8)},'

semidiam. „ 961" {1 + 0-0168 cos (Z + 78°-8)},

longitude „ X + l°-92 sin (Z + 78°-8),

„ „ B.A. „ L + l°-92 sin {L + 78°-8) - 2°-47 sin 2L.

Solar Parallax in Right Ascension and Declination. Assuming

the earth to be a sphere and that a, h are the true geocentric

R.A. and decl. of the sun and a', S' the coordinates as affected by

parallax when the observer's latitude is <^ and the sun's hour angle

is h, then from (4) (5) § 94 we obtain

a' — a= — 8"-80 cos ^ sec B cos A,

S' — S = — 8"-80 (sin (^ cos S — cos (^ sin S cos h).

The total parallactic displacement is of course 8"-80 sin z,

where cos ^ = sin <^ sin 8 + cos ^ cos S cos h.

Ex. 1. Show that the parallax in right ascension of a body with

declination 8 and hour angle A is the same as for a body of declination

-8 and hour angle h if their horizontal parallaxes be the same.

Ex. 2. Assuming the distance of a body from the earth to be so great

that the sine and circular measure of the parallax may be considered equal,

show that the locus of all bodies which, at a given instant and place, have

their parallaxesi^in right ascension equal will be a right circular cylinder

touching the plane of the meridian along the axis of the earth.

[Godfray's Astronomy.']

Ex. 3. Show that when the sun's mean longitude is 51° its semidiameter

is 15' 51", its horizontal parallax 8" -71 and I'Ol is the ratio of its distance to

the mean distance.

Ex. 4. Being given that the sun is at its least distance from the earth

on Jan. 1st and that its mean longitude has a daily increase of 0°-9856,

show that the sun's distance from the earth has its most rapid rate of

decrease on Oct. 2nd.
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Ex. 5. The semidiameter of the sun at the earth's mean distance being

16' 1"-18 and the equatorial horizontal parallax of the sun at the earth's

mean distance being 8"
-80, find the diameter of the sun in terms of the

earth's equatorial radius.

Ex. 6. Given that a kilometre is the arc of a meridian in latitude 45°

which subtends an angle of one centesimal minute at the centre of the earth,

that the ellipticity of the surface of the earth is ^J-j, and that the sun's

mean equatorial horizontal parallax is 8"'76, prove that the mean distance

of the sun is I'SxlO^ kilometres.

[Math. Trip.]

Ex. v. Show that, on the assumption that the sun's horizontal parallax

is 8"' 80, the time during which the sun is below the horizon at either pole

is longer on accoiint of parallax by 7 oosec a minutes, where <a is the ob-

liquity of the ecliptic.

[Math. Tripos, 1903.]

Ex. 8. Prove that the difference due to parallax in the apparent position

of the sun as determined by simultaneous observations at two stations is

a maximum and equal to 2iro sin a when the zenith distances are the same,

where 2a is the angle subtended at the earth's centre by the arc joining the

two stations. [Math. Tripos, 1902.]

Ex. 9. Assuming that the sun's semidiameter at mean distance is 961",

show that the number of sidereal seconds which the semidiameter takes to

cross the meridian is i, where

961 ^ f
coso, \

8 being the declination, r the length of a solar year in days, and r the sun's

distance, the mean distance being unity.

[Coll. Exam.]

99. The sun's horizontal parallax.

It might at first be supposed that the methods of the last

chapter, which are successful in finding the parallax of the moon
would also be successful in finding the parallax of the sun, but

the cases are not parallel. It is an essential point of difference

between them that the brightness of the sun is incomparably

greater than the brightness of the moon. Stars can easily be

observed while apparently quite close to the moon, yet the light

from any star is invisible, even with the most powerful telescope,

when that star is close to the sun. Thus the measurements of

the differences of declination between the moon and adjoinino-

stars by which the moon's parallax is accurately determined have

no counterpart in possible solar observations for finding the sun's
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parallax in the same manner. As already explained in the last

chapter the horizontal parallax of the sun is the angle of which

the sine is the ratio of the earth's equatorial radius to the

distance of the sun.

For this reason we are unable to effect the determination of

the solar parallax satisfactorily by observations of the sun in

the way in which the parallax of the moon is obtained and

therefore we have to resort to other methods. Of such methods

there are several, which may be classified as follows :

I. Direct observational methods,

a. Parallax of Venus in transit across the sun.

6. Parallax of an exterior planet by the diurnal method.

c. Parallax of an exterior planet by simultaneous observations

at distant stations.

II. Gravitational methods.

d. Parallax of the sun from the mass of the earth.

e. Parallax of the sun from the parallactic inequality of the

moon.

III. Physical methods.

f. Parallax of the sun from the constant of aberration and the

velocity of light.

g. Parallax of Jupiter from the light equation of his satellites.

The direct observational methods are founded on Kepler's

third law, which states thart the squares of the periodic times of

the planets are proportional to the cubes of their mean distances.

The periodic times of the planets are known with the highest

accuracy, because an error of any importance in the assumed value

of a planet's periodic time would in the course of oft repeated

revolutions attain a cumulative magnitude that would inevitably

lead to its detection. Since then the periodic times in the solar

system are known, the values of the major axes of all their orbits

can be computed if that of the earth's orbit be taken as unity.

Repeated observations of the right ascensions and declinations

of the planets will give further particulars of their orbits. We
deduce from such observations the longitudes of their ascending

nodes and the inclinations of the planes of their orbits, as well as

the eccentricities and the longitudes of the perihelia. Thus
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taking the sun's mean distance as unity, the other measurements

of the planetary system are known. That is we know the form of

the system and all that is lacking is what we may term its scale.

If therefore we can measure in terms of the earth's radius the mean

distance of any one planet we obtain the scale of the whole system.

Thus by measuring the parallax of Venus as the transit of Venus

enables us to do, we learn the distance of Venus and thence the

distance of the sun and the other dimensions in the solar system.

This method will be considered in the next chapter. It is of much
historical interest, though it may now be considered to be super-

seded by methods b and c.

The parallax of a planet exterior to the earth as supposed in

methods b and c can be obtained by observing its displacement

among the stars from different observing stations. In the case of

c the two stations are in different geographical localities as in the

method employed in observing the moon (§ 95). In the process

marked b there is but one geographical station, and the base

line is obtained by the diurnal movement which between evening

and morning carries the observer some thousands of miles. This

method has the great practical advantage that observations can

be continued for several months about the time of the planet's

opposition when it lies as nearly as possible between the earth

and the sun. There can be no doubt that the observation of a

minor planet is much the best method of determining the distance

of the sun by direct measurement, for as the minor planet is a

star-like point its apparent distances from the neighbouring stars

admit of being measured with a high degree of accuracy.

The gravitational methods II. and the physical methods III.

have many points of great scientific interest. It must, however,

always be borne in mind that the problem before us is purely

one of geometrical measurement and that for this purpose methods

involving only geometrical considerations, such as the methods in

group I., must be deemed more reliable than the methods of

groups II. and III., which depend to some extent on physical

assumptions that cannot pretend to geometrical rigour.

It will illustrate the history of the problem of the sun's

distance to examine briefly the successive values of the mean
equatorial horizontal solar parallax used in the nautical almanac

during the 19th century.
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From 1801 to 1833 the adopted value was 9". The origin of

this is not clear. It was perhaps chosen merely as a round

number, based upon observations of the parallax of Mars on the

meridian, and the preliminary results from the transits of Venus of

1761 and 1769.

From 1834 to 1869 the value in use was 8"-5776, derived by

Encke from his discussion of the transits of Venus.

From 1870 to 1881 the parallax 8"'95 was used, as found by

Leverrier in 1858 from the parallactic inequality of the moon.

From 1882 to 1900 the value was 8"-848, as found by Newcomb

in 1867 from a discussion of a number of determinations by different

methods {Washington Observations, 1865, Appendix ii.).

The conference of directors of nautical almanacs which met at

Paris in 1896 decided to adopt from 1901 the value 8"'80, derived

from Sir David Gill's heliometer observations of minor planets and

supported by the results of other methods.

*100. Parallax of an exterior planet by the diurnal

method.

We shall describe briefly the investigation carried out by Sir

David Gill at the Island of Ascension of the parallax of the planet

Mars during the opposition of that planet in 1877. The oppor-

tunity thus taken advantage of was particularly favourable for the

determination of the parallax by the diurnal method from a station

near the equator, since the parallax of the planet had attained

nearly its maximum value.

The programme of work was to measure each evening and

morning the distance of Mars from selected comparison stars, whose

places were well determined by cooperation of a number of obser-

vatories in meridian observations.

Since the effect of parallax is always to displace the planet

downwards from the zenith, the displacement with reference to the

stars will be in opposite directions evening and morning. Thus

the change in the position of the observer by the rotation of the

earth in the interval between the time at which the observations

are made in the evening and in which they are repeated in the

following morning gives the base line required for parallax deter-

mination.

For the investigation of the parallax of Mars it would not
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be always practicable to find suitable stars close enough to the

planet to admit of the necessary measurements being made unless

an instrument possessing the exceptional range of the heliometer

were employed.

The principle of this instrument, so important in modern

astronomy, may be indicated here. The heliometer is an

equatorially mounted telescope constructed to measure directly

the distances of neighbouring points on the celestial sphere.

The essential feature of the heliometer lies in its bisected

object glass. The object glass is cut in two along a diameter, and

the two halves are mounted on slides which can be separated

by sliding them equal distances in opposite directions along the

line of section and perpendicular to the axis of the telescope. The
separation of the segments is measured by two scales, placed

almost in contact along the inner edges of the two slides.

The principle of the procedure depends on the optical fact that

when the image of a star A made by one part of the object glass is

coincident with the image of a star B made by the other part, then

the angle between the two stars equals the angle subtended at the

focus by the distance through which one-half of the object glass has

been moved relative to the other. Thus the scale measurement of

this distance provides the means of determining the arc between

the two stars. In this way angular distances up to 7000" may be

accurately measured by the heliometer, while the ordinary micro-

meters for measuring the arcs between adjacent stars are hardly

available for a twentieth part of such a distance.

The apparent distance between the planet and the star will be

in a state of continuous change for various reasons. As to the

change caused by refraction, we have already considered it in

§ 48. We may however remark that for the present purpose

where the distances are much greater than those already pre-

sumed the more extensive formulae of Seeliger (Theorie des

Heliometers, p. 96) will be often required in the practical conduct

of the work, though it will not be necessary for us to discuss

them in this place. There will remain two other causes of change

in the apparent distance which must now be attended to. The
actual motion of the planet in the interval will of course be the

cause of some alteration, and the parallactic displacement ex-

perienced by the planet but not by the star and for which we
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are now searching will have an effect on the distance which we
must calculate.

Let a, S be the geocentric r.a. and decl. of a planet when T is

on the meridian, and let d, 8 be the rates of change of these two

quantities by the motion of the planet per sidereal day. Then the

geocentric R.A. and decl. of the planet at the sidereal time ^ will be

a + d&, S + S^. The hour angle of the planet is ^ — a, and we

have already seen (p. 287) that the corrections to be applied to the

geocentric coordinates of the planet to obtain the apparent co-

ordinates are respectively — cto cos </> sec S sin (S- — o) in r.a. and

— o-„ sin
<f)

cos 8 + o"o cos (j) sin B cos (S- — a) in decl. where o-j is the

horizontal parallax of Mars.

To obtain the apparent coordinates of the planet at the time ^
we unite the two different corrections, and thus obtain for the

apparent right ascension and declination

a + a^— (To cos sec S sin (^ — a),

and S + 8^ — Co sin ^ cos S + o-j cos cf) sin B cos (^ — a).

At the sidereal time y these coordinates will become

a + dy — o-p cos (j> sec 8 sin (W — a),

B + S^' — (To sin
(f)

cos S + cto cos ^ sin B cos (^' — a),

and hence in the time interval ^ — ^ the apparent coordinates will

have undergone changes Aa and AS where

Aa = d (V - ^) - 2o-„ cos
<f)

sec B sin ^ (^ - ^) cos ^ (5^' + ^ - 2a),

AS = B(y-^)- 2o-„cos ^ sin S sin ^ (^' -^) sin |-(y + ^ - 2a).

Let be the angle between the geocentric position of the point

with coordinates a, B, i.e. the centre of the disc of the planet Mars

and the star «„, So. Then

cos = sin So sin S + cos So cos S cos (ao — a) (1).

The small change A^ in the value of arising from changes Aa,

AS in the values of a and S is determined by differentiation

- sin 0A0 = {sin So cos S — cos So sin S cos (ao — a)} AS

+ cos So cos S sin (ao — a) Aa. . .(2).

Substituting in this the values for Aa and AS we obtain an

equation involving A0, 0, So, S, ao, a, d, S, ^', ^, <}> and cr„. Of these

quantities ao, So, a, 8 being the coordinates of the star and of the

planet at a certain time are known, d, S are known because the

B. A. 20
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movements of the planet with regard to the surrounding stars is

carefully determined by repeated independent observations made

with this particular object, d is known because it can be calcu-

lated from a, B, Oo, 80 by (1). The quantities ^', ^ are the times

of observation and therefore known, and
(f)

is the latitude of the

observer. Thus equation (2) reduces to a relation between A0
and 0-0. The heliometer, as we have already stated, provides the

means of measuring the distance between the planet and the star.

This is repeated when the bodies have reached the suitable position

some hours later. The difference between the two distances is Ad
and thus a-^ becomes known, for we have just shown how it can

be expressed in terms of A^.

In the practical application of this process there are many

technical matters to be attended to and for their discussion we

must refer to Sir David Gill's work. To obtain increased accuracy

many observations obtained during the whole period in which the

planet is in or near opposition and thus at its smallest distance

from the earth have to be combined.

Such is in outline the principle of the determination of the

solar parallax by the diurnal method, for when o-q the horizontal

parallax of Mars has been ascertained, we can find the parallax of

the sun in the manner explained in | 99.

The result of the observations at Ascension Island was to

assign a horizontal parallax of 8""778 to the sun.

When a numerical value has been deduced as the outcome of an

investigation it is customary and extremely useful to supplement

the numerical value by expressing also what is known as its

probable error. Thus in the present case the probable error is

stated to be + 0"012. The meaning of this is as follows. The

exact parallax of the sun is unknown, but what is known, so far as

this research is concerned, is that 8"'778 must be very nearly the

exact parallax. It is practically certain that this result cannot be

two seconds wrong or one second wrong, and it is highly improbable

that it could be half a second wrong; on the other hand it might

perhaps be 0"'01 wrong, and it is probable that it is O"'0O2 wrong

and highly probable that it is at least 0"'001 wrong. There must

be some fraction of a second between, shall we say, 0"-001 and 0"'5

which would possess the character that the error of the determina-

tion was as likely to be below this fraction as above it. In the
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present case the discussion of the observations showed it to be as

probable that the parallax lay between the limits 8"-778 — 0"'012

and 8"-778 + 0"-012 as that it did not. In this case 0"-012 is the

probable error, and the smaller the probable error of a determina-

tion the narrower are the limits within which the quantity probably

lies and the better the quality of the investigation by which it has

been found. The statement of the probable error of any deter-

mination is the numerical method of indicating the degree of

confidence with which the result should be accepted.

There is one cause which may possibly introduce appreciable

error into the determination of the solar parallax from observations

of Mars. The effect of the dispersion of light in the atmosphere

at considerable zenith distances is to give a coloured fringe to the

disc of the planet, blue above and red below, which in the case of

a reddish planet observed in a blue twilight sky would make the

planet appear systematically too low, and apparently increase the

parallactic displacement. It is therefore preferable to employ

minor planets, whose discs are indistinguishable from stars. This

was done in 1888 and 1889 by Sir David Gill at the Cape,

working in conjunction with four observers in the northern hemi-

sphere, during oppositions of the minor planets Victoria, Iris,

and Sappho. The results are discussed in Annals of the Cape

Observatory, Vols. vi. and vii. On this occasion it was not found

possible to occupy a station near the equator, and the diurnal

method was replaced by the method of making more or less

simultaneous observations at stations separated by great dis-

tances. The principles of the calculation are very similar to those

developed above, but the details are more complex and more

difficult to illustrate by examples of the actual procedure. We
have therefore chosen the earlier work to illustrate the method

of determining the solar parallax by the heliometer, though

the results of that work have been superseded by the value of

the parallax derived from the three minor planets, viz.

7r = 8"-802±0"-005.

This value may perhaps be regarded as the best that can at

present be derived from direct observation, but it may be super-

seded when the photographs and measures of the planet Eros

made during the opposition of 1900-1 have been completely

20—2
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discussed. Eros comes nearer to the earth than any other planet,

and therefore offers exceptional advantages in this problem.

Ex. Let 00 be the geocentric latitude of the observatory, <ji its astro-

nomical latitude, h the hour angle, 8 the declination of a planet, and A its

distance from the earth in terms of the mean radius of the earth's orbit.

Let the value of the solar parallax be 8" '80.

Show that the motion of the planet in r.a. due to change of parallax is

at any moment at the rate of

-(- 3» '69 X 1/A X cos cos <po sec S cos h per day,

and the corresponding rate in declination is

- 2" -3 X 1/A X cos <!> cos 00 sin S sin h per hour.

[Mr Hinks, Mon. Not. R.A.S. Vol. lx. p. 545.]

*101. The solar parallax from the constant of aberration.

When the constant of aberration is known, and the velocity

of light in kilometres per second, we can find the mean velocity

of the earth, and thence the mean radius of the earth's orbit

and the sun's parallax.

It follows from p. 260 and Ex. 3, p. 261 that if

K is the constant of aberration,

/i the observed velocity of light,

e the eccentricity of the earth's orbit,

n mean motion of earth during sidereal year of 365'256 days

in seconds of arc per second of mean time,

p the equatorial radius of the earth,

iTa the equatorial horizontal parallax of the sun,

^, on cosec 1"
then TTa^- , .

Kix V 1 - e^

Putting p = 6378-249 kilometres (Clarke),

360 X 60 X 60 _ 15
™ ~ 24 X 60 X 60 X 365-256 ~ 365-256 '

fi — 299860 kilometres per second (Newcomb, Astro-

nomical constants),

1-6^ = 0-999719,

we have tt^ = 180-2/a;,

so that 7r„=8"-803 if k be 20"-47.
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The value of this indirect method of finding the solar parallax

is impaired by the curious discordance in recent determinations of

the constant of aberration k. All determinations of this constant

naade before 1892 were necessarily entangled with the then un-

known variation of latitude (§ 61). Special precautions have been

taken to eliminate this in subsequent work, but the latest results

are still somewhat uncertain.

*102. The solar parallax by Jupiter's satellites.

The time at which an eclipse of one of the satellites of Jupiter

is observed is later than the time at which it actually takes place

owing to the fact that light does not travel instantaneously from

the satellite to the earth, and the interval varies with the varying

distance of Jupiter from the earth. The law of this variation is

known with great accuracy, and there is little uncertainty in the

experimental determination of the velocity of light in space. If

then it were possible to compute with accuracy the instant at

which the eclipse takes place, and to observe with equal accuracy

the instant at which it appears to take place as seen from the

earth it would be possible to calculate successively the time which

the light had taken to travel, the distance of Jupiter from the

earth, and the distance of the earth from the sun. Owing to the

unsatisfactory state of the theory of the motions of Jupiter's

satellites, and the difficulty of observing with sufficient accuracy the

instant when the satellite is exactly half immersed in the shadow,

the determinations of the distance of the sun hitherto made by this

method are of but little weight. Recent measures of the places

of the satellites made at the Royal Observatory, Cape of Good

Hope, by Sir David Gill, Dr De Sitter, and Mr Bryan Cookson,

have however improved the elements of the orbits of the satellites;

and Prof. R. A. Sampson has discussed the photometric observa-

tions made by Professor E. C. Pickering at Harvard College

Observatory which will, it is hoped, reduce the second difficulty.

*103. The solar parallax from the mass of the earth.

There is a well determined relation between the masses of the

earth and the sun, the equatorial radius of the earth, the length

of the seconds pendulum, and the distance of the sun, which is
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the basis of the lunar theory. If tt^ is the solar parallax, and M
the ratio of the mass of the sun to that of the earth,

7r„'ilf= [8-35493]

(Newconab, Astronomical Constants, p. 100).

The value of M may be derived from the perturbations in

the motions of the other planets, particularly Venus and Mars,

produced by the attraction of the earth. As the result of an

exhaustive discussion of the whole subject, for which reference

may be made to the above work, Professor Newcomb concludes

that the value of the solar parallax derived by this method is

8"'76, and that " unknown actions and possible defects of theory

aside, this value is less open to doubt from any known cause

than any determination that can be made." In view of the diver-

gence of this result from the mean of all other good determinations

of the solar parallax, the reservation is important, for there are

outstanding discrepancies in the motions of the inner planets

which are at present unexplained.

But it may be remarked that in thirty or forty years time this

method may perhaps be applicable in a new direction. It has

been shown by Mr H. N. Kussell of Princeton University, New
Jersey, that there is a large periodic inequality in the motion

of the planet Eros due to the attraction of the earth, which may
in time afford a new and effective method of determining the

mass of the earth.

*104. The solar parallax from the parallactic inequality

of the moon.

One of the principal inequalities in the motion of the moon
depends upon the fact that the perturbing effect of the sun is

greater when the moon is in the half of her orbit nearer to the

sun than when she is in the other half. The result of this is an

inequality whose coefficient is proportional to the solar parallax.

It has been shown by Prof. E. W. Brown that the hitherto accepted

theoretical value of this coefficient (Delaunay's) is somewhat erro-

neous. Prof. Brown finds (Mon. Not. R.A.S. Vol LXiv. p. 535)

that if the value of the solar parallax is 8"-790 the expression

for the parallactic inequality is

- 124"-92 sin D,
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where D is the moon's ecliptic longitude. If the solar parallax

has any other value tt,,, the coefficient of sin D becomes

-124"-927r„/8"-790.

This is the value derived from the theory of the moon's motion.

If we compare it with the value of the coefficient derived from

observation of the Moon we have a means of determining the

value of TTa. The most recent and accurate determination of the

coefficient by observation is that made by Mr Cowell from a

discussion of the Greenwich observations of the moon, 1847

—

1901 {Mon. Not. R.A.S. Vol. LXiv. pp. 96, 585), where he gives

the value —124" •90. Equating the theoretical expression to the

observed, we find tt^ = 8"*789.

It should, however, be noted that it is scarcely possible to

separate completely the observed value of the parallactic in-

equality from the uncertainty in the semi-diameter of the moon,

and this may affect the deduced value of ira by at least 0"-01,

For a discussion of this question, reference may be made to a

number of papers by Mr Cowell and Prof. Turner in Mon. Not.

B.A.S. Vols. LXIV. and lxv.
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105. Introductory.

If the orbit of Venus were in the plane of the ecliptic then when-

ever the geocentric longitude of Venus was the same as that of

the sun the planet would appear near the centre of the solar disc.

About three hours previously the terrestrial observer would have

seen the planet entering on the sun's disc, about three hours later

the planet would pass off from the disc and during the six hours of

its passage the planet would be said to have been in transit across

the sun's disc. As the orbit of Venus does not lie in the plane of

the ecliptic the phenomena of a transit of Venus are by no

means so simple as the hypothetical transit just indicated. The
inclination of the orbit of Venus to the ecliptic is 3° 23' 35", and

it may therefore happen and indeed generally does happen that

when Venus and the sun have the same geocentric longitude, the

planet passes above the sun or below the sun and so a transit does

not take place. It is indeed obvious that a transit cannot occur

unless the apparent distance of the planet from the sun's centre is

less than the sun's apparent semi-diameter. But owing to the

inclination of the orbit of Venus it may happen that even at a con-

junction the apparent distance of the planet from the sun's centre

may be many times as much as the sun's apparent semi-diameter.

The geometrical relations of the sun, the earth and the planet

at the time of a transit can be studied by supposing that the

diameters of the earth and the planet are evanescent in comparison
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with the diameter of the sun so that the earth is represented by
its centre E and Venus by its centre V.

If a transit is on the point of commencing or of ending the line

-EF should be a tangent to the solar globe. It is therefore easy to

see that the small angle expressing the heliocentric elongation of

Venus from the earth at the moment of commencement or ending

of a transit of Venus must be approximately R{i— h^jbr when R
is the radius of the sun and r, b the respective distances of Venus

and the earth from the sun. If we take the mean value of the

sun's apparent angular semi-diameter to be 16' and for r and b the

values 1 and 0*72 respectively, we find that the required elongation

is approximately 16' x •28/'72 = 6''2. It thus appears that at a

transit the heliocentric elongation of Venus from the earth must

not exceed about 6'. The conditions under which the transit takes

place and its variations as seen from different points on the earth's

surface are so complicated as to require a general investigation

of the problem to which we now proceed and in which we shall

regard the sun and the planet as exact spheres.

Fig. 77.

When a transit of Venus is about to commence the circular

disc of the planet, Fig. 77, comes into apparent contact with the

circular disc of the sun. This initial stage of the phenomenon is

known as the first external contact and is denoted by I. The planet

then appears to enter slowly upon the disc of the sun, and in

due course the next stage II known as first internal contact is

reached. From this point the planet, now seen as a black disc

on the brilliant background, advances across the sun's disc and

after the lapse of perhaps four hours reaches the third critical
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stage III at what is known as second internal contact. Then the

planet begins to pass off the sun's disc, and finally arrives at

IV or last external contact, and the phenomenon is at an end. As

the external contacts cannot be observed so satisfactorily as the

internal contacts the former are comparatively of small importance,

and our attention will be devoted to the two internal contacts

II and III.

To understand the geometrical problem involved in the transit

of Venus we shall imagine a line drawn from the observer to T the

point of apparent contact of the globes in stage II. It is evident

that this line, though meeting both spheres, does not cut either of

them. It must therefore be a common tangent to the two spheres.

But such common tangent lines to the two spheres are generators

of that common tangent cone which has its vertex exterior to the

two spheres and hence we see that at the moments of II and III

the observer must be situated at some point on that tangent cone.

At the moments of external contact represented in I and IV the

observer must be situated at some point on the other common

tangent cone, namely that one which has its vertex between the

two spheres.

The theory of the transit of Venus must therefore be based on

that of the common tangent cones to two spheres which will be

discussed in the next article.

Ex. Assuming that the inclination of the orbit of Mercury to the plane

of the ecliptic is 7° 0' 8" and the longitude of its ascending node is 46° 52' 19",

show that for a transit of Mercury to take place near that node, when the

sun's diameter is 16' 11", the heliocentric longitude of the planet must be

>44° 40' and <49° 5'.

106. Tangent cones to the sun and planet both regarded

as spherical.

Let 0, C, Fig. 78, be the centres of the sun and the planet of

which the radii are E, r^ and let b denote OG. Then the double

tangents PQ and ST meet 00 in L and M the vertices of the

common tangential cones to the two spheres.

Let «!, 2/i, Zi be the coordinates of G with respect to three

rectangular axes through the origin 0. Then

x,R/{R + r,), y,BI{R + r,), z^RI(R + r,)

with the upper signs are the coordinates of L and with the lower
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signs are the coordinates of M. If x, y, z are the coordinates of any
point F on the cone with its vertex at L then the coordinates of any

Fig. 78.

other point on the line FL will Ke obtained by assigning certain

values to / and g in the expressions

fx+gx,Rj{R-n) fy + gy,R/(R-r,) fz+ gz,R/(R-r,)

f+9
•

.f+9
'

f+9
When these coordinates are substituted in the equation of either

of the spheres they will give a quadratic in fjg corresponding to the

two points in which FL meets that sphere. This equation for the

sphere with centre becomes

p {a? + y^ + z^- R^) (R - r,y

+ 2fgR {xx^ + yy^, + zz^ - R^ + Rr^) (R - r^

¥g^R'[}f-{R-ny] = 0.

Expressing the condition that this quadratic shall have equal

roots because FL touches the sphere we find for the equation of

the common tangent cone with vertex L

(««! + yy^ + zz^ -R^ + Rvif

=(a^ + y'' + z^-R<')(b''-R'' + 2Rn-r/) (1).

In like manner we obtain for the cone with its vertex at M
(xxi + yy^ + zzj — R^ — Rr^

= {ai? + y^ + z-'-R?) {¥ -R^- 2Rn - nO (2).

Seen by an observer on cone (1) between Q and L the two

circles appear on the same side of their common tangent. Seen

by an observer on ST produced beyond T the two circles are on

opposite sides of their common tangent.
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*Ex. 1. If the equations of the two spheres were given in the form

(^-a;i)2+(y-yi)H(2-^i)2-V=0,

show that the equations of the common tangential cones would be

{(^-^i)(^2-«i)+(y-2/i)(y2-yi)+(2-«i)fe-2i)-n^±''i''2F

and explain the geometrical meanings of the difiFerent factors in this equation.

*£x. 2. Show that the equations of cones (1) and (2) may also be ex-

pressed in the form

{xxi+yyi + zzi-b^ + Rri+ Ti^y

*Ex. 3. If from the point F (Fig. 80) the line FQ be drawn perpendicular

to 00, show that

OG . OC-PF. PQ=RiR- n),

and hence obtain the equation (1).

107. Equation for determining the times of internal

contact II and III.

The transit of Mercury or Venus across the sun's disc must

take place, as we have seen, when the planet is sufficiently near

one of its nodes, the limits being sin~^ {cot i tan B] on either side

of a node, where i is the inclination of the planet's orbit and D the

semi-diameter of the sun. We shall suppose the planet to be near

its ascending node on the ecliptic, and we shall confine our attention

to the internal contacts and obtain the equation by which they are

determined.

The axes of reference and the symbols to be employed are as

follows

:

is the origin of coordinates at the sun's centre.

4- X is from towards T.

+ Y „ „ the celestial point of long. 90° and lat. zero.

+ Z „ „ the nole of the ecliptic.

The coordinates of the observer with respect to these axes are

X, y, z and those of the centre of the planet are x-^, y^, Zi.

0' is the centre of the earth. O'X', O'Y', O'Z' are the axes

through 0' parallel to OX, OT, OZ, and x', y, z' are the coordinates

with respect to O'X', O'Y', O'Z' of the point on the earth's surface

occupied by the observer.
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\ is the earth's heliocentric longitude.

r, h are the radii vectores from sun to earth and Venus.

p is the distance from the centre of the earth to the observer.

^ is the geocentric latitude of the observer.

S- is the sidereal time on the meridian of the observer.

O is the longitude of the planet's ascending node,

e is the inclination of the planet's orbit to the ecliptic.

6 is the angle round swept over by the planet in its orbit since

passing through its ascending node.

Equation (i), § 106, determines the times of interior contact of

the planet if for x, y, z, x', y', ^, x^, y-i, Zi we substitute

:

a; = r cos X + a;' "i

y= rsinX + y' I (i),

z= z'
)

x' = p cos
<f>

COS ^
1

y' = p cos ft) COS ^ sin ^ + p sin ft) sin (^ i (ii).

z" = — p sin ft) cos (^ sin ^ + p cos ft) sin ^ j

«! = b cos 12 cos 6 — bsinD, sin 6 cos e '|

2/i = b sin n cos 6 + b cos O sin cos e y (iii).

Zi= b sin sin 6 J

These equations are obtained as follows

:

The coordinates of 0' are rcosA,, rsinX, 0, and to find x, y, z

we must add severally to the coordinates of 0' the corresponding

F

P:o. 79.
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coordinates x'
,
y', z' of the observer with respect to the parallel

axes through 0'.

We may obtain equations (ii) for x', 3/', n/ from Fig. 79 in which

F is the position of the observer, FH his meridian and X'H the

terrestrial equator. A plane through the earth's centre parallel to

the ecliptic meets the earth's surface in X'F'and X'F' = 90°. As

O'X' is parallel to OT the arc X'H which is increasing by the

earth's rotation must be the west hour angle of If for the meridian

FH of the observer, that is, the local sidereal time ^. If FQ be

perpendicular to X'Y' the coordinates of the observer relative to

the axes through 0' are therefore

a^ = pcosFX',

y' = p cos FY' = p sin FX' cos (FX'H- w),

z' = psiTLFQ =psmFX'sm{FX'H-a>),

and thus since

sinFX ' cos FX'H = cos (j) sin S>-, sinFX ' sin FX'H = sin ^,

and cos J^X' = cos</)COS^,

we see that te', y', z' have the values shown in (2).

In Fig. 80 (7 is the centre of the planet and J the ascending

node of its orbit on the ecliptic TF. If GW be perpendicular to

the ecliptic and TF=90°, the coordinates x-^, y^, z^ of G are

h cos GT, h cos CY, h sin GW, and from the formulae (§ 1) we obtain

the values of Xi, y^, z-^ given in (iii).

108. Approximate solution of the general equation for

internal contact.

We are now to make the substitution indicated in the

preceding article, and we have

««! + 2/2/1 + zz-^ = br {cos 6 cos (X, — fi) + cos e sin 6 sin (\ — H)}

+ x'xi + y'yi + z'Zi,

a^ + y'' + z'-R^ = t^ + 2rx'cosX + 2ry'sm\ + p'-B'.
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We next avail ourselves of the fact that r-^jh"^, p^/r^, pR'/r^, and

R*/r*, being respectively about

1/(18000)^ l/(23000)^ 1/23000 X215S and 1/21 o^

are very small quantities (see Table of elements of the solar system

at the end of the volume) and may be neglected as insensible.

Thus we find approximately

(ai' + y' + z''- i?2)4 = r - Ry2r + «' cos X + 2/ sin X,

{62 _ (ij _ r,y]i = J _ 2JY26 + Rrjb.

Making these substitutions, equation (1), § 106, becomes, after

taking the square root of both sides and rejecting the negative sign

for the radical because that relates only to the passage of the planet

behind the sun,

cos 6 cos (X — O) + cos e sin 6 sin (X — 12)

= 1 - E^ (r - by/2r'b^ + Rr, {r - b)/r¥

+ (w'b cos X + y'bsmX — x'x^ — y'y^ — z'z^jrb . .

.

(i).

The time, which is the unknown quantity we are seeking, does

not appear explicitly in the equation as at present written. It is,

however, implicitly contained in the expressions for X, 6, x', y, z'

,

^1. 2/1. ^\i so that the equation appears to be of great complexity.

But this complexity is unavoidable because the equation as it-

stands at present has to apply to transits of the planet for all time

past and future. When we restrict our view to a single transit

the equation admits of reduction to a manageable form giving

all that is necessary for that particular transit.

We begin by considering the times at which the transit would

commence and end if it could be viewed from the centre of the

earth, in which case x', y', / are all zero and the equation may
be written

cos 6 cos (X — 12) + cos e sin 6 sin (X — 12)

= \-R^{r- by/2r'b^ + Rr, (r - b)/rb' (ii).

Each side of this equation expresses the cosine of the angle

i/r subtended at the centre of the sun by the centres of Venus and

the earth. If 6, X be the known rates per hour at which the true

anomalies of Venus and the earth are increasing, and if 4 and

ti be the Greenwich mean times at which the earth and Venus

respectively arrive at the node, we have approximately

0=0(t-ti), \-n = \{t-to).
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On the occasion of the most recent transit of Venus on

December 6th, 1882, we had

r = 0-9850, 6 = 0-7205, E = 0004663, rj = 000004026,

when the mean distance of the earth from the sun is taken as

unity. With these figures

R'(r - hfl^r'lf = 0-000001510,

Rr^ {r - h)lr¥ = 0-000000097.

The equation may therefore be written as follows

:

cos y^ = cos d{t — ti) cos A, (i — to) + cos e sin 6{t — ti) sin X(t — 4)

= 1-0000001413 (iii).

Thus i/r is a small angle of 5' 47", so that as e is 3° 23' 31"

it is easy to see that neither 6{t — ti) nor X (i — to) can exceed

1° 40'. We may therefore express this equation with sufficient

accuracy as follows

:

1 - ^{t-tiye^-^(t-toyi^^ + di.(t-ti)(t-to)cose

= 1 - 0000001413,

which gives a quadratic for t in which all the other quantities are

known. When the substitutions for 6, \, e, to, ti are made it is

found that the roots of this equation are real, which shows that a

transit takes place. If they were imaginary there would not be

a transit. If they were equal then Venus would appear just to

graze the sun's limb.

Suppose the real roots of the quadratic are t', tf' and that

t" > t'. Then t' is the time at which the planet will appear to

enter fully on the sun's disc (II) and at t" the planet will begin to

leave the disc (III). The duration of the transit is t" — t'. Thus

the problem has been solved for the transit of Venus if it could

be viewed from the centre of the earth.

109. On the application of the transit of Venus to the

determination of the sun's distance.

This application depends upon observations of the second and

third contacts made from different stations, and we have first to

obtain the theoretical expressions for such times of contact.

We see from equations (ii) and (iii) (§ 107) that we may write

x' = pa! and x-i = bui,

y' = P^' „ 2/1 = 6A,
z' = pi „ ^^i

= &7i,
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where a', yS', 7', Hi, /Sj and 71 are functions of the several angles

0, ^, ft), n, 6 and e and are independent of the linear quantities

p and h.

Thus the last term in equation (i), § 108, viz.

:

{x'h cos \ + y'h sin \ — afx^ —
%fy-^^

— z'z^jrh,

becomes
(a' cos X + /8' sin X - a'a-, - /S'/3i - 771) pir.

To obtain the times i' +M and <" + At" of second and third

contact, as seen by the observer whose terrestrial coordinates are

x'y'z', we first compute A' which is the value of

a'tti + y8'/8i + 771 - a! cos X - /S' sin X,

when the values of ^, 6 and X corresponding to the time If have

been introduced. In like manner A" expresses the value of the

same function corresponding to the time t". Thus we have for

the second contact

cos i|r - sin -f . i^Ai' =1- B?{r- by/2r'b^ + Rr^ (r - h)lrlf - A'p/r,

whence we obtain

At' = A'p/ryjr sin yjr,

and consequently the observer at oc', y', £ sees second contact at

the time
t' + A'pIr\jr sin yfr (i).

In like manner it is shown that for the same observer the time

of third contact will be

t"- A"p/ryjr sin f (ii),

and accordingly for this observer the duration of the transit from

second to third contact will be

t" - if - (A' + A") p/rf sin yfr (iii).

If the same transit be also observed from another station and

if for this second station B', B" be the quantities corresponding to

A', A", then the duration of the transit as there seea will be

t" - If -(B'+B")p/ryjr sinf (iv).

Hence if B be the difference between the durations of the

transit of the planet from second to third contact as seen from the

two stations, we have

D = (B' + B" - A' - A") p/rf sin ^jr (v).

In this equation A', A", B' , B" are calculated by the formulae

B. A. 21
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of § 107. The angle ^jr is given by the equation (iii), § 108, and

yjr is obtained by differentiation with regard to the time.

If finally D is determined by observation, then as p is known,

r is found from equation (v). This is the famous method of deter-

mining the sun's distance proposed by Halley. It requires that

both second and third contacts should be observed at each of the

two stations.

There is also another method of deriving the distance of the

sun from observations of the transit of Venus, which bears the

name of its originator, De Lisle. This method has the advantage

over Halley's that only two successful observations instead of four

are needed and consequently the risks of failure by bad weather

are correspondingly reduced.

Suppose that the times of observed second contact are obtained

at two stations, then the interval will be from (i)

(t' + A'pjr'^ sin i/r) - {t' + B'pjr-^ sin ifr) = (A' - B') p/r-<jr sin i|r.

If therefore this interval can be determined we shall have an

equation for r.

Of course De Lisle's process can also be applied to a pair of

observations of third contact made from two different stations.

The chief drawback to the transit of Venus as a method for

the determination of the sun's distance arises from the difficulty

of observing exactly the moment of contact between the disc of

the planet and the limb of the sun. The movement of the planet

is so slow and the limb of the sun is s6 ill-defined that an un-

certainty of several seconds is liable to be found in each

observation.

EXERCISES ON CHAPTER XIV.

Ex. 1. Show that A', the quantity used in equation (i), p. 32, is very

nearly sjr sin z where z is the sun's zenith distance and where the observer is

supposed to be in the plane which contains the centres of the sun, the earth

and the planet.

Ex. 2. Explain why Halley's method of determining the Solar Parallax

by the Transit of Venus would not be equally applicable to the Transit of

Mercury.

Taking the maximum value 4' =•«//• sin 2 we see that At'— a- sin z/^ or

o- sin z=-^Af. If therefore o- is to be obtained from an observation of At", it

is obvious that the smaller -^ the smaller will be the effect of errors in the
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value of A^' on the concluded value of o-. The quantity i/r is inversely propor-

tional to the synodic period of the planet, which in the case of Mercury is

116 days and iu that of Venus 584. Hence an error of determination of the

moment of contact of Mercury will produce more than five times as much
error in the concluded parallax of the sun as in the case of Venus. It is

supposed that the zenith distance of the sun is the same in both cases.

Ex. 3. Prove that there will be a transit of Venus, provided that when
the planet crosses the ecliptic, the heliocentric angular distance between the

earth and Venus does not exceed 41'. The sun's apparent angular semi-

diameter is taken as 16', the distance of Venus from the sun as '72 times

the earth's distance, and the inclination of its orbit to the ecliptic, sin"' 1/17.

[Math. Trip. I. 1902.]

Ex. 4. If in taking the square root of the equation (i), § 108, a negative

sign had been given to the radical instead of the upper sign as has been

actually used, show that the solution of the equation thence obtained would,

as is there stated, refer to those occasions on which the planet passed behind

the sun.

Ex. 5. Supposing the planes of the earth's equator and the orbit of

Mercury to coincide with the ecliptic, show that to an observer in latitude ^,
on the same meridian with an observer at the equator who sees Mercury

projected on the centre of the sun's disc at midday, the duration of a transit

will be 2A hours nearly, when

ri)— 6) <bA+ hp cos (^ sin {nhlX^)= 'JR^ (r— 6)^ - V^p^ sin''' <^,

r, b being the radii of the orbits of the earth and Mercury, R, p the radii of

the sun and the earth, and a the difference of the apparent horary motions

of Mercury and the sun. [Math. Trip.]

If ij be the hour angle of the sun when the transit commences its duration

will be 2i;,

a;=rcos\ — p cos^ cos(j;H-X), Xi= b cosd,

y=7-sinX-p oos<^sin (?;-f-X), yi= hs,md,

2=psin<^, Zi=0.

Expressing the condition that the line from the observer through Mercxiry

(supposed a point) touches the sun,

(r2 -f- p2 - 2rp cos (^ cos ^ - .R2) (52 _ ^)
= {6r cos (5 -X) - hp cos (^ cos {r)+ \-6)-BP'Y,

which may be transformed into

g2 ^^2+ J2 ^.p2_ 2^p cos <^ cos ;;
- 26r cos (5 - X) -f- 26p cos (^ cos (i; -)-X - 6)}

= 62 {r sin (5 - X) - p cos (^ sin (5- X - r,)Y+hY sin^ (^.

This is the equation when none of the quantities have been rejected on

account of smallness, but if we remember that 6 — \, p/r, R/r are all small,

the equation reduces to

b{r{0-\)+p cos
<f>

sin t,}= JR^(r-bf-b^p^aiD^<f).

We also have aj)={6 -\)bl{r -b) where i7=7rA/12, and the desired result

is obtained.

21—2
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Ex. 6. In five synodic periods the motion of the planet from its node is

about 2° 22' less than 13 complete revolutions, and a transit across the sun

will take place when the planet's distance from the node at the time of its

conjunction with the earth is less than 1° 43'. Deduce a general explanation

of the fact that the intervals between successive transits of Venus recur in

the order

8, 121J, 8, 105^ years nearly.

Will this order of recurrence be perpetual ?

[Smith's Prize Exam.]

Ex. 7. Supposing that objects can be observed only when their altitude

is greater than a, show that the greatest possible interval between accelerated

and retarded ingress of Venus in transit obtainable on the earth is about

(11™ 35=) cos a, the solar parallax being taken as 8" -93, and the periodic times

of Venus and the earth to be 224'7 and 365-25 days respectively.

[Math. Trip. I.]

Ex. 8. If the orbits of Venus and the earth be regarded as circular and
coplanar with the earth's equator, and if the periodic times of Venus and the

earth be respectively 2247 days and 365-25 days and the solar parallax be
8"-93

: if also ti and t^ be the moments at which ingress (or egress) of Venus
on the sun's disc be observed at two stations on the parallel of 0, and if hi and

^2 be the west hour angles of the sun at the two stations at the moment of

observation respectively, show that the number of minutes in the difference

of observed ingress (or egress) is given by the equation

h - <2= (5" -794) cos
(t>

^sin^ - sin^'^

.

AVe have from Ex. 5,

bir{6-X)+p cos (lism~\ = ^E^r-by-by sin^ 0.

Let g==nit+ei, X = n2t+ €2,

hr (»i - n^) h+ br (ej - eg)+ bp cos sin "^ = >JM' (r - b)^ - b^p^ am' <p,

br (Ml - »2) h + br{ei- cg)

+

bp cos sin^= ^lR'{r-bf -l^p^sin^K^,

whence r (kj - m) [h-ti)= p cos (sin^- sin—'^ .

But w, and jij are respectively 0-000019419 and 0-000011947, being the
angle in radians described by Venus and the earth respectively in 1"°. Also
/)/)•= 8-93 sin 1", and substituting these values the desired formula is ob-
tained.
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Ex. 9. Taking the orbits of the earth and of Mercury to be circles of

radii I'OOO and 0'387 respectively, the parallax of the sun to be 8"'80 and

his diameter 32' 4"'0 ; find the greatest inclination of Mercury's orbit to the

ecliptic which would allow of a transit being visible at some place on the

earth at every inferior conjunction. [Sheepshanks Exhibition.]

Ex. 10. It is found that at two places on the earth's surface in the plane

.

of the ecliptic and at opposite extremities of a diameter of the earth, the

differences of times of ingress and egress of Venus at transit over the sun's

disc are ll" 19= and 11™ 21= respectively. Being given that the synodic

period of Venus is 584 days, calculate the sun's parallax in seconds of arc

to two decimal places. [Coll. Exam. 1900.]

Ex. 11. Assuming that the diameters of the earth and Venus are neg-

ligible, show that i\r, the heliocentric elongation of Venus from the earth at

the moment of the commencement or the end of a transit, is given accurately

by the equation

6V2 cos2 ^|.- 26?-iJ2 cos l/^+ 7J2 (62+J-2) - 62/-2= 0,

where R is the sun's radius and b, r the distances of Venus and the earth

from the sun's centre.

Ex. 12. Let X, 6 be the heliocentric angular velocities of the earth and

Venus, 3) the heliocentric elongation of the earth from Venus when the planet

is crossing the ecliptic, c the inclination of the orbit of Venus, t/^ the angle

defined in Ex. 11. Show that if a transit of Venus is to take place

a;
:f>

!// (9 - X)/fl sin e approximately.

Ex. 13. Show that if a transit of Venus is to take place the heliocentric

latitude of Venus must be :j>i|/- when the planet is in conjunction with the

earth in longitude and that neither the heliocentric elongation of the earth nor

the planet from the node can exceed -^ cosec t.
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110. Introductory.

In the investigation of the distance of the moon or a planet

we have found that a base line of adequate length can be

obtained if its terminals are properly chosen terrestrial stations.

By measurements from both ends of the base line the required

distance can be ascertained.

If the measurement of the distance of a star is to be effected

the base line to be employed must be a magnitude of a much

higher order than the diameter of the earth (see p. 279). The base

line for our sidereal measurements is the diameter of our earth's

annual orbit which is (206265/8-80) = 23400 times the earth's

diameter. The terrestrial observer is transferred in six months

from one end of a diameter of the earth's orbit to the, other.

From each end of the diameter he makes observations of the

apparent places of a star, and if there is an appreciable difference

between those apparent places, the means of determining the

distance of that star are provided.

Let p be the mean distance of the earth from the sun, and r

the distance of the star from the sun, then p/r sin 1" is defined to

be the annual parallax of the star. It is the number of seconds

of arc in the vertical angle of an isosceles triangle of which p is the
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base and r each of the equal sides. We may for brevity denote

the annual parallax by the symbol a.

Let T (Fig. 81) be the earth, be the sun, and S be the

star, and draw TS' parallel to OS.

Then TS' is the true direction of the

star, i.e. the direction in which it

would be seen from the sun's centre,

and the angle S'TS=TSO is the

effect of parallax on the apparent

place of the star. As this angle is

very small we may replace its sine

by the angle itself, and denoting

the star's elongation STO from the

sun by E we have for the Parallax

in seconds of arc

Z TSO = smE. p/r sin 1" = o- sin ^. ^"'- ^^

Hence we see that the effect of parallax is to throw the star

from its mean place towards the sun through an angle which is

proportional to the sine of the angle between the star and the

sun. Thus <T sin E or the product of the annual parallax a- and

the sine of the star's elongation from the sun shows the parallactic

displacement.

It should be remarked that so far as the present work is

concerned we may, in considering stellar parallax, neglect the

ellipticity of the earth's orbit and regard p as a constant.

The diameter of the earth's orbit amounting to 186,000,000

miles provides the longest base line available to the terrestrial

astronomer for his measurement of star distances. The distances

of the great majority of stars are, however, so vast, that the

changes in their apparent positions, when viewed first from one

end of this base line and then from the other, are hardly ap-

preciable. The largest annual parallax known up to the present

is that of a Centauri 0"'75. It is the first on the following list

(Annuaire public par le Bureau des Longitudes).

It will be obvious from this list that the determination of the

parallaxes of stars is a work of much delicacy and refinement.

The annual parallax of Arcturus having a circular measure

1/8,600,000 shows that the earth's orbit viewed from that star

would appear no larger than a circle a foot in radius would appear
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when viewed from a distance of 1630 miles. It will readily be

admitted that the determination of the distance of an object about

1630 miles away from observations made at the ends of a base line

only two feet long would be a very delicate undertaking. It is

only by the accumulation of a long series of careful observations

in which the errors of observation are gradually eliminated that

success can be obtained.

Even the best meridian observations of the places of the stars

are of but little service for the determination of stellar parallax.

We require for this purpose observations of the class termed

differential, and what this term signifies will now be explained.

If a star were at an infinitely great distance its parallactic

displacement would be zero, and its place would therefore be the

same when seen from all points of the earth's orbit. The great

majority of the stars have a parallax too small to affect our

measurements. In such a case we make no appreciable error by

treating it as zero, and the observations now to be considered are

those in which the position of a star which is affected by parallax

is compared with a star which has no parallax, but is so placed

that, as projected on the celestial sphere, the two stars seem

closely adjacent. The two stars should appear sufiiciently close to

be in the same field of view of the telescope. We then make
differential measurements of these two stars. In this way certain

errors, for example, those arising from the flexure of the instru-

ment and many others, are eliminated, for they affect both

stars equallj^ The influence of refraction can also be allowed for

with accuracy, because the irregularities in the refraction may
also be presumed to affect both stars equally, and will therefore

disappear from a differential measurement. If the second star is

also near enough to have an appreciable parallax then the result

determined is the difference of the parallaxes of the two stars.

The observations made are usually those of the distance and the

position angle (§ 49) between the two stars. These observations,

repeated on as many occasions as possible throughout the course

of at least one year, afford the data by which, after due reduction,

the parallax is to be determined.

Ex. 1. If o- be the annual parallax of a star and n be the number of years

in which light from that star would reach the earth, show that n=lZj4a:

Ex. 2. Show that the light from 61 Cygni of which the parallax is 0" '37

takes 8-8 years to come from the star to the earth. (See Table, p. 328.)
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111. Effect of annual parallax on the apparent right

ascension and declination of a fixed star.

If r be the distance of a star from the centre of the sun, a, h

the true R.A. and decl. of the star, i.e. those referred to the centre

of the sun, r', al, S' the corresponding coordinates referred to the

centre of the earth, © the longitude of the sun, p its distance

from the earth, and to the obliquity of the ecliptic, then we have

the fundamental equations as in | 93

r' cos B' cos OL =r cos S cos a + p cos © (i),

r' cos B' sin a' = r cos B sin a + p sin © cos &> (ii),

r' sin S' = r sin S + p sin © sin ft) (iii),

whence we obtain

, r cos B sin a + p sin © cos m
tan a = ^ ^- z^— ,

r cos b cos a + p cos (y

but as (a' — a) is a small quantity expressed in seconds of arc,

tan a' = tan (a + a' — a) = tan a + sec^ a (a' — a),

whence, using cr to denote the annual parallax, p/r, we obtain

the annual parallax in R.A.

a' — 01 = a- sec 8 (cos a cos to sin © — sin a cos ©) . . .(iv).

Squaring and adding (i) and (ii) and remembering that p is

small compared with r,

r"^ cos^ 8' = r' cos^ B + Irp (cos B cos a cos © + cos 8 sin a cos o) sin G ),

and taking the square root we find

r' cos B' = r cos 8 + /s (cos a cos © + sin a. cos a) sin ®).

Dividing this into (iii) we have

-, r sin B + p sin © sin <»
tan h = 5 ;

^ r

.

r cos + /> (cos a cos (i) + sin a cos o) sm ^i^)

Substituting for tan 8' the expressioa

tan 8 + sec^ 8 (8' - 8),

we deduce the annual parallax in Decl.

8' — 8 = <r [cos 8 sin a> sin © — sin 8 cos a cos ©
— sin 8 sin a cos at sin ©] (v).

Thus the parallactic displacement of a star in R.A. and in decl.

is made to depend on the sun's longitude © as the single variable

element and we can avail ourselves of this fact to obtain more
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concise expressions by the introduction of six new quantities a, b,

a', b', a", b" defined by the equations

a cos 6 = sin a ; a! sin b' = sin to ; a" sin 6" = d sin (6' — S)

;

a sin 6 = cos a cos w ; a! cos b' = cos &> sin a ; a" cos b" = cos a sin S.

As these quantities involve only the position of the star and

the obliquity of the ecliptic, they are constant throughout the year.

Thus the formulae

(a — a') cos Z = aa cos (& .+ 0),

S-S' = <7a" cos (&"+©),

enable the parallactic effect at different parts of the year to be

computed with all needful simplicity by the introduction of the

corresponding values of ©.

Let 8 (Fig. 82) be the true place of the star, 8' the place to

which the star is apparently carried by parallax, and draw 8T
perpendicular to 8'F, where P is the pole. Then P8= 90°- S,

and we have
(a-a')cos8 = >Sfy; S-B' = S'T,

showing that aa cos {b + ©) is the distance by which the parallax

displaces the star parallel to the equator. It is plain from

Fig. 82.

this formula that the apparent place of the star as disturbed

by parallax describes an ellipse in the course of the year. For

taking ST and 8P as the axes of x and y respectively we have

x= era cos (6 + ©) ; y = — a-a" cos (b" + ©)

;

and the elimination of © gives an elliptic orbit for 8'.
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Ex. 1. In 1876 the mean place of the great spiral nebula 51M was

a = 13^ 24™ 35», S = + 47° 50'. If its annual parallax was o- and if its

apparent place as affected by parallax was a, 8', show that if © be the sun's

longitude

(a - a') cos S = a- [9-9678] COS (© + 247° 8'),

S-S'= a- [9-9348] cos (© + 143° 27').

Determine the dates on which the parallax in declination is as great as

possible and find the maximum parallax in e.a.

N.B. The figures enclosed in brackets are logarithms.

Ex. 2. Prove that (assuming uniform motion of the sun in longitude)

the correction to the time of transit of a star of r.a. u, due to annual

parallax, has its greatest magnitude -—
. 365j- . tan~i (sec a tan a) days after a

ztt

solstice, <o being the obliquity of the ecliptic.

[Coll. Exam.]
If 0- be the star's parallax its effect on right ascension is

a'-a= (rseo 8 (cos a sin © cos to - sin a COS ©).

For this to be a maximum,

tan (© - 90°) = sec a tan a.

Hence the sun's longitude exceeds that of the solstice by tan "' (sec w tana)

radians. But the sun describes 27r/365j radians of longitude per diem,

whence the desired result.

Ex. 3. Show that the maximum effects of annual parallax on the right

ascension and declination of a star are given by the expressions

o- sec 8 (1 — cos^ a sin^ o))^ and o- (sin^ X+ sin^ <» cos^ a)*

,

where a- is the coefiicient of annual parallax, a> is the obliquity of the ecliptic,

and a, 8, X are the right ascension, declination, and latitude of the star.

[Math. Trip. I.]

The maximum value of (iv) for any real value of © is

a- sec 8 (cos^ a cos^ a + sin^ a)^ = tr sec 8(1 — cos^ a sin^iB)^

,

and the maximum value of (v) for any real value of © is

o- {(cos 8 sin m — sin 8 cos a sin a)" + sin^ 8 cos^ a} ^

= (T {(sin 8 cos u> - cos 8 sin a> sin a)^+ sin^ a cos^ a}

i

= o- (sin^ X + sin^ a> cos^ a)4

.

Ex. 4. Show that the general effect of the annual parallax of a star is

to alter its position in the small ellipse which it appears to describe annually

owing to aberration, and for a given star state how this alteration varies

with the time of year. [Math. Trip. I.]

Let S be the sun. So (Fig. 83) a point 90° behind the sun and on the ecliptic.

Let be a star of coordinates X, /3 and parallax a-. The line OX is perpen-

dicular to SSa. Let OF be perpendicular to OX and we seek the coordinates

X, y with respect to those axes of a star at disturbed both by parallax and
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aberration. It is assumed that k is the constant of aberration and that

the squares and higher powers of ct/k may be neglected. Since aberration

90°- O +\

Fig. 83.

moves the star along OS^ to a distance k sin OS^ and parallax moves the

star towards S through a distance a- sin OS we have

x= K sin^sin(© — X)+o-sin/3cos(© — X),

y= - K cos(© -X) + (rsin(© -X),

which may be written
x= K sin/3sin(® +o-/k— X),

y=—K cos(©+(r/K — X),

so that .r^ cosec^/3 +y2= k^.

We thus see that taking parallax into account has simply the effect of

changing the apparent place of the star on the aberrational ellipse from the

point corresponding to © to the point corresponding to © +<7/k.

112. Eflfeet of parallax in a star ;S on the distance and
position angle of an adjacent star *S'.

In Fig. 84 let be the sun, TO the ecliptic, P the north pole.

Let a, S be the R.A. and decl. of B and a', S' those of the sun.

Let D, p be the distance 88' and position angle F88' of 8' with

respect to 8.

The effect on /Sf of a parallax a is to convey the star from

its mean position 8 to an apparent position along the direction

80, so that 8T=<T%\n80.

The apparent distance of the two stars is T8', and this is

sensibly equal to H.8' if TR is a perpendicular on 88'. It follows

that *S^, which we shall represent as D', measures the effect of

parallax on the distance I) between the stars. As parallax changes
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the direction S'S into S'T, the angle SS'T is, with sufficient ap-

proximation, the change in the position angle of 8' with regard

to S.

p

Fig. 84.

The effect of parallax on the apparent distance is calculated

as follows

:

D' = SH= sin ST cos TSH= a sin SO cos (PSO -p),

but sin SO sin PSO = cos B' sin (a' — a),

sin SO co.s PSO = sin B' cos B — cos B' sin B cos (a - a),

and thus we find for D' the parallax in distance

D' = a sin p cos B' sin (a' — a)

+ a cosp {sin B' cos S — cos 8' sin B cos (a — a)).

To express this in terms of the sun's longitude we have

cos © = cos B' cos a,

cos CO sin © = cos B' sin a',

sin ft) sin © = sin B',

and hence

D' = ff cos © (— cos a sin B cos p — sin a sin p)

+ o" sin © (— sin a sin B cos a cosp

+ cos S sin w cos p + cos a cos m sin ^).

In like manner we can compute TS'S or p' where p' is the

correction to be applied to the observed position angle of >Si ' from S
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in order to obtain the position angle as it would be seen from

the sun

p' = TS'S = o- sin SO sin (PSO -p) cosecD
= a- cos © (— cos^ sin a + sin p cos a sin S) cosec D
+ a- sin © (+ cos a cos &> cos p

+ sin a sin B cos wsinp — cos S sin co sin p) cosec D.

As these formulae have © as the only variable they can be put

into a much more convenient form by the introduction of certain

auxiliary quantities m, M, m, M' , defined by expressions in which

an approximate value will suffice for p

:

m cos M= — cos a sin S cos^ — sin a sin p,

m sinM= — sin a sin S cos w cosp
+ cos S sin 0) cos p + cos a cos « sin p,

m' cos M' = — cos^ sin a. + sin^ cos a sin S,

m' sin M' = + cos a cos <o cosp

+ sin a sin S cos m s,mp — cos S sin to sin j).

By these substitutions we obtain

D' = a-m cos (Q-M),
p' = crm' cos (© — M') cosec Z>,

in which D' and jj' as well as a are expressed in seconds of arc.

Ex. 1. Compute the effect of an annual parallax o- on the star No. 182

in Schjellerup's catalogue of red stars (a= 15'i 45™
; S= +39° 57') with respect

to an adjacent star without parallax at the distance 392" and position angle

340° 59'.

The parallax in distance expressed in seconds is

[9-96381] (T cos (© - 85° 52').

The parallax in position angle expressed in seconds is

[2-68936] o- cos (e + 13° 52').

Ex. 2. Show that on the 9th Jan. 1877, when =289° 25', the observed

distance (see last example) must have the correction — 0-843o-, to clear from

the effect of parallax, and the observed position angle must have the cor-

rection 268(r.

Ex. 3. Let a, 8 be the e.a. and decl. of a star which has an annual

parallax cr. Let p, B be the observed position angle and distance of an
adjacent star without parallax. If p, 6, X, ^ are auxiliary quantities defined

by the equations

p cos 5= sin 8', X cos /i= cos 8' sin (a' - a),

p sinfl=cosS'cos(a'-a), X sin/i= pcos(5+ 8),
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then the correction for parallax to the observed position angle and distance

to reduce them to what they would be as seen from the sun are respectively

o-X cos {p + /i) cosecD and trX sin
(
jo + /i),

if we assume the earth's orbit to be a circle.

Ex. 4. If the observations are made when the star is 90° from the sun,

show that sin (5+ 8)= and X2=l, so that the expressions become

Parallax in distance xRe,\n{p+ ii),

„ position angle a;^ cos (^+/i) cosec i),

where /i is determined by

sin /I= sin h'Icon S ; cos /i= cos 8' sin (a' -a).

Ex. 5. A star S at the position (a= 16° 33', 8= +46° 51') with a parallax

(T has another star S' (supposed without parallax) at the position angle 91° 32'.

The distance of the two stars was measured on 28 Feb. 1877, when the

apparent coordinates of the sun were a'= 22° 46' 20", 8*= — 7° 48' 19". Show
that + •982o- is the correction which must be applied to the observed value

of the distance to reduce it to what it would have been if the observer had

been at the sun instead of on the earth.

113. Parallax in latitude and longitude of a star.

If /S, X, r be the heliocentric latitude, longitude and distance

of a star with annual parallax a, and if /3', A.', r' be the geocentric

latitude, longitude and distance of the same star when © is the

longitude of the sun and p its distance, then by making to = in

(i), (ii), (iii) (§ 111), and writing y8, X, /3', V for S, a, 8', a',

r cos /3' cos X' = r cos /3 cos X + /s cos (i),

r' cos /3' sin X' = ?• cos /3 sin X + p sin © (ii),

r' sin /3' = r sin /8 (iii).

From these we obtain

r cos /3' sin (X' — X) = p sin (© — X),

whence, if squares and higher powers of o- = pjr may be neglected,

X' — X = o- sec /S sin (© — X).

From (i) and (ii) ^^e obtain

r cos /3' = r cos /3 + /3 cos (© — X),

whence with (iii) we have

yS' - (8 = - <7 sin /3 cos (© - X).

We thus learn that if the heliocentric latitude and longitude of

a star of parallax t are /8, X, then the corresponding geocentric

quantities are

(;S— (7sin/3cos(© — X)} and {X + a- sec /3 sin (0 — X)}.
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We can investigate in another way the effect of annual parallax

on the distance and position angle of a star ^S, A- with respect to

another star jSo, Xo, of which the parallax is regarded as zero.

Consider the spherical triangle A, B, G, of which J. is /So, Xo j ^ is

/S, \ and G is the nole of the ecliptic. Let the points A, G remain

fixed while B undergoes a slight displacement, then A6 = 0, and

from formulae (i), p. 13, we have, if fi^=sin.4/sina,

Aa = cos iJAc +Hsmb sin cA^l,

Ac = cos Bi^a + Hsma sin 6AC,

whence, by eliminating Ac and solving for AA, we have

A.4 = — sin a cosec c cos BAG + cosec c sin BAa.

If the displacement of the star at B arise from parallax, then

as shown above

A(7= AX = o-secySsin(© — \)and Aa = — A/3 = cr sin /3 cos (0 —X)

where /3 = 90° — a, and we thus obtain

The displacement in position angle or AA is

<r cosec c {— cosB sin (© — \) + sin B sin /3 cos (© — X)],

and the displacement in distance or Ac is

(7 {sin yS cos B cos (© — X) + sin B sin (© — X)},

where B, c are determined from the triangle

BG = 90° -0, AG = 90° -^0, ^AGB = \-\,.

As a verification of these results we note that the square of

the total displacement in consequence of parallax divided by o-*

must be both (sin cA^)^ + (Aa)^ and (A/3)^ + (cos /SAX)", and each

of these reduces to sin' (© — X) + sin^ /8 cos' (© — X).

Ex. 1. The latitudes of two stars are /3 and /Sg and their difiference of

longitude is I ; the parallax of the second is insensible and that of the first

is 0-. Show that the angle between the extreme positions of the arc joining

them is approximately

2(rV{sin^O-/3o)+sin2gsin2gosin^|Q

sin2 0-(3o) + 8in 2^ sin 2^o sin^^Z+cos^/S cos^/So sin^Z*

[Math. Trip. I.]

As the displacement in position angle by parallax is

0- cosec e { — cos .S sin (© — X) + sin5sin/3cos(© —X)},

its extreme values must be

+ 2(r cosec <!(cos^5+sin2/3sin2 5)2,

B. A. 22
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and in the triangle whose sides are 90° — /3o,
90° — and included angle I

the angle opposite 90°— /So is B, and c is the side opposite I, whence B, c can

be eliminated and the desired result is obtained.

Ex. 2. Show that the greatest variation in the apparent distance of a

star S with parallax o- from a star S' which has no parallax, is

2(r (sin2/3 cos2 5+sin2 5)*,

when /3 is the latitude of S' and where B is the angle which S' and either

pole of the ecliptic subtends at S.

Ex. 3. Prove that the cosine of the angle between the directions in

which a star is displaced on the celestial sphere by annual aberration and

by annual parallax is

sin2 (© -X) cos2/3[4 sin2 0+cos''/3sin2 2(© -X)]"*

where |3 is the latitude and X the longitude of the star, and © the longitude

of the sun. [Coll. Exam.]

*114. On the determination of the parallax of a star by
observation.

We are now to show how by continued observation of the

distance and position of a star jS which has a parallax cr from

a star S' which has no parallax we can determine the value of a.

If we could assume that the question was not complicated by any

proper motion in one or both of the stars S and S', and if we could

also assume that the errors of our observations were insignificant

in comparison with the quantity sought, then the determination of

the parallax from observations either of the distance or the position

angle would be a simple matter.

Suppose that the distance from S to S' as seen from the sun

was B, then the observed distance is D — D' where

D' = o-m cos (©-il/),

in which m, M are known because these are determined once for

all for the particular pair of stars by the formulae already given

(§ 112). Suppose that two observations D^ and D^ are made
when the longitudes of the sun are ©i and ©2, then we have
the equations

D =A + o-m cos (®i - M),

B = D^+am cos (®2 - M),

whence we have for the parallax

^ A-

A

m {cos ( ©2 - il/) - cos (©1 - M)]

'
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All the quantities on the right-hand side being known, <r is

determined. As errors are unavoidable in making the observations

Di — Da will be necessarily erroneous to an extent which is of

course unknown, but the effect of which on o- we desire to have as

small as possible. If Ao- be the error in cr caused by an error

A (Di — D2), then by differentiation we have

A (A -A)
m {cos (©2 -M) - cos (©1 - M)}

"

To have Ao- as small as possible we must have A (A — A)
as small as possible and {cos (©g — ikf)— cos(©i — M)} as large as

possible. The former condition we seek to attain by making our

observations with the utmost care. For the latter condition we
choose certain particular dates for the observations. If ©2 —M= 0°

and ©1 — ilf=180°, then the denominator of Ao- becomes 2m
and it cannot exceed this amount. Hence by choosing the dates

of our observations on the two days six months apart, when

01 = 180° +M and Q^ =M respectively, we have the most favour-

able conditions and obtain

Ao- = A(A-A)/2m.

It happens that the parallaxes of all stars, so far as at present

known, are so small that two observations as here supposed would

not suffice for our purpose. Where the parallax is only a few

tenths of a second and where the casual errors of observation may
also be a few tenths of a second a single pair of observations cannot

give a reliable result. Not fewer than 30 or 40 observations fairly

distributed over the year would be necessary, and we now discuss

the procedure to be adopted, adding however the remark that in

the actual conduct of the investigation various minor points not

here treated of must be attended to. We shall suppose the

search for the parallax to be made by observations of the distance

SS', though such an investigation can also be made from observa-

tions of the position angle.

Suppose that at n epochs ti, t^, ... extending over a year or

longer, measurements A. A. •• A of the apparent distances

between ;S and S' have been obtained. We shall assume that

these observations have been already corrected for refraction by

the principles explained in § 48 for finding the effect of re-

fraction on the apparent distance of two adjacent stars.

22—2
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In the first place there will generally be a small proper motion

of one or both of the two stars by which their distance is con-

tinually changing. As the distance of the stars is many times

greater than the relative proper motion during the year over

which the observations extend, we shall introduce no appreciable

error by regarding the change in distance due to this cause as

being simply proportional to the time. It is thus distinguished

from the parallactic change which is essentially periodic.

If there is any relative proper motion the apparent path of

the star is not of course the ellipse which parallax alone would

make it, nor the straight arc which proper motion alone would

make it, but rather a sinuous arc which is the resultant of both.

It often happens that the change due to proper motion greatly

exceeds the displacement due to parallax.

The increase of the distance between. the two stars by their

relative proper motion we shall represent by yt, where y is an

unknown which will be determined in the course of the investiga-

tion and where t is the fraction of the year which has elapsed since

Jan. 1st preceding.

The true distance between 8 and 8' as it would be seen from

the sun on Jan. 1st is unknown, so we shall assume it to be x, and

hence the true distance at the time of observation t^ is

x + yt^.

Let ©1 be the sun's longitude at the time 1^,, then the correction

for parallax to be applied to the observed distance A is as already

shown
o-mcos (©1— M),

and consequently the true distance is

A + o-m cos (©1 — M).

Equating these values of the true distance and forming the

similar equations for all the other epochs, we have

«: + yk- o-m cos (©1 - M) - Di = ^^

x + yt^ — am cos (Q>2 — M) — Di =
.(i).

^ + ytn- (Tin COS (©„ — If) — i)„ =

Thus the observations give n linear equations among three
unknowns x, y, cr, so that the same investigation which finds the
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parallax of S shows us also x the true distance SS' at the

beginning of the year and y the annual rate at which that

distance increases.

No doubt three of these n equations would suffice for finding

00, y, (7 if Dj, Dj and D3 were absolutely accurate. But owing to

the errors in D^, D^, A it is found that the values of x, y, a- from

any three of these equations will not precisely satisfy the remain-

ing equations. The only possible course is to obtain such values

for the three unknowns as shall give the most reasonable re-

presentation of the whole system. For this we must adopt the

method of least squares, of which we shall now explain the

principle.

We shall denote by (A) cZA the probability that in making
a measurement of some unknown quantity an error shall be com-

mitted which lies between A and A -1- d^. This important function

^ (A) is called the error function and its form is to be deter-

mined from the assumption that if Oj , (Xa . . . a„ are n measurements

conducted under uniform conditions of such an unknown quantity

as the arcual distance between two stars, then the arithmetic

mean (oj -h as -I- . . . -t- (Xm)/n is the most probable value of that

quantity.

Let X be the value of the unknown, then the errors are

(ai — x), (a^ — x) ... (a.„ — x) and the probabilities that each of these

errors shall be separately committed are respectively (^ (Oi — x),

(^{a^ — x)... cf>{an — x). It follows from the laws of probabilities

that the probability that jusfc these errors shall have been com-

mitted is the continued product of all the separate probabilities or

(f>
(ai - x) . ip {a^ — x) . . . (j) (a„ - x).

We may regard this function as the expression of the proba-

bility that X is the true value of the unknown. Therefore the

value of X which makes this function a maximum is the most

probable value of the unknown.

Equating the logarithmic differential of this expression to zero

we have

(^-^)
. '^'^^iT^ ,

+(«.-^)
,

'^'^:\7^
,
+

{ai — x)(j) (ffli - X) ' {a2 — x)<f> (tta— X)

+K-.) , '^'^f;;") ,
=0.

'{an — x)<l> {an — X)
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But by our fundamental assumption this equation for x must

not differ from

(«!-«) + (tta —«)+ + {an — «) = 0,

whence we obtain

(Oi — x) cf} (Oi — x) (da -«)(/) (tta — «)

in which h" is a constant. We thus see that the error function

<j) (A) must satisfy the condition

A<^(A)- ^^'

and consequently

where .4 is a constant introduced by the integration.

As some error (zero of course included) must have' been com-

mitted the sum of the probabilities for every error from — oo to

+ 00 must be unity, whence

1 =
f

"^°°

^A . c^A = ^
f
^"e-^"^^dA = Ah--' r°°e-^'dA,

J —CO J— 00 J~00

and we have to evaluate this definite integral.

Let a surface be formed by the extremities ofperpendiculars of

length er^' erected at every point P in a plane where r is the

distance of P from a fixed point in the plane. Then the

volume between the surface and the plane is

je-''' .2'!rr.dr = ir \
e-^'^dt^ = ir.

Jo Jo

But if rectangular axes x and y are drawn through the

volume of the surface can be shown to be equal to

e-'''-v'dxdy= e-'^dx e'^dy = -7r,

J — CO J —00 J —CO J —CO

whence
j e^'^dx = Vtt.
J — oo

Hence we see that 1 = Ahr^i^ir, and consequently we have for

the error function

Vtt
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The Method of Least Squares. Let k be an observed quantity

and p, q, r unknowns connected with Ic by the linear equation

k = Ap+Bq+C'r,

where A, B, G are known quantities depending on the circum-

stances of each particular observation. Then for a series of

observations k^, k^ ... kn we have a series of equations which

may be written as follows

ki - Aip — B^q - CiT = Ai

"

As — A^p - B^q - G^r = A^
(ii).

kn- Anp - Bnq - Gnr= A„ ,

If our observations were perfect there should be values of

p, q, r which would make Aj = Aa = . . . = A„ = 0, but this is

generally not true. The probability that all these errors

Ai, As, ... shall have arisen is the product of the probabilities

that each one should singly have arisen, i.e. the probability of the

occurrence of just this system of errors is

/ h \n
/ -y=

J

g-ftHAi=+A22+...+A„2)_

The most probable values of p, q, r will therefore be those which

make this quantity greatest, and therefore Aj^ + Aa^ . . . + A„^ is to

be a minimum. Thus we have the method of least squares

which consists in determining p, q, r so that

{k-,-A^p-B^q-G,r'f + {h-A^p-B^q-G^ry+...
+ {k„ - Anp - Bnq - G„ry

shall be as small as possible.

The reasonableness of the method of least squares in such a

problem can be perceived in a very elementary manner, as follows.

To satisfy as nearly as possible the group of equations found

by making all the right-hand members of (ii) zero we should have

values for p, q, r which shall on the whole make the actual

residuals Ai, Aj, ... A„ as small as possible, and symmetry

suggests that some expression like

Ai'^ + As™-!- ... A^"*

should be made a minimum. Plainly m must be an even integer

for otherwise there would be no assurance that even if the sum
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was small the individual quantities would all be small. The

simplest process would therefore be to make m = 2, which is the

method of least squares.

Applying this principle in the present case to the determi-

nation of the parallax o- of a star from observations of its distance,

we have to make the following quantity a minimum.

{« + 2/ «i
- o-m cos (©1 - if) - A}'

+ {x+ yti — am cos (©^ - M) — A}^

+ {a; + ytn—<Tm cos (®„ - ilf) - !>„}'.

We equate to zero the differential coefficients of this expression

with regard to x, y, a taken as independent variables and thus we

have as the fundamental equations by which x, y, cr are to be

determined
nx + ylt' - (rniX cos (Q^ - M) - 2A = 0,

xlt, + ylt,' - a-mtti cos (©, - ilf) - 2^A = 0,

xt cos (©1 -M) + ytt, cos (©i - if) - amt cos= {®,-M)
-2A cos (©, -M) = 0,

in which the summations represented by 2 extend from 1 to n.

Solving these linear equations for x, y, a we determine not only a

the annual parallax but also x the mean distance of the two stars

at the beginning of the year and y the annual rate at which their

proper motions affect the distance.

The principle of the method of least squares is of the utmost

importance in Astronomy, for there are so many problems in

which we have to find the most probable solution of equations

whose number exceeds that of the unknowns. (See Appendix to

Vol. II. of Chauvenet's Practical and Spherical Astronomy.)

EXERCISES ON CHAPTER XV.

Ex. 1. The parallax of 61 Cygni is 0"-37 and its proper motion perpen-

dicular to the line of sight is 5"-2 a year ; compare its velocity in that

direction with that of the earth in its orbit round the sun.

[Math. Trip. I.]

If n be the number of seconds in the annual proper motion of a star at

the distance r miles, then in one year the star moves rn sin 1" miles. If

the star's annual parallax is cr seconds, then o- sin 1" = a/?-, where a is the sun's

mean distance. Hence the star's annual movement is an/a-. The earth's

annual movement is 2na and hence the ratio of the star's velocity to the
earth's velocity is n/2na: In the present case this reduces to 2'23.
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Ex. 2. Prove that, if the sun have a proper motion in space towards a

point in the heavens of right ascension A and of declination D, the rates

of variation of the coordinates of a star, right ascension u, declination S,

annual parallax cr, contain terms of the form

. _ (T cos D sin {a — A) : _ <t cos D cos (a - A) sin (S - <^)

""T oosd
' T cos^

'

a cosD cos {a — A) cos (8 — <^)

r cos (^

where tan </)=tanZ)seo(4-a), a is the radius of the earth's orbit, T is the

time of the sun's traversing the distance a, and f is the velocity of separation

of the sun and star. • [Math. Trip.]

The axes of x, y, z are drawn through an origin at the position of the

sun at the time t = io the points whose r.a. aind decl. are respectively

(0°, 0°)
;

(90°, 0°)
;

(0°, 90°).
' The coordinates of the sun at the time t are

at cos A cos i)jT, at sin A cos DJT, at sin DjT.

If xf, y, / are the coordinates of the star with respect to the origin and

r cos a cos 8, r sin a cos S, r sin 8 the coordinates of the star with respect to

parallel axes through the sun,

r cos a oos b—xf — at cos A coa DjT (i),

r sin acoa 8=1/ -at sin A cos DjT (ii),

r am 8=!:' -at sin D/T...... (iii).

Squaring and adding and observing that a is very small with reference

to a/, y, /,

r2=ir'2+y2+z'2 - 2a {x' cos A coaD+y' sin A cos D+z' sin D) t/T,

whence by diflferentiating

rf=—a{x' cos A cosD+y sin A cosD+ ^ sin I))/T,

or f= - a (cos 2) cos S cos {A— a)+amD sin 8)/T

a cos Z* cos {a- A) cos (8 - <^)

jT cos^

Dividing (ii) by (i), and reducing

3/^ta,aa=.v'i/+ ati/'cosA cosD/T—atx'sinA cos DjT,

differentiating r^ cos^ 8 .a=a cosD {y' cos A—x! sin ^)/7'

= ar cos 8 cos i) sin (a -.4)7',

, o- cos B sin (a — .4)
whence a = ts s •T cos 8

Finally, differentiating (iii),

r sin 8+?'8 cos 8= — a sin Z)/?",

whence substituting for r from (iv), we obtain 8.

.(iv).
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115. An eclipse of the moon.

An eclipse of the moon is caused by the entrance of the moon
into the shadow cast by the earth. The geometrical conditions

under which this takes place will now be investigated.

Let M (Fig. 85) be the moon just arriving at the point T
where it is in contact with PQ, one of the generators of the

Fig. 85.

external common tangent cone to the earth whose centre is E
and the sun whose centre is S. The moon is then on the point of

entering the earth's shadow or umbra as it is called to distinguish

it from the penumbra to be referred to later. A lunar eclipse is

accordingly commencing.

We have first to calculate Z TEV or the angle subtended at
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the earth's centre by a radius of the circular section of the shadow
cone made by a plane passing through T and perpendicular to ES.
If EQ' be parallel to PQ we have

^ Q'ES= {QS - PE)/ES= rQ- TTo,

where r© is the angular semi-diameter of the sun subtended at

the earth's centre and 7r„ is the horizontal parallax of the sun.

The angle PTE may be taken to be 7r„' the horizontal parallax of

the moon with quite sufficient accuracy for our present purpose

and hence we have

ZTEV=7r, + 7r:-rQ.

We thus prove the following statement.

The angular semi-diameter subtended at the earth's centre by
the section of the earth's shadow at the distance of the moon
equals the excess of the sum of the horizontal parallaxes of moon
and sun over the angular semi-diameter of the sun.

As an example we may find the angular radius of the shadow
on the occasion of the total eclipse of the moon which occurred on
Feb. 8th, 1906, when 7r„ = 9", 7r„' = 58' 1", r© = 16' 13" and con-

sequently z TEV= 41' 57".

This is the radius of the shadow if the earth's atmosphere be

not taken into account. But it is found that in consequence of

the atmosphere the effective shadow has a radius about one-fiftieth

part greater than that of the purely geometrical shadow in which

the atmosphere is not considered. We must therefore add 50"

and thus we find 42' 47" as the effective radius of the shadow.

The horizontal parallax of the moon, which we take from the

ephemeris is, of course, the equatorial horizontal parallax and as,

in the calculation of lunar eclipses, we shall regard the earth as a

sphere, it would be rather more correct to employ a horizontal

parallax corresponding to some mean latitude such as 45° rather

than the parallax of an equatorial station. This reduces tt^' by

about one five-hundredth part of its total amount. It is, however,

quite futile to attend to such a refinement in the calculation

because this correction, if introduced, would be much less than the

margin of uncertainty unavoidably accompanying the correction

introduced to allow for the influence of the atmosphere.

Let ^ be the fraction of an hour per hour at which the moon's

right ascension is gaining on that of the centre of the shadow at

the moment of opposition, i.e. when the two right ascensions
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coincide. Then at t hours after opposition the difference of the

two right ascensions is rji. Let 8 and 8' be the declinations of the

centre of the moon and the centre of the shadow at opposition and

8, B' the rate per hour at which 8 and B' change ; then at the time

t the declinations are S + Bt, B' + B't.

If D be the distance in seconds of arc between the centres of

the moon and the shadow at the time t, then as the distance is

small we have from § 8

D^={B + Bt-B'- B'ty + 54000=^=i= cos^ |(8 + S'),

for in the last term we may, without appreciable error, take for

the two declinations their values at opposition, and 54000 is the

number of seconds of arc in one hour of right ascension. If we
simplify this equation by making

A={S-BJ + 54000=^ ij' cos^ ^ (S + B'), B = (B- B') {S - B'),

C={B-By,

we have D^ = At'+2Bt+G (1).

This is the fundamental equation by which the various phases

of an eclipse of the moon are to be investigated.

When the eclipse is commencing or ending the moon is just in

outer contact with the shadow and Dj the distance of the two

centres must be found (Fig. 8.5) by increasing the apparent radius

of the shadow by r^ the angular semi-diameter of the moon or

A = (T„ + 7r„'-ro)51/50 + rj (3).

When the eclipse has become total the moon must be entirely

immersed in the shadow and for the beginning and end of this

phase we must have

A = (7r„ + 7r„'-ro).51/50-r„ (4).

Introducing first D^ as the value of D into equation (1) we

obtain a quadratic for t which will show if there is to be any

eclipse and if so the two roots of t will give the moments at

which the partial eclipse commences and ends.

The equation

At^+2Bt + C-D, =
will have as its roots

- B/A ± (B' -AG+AD,)i/A,

and if there is an eclipse these roots must be real. Whence

(7r, + 7r,'-rQ)51/50 + n>iAC-B')/A (5).
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As A, B, G ai-e all known quantities we can thus find the necessary

and sufficient condition that there shall be at least a partial

eclipse.

The duration of the eclipse is the difference of the two roots

and is therefore

2(B'-AC+AI),)i/A.

By substituting A for A we find in like manner that if there is

to be a total eclipse

{iTo + TT,' - vq) 51 150 -n> {AC -B^)/

A

(6),

and that the duration of totality is

2(B'-AC + AI)^)i/A.

At the middle of the eclipse the centres of the moon and the

shadow are nearest to each other so that At^+2Bt+G is a

minimum. This distance of the centres is {AG— B^^/A'^ and it

occurs at the time t= — B/A as measured from the conjunction

in right ascension.

The magnitude of a partial eclipse of the moon is usually

measured by the fraction eclipsed of that diameter of the moon
which points to the centre of the shadow at the moment when the

distance between the centres is least. The radius of the umbra

being (tt, + 7r„'- r©) 51/50 and JD = {AC - 50*M* being the

shortest distance of the centres the magnitude of the eclipse is

easily seen to be

{(tto + TTo' - Tq) 51/50 +r,- D}/2r,.

Ex. 1. Show that the distance of the vertex of the umbra from the

centre of the earth is s cosed"j(r^ — wo), where s is the earth's radius and

where r_ and ttq are the apparent radius of the sun and its horizontal

parallax both expressed in seconds of arc.

Ex. 2. Show that the parallax of the point where the moon comes in

contact with the penumbra does not diifer from the parallax of the moon's

centre by so much as a third of a second of arc.

Ex. 3. Show that the duration of a lunar eclipse does not necessarily

contain the instant of opposition in longitude if the eclipse be partial but

must do so if the eclipse be total.

Ex. 4. The sum of the angular radii of the earth's shadow at the distance

of the moon, and of the moon at the moment of conjunction in right ascension

near a node is r. The square of the angular distance between the centre

of the earth's shadow and the centre of the moon at a time t hours after
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conjunction is Afi +2Bt+0; where A, B, C involve the elements of the

sun's and moon's positions at the moment of conjunction, and their hourly

changes. The hourly change in the parallax of the moon is or and its

angular radius is p. Prove that there will be an eclipse if

{A {C-r^)-Bf < {C(a7+ p)2-2S?-(or+p)}. [Coll. Exam.]

Ex. 5. Assuming the earth, moon, and sun to be spherical, prove that

when the moon is partially or totally eclipsed the geocentric angular

distance of her centre from the axis of the earth's shadow must be less than

sin~i (sin ttq+ sin D) — sin~i (sin d- sin ird),

where ttq, itq' are the horizontal parallaxes, and D, d the semi-diameters of

the sun and moon respectively. [Math. Trip. I. 1900.]

Ex. 6. Show that the interval between the middle of an eclipse of the

moon, and the time of opposition is approximately

mA ,—s-—

5

5 r; hours,
m^ +71^005 COS a

where m and n are the differences of hourly motion of the moon and the

centre of the earth's shadow in declination and right ascension respectively,

A is the diflference in declination of the moon and the centre of the earth's

shadow at the time of opposition, and 8, S' are the mean declinations of the

shadow and the moon during the eclipse. [Coll. Exam.]

116. The penumbra.

Up to the present we have been considering only the case in

which the moon enters the umbra or shadow of the earth. It

remains to consider the conditions under which the moon enters

the penumbra in which it is partially shaded from the sun or in

which an observer on the moon would see a partial eclipse of the

sun. As the moon enters the penumbra it must come into contact

with the internal common tangent cone to the earth and the sun.

Let M (Fig. 86) be the moon which has just arrived at the

point T on the internal common tangent PQ. When the moon

Fio. 86.
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passes T it enters the penumbra. The line TV perpendicular to

SE is the radius of the section of the penumbral cone at the

distance of the moon. We require to find the angle which TV
subtends at E.

If EQ' be parallel to PQ we have approximately

/LTEV= A ETP +ZSEQ' = EPjET + QQjES + SQjES
= 7ro' + 7ro + ro.

This proves the following statement

:

The angle subtended at the earth's centre by the semi-

diameter of the earth's penumbra at the distance of the moon is

equal to the horizontal parallax of the moon + the horizontal

parallax of the sun + the sun's angular semi-diameter.

We thus see from § 115 that the equation

{(tto -t-W + vq) 51/50 ± nY = At'+ 2Bt + G

when solved as a quadratic for t will give the times of first and

last external contact of the moon with the penumbra when the

upper sign is given to r,, and first and last internal contact when

the lower sign is used.

117. The ecliptic limits.

Let x be the angular distance of the line joining the centres

of earth and sun from the moon's node at the time the moon is

crossing the ecliptic. Let 6, (j> be the angular velocities expressed

in radians per hour of the sun and moon about the earth's centre

and in the planes of their respective orbits, and let i be the

inclination of the moon's orbit to the ecliptic. Let t be the

time in hours from the moment of the passage of the moon's

centre through its node. We may regard the triangle formed

by the node and the centres of the moon and the shadow as

a plane triangle and at the time t the distances of the centre

of the shadow and the centre of the moon fiom the node are

respectively x+ dt and ^t. If then D be the distance between the

centre of the moon and the centre of the shadow we have

D^=(x + ky - 24)t (oD + et) cos i + ^H\

We can give this equation the form

~
e^ - 2d(i) cos i + (i>^

+ ie^-2e<i>cosi+<l>^)\t+
."^^-'^^°^^\

r...(i).
^ ^ ^ I e^' -2e<ji cos i+<i)^)
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As the second term may be zero but can never become negative

the minimum value of D must be

x4> sin il(6^ -2e<f)C0si + 4>''f,

so that if a particular phase of an eclipse is to occur at a given

conjunction we must have x the distance of the centre of the

shadow when the moon is passing through the node within the

limit

a; < D (e* - 20^ cos i + (j)')i/(^ sin i

where D is the distance between the centre of the moon and the

centre of the shadow corresponding to the given phase.

To illustrate the numerical computation of the limit of x we

shall take mean values as follows

7r„=9", 7r„' = 3422", ro = 961", rj,= 934", ^/^ = 3/40, i=5°9',

which gives (6= - 2^^ cos i + ^'')^l^ sin i = 10-3,

and introducing the factor 51/50 to make the atmospheric correc-

tion as ah-eady explained, we have for the various values of D
corresponding to different phases of the eclipse

(tto + TTo' + Tq) 51/50 + r,= 90'-2,

(tto + TTo' + Vq) 51/50 -n= 59-1,

(•n-o + TTo' - r-o) 51/50 + n = 57-6,

(tto + TTo'-rQ) 50/51 - rs= 26-5.

Applying to these quantities the factor 10'3 we learn that if

when the moon is at one node the sun is 15°'5, 10°"2, 9°9 or

4°-6 respectively from the other the moon will partially enter

the penumbra, wholly enter the penumbra, partially enter the

umbra or wholly enter the umbra.

Of course as these results are obtained only for mean values they

must be accepted as only average results. The particular values

of the several quantities given in the ephemeris should be

employed when accuracy is required.

Ex. 1. Show that the maximum duration of totality of a lunar eclipse is.

m sec t \ m J

approximately, if the atmospheric influence be neglected, and where jr„

^o't ®) ^! «j ™ are the horizontal parallaxes, semi-diameters, and hourly
motions in longitude of the sun and moon, respectively, and i is the in-

clination of the moon's orbit to the ecliptic, [Math. Trip. I.]
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Ex. 2. Show that an eclipse of the moon will occur, provided that at

full moon the sun is within nine days of the moon's node.

[CoU. Exam. 1905.]

Ex. 3. If the distance of the moon from the centre of the earth is taken

to be 60 times the earth's radius, the angular diameter of the sun to be half

a degree, and the synodic period of the sun and moon to be 30 days, show
that the greatest time which can be occupied by the centre of the moon in

passing through the umbra of the earth's shadow is about 3 hours.

[Coll. Exam.]

Ex. 4. Determine the greatest latitude that the moon can have at the

instant of opposition in longitude that a total lunar eclipse may be possible,

having given the moon's parallax 61' 32", the moon's semi-diameter 16' 46'',

the sun's parallax 9", the sun's semi -diameter 15' 45", and the inclination of

the moon's orbit to the ecliptic 5° 52'. [Coll. Exam.]

Ex. 5. Given that on 1894 September 21 the altitude of the moon was

greater than at any other time during the last nineteen years, show that an

eclipse of the moon must have taken place on 1895 March 10. About what

hoiu' did the moon culminate at London on 1894 September 21 1

(The length of the synodic month is 29|^ days, the lunar parallax may be

taken as 1°, the inclination of the orbits of the sun and moon as 5° and the

semi-diameters of each as 30'.) [Coll. Exam.]

118. Point on the moon where the eclipse commences.

It remains to find the point on the moon's limb which first

begins to be eclipsed.

Let M, V, Fig. 87, be the centres of the moon and the shadow

respectively when the first external contact takes place at T. Let

P be the pole, then MP crosses the moon's limb at N, the most

northerly point on the moon's disc. We require to find the angle

Fia. 87.

23
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NMT, i.e. the angle measured anti-clockwise round the moon's limb

from the most northerly point to the point of contact. Draw VL
perpendicular to PM. We may with sufficient accuracy regard VML
as a plane triangle and ML =PV- PM = S — 8' where S' and S are

the declinations of V and ilf respectively, which are known because,

as we have already seen, the time of the first contact is known.

We have therefore

co^NMT = {h'-h)IVM,

whence /.NMT is determined. In like manner the point on the

moon's limb at which the obscuration finally departs is also

determined.

If r be the distance between the centres of the moon and the

shadow and if R be the radius of the shadow and r^ that of the

moon, then R^-ri, — r is the greatest portion in shade of any lunar

diameter and the ratio of this to the diameter or {R + r^ — r)/2r!,

is said to be the magnitude of the eclipse.

Ex. In a partial lunar eclipse the first contact with the shadow occurs at

an angle a from the most northerly point of the moon's limb toward the east,

and the last contact at an angle towards the west. Prove that the propor-

tion of the moon's diameter eclipsed is

4 (1 +«/'») {l+cosiC+W,
where s and m are the semi-diameters of the shadow and moon respectively,

the upper sign being taken when the moon's centre passes to the north of

that of the shadow and the lower sign when it passes to the south.

Let P be the pole, Ti, T2 the first and last points of contact of the moon

with the shadow of which the centre is V. Then since PTi and PT2 are

inclined at only a small angle and T^T^ is small we have i- TiVTi=\ (o+^)

or 180° - \ (a +(3), whence the shortest distance of the centres of the moon and

shadow is +{m+ s) aoa^{a+ 0). The greatest part of a diameter in shadow

is therefore

{m+s){l + coa\{a+p)],

and the ratio of this to 2m is the quantity required.

119. Calculation of an eclipse.

To illustrate the formulae we shall compute the total eclipse

of the moon which occurred on Feb. 8th, 1906.

The following are the data (see Nautical Almanac, 1906,

p. 483):

The epoch or Greenwich mean time of

conjunction of moon and centre

of shadow in E. A. is ... ... IQi" 49m ggs



9"
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For the first and last contacts with the shadow

I> = (Ps+Po - ro) 51/50 + n= 3510,

cos 0=418/3514 = 119, tan 0=8-35,

and accordingly the required times are

19'' 47"-l + 1" 50°'-2 = I?'' 56'=-9 and 2P SI'^S.

For the first and last moments of internal contact with the

shadow
D = {p,+Po- vq) 51/50 -r, = 1620,

cos = 418/1620 = -258, tan = 3-75,

and accordingly the required times are

19'' 47°'-l ± 49"-4 = 18" 57'°-7 and 20" 36°'-5.

To find the point on the moon's limb at which first contact

with the shadow takes place we have to find the declinations

of the moon and the shadow at 17'' 57°-0. This is 1'' 53"° before

the epoch, but the moon is moving southwards in declination at

the rate of 7' 42" per hour. Hence at the time of first contact the

declination of the moon must have been 14''6 greater than at the

epoch, and therefore it was 15° 2''9. In this time the sun would

move l'*5 north and the shadow therefore 1''5 south. Hence the

declination of the centre of the shadow at the time of first contact

must have been = 14° 56''9. Hence from p. 354 we have

cos NMX = - 360/3514 = - 0102,

and the point of first contact is 96° from the north point of

the moon towards the east.

To find the terrestrial station from which the eclipse can be

best seen we determine the latitude and longitude of the place on

the earth which will lie directly between the centres of the earth

and moon at the middle of the eclipse.

The middle of the eclipse is at G.M.T. 19'' 47'°1 and therefore

2'°'9 before the conjunction in e.a. with the centre of the shadow.

In 2'°-9 the moon moved l°'-7 in r.a. and — 0'-4 in declination, and

therefore the coordinates of the moon at the middle of the eclipse

were as follows

:

E.A. = 9" 28'°-3 - l'"^ = 9" 26"-6,

and decl. = 14° 48'-2 + 0'-4 = 14° 48'-6.

The line joining the centre of the earth to the centre of the moon
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will pierce the earth's surface at the point with geocentric latitude

14° 48'"6. To find the corresponding true latitude we must add

to this the angle of the vertical (§ 15), which is in this case

about 5'. Hence we obtain 14° 54' as the true latitude of the

station from which the eclipse can be best seen.

To find the longitude of the station we learn from the

ephemeris that on Feb. 8th the sidereal time at mean noon was

21^ lO""'?. The mean time interval of IQ*" 47™! between Greenwich

noon and the middle of the eclipse is 19'' SO^'S of sidereal time.

Hence the Greenwich sidereal time of the middle of the eclipse is

2ih io"-7 + 19" 50"'-3 = 17" l-^-O,

for of course we can omit 24". The right ascension of the moon

is to be the sidereal time at the station in question, i.e. 9" 26"''6.

Hence the west longitude of the station must be

17h
i-^-o - 9^ 26"'-6 = 7" 34""-4,

or in arc = 113°"6.

The magnitude of the eclipse is

{(P, +Po- ro) 51/50+n- D}/2r„,

where D in this case is to have its smallest value 418. Sub-

stituting for the other quantities as before we obtain 1'64 as the

magnitude of the eclipse.

Et Show from the following data that the eclipse
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120. Introductory.

If the orbit of the moon were in the plane of the ecliptic

there would be an eclipse of the sun at every new moon. As

however the orbit of the moon is inclined to the ecliptic at an

angle of about five degrees, it is plain that at the time of new

moon the moon will generally be too much above or below the

sun to make an eclipse possible. But when the moon is near a

node of its orbit about the time of new moon, then an eclipse of

the sun may be expected.

We have already mentioned in § 58 that 63, the moon's

ascending node, moves backwards along the ecliptic under the

influence of nutation. In about 18^ years, or more accurately

6798'3 days, ffi makes a complete circuit of the ecliptic, and on

account of this movement the sun, in its apparent motion, passes

through the ascending node of the moon's orbit at intervals of

346'62 days. We thus find that 19 complete revolutions of the

sun with respect to S are performed in 6585"8 days. The lunation

or average interval between two successive new moons is 29-5306

days, so that 223 lunations amount to 6585"3 days. The close

approximation in the duration of 223 lunations and 19 revolutions
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of the sun with respect to S3 is not a little remarkable. They

each differ from a period of 18 years and 11 days by no more

than half a day. This curious period, known as the Saros, is

of much significance in connection with solar eclipses.

Suppose that at a certain epoch the moon is new when the sun

is at £3 , and an eclipse of the sun therefore takes place. After

the lapse of a Saros the sun has performed just 19 revolutions

with regard to S and therefore the sun is again at £3. But we
also find that the moon is again new because an integral number
of lunations (223) are contained in the Saros, and consequently

the conditions under which an eclipse is produced will have

recurred. Of course the same would be true with regard to the

moon's descending node.

The Saros is related to lunar eclipses also. We have seen

in Chapter xvi. that there is an eclipse of the moon when at the

time of full moon the sun is sufficiently near one of the moon's

nodes. Thus we perceive that an eclipse of the moon will, after

the lapse of a Saros, be generally followed by another eclipse of

the moon, so that every eclipse of either kind will generally be

followed by another eclipse of the same kind after an interval of

about 18 years and 11 days.

For instance there were eclipses in 1890 on June 16 (sun),

Nov. 25 (moon), and Dec. 11 (sun), and accordingly in 1908 there

are eclipses on June 28 (sun), Dec. 7 (moon), and Dec. 22 (sun).

As another numerical fact connected with the motion of the

moon it should be noted that 235 lunations make 6939*69 days

while 19 years of 365"25 days amount to 6939'75 days. Thus we
have the cycle of Meton consisting of 19 years, which is nearly

identical with 235 lunations.

Hence we may generally affirm that 19 years after one new
moon we shall have another new moon, e.g. 1890 July 17 and

1909 July 17.

When an eclipse of the sun is on the point of commencing or

ending, the circular disc of the moon as projected on the celestial

sphiere from the position of the observer is in external contact

with the projected disc of the sun. It is evident that at this

moment a plane through the position of the observer and the

apparent point of contact, but which does not cut either of

the discs, must be a common tangent plane to the spherical

surfaces of the sun and moon. It is also obvious that the line
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joining the actual points of contact of this tangent plane with the

two spheres must pass through the position of the observer, for if

it did not do so the two bodies would not appear to him to be in

contact. The geometrical conditions involved in solar eclipses

are therefore analogous to those which we have already had to

consider in Chapter xiv. when discussing the transit of Venus.

When the partial phase of a solar eclipse is about to commence

or about to end the observer must therefore occupy a position on

the surface of that common tangent cone to the sun and moon

which has its vertex between the two bodies, as in the parallel

case of the lunar eclipse, § 115. This cone is known as the

penumbra, the other common tangent cone to the sun and moon

in which the vertex and the sun are on opposite sides of the

moon being termed the umbra. The observer who sees the

beginning or end of a total eclipse, or an annular eclipse, must

be situated on the umbra. In the former the moon will com-

pletely hide the disc of the sun. In the latter a margin of the

brilliant disc of the sun is visible round the dark circular form of

the moon.

121. On the angle subtended at the centre of the earth

by the centres of the sun and the moon at the coniinence-

ment of a solar eclipse.

Let the external common tangent TQ (Fig. 88) to the sun S
and moonilfQbe supposed to advance till it just touches the earth

Fig. 88.

E, at P, and let s, I, p be the radii of the sun, moon and earth

respectively, and ES = r, EM = r\ /.PEM=e and ^MES= x,

then we have from the figure

rcos{6 -\-x) + s = p (1),

r' cos6=p + l (2).
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Subtracting (1) divided by r from (2) divided by r' we have

2 sin ^ a; sin {6 + \x) = pjr' + Ijr' — p/r + sir,

but equation (2) shows that cos 6 is very small,, or that 6 is nearly

90°, and hence as x is small we have very nearly

sc = -!ro —'TTo + n + rQ.

The quantities in this expression are of course variable and

for their values from day to day reference must be made to the

epheraeris.

122. Elementary theory of solar eclipses.

Let Si, Ml (Fig. 89) be the centres of the sua and moon as

they would appear if the two bodies could be seen from the centre

of the earth about the time of a solar eclipse.

Fig. 89.

Let S2 and M,, and S^ and M^ represent the centres of the sun

and moon as similarly presented at two later stages.

To an observer in the position we have supposed and under

the circumstances represented in the figure the moon would

evidently pass quite clear of the sun and there would be no

eclipse. But the circumstances as witnessed from a point on the

earth's surface will generally be different from those here repre-

sented. We may suppose that the efifect of the sun's parallax

.(8"-80) is insensible, i.e. that the apparent place of the sun on the
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celestial sphere is, so far as solar eclipses are concerned, practically

the same when viewed from any point on the earth's surface as

when viewed from the earth's centre. The parallax of the moon

(3422") being nearly 389 times that of the sun causes the apparent

place of the moon to be shifted to an extent which may be nearly

double the lunar diameter. Thus, although as viewed from the

earth's centre the moon may pass clear of the sun, yet as viewed

from a point on the earth's surface parallax may interpose the

moon, wholly or partially, between the observer and the sun, and

thus produce a solar eclipse.

We have already seen (Chapter xii.) that the effect of parallax

is to depress the moon from the zenith of the observer towards

the horizon, and that the amount of this depression is proportional

to the sine of the zenith distance.

We can now consider whether at or about a given conjunction

in longitude of sun and moon, i.e. at or about a given new moon,

there will be an eclipse visible from anj' place on the earth.

If this is to be the case the parallax of the moon as seen from

such a place must project the moon towards the sun so that their

limbs overlap. Suppose that S^M^ is the shortest distance between

the centres of sun and moon at the conjunction in question as

seen from the earth's centre. Then an eclipse will be visible at

any place if, but only if, the parallax of the moon, as viewed from

that place, appears to thrust the moon towards the sun through a

distance exceeding A^B,^. It follows that A^B^ must be less than

the moon's horizontal parallax. If ^.2-82 be equal to or greater

than the horizontal parallax, then there will be no eclipse.

The critical point on the earth's surface from which the moon's

limb if visible would just appear to graze the sun is determined

as follows. The moon is depressed by parallax along the great

circle M^A^B^S^, but parallax at any place always depresses the

moon from the zenith of that place. It therefore follows that under

the circumstances supposed this zenith must also lie on the con-

tinuation of this great circle M^A^BA- -A-s the lower limb of the

moon appears to be on the horizon when its parallax is greatest (we

need not here consider any question of atmospheric refraction), it

follows that the zenith of the place must be distant from S^ by
90°+the apparent semi-diameter of the sun. Thus the point on the

celestial sphere, which is the zenith of the place of observation, is
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determined and the time is also known because it is that at which

the true angular distance of the centres of sun and moon is a

minimum. But the declination of the zenith is the latitude of the

, place and the right ascension of the zenith minus the Greenwich

sidereal time is the longitude of the place. In this way we
indicate geometrically the latitude and the longitude of the

terrestrial station at which the eclipse is just a grazing contact,

while at no other station is there any eclipse whatever.

If the eclipse be larger than the limiting case just considered,

then the track of the moon M^M^Ms must pass nearer to the sun.

If AiBi (Fig. 89) be equal to the horizontal parallax of the moon,

then just as before a point may be found on the continuation of

the great circle SiMi which is the zenith of the terrestrial station,

from which the two limbs are just brought into contact by parallax.

This is the point on the earth's surface at which the phase of

partial eclipse is just commencing as a graze of the limbs of sun

and moon, and in like manner a zenith is determined along SsM^

where the eclipse ends in a similar manner.

It is easy to see how other eclipse problems can be illustrated

in this manner. Suppose, for example, it be required to find the

terrestrial station at which the central phase of a total eclipse

shall take place when the sun has the greatest possible altitude.

We plot, as before, a series of corresponding geocentric positions

Si, Si, S3 of the sun, and M^, M^, M^ of the moon about the time of

conjunction where S^M^ is the minimum geocentric distance of the

two bodies. As the sun and moon are to have the greatest alti-

tude possible at the phase in question it is plain that the moon

must have the least possible parallax which will suffice to make

its centre appear to coincide with the centre of the sun. This

shows that the zenith of the place required must lie on the con-

tinuation of the great circle SiM^, and the position of the zenith Z
is defined by observing that the parallax is exactly S^M.^, so that

sin ZS2 = sin S^M^ -r sin ttq',

where sin 7r„' is the sine of the moon's horizontal parallax. Thus Z
is found, and the time being known, the required station on the

earth's surface becomes determined.

The line of central eclipse on the earth can also be constructed.

For if on the great circle joining Si,Mi& pair of corresponding

positions of sun and moon, a point Z^ be chosen so that

sin ZiSt, = sin S^M^ -r sin tto',
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then Zi will be the zenith of the place from which, when the sun

and moon are at S^ and M^ respectively, the eclipse will appear

central. By taking other pairs of corresponding positions any

number of points on the central line, and thus -the terrestrial line

of central eclipse can be constructed.

123. Closest approach of sun and moon near a node.

Let be the latitude of the moon M at the time of a new
moon which is supposed to occur when the moon is in the vicinity

of its node N. Let S be the position of the sun at the same

moment (Fig. 90).

Ss'

FiQ. 90.

Let M', S' be the positions to which the moon and sun have

advanced a little later. Let MM' = cc, then SS' = mx cos /, where

VI is the ratio of the sun's apparent velocity in longitude to the

moon's apparent velocity in longitude, and / is the inclination of

the moon's orbit to the ecliptic.

It will be approximately correct to regard the triangle MNS
as a plane triangle, and hence, if D denote M'S'

D^ = (/3 cot I - ma; cos If + (j8 cosec /- xf

— 2 cos / (/3 cot I — mx cos /) (;8 cosec / — x),

which may be written in the form

/3sin7
i)2 = (1 - 1m C0S2/+ 7n? cos^/)

]
x

-

y— 2mcos^/+m^cos'7

(1 -DlfCOS^'I

1 — 2m cos^/+ m? cos^I'

We observe that the first part of the expression for B^ can

never be negative, and therefore to obtain the smallest value of D'
we make

ySsin/
X =

I -2m cos'I + m' cos''
I

'
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for then the first term of if' vanishes. If therefore jSo represent
the smallest distance of sun and moon at that conjunction we have

a _ /S (1 — m) cos J
Po Y,

(1 — 2m cos^ /+ m^ cos^ J)*

and assuming an angle /' defined by the equation

tan /' = tan J/(l — m)
we see that

/8o = /3 cos /'.

If we substitute 3/40 for m and 1/1 ll for sin I we have approxi-

mately

j8o = jS cos 7 (1-0-0006),

the difference between /3o and ^cosl is thus shown to be so

small that it will be quite accurate enough in the calculation of

eclipses to assume that the latter, i.e. the perpendicular from S
on NM, is the shortest distance between the geocentric positions

of the sun and moon at the given conjunction.

If an eclipse is to take place then (§ 121) /S,, must not exceed

^0 —-^o + n+rQ.
Hence /3 < (tj-j' - ttq + r^ + r©) sec I

< (tto' - tto + rj + r©) (1 + ^ sin^ /).

The mean value of ttq' — tto + rj,+ r© is l°28'-6 and this mean
value may be used in the part of the expression multiplied by

J sin' T (= 1/246) which part thus becomes 0''4. As ttq may
always be taken for this purpose to be 0''1 we see that when

/8 is the geocentric latitude of the moon at conjunction, then

for a solar eclipse to be visible from some part of the earth's

surface about the time of this conjunction it is necessary that

/3 > TTo' + J-B + r© + 0'-3.

The greatest values of ttq', rj, and r© are respectively 61''5,

16''8, 16'"3. The sum of these quantities increased by 0''3 is

1° 34''9. If therefore the North or South geocentric latitude of

the moon at the time of new moon exceeds 1° 34'-9 there can be

no solar eclipse at that conjunction.

The expression superior ecliptic limit denotes the greatest

possible distance of the sun from a node at the time of new moon

if an eclipse is to take place. If w be the distance then

sin X = tan ^ cot / (i),

and the greatest value of x will be found when /3 has its largest
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value 1° 34'-9 and I its least value 4° 58'-8. We thus find 18°-5 as

the superior ecliptic limit.

The inferior ecliptic limit is found by taking the lowest possible

values of tt/, r-j and r© namely 53'-9, 14'-7, and 15'-8 respectively.

If the geocentric latitude of the moon at conjunction be less than

53'-9 + 14'-7 + 15'-8 + 0'-3 = 1° 24'-7 then an eclipse of the sun

from some terrestrial stations must take place about the time of

that conjunction. The maximum vahie of the inclination of the

moon's orbit to the ecliptic is 5° 18''6. If the values 1° 24''7 and

5° 18'-6 be substituted for /3 and / in the formula (i) we find

x = 15°"3. Thus we see that whenever at the time of new moon
the sun's longitude is within 15°"3 of the node then an eclipse

of the sun must take place at that conjunction. The inferior

ecliptic limit is therefore 15°"3.

Finally we see that if y8 < 1° 24'"7 then an eclipse must happen.

If /3 > 1° 34'9 then there cannot be an eclipse. If

1° 24'-7 < /3 < 1° 34'-9

then an eclipse may happen or it may not. To decide the

question we must calculate ttq' + r^ + r© + 0'"3 and there will be

an eclipse or not according as /8 is less or greater than the

quantity so found.

Ex. 1. If in Fig. 90, SM" is the perpendicular from S on MJf and S'M'

the shortest distance between the centres of the sun and moon, show that

approximately
M"M'= 'im^amI.

Ex. 2. If the inferior eohptic limits are ± e and if the satellite revolves

n times as fast as the siin, and its node regredes 6 every revolution the

satellite makes round its primary, prove that there cannot be fewer con-

secutive solar eclipses at one node than the integer next less than

2(m-l)c
nd+2n '

[Math. Trip.]

Let X be the diurnal movement of the sun in longitude, then nX is that

of the moon and — nXd/Zn that of the node. The duration of a lunation is

27r/(»-l)X and the time taken by the sun to pass from the distance e on

one side of the node to a distance e on the other is 2e/{\+ nX6l27T}, and the

number of entire lunations contained in this gives the required answer.

Ex. 3. At a certain conjunction of the sun and moon, the moon just

grazes the sun, but there is no sensible partial eclipse at any point of the

earth's surface. Prove that

(^; _ ^„+>.^+ )2^
(S^-8,)^(<i„.-d.)^cos5„.cos8,

^

(Sm - Sg)H(<im - ««)^ COS S„ cos Sj
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where r^. and r^ are the angular radii of the sun and moon, ttq and n^ their

parallaxes, 8, and S^ their declinations at the instant of conjunction in e.a.,

and d,, dro, 8j, bm their hourly motions in b.a. and declination.

[Coll. Exam. 1904]

Find the minimum distance between the centres which at the time t

is approximately the square root of

{Sm- 8»+ « (8„ - h,)f+ «2 (d„ - d,)2 cos S„ cos S,

.

Ex. 4. Prove that there are more solar eclipses than lunar eclipses on

the average, but that the moon's face is dimmed by the penumbra, though

not necessarily eclipsed, rather more frequently than the sun is eclipsed.

[Coll. Exam.]

Ex. 5. Prove that at a given terrestrial station lunar eclipses will be

more frequent than solar,

Ex. 6. The horizontal parallaxes and semi-diameters of the sun and

moon being known, find the maximum inclination of the moon's orbit to

the ecliptic which would ensure a solar eclipse every month.

[Coll. Exam.]

124. Calculation of the Besselian elements for a partial

eclipse of the stm.

The following method of computing the circumstances of an

eclipse of the sun at a given terrestrial station is that now

generally employed. It is due to Bessel*.

Through the centre of the earth a line is supposed to be

drawn parallel to the line joining the centres of the sun and

moon at any moment. We shall regard this as the axis of z and

the plane normal thereto through the earth's centre is known as

the fundamental plane. The positive side of the plane of z is

that on which the sun and moon are situated.

The plane of x is that which contains the axis of the earth and

the axis of a. The positive side of x is that which contains the

point of the equator which the earth's rotation is carrying from the

positive side of z to the negative side. This criterion can never

become ambiguous because the plane of z can never coincide with

the equator.

The plane of y is perpendicular to the planes of x and z and

the positive side of y is that which contains the earth's north pole.

This also cannot become ambiguous.

Let a, d be the right ascension and declination of the celestial

* See also Chauvenet's Practical and Spherical Astronomy.
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point D which is pointed at by the positive direction of the axis

of z. Then the r.a. and declination of the points on the celestial

sphere pointed to by +x, +y, +z respectively are 90° + a, 0;
180° + a, 90° — d; a, d. We hence obtain the cosines of the

angles between the point a, h and the three points just given

by the formula (i), p. 28, and thus derive the expressions

a; = A cos S sin (a — a)
1

2/ = A {sin 8 cos d — cos S sin d cos (a — a.)} I (i),

^ = A {sin 8 sin (i + cos S cos d cos (a — a)]]

where x, y, z are the coordinates with respect to the fundamental

axes of a body in the direction a, S and at the distance A.

Let «!, 8i and a^, Sa be the R.A. and decl. of the centres of the

sun and the moon respectively, then as the line joining these

points is parallel to z we must have the x coordinates of the sun

and moon equal and the y coordinates must also be equal, whence

Ai cos §1 sin (Oi — a) — Aj cos Sg sin {a^ — a) = 0,

Ai sin Si cos c? — Aj cos 8i sin d cos (oj — a)

— A2 sin S2 cos (^ + A2 cos Sj sin d cos {a^ — a) = 0.

From the first of these tan a is found. This gives two values for a

of which one exceeds the other by 180°. As, however, the value

of o must be very nearly the right ascension of the sun there can

be no doubt as to which value of a is to be chosen. This sub-

stituted in the second equation gives tan d, and here also there can

be no ambiguity as to which of the two values of d differing by
180° should be chosen, for d being a declination must lie between

+ 90° and - 90°.

As the point D, of which a, d are the coordinates, is so near the

centre of the sun and as at the time of an eclipse a^ and 82 are very

near to ffj and Si respectively, the following approximate solution

gives a and d with all needful accuracy.

If in the first equation we write the small angles a^ — a and

Ka — a instead of their sines, and if we make cos 81 = cos 83 and

A2 -H Ai = 1/391 we have

a = Ml + (ai - a2)/391.

In the second equation we make cos (ki — a) and cos {a^ — a) each

unity and thus substituting the small angles S — d and d — B' for

their sines we have
d = 8i + (Si-82)/391.
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The west hour angle of D from Greenwich at the Greenwich
sidereal time S- is ^ — a, this is the Besselian element fi, which
must first of all be calculated for each separate half hour during

the eclipse.

At any particular epoch the values of a, d substituted in (i)

give X and y for the values of a.^, \, Aj and a^, B^, Aj. These

quantities are of course variable on account of the movements of

the heavenly bodies in question. The eclipse, indeed, depends on

their relative changes. It is therefore necessary to compute the

values of x and y for several epochs about the time of conjunction

of the sun and moon. It is convenient to make a table showing

X and y for intervals of 10 minutes during the progress of each

solar eclipse, the unit of length in which these coordinates are

expressed being the earth's equatorial radius. We designate by

x', y" the rates at which x and y change per minute. All these

quantities will be found in the ephemeris and if T be the epoch

for which x and y are calculated then at the time T + t that" is at

t minutes after the epoch T, x and y will change into x + x't and

y + y't respectively.

Imagine the internal tangent cone or penum-

bra (Fig. 91) to be drawn to the sun 8 and the

moon M, then we have to find / the semi-angle

of the cone at its vertex and the radius I = PQ
of the section of this cone by the fundamental

plane.

Let R be the ratio of the actual distance of

the sun from the earth to its mean distance.

The distance of the moon is about jR/391 and

therefore at the time of a solar eclipse when the

earth, the sun and the moon are in a line

MS= PS-PM= R-R/SQl = 390E/391.

If a be the radius of the sun then a/401 is the

radius of the moon and as /is small

tan/= sin/= a{l + 1I4^01)IMS,

whence iJ tan/= a 391 x 402/(390 x 401).

From the choice of units it follows that a is the sine of the

angle subtended by the semi-diameter of the sun at its mean

B. A. 24

Fig. 91.
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distance and it is found that for the computation of eclipses

this angle should be 15' 59"*6. We hence obtain

Log Etan/= 7-6700.

The radius l = PQ = (PS- 08) tan/= R tan/- a. But we

have (R-MP)ta,nf=a + b, where b is the radius of the moon,

whence I — MP tan/+ h. If we take as is most convenient the

earth's equatorial radius as the unit of distance for the measure-

ment of I then TTo' being the moon's horizontal parallax, and 0'2725

the ratio of the moon's radius to the earth's equatorial radius we

have
I = 0-2725 + tan/cosec ir^.

For example. In the annular eclipse of March 5, 1905, we

have Log i2 = 9-9966, whence

Log tan/= 17-6700 - 99966 = 7-6739.

The moon's horizontal parallax on this occasion is 54' 9", and with

the value of /just found we obtain

I = -5728.

All these quantities, viz. x, y, x', y', Log tan/ Log sin d,

Log cos d, fi, are known as the Besselian elements, and it will be

observed that they relate to the whole earth rather than to particular

stations thereon.

The next part of the calculation shows how the Besselian

elements are to be applied to determine the circumstances of an

eclipse at any particular station.

125. Application of the Besselian elements to the calcu-

lation of an eclipse for a given station.

The critical phenomena of an eclipse are presented when the

observer is on the penumbra or the umbra. In the former case the

contact of the limbs of the sun and moon is external and the partial

eclipse is just beginning or ending. In the case of a total eclipse

the phase known as " totality " is just commencing or ending

when the observer is on the umbra. In the case of an annular

eclipse the first or second internal contact takes place when the

observer occupies this position. We shall now study the case of

the commencement or ending of an eclipse.

It has been already stated that fi is the westerly hour angle
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from Greenwich of the point D and therefore with respect to the

observer's station K which has an easterly longitude X, the west

hour angle of Z) is /i + X. The geocentric zenith of the observer

has therefore a right ascension a + jji + X and a declination
<f>',

where

<^' is the geocentric latitude of K. If therefore p be the distance of

K from the eai-th's centre and f, 97, ^ the coordinates of K with

respect to the fundamental axes, we have

I = p cos ^' sin (/i + X)
1

>; = jO {sin (/>' cos d — cos ^' sin d cos {fi + X)} I (i).

5^= /3 {sin 0' sin d + cos <^' cos d cos (/a + X)}J

The values of ^ and 17 and also of ^' and ?;' are to be calculated

for the particular locality and for the same epoch T which was used

in calculating x and y. Hence at the time T+ 1 where t is

expressed in minutes of mean time and is understood to be a

small quantity (as of course it will be if T be properly chosen)

the values of ^ and rj become ^ + ^'t and 7] + rj't respectively.

We have now to find ^' and t?', that is to say the rate per

minute at which f and 1; are changing about the time when the

eclipse is visible at the place in question.

^ and rj depend on p, (/>', X, d, p,. Of these the three first are

fixed for a given locality and hence the changes in f and t; at a

given place can only arise through changes of d or p, or both. As
to d it is very nearly the declination of the sun and this at most

only changes at the rate of a second of arc per minute. The

changes of ^ and r) which now concern us are due to the changes

in p. This is very nearly the west hour angle of the sun at

Greenwich and its variation in one minute of mean time is

about one minute of sidereal time = 15', or expressed in radians

1/229-2.

Differentiating the expressions for ^ and r) with regard to the

time and representing the differential coefficients by f' and t)', we
have

^' = p cos 4>' cos (p + X)/229-2)
,

(ii).

7;' = ^sinc?/229'2
'

The distance of the observer from the axis of the penumbra is

I — ^ tan/, which for brevity is represented by L. It is obvious

that a small change in ^, being multiplied as it is by the small

quantity tan /, is insensible, and consequently we have as the

24—2
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fundamental equation for the determination of the commencement

or ending of the partial eclipse

{(* -?) + «(*'- H')Y + [{y-v)-\-t (y' - 7?')}= = L\.. (iii).

The solution of this equation is effected as follows.

We make the substitutions

m sinM= x— ,

m cosM --

in which m, n, M, iV are four auxiliary quantities. This gives

tan M={x — ^)^{y-Tj) from which two values of M differing by

180° are determined. We choose that value which shall make

sinM have the same sign as a; — f, then cosM must have the same

sign as y — rj, and m will be the positive square root of

{x-^y + iy-vY.

In like manner iV is determined so that n shall be the positive

square root of

(x'-n' + (y'-v7-

Substituting in the equation (iv) we have

nH^ + ^mnt cos {M - ISf) + m^ = L\

where a minute of mean time is as already stated the unit of t.

We introduce another angle i/r such that

L sin ^fr = m sin (M — iV).

As ^ is given only by its sine there is a choice of two supple-

mental angles for i/r. We choose that one which lies between

+ 90° and — 90° so that cos yjr is positive then

nH'' + 2mnt cos (M-N)+ m" cos" (M - N)
= L'-w? + m^ cos^ {M-N) = L'' cos^ >|r,

whence nt = — in cos (M — N) + L cos yfr (v),

since cos yjr is positive as well as L and n, the upper sign gives <i

and the lower 4 and the Greenwich mean times of the commence-

ment and ending of the eclipse are T +ti and T +tz respectively.

If we denote by Ti and T^ the local mean times of the beginning

and ending we have

where X is the longitude of the observer.
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It remains to determine the points on the limb of the sun at

which the eclipse commences and ends.

In Fig. 92 the fundamental plane is

in the plane of the paper. G is the

centre of the circle NESW which is the

intersection of the penumbra with the

fundamental plane.

If NG is parallel to y then the genera-

tor of the penumbral cone through N
touches the sun's apparent disk in its

most northerly point, because the earth's

axis lies in the plane normal to x.

If GE be parallel to x then the generator through E touches

the sun's apparent disk in its most easterly point, and if S and

W are points on the circle diametrically opposite to N and E
they lie on the generators which touch the apparent disk of the

sun in its most southerly and westerly points respectively.

If the point ^, 17, f lies on the generator through P then

Z sin Q = (« + x't) - (^ + I'i),

ZcosQ = (y+2/7)-(»? + ^'«).

We therefore substitute in this the values of t corresponding

to the beginning and the end of the eclipse and we have

L smQ = X - ^ + t{x' - ^')

= m sinM+smN {—mcos{M — N) + Lcos^^)

— m cos iV sin (M — N) + L cos i|r sin N
= Z sim^ cos N+L cos yjr sin iV"

= + isin(iV"+ ^fr).

In like manner
L cos Q= + L cos (N + yjr).

If Qi be the value of Q at the beginning of the eclipse we take

the upper signs

sin Q, = sin (N- yjr + 180°),

cos Q, = cos (iV - l/r + 1 80°).

If Q2 be the value of Q at the end of the eclipse we use the

lower signs and
sin Q„ = sin (N + i/r),

cos Q2 = cos (iV + yjr),



374 ECLIPSES OF THE SUN [CH. XVII

whence Qi = JV- •f + 180°,

by which we learn the points of the solar disk which the moon

touches at the first and last moments of the eclipse.

To determine the circumstances of the eclipse with greater

accuracy the calculation should be repeated, using the values found

for Ti and T^ instead of T according to whether it is the beginning

or end of the eclipse that is sought.

EXERCISES ON CHAPTER XVII.

Ex. 1. Prove that at the instant of conjunction in right ascension the

ratio of the distance of the sun from the moon to the distance of the sun

from the earth is

{sin TTo'— sin ttq cos (d - S')}/sin tto',

where 8' and S are the declinations of the sun and the moon, n-j and jto' are

the horizontal parallaxes of the sun and the moon, and the square of sin ttq

is neglected.

Also prove thftt at the same instant, if a and d be the hourly change of

the right ascensions of the sun and the moon respectively, and A the hourly

change in the right ascension of the line from the centre of the earth

parallel to the line joining the moon's centre to the sun's centre, then

; ., sin TTo cos S ,. ,^

Sin no cos 6

[Coll. Exam.]

Ex. 2. The geocentric angular distance between the centres of the sun

and moon at the instant of conjunction in right ascension is d, and the

declination of the sun is S'. The rates of separation of the sun and moon

in right ascension and declination are d and S. Prove that, if the sun be

eclipsed, the time from conjunction to the middle of the geocentric eclipse

is approximately Sd/{8^+ a' costs').

Prove that the approximate difference of the right ascension of the point,

where the celestial sphere is intersected by the axis of the cone of shadow

during an eclipse of the sun, and the geocentric right ascension of the sun is

5 cos a sec 8' sin (g-g') 6^ (;og2 g ggc^ 8' sin 2 (a - a')
_

sin 1"
"'

2 sin 1" '

where g, a are respectively the geocentric right ascensions of the moon and

sun, 8 and 6' their declinations, b the ratio of the moon's geocentric distance

to the sun's geocentric distance. [Math. Trip.]

Ex. 3. Using five-figure logarithms, show that from the earliest begin-

ning, as seen from the earth's surface, of the solar eclipse of Aug. 8, 1896 to

the latest ending is an interval of about 4^ 49™, having given,
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itude .
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126. The investigation of an occultation.

It occasionally happens that the moon in the course of its

movement passes between the observer and a star. This phe-

nomenon is called an occultation. As the star may, for this

purpose, be regarded as a mathematical point, the extinction of

the star by the moon's advancing limb is usually an instantaneous

phenomenon, though occasionally, owing doubtless to the marginal

irregularities of the moon's limb, the phenomenon is not quite so

simple. The reappearance of the star when the moon has just

passed across it may also be observed, though in this case the

observer should be forewarned as to the precise point on the

moon's limb where the star will suddenly emerge.

It is easy to see the astronomical significance of the observation

of an occultation. The time of its occurrence depends both on the

movement of the moon and the position of the observer. The

place of the star being known with all desirable precision, an

accurate observation of the moment of the star's disappearance

gives a relation between the place of the moon and the position

of the observer. The observation may be available for an

accurate determination of the place of the moon or it may be

used for finding the longitude of the observer if compared with

the similar observation at another station of known longitude.

The following method of calculating the time at which the

disappearance or reappearance of an occulted star takes place is due

to Lagrange and Bessel.
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The symbols used are thus defined

:

A Apparent R.A. of the star.

B „ decl.

a Apparent R.A. of moon from earth's centre.

S „ decl. „ „ „

TTo' Equatorial horizontal parallax of moon.

r-B Angular semi-diameter of moon from earth's centre,

a' Apparent R.A. of moon from place of observer.

S' „ decl.

r^ Semi-diameter of moon from place of observer.

^ Sidereal time at place of observer.

^ Latitude of observer.

<^' Geocentric latitude of observer.

p Distance of observer from the earth's centre when the

earth's equatorial radius is taken as unity.

Let S, M, P be the star, the moon and the pole respectively

(Fig. 93) and let % be the angular distance from the star S to the

centre of the moon as they appear to the observer at any moment.

Let 6 be the spherical angle MSP subtended at *S by the pole

P and the centre of the moon. It is assumed that 6 is measured

from SP in the direction according with the usual convention for

position angles (p. 138). There will be no confusion between 6

and 360° — 6 if it be remembered that when a' > A then lies

between 0° and 180°, and when a' < A then we must take for 9

an angle between 180° and 360°.

Thus we may write the following formulae (§ 1)

:

sin 2 sin 6 = cos S' sin {A — a') \

sin 2 cos = sin S' cos D - cos B' sin D cos (A —a') >... (i).

cos S = sin S' sin D + cos 8' cos D cos (A — a') J

Consider three rectangular axes through the earth's centre

such that +« is towards the point on the equator whose R.A.

is 90°, +3/ is toward T, -1-^: is towards the north pole.

The sidereal time ^ is the hour angle of T. Hence for the

coordinates of the point of observation with respect to these axes

a; = jO cos 0' sin S-
; y = p cos ^' cos ^ ; ^ = p sin 0'.
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The coordinates of the moon referred to the same axes are

X = cos h sin a cosec tto' ; y = cos S cos a cosec tto' ;

^ = sin S cosec ttq'.

90°-D

Fig. 93.

If A be the ratio which the distance of the moon from the

observer bears to its distance from the centre of the earth then

A cosec 7r„' will be the distance of the moon from the place of

observation, and the projections of this distance on the three

axes respectively are

A cos 8' sin a' cosec TTo', A cos S' cos a' cosec tto', A sin 8' cosec tto';

whence we obtain

cos S sin a cosec ir^ = A cos S' sin a cosec ttq' + p cos ^' sin ^,

cos S cos a cosec tt/ = A cos 8' cos a! cosec tto' + p cos <^' cos ^,

sin 8 cosec ttq' = A sin 8' cosec ttq' + p sin <^',

which may be changed into

A cos 8' sin a' = cos 8 sin a — p cos ^' sin tto' sin ^,

A cos 8' cos a = cos 8 cos a — p cos <^' sin ttq' cos ^,

A sin 8' = sin 8 — p sin 0' sin ttq'.

Multiplying formulae (i) by A and eliminating a' and 8' by the

expressions just given we have

A sin 2 sin = — cos 8 sin {a— A)
\

+ p cos ^' sin TTo' sin (^— A)

A sin S cos ^ = sin 8 cos D — cos 8 sin D cos (a — ^)

— p sin TTo' [sin <^' cos i) — cos ^' sin i) cos (^ — J.)}

A cos 2 = sin 8 sinB + cos 8 cos i) cos (a — A)

— p sin TTo' {sin ^' sinD + cos <^' cos D cos (^ — J.)}

y-(ii).
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These formulae enable 2 and 6 to be determined and are

specially adapted for the study of occultations because at the be-

ginning or the end of an occultation the star is on the moon's

limb and we have S = r^'. As the sine of the moon's semi-diameter

varies inversely as its distance we must have A sinr/ = sinr*;,, and

therefore A sin S = sin r^. Introducing this into the equations (ii)

we obtain the following remarkable formulae, true at the moments

of disappearance or reappearance of an occulted star

sin rj sin ^ = — cos S sin (a — J.)

-f- p sin TTo' cos
<f>'

sin (^ — ^)

sin rj, cos ^ = sin 8 cosD — cos S sin I) cos (a — ^)

— p sin TTo' {sin 0' cos D — cos <p' sin B cos (^ — J.)}

It is plain that r^ and tto' are connected by the constant relation

sin TTo'/sin r^= radius of earth/radius of moon.

The ratio of the moon's radius to that of the earth is termed

k and is equal to 0'2725. Thus we have from (iii)

k sin ^ = — cos S sin (a - J.) cosec tto' -I- p cos <^'sin (^ — -4)
^

kcos9 = {sin S cos D — cos 8 sin D cos (a — -4)} cosec tto' k..(iv).

— p {sin
(f)'

cos D — cos (j)' sin D cos (^ — j4)} j

Finally squaring and adding we obtain the following funda-

mental equation, which contains the theory of the time of com-

mencement or ending of an occultation

P = {cos S sin (a - A) cosec 7r„' - p cos (/>' sin (^ -A)Y \

+ [{sin 8 cos D - cos 8 sin D cos {a- A)} cosec tto' [.. .(v).

—
p {sin ^' cos D — cos ^ sin J) cos (^ — A)Yf ]

If the coordinates of the observer be given, then the only

unknown in this equation is ^ the time. The solution of this

equation for ^ will therefore show the moment of the beginning or

the end of an occultation.

The equation for 5f is necessarily a transcendental equation, for

it has to represent all possible occultations in infinite time. To

apply it to any particular occultation we must use approximate

methods.

Let T be an assumed time very near the true time T+ t at

which a certain occultation takes place, t is thus a small quantity
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and the terms of the equation can be expanded in a rapidly

converging series of powers of t.

We shall make

.(vi).

;3 ->^

cos S sin (a — J. ) cosec ttq' =^ + p't '

{sin 8 cos D — cos S sin D cos {a — A)] cosec ttq =q-\- c[t

r cos ^' sin (^ — A) = u + u't

r {sin <!>' cos D — cos c^' sinD cos (^ — 4)} = ?; + i)'^

It is supposed that p, q, u, v are calculated for the time T and

p', q ,u', v' are terms involving t for which we may first assume the

approximate value zero.

The equation (v) then becomes

k'^^lp-u + ip- u') tY +[q-v+{q^ - v') t]\

A solutioa of this will give t, which we can then substitute in

p', ((, u, v' and thus by repeating the solution obtain a more

accurate value of t.

For a convenient solution of these equations we make

p — u = m sinM
; p —u' = n sin

.

q— V =m cos M; q' — v =n cos N)

where m, n, M, N are four auxiliary quantities

k^= (msmM + n sin Ntf + {mcosM + n cos Nty

= m' sin^ (M-N) + {m cos (M-N) + ntY-

We now introduce another auxiliary quantity yfr, such that

m sin (if — N) = k cos i/r.

Then k" sin'' i/r = {m cos (M-N) + ntf,

or nt = — m cos (M— If) + k sin yjr.

We assume that yjr is less than 180°, and then the upper sign

corresponds to the disappearance of the star behind the moon,

and the lower to its reappearance.

If m sin {M-N)>k,

then yfr is imaginary and there is no occultation. In drawing this

conclusion it would be proper to remember that further approxi-

mation may be necessary to decide whether this condition is truly

satisfied. To examine this we take for t its mean value

-m cos {M-N)/n,
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and insert this value in p', u', ((, v', so that hy repeating the cal-

culations we can find whether >^ is a real quantity.

If there is an occultation of a star and t' and t" the two

roots of the equation have been finally ascertained then the time

T+ t' of the star's disappearance and T + 1" of its reappearance

are determined.

How to find the points on the moon's limb at which the star dis-

appears and reappears. Substituting from (vi) in formulae (iv),

we have
k sin 6 = —p~p't + u + u't,

k cos 6 = q + q't — v — v't,

which from (vii) may be written

k sin 9 = — m sinM — 7it sin. N^
(vin).

k cos d=+m cos if+ nt cos JVj

Introducing the value for t into the first of these formulae,

A; sin ^ = — m sin (M — N) cosN ±ksinN sin i|f.

But m sin {M — N) — k cos y^,

whence, substituting and dividing by k,

sin ^ = — cos {N ± i/r).

In like manner from the second of the formulae (viii)

cos ^ = — sin {N ± yjr),

and consequently

tan e = cot (iV ± -v/r) = tan [90° - (N ± -f)}.

Hence 9 = w ISO" + 90° - (]\f ± yfr),

where w is any integer, and from this

sin 6 = cos (w 180°) cos (N ± -^y

But we have already seen

sin ^ = — cos (iV + t/t).

Hence cos (w 180°) = - 1 or w = l.

and finally = 270° -{N ± i|r).

Thus we obtain the position angle of the centre of the moon

from the star at the moment of disappearance or reappearance.

This shows the points on the limb at which the phenomena take

place.
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The angle subtended at the moon's centre by the star and the

pole at the moments of disappearance and reappearance is very

nearly
180° - = iV" + -f

- 90°.

Thus the necessary formulae for solving the problem of an

occultation have been obtained.

For convenient methods of conducting the calculations refer-

ence may be made to the ephemeris in which tables are given by

which the work is facilitated.

Ex. 1. At midnight on 27 Oct. 1909 the dedination of the moon is

4° 36' 46"'7 and the k.a. and declination of the moon are then increasing in

every 10™ by 23' '0 and 164" respectively. Show that a star in conjunction

in R.A. with the moon at midnight cannot be occulted at or about the time

of this conjunction if the star's declination is less than 3° 10''4, it being

given that the sum of the moon's semi-diameter and horizontal parallax is

78' -0.

The movement of the moon in h.a. in 10™ is 344". The inchnation of the

moon's movement to the hour circle is therefore

tan -1 (.344/164) = 64° 30'.

Hence the sine of the difference between the moon's declination and the

star's at the time of conjunction must not exceed

sin 78' -0 X cosec (64° 30')= -0251 = sin 86'-4.

Ex. 2. If the inclination of the moon's orbit to the ecliptic be 5° 20' 6",

show that the moon will at some time or other occult any star whose latitude

north or south is less than 6° 38' 24". [Coll. Exam.]

Ex. 3. Show that a star in the ecliptic will be occulted by the moon
at some station on the earth between 17 and 22 times at each passage of a

node of the moon's orbit through the star. Assume semi-diameter of moon

between 16' 46" and 14' 44", horizontal parallax of moon between 61' 18" and
53' 58", inclination of orbit to ecliptic between 5° 19' and 4° 57'.

[Math. Trip.]

Ex. 4. On Feb. 29, 1884, the moon occulted Venus. It was stated in

the Times that Venus would be on the meridian at 2.30 p.m., the moon being

then three days old, and that the occultation would last about an hour and

a quarter. Find roughly when it commenced, and show that the statement

as to the duration of occultation is not inconsistent with the known angular

diameter of the moon. [Math. Trip.]
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127. Phenomena of rising and setting.

Let R (Fig. 94) be the sun at sunrise, ^ the first point of

Libra, where ERN is the horizon, R:Oz the ecliptic, £"£!: the

equator. As E is the easterly point, the equator produced for

P

Fig. 94.
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90° beyond E in the direction from £^ to E will reach the meri-

dian, and produced for a further distance equal to ^, the sidereal

time will reach T the first point of Aries. Hence we have

Ei-= 90° - ^,

The longitude of the sun is X and iJ ii= 1 80° — X, because X is

measured from T in the direction of the arrow head, a is the

azimuth of the rising sun measured from N, the north point of the

horizon in the usual direction by east and south. P is the pole

and FN = ^, the altitude of the pole above the horizon. The

angle at E between the equator and the horizon is equal to

90° — ^ as that is the distance from the zenith to the pole,

180° — n is the inclination of the ecliptic to the horizon (§ 10),

and a> is the obliquity of the ecliptic.

Many questions that can be proposed with regard to the rising

and setting of the sun can be solved by the triangle ER:Oz. If

we assume that <\) and w are given, and that one of the other

elements of the triangle is known, the remaining elements can

be determined.

To find the time of sunrise or sunset when the longitude X is

given we deduce from the formula (6), p. 3,

sin ^ cos ft) + cos ^ cot X + sin co tan = (i).

This equation may be put into the form sin (^ + -4 ) = sin 5^

whence ^ = B - A orS- = 180° — B— A one of which corresponds

to the rising and the other to the setting.

If there be a small change AX in the sun's longitude X there

will be a corresponding change A^ in the sidereal time of sunrise

or sunset. The relation between AX and A^ is obtained by dif-

ferentiating this equation while regarding to and ^ as constant,,

we thus find

sin X (sin X cos ^ cos &> — cos X sin ^) A^ = cos ^AX,

but from the triangle ER^t we have at once

sin a = sin X cos ^ cos to — cos X sin &,

whence A9r = cos ^ cosec X cosec aAX,

also cos ^ cosec X = sin n sec ^
from the triangle ER:Ci: and

cos a = sin S sec ^
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from the triangle PRN^, whence

cosec a = cos <j)/(cos^ B — sin"
(f>)^;

hence finally

A^ = sin9i(cos2S-sin2^)"4AA, (ii).

This equation gives the daily retardation in the hour of rising

of the sun and it will also explain certain phenomena connected

with the rising of the moon. We may for the present purpose

suppose the orbit of the moon to be coincident with the plane

of the ecliptic, the inclination being only about 5°. The pole of

the ecliptic describes a small circle round P with a radius of 23°"5,

and when it comes nearest to the zenith n has its lowest value.

If the moon be in Aries then cos S = 1 and the denominator of

the expression for A^/'A\ is greatest. Thus for a double reason

the daily retardation in the hour of rising of the moon is small.

If at the same time the sun is in Libra the moon will then be

full, and consequently near the autumnal equinox the full moon
rises for several consecutive nights nearly at the same time. This

is the phenomenon known as the harvest moon.

If it be desired to find a, the azimuth of the point at which

a celestial body rises or sets, we have the equations

sin n sin a = cos a cos
(f>
+ sin a> sin

<f)
sin B-,

sin n cos a= sin oj cos ^,

from which tan a can be found when ^ is known.

Ex. 1. Prove that at a place on the Arctic circle 18'' is the sidereal

time of sunrise for one half the year, and of sunset for the other half ; and

that the azimuth of the point of the horizon where the sun rises, measured

from the nearest poiat of the meridian, is throughout the year either 90° ~ I

or 270° ~ I, where I is the sun's longitude. [Math. Trip.]

Once a day the pole of the ecliptic passes through the zenith. The sun

must then be rising or setting according as it is E. or W. of the meridian,

but as T is at E. point of horizon the sidereal time is 18''.

Ex. 2. Prove that at a place on the Arctic circle the daily displacement

of the point of sunset is equal to the sun's change in longitude during the

same interval. [Math. Trip.]

Ex. 3. Show that near the vernal equinox the sidereal time of sunrise

is decreasing at places within the Arctic circle and increasing at other places

within the northern hemisphere. [Math. Trip.]

In the general equation (i) we make \ small and the equation becomes

cos5+ X (sui5 cos (B + sin a> tan 0) = O.

B. A. 25
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But at sunrise about the time of the vernal equinox we have 5=270° — a;,

where a; is very small, whence

a; cos ^= - X sin (90° -lo-cj)).

Hence x is positive if <^>90° - a.

Ex. 4. Pind the latitude by observing the angular distance of the extreme

points of the horizon on which the sun appears at rising in the course of a

year : and if a, are the distances of those points from the point in which

the sun rises when its declination is 8, prove that, to being the obliquity of

the echptic,

sin 8=sin 0. "°f(°
+ ^) . [Coll. Exam.]

If Ui and 02 be the extreme azimuths at rising measured from the north

point then tana,=?«, tana2= —m, where

m= (cot^ at cos^ (j> — sin^ ^) ^

.

If a be the azimuth of the sunrise at decl. S, then a= cos ~ ^ (sin 8 sec (ji),

sini(a+j3)_sina+ sin0_sin (ai- a) + sin (02-0)

sin^(a-0) am{a — fi) sin(a,— aj)

m cos a— sina+OT cosa+sin a 1- -„ . .= ^ vl+m2=smScosec<B.
2m

Ex. 5. Prove that in the latitude of Cambridge, 52° 13', the minimum
retardation of the sidereal time of sunrise from day to day is about 96 sec,

having given that the obliquity of the ecliptic is 23° 27', and the daily

increase of the sun's b.a. at the vernal equinox is 3™ 38'.

[Math. Trip.]

In general

AS— sin n (cos^ 8— sin^ i^)" * AX.

Eor the minimum retardation « = 90° — <^ — w, and 8= 0, so that

a5= cos {a+(j>) sec ^AX.

• We are given cos m. AX= 3" 38=, whence AS= 96"'=«.

Ex. 6. Show that in latitude 45° the difference between the times from

sunrise to apparent noon and from apparent noon to sunset is

J^ tan 8 sec 8 (sec 28)* cot (360° 7'/365),

where D is the length of the day, 8 the sun's declination and T the number

of days since the vernal equinox, the earth's orbit being supposed circular.

Ex. 7. Show that the time taken by the sun's disc to rise above the

horizon is greatest at the solstices and least at the equinoxes.

[Coll. Exam.]

Let z be the zenith distance, then as usual if h is the hour angle,

cos z

=

sin (^ sin 8 + cos (^ cos 8 cos A.

Differentiating

sin z . Az=cos
(f>

cos 8 sin h . Ah,

and when z=90°,
AA= A2sec<^seo8cosec A (i).



§ 127] PROBLEMS INVOLVING SUN OR MOON 387

If n bo the number of seconds of time in dh and D be the sun's diameter

in seconds of arc, we obtain by eUminating h from (1),

m=Jj.D (cos2(^-sin2Sr4,

and n is greatest when sin 8 is greatest.

Ex. 8. When the sun's declination is 8, it rises at a point distant a and

from the extreme points of rising. Show that

tan Ja : tan \fi : : tan -^ (cd + 8) : tan J (m - 8).

[Math. Trip. I. 1900.]

Ex. 9. At a certain place in latitude <j) the sun is observed on one day

to rise h hours before noon, and on the next day to rise m minutes later.

The sun's declination on the first day is 8. Prove that the distance in

minutes of arc between the two points of the horizon at which it rises is

15ot cos^ 8 cosec 0. [Coll. Exam.]

Ex. 10. An observer in latitude 45° climbs an isolated hill whose height

is I In of a nautical mile. Show that he will see a star which rises in the

N.E. point approximately 8»/{6/nn) minutes earlier than if he had remained

below. [Math. Trip. I.]

We find as in Ex. 7 (i) A0=cos
(f>

cos 8 sin hAh,

but now cos8sinA=l /^2, cos <^= 1 /^2,

whence Ak= 2Az.

A point on the horizon and the centre of the earth subtend at the

observer an angle 90° — Az where Az known as the dip of the horizon

= {2 height/radius of earth}^, and thus the required result easily follows.

Ex. 11. The setting sun slopes down to the horizon at an angle 6. Prove

that in latitude <^, at the time of year when the declination of the sun is 8,

a mountain whose height is 1/n of the earth's radius will catch the sun's

rays in the morning 12^2 cosec ^ sec S/jrVra hours before the sun rises on

the plain at its base ; and estimate to the nearest minute the value of this

expression at the summer solstice for a mountain three miles high in

latitude 45°. [Math. Trip. I.]

Ex. 12. Show that in a place of latitude
(f)

the sunrise at the equinoxes

will be visible at the top of a mountain h feet high, about 4v'Asec^ seconds

before being seen at the foot of the mountain. [Coll. Exam.]

Ex. 13. At a certain place the moon rises on two consecutive days at

the same sidereal time. Show that the place of observation lies within five

degrees of the Arctic or Antarctic circles. [CoU. Exam.]

When the plane of the moon's orbit coincides with the horizon, the

sidereal time of rising on consecutive days will be the same.

Ex. 14. Show that once a month in places about the latitude of London

the moon sets for two or three days with the least retardation in the hour

25—3
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of setting, and find approximately the age of the moon and the time of

day when the phenomenon occiirs in June.

The moon must be in Libra and in June the sun is in Cancer. The moon

will then be nearest its first quarter and will set about midnight.

Ex. 15. Taking the horizontal refraction as 35' and the sun's semi-

diameter as 16', and defining the beginning and end of daylight as the

moments when the sun's upper limb appears on the horizon, show that the

increase in the duration of daylight, taking account of the refraction and

semi-diameter, varies from 6™ '8 sec (p at the equinoxes to

6" '8 {sec
{(f)+ a) sec (cj) — o})}^ at the solstices.

[Coll. Exam. 1902.]

By elimination of h the equation (i) of Ex. 7 may be written

Ah

=

{sec (<^ - S) sec
{(f>+ S)}* Az.

As= 35'+ 16' or in time 3™
'4, and the total gain of daylight at rising and

setting is 2Ah.

Ex. 19. Show that near the equator the phenomenon known as the

harvest moon will not be so marked as in the temperate regions, but that

it will recur at each equinox. [Math. Trip. 1902.]

At the equator n=90°-oi is the least value of n and it is the same at

each equinox, and the equation

a5=cos(oAX
gives the least retardation.

Ex. 20. Two stars used to come simultaneously to the horizon of a place

in geocentric latitude cot- ^ (^3 . sin m) at 0^ sidereal time. When the pre-

cession has reached 60°, the same stars will come simultaneously to the

horizon of a place whose latitude is Q)-l-oot~i(2tanti)) at 6'' sidereal time,

where to is the obliquity of the ecliptic. [Coll. Exam.]

If a, 8 be the r.a. and declination of one of the stars, we have

tan 8= — cot (lat.) cos a= — ^Z sin a> cos a.

In the general formulae of § 57 we make £=60°, and to= a so that

sin S'= - ^ sin to cos w cos S (sin a+^3 cos to cos a),

cos 6' sin a'= ^ cos S (1 -H sin^ to) (sin a +JZ cos to cos a),

whence sin fi'/cos 8* sin a'= - sin <» cos (b/( 1 -t- sin^ <o),

but for a star a', 8' rising at &^ at latitude ^' we have

sin 8' sin 0'+ cos 8' cos tfi sin a'= 0,

whence tan <^'= (l + sin2 (a)/sin(B cos 0) and 0'= a)+cot-i(2 tanoi).

128. To find the mean time of rising or setting of the sun.

From the formula

cos z=sm<^ sin 8 + cos ^ cos S cos h (i)

we easily show that tan \h is equal to

± {sin i («
-t- (fy+h) sin^{z-4> - h)sQc{{z + ^-8)sec|(0-^-1-S)}*
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If (^ be the latitude of the observer, and S the declination of

any celestial body without appreciable parallax, then h is the hour

angle at its rising or setting if we take the horizontal refraction

to be 35' and z = 90° 35'.

If the object whose rising we are considering had been a star

then the time it would require to reach the meridian would be

h sidereal hours. In the case of the sun the actual movement
through the heavens is slower than the star on account of the

apparent annual motion of the sun. . Of course the amount varies

according to circumstances, but on the average the motion of the

sun in hour angle relatively to the motion of a star in hour angle

is in the proportion of mean solar time to sidereal time. In the

case now before us we may always assume with sufficient accuracy

that the actual motion of the sun is the same as its mean
motion, and consequently the sun reaches the meridian h hours

of mean solar time after rising.

At actual noon the apparent time is 12 hours and the mean

time is 12*^ + e, where e is the equation of time. The sunrise

took place h mean hours previously, and accordingly the civil

time of sunrise is

12" + e - h.

The hour of sunrise being thus known within a minute or two,

the declination of the sun at the time can be obtained accurately,

and with this corrected declination the computation of h can be

repeated and a corrected time of rising is thus ascertained. It is,

however, needless to take this trouble since the calculation is

affected by the horizontal refraction, the amount of which is

quite uncertain. We have taken it as 35', but it may differ

from this by at least 1'.

To obtain the mean time of sunset we observe that at ap-

parent noon the correct mean clock shows a time e, and the

ensuing sunset will take place h hours of mean solar time later,

whence the time of sunset is

e + h.

As an example we shall find the time of sunrise and sunset

at Greenwich (Lat. 51° 29') on 6 June 1908. We have from the

ephemeris S = 22° 39', whence from (i) we compute h = 122° 49',

or in time 8"^ ll^'S. This is the hour angle of the sun when
apparently on the horizon. The equation of time is — 1"'6 and
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by substitution in 12'' + e — A and A + e, we see that the times of

sunrise and sunset are respectively 3'' 47° a.m. and 8^ 10" p.m.

About the time of the solstice the declination of the sun does

not vary more than about 1' from its mean value in a week.

Hence for that week h will be nearly constant and any variations

in the mean time of rising and setting can be attributed only to

changes in the equation of time. A small effect arising from this

is noticeable at the winter solstice. The equation of time is then

increasing, so that if e be the equation of time at the solstice and

ei what it becomes a few days later we have

12 + 6i-A>12 + 6-A,

and therefore the sun rises later, according to mean time, a few

days after the solstice than it did at the solstice. Also if e^ be

the equation of time a few days before the solstice, then

6 + A- > 62 + A,

so that a few days before the winter solstice the sun sets earlier

than it does at the solstice.

For example on 1908 Dec. 14 the sun sets at Greenwich at

3" 49°, and on 1908 Dec. 22 (solstice) it sets at 3" 52". On the

other hand the sun rises on the solstice at 8'' 6" and a week later

it rises at 8'' 8".

129. Rising and setting of the moon.

In considering the rising and setting of the moon we have to

take the parallax of the moon into account. Parallax tends to

depress the moon from the zenith distance through the average

distance of 57'. Hence when the moon appears to be on the horizon

its true zenith distance measured from the earth's centre is 90° — 57'.

It is, however, apparently raised 35' by refraction, so that in for-

mula (i) § 128 we are to take ^ = 90" - 57' + 35' = 89° 38'.

If the place of the moon were known at the time of rising we

could find h by the formula already given. The sidereal time at

the moment of rising would therefore be a — A, where a is the

moon's right ascension. The mean time would then have to be

calculated from the sidereal time.

But of course this process as here described is impracticable,

for the place of the moon cannot be determined until the hour of

rising is known. The problem must therefore be solved by ap-

proximation.
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To illustrate the method we shall compute the time of moon-

rise at Greenwich on 10th Feb. 1894.

For the first approximation it will suffice to take for the place

of the moon a = O'' 55"; S= + 6° 17' as given in the ephemeris

at noon on the day in question. Introducing this value of S

into (i) we find h = &^ 29°". At rising, therefore, the hour angle

of the moon was about 6^ 29", and as its r.a. is ahout O*" 55" it

follows that the sidereal time at the time of rising was about

18" 26". The sidereal time at mean noon on Feb. 10th was 21"

22" "2. Hence it follows that the rising of the moon must have

been about 3 hours before noon, i.e. about 9 a.m., that is, in astro-

nomical language, 21 hours on Feb. 9th.

We therefore repeat the calculations, taking for the R.A. and

decl. of the moon their values, for Feb. 9th at 21 hours, viz.

a=0" 49"'4; S=.5°31', and we find that the accurate value

of the moon's hour angle at rising was 6" 25" "5. Subtracting

this from the R.A. 0" 49" '4 we see that the sidereal time of rising

was 18" 23" '9. As the sidereal time at mean noon on the 10th is

21" 22" "2, it follows that the interval between rising and noon

is 2" 58" '3 of sidereal time. Transformed into solar time this

becomes 2" 57""8, and consequently the moon rises on the

morning of 10th Feb. 1894 at 9" 2" a.m.

To find the mean time at which the moon sets on the day in

question we can dispense with part of the work when the time of

rising has been found. The hour angle of the moon at rising on

Feb. 10th 1894 we have seen to be 6" 2.5", and if we neglected

the motion of the moon this would also be the hour angle of

setting. The setting would then be 12" 50" after the rising.

But as the moon's motion would carry it over about half-an-

hour this period would be 13" 20". As the rising took place

at 9" 2" a.m. the setting would therefore be between 10 p.m. and

11 p.m. We may therefore assume for the R.A. and the S of

the moon their tabular values for 10.30 p.m., viz. : a = 1" 15"
'8;

g = 8° 57'. The hour angle at setting is then calculated by (i) to

be 6" 43"-2, and the r.a. of the moon being then 1" 15"-8, the

sidereal time at setting is 7" 59" "0. Increasing this by 24" and

then subtracting the sidereal time at mean noon 21" 22" '2, we

have as the sidereal interval after mean noon at which the moon

sets 10" 36"'8, and consequently the mean time is 10" 35" p.m.
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For the practical computations of the hour of moonrise at a

particular place as required in an almanac, it is an assistance to

form a table of single entry in which for the given latitude the

hour angle of the moon, at rising or setting, is shown for each

degree of lunar declination.

130. Twiliglit.

The twilight after sunset and before sunrise has been shown to

be an indirect sunlight which we

receive by reflection of sunbeams

from particles suspended in the

atmosphere. When the sun is not

more than 18° below the horizon

its beams illumine floating particles

which are still above the horizon,

and each of these becomes a source

of light. Thus after sunset there

is still some light until the sun is

18° below the horizon, and in like

manner the approach of day is

announced by the twilight which

begins when the sun comes within

18° of the horizon.

To find X, the duration of twilight, we shall investigate in

general the time that elapses at a given latitude <^ between the

moment when the sun S (Fig. 9.5) is at the zenith distance z,

and the moment of its arrival on the horizon at 8'. Let 6 be

the hour angle of the sun when on the horizon, then 6 + xis its

hour angle when twilight begins, and

cos z = sin
(f>

sin 8 + cos
<f)

cos B cos {6 + x),

= sin (^ sin h + cos <^ cos 8 cos 6,

adding and subtracting

cos ^ — 2 sin ^ sin 8 = 2 cos <^ cos S cos {6 + ^x) cos \x,

— cos z = ^ cos <^ cos S sin {6 + \x) sin ^x,

multiplying the first by sin^a; and the second by cos^a;, then

squaring and adding, we eliminate 6 and obtain

(cos 3 — 2 sin sin Sf sin^ ^x + cos^^ cos^ ^x
= cos^ cos^ S sin^ x ... (i).
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This equation gives ob when S is known, and for the problem

of the duration of twilight we are to make z = 108°. Of course

S is known when the time of year is known.

To find the time of year at which the twilight is stationary

we express that dxjdB = 0, and thus obtain

sin^ ^x = ^sec'' <^ (2 — sin ^ cosec S cos z),

cos^ ^x = ^sin sec"
(f)
cosec S (cos z — 2 sin ^ sin 8),

which by substitution in (i) gives after a little reduction

cos z = 2 sin 8 sin ^/(sin" S + sin" 4>),

or sin 8/sin <^ = tan (4^5° — ^z),

and making z = 108°

sin S = — tan 9° sin (j>.

When the latitude is known 8 can be calculated fi'om this equation

and the time of year is thus found.

Ex. 1. Supposing that twilight begins or ends when the sun is 18° below

the horizon, show that, so long as the sun's declination is less than 18°, all

places have a day of more than 12 hours, including the twilights.

Ex. 2. Show that at a place in latitude
(f>

the shortest duration of twi-

light when expressed in hours is

f-g sin~* (sin 9° sec ({>),

where sin "^ (sin 9° sec (jj) is expressed in degrees.

Ex. 3. Assuming that the sun moves uniformly in the ecliptic in 365 days,

show that in latitude <j) the number of nights in which there is twilight all

night is the integer next greater than

U cos"' {cos (<^4-18°)/sin <a},

where 18° is the greatest angular distance below the horizon for twilight to be

possible and a is the obliquity of the ecliptic. [Coll. Exam.]

Ex. 4. If the length of the day be defined to be the period during which

the sun is within 90°-|-a° of the zenith, show that at a station on the equator

the day is 12-|-y5 asec S mean solar hours, if 8 be the declination of the sun,

and that if sin a sin 8+ sin (^=0 the lengths of two consecutive days will be

equal at a station in latitude cf).

Ex. 5. Show that no two latitudes have the same length of day except

at the equinoxes ; but if daylight be considered to begin and terminate when

the sun is B degrees below the horizon, there are two latitudes which have

the same duration of daylight so long as the sun's declination is numerically

less than 6 degrees. [Math. Trip.]
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131. The sun-dial.

We may suppose that the place of the sun oa the celestial

sphere does not change appreciably in 24 hours, and a plane

through the earth's axis and the sun will intersect the terrestrial

equator in two points which move uniformly round the equator

in consequence of the sun's apparent diurnal rotation.

In like manner we see that if a post were fixed perpendicularly

into the earth at the north pole so as to be coincident with the

earth's axis its shadow would move uniformly round the horizon,

so that the position of the sun, and therefore the apparent time

would be indicated by the point in which the shadow crossed

a uniformly graduated circle with its centre in the axis of the

post, and its plane perpendicular to the earth's axis. Thus we
have the conception of the sun-dial.

As the dimensions of the earth are so inconsiderable in com-

parison to the distance of the sun, we may say that, if at any

point of the earth's surface a post, or style as it is called, be fixed

parallel to the earth's axis, the shadow of the style cast by the sun

in its daily motion on a plane perpendicular to the style will move
round uniformly, and by suitable graduation will show the apparent

time. The hour lines on the dial are to be drawn at equal intervals

of 15°. The inclination of the style to the horizon equals the lati-

tude, and the inclination of the dial to the horizon is the colatitude.

Thus we have what is known as the equatorial sun-dial.

While the style is always parallel to the earth's axis the plane

of the dial may be arranged in

different positions, horizontal, ver-

tical, or otherwise. The gradua-

tion of the dial is uniform only in

the equatorial sun-dial, and we
have now to consider the gradua-

tion of the dial when otherwise

placed so that the shadow of the

style shall indicate the apparent

time.

Suppose that the pole of the

plane of the dial is at the point

of the celestial sphere of which the north polar distance is p
and west hour angle k.
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Let P (Fig. 96) be the north celestial pole, PZ the meridian,

PP' the hour circle containing the sun, SH the plane of the dial.

The point 8 is called the suhstyle and PS = 90° — p is the height

of the style. The hour line corresponding to the hour circle PP'
is given by H where 03"= 90°.

To graduate the dial we require to know the arc SH=d
corresponding to each solar hour angle h. Produce HP to P' so

that HP' = 90°. P' must be a right angle, because OH =90° and

consequently

tan 6 = cosp tan (h—k) (i).

As p and k are known this equation gives the value of ^ =SH
for each value of h.

To mark the hour lines on any particular instrument by

observation we proceed as follows. It is assumed that there is

an ordinary graduation from 0° to 360° on the dial, the centre of

graduation being the point in which the style meets the plane of

the dial and the origin from which the angles are measured being

the line through this point and S the substyle. It is also assumed

that p is a known angle. When the sun has a known hour

angle h,,, let the observed position of the shadow be 0^, and we

have
tan 01 = cos p tan (hi— k) (ii).

We thus find k and consequently for each value of h we can

compute from (i) the corresponding value of 6. Thus the sun-

dial will show at any moment the hour angle of the sun or the

apparent time, and by application of the equation of time the

mean time is ascertained.

The form of sun-dial most usually seen is the so-called hori-

zontal sun-dial in which, as the dial is to be horizontal, must

coincide with the zenith Z; we thus have k = 0, and

p = PZ = 90° -
(j>,

where ^ is the latitude. Thus the equation (i) becomes

tan = sin(j)ts.nh.

The last hour lines that need be drawn on the dial are those

corresponding to the case where the sun reaches the horizon when

its declination is greatest. In this case if h' be the hour angle

cos (180 - h') = tan <^ tan (23° 28'),
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Fig. 97.

when the value of h' thus obtained is substituted for h in (i) we

obtain 6.

An extreme type of sun-dialf is that in which the dial is

parallel to the meridian, and the style is

parallel to the earth's axis but not in the

plane of the dial.

Let PZP' (Fig. 97) be the dial parallel

to the plane of the meridian, AB is a thin

rectangle standing perpendicular to the

plane of the paper, and of which the upper

edge AB, parallel to the terrestrial axis

PP', is the style. The sun in the diurnal

motion may be supposed to be carried by

a plane rotating uniformly round AB, and hence the shadow A'B'

of the edge AB will always be parallel to AB and at, let us say,

the distance x. When the sun is in the meridian x is infinite.

When the sun's hour angle is &" then x = 0. In general if d be

the height of the style above the dial

x = d cot h,

where h is the sun's hour angle. From this equation the value of

X for each value of h can be found.

Ex. 1. Show how to construct a sun-dial of which the dial shall be

vertical and facing due south, and in which the

style is directed to the south pole.

This may be obtained as a particular case of

the general theory by making ^=0, p= in equa-

tion (i) or directly as follows.

Let S (Fig. 98) be the point on the horizon

due south, N the nadir, P' the south pole, P'H
the hour circle containing the sun, then from

the triangle NP'H we have

tanNH= cos <^ tan h.

Ex. 2. Prove that any sun-dial can be graduated

by the following rule : Let To be the time at which the shadow of the style

was projected normally on the disc, <u the n.p.d. on the celestial sphere of

the normal to the disc, then the mark for time T is inclined to the mark for

time 2o at an angle

tan - 1 {cos <a tan (r- Tq)] .

[Coll. Exam.]

t An example of this kind of sun-dial occurs at Wimborne Minster.



§§ 131-132] PROBLEMS INVOLVING SUN OR MOON 397

Ex. 3. The lengths of the shadows of a vertical rod of unit length aro

observed when the sun is on the meridian on two days separated by a quarter

of a year, and are found to be x, .if. Supposing the sun to move uniformly

in the ecliptic, prove that the longitude L of the sun at the date of tha

earlier observation is given by

sin^m-sin^/S
sin2Z= -

sin^ a cos /3

where tan 8= =
;

,

and a is the obliquity. [Math. Trip. I. 1900.]

Ex. 4. In a horizontal sun-dial of the usual form, show that the locus,

traced out by the end of the shadow of the style during one day is approxi-

mately a conic section of eccentricity

cos (latitude) cosec (declination of sun).

Ex. 5. If X be the angle between the graduations on a horizontal sun-

dial indicating Ai, Aj hours after noon, then

tana; =

sin X sin |(/!2-^i)^[

i|(A2-Ai)^l-cos2Xi

where X is the latitude for which the dial is made. [Coll. Exam.]

Ex. 6. Show that at a place outside the Arctic and Antarctic regions,

the end of the shadow of a vertical post cast by the sun on a horizontal

plane approximately describes in the course of the day one branch of an

hyperbola, and that as the hyperbola varies from day to day its asymptotes-

touch a fixed parabola the focus of which is the foot of the post.

[Math. Trip. I. 1904.]

Ex. 7. A sun-dial is constructed of a reflecting cylinder whose cross-

section is a cycloid, mounted upon a card so that the generating lines of the-

cylinder are parallel to the earth's axis and perpendicular to the plane of the

card, whilst the axis of the cycloidal cross-section lies in the plane of the.

meridian. Prove that, if the distance between the cusps of the cycloid on

the card be provided with a proper uniform graduation, the cusp of the

caustic due to the reflection of the solar rays will always indicate apparent,

solar time. [Coll. Exam.]

132. Coordinates of points on the sun's surface.

From the observation of sun spots it has been shown that the

sun rotates about an axis inclined to the ecliptic at an angle of

82° 45'. The direction of this rotation is the same as that in

which the earth and the other planets revolve round the sun.

A plane through the sun's centre perpendicular to the axis of
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rotation intersects the sun's surface in a great circle known as the

solar equator. Points on the sun's surface are said to have helio-

graphic latitude and longitude with reference to the solar equator.

The heliographic latitude of a solar point S is the perpendicular

arc from S to the solar equator and the longitude of S is the arc

from a standard point 0' on the solar equator to the foot of the

perpendicular.

In Fig. 99 ON is the section of the surface of the sun by

Fig. 99.

the plane of the ecliptic, where is the point in which the

sun's surface is met by the line from the sun's centre to T and

the longitudes increase in the direction shown by the arrow-head.

O'N is the solar equator and N is the ascending node of the

solar equator on the ecliptic. This point remains fixed in the

plane of the ecliptic because the sun's equator has no recognisable

motion of precession. The longitude H oi N measured on the

ecliptic from the equinox of 1909'0 is 74 °29''4. As the sun is

not a solid body and therefore cannot have a permanent " Green-

wich," resort is made to a special method for indicating the point

0' which is adopted as the origin of solar longitudes. The point

0' is defined to be the particular point of the solar equator

which happened to be passing through N at Greenwich mean

noon on 1st Jan. 1854. By the rotation of the sun 0' is carried

towards iV with a uniform motion which would bring it round

the circumference in 25'38 days. The solar equator is inclined

to the ecliptic at the angle 90°— ^1^ = 7° 15'.

The coordinates /3, X are the latitude and longitude of a point

P on the sun's surface with respect to ON and measured from the

origin 0. In like manner X', yS' are the heliographic coordinates

of F with respect to O'N and measured from the origin 0'.
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From the general formulae of transformation, § 12, we have

sin /8' = sin ^ sin yjr — cos /3 cos ^jr sin (\ — H)'\

cos /8' cos (\' - iW) = cos /S cos (\ - J?) I . . .(i).

cos y8' sin (\' — M) = sin /3 cos yfr + cos /3 sin ^ sin (\ — ^)J

To obtain the heliographic latitude and longitude, usually

termed D and L, of the apparent centre of the sun's disc we
substitute for /9, \ in the equations just found the values 0,

180° + ©, where © is the geocentric longitude of the sun and we

have
sin I) = cos yjr sin (© — H)

cos D cos (L -M) = - cos (Q-R) - (ii),

cos D sin {L — M) = — sin ->//• sin (© — H)

from which D, L the required heliographic coordinates of the

centre of the sun's disc can be obtained without ambiguity.

We now seek the expression for cosP where P is the arc on

the sun's limb between the northernmost point of the disc and

the projection of the solar axis on the plane of the disc.

The longitude and latitude of >S the nole of the sun's equator

on the celestial sphere are found by making V = 0, /3' = 90° in (i)

from which we see that X = 270° -\- H, ^ = y{r. The solution

/3 = 180° - -«|r is of course rejected because yjr = 82° 4-5' and /3 :}> 90°.

The longitude and latitude of E the nole of the earth's equator

on the celestial sphere are given by X = 90°, yS = 90° — to. The

longitude and latitude of T the heliocentric position of the earth

are given by X = 180° + ©, yS = where © is the sun's geocentric

longitude. Then P the angle required is equal to Z STE. To

obtain the expression for it we have

cos ST =cos i|r sin (Q —H); cos ET= — sin w sin © ;

cos ES = sin i/r cos a> — cos yfr sin to cos H,

and substituting in

cos P = (cos ES - cos ST . cos ET)/sm ST. sin ET,

we have

_ cos o) sin ylr — sin a cos \lr cos © cos (© — H)
cos P = + T ^^

1

,

(cos^ 0) + sitf w cos= ©)2 {sin^ -f + cos^ yjr cos' (© - E)}^
and

. p _ sin £u sin i|r cos © + cos eo cos i/f cos (© — H)

(cos" (o + sin" (o cos" ©)* |sin" yp- + cos" yjr cos" (© - ^)}^
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To show that the negative sign should be attributed to sin P it

suffices to take the case of -f
= 90°, © = 180°. It is then obvious

that the position angle P must be + «, but this would not be the

case unless the radical in the expression of siu P had a negative

sign.

As sinP may be written in the form /cos (© + h) where / is a

negative quantity and where h is independent of © it is easily

shown that P is positive for one half the year (from July 7 to

Jan. 5) and negative for the remaining half. The maximum
value of P is + 26° '42 on October 8 and the minimum is — 26° '44

on April 6.

Ex. 1. It is required to find the value of P on July 15th 1909 from the

following data

:

a) = 23° 27'; i;'=82° 45'; 0=112° 19'; H^li" 29'.

It is easy to see that sin a sin ^ cos © = — -14991

;

cos Q) cos -^ cos (© — .ff ) = -09144 ; cos^ to+ sin^ <b cos^ © = -86446
;

sin2>/^+cos2>/.oos2(®-5')= -99400, whence P=3°-62.

We find in the appendix to the nautical almanac the values of P as well

as of the other elements D, L.

Ex. 2. The meridian of the sun which passed through the ascending

node on the ecliptic of the sun's equator on 1854 Jan. 1, Greenwich mean
noon, is the zero meridian for physical observations on the sun and heho-

graphic longitudes are measured from this zero meridian and heliographic

latitudes from the solar equator. Assuming that the node remains fixed

determine its heliographic longitude at noon on 1909 July 15, if the period

of the sun's rotation be 25'38 days.

From mean noon on 1854 Jan. 1 to mean noon on 1909 July 15 is an

interval of 20283 days (1900 is not a leap year). By dividing 20283 by 25-38

we obtain the number of rotations of the sun 799-17258. The zero meridian

has therefore advanced -17258 of a complete revolution beyond the node, i.e.

-17258 X 360° = 62° 7'-7. Hence the heliographic longitude of the node of the

solar equator on the ecliptic is

360° -(62° 7'-7) = 297°52'-3.

The longitude of the ascending node measured on the ecliptic from the

first point of Aries (1909-0) is 74° 29'-4.

Ex. 3. It is required to find when the position angle P of the sun's axis

is a maximum.

Difierentiating the expression for sinP with regard to © and equating

the result to zero, we have for the determination of I the equation .4 . .8=0,

where
.4 =sin 6) cos \/^ cos (© — J?) cos © - cos <» sin i/^,

B= {sin^ -^ + cos^ i|r cos^ (© — jff)} sin m cos a> sin ©
+ (cos^ 0) + sin^ ft) cos^ © ) sin (© —H) sin •>// cos <^.
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The equation A=0 could give no real values of © for as ifr is near 90° the

second term is larger than the first could become. We therefore seek the

values of © from the second factor B = 0, which may be written

{tan^ i//-+oos2 (© -H}} tan a> sin® +(H-tan2o)Cos2©) sin (© - ff) tan ij/=0.

As a first approximation we may omit cos^(®-i3') and tan^aoos^®, and
we then have 3-41 sin® =sin (74° 29' - ©), whence ® = 14° 42'. Using thi.s

approximate value in the terms omitted before, we obtain

2-91 sin® =sin(74° 29'- ©),

whence ® =16° 51' or 196° 51'. The first is on April 7th and the second on

Oct. 10th. Substituting either of these values for ® in the original expression

for sinP we see that P=2G°-b.

Ex. 4. On what days in the year does P become zero ?

If sinP=0, we must have

sin 0) sin il^+ cos CO cos •J/' cos //
tan© = i

,
. ^ ,

cos o) cos i//- sm M
and with the values of the constants a>, yjr, H already given, we have

© = 104° 40' and © = 284° 40'. By reference to the ephemeris we see that

the sun has these longitudes on July 7 and Jan. 5 respectively.

*133. Rotation of the moon.

The character of the rotation of the moon about its centre of

gravity is very approximately given by the three following laws,

known as the Laws of Cassini'j'.

1. The moon rotates round its axis in a time which is

accurately equal to the time of the moon's revolution

round the earth.

2. The inclination of the lunar equator to the ecliptic is

permanently 1° 32' 6".

3. The ascending node of the moon's equator on the ecliptic

coincides with the descending node of the moon's orbit

on the ecliptic.

The third law m^ be expressed by stating that the longitude

of the nole of the moon's equator exceeds by 90° the longitude of

the ascending node of the moon's orbit. The latitude is of course

90" - 1° 32' 6" = 88° 27' 54".

From these rules we can find for each day the three following

quantities : i the inclination of the moon's equator to the terrestrial

equator, Q' the R.A. of the ascending node of the moon's equator

t See Dr J. Franz, Observations at the Observatory of Kcenigsberg, Vol. 38.

The value of the inclination of the lunar equator used in expressing Law 2 is that

given by Hayn in Astronomische Naclirichlen, No. 4083.

B. A. 26
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on the terrestrial equator, and A the arc of the moon's equator

from its ascending node on the earth's equator to its ascending

node on the ecliptic. S is as usual the longitude of the ascending

node of the moon's orbit on the ecliptic.

N

Fig. 100.

T (Fig. 100) is the vernal equinox, N is the ascending node of

the moon's orbit on the ecliptic TiV and therefore by Law 3 the

descending node of the moon's equator HN, and as A is measured

from H to the ascending node we have

iriV"= A -180°.

In this spherical triangle to and I have the values 23" 27' 4"

and 1° 32' 6" respectively. SJ is a function of the time given

in the ephemeris for intervals of ten days throughout the year.

For each value of Q, the quantities i, A, Q,' are computed by the

following formulae

Icos i = cos CO cos I + sin to sin I cos £3

,

sin i sin A = — sin m sin £2

,

sin i cos A = cos &> sin I — sin co cos I cos S3

.

Icos i = cos o) cos 7 + sin o) sin I cos 63

,

sin i sin S3 '= — sin /sin S3

,

sin i cos £3 '= cos / sin (o ~ sin / cos a> cos £3

.

These equations are not independent and indeed the first and
the fourth are identical. But the first three enable i and A to
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be found without ambiguity and the last three in like manner

give i and S3' and the coincidence of the two values of i thus

independently found provides a useful check on the accuracy of

the work.

As the period of rotation of the moon coincides with that of

its revolution round the earth the moon keeps nearly the same

face to the earth. Owing however to the inclination of the

moon's equator to the ecliptic and to other circumstances con-

nected with its motion a certain margin round the moon's limb

occasionally passes out of view and a corresponding margin on

the other side comes into view. This phenomenon is known as

the libration of the moon.

Ex. 1. On Sept. 28th 1908 the longitude of the moon's ascending node

is 70° 46'"2, determine the inclination of the moon's equator to the earth's

equator, the r.a. of the ascending node of the moon's equator on the terres-

trial equator and the arc from the ascending node on the earth's equator to

the ascending node on the ecliptic.

We obtain from the above formulae

7=22° 59', A= 254° 9', S'= 356°19'.

Ex. 2. Show from the laws of Cassini that the nole on the moon's

surface of the moon's equator may bo obtained by the following construction.

From the centre of the moon regarded as a sphere draw lines to the noles

of the moon's orbit and of the ecliptic and let them meet the moon's surface

in A and B respectively. Produce the arc AB beyond 5 to C so that

BC= 1° 32' 6". Then C is the nole on the moon's siirface of the moon's

equator.

134. Sumner's method of determining the position of

a ship at sea.

If from the centre of the earth a line be drawn towards the

centre of the sun the line will cut the earth's surface in what is

known as the subsolar point. Thus there is, at every moment, a

subsolar point somewhere. This is the only spot on the earth at

which the sun is at that moment in the zenith. The geocentric

latitude of the subsolar point is obviously the declination of the

sun. The longitude of the subsolar point measured eastwardsf

from Greenwich is 24'' — (apparent time at Greenwich).

Let us suppose the earth to be a sphere with centre E
t It is often convenient to adopt as we are here doing the continuous measure-

ment of terrestrial longitudes eastward from Greenwich. The north pole is then

the nole of the necessary graduation of the equator throughout the circumference.

26—2
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(Fig. 101) and neglect the sun's parallax. Let ES be the

direction of the sun and P the sub-

solar point. Let be the position

of an observer who sees the sun in

the direction OS' parallel to ES and

at the altitude I = z HOS', then

Z0EP = 90° -I, and we see that

the altitude of the sun is the com-

plement of the angular distance of

the observer from the subsolar point.

Whenever an altitude I of the sun

is observed the observer knows that

he must be situated at that moment on the circumference of a

small circle of the earth described around the subsolar point

with the radius 90° — I. If the observer knows the Greenwich

time and the solar declination he knows the geographical posi-

tion of the subsolar point and consequently he can draw on a

stereographic chart (§ 23) the circumference of a circle on which

his position must lie. Of course the observer will already know

his position approximately, and hence he will not need more than

a very small arc which is practically a straight line, and is

called the Sumner line after the inventor of this method. Thus

a single observation of the sun's altitude enables the mariner to

rule a short line on his chart which passes through his actual

position. To obtain that position he must repeat the observation

when the sun is at a different altitude some hours later. He can

then draw another Sumner line and the intersection of the two

lines will give his actual position.

In this we have assumed that the position of the observer has

not changed between the two observations. If he has been in

motion and knows the course he has taken and the number of

miles run he proceeds as follows. Take any point A on the first

Sumner line and set off on the chart a point B so that AB
represents both in magnitude and direction the distance run.

Through B draw a parallel to the original Sumner line, then

the ship must lie at the time of the second observation somewhere
on that parallel. The intersection of this parallel with the second

Sumner line gives the position of the ship at the time of the

second observation.
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We can find as follows the equation of the stereographic pro-

jection of the Sumner line in which the latitude and longitude of

the subaolar point are B and and where I is the observed altitude

of the sun.

Let yS, \ be the latitude and longitude of the observer, then

sin ? = sin /3 sin S + cos /3 cos S cos (\ — 6).

If X, y be the coordinates in the projection of the point corre-

sponding to /S, \, then from the equations on p. 64

a; = a cos /8 cos \/(l — sin /3), y = a cos /3 sin \/(l — sin /3),

whence

1/(1 -sin ,8)

= {asmh — x cos dcosh—y sin 9 cos S)/(a sin S — a sin I),

and x^ + y^ = a"" {2/(1 - sin /3) - 1},

eliminating (1 — sin /S) we have the desired equation of the circle

{x^ + y^) (sin S — sin I) + 2a cos B {x cos ^ + y sin 6)

- a?- (sin B + sin I) = 0.

As a verification we may note that '\i 1= 90° the equation

becomes simply

{x — a cos B cos ^/(l — sin B)f -v\y — a cos 8 sin Q\{\ — sin S)}^ = 0,

in which case the circle reduces to the point of the chart which

corresponds to the subsolar point.

Ex. 1. Two altitudes A-^, 4 2 of the sun are taken, at an interval of time

2A, and the Sumner lines cut orthogonally. Show that

sin Ax sin .42= 1 — 2 sin^ h cos^ S,

where 8 is the sun's declination. [Coll. Exam. 1903.]

Let 8\, 82 be the two subsolar points, P the terrestrial north pole and

the station of the observer, then LSiPS2 = 2h, also ^iO;S3= 90'' and OSj^, OS2

are respectively 90° -^i, 90° -^2 and P(S'i= P;S'2= 90°-S.

Ex. 2. When the latitude and longitude are found by simultaneous

observations of the altitudes aj and 03 of two known stars, as in Sumner's

method, prove that the two possible places of observation will have the

same longitude if

sin oi/sin a^ — sin 81/sin 82

.

where 81 and 82 are the declinations of the two stars.

[Coll. Exam. 1902.]

Ex. 3. At Greenwich sidereal time t the zenith-distances of two stars of

right ascensions ai and 03 and equal declinations 8 are observed to be zi and
"'0
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22 respectively. Show that the west longitude of the place of observation

exceeds i - ^ (aj + 02) by 1^, where cot (p= cos X cot .j; ± sin X cosec x tan z, and

z, X and X are auxiliary angles given by

(i) cot X= cot 8 cos \ (ai — 02),

(ii) sin 5= cos 6 sin J (01-02),

(iii) tan x

=

tan \ {z^ — z^) tan ^ (zj + 22) cot 6,

(iv) coss=cos5(2i — 22)cos^(2i+22)sec.j;sec5.

[Math. Trip.]

X is the declination of the point midway between the stars, 26 the

distance between the stars, z is the perpendicular from the zenith on the

arc joining the stars and x the arithmetic mean of the distances from the

foot of this perpendicular to the stars, —(jj is the hour angle of the point

midway between the two stars, and this point with the pole and the zenith

form a triangle by which from formula (6) on p. 3 the required result is

obtained.

Ex. 4. The sun's declination being 15° N. and the chronometer indicating

2h Qm Greenwich mean time, and the sun's observed zenith distance being

45°, prove that the equation of the corresponding Sumner line on the map
formed by stereographic projection from the south pole on to a plane

parallel to the equator is (in polar coordinates referred to the north pole

as pole and the meridian of Greenwich as initial line)

r2= 2cr cos (5 + 30°) + c^ (2 ^3 - 3)= 0.

The equation of time is neglected, and c is a constant depending on the

scale of the map. [Coll. Exam.]
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135. Introductory.

As we have already seen (§ 50), each of the planets moves

round the sun in accordance with the laws of Kepler. As the

earth is one of the planets, and consequently follows Kepler's

laws, the observed movement of any other planet is complicated

by the motions of the terrestrial observer. Thus the apparent

movements of the planets with regard to the fixed stars are

generally from west to east, but they are occasionally stationary

or move from east to west.

The following nomenclature is used.

The line of nodes is the intersection of the plane of a planet's

orbit with the ecliptic.

Regarding the ecliptic and the planetary orbit as graduated

great circles in the directions of motions of the earth and planet,

the inclination of the two circles is the inclination of the planetary

orbit.

The ascending node of the planetary orbit is that in which the

direction of movement crosses from the side of the ecliptic which

contains the antinole of the ecliptic to that which contains the

nole. The other node is known as the descending node.

The places of planets are defined by their latitudes and longi-

tudes, and these places are termed heliocentric if they are as they
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would be seen by an observer from the sun and geocentric as they

would be seen by an observer on the earth.

Thus the heliocentric latitude of a planet is its angular distance

from the ecliptic as seen from the sun. The heliocentric longittide

is the angle subtended at the sun by the first point of Aries and

the foot of the perpendicular from the planet on the ecliptic and

measured from T in the positive direction.

In like manner the geocentric latitude and longitude of a

celestial body are defined when the observer is presumed to be on

the earth or more strictly at the centre of the earth.

To determine completely the orbit of a planet, six quantities

are necessary. These are as follows:

(1) The longitude D, of the ascending node on the ecliptic.

(2) The inclination i of the planetary orbit to the ecliptic.

(3) The longitude ct of the perihelion, which is measured

from V along the ecliptic in the positive direction to

the planet's ascending node and thence in tlie plane

of the planet's orbit in the direction of the planet's

motion to the perihelion or point of its orbit in which

the planet is nearest the sun.

(4) The semi-axis major a of the ellipse. This quantity is

generally known as the mean distance (see p. 298).

(5) The eccentricity e of the ellipse.

(6) The epoch t, or date at which the planet passes the

perihelion.

Of the six data the two first give the plane of the orbit, the

third gives the position of the axis of the ellipse and the fourth

and fifth the form and dimensions of the ellipse. The sixth is

necessary to determine the position of the planet in its orbit.

136. Approximate determination of the orbit of a planet

from observation.

As the orbits of the important planets are nearly circular we

shall for this approximation suppose them to be exactly circular

though in different planes, and we have first to show that if this

is the case two observations of each planet would suffice to

determine its orbit.

An observation of a planet, by which we understand a determi-

nation of the position of the planet on the celestial sphere
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sufficient to enable its latitude and longitude to be found, indi-

cates no more than the position in space of a straight line on

which at the moment the planet is somewhere situated. At the

time of observation the earth's place is of course known and the

observation shows the direction of a line A from the earth in

which the planet must lie. An observation at a subsequent date

gives, in like manner, a second straight line B in which the planet

then lies and the time interval between the two observations is

noted.

It has been assumed that the orbit of the planet is a circle

and, of course, the centre of that circle, being the centre of the

sun, is known. We have therefore to construct a circle with its

centre S at a given point and such that its circumference shall

intersect two given straight lines A and B. There are of course

an infinite number of solutions of this problem, for choose any

point P ovi. A and draw the sphere with centre 8 and radius SP.

Let Q be either of the points in which the sphere cuts B. Then

the plane 8PQ, cuts the sphere in a circle which has its centre

at (S and which intersects A and B. It might therefore seem

at first as if the problem of finding the circular orbit of a planet

from two observations was indeterminate.

But the observation of the time interval required by the planet

to move from P to Q removes the indeterminateness. When
the plane 8PQ, is drawn the orbit thus found has a periodic

time determined by Kepler's third law from the length of its

radius. If the year be the unit of time and the mean distance

of the earth the unit of length, and if T be the periodic time

expressed in years we have T^ = {SPy or T={SPy^. The time

interval between P and Q is therefore (SP)^ x Z PSQ -r- 27r. This

is to be compared with the time interval observed, and P is to be

altered in successive trials until the observed and calculated time

intervals coincide. SPQ is then the required orbit.

The following is the analytic method of investigating the

same problem.

Let X, y, z be the heliocentric coordinates of the planet and a

the radius of its orbit, then the equations of the orbit, where axis

of X passes through T and z is normal to ecliptic, are

a;2+2/2^22=a2 (i),

z =px + qy (ii).
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Let /8, X, p be respectively the geocentric latitude, longitude

and distance of the planet at the first observation, and R, L

be respectively the distance of the earth from the sun and the

earth's heliocentric longitude, then

a; = /) cos /3 cos\+ R cos L,

y = p cos ;8 sin \ + R sin L,

z = psin /3,

whence by substitution in (i) and (ii)

p' + 2pRcos0cos{L-X) + R^ = a'' (iii),

|0 sin y8 = p (/3 cos 0cosX+ R cos L)

+ q(p cos ^smX+ R sin L) (iv).

In like manner from the second observation we obtain two

similar equations

p'^ + 2p'R' cos /3' cos (L'-X) + R'' = a' (v),

p' sin (8' = p (p' cos /3' cosX + R' cos L')

+ q {p cos /8' sin X'-^R'smL') ( vi).

If t be the time, then 2iTta~'- is the angle through which the

planet has moved, as the earth's distance and the year are the

units of distance and time respectively, hence

a^ cos {2Trta~-) = xx' + yy' + zz'

— pp cos /8 cos /S' cos (X, — X.') + RR' cos {L — L')

+ pR' cos /3 cos (X - L') + p'R cos /3' cos (X' -L) .. .(vii).

There are thus five equations (iii— vii), and they contain five

unknowns, viz. p, p, p, q, a.

We then proceed as follows. Assuming a value for a we obtain

two values of p from (iii) and two of p' from (v) and see if one of

the four pairs will satisfy (vii). Further trials must then be made

until a value of a is found which gives values of p and p' that

satisfy (vii). Then from (iv) and (vi) p and q are determined

linearly. The node and inclination of the planet's orbit can then

be found. For if *•', y', is the node, then px' + qy = or

tan il = — pjq and fl or n + 180° is found, and sec i = Vl -\-p' + (f.

An approximate determination of the orbits of most of the

planets can be made in this way because, the eccentricity being

generally small, the orbits do not differ much from circles f.

t On the calculation of orbits see Gauss, Theoria Motus Gorporum Coelestium.
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*The argument of the latitude. The heliocentric coordinates

of a planet can be conveniently expressed in terms of the angular

distance through which the planet has moved round the sun after

passing its ascending node on the ecliptic. This angle is, in each

case, to be measured in the direction of the motion. It is de-

signated by u and is termed the argument of the latitude.

We now take as axes of + a;, +2/, + z respectively lines from

the sun's centre to the points whose r.a. and decl. are (0°, 0°),

(90°, 0), (0°, 90°). Thus the coordinates of the planet at the

distance r and equatorial coordinates a, S become

r cos S cos a, r cos 8 sin a, r sin S,

or, expressed in terms of the longitude and latitude \, y8, we easily

find from (i), p. 107

x= r cos /3 cos X.,

y = — r sin /S sin w + r cos /8 cos a> sin \,

z = r sin /3 cos a + r cos ^ sin to sin X.

If i be the inclination of the planet's orbit to the ecliptic and

D, the longitude of its ascending node,

sin /3 = sin M sin i, cos /S sin (X — O) = sin w cos i,

cos y8 cos (X. — fl) = cos u,

from which we easily obtain

cos /3 cos \ = cos u cos n — sin u cos i sin il,

cos /8 sin X = cos m sin fl + sin u cos i cos fl.

Eliminating /3 and X from the expressions for x, y, z, we have

for the coordinates of the point in the orbit corresponding to u

x = r sin a sin {A +u), y = r sin h sin (5 + «),

z = r %\\ic sin (0 + m),

where a, b, c, A, B, G, are known as the constants for the equator

and are found as follows :

sin a sin j1 = cos O,

sin a cosA = — cos i sin fl,

sin 6 sin 5 = cos « sin fl,

sin h cos 5 = cos i cos &> cos H — sin i sin o),

sin c sin (? = sin o) sin £2,

sin c cos G = sin i cos w, + cos t sin &> cos O.
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It is also easy to prove that

cos a = sin i siu D,,

cos b = — siu i cos (o cos D, — cos i sin w,

cos c = — sin i sin <b cos O + cos i cos ta,

tan i = cosec a sin b sin c sec Asm(C — B).

We take an example given in Watson's Theoretical Astronomy,

where
n = 206° 43' 33"-74,

i = 4 36 50 -11,

<u = 23 27 24 03,

and the reader may verify that for the constants of the equator

we have

^ = 296° 39' 5"-07 Log sin a = 9-9997156,

5=205 55 27 14 Log sin 6 = 9-9748252,

(7 = 212 32 17 -74 Log sin c = 9-5221920.

137. On the method of determining geocentric co-

ordinates from heliocentric coordinates and vice versa.

Let us take three rectangular axes whereof the origin is at the

centre of the sun, the axis of + a; is the line to T, the axis of

+ 3/ to the point whose latitude and longitude are 0°, 90° and

the axis of + ^^ to the nole of the ecliptic.

Let r be the distance of the planet from the sun's centre and

X, /3 the heliocentric longitude and latitude of the planet. Then,

if X, y, z are the heliocentric coordinates of the planet,

x = r cos ^ cos X
; y = r cos /3 sin A, ; z=r sin /3.

If -R be the distance of the earth and L its longitude, and if

X, Y, Z be the coordinates of the earth,

X = iJcosi, F=EsinX, Z=^.

Let x'
, y, z' be the coordinates of the planet with regard to a

set of parallel axes through the earth's centre, then

x=X + af\ y=Y + y'; z = Z+z' (i),

and if X', /3' be the geocentric longitude and latitude of the planet

and p its distance from the earth's centre,

x'= p cos /3' cosV
;
y'= p cos /3' sin X' ; z' = p sin /8',
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and thus from (i) we obtain

r cos /3 cos X = B cos L + p cos /3' cos X'

r cos ;S sin X = i? sin i + p cos /3' sin X'

r sin /S = p sin yS'

Multiplying the first of (ii) by cos L and the second by sin L
and adding

r cos /3 cos (Z — X) = ii + p cos /3' cos (Z - X')

;

multiplying the same two equations by sin L, cos L respectively

and subtracting

r cos /8 sin {L — \) = p cos /S' sin (i — X'),

whence
r cos /3 sin (L — X)

tan (i - X') = —
»• cos /3 cos (X — X) — iJ

'

As the time of observation is known L and R are both known,

and hence when the heliocentric coordinates X, ^ of the planet

are known i — X', and thence X', are determined.

Also squaring and adding (ii) after transferring RcosL and

R sin L to the other side

p'=r''- 2rR cos ^ cos (Z - X) + i^^

by which p is found.

From the two first equations of (ii) we have

p^ cos'i (8' = r' cos^ /3 - 2rR cos /3 cos (Z - X) + i^^

whence from the last of (ii)

, „, r sin /3
tan /y = — ,

(r'' cos^ /3 - 2rii cos ;8 cos (i - X) + ii^)^

whence ;8' is known.

In like manner we can obtain /3 and X when yS' and X' are

given.

138. Geocentric motion of a planet.

Let S be the sun, E the earth, P the planet (Fig. 102). It

is supposed that the earth and planet revolve in circles in co-

planar orbits with radii a, b respectively, that their heliocentric

longitudes are L and I, and that the geocentric longitude and

distance of the planet are X and p.
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(i),

We have

p sin X = 6 sin I — a sin L

p cos \ = b cos I — a cos L

whence

tan X = (6 sin I — a sin Z)

/(6 cos I — a cos L),

by which the geocentric longitude

is obtained.

By Kepler's laws the mean mo-

tion of the planet is proportional

to b~^. We shall choose the units of time and distance such that

the mean motion, i.e. the heliocentric angular velocity, shall be not

only proportional to but actually equal to b~-, so that

T
Fig. 102.

dl

dt
= b-\

dL
dt

''

To investigate the changes in the angular velocity of P with

respect to E we have, by differentiating (i).

^ dX ^ dp ,—T- , _j
p cos X -y- + sm \ -£ = - cos I — a - cos L

dt

. , dX
- p sin X ^7"^

dt

, dp
+ cos X -—

dt~ " ^"..-.. ...^1

Xt- = —b~- sml + a~- sin ij

(ii).

whence from (i)

/a'' T7 = a- + 6^ - (a6~ - + &a~-) cos (Z - ?) (iii).

We have also from the figure

p' = a^- 2ab cos {L-l) + b\

whence eliminating cos (L — I)

,dX 1
,

, i ab ^ +ba i
, „

'''dt=^"^'' 2sr-(^ b^-p-),

which becomes after a little reduction

{¥-a'){b^-J)]dX
1 / -4 ,_^=i(a ^ + b ^.-'

Equation (iii) may be written

p^ (a2 + 6*)
(iv).

^-(.l+?,»)[l ia^-bh + ahi
dt aH^

cos (L-l)\,
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which shows that if dXjdt =

cos(Z-0 = ai6*/(a-"*^*+t) W-

Thus there will always be a real value oi L — I and consequently

there must always be points at which one planet has no angular

velocity as seen from the other ; such points are known as stationary

points.

Let a be an angle defined by the equation

cos a = a^ b^lia - aH* + fe) = (a* + b^)/iab-i + ba'i),

then (iii) may have the form

P^-Ti= (ab~^ + ba~^) (cos a — cos
(f>),

where for brevity is written instead oi L — I.

In the course of the synodic period (§ 150) <f>
assumes all

values from 0° to 360°. When the planets are in conjunction

<j> = and dX/dt is negative, so the motion is retrograde. On the

other hand when <^ = 180° we have dXjdt positive and the motion

is direct. We therefore see that for one value of <^ between 0°

and 180° and for another between 180° and 360' the planet must

be stationary to the terrestrial observer. Hence during the synodic

revolution the movement is retrograde while increases through

an angle 2o, and is direct while ^ increases through an angle

360° — 2a, and if p, P be the periodic times of the planet and the

earth, we have
180° -g Pp _tt_ Pp
180° P-p 180° P-p

for the periods of the direct and retrograde motions during the

synodic period.

FiG. 10.S.



416 PLANETARY PHENOMENA [CH. XX

Investigation of the stationary points in a planet's orbit supposed

to be circular but not in the plane of the ecliptic. If two planets

are revolving in circular orbits round 8, but not in the same

plane, the stationary points E, P (Fig. 103) can be investigated

as follows.

Let E' and P' be the positions to which the two planets move

in the short time dt, then E'P' must be parallel to EP and con-

sequently EE, PP' are coplanar and intersect at some point T.

Hence remembering that the velocity of each planet is inversely

proportional to the square root of the radius of its orbit,

ET/PT = EE'/PP' = a"i/6"*,

and making ET = a)a'^ and PT = xb~^- we have

Sf = a" + x'ja = ¥+ x'jb,

because Z SET = 90° and Z SPT= 90°, whence «= = ab{a + b) and

PT = '^a{a-fb), ET=^/b{a+b),

ST='</a' + ab + b\

If 61= Z EST And ^= Z PST, then

a sec 6 = b sec yfr = Va^ + ab + b^.

Let a be the angle between the planes of the orbits. Imagine

a sphere with centre S and intersected by SE, SP, ST in points

E„ P^, T, respectively, then E^P^ = <^, E,T, = e, P,T, = ylr and

Z PiTjEj = i and we have

cos (/) = cos 6 cos yjr + sin 6 sin ^fr cos i.

If we substitute for 6 and yfr we obtain

ab + \/ab (a + b) cos i

a^ -\- ab-\- b^

Ex. 1. Show that if the earth were at rest a superior planet could never

appear stationary.

Ex. 2. Assuming the orbits to be circular and co-planar, find the distance

of a planet if the duration of the retrograde motion is the ^th part of the

period of the planet.

Ex. .3. Let E be the elongation of a planet from the sun at the moment
when the planet is stationary, show that if the orbits of earth and planet be

circular and coplanar

hja= I tan2E+\t!mEv'i+tan^^.

[Maddy's Astronomy, p. 273.]
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Ex. 4. If 6 be the angle subtended at the earth by the sun and a
stationary point of a planet's orbit, and ^ be the greatest elongation of the
planet, prove that

2 cot 5=sec I <^+oosec \^.

[Godfrays Astronomy, p. 320.]

Ex. 5. If TO, «i' be the mean motions in longitude of the earth and a
planet in circular and coplanar orbits, and the difference of their longi-

tudes, show that the planet's geocentric longitude is increasing at the rate

/ '\T / + , <\\ {'T'l'in'y - |m* - (nim')'^ + m'^} cos <h
{mmy' (mJ+m^) '-^-^ >—^

—

'-— '——r
.

rn^ — 2 {mm') ^ cos
<f)
+ m'^

[Math. Trip.]
Obtained at once from (iii), p. 414, by making

(j)=L-l, m=a~^, m'=b~^.

Ex. 6. Show that the number of times an inferior planet appears to

change from direct motion to retrograde in the course of one revolution of

the superior planet round the sun is the integral part of

{hjaf or of (6/a)^-l,

where a and h are the radii of the orbits (6> a).

[Math. Trip.]

Let <|)' be the smallest positive value of <^ which corresponds to a change from

progreding to regreding, then similar changes will occur when ^ is 'inn+ 0',

whatever integer n may be (while the changes from regreding to progreding

correspond to 2Mir — 0'). The angular velocity with which the inferior planet

gains on the superior is a~'-6~^, while the periodic time of the superior

planet is SttS^. Hence the increase of <\) during a revolution of the superior

planet is 27r(6*/a^— 1). The number of integral values of n which make
n+ (j>'/2ir less than l+k, where I is the integral and k the fractional part of

b^la^ — 1, must he I— I ov I. Adding the case of n= we have the desired

result.

Ex. 7. If u and v are the velocities of two planets in circular orbits

in the same plane, show that the period of direct motion is to the period

of regression as (180° -5) : d where cos6= uv/(u^— uv+ v^).

[Coll. Exam. 1900.]

Ex. 8. Show that, if the earth and a planet be supposed to describe

circles in the same plane about the sun, and the difference of the longitudes

of the sun and planet be 6, the rate of change of 6 is

(l~%osd),
2n /, a

where iS is a synodic period, a the radius of the earth's orbit, and c the distance

of the planet from the earth at the moment.
[Coll. Exam.]

B. A. 27
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Let (j) be the diflference of heliocentric longitudes of the earth and the

planet, then ^=2vr/S.

Differentiating p2=(j2_2a6coa<^+ 62 we have /5= 2air sin5/S, and by dif-

ferentiating pain6=b sin <^ the desired result is obtained.

Ex. 9. Prove that the time of most rapid approach of an inferior planet

to the earth is when its elongation' is greatest, and that the velocity of

approach is then that under which it would describe its orbit in the synodic

period of the earth and the planet. Give the corresponding results for a

superior planet. The orbits are to be taken circular and in the same plane.

[Math. Trip. I.]

For from the last p=2air sin d/S.

Ex. 10. If the line joining two planets to one another subtend an angle

of 60° at the sun, when the planets appear to one another to be stationary,

show that a^ + b^ = lab where a, 6 are the distances of the planets from the

sun.

[Math. Trip.]

Ex. 11. Assuming that the orbits of Mercury and the earth are circular

and in one plane, and that the angle subtended at the earth by the sun

and Mercury when at a stationary point, is cot~^3, prove that the distances

of the planets from the sun are as 39 to 100 nearly.

[Math. Trip.]

Ex. 12. Prove that when a planet is absolutely stationary as seen from

the earth, its direction of motion and that of the earth must intersect on the

line of nodes of its orbit with the ecliptic, and that its projection on the

plane of the ecliptic is also stationary ; the plane of the planet's orbit not

coinciding with the ecliptic.

[Math. Trip. 1.]

Relative velocity is along PE and therefore the projection of the relative

velocity on the plane of the ecliptic is along the line joining £ to the pro-

jection of P.

Ex. 13. The orbits of two planets being supposed circular but not in one

plane, prove that they will be stationary with regard to one another if their

angles of separation from a node of their orbits, measured in the same
direction, be respectively

tan-i{64(a-)-6)Va} and tan"' {a* (a -|- 6)4/6},

a and b being the radii of the orbits.

[Math. Trip.]

Ex. 14. The synodic period of Jupiter is 399 days, and his distance from
the sun is 5-2 times the radius of the earth's orbit ; find the sidereal period
of Jupiter, and represent in a figure his geocentric motion during his sidereal
period.

[Coll. Exam.]
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139. The phases and brightness of the moon and the

planets.

By the " phase " of a celestial body we are to understand the

ratio of that part of the disc of the body which is seen to be illu-

minated to the whole disc. The phase is measured by the fraction

of the diameter perpendicular to the

line of cusps which lies in the illumi-

nated portion. The hemisphere 4 C-B

(Fig. 104) of the celestial body turned

towards the sun is illuminated by

sunlight. The hemisphere XAY is

that presented towards the earth.

Fig. 105 represents the aspect of

the celestial body as seen from the

earth. The figure EPHX represents

the illuminated portion of the disc

turned towards the observer. The

area of the curve is

\-rrES . PX =^-7rES' (1 + COS d),.

where d is the elongation of the earth

from the sun as seen from the planet. Thus the expression

^(l-f-cos(i) measures the "phase" of the celestial body. It is

also plain that the quantity of light received varies inversely as

the square of oo, the distance from the earth L to the planet M

Fig. 104.

Pig. 106.

27—2
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(Fig. 106), and hence it appears that the brightness of the planet

as seen by the terrestrial observer is proportional to

(1 + cos d)lic\

If a, h are the distances of the earth and planet from the sun S

this may be written

and if this is to be a maximum we have by equating the dif-

ferential coefficient to zero

a;2 + 46a; + 3 (6^ - a=) = 0,

or x=^¥^^^Za?~2h; cos <i = {V3a= + 6= - 46}/36.

As a particular case we consider the planet Venus where

a=l, 6 = 0-7233.

We find that when brightest

« = 0-430, d=117°55', -f = 22°20',

and the elongation of the planet from the sun is 39° 43'. If the

maximum brightness of Venus be unity the brightness at greatest

elongation is -727. Greatest- brightness takes place 36-2 days

after inferior conjunction. In this calculation we have regarded

the orbits of the planet and the earth as circular, and the above

results are consequently only approximately correct.

It is instructive to plot the brightness as the ordinate of a

curve of which the abscissa is the angle subtended at the sun by

the earth and planet.

Ex. 1. The difference between the first and second quarters of a lunation

is half an hour ; compare the distances from the earth of the sun and moon.

[Coll. Exam. 1893.]

The moon moves from 1st quarter to quadrature in J hour in which

time it describes an angle of about 8', and the cosec of 8' is approximately the

ratio of the sun's distance to that of the moon.

Ex. 2. If X be the phase of the moon as seen from the earth, and y the

phase of the earth as seen from the moon, prove that approximately

y= 'i- x+ h {2x- x^)la,

the phase of full moon being denoted by 2, and a, b being respectively the

radii of the orbits of the earth and moon.

Prove also that the first quarter of the moon terminates before the last

quarter of the earth commences, and the last quarter of the moon begins

after the termination of the earth's first quarter.

[Math. Trip.]
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Let <S^, M, T (Fig. 107) be sun, moon and earth, then the diameter of the

moon perpendicular to MS and that of the earth

perpendicular to TS indicate the illumiiiated

hemispheres. If E and L are the respective

elongations, then the phase of the moon is

;2;= l + co8X and of the earth y=\ + cosE,

also a sin {L-\-E)= b sin L,

and since b/a is a small quantity

cos E= — cos Z+ 6 sin^ Lja,

whence 3/= 2 — a;+6(2ic-a'2)/a.

Ex. 3. If the phase of full moon be taken

as unity, prove that midway between new moon
and the first quarter the phase is slightly greater

than ^th.

Ex. 4. Show that the phase of a superior

planet, as seen from the earth, is least when
the earth appears half illuminated to the planet

:

but that the apparent brightness of a superior

planet is greatest at opposition and least at

conjunction. [Coll. Exam.]

Ex. 5. If r, R are the radii vectores of

Venus and the earth and if A is the distance

of Venus from the earth, show that the brilliancy of Venus is proportional to

(?•+ A + i?) (»•+ A - R)/r^A^.

Let 6 be the angle which earth and sun subtend at Venus. The pro-

portion of the disc of Venus which we see luminous is (l-|-cos^)/2. The
intrinsic brightness of the planet varies inversely as the square of its distance

from the sun and its apparent brightness varies inversely as the square of its

distance from the earth. Hence the brilliancy varies as {l+cosd)/r^A^ and
substituting for cos 6 its value (r^+ A^ — B^)/2rA the desired result is obtained.

Ex. 6. Prove that if B be the brightness of an inferior planet as it would

be seen from the sun, its greatest brightness as seen from the earth is

Fia. 107.

BbWSa^ + b^-b)

3(V3a2+ 62_26)2'

a being the radius of the earth's orbit, and b that of the planet's, assumed

circular and in the same plane.

[Math. Trip.]

Ex. 7. One planet whose mean distance from the sun is a appears to

have a phase E to another planet whose mean distance from the sun is 6, and

the latter appears to the former to have a phase F; prove that if the incli-

nation of the orbits to one another and their eccentricities be neglected,

b^V{l-V)=a^E{l-E).
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Hence from the datum that the distance of Venus (from the sun) is '7232

times that of the earth from the sun, prove that at least five-sixths of the

bright part of the earth's disc is visible from Venus.
[Math. Trip.]

EXERCISES ON CHAPTER XX.

Ex. 1. The equatorial and polar semidiameters of Jupiter at its mean

distance from the sun are 18" -71 and 17"'51 (Schur). Find the eccentricity

of the ellipse thus presented by the disc of Jupiter.

Ex. 2. If the orbits of the earth and a planet are assumed to be ellipsesj

but in difierent planes, show that, if they are stationary as seen from one

another, the perpendiculars from them to the line of nodes will be in the sub-

duplicate ratio of the latera recta of the orbits.

[Math. Trip. I.]

It is easily shown from § 138 that if two planets are moving in two difierent

orbits, their velocities may be represented by s yJljp and s *Jl'lp' where I and

I' are the latera recta of their orbits, p and p' the perpendiculars from the

sun on their directions of motion, and « is a constant for the solar system.

Fig. 108.

The tangents meet at T on the line of nodes and the velocities u, v are

proportional to PT and QT, but

u _ h h

FT~ ST . sin STP . FT^ ST . PK'

hence FK : QL=h -.h'^sIT: VF.

Ex. 3. The orbits of two planets are ellipses of latera recta 21 and %l'. If

the latera recta lie in the line of nodes, prove that the distances from the sun

when the planets are stationary obey the relation

e'^ll{l-r)= e' >^Vj{l'-r'),

e and e' being the eccentricities.

[Coll. Exam. 1900.]

Ex. 4. If the orbits of two planets are conies with equal latera recta in

the same plane, each planet would appear stationary to an observer on the
other when the line joining the planets was parallel to the line joining the
sun to the intersection of their directions of motion.

[Math. Trip.]

Let S be the sun, F and E the planets, T the point of intersection of
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-a—

their directions of motion, jo and p' the perpendiculars from S on ET and PT
respectively. Then ET : PT :: l/p : 1/p', whence aSTE=aSTP or ST and

EP are parallel.

Ex. 5. If the orbit of an outer planet be an ellipse of eccentricity e and

semi-axis a, and if it is in opposition at perihelion, show that its motion will

then appear to be direct if a/6 < (l-l-e)/(l-e).

Ex. 6. Two comets move in coaxial parabolas in one plane round a centre

of force in the focus. Find the condi-

tion that they may appear stationary to

one another when one is at the vertex of,

and the other at the end of the latus

rectum of, their respective paths.

[Coll. Exam]

Let S be the sun, AP, TQ be the

two parabolas, P and T the planets.

The (velocities)^ at P and T niu.st be

in the ratio PO^ : T(P=2a'^ : (2a-a'Y,

but the squares of the velocities are

inversely as 2a and a', whence

4aa'={2a-a'f. Fio. 109.

Ex. 7. A comet is describing a parabola in a plane inclined to the earth's

orbit, which is assumed to be circular, and the line of nodes coincides with

the axis of the parabola. If T years be the time the comet takes to move

from the vertex to the end of the latus rectum, prove that, whatever be the

inclination of the orbits, when the comet appears stationary the angular

distance of the earth from the line of nodes is given by

2 sec (j).-ain'(t>= {37rTi). [Math. Trip. I. 1903.]

Let C be the comet (Fig. 110), E be the earth, S the sun. As before

tangents at E and C meet in T and

the velocities are proportional to TE
and TC. Let V, v be the velocities

at C and E, and take SE=\ and

the latus rectum of the parabola _ ^---^ \ [/\ s
as 4a.

Then

V:v=TC-TE ^
= 2a cosec^ yjr cos yjr : tan

(f).
Fig. 110.

Also V=sm yjfJ^ii/a, v=^, ST= sec
(l>
= a cosec^-\jr,

whence eliminating yjr and reducing we have

2a= 2 sec <^ — sin^
(f),

and 2'=
2 area SAL %^ i-Ji a^ 2 \/2

because the year is the unit of time.

3 Vm
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Ex. 8. A comet moving in a parabolic orbit, and a planet moving in

a circalar orbit, are in line with the sun when the comet is in perihelion.

Determine the ratio of the perihelion distance of the comet to the distance of

the planet, in order that each may then appear stationary when seen from the

other.

Ex. 9. If a planet is describing a circular orbit whose radius is equal to

the semi-latus rectum of the paraboUc orbit of a comet whose plane of motion

is coincident with that of the planet, show that the planet and comet will be

absolutely stationary with regard to each other when the planet is 60° distant

from the apse of the comet, provided its angular distance from the apse was

approximately — 39° when the comet was passing through the apse.

[Math. Trip. I.]

When the comet is 120° from apse and the planet 60°, the directions of

their movements are identical and their velocities are equal and equal areas

are described by comet and planet in equal times. The area moved over by

a comet in moving to an angle of 120° from apse is equal to a sector of the

planet's orbit containing an angle 60° +39°.

Ex. 10. If a, S be the coordinates of the sun and a', 8' be those of a

planet (a > o), and if Q be the position angle measured from the centre of

the planet of the point of greatest defect of illumination on the planet, i.e.

the angle from the northernmost point of the disc of the planet measured

round by east to that point on the limb of the planet which is apparently at

the greatest distance from the sun ; if p be the distance on the celestial sphere

from the centre of the planet to the centre of the sun, show that for the

determination of p and Q we have the equations

sin p sin $= cos 6 sin (a' — a),

sin p cos §= — sin S cos S' + cos 8 sin S' cos {a - a)
,

oosp = sin 8 sin 8' + C0S 8 cos 8' cos (a' — a).

These equations appear at once from the spherical triangle formed by the

pole and the centres of the sun and the planet.

Ex. 11. At noon on May 30th 1908 the apparent r.a. and decl. of Venus
are V 19°> 4^ and N. 24° 59' 26" and the Log of the true distance from the

earth is 9-65439. The corresponding quantities for the sun are 4'' 27" 39=

N. 21° 45' 16" and -00606 respectively. Show that 94°-4 and 50° 37' 45" are

respectively the values of Q and p.

Ex. 12. When a planet is gibbous {i.e. disc more than half illuminated)

show that the corrections to an observation of the E.A. and decl. of the

defective limb are respectively r(l— cos^) and a(l-co8i/f) where r is the
sidereal time in which the semidiameter passes the meridian, a is the semi-
diameter of the planet and <^ and \|a are determined from the equations

sin =sin d sin Q, sin i/f= sin d cos §,

d being the angle between the earth and sun as seen from the planet and Q
the position angle as defined in Ex. 10. (See Nautical Almaiiac, 1908
Appendix, p. 31.)
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Show also that whea the corrections are small they are very nearly

irsin^dsin^^ and ^a sin' d coa^ Q respectively.

The correction in r.a. is t(1 - CHja) and the correction in decl. is a— CK.

But from the properties of the ellipse the perpendiculars (Fig. Ill) C^ff and

€K are respectively

\/a2cos2§+ 62sin2§ and Va^sin^ §+62cos2 §.

Hence

Fig. 111.

Since 6= 0! cos d these become

Cfi'=aVl-sin2rfsin2§ and CZ=a Vl-siu^ a! cos^ §.

T (1 - Cff/a)=T (1 - cos 0) and a - CK= a (1 - cos \//-).

When the corrections are small we have

T (1 — Gnja)=\T sin^ d sin^ Q and a — CK=\a sin^ d cos^ §.

Ex. 13. Show that when the planet is horned {i.e. less than half illumin-

ated) an observation of the declination of the cusp should receive the

correction
semi-diameter (1 + sin §),

the sign being taken so as to make the quantity within the bracket less

than unity.

Ex. 14. Show that the correction, to the declination observation of the

moon's defective limb necessary to reduce the observation to what would have

been observed if the moon were full is

moon's semi-diameter x versin 6,

where sin 6=- sin 8, cos 8„ H- cos Sj sin S^ cos P,

hm. being the moon's declination, 8g the sun's declination, and P the hour

angle of the sun.

[Coll. Exam.]

Ex. 15. The periodic times of Mars and Jupiter are 687 and 4333 days

respectively ; show that the defect of Mars due to phase, i.e. the greatest

fraction of a diameter which can be in the dark part, is never more than

one-eighth, and that Jupiter is always seen with a nearly full face.

[Coll. Exam.]

If 6, a, be the relative distances of the earth and the planet from the

sun, and 6 be the elongation of the earth from the sun as seen from the
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planet, then the defect is J (1 - cos 6), the greatest value of 6 is sin" i b/a, and

thus the defect can never exceed ^ - J Vl - b^/a\ In the case of Mars

6>'=(M?)* = -430.

In the case of Jupiter the influence of b^la' is negligible.

Ex. 16. On May 30th 1908 at Greenwich mean noon the apparent place

of the sun is

„= 4h 27m 39= -20,

8= 21° 45' 16"-5 (N.),

and the log of a the sun's distance from the earth is -00606. The apparent

place of Venus is

a'= 7'' 19"' 4»-25,

8'= 24° 59' 26"-3(N.),

while the log of p the distance of Venus from the earth is 9-65439.

Show that Venus appears to have -270 of its disc illuminated.

We have first to compute JE the elongation of Venus from the formula

cos^= sin S sin 8'+ cos 8 cos 8' cos (a— a),

and then to find d, the angle which the earth and sun subtend at Venus, from

the formulae b sin d=a sinS and b cos d=p — a cos E, where h is the distance

of Vetms from the sun.

The calculation is as follows :

—

sin 8 9-56894

sin 8' 962579

Log(l) 9-19473

cos 8 9-96791

cos 8' 9-95731

cos (a -a') 9-86516

a -00606

sin^ 9-80177

bsmd 9-80783
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seen from the fixed centre will have a certain part of its path convex, and its

motion therein retrograde, if a>6 and <mb. [Math. Trip.]

The equation of the satellite's path is thus given

x=acos d+b cos m6,

y=a sinfl+ 5sin mS.

The tangent to the path at the point 6 has for its equation

X (a COB 6+ hm cos mff)+y (a sin 6+hm sin mff)

= ra2+ 6^»i + a6 (??i+ l)oos {m, — \)6.

When the orbit passes from concave direct to convex retrograde with respect

to the centre the tangent must pass through the centre. If therefore there

are to be such changes it must be possible to obtain a value of 6 which

will make the right-hand side zero. But this requires

a6 (m + 1) > cfi-'r 6^to,

or 0>(ce— 6»t)(a-6).

Let yjx=ta,'a </>, then d(^jd6 has the same sign as

ct2+m6^+a6 (ot + I) cos (m- 1) 6,

and thus the movement will be alternately direct and retrograde between

successive stationary points.

Ex. 18. Assuming the orbits of the earth around the sun and of the

moon around the earth to be circular, show that the moon's path is every-

where concave towards the sun.

We see from Ex. 17 that it cannot retrograde since a>h and a>bm. The

condition that the orbit should change from concave to convex without

retrograding is that the radius of curvature should pass through the value

00 , or that dPyjdx^^ 0. This condition gives us the relation

a^+m'b^+ah (m'+ l) cos (m- 1) e=0.

.•. ab {m^+ l)>a''+ m%'',

or 0>{a — m,%){a-mb).

Since a>mb we should therefore require nv'>a/b. But »i^<169, whereas

a/6= 387.

Ex. 19. A small satellite is eclipsed at every opposition : find an ex-

pression for the greatest inclination which its orbit can have to the ecliptic.

[Math. Trip.]

The expression is sin ~ i (ajr) — sin "'{(« — a)IE}, where a, s are the diameters

of earth and sun and r, R distances of satellite and sun from the earth.

Ex. 20. If the moon be treated as spheroidal, show that the boundary

of the illuminated portion seen from the earth is composed of two semi-

ellipses, neglecting the parallaxes of the earth and sun as viewed from the

satellite. [Coll. Exam.]

Ex. 21. It frequently happens that the time from new to full moon

exceeds the time from that full moon to the following new moon by a day or

more. Explain the chief cause of this, and show that it is adequate, having

given that the maximum and minimum apparent diameters are approxi-

mately 33' and 29'-5. [Math. Trip. I.]
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The greatest difference due to the eccentricity will be found when the sun

is on the latus rectum of the moon's orbit.

Ex. 22. Given that the periodic time of Venus is nearly two-thirds that

of the earth, find roughly what time of year is indicated in these consecutive

extracts from an almanac

:

First month : Venus is an evening star. Enters Libra.

Next month : Venus is too close to the sun to be easily seen.

[Math. Trip.]

Ex. 23. If the earth and Saturn move in circular orbits of radii 1 and n^

in the same plane, to which the plane of Saturn's rings is inclined at a finite

angle, show that the condition that Saturn's rings may disappear or reappear

to an observer on the earth may be written

sin (<+ e)= Ji^ sin n~^ t,

where t is the time and e a constant.

Hence show, by a graphical method of solving the equation or otherwise,

that the occasions of disappearance or reappearance occur in groups of 1 or 3,

3 or 5, 5 or 7, &c. as n increases ; and find approximately the critical value of

n separating the first and second cases.

[Sheepshanks Exhibition.]

Let £ and P be the earth and Saturn respectively, then when the

rings are presented edgewise to the earth

(Fig. 112) PE will be the intersection of

the plane of Saturn's ring with the plane

of the ecliptic. Draw ALB and CMB
parallel to PB. Then the conditions

required can only be met while Saturn

is moving from A to C or D to B. If

SP=n^ and ES=\ and if we measure
longitudes from EP and the time from
the moment when the longitude of Saturn

is zero, we have from triangle ESP
m^sin ?i-'<=sin {t+ e).

The time T Saturn takes in passing ^^"^ ^^^•

from A to C, compared with a year T^, is given by the equation

7yr„=-sin-i«-2=!i + -l- = -986,

for in the case of Saturn ?j = 3-09.

Supposing PE to start from AL, it reaches CM in -.986 of a year and E
will have overtaken the moving parallel certainly once and possibly three
times. If TITty>Vb then ^ must have overtaken the parallel three times
and possibly five times. The value of n is given by

in which of course l-5jr may be substituted for n in the second term.
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Ex. 24. It has been supposed that Mercury rotates on his axis in the

same period as that of his revolution round the sun in an elliptic orbit

(e=0'205). Describe the phenomena of day and night on his surface, if this

suggestion is correct.

[Sheepshanks Exhibition.]

Ex. 25. Let the elevation of the earth above the plane of Jupiter's

equator be B and the principal semiaxes of the plane be a, b. Show that

the Jovigraphical latitude B" of the apparent centre of the planet's disc is

given by
tan 5"= a2 tan 5/62.

[Mr A. C. D. Crommelin, Monthly Notices Roy. Ast. Sac, Vol. lxi. p. 116.]

If we represent the points on the surface of Jupiter in the usual way by

the eccentric angle, a;=(icos<^, y= bain
<f>,

then the line from the centre of

Jupiter to the observer will cross the surface of the planet at a point marked

by the eccentric angle ^ when tanjB=6tan<^/a. The normal to Jupiter at

the point
<f>

cuts the plane of Jupiter's equator at an angle B" and

tan 5"=a tan <^/6.

Ex. 26. The mean distance of Venus from the sun is '72 of that of the

earth. Determine the greatest altitude at which Venus, supposed to have

a circular orbit in the plane of the ecliptic, can be visible after sunset in

a given latitude, and the time of year at which it may occur.

[Math. Trip. I.]

If a be the obliquity of the ecliptic and
<f)

the latitude, the greatest

distance of the pole of the ecliptic from the zenith is 90° — <^+ (o. Hence the

sine of the greatest altitude required is '72 cos ((/> - o>) and the time is the

vernal equinox.

Ex. 27. If an inferior planet were brightest at the moment of its greatest

elongation from the sun, show that b= a/'J5, where a, b are the respective

distances of the earth and planet from the sun. Prove that Mercury is

brightest before greatest eastern elongation and after greatest western

elongation, while Venus is brightest after greatest eastern elongation and

before greatest western elongation.

(The values of 6 for Mercury and Venus are respectively 0"3871a and
0-7233 a.)

Ex. 28. Assuming that the earth and Venus both move in the ecliptic

in circles of radii 10 and 7 respectively, show that at superior conjunction the

interval between consecutive transits of Venus across the meridian may exceed

one mean day by about l^S, assuming 12/11 for the secant of the obliquity.

[Coll. Exam. 1904]

Let 6~^i and a''^t+e be the respective longitudes of Venus and the earth.

If a be the apparent R. a. of Venus as seen from the earth, then

, 6 sin 6 ^<- a sin (a ^t+ e)
sec CO tan a = ^ ^ •

6cos6 *<-acos(a ^t+ f)
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Differentiating with respect to t and then making a"*!! + c= 180°+6 '«,

r , v a + ijh
aa , ,

—
sec 0) —;- = COS^ a /—r, . 7\ 9 1—^j

rf« VaS (a+6) cos'^ 6 ^<

Jah (a+ 6) (cos'-i 6"*<+ cos2 <» sin^ h ^t)

and thus the greatest value of diJIdt is

sec 6) ,

Va6(a + 6)

This is made homogeneous by the factor 27ra* -HP where P is the year.

rfo' _ 27r sec <u a!(va+ v6)
"^~ ? s/6(a + 6)

Thus in one day the change in R. A. may be as much as

,i^ X 1440" sec 0) ,- —^ =3™ -95 sec a ), ,.
'

= 4-31xl-29=5"i-6.

Hence the apparent b.a. of Venus in such cases may increase by 5"
'6,

and, remembering that the mean day is about 4™ longer than the sidereal

day, the required result is obtained.

Ex. 29. It has been variously stated that the earth's orbit about the sun

is (1) a circle having its centre near the sun, and (2) an ellipse having one

focus at the sun's centre. Prove that, if the same observations were used for

determining the apses, it would be impossible, by direct observation of the

sun, to distinguish between the two orbits, unless the sun's diameter could be

measured within about a quarter of a second.

(The greatest and least values of the suu's diameter are about 32' 36" and

31' 32" respectively.)

[Math. Trip. I.]

In one case the orbit would have the equation

>-=a (1 -i-ecos ^--^e^sin^d),

and in the other r= a(l + e cos B-e^ sin^ 6).

It would be impossible to discriminate between these equations by
observation of the sun's diameter unless quantities such as ^e^x semi-

diameter can be measured.
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140. Fundamental principles of the generalized instru-

ment.

By the expression " geaeralized instrument " we are not to

understand a particular instrument actually employed in the

observatory, but rather a geometrical abstraction, the theory of

which includes, as special cases, the principles of the fundamental

instruments used in practical astronomy.

When we have obtained the equations giving the theory of the

generalized instrument it will be found that these same equations
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comprize as particular cases the formulae necessary for the study

of the following instruments among others : the altazimuth, the

meridian circle, the prime vertical instrument, the almucantar,

and the equatorial. Some of these instruments will be discussed

separately in Chap. XXII.

The following diagrammatic representation (Fig. 113) is in-

tended to exhibit the essential parts of the generalized instrument.

The fundamental axis AB, distinguished as axis I, is capable

of rotation about bearings which may be represented by the

Fig. 113.

cylindrical socket HH in the base LM. It must be understood

that axis I may be horizontal or vertical or in any other position,

but its direction is fixed relatively to the base LM, and of course

it has no freedom for any other motion than rotation.

The bearings at H' are fixed to AB and carry CD, known as

axis II, which can rotate freely in its bearings, though longitudinal

motion through its bearings is not presumed. As AB is rotated

CD is carried with it and the angle between CD and AB is fixed.

XFis the diameter of a graduated circle fixed rigidly to LM and

of which the plane is perpendicular to AB. The graduation of

this circle is to be from 0° to 360°. The nole of this circle is to be



§ 140] THE GENERALIZED INSTKUMENT 433

on the same side as B, which of course means that to an observer

looking from the side which contains B the graduations will

appear to increase counter-clockwise.

P is at the eye piece, and Q at the object glass, of a telescope

of which the optical axis, i.e. the line joining the centre of the

object glass to the intersection of two cross lines at the focus, is

PQ. This telescope is rigidly fixed to CD so that there can be

no alteration in the angle between PQ and CD.
X'Y' is the diameter of a graduated circle perpendicular to

axis II and rigidly attached thereto, so that as axis II is rotated

in its bearings this circle also rotates. The nole of this graduated

circle is on the same side as D so that the graduation appears

counter-clockwise when viewed from D, and this second circle like

the first is graduated from 0° to 360°.

A pointer (not shown in the figure) rigidly attached to aocis 1

at a point V will indicate a different reading R on the fixed circle

XF for every different position of axis I. To obtain the necessary

delicacy this pointer will of course take the form of a vernier or a

microscope in the actual instrument, but for the geometrical theory

we consider the pointer only as a straight line.

A pointer also rigidly attached to aods I will be used to read

the circle X'Y'. As axis II is turned round in its bearings H'H'

the position of the circle X'Y' will be indicated by this pointer.

This reading we shall call R'.

The use of the generalized instrument is as follows. By

suitable rotations about axes I and II the optical axis of the

telescope can be directed to any star with certain limitations to be

considered subsequently. When the optical axis is in the line

required the two pointers give readings R and R'. It is now-

required from these two quantities to determine the place of the

star. We seek therefore to express the coordinates of the star on

the celestial sphere in terms of R and R'.

It is to be noted that the generalized instrument or rather its

geometrical equivalent which we are now considering is a con-

geries of straight lines. The axes oi AB and CD (I and II) are

straight lines, the axis of the telescope is a straight line. We are

also to remember that the graduations can be completely indicated

by the radii ofthe two circles. We further observe that each of these

lines has sense as well as direction. Thus the sense of the axis AB
R A 28
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is from the centre of the circle XYto the nole of that circle, the axis

CD is from the centre of XT' to the nole of XT. The axis of

the telescope isfrom the eye piece to the object glass and the radii

of the circles are from their respective centres to the circumference.

The pointers are as has been said rigidly attached to AB. If

we think of the pointer as a straight line rigidly attached to AB
and perpendicular thereto, this line will be parallel to some radius

of the graduated circle. As the axis AB is turned round 360° this

parallel radius will also move completely round the circumference.

If there be an arrow-head on the pointer to indicate its sense then

we can definitely assume the reading to be that indicated by the

radius drawn from the centre of the circle parallel to the pointer

and in the direction indicated by its arrow-head.

In like manner a pointer for the circle X'Y' must be fixed

rigidly to axis I and be perpendicular to axis II. So far as the

geometrical theory is concerned we may make the same pointer

do for both circles. We have only to imagine the pointer as the

common perpendicular to AB and C'B and rigidly fixed to AB.

Then this line will be parallel to the planes of both circles and the

radii in each circle parallel to this line will give the corresponding

readings for each circle.

Let R be the graduation in circle I (i.e. XY) indicated by the

radius of that circle parallel to the pointer just described and in

the sense shown by the arrow-head on the pointer. Let R' be the

graduation in circle II (i.e. X' Y') indicated by the radius of that

circle parallel to the pointer and in the sense shown by the arrow-

head on the pointer.

Then whatever pointers be actually used, provided only that

they are fixed to axis I, their indications can only be R + ^R
and R' + AiJ' respectively, where Ai? and Aii' are certain index

errors which are constant for the instrument. It will duly appear

later on how the quantities Aii and Aii' are to be determined.

We shall first investigate the relations between R and R' and the

coordinates of the body on the celestial sphere.

141. The lines in the generalized instrument represented
as points on the sphere.

We shall now study the generalized instrument by the help of

points on the celestial sphere corresponding to the lines in the
generalized instrument.
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Draw from any finite point lines parallel to the lines of the

generalized instrument, as already explained, each in the sense of

the arrow-head on the corresponding line. Each radius of the

celestial sphere supposed so drawn will terminate in a point on

the sphere and the arc between any two such points will be equal

to the angle between the two corresponding lines of the instrument.

Draw also from a line in the direction of the celestial body,

supposed to be a star, which is under observation. This line will

be coincident with the line drawn through parallel to the axis

of the telescope when the telescope is directed upon the same star.

Let this point be S (see Fig. 114); in like manner let B be the

point corresponding to axis I, D to axis II, and V to the common
pointer for the two circles.

Fio. 114.

Let i\^F be the polar circle of B so that FV is the great circle

representing the plane of circle I. Any two points on NV will

therefore be separated by an arc equal to the angle between the

two corresponding radii of XY. As B is the nole of the circle

NV the graduation increases from iV to F (as shown by the

arrow-head). We have already settled that the graduation at the

28—2
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point V is to be R. As the circle XY remains in the same

position however the instrument be rotated about AB or CD, we

may, so far as such movements of the instrument are concerned,

regard NV as a fixed circle on the celestial sphere.

142. Expression of the coordinates of a celestial body in

terms of the readings of the generalized instrument when

directed upon it.

Let MN (Fig. 114) be the equator or the ecliptic or any other

fixed great circle which is adopted as the standard of reference for

the coordinates of points on the celestial sphere. Let M be the

origin from which in the direction indicated by the arrow-head a

coordinate a (= ML) is to be determined for the star S. Let

B i=LS) be the other coordinate of S which is to be taken as

positive because S lies on the same side of MN as does the nole

ofMK
We have now to define the two quantities which will express

the position of i\rF (which is of course the plane of circle I) with

respect to the standard circle MN. These quantities are the arc

MN (= X) from M to the ascending node N of NV and the angle

VNN" (= 6^ between the two great circles both diverging from N,

where 6 is an angle between 0° and 180°. The point N may be

taken as the zero of graduation on NV and we then have the arc

NV^R.
It was stated that AB and CD (Fig. 113) are at a constant

angle. It follows that no matter how the instrument be moved

we must have the point D, which is the nole of N' V, always at the

same distance from B, which is the nole of NV. This constant

arc between the noles of the circles I and II we shall represent

by 90° - g, so that q is always between + 90° and — 90°. As the

angle between two graduated circles is the arc between their noles

we see that the angle NVN' (Fig. 114) is also 90° - q.

We have already agreed that the point F on iV'F is to have

the reading R' and it remains to choose a situation for the zero of

graduation on N'KV, that is, on the circle X'Y'. In this case we
could not make use of N' the intersection of VN' with the standard

circle MN, for the node N' is constantly changing in the use of

the instrument.

A convenient zero on X'Y' is thus suggested. The plane
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through G'D and PQ (Fig. 113) will always cut X'Y' in the same

diameter no matter how the instrument be used. Let it be

agreed that the extremity of that, diameter which lies on the

same side of G'D as the object glass of the telescope shall mark the

zero of graduation on X'Y'.

In Fig. 114 we take 8 as the star on which the telescope is

pointed and therefore the arc SD must intersect iV'F in K the

zero of graduation. We thus have R'=KV. We also take

90° + r as the inclination of PQ to CD (Fig. 113), where r lies

between + 90° and - 90°. Hence in Fig. 114 we have D/Sf = 90° + r

and KS = r.

We have now to show how a and S can be expressed in terms of

the observed quantities R, R' and the four constants X, 0, r and q.

The required equations are obtained from the four right-

angled triangles NLS, NHS, VKS, VHS.
From NHS, NLS we have

sin NS sinHNS= sin HS \

sinNS cos HNS = sin HN cos Hsi (i).

cosNS = cosHN cos HSI

sin NS sin LNS = sin LS "j

siniV)ScosZi\^iS=siniiVcosi<Sf I (ii).

cos NS= cos LN cos LS J

LNS + HNS = 180° -e,

sin LNS= sin 6 cos HNS + cos 6 sin HNS,

cos LNS= - cos ^ cosHNS + sin sin HNS,

and substituting these values in (ii) we have by virtue of (1)

sin i/Sf = cos sin HS + sin 6 cos HS sin HN\

sin LN cos LS = sin 9 sinHS - cos 6 cos HS sinHN I . . . (iii).

cos LN cosLS= cos HS cosHN J

These equations express the sides LS, LN of the quadrilateral

SLNH, right-angled at L and H, in terms of the other two sides

and the exterior angle at N.

Similarly from SKVH, right-angled at K and H, the exterior

angle at V being 90° + q, we have

sin HS= - sin 2 sin KS + cos q sin ^F cos KS \

sinHVcosHS= cosqsin KS + sin q aiaKV cos KS V...(iv).

cosHVcos HS=^ cos KVcos KS J
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As HN=R-BV,
COS HS COSHN= cos R cos HS cos HV + sin R cos ffS sin ^'F

and

cos HS sin ZfiV= sin R cos iffS cos S'F - cos R cos ^S sin RV.

Substituting these values in (iii) and reducing by means

of (iv) we have

sin LS= — cos sin q sin KS + cos 6 cos q sin ^Fcos KS
+ sin ^ sin R cos Z'Fcos iT/S — sin cos iJ cos q sin ^S
— sin 6 cos i? sin g' sin ^Fcos KS,

sin ZiV^ cos LS = — sin 6 sin ^ sin ^/Sf

+ sin 6 cos g' cosKS sin^F
— cos sin iJ cos iTFcos KS
+ cos ^ cos R cos g sin KS
+ cos ^ cos R sin g cos ^/S sin KV,

cos ZiV cos LS = cos jB cos Z'F cos Z'S

+ sin R cos g sin KS
+ sin iJ sin q cos ^(S sin -E^F

Let M (Fig. 114) be the origin of the spherical coordinates,

and let ML (= a) and LS (= 8) be the coordinates of S. As
MI{ is \ we have

LN=\-a. and irS = r, KV=R'.
With these changes we obtain the following fundamental

formulae for the generalized instrument.

...(1).

sin S = — cos sin q sin r

— sin cos q sin r cosR
+ cos ^ cos q cos r sin iJ'

+ sin cos r sinR cos iJ'

— sin sin g cos r cos i? sin i2'^

sin (X — a) cos 8 = — sin sin g sin r

+ cos cos g sin r cos i?

+ sin cos g cos r sin i2'

— cos cos r sin i? cos R'

+ cos sin q cos r cosR sin i2'

cos (\ — a) cos S = + cos q sin r sin ii -i

+ cos r cos RcQsR' I
. , . (3).

+ sin q cos r sin i2 sin R' J

y...(2).
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The required quantities a and S can be calculated by these

formulae from the observed quantities R and R', it being assumed
that the constants of the instrument, viz. 0, X, q, r, are known.

Ex. 1. The sum of the squares of the three left-hand members of the
equations (1), (2), (3) of the generalized instrument is equal to unity. Verify

that the same is true of the sum of the squares of the three right-hand

members.

Ex. 2. Determine what the equations of the generalized instrument

become when axis I is perpendicular to axis II (2'=0) when there is no error

of coUimation in the telescope (r=0) and when ag, Sqj the coordinates of the

nole of circle I, are the only instrumental constants in the expressions.

It is obvious that \=90°-|-ao and 5= 90°- Sq, whence eliminating X and d

and making q=r=0 the equations (1), (2), (3) become

sin 8= sin Sq sin R'+cos So sin B cos R',

cos (ao— a) cos S= cos So sinR'- sin So sin R cos R',

sin (ao— a) cos 8= — cos R cos R'.

Ex. 3. Show that q+r=0 is the condition necessary that the telescope

of the generalized instrument can be directed by a real setting of R and R' to

the nole of circle I and that q — r=0 is the similar condition for the antinole.

Ex. 4. If a, 8 be the coordinates of the nole of circle II while the

instrument is so placed that R is the reading of circle I, show that

sin 8= cosflsing-l-sin ^cosg'cosiJ,

sin (\ - a) cos 8= sin 6 sin q— cos 6 cos q cos R,

cos (X — a) cos 8= — cos q sin R.

If r= — 90° in the fundamental equations (1), (2), (3) ; it is plain that the

telescope is invariably directed on the nole of circle II. If r had been made

-f 90° then we should have found the coordinates of the antinole of circle II.

Ex. 5. If p be the arc from the nole of circle I to the star to which the

telescope is pointed when the reading on circle II is B!, show that ,

cosp= -sing'sinj'-l-cosg'cosrsiniJ'

and explain whj' R is absent from the expression.

Ex. 6. Find the region on the celestial sphere within which an object

can be reached by the generalized instrument.

We see from Ex. 5 that the extreme values of cos p correspond to

^'=-90° and ^'=-f90°,

whence at the limits

cosp= cos{(90°-|-r)-K90°-5)} and cosp= cos{(90°-|->-)-(90°-2')}.

If therefore circles on the celestial sphere be described with radii {q-\-r) and

180° -(j-r) respectively, and the nole of circle I as centre, then the zone

between these circles will be the region of visibility.
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Ex. 7. Let Pi, Pg Ibe two diametrically opposite points on the celestial

sphere and let R' be the reading of circle II when the generalized instrument

is directed to Pi. Show that the instrument cannot be directed to P2

unless

cos2^ (90— iS
') 4: tan q tan r (if tan g' tan r> 0),

sin^l (90 - ^') .^ - tan q tan r (if tan ^ tan r< 0).

Ex. 8. Show how the absence of 6 from Equation (3) is to be accounted

for geometrically.

143. Inverse form of the fimdamental equations of the

generalized instrument.

We refer again to Fig. 114 where, in addition to the notation

already explained, we now take NN^ = 90°, in which case it is

easily seen that the coordinates of N^ are X + 90°, 6. Then
remembering that the cosine of the distance between a, B and

a', S' is

sin 8 sin B' + cos S cos 8' cos (a — a')

we have, by substituting the coordinates of S, B, N, N^, the

equations

cos SB = sin S cos 6 + cos S sin 6 sin (X, — a),

cos SNo = sin S sin — cos 8 cos sin (X — a),

cos SN = cos S cos (\ — a).

But we can obtain other expressions for cos SB, cos Sl^ot

cos SN.
In the triangle BDS the angle BBS = 90° -R', for since Fis

the pole of BD we have VDB = 90°, and as B is the pole of KV
we have VDK= B'. Hence

cos SB
= cos(90°-g)cos(90° + r-)

+ sin (90° - q) sin (90° + r) cos (90° - R')

= — sin g sin r + cos q cos r sin R'.

From the triangle SVN we have

cos SN = cos ;SfF cos iVF+ sin SVsin NVcos (90° -g - SVK)
= cos SVcosNV+ sin iVF sin q sin SVcos SVK

+ sin iVF cos q sin SVsin SVK
= cos r cos R cos R' + sin q cos r sin R sin R'

+ cos q sin r sin i2.
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By writing R — 90° for R in this expression we get the value

of cos SN'o, viz.

cos SN'o = cos r sin R cos R' — sin q cos r cos R sin iJ'

— cos q sin r cos iJ.

Equating the three sets of expressions to those already obtained

for the three quantities we have, from the values of cos SB,

cos SNo, cos 8Ii respectively

cos 6 sin.S + sin cos S sin (X — a)

= — sin q sin r + cos q cos r sin R'l

sin ^ sin S — cos ^ cos S sin (\ — a)

= cos r sin R cos iJ' — cos q sin r cos iJ — sin g* cos r cos i? sin R'

(ii),

cos S cos (\ — a)

= cos r cos iJ cos R' + cos g sin r sin ii + sin q cos r sin R sin iJ'

(iii)-

These equations may be written in the equivalent form

cos q cos r sin R' = sin q sin r
i

+ cos^sinS I (iv).

H- sin ^ cos S sin (\ — a)J

cos r cos i2' = sin sin S sin i2 -i

— cos ^ cos 8 sin (\ — a)sinJ?l (v).

+ cos S cos (\ — a) cos iJ J

sin r= — cos ^ sin q sin S

— sin sin g- cos S sin (\ ^ a)

+ cos q cos S cos (X — a) sin ii I ^vi).

— sin cos q sin S cos i2
j

+ cos cos g' cos S sin (A- — a) cos RJ

These can, of course, also be deduced from the three formulae

(1), (2), (3) already given in § 142. The present forms are useful

as they contain the solution of the inverse problem in the theory

of the generalized instrument, viz. given a and S find R and R'

when the quantities 0, \, q, r are known.
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Ex. 1. Let a,, §1 and 02, 83 be the celestial coordinates of two stars and

let Ri, El and H^, B2 be the corresponding pairs of readings of the generalized

instrument. If we write

4 1= cos 3 sin r sin iJi+ cos r cos iSi cos A'+sin 2' cos ?• sin iJi sin ^1',

5i= cos y sin r cos iJi - cos r sin iJj cos iE/+ sin g' cos ?• cos iJi sin iJi',

Ci= cos q cos r sin Ri — sin g sin ;,

and also similar expressions with the sufSx 2, prove that

sin Sj sin S2 +oos Si cos Sj cos (ai - aij^AiA^+ B^B^+ CiC'i.

It is easy to show that A-i, Bi, Cj are the direction cosines with respect to

the rectangular axes OJV, ON^, OB of the line OS, where is the centre of

the celestial sphere and Si the star whose coordinates are a^, Sj.

Ex. 2. If J„, B^, Co be the values of A, B, C for a standard point oq, $ot

show that the errors Aa, A8 in the coordinates of any other point a, 8 arising

from an error ARin the determination of R satisfy the relation

{cos 8 sin 80 - sin 8 cos 80 cos (a- oo)} A8 - cos 8 cos 80 sin (a- ao) Aa

= (BAo-ABo)aR.
For we have

sin 8 sin 80+ cos 8 cos Sq cos (a- ao)=^^o+ BBq+CCq.

Differentiating with respect to R, and noting that

dA ^ ,dB , dC ^^=B^nd^=-A; g^=0,

we obtain the required result.

Ex. 3. Show that the equations of the generalized instrument may be
expressed in the form

cos g' cos ?• sin i2'=i+sin2'sinr,

cos r cos R'=M sin R+JV cos R,

8mr= —Zainq-McoaqcosR+NcoaqsmR,
in which

Z=cos5sin8+sin^cos8sin(\-a),

M= sin ^ sin 8 - cos S cos 8 sin (X— a),

JV= cos 8 cos (X - a).

Ex. 4. Show that

tan/2'= +i l/cos(g->-)+A^ _ /coa(q +r)-L\h
-^ IVcos {q+r)

-

L) Vcos {q-r) + Lj j'

where L has the same meaning as in the last question.

Ex. 5. Show how the quantities q, r can be determined when the read-

ings R^, R^ and iJ,, R^ for each of two opposite points have been obtained.

It is easily seen that we have two equations

F tanrcosg+f? sin2'4-5'=0,

i^'tanrcosj+G"sing'+jff'=0,
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where F, Q, H, F', G", H' are known quantities and by solution of these

equations we obtain both tan r cos q and sin q.

There are thus two possible solutions, viz. q^, r^ and 180° — joi 180° -ro,

but as j-Q lies between +90° and -90° we can determine which pair of roots

is to be taken.

Ex. 6. Show that for every real point on the celestial sphere except the

nole and antinole of circle I the corresponding readings R and R' will be

either both real or both imaginary and that in the excepted cases R' is

indeterminate.

We have, Ex. 3,

MainR+Ncos R=cos r cos R'

— J/^cos iJ+iV'^sin R=sm r cos q + sin q cos r sin R'.

If siniJ', cos 5' are both real, siniS and cosiJ are both real and vice versa,

unless in the case when M=0 and jy=0. See Ex. 8.

Ex. 7. Show that if R' satisfies the equations (iv), (v), (vi), then 180°-^'

will also satisfy them.

This is obviously true for (iv) and to prove it for (v) and (vi) we square

and add the equations of Ex. 6, and replacing M and J^ by their values and

observing that Z^+ M^+J/^^=l we have as the result of the elimination of R
l=i^+cos2rcos^.B'+ (sinr cos 2+ sin q cos ?• sin R'y,

but this if true for R' is true for 180°-^'.

Ex. 8. Show that, in general, the telescope could not be directed to the

nole of circle I unless the reading on that circle indicated one or other of the

imaginary circular points at infinity.

In § 142, Ex. 2 we have mentioned that the coordinates of the nole of

circle I are given by a=X— 90° and 8= 90° -5, and on substituting these in

M= sin 5 sin 8 — cosflcosS sin (\ — a) and JV=cosScos(X —a)weseethatJf=0
and iV"=0. To satisfy under these conditions the equations

ifsin ^+iVcos^= oos?'cosi?'

— J/^cosiJ+iV^sin iJ=sinr cosg+ sin g' cos ?• sin .ffi',

we must have sin^ or cos R infinite. In this case tan R= ±i and R must be

one of the imaginary circular points at infinity.

144. Contrast between the direct and the inverse prob-

lems of the generalized instrument.

We are now to notice a fundamental difference between the

direct problem of finding a and 8 when R and R' are given and

the inverse problem of finding R and R' when a and 8 are given.

In the former we introduce the observed values of R and R'

into the equations (1), (2), (3), § 142, and remembering that

- 90° :j> S ::)> 90°,
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we obtain a and S from the three equations without any ambiguity.

This is the direct problem which has therefore always one solution

and only one.

But in the inverse problem a and 8 are given and we are to

seek R and R' from the equations (iv), (v), (vi), § 143. There are

two solutions, real, imaginary or coincident, to this inverse problem,

so that if the generalized instrument can be pointed on a star in

one way it can, in general, be also pointed on the same star in

quite a different way. It may not be possible to direct the

instrument on the star by any real setting, but if it is there are

generally two totally different dispositions of the instrument by

which the star can be observed. There are thus two different

pairs of values for R and R' which equally correspond to one

pair of values for a and B.

From the equation (iv), § 143, we can determine sin R', and

if this is :|> 1 we can satisfy (iv) by either of the two real angles

R' and 180° - R'. Introducing the first of these supplementary

values into (v) and taking this in conjunction with (vi) we have

two linear equations from which both sin 22 and cos i? are deter-

mined, and thus R is known without ambiguity as to its quadrant.

The value of R so found we shall term R^.

When 180° - R' is substituted in (v) the equation so obtained

if taken in conjunction with (vi) will, in like manner, give another

value of R which we shall term R^ (§ 143, Ex. 7). Thus for given

values of a, S we have two solutions, viz, R', R^ and 180° — R', R^,

and we learn that if there is one then there are generally two

different positions in which the generalized instrument can be

pointed upon a given star. One of these is called the right

position and the other the left, and the operation of changing the

instrument from one of these positions to the other is called

reversal.

Ex. 1. Show that the expression

— cos q sin r cos R+ cos r sin R cos ^ '— sin g' cos r cos R sin B'

does not change if the generalized instrument be reversed and redirected to

the same point of the celestial sphere, and explain the geometrical meaning of

the fact.

We see from (ii), p. 441, that the given expression is equal to

sin 8 sin fl — sin (X - a) cos S cos 6.
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Ex. 2. Show that the expression

cos (X- a) sin ^— sin 5 tan 8 cos iE+ cos ^ sin (X - a) cos iJ

has the same value whether the generalized instrument is in the right position

or in the left when set on the star a, 8.

Ex. 3. If X, 6 be respectively the longitude and inclination of the

ascending node of the circle I of the generalized instrument with respect to

the circle of reference, prove that

am^(Ri + R2) [sin 5sinS-cosflcosSsin(X-a)]

+ cos J(^i+^2)cosScos(X-a)=0,

where ^i and R2 are the readings of circle I in the right and left positions

when directed on the same point of the celestial sphere, and account geo-

metrically for the absence of q and r from this equation.

Ex. 4. Let ^1, iJj be the readings of circle I when the instrument is

directed on the same star in both right and left positions respectively, it

being understood that the coordinates of the star have not changed in the

interval. Let Ri, R^' be the corresponding readings of circle II. Prove the

general formula

cos 3 sin r sin ^ (^1— R^) + sin q cos r cos J (Ri — R^) sin | {R^ - R2)

- cos r sin J (iJ/ - R^) cos \{Ri- R2)= 0.

145. Determination of the index error of circle II in

the generalized instrument.

The first constant of the instrument which must be determined

is the so-called Index error of the graduation with respect to the

pointer or microscope by which the movable circle X'Y' is read.

The index error is the constant quantity which should be added to

the observed value of R' so as to obtain the value which R' should

have if the instrument were geometrically perfect.

Let us suppose this error to be A, and we are to understand

that the correction to be applied to the observed reading R' is A,

so that R' + A is to be the geometrical arc KV (Fig. 114), i.e. the

quantity which we have hitherto taken to be R'.

Let the telescope be directed upon some distant mark and let

the reading be iJ/, then the corrected reading becomes jR/ -1- A.

Next let the instrument be reversed and directed again on the

same mark, which is presumed to have remained unaltered. Let

the reading of circle II be now R^', then since the correction

applicable to the observed reading is always the same in the same

instrument, we see that the corrected reading will be i?/ + A.
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As already shown in § 144, sin R' is not changed by reversal,

i.e. the two values of R' in a perfectly adjusted instrument would

be supplemental. Hence

i2i' + A+i?; + A = 180°,

or A = 90°-H-S:i' + -K2') (i).

Thus from a single pair of right and left readings on a distant

object we determine A.

If the distant mark be a star it is to be noted that the diurnal

movement of the heavens will in certain cases make the co-

ordinates of the star different in the second observation from what

they were in the first. The following procedure will generally

suffice to remove this difficulty.

There are to be two observations of the " star " in the " right

"

position and one observation R^ of the same star in the " left

"

position at a moment which is midway between the two right

observations. The mean of the two former is to be taken for R^.

Thus we can eliminate the effect of the diurnal motion for most

practical purposes.

The determination of this particular instrumental constant is

so simple that in what follows we shall always presume that the

correction has been made so that the R' of our formulae is indeed

the arc ifF of Fig. 114. The index error of circle 1 ov XY
(Fig. 113) cannot be determined until certain other constants con-

nected with the instrument have been investigated.

146. The determination of q and r by observations of

stars in both right and left positions of the instrument.

Let Ri and R^ be the readings of circle I in the right and left

positions of the instrument when directed to the same distant

mark, it being understood that if the mark is a star the effect of

any apparent movement is to be eliminated in the way already

explained. It will be shown that the index error of circle I has

no effect on the finding of q and r by the present process and

therefore we may regard it as zero, while the index error of

circle II we have already corrected. We shall now write the

formula for sin 8 ((1) § 142) for both the right and left positions.

We have for the right position
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sin S = — COS sin q sin r

— sin cos q sin r cos ^i

+ cos 6 cos q cos r sin R'

+ sin cos r sin iJj cos ii'

— sin 6 sin g' cos r cos i?i sin R',

and for the left position

sin 8 = — cos sin q sin r

— sin cos g sin r cos iJg

+ cos cos g' cos r sin R'

— sin cos r sin iJ^ cos R'

— sin ^ sin q cos r cos iJj sin R'.

Identifying these two values of sin 8 we find the terras

involving cos 6 disappear, so, omitting the case of sin ^ = 0, we
may divide by sin 6 and obtain the result

^sinj(i2i + ie,) = 0,

in which A is an abbreviation for

(cos qsinr + smq cos r sin R') sin ^ (R^ — R^)

+ cos r cos R' cos | (R^ — R^.

In like manner we obtain for the right position of the

instrument (2), § 142,

cos (\ — a) cos 8 = cos q sin r sin R^

+ cos r cos i?i cos i?'

+ sin q cos r sin i^i sin R',

and for the left

cos (\ — a) cos 8 = cos g' sin r sin R^

— cos r cos -Ra cos jB'

+ sin q cos r sin R^ sin i?'.

Identifying these expressions we have

^cosi(^i+A)=0.
But we have already seen that

Asm^{R^+R^) = 0,

by squaring and adding we see that J. = or

(cos g sin r + sin q cos r sin R') sin ^ (i?i — R^
+ cos r- cos R' cos ^ (i2i — R^ = 0.
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As Ri and R2 enter only in the combination B1 — R2, the index

error of circle I has been eliminated. "We thus obtain a formula

showing how the two internal constants q and r may be found by

observation. As a and S are absent, the formula does not depend

on the star or mark chosen, while \ and 6, which define the aspect

of the instrument, also vanish.

If for brevity we write

^ = sin i (R, -R,); B= sin R' sin \ (R^ - R^)
;

G= cos R' cos ^ (Ri — jRa)

;

the equation may be expressed

A cos qsmr + B sin q cos r + G cos r = 0,

in which A, B, G involve only quantities known by observation.

The same operation applied to another star or mark will give a

similar equation

A' cos q sin r + B' sin q cos r+G' cos r = 0,

whence (BA' - AB') sin q= AG'- GA'.

We thus learn sin q and consequently there appear to be two

supplemental values for q of which either will satisfy the required

conditions. We have, however, agreed that 90° — qis the inclination

of circle II to circle I and it is a convention (p. 33) that the angle

denoting an inclination shall lie between 0° and 180°, so that q
must be between — 90° and + 90°. Accordingly we can distinguish

which one of the two supplemental angles must be taken, and thus

q is known without ambiguity. We find also

(AC - A'G) tan r = (B'G - BG') tan q.

From this r is known, for as between r and r + 180° we choose

the value which lies, as r must lie, between — 90° and + 90°.

Thus q and r, the two internal constants of the generalized

instrument, may be determined.

147. Determination of \ and 6.

The determination of these quantities may be made by means
of formula (iv) of § 143, which can be written

.Z sin S + Fcos S cos a + ^cos S sin a

+ sin g sin r - cos g' cos r sin iJ' = (i),

where Z = cos^, 7= sin ^ sin X, Z= - sin ^ cos \.
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We have just shown how g- and r may be determined, so that

if E be observed and corrected for index error (§ 145), and if

the star is one whose coordinates are known, then all the co-

efiScients in equation (i) are known. Two other known stars will

provide two more such equations and thus we have three equa-

tions of the first degree from which X, F, Z can be determined.

As cos^ is thus known and 0"
:t>^ :j> 180°, we see how 6 is

definitely determined, and as Y and Z are known, then sin \ and
cosX are known and therefore A. is also known. Of course as in

other parallel cases we require both sin X and cos \. If only sin X
was given there would be nothing to show whether the required

angle was X or 180° — X. If only cosX was given there would be

nothing to show whether the required angle was X or 360° — X.

Ex. Show that in the three fundamental equations (1), (2), (3) (§ 142)

we may substitute for R' the expression %Q° ->r\<^R{ - B4), where R-l and R^
are the readings of circle II when the telescope of the generalized instrument

is set on the star a, d in the right and left positions respectively.

Show that when this substitution has been made the equations are true

whatever be the index error in circle II, though the equations are not true in

their original form if there is any index error in circle II.

148. Determination of the index error of circle I.

We have shown how q, r, X, 6 can be determined and also the

index error of circle II, so that the angle R' as it will be now
employed is a known angle, for it is the reading of circle II to

which the known correction for index error has been applied. To
complete the theory of the generalized instrument it remains to

show how the index error of circle I can be determined by obser-

vations of a star a, S in both the right and left positions of the

instrument.

From the equation Ex. 3, § 143, we have

cosrcos-R' = l/siniJ-f-iVcosi? (i),

where ilf= sin ^ sin S - cos 6 cos S sin (X - a),

N = cos S cos (X — a).

This formula is only true if the quantity iJ be iZj -f- y, where
Ri is the actual observed angle on circle I and y is the index
error which has to be added to Ri to produce the true distance

iVF (Fig. 1 1 6). We thus have

cos r cos R' =M sin (R^ + y) +N cos{Ri + y) (ii).

B. A. 29
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If the instrument be reversed and directed again on the same

star a, 8, we know that R' is changed into 180° - R', the reading

i^i becomes R^ and y is unaltered, whence

- cos r cos R' = If sin (R^ + y) +N cos (R^ + y) (iii).

In equations (ii) and (iii) both M and N are known, for as the

place of the star is known a, S are known. The observations give

R', Ri, Ri. There are therefore two linear equations in sin y and

cos y in which the coefficients are known. From these sin y and

cos y are determined, so that y is ascertained without ambiguity.

We have thus shown how all the constants of the generalized

instrument may be ascertained.

*149. On a single equation which comprises the theory

of the fundamental instrunaents of the Observatory.

Let «i. Si be the coordinates of a star Si, for which the readings

of the generalized instrument are R^, R^'. In like manner let a

second star S^, with coordinates a^, ^2, have the readings R^, R.2.

The coordinates may be altitude and azimuth, or right ascension

and declination, or latitude and longitude, or any other system.

For the cosine of the angle between the two stars we have the

expression

sin 8i sin S^ + cos Si cos Sg cos (oi — Hj),

which may be written

sin Si sin 8^ + cos Si cos Sj cos
{
(X — ai) — (\ — Oa) }

.

From the general formulae of (1), (2), (3), § 142, we can substi-

tute in the expression just written for sin Si, sin(\ — Oi) cosSj,

cos (X — Hi) cos Si their equivalents in terms of iii and Ri', and

the constants of the instrument 6, q, r. In like manner we can

substitute for sin Sj, sin (X, — a^) cos Sa, cos (X — a^) cos Sj their

equivalents in terms of R2 and i?/ and 0, q, r, and thus obtain an

expression for the cosine of the angle between the two stars in

terms of R^, R^', R^, J?/ and the constants of the instrument.

The work may be simplified by observing that cannot enter

into the result, for it is obvious that the angle between the two

stars must be independent of the position of the fundamental

circle with regard to which the coordinates are measured. It is

therefore permissible, for this particular calculation, to assign to 9

any arbitrary value we please without restricting the generality
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of the result. If we make 0=90° the equation becomes as
follows

:

sin Si sin Sa + cos Sj cos S^ cos («! — a^)

= (- cos q sin r cos R^ + cos r sin R^ cos i?/- sin ^ cos r cos i?i sin ij/)

X (- cos g- sin r cos i?2 + cos r sin ii^ cos RJ - sin g cos r cos iJ^ sin i2/)

+ (cos q sin r sin R^ + cos r cos R^ cos i?/ + sin q cos r sin R^ sin i2/)

X (cos q sin r sin Ka + cos r cos ii^ cos R^' + sin g' cos r sin iJ^ sin R^')

+ (- sin g' sin r + cos q cos r sin R^'} (- sin g- sin r + cos q cos r sin i?/),

which gives the following fundamental equation :

sin Sj sin B2 + cos Si cos 83 cos (a^ — a^)

= + sin^ q sin^ r

+ cos^ g sin^ r cos (i?i — iia)

+ cos^ q cos'' r sin R^' sin jRa'

+ cos^ r cos i?i' cos R^' cos (i2i — iJj) (i).

+ sin^ q cos^ r sin i2/ sin iig' cos {R^ — jR^)

+ cos- r sin g sin (iJj — R^) sin (i?/ — R^')

+ cos g sin r cos r sin (iii — R2) (cos iJj' — cos J?/)

+ sin g cos q sin r cos r (cos (J?i — i^a) — 1 }
(sin R/ + sin R^').

It is obvious that a rotation of circle I in its plane must be

without effect on the distance S^S^. Hence R^ and R^ enter into

cos SA only by their difference R^ — R^ and consequently the

index error of circle I does not enter into the expression. We
might indeed have further abbreviated the work by making iJj =
before multiplying to form the equation (i) if after the multipli-

cation we replaced R^ by (R^ — R^). We may suppose that the

index error of circle II is A, in which case iJ/ and R^' should be

replaced by R^ + A and R^ + A. We have already shown how A
might be found by right and left observations of the same object.

It may, however, be determined otherwise, as will presently appear,

By assigning suitable values to q and r, this formula can be

made to apply to the following astronomical instruments:—the

altazimuth, the meridian circle, the prime vertical instrument, the

equatorial, and the almucantar. We shall see later that for the

meridian circle q and r should be each as near zero as possible,

and for the almucantar q is the latitude and r quite arbitrary.

The following general proof will show that the complete theory of

each of the instruments named must be included in this one formula.

29—2
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From any such instrument we demand no more than that the

two readings R and R' obtained by directing the instrument to

any particular star shall enable us to calculate the coordinates a, S

of that star free from instrumental errors.

Let Si, S2, S^ be three standard stars of which the coordinates

are known, and let each of these stars be observed with the

generalized instrument with results i?i, i?/; R^, R^ ; R3, R3

respectively. Substituting for each of the three pairs {S^ S2),

(SiSs), (S3 Si) in the typical formula {i), we obtain three inde-

pendent equations. From these equations, q, r, and A can be

found. Nor will there be any indefiniteness in the solution, for in

each case we may regard these quantities as approximately known,

so that to obtain the accurate values of q, r and A we shall have

to solve only linear equations. We may thus regard (i) as an

equation connecting Ui Sj, a^ i^, Ri, Ri , R^, R^, and known
quantities.

Let S be the star whose coordinates a, S are sought. We
write the equation (i) for the pair (S Si), and substitute their

numerical values for Ui, Sj, Ri, i?/. We thus have an equation

connecting the coordinates a, S of any star with its corresponding

R, R' and known numerical quantities. When we substitute for

R and R' the values observed for S, the formula reduces to a

numerical relation between the a and B of the particular star S.

From the pair (S S2) we find in like manner another quite in-

dependent numerical equation involving a, S. A.s, however, two

equations are not generally sufficient to determine a, S without

ambiguity, we obtain a third equation from {SS3). This equa-

tion is not independent of the others, but if we make x = sin S,

y = cos 8 cos a, z = cos 8 sin a, we shall obtain three linear equa-

tions in X, y, z by the solution of which a and S are found without

ambiguity.

All the ordinary formulae used in connection with the different

instruments named can be deduced as particular cases of the

general equation (i).

Ex. Show that if q and r be small quantities such that their second and

higher powers may be omitted, formula (i) may be written as follows

:

sin §1 sin 82+ cos Si cos S2 cos (ai - 02)

= cos Ri cos R{ cos {Ri - R^ + sin Ri sin R^

+ q sin {Ri - R^ sin (iJ/ -R^)->rr sin {Ri - R^) (cos R4 - cos ^i').
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*150. Differential formulae in the theory of the generalized

instriunent.

If the angle \, see § 142, were increased by a small quantity

AX while 6, q, r were all left unchanged, then the readings

R and R of the instrument when directed upon a star a, S would

in general be affected by certain changes Ai2 and AiJ'. In like

manner if 6 were changed to + AO while X, q, r were left

unaltered, then R and R' would also undergo certain small changes.

The dotted lines in Fig. 116 show the modification the figure

receives when the changes indicated have been made.

If the changes in X and were made simultaneously, then

AR and AR' will be each linear functions of AX and Ad. Of

course it will not, in general, be the case that either AR or AR' is

zero. As however AX and Ad are both arbitrary, there must

obviously be some ratio between these quantities which would

make the resulting value of AR' zero. We shall now investigate

in this case the relations between AX, A0 and AR. .

For this we have to find the effect upon the coordinates of a

small change in 0. As the position of S with respect to the funda-

mental circle is unchanged and as the figure SKV and the angle

90° — q are unaltered by the changes of X and (for AR' = 0), we
see that the figure SKVN receives a small rotation -q about 8,

bringing N to N". Let be the nole of MN. Then as MF is

the fundamental circle of reference it will remain unaltered by

this rotation and therefore is unaltered. But the rotation

about 8 will move NV and thus B, the nole of NV, will be con-

veyed to B', where 8B' = 8B and B8B' = r,.

The angle between NY and NN" must be equal to BO, the

arc between their noles. Hence after the rotation' about >Si we
have OB' as the altered value of 0. Let fall B'Q perpendicular on

OB, then the difference between OB' and OB is BQ, and hence

Ae = BQ = B'B cos B'BQ = B'B sin 8BT
= 7, sin 8B sin 8BT = v sin 8T,

where 8T is the production of 1^8, for iV" is a pole of OB, but

7] sin ST = 7] cos N8 = rj cos (X — a) cos S,

whence A0 = tj cos (X — a) cos S.

We have next to express AX and AR by means of r].
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If iV be the new position of the point originally at N and N"
the new position of the ascending node of NV on MN, then

Z N'N"N==180°-d,

but N'N"= NN' sinN'^W cosec d,

or sin 6AR = rj sin SN cos SNL,

whence sin OAR = rj sin (A, — a) cos 8.

If, finally, a perpendicular iV'iV"'" is drawn to MN, then

NN"' = NN" + N"N"',

7] sin iV/S sin SNL = AX + cos 6A.B,

or rj sin S = A\ + cos OAR.

Thus we obtain the three formulae

A6 = 7) cos (\ — a) cos S \

sin ^Ai? = 7j sin (X — a) cos S [ (i).

Ax + cos 6AR = 7} sin S )

We shall now investigate the effect upon a and S of a change

of into + Ad, it being supposed that X, q, r, R, R' remain

unaltered while this change takes place. The change is of course

equivalent to a rotation of the figure NVK8 round N through an

angle A6 while this figure remains unaltered in form.

NS is unchanged and S moves perpendicular to NS through

the small distance sin NS . Ad, it is obvious from the figure that

this increase of 6 diminishes the declination by

sin NS sin NSLA0 = sin (X - a) A6.

We thus obtain

AS = -sin(X-a) Ad (ii).

We have also

Aa = — cos (X — a) tan hA6 (iii).

*151. Application of the diflferential formulae.

The formulae (i), (ii), and (iii), § 150, will enable us now to

deduce from the first of the formulae for the generalized instrument

(1), § 142, the remaining formulae (2) and (3).

The first formula is

sin 8 = — cos 6 sin q sin r

— sin 6 cos q sin r cosR
+ cos cos q cos r sin i2'

+ sin cos r sin R cos R'
— sin sin q cos r cosR sin R\
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As this must be universally true it must be true if d be increased

by A^ while S receives its corresponding variation. Performing

the differentiation, substituting for AS from (ii) and dividing by

A^, we have

sin (\ — a) cos S = — sin ^ sin q sin r

+ cos 6 cos q sin r cos R
+ sin d cos q cos r sin M'

— cos 6 cos r sin R cos R'

+ cos sin q cos r cos R sin i?'.

Thus we see how the first leads to the second of the fundamental

formulae (2), § 142.

Finally let the equation just obtained be submitted to the

differentiation as already explained in § 150 with respect to Ad,

A\, A-B, all other quantities remaining constant, and we have

cos (A, — a) cos SAX

= sin SA^ — (cos q sin r sin R + cos r cos R cos R'

+ sin q cos r sin R sin R') cos dAR.

Eliminating Ad, AR, AX by equation (i), § 150, we obtain the

third of the three fundamental formulae for the generalized

instrument, § 142, viz.

cos(X — a)cos S= cos g' sin r sin i?

+ cos r cos R cos R'

+ sin q cos r sin R sin R'.

Thus we see how the third of the three fundamental formulae may
also be deduced from the first.

152. The generalized transit circle.

An important case of the generalized instrument is that in

which axis I is simply the earth itself If the equator is taken

as the fundamental plane MN, Fig. 114, then since this is normal

to the earth's axis we must have ^ = 0, and with a suitable

adjustment of the origin the coordinates a, S will become the R.A.

and decl. The pointer which is carried with the earth in the

diurnal rotation will indicate on circle I (in this case the celestial

equator) a reading R which can differ only by a constant from the
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sidereal time ^. This constant may be included in \ and thus

the fundamental equations (§ 143) become

cosg'Cos»-sini?'= sin g' sin r + sin S
1

cosrcosi2'= cos S cos (^ + A. — a) V (i).

sin r = — sin q sin S + cos q cos S sin (^ + \ — a) J

We may distinguish this case of the generalized instrument as

the generalized transit circle.

To find expressions for the right ascension a„ and the declina-

tion S„ of the nole of circle II in the generalized transit circle we

observe that if r had been — 90° the telescope would be necessarily

always pointed to a„, So, and therefore by substitution of — 90° for

r in equations (i) they must be satisfied by «„, So whence

— sin gj + sin So = ; cos S„ cos (^ + X — ao) = ;

sin q sin So — cos q cos So sin (^ + X — Oj) = 1.

From the first we obtain S„ = g' for we reject the solution

180° — g' because — 90° :j> g' :( 90°. The second equation requires

that Sr + X — Oo shall be either 90° or 270°, and of these the former

is inadmissible for it would not satisfy the third equation. Hence

for the coordinates of the nole of circle II we have

ffo = Si- + X - 270° ; S„ = g,

and equations (i) may be written thus :

cos So cos r sin J?' = sin So sin r + sin S
1

cos r cos R' = cos S sin (a, — a) > (ii).

sin r = — sin So sin S — cos So cos S cos (ao — «) J

When the generalized transit circle is still further specialized

to form the meridian circle of our observatories the telescope must

be at right angles to axis II, so that r = and axis II must lie

due east and west. The instrument may be in two positions

according as the nole of circle II is in the east point of the horizon

or the west point. In the former case a(| = ^ + 90°; So = 0, and

equations (ii) become

sini£' = sinS; cos iJ'= cos S cos (a — ^); cos S sin (a — &) = 0,

from which we have two solutions, viz.

a = a- ; S = R',

and also

a = ^ + 180°; S = 180°--B',
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the first solution corresponding to the upper culmination and the

second to the lower.

If the nole of circle II be at the west point ofo = ^ — 90° ; So = 0,

then equations (ii) become

sin R' = sin S ; cos R' = — cos S cos (a — Sr) ; cos 8 sin (a - ^) = 0,

and there are, as before, two solutions,

a = ^ ; 8 = 180° - R',

a = ^ + 180°; B = R',

the first corresponding to the upper culmination and the second to

the lower.

In the instrument known as the prime vertical instrument

axis II is also horizontal but it lies due north and south, we also

have r = and the nole of circle II coincides with either the

north point ao = ^ + 180°; So = 9Q° — <j> or the south point «o= ^;

So = (^ — 90°, and the last equation of (ii) becomes in both cases

cos (^ — a) tan (/> = tan S.

If the telescope be fastened rigidly to a body floating on

mercury then axis II is vertical. In the actual instrument circle

II is not graduated, we may however assume graduations of

which the nadir is the nole, in which case «» = ^ + 180° ; So = — 4>-

The last equation of II becomes

sin r = sin ^ sin S + cos
<f>

cos S cos (^ — a),

where 90° — r is the constant angle between the zenith and the

point in which the axis of the telescope meets the celestial sphere.

This instrument is known as the almucantar, being so designated

by Chandler its inventor.

We thus see that when the generalized instrument is specialized

to become the meridian circle both r and q are zero. When it is

specialized to become the prime vertical instrument then r is zero

but q is not zero. W^hen it is specialized to become the almucantar

neither r nor q is zero. What are known as the errors of the

instruments will be considered in the next chapter.
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153. The reading of a graduated circle.

We shall first consider the theory of the graduated circle as

actually employed in the construction of astronomical instruments.

The circle so used is generally made of gun-metal and round the

circumference a thin strip of silver or other suitable metal is inlaid

on which the dividing lines or "traits" as they are often called

are engraved. The principal traits are numbered from 0° to 359°,

thus dividing the circumference into 360 equal parts or degrees.

Between each two traits there are subsidiary divisions. In some

of the finest instruments such as Pistor and Martin's meridian

circles there are no fewer than 29 subsidiary traits in every degree

and thus the circumference is really graduated to spaces of 2'.

It is however more usual in ordinary instruments to find traits

at only 5' or 10' intervals.

The further subdivisions of the circumference between two

consecutive traits are obtained, as will be presently explained,

by the help of microscopes, so that seconds and even tenths of a
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second can be taken account of. In small instruments such as

sextants the subdivision of the interval between traits is effected

by the vernier, a contrivance we may regard as generally known

from its employment in the barometer.

If the fixed pointer happened to coincide exactly with one of

the traits on the circle, then by the reading of the circle for that

particular position we are to understand the number of degrees

and minutes by which such trait is designated. It will however

most usually happen that the pointer is not in coincidence with

one of the traits. To read the circle under these circumstances

we require an artifice by which the spaces between the traits

can be subdivided. For this reason among others the pointer of

the generalized instrument is superseded in the meridian circle by

the spider line of the reading microscope.

The microscope is attached to a fixed support and is so

directed that its field of view shows a small

portion of the divided circle (Fig. 115). The

spider line AB is stretched across the focus

of the microscope and consequently the

images of two consecutive traits Ti and' T^

and the line AB are both shown distinctly

to an observer who looks through the eye-

piece of the microscope.

The measurement is effected by the line

AB, which by means of a carefully wrought

screw with a divided head can be moved parallel to itself and

.

perpendicularly to the axis of the microscope. The position of

AB is read by a scale which shows the number of complete revo-

lutions of the micrometric screw, and the divided head shows the

fractional part of one revolution which is to be added thereto.

When the position of the screw is such that its reading is zero

the line AB may be regarded as taking the place of the pointer.

We now moVs 4-S from the zero position and bring it to

coincidence with T, (< TX The reading of the scale and the screw-

head will then give the distance f5(?«i ^^^ pointer to T^, where

the unit is the distance AB advances in a singiG '}^9li^ti°'^ of t^®

screw. The value of this unit in seconds of arc is d^f^?^'^®^
as one of the constants of the instrument by measurement ~of
known angular distances by the micrometer. Thus we find the
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number of seconds and fractional parts of a second from 2^ to

the pointer. The quantity so found added to the degrees and

minutes proper to T^ gives the reading of the circle.

The single line AB may be advantageously replaced by two

parallel lines close together. In this case the instrument is set

for reading by placing the two lines so that the trait T^ lies

symmetrically between them. It is found that this can be done

with greater exactitude than by trying to bring a single line into

coincidence with the trait.

Ex. If when AB is placed on Ti the micrometer screw reads Jij and

when .4jB is placed on T^ the micrometer screw reads jij) find the reading

of the circle when the micrometer screw reads n. It is assumed that the

interval between two consecutive traits is 2'= 120", and that the reading of

the screw increases from left to right.

One revolution of the screw coiTesponds in seconds to 120"/(n2-ni) and

accordingly the reading is

ri + 120"(a-Ki)/(«2-»i).

154. The error of eccentricity in the graduated circle.

The error of eccentricity arises from the absence of coincidence

between the centre (Fig. 116) round which the circle was rotated

when on the dividing engine by which the graduations were

engraved, and the centre 0' about which the circle rotates when

in use as part of a meridian circle or other astronomical instrument.

Let OAo (= a) be the radius of the circle and let 00' (= m) meet

the circle in A^. We take two other

points A-i and A2 on the circle, and we
shall suppose that iJ„, R^, R^ are the

graduations corresponding to A^, J.i, J.2.

Let the instrument be rotated so

that a line originally at O'A^ is moved
to O'A^. Then A-fi'A^ is the angle

through which the instrument has really

been turned though the arc indicated

by the pointer is

AyA^ = K- Hi = z A^OAi.

The error canse'^. l;^ eccentricity is the difference between the angles
subter::cu'by A^A^ at and 0' respectively. If ZA^O'Ai = 'fi

Fig. 116.

./uen

/ O'AiO = ti - Z A.OAi = ^,-R^ + R^^
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and from the triangle OAiO' we have

a sin (yJTi — Ri + Mo) = m sin yfr^,

which, as m/a is very small, may be changed into

a i/ri = a (i?i - iJo) + m sin (R^ — R^) (i).

In like manner if Z Afi'A^ = ^^ we find

a'\jr^ = a (R^ — Ro) + m sin (i^a - R^) (ii).

By subtracting (i) from (ii) we find for the error of eccentricity

( Z A,0'A, - z A,OA,) = (i|r, -f,-R^ + R^)

the expression

— sin i (R, - R,) cos \ (R, + R,- 2i?„),

this is the circular measure of the angle to be added to the

observed angle (R^— Ri) to find the true angle A^O'Aj. The

correction for eccentricity when expressed in seconds of arc can

never exceed 2m/asinl".

Ex. 1. Show geometrically that the angle through which the circle has

been rotated will be the mean of the arcs AA' and BB' if A'B' be the position

into which a chord AB through the centre of rotation is carried by the

rotation.

Ex. 2. Assuming the eccentricity to be small show that its efifect has

disappeared from the mean of the measurements made by an even number of

microscopes symmetrically placed round the circle.

Ex. 3. If the radius of a graduated great circle be 0™'450 and if the

centre from which the graduations have been struck is one-hundredth of a

millimetre from the centre about which the circle is rotated, show that

a reading by a single microscope of the angle through which the circle

has been turned might be in error as much as 9".

Ex. 4. When the circle is in any position four microscopes at right

angles show readings iJi, ^2; -Ksj ^i- The circle is now tiu'ned through

an angle 6 very nearly equal to 180° and the microscopes now read

Hi, Ri', Ri, Ei':- Show that e, the ratio which the distance between the

centres bears to the radius (GQ'JOAo), is given by the equation

16e^ = {ni-Ri'-B3+R3'y^HR2-R2--Ri+^if-

Ex. 5. The following pairs of readings are taken at two of the micro-

scopes of a meridian circle,

22° 10' 9", 140° 39' 44", 250° 14' 51",

82° 14' 13", 201° 10' 6", 310° 45' 3"
;
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prove that, assuming the rim to be circular and correctly graduated, the

error of centering indicated by these readings is approximately the fraction

0048 of the radius of the circle.

[Math. Trip.]

Subtracting equation (i) from (ii) we have

a (yj/^- ^i)— ci {R2- R]) + '!n sin {R2- £0) - in sin (Ri — Rg).

If we make x=mja cosec R^ and y=m.ja sec R^, this equation may be written

,^2— i/'i= if2 - -Si +.2^ (cos Ri — cos R2) +y (sin R^ - sin ^1),

where ^i= A^O'Ai and <lri=A(,0'Ai correspond to the first two positions, and

i?2 and ^i are the readings of the first microscope. If 1/^3 be AoO'A^ for the

third position

1^3 - i|,j= ^3 — iJj + a; (cos Ri — cos R^ +y (sin JS3 - sin R^.

If we take dotted letters Ri, R^, Rs to be the readings of the second micro-

scope in the three positions of the circle, then we must have

R2-R1+X (cos ^1 - cos R2)+y{amR2— smRi)
= if2' — jRi'+ a; (cos R^' — coaR2')+y (sin R2' — sin Ri),

Rg — R^+ x (cos Ri - cos ^3) +y (sin R^ — sin Ri)

= R3 — Ri +X (cos Ri — cos R3 )+y (sin ^3' - sin Ri ).

Substituting for Ri, R^, -S3, Ri, R2', R3' the given readings we have two

equations for x and y and 'Jx^+y'= m/a is the quantity wanted.

155. The errors of division in the graduated circle.

We have hitherto assumed that the engraving of the traits on

a graduated circle has succeeded in the object desired, which is of

course to make the intervals between every pair of consecutive

traits equal. But even the most perfect workmanship falls short

of the accuracy demanded when the more refined investigations of

astronomy are being conducted. Consecutive traits are not strictly

equidistant and we have to consider how the observations may

be combined so as to be cleared as far as possible from the

effects of " Errors of Division." Such errors are no doubt small.

The skilful instrument maker can adjust the actual place of each

trait so that it will not be more than a few tenths of a second from

the place it ought to occupy, but in the best^worb-suciierrors

must not be overlooked. .

The errors may be divided into two classes. First. The

"systematic errors which rise and fall gradually from trait to trait

according to some kind of law. Second. The casual errors which

do not seem to follow any law and vary irregularly from trait to

trait.
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As to the latter there is no certain method of completely
eliminating their effect unless by the actual determination of the
error of each separate trait all round the circumference, followed

by a rigorous application of its error to the reading of every trait

involved. As this would require a separate investigation for each

one of several thousand traits the task would be a colossal one,

and indeed is not generally attempted. The errors of individual

traits are tested at different parts of the circle and if they are

found to be small it may then be hoped that in the mean of

several observations taken with several microscopes, the influence

of the casual errors will not appreciably affect the final result.

As regards the systematic errors in the division of the circle

the assurance of their disappearance from the final result has a

more satisfactory foundation. Errors of this class may arise from

the mechanism used in the dividing engines by which the traits

are engraved on the circle. The toothed wheels in the dividing

engine are not and cannot be absolutely truly shaped and absolutely

centred. Such errors in the traits may to a large extent be deemed

periodic, so that when the wheels of the engine have performed a

certain number of revolutions and a certain advance has been

made in the engraving the same errors will be repeated. This is

at least one of the chief sources from which systematic errors arise

in the places of the traits.

Let R be the reading of a certain trait and let R + Ai?, where

AR is a small quantity, be the true reading of that point on the

circle at which the trait is actually situated. Then AR is the

error of that trait. We shall assume that AR can be represented

by an expression of the form

Aii = ^0 + ^1 cos i? + ^2 cos 2i? + &c.)

+ B^smR + B^sm2R + &,cJ

where A^, A^, A,..., B^, B^... are constants whose values depend

upon the individual peculiarities of the graduation.

It is some justification of this assumption that R and R + 360°

of course indicate only the same reading, and therefore when AR is

expressed in terms of R the expression must be unaltered if R be

changed into R + 360°. This condition is obviously fulfilled if AR
has the form (i).

It should be noted that in the necessary limitation of the

number of terms of the series we tacitly assume that there is no
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large break in the continuity of the errors all round the circum-

ference. We assume in fact that changes in the errors at different

points round the circumference do not take place very abruptly,

and this of course would be the case with careful workmanship.

Discontinuity is not presumed and Ai, .Aj..., 5i, B^... are each

finite and their number is small.

We may illustrate this remark as follows. Suppose the dividing

engine started from 0° 0' and in engraving the traits round the

circumference persistently made each trait one hundredth of a

second too far from the preceding trait but made no other error.

This error would accumulate so that the trait 359° 55' would have

an error of 43"'19, while the error of the next trait, i.e. 0° 0', is

zero. At this one place the difference of two consecutive errors

will be 43"'19, while in all other cases the difference is only 0"'01.

This is in effect a case of discontinuity. Such an arrangement of

the errors, or one in which the discontinuity was even still more

violent could, as is well known, be represented in a series of the

kind we are considering if we were allowed to take a great number
of terms in the series for AR, but it could only be very ill repre-

sented if we were restricted to a few terms. It will be assumed

in what follows that a small number of terms in the expression for

AR does represent the errors of any particular circle.

Suppose that there are n microscopes symmetrically placed

round the circle and that the corresponding readings of the circle

in a certain position are Ri, Rz-.-Rn- Let the circle be now
rotated through an angle X and let the readings be iJ/, iJ/ . . . R^'.

If the instrument were theoretically perfect we should of course

have

i?l — ill = -^2 — ^^2 • = Rji ~ Rn — ^•

Owing, however, to errors of division and other errors, such for

instance as the error of eccentricity which we have already con-

sidered, these quantities will not be all equal and we take for X

the mean of all the different quantities {R^ — i?/), {R^ — ii/), &c. as

indicated by each microscope separately.

If 6 be approximately the angle between two microscopes

then nd = 360°. The reading R^ of the first microscope when
duly corrected by the addition of ABj will be

Ei + j1o + -4iCOsEi-1- J.2cos2i?i ...

+ Bt, sin i?i + B^ sin 2i?i ....
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In like manner we have for the corrected reading of the second

microscope

R^ + Ao + Ai cos (iJi -\-e) + A^ cos (2Ei + 26)...

+ 5, sin (R^ + 0) + B^ sin {2R^ + W) ...,

and for the wth microscope

Rn + A, + A^cos{R^+{n-\)e) + A^cos{2Ri + 2{n-l)e) ...

+ £i sin(iJj + (w- 1) 6) + B^ sin (2i2, + 2(n- 1) 6)....

Owing to the symmetrical disposition of the microscopes the

sum of the n readings admits of a remarkable reduction. The

coefficient of A^ in that sum is

cos kRi + cos {kR^ +k6)+ ...+cos {kR-, + (w- 1) kd). . .(i),

which may of course be written in the form

Pcos{kR^ + e) (ii),

where P and e are independent of R^ and are given by the

equations

P cos 6 = 1 + cos A;^ + cos 2,kd . . . + cos (w — 1) kO,

P sin 6 = sin kd + sin 2kd . . , + sin (w — 1)M
But (i) is unaltered if R^ be changed into R^ + O, for this merely

changes the first term into the second, the second into the third,

&c., and as nd = 360° the last into the first. It follows that (ii)

must be unaltered if R^ be changed into R^ + 6, whence

P cos {kR^ + e) = P cos {kR^ + e + kd).

This has to be true for all values of R^ and it is therefore true

when
iPi + 6 = 0,

in which case

P = P cos kd.

This can be satisfied only by making P = unless kO is an integral

multiple of 2ir when the series reduces to nco&kR^. Similar

reasoning is easily seen to apply to the coefficient of Bit in the

sum of the n corrected readings. Thus all the terms disappear

from the mean of the corrected readings of the n microscopes

except those in which k is an integral multiple of n, and there

remains

{R^ + R^... + Rn)ln + A,

+ An cos nR^ + Am cos 2nRi . .

.

+ Bn sin nRi + B^ sin 2ni?i ....

30
B. A.
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Let us now suppose the circle turned into a different position

when the readings are jB/, R^ ... Rn. The angle X through which

the circle has been turned is, as already stated, the mean of the

differences of the n readings in the two positions. We may, as an

illustration, take the most usual case of four microscopes, when we

have, iiki^ 11,

X = \{R^ + R.,+ R, + R,)-i(R^+R,' + R', + R:)

+ Ai (cos 4iJi — cos 4i2i') + A^, (cos 8i?i - cos 8i?i')

+ Bi (sin 4i2i - sin 4 Ri) + B^ (sin %R^ - sin 8i2i').

It is noteworthy that A-y, A^, A,, B^, B^, Bg have disappeared

from this formula. The terms corresponding to these quantities

are however by far the most important in the expressions for AR.

These terms will include most of the effects of systematic errors in

the division and, as has been already shown, all the effects of the

error in eccentricity. Thus by taking readings at four equi-

distant microscopes A, is determined free from the principal errors

of the graduated circle.

By observing a case in which X is known we obtain a linear

equation in Ai, Bi, Ag, Bg. Other similar observations will pro-

vide further equations and from a sufiBciently large number the

values of At, B^, A^, Bg can be determined by the methods of

least squares. It may be stated generally that the effect is to

show that these four quantities are too small to need attention.

Thus for finding the angle through which the circle has been

rotated we simply use the formula

\ = i{R, + R, + R,+ R,)-i (R'l + R^' + Rs' + R/).

Finally the reasons for having an even number of reading

microscopes placed symmetrically round a graduated circle may
be summarised thus:

(1) We eliminate the effects of eccentricity by taking the

mean of the readings of two microscopes at the ends of a diameter

and a fortiori at the ends of several diameters.

(2) We eliminate the greater part of the errors in division by
taking the mean of the readings of four microscopes placed at

intervals of 90°.

156. The transit instrument and the meridian circle.

It has been shown in § 152 that the theory of the generalized

instrument includes among many other special cases the theory of
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the instrument known as the meridian circle or transit circle by
which zenith distances as well as transits can be observed. The
importance of the meridian circle is, however, so great, being as

it is the fundamental instrument of the astronomical observatory,

that it is useful to develop its theory in another and more direct

manner.

The general description of the meridian circle may be briefly

summarized as follows. A graduated circle is rigidly attached to

an axis A through its centre and normal to its plane. A telescope

whose optical axis is perpendicular to J., and therefore parallel to

the graduated circle, is also rigidly attached to A. Thus when A
moves the graduated circle and also the telescope move with it as

one piece. The axis A is mounted horizontally and its extremities

terminate in pivots which rest in bearings lying due east and due

west.

In some instruments of this class arrangements are made by

which the instrument, after being raised from its bearings, can be

turned round 180° in the horizontal plane and then replaced so

that the pivot which was originally towards the east shall be

placed towards the west and mce versa. In such instruments the

nole of the graduated circle may therefore be turned towards the

east or towards the west, according to the positions of the pivots.

It will be observed that whether the instrument be in the

nole-east position or in the nole-west, the graduated circle and the

optical axis of the telescope will both be parallel to the plane of

the meridian if the adjustments be perfect.

In the plane of the focus of the object-glass of the telescope

there are twof spider lines at right angles to the telescope.

One of these is parallel to the axis about which the telescope

revolves and is called the horizontal wire. The other is perpen-

dicular to the horizontal wire and is called the meridional wire.

When the image of a star is on the meridional wire that star is

in the act of transit. A line from the intersection of these wires

to the centre of the object glass is the optical aads of the

instrument. When the telescope is said to be set upon a star it

is to be understood that the image of the star is coincident with

t In the actual meridian circle there are usually several fixed meridional wires

and the single horizontal wire is often replaced by two parallel wires placed close

together.

30—2
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the intersection of the two cross wires, this is equivalent to saying

that the optical axis of the telescope is directed upon the star.

An ohservation with the meridian circle has for its object the

determination of both the right ascension and the declination of a

star or other celestial body. The first is obtained by noting the

time by the sidereal clock when the star crosses the meridian. If

the clock be correct that time is the right ascension of the star.

In so far as the determination of this element is concerned the

meridian circle is what is -called a transit instrument and the

graduated circle is not concerned. The declination of the star is

obtained from its zenith distance, which is observed by means of

the graduated circle at the moment of transit.

The ideal conditions of the meridian circle as here indicated

can of course be only approximately realized in the actual instru-

ment. In the first place the axis A will not be quite horizontal,

and we shall assume that the point on the celestial sphere indi-

cated by the nole of the graduated circle shall have an easterly

azimuth 90° — k and a zenith distance 90° + b, where b and k are both

small quantities. The axis of the telescope is of course approxi-

mately at right angles to the axis A. We shall suppose it to be

directed to a point on the celestial sphere 90° — c from the nole of

the circle. The small quantities k, b, c are called the errors of

azimuth, of level and of collimation respectively. If the instru-

ment and its adjustment were perfect, all these quantities should

be zero, but in practice they are not zero and they are not even

constant from day to day. They have to be determined whenever

the instrument is used, and the

methods of doing so will be duly

explained. When k, b, c are

known we can apply corrections

to the observed time of transit

and thus learn at what time the

transit across the true meridian

actually took place.

In Fig. 117 P is the north

celestial pole, ^ is the zenith, JSf

is the nole of the graduated circle.

According to the definitions of

6 and k already given, we have Fia. 117.
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NZ=90'' + b, PZ= 90°
-<f>, and ^ PZN= 90° -k, so that when

P and Z are known the quantities b and k define the position of

the nole.

Let S be the star of declination S, then PS = 90° — S, and

when S is on the cross wires of the telescope, i.e. at the moment
of observation, NS= 90° — c.

The base NP being fixed and the lengths IfS and PS being

both given there may be two possible positions of S. These

correspond respectively to upper and lower culmination of the

star (§ 29). In the present case we shall deal with upper cul-

mination, and, the observer being supposed to be in the northern

hemisphere, the point S will be towards Z as in Fig. 117.

If b = c = k = 0, then S would lie on the great circle through

Z and P, i.e. on the meridian. But when b, c, k are different from

zero, then Z SPZ is in general not zero, and consequently at the

moment when in the instrument the star appears to be on the

meridian it is still at an east-hour angle ZPS. If then the

observer notes the time by his clock when the star is on the cross

wires in his telescope he must add to the observed time to find the

true time of transit the quantity t, which is the angle ZPS turned

into time. Thus t is said to be the correction of the observed time

of transit for the errors of the instrument.

From the triangle PZN and making PN = 1 we have

cos Z = — sin <^ sin b + cos
(f>

cos b sin k,

sin Z sin ^ = cos b cos k,

sin lcos6 = — cos </> sin 6 — sin <p cos b sin k,

and from the triangle PSI^

sin c = cos I sin S + sin I cos 8 cos {d — t) (i).

Eliminating I and 6 we have the fundamental equation for t,

sin c -H sin ^ sin b sin S — cos ^ cos b sin k sin 8

— cos 6cos k cosS sin i+ (cos <^ sin b + sin^ cos b sin k) cos 8 cost= 0.

To apply this general equation to the meridian circle when

used for observing a star at upper culmination we make t, b, k, c

so small that their squares or products are neglected, and we may

write it as follows

:

t cos B = c + b cos(^ - 8) + k sin
((f)

-
8),

whence

t = b cos ((^ -8) sec S + ksm{^- 8) sec 8 -h c sec 8 (ii).



470 FUNDAMENTAL INSTRUMENTS [CH. XXII

This is the fundamental formula for the reduction of meridian

observations. The quantity t is the correction to be added to the

observed sidereal time of the transit to obtain the true sidereal

time. This expression for t is generally known as Mayer's formula.

It may be transformed in various ways. For example Bessel

introduced two new quantities m and n, determined by the

equations

m, = h cos (^ + ^ sin ^, n = h sin <^ — k cos 0,

and thus we have the following convenient formula

:

t = m + n tan 8 + c sec S (iii).

The quantities m and n are functions of the errors in level and

azimuth and of the latitude, and are independent of the star. We
easily see that m = e- 90° and w = Z - 90°. (See Fig. 117.)

We may also notice Hansen's formula, which is obtained by

substituting for m its value h sec ^ — n tan ^, with which change

the last formula becomes

t = h sec
<f)
+ n (tan S — tan <p) + c sec S (iv).

By any of these formulae we obtain the correction which must

be applied to an observed time of transit in order to obtain the

clock time of transit across the true meridian.

157. Determination of the error of coUimation.

The quantity c, known as the error of coUimation in the

meridian circle or indeed in any form of transit instrument, can

be determined by the aid of what are known as collimating

telescopes, of which we shall here describe the use.

In the focus of the telescope of the meridian circle is a

frame carrying a line which can be moved from coincidence

with the fixed meridional line into any parallel position in the

plane perpendicular to the optical axis of the telescope. This

movement is effected by a micrometer screw with a graduated

head, so that by counting the revolutions and the fractional parts

of a revolution the distance through which the movable wire has

been displaced from the fixed wire becomes exactly known. We
shall first show how by this contrivance we could determine the

error of coUimation if we could observe two diametrically opposite

points on the heavens.
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If t, h be the hour angle and declination of a point on the
celestial sphere, then from (i) we have

sin c = cos ^ sin S + sin Z cos S cos {6 — t).

As c, I, 6 are fixed quantities connected with the instrument,

it is plain that this equation will not, in general, be satisfied for

a given pair of values t, h. This means of course no more than

the obvious fact that as the meridian circle has only one degree of

freedom, i.e. rotation about a single axis, its telescope cannot be

directed to any point on the celestial sphere except those which

lie on a certain circle C. If, however, we give the instrument

a second degree of freedom then it can, within certain limits,

which for our present purpose are quite narrow limits, be dii'ected

upon any point in the vicinity of the circumference of G.

This second degree of freedom is given by the movable wire

just described. By moving this wire to a distance x^ from the

fixed wire and regarding the intersection of the wire in its new

position with the horizontal wire as the line of collimation of the

telescope, the error of collimation is now c+ x^ and the equation (i)

becomes therefore

sin (c + aJi) = cos Z sin 8 + sin I cos 8 cos {6 — t).

The quantity x-^ is determined by simply screwing the movable

wire until the axis of the telescope can be directed to the point P,

of which the coordinates are t, S.

Let us now suppose the telescope directed to the celestial

point P' with coordinates (t+ 180°), —8, which is 180° from the

former point P. Again let the movable wire be set at the distance

x^ so that P' shall lie on the intersection of the movable wire and

the fixed horizontal wire, and we have

sin (c + ajj) = — cos Z sin 8 — sin I cos 8 cos {d — t),

or sin (c + x^) + sin (c + x^ = 0,

and, as all the quantities c, Xj_, x^ are small, this may be written

c + a;i + c + a!2 = 0,

or c = - J («i + x^.

Thus c is found in terms of the observed quantities a^i and x^.

In the application of this process we obtain a pair of diametric-

ally opposite points by what are known as a pair of coUimating

telescopes. The principle involved, one of much importance in
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the theory of astronomical instruments, is explained in the annexed

diagram. AB is the transit instrument or telescope of the

meridian circle, of which the central cube is pierced by a cylin-

drical hole LM of which the axis is XX' when the telescope is

in the vertical position AB. The axis about which the transit

instrument itself rotates is perpendicular to the plane of the

paper, and the pivot at the westerly extremity is shown in the

figure, while one of the positions which the instrument may

assume during its rotation is indicated by the dotted lines. The

two coUimating instruments XY and X'Y are fixed horizontally

north and south of the meridian circle, and cross wires are placed

at the foci F and F' of each of these subsidiary instruments as

in the focus of the great instrument itself.

Noi-th

F IHX _<

.>M

, South

^E

B

Fig. 118.

If light be admitted to the north collimator at F, then the rays

from the focal cross wires F diverge till they fall on the object-

glass X, from which they emerge as a parallel beam, and, after

passing through the hole LM (which they can do when the

axis of the great telescope is vertical), fall on the object-glass X'
of the second collimator. As these rays have been rendered

parallel, an image is formed at F' of the cross wires at F. Thus
the observer, on looking into the south collimator at F', sees both

the wires F' and the image of those at F simultaneously. By
movement of the frame carrying the wires in F' he is able to bring
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the two intersections into coincidence, and when this adjustment

is made the axes of the two coUimating telescopes are exactly

parallel, and consequently the axes of the two collimators, con-

tinued each way to the celestial sphere, indicate two points at a

distance of 180°.

To use this apparatus for the determination of the error of

collimation the meridian circle is rotated round its own axis till

the telescope is directed on the north collimator, when the images

of the wires at F will be seen in the same field as the wires in

the focus of the telescope. The movable wire is then to be set

carefully on the image of the intersection at F and as already

explained a^ is to be read off. Then the meridian circle is turned

round 180° to the south collimator and in like manner x^ is

obtained. Thus c which is — | («] + x^ becomes known.

158. Determination of the error of level.

When c the error of collimation has been found by the method

just described, we can easily find h the error of level if we have

the means of directing the telescope to a point S whose declination

and hour angle are known quantities So and Id- For if on increasing

c (which has been already determined), by the measured quantity

c", we can direct the axis of the telescope on the point S, we have

the following equation (| 156)

:

sin (c + c") + sin ^ sin h sin So

— cos (^ cos h sin k sin So — cos h cos k cos So sin t^ (i)

+ (cos sin h + sin (^ cos h sin k) cos So cos t^ = 0.

The zenith would of course be a very convenient point to take

for S, were it not that we have no means of knowing when the

telescope is pointed to the zenith. We have, however, an excellent

method of knowing when the telescope is pointed to the nadir.

If a basin of mercury be placed beneath the centre of the meridian

circle so that the telescope can be directed vertically downwards

upon it, we can then, by looking though the eyepiece, compare the

cross wires in the telescope with their images reflected from the

mercury. For it is obvious that a beam of rays diverging from

the focus of the telescope will emerge as a parallel beam from the

object-glass and being reflected from the surface of the mercury

are returned as a parallel beam to the object-glass and are trans-
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mitted again through the object-glass in the opposite direction

and will therefore form an image of the cross wires at the focus

beside the wires themselves. We have then only to shift the

movable wire through such a measured distance c'' as shall make

the intersection of the cross wires coincide with its reflected

image, and then we know that the axis of the telescope must be

perpendicular to the surface of mercury and must therefore point

to the nadir. The declination of the nadir is — </>, while its hour

angle is 180°. With these substitutions the equation (i) reduces to

sin (c + c") = sin b,

and therefore b = c+ c", for as all the quantities are small, the

solution 180° — b = c + c" must be rejected. Thus b is known, for

c the error of coUimation is supposed to have been previously

found and c" is, as already stated, the quantity which has just

been measured.

159. Determination of the error of azimuth and the error

of the clock.

We shall assume that c and b, the errors of collimation and of

level, have both been determined by the methods indicated, that T
is the sidereal clock time of transit of a star a, 8 and that AT is

the error of the clock and k the error of azimuth. We can apply

the corrections for b and c to the time T, and thus we have from

Mayer's formula (iii), § 1.56, applied to two known stars (ai, Sj)

and (hj, Sj) observed at a short interval during which AT may be

presumed not to vary,

a,= T^+AT+ksin((f>- 8,) sec Si,

a^=-T^ + AT+k sin
((f)
- S^) sec S^.

We thus have two equations in two unknowns A? and k, and
solving these equations we obtain :

AT = {(«! - ro cos 8i sin (S^ - <f>)
- ("2 - ^2) cos S^ sin (S, - cf>)}

X sec <j) cosec (82 — 81),

k = ((oi - a,) - (Ti - fj,)} cos 81 cos 82 sec cosec (8^ - Si).

In these values of the desired quantities we are to note that

errors of observation affect T^ and T^, and it is essential that the

observations be so planned that the multipliers of 2\ and T^ shall

be as small as possible, hence cosec (83 - Si) must be as small as
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possible. It is therefore necessary that one of the two declinations
shall be near zero and the other near 90°. Hence we learu the
important practical rule that for determining the error of the
clock and the azimuth of the instrument one of the stars chosen
should be near the pole and the other should be near the equator.

It will be observed that while b and c can be found without

observation of celestial bodies this is not true with regard to AT
and k.

160. Determination of the declination of a star by the

meridian circle.

It is the function of the meridian circle to enable the observer

to determine both the right ascension and the declination of a

celestial object at the same transit. We have already shown how

the right ascension is found and it remains t© show how the

declination is measured.

As nearly as possible at the moment of culmination the ob-

server moves the telescope so that the star appears to run along

the horizontal wire stretched across the focus of the telescope.

The circle is then to be read by the microscopes in the manner
already explained (§ 153). It is essential that at least two micro-

scopes at opposite ends of a diameter be employed, but four

microscopes symmetrically placed round the circumference are

required for the best instruments and sometimes even more than

four are used. The mean R of the readings of these microscopes

is then adopted as the reading for this particular observation (see

§155).

We have seen how the coUimation is determined by reflection

from a basin of mercury placed under the meridian circle. We
are now to move the instrument about its axis until it is so

adjusted that the fixed horizontal wire in the principal focus

coincides with its image reflected from the mercury as seen by an

observer looking vertically downwards through the eyepiece. By
this operation the telescope is directed to the nadir and the four

microscopes are to be read and the mean -Bo is to be found. We
may then assert that 180^ + i?o would be the reading of the

instrument when directed towards the zenith, and consequently

l80° + Ro — R is the apparent distance of the star from the zenith

at the moment of culmination. This must then be corrected for
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refraction (see Chap, vi.), and thus the true zenith z distance is

found. Assuming that the latitude <^ is known we have the

declination from the equation Z = ^ — z.

It is often possible to dispense with an observation of the

nadir by making use of stars whose declinations are already

known. If such a star be observed with the reading B^ we obtain

180° + ii„ — J?i as the expression of its apparent zenith distance,

and again correcting for refraction we obtain the true zenith

distance. But this is <^ — Si, where Sj is the star's declination, and

thus if r denote the refraction

180° + i?„ - El + r = ^ - S„

by which R^ can be ascertained. Thus we can learn the value

of jRq without directly making an observation of the nadir.

Ex. 1. The observed time of transit of a known star whose declination is

30° is found to be correct, i.e. to agree with the star's right ascension, while

the observed times for stars in declination 15° and 60° are found to be —7= "4

and +31' -5 respectively in error. Prove that the error to be expected for a

star in declination 45° is about 11'.

[Math. Trip. I.]

Using Bessel's formula (iv) § 156, we obtain the following four equations,

from which m, m, c can be eliminated, and the resulting equation for X will

give the desired result

OT+ »itan30°+csec30°= 0,

m+wtanl5 +(;secl5 = — 7'4,

TO+ mtan60 +cseceO = 31-5,

TO+ M tan 45 +c sec 45 = X.

Ex. 2. In a transit instrument of 10 feet focal length which is correct,

except for coUimation error, a star of declination 60° is observed to cross the

meridian 2' too soon. Show that to adjust the instrument the cross wires

must be moved a distance 0™-0087. In which direction should the wires be

moved?
[Math. Trip. I. 1900.]

The correction for collimation is c sec 8= 2'='='= 30" whence c=15". The
circular measure of this angle x 10 feet gives 0™ 'OOST. If we remember that

the image in an astronomical telescope is reversed right and left it is obvious

that the wires must be moved to the east.

Ex. 3. Show that a transit instrument could conceivably be so adjusted

that all stars passing to the south of the zenith would appear to be late in

crossing the meridian by a constant error k.

[Coll. Exam.]
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Ex. 4. If two stars of different declinations S, and Sj can be found for
which the three errors of adjustment produce no error in the time of transit,
show that the correction to be added to the observed time of transit of a star
of declination 8 is

2c sin i (8 - Si) sin ^ (S - Sg) sec 6 sec ^ (Sj - Sg),

where c is the coUimation error.

[Math. Trip.]

From Bessel's formula we have

m+ K.tan8i+ csec8i= 0,

OT + « tan 82+ c sec 82=0,
whence

m=—c cos J (82+ 81) sec J (82—81), n= -c sin ^(81+ 82) sec ^(82 -Si),

and m+ Ji tan 8+ c sec 8 is obtained as desired.

Ex. 5. The level error of a transit instrument is b, its azimuthal error

iai, and its collimation error is c. Prove that the error in the time of transit

of a star due to these three errors in the instrument is a minimum for a star

whose declination is

sin ~ 1 {{k cos — 6 sin 0)/c},

if it be a real angle ; where
<f>

is the latitude of the observatory.

[Coll. Exam.]

Ex. 6. A close circumpolar star is observed for error of azimuth, but the

assumed level error is in error by a quantity x. Shew that the deviation error

wiU be consequently in error by a quantity xta.n(j), and that the time of

transit of all stars must consequently be corrected by an amount a; sec cj),

where is the latitude of the place of observation, and it is assumed that

there is no collimation error.

[Math. Trip. 1907.]

An observation of a known star will give the value of

b cos (0 — 8) sec d + k sin (0 - 8) sec 8,

a simultaneous addition of ^ to 6 and y to k will leave this unaltered, if

a; cos (0-8)+2^sin(0 — 8)=0,

or y=^cot (8—0), and as the star is close to the pole we may make

8= 90° or y=:rtau0.

Whence for any star there must be a correction to the time of transit of

;!;{cos(0 — 8)+ tan0sin(0 — 8)} sec 8 =.j;sec0.

Ex. 7. Show how Mayer's formula for the correction of observations

with the meridian circle may be obtained directly from the equations of the

generalized instrument (§ 142).

Ex. 8. Show that whatever be the magnitudes of the errors of a

meridian circle the arithmetic mean of the hour angles t^ and t^ of a star at

its upper and lower instrumental culminations is independent of the colli-

mation of the instrument.
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We may write the equation (ii) (§ 156) in the form

Asint+Bcofit+ C=0.

If
<i
and Jj be the two different values of t which satisfy this equation

A sin ij^+B cos ti + C=Q,

A sin t^+B cos t2 + C=0,

whence by subtraction and dividing out by sin ^ (<, — t^) we have

tan^(ti+ t2)= A/B,

while the collimation enters into G only.

Ex. 9. A transit instrument is mounted at a place of known latitude (j)

in a vertical plane which is not the meridian. Find an equation to determine

the azimuth A of the instrument in terms of the observed time 6 between

two successive transits of a circumpolar star of declination 8.

Show that a small error A6 in the observed difference 6 of hour angles will

lead to an error in the azimuth of magnitude

I sin^ A tan A cos^ cj) tan^ S tan -^ 6 seo^ ^6 Ad.

[Math. Trip. 1905.]

In the general formula § 156 we make c=0, 6=0, i=A and the formula

becomes
— cos sin 4 sinS — cos 4 cos S sin i+ sin0 sin J cos 8eo3<=0,

which may be written thus

sin
<l>
tan A cos t — sin t=coa <ji tan A tan 8.

This must be true if t—6he substituted for t and making t — ^d=P and

^6=Q, we have the two formulae

sin (^ tan A cos(P+§)-sin(P+§) = cos0 tan .4 tanS (i),

sin0 tan^cos(P-§) — sin(P— §)= oos(^tan J.tan8 (ii).

Subtracting (i) from (ii) and dividing by sin Q we obtain

sin 0tan A sinP+cos P=0 (iii).

Multiplying (i) by sin (P- Q) and subtracting (ii) multiplied by sin (P+ Q),

sin tan J. sin2§=2cos0tan^ tan 8 cos P sin Q,

whence dividing by sin Q
sin

(f)
cos §=cos tan 8 cos P,

whence from (iii)

cos Q cot A= — cos
(f>
tan 8 sin P,

and therefore (sin^^+cot^ji) oos^ §=008^0 tan28.

Restoring to Q its value ^0, we easily obtain

cos2 sin2 A = cos2 J 6/{coa^ ^6+ tan^ 8),

which is the required equation between A and d.

The second part of the question is obtained by differentiating A with
regard to d.

Ex. 10. Show that the difference of right ascension of the limb and the

centre of a planet at transit is ^p.S„/rcos8, where p is the semi-diameter
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of the planet in seconds of arc when the sun is at its mean distance ^o
where r is the planet's true distance and 5 is the planet's declination and
where the motion of the planet is neglected.

Ex. 11. The transit of Sirius was observed at Greenwich on Feb. 13th,

1851, at each of four wires at the times

6h 37m 43B.7
.
6h 37m 588-2

;
eh 38" 12»-6

;
6^ SS" 26»-9.

The sum of the equatorial intervals for the observed wires is —82= -905,

and the cosine of the star's declination is -95871. Find the time of the

star's transit.

[Coll. Exam.]

Let dy, c?2, <4i ^4 te the equatorial intervals of the four wires used
expressed in time at the rate of 1 sec. to 15". Then we have from the

several observations the following times of meridian passage

:

6h 37m 43»-7+rfiseoS, 6"^ 38-" 12»-64-«^3secS,

6 37 58-2+rf2seo8, 6 38 26 9+c;4sec8.

The mean of the four is

e'' 38"° 5= -3+ J (rfi +(^2 +^3+d^ sec S,

but c?i+rf2+^3+'^4= ~82^'905 and sec 8= 1-043. Hence the reduction to

the meridian is — 21' -6 and the required time of transit is 6'' 37™ 43* -7.

Ex. 12. Wires inclined at an angle of 45° to each other are placed in the

focus of a transit instrument, pointed so that the declination of the inter-

section of the wires is 30°. A star whose declination is nearly 30° crosses

from one wire to the other in 1™ 54». Find the declination of the star.

[Coll. Exam.]

Ex. 13. A star's image ;S", Fig. 119, is bisected on

the horizontal wire TS' of a transit-circle when the star

is crossing a vertical wire distant i from the meridian

PS: show that the correction to the observed declination

to be applied for curvature of the star's path is

Ji^sinl'tanS.

Let P be the pole, then

P;S'=P,S'= 90°-5,

and S'T^ is perpendicular to PS. The required correction

is-ST.

Ex. 14. Show that the correction for curvature (see

last exercise) may be thus expressed, in seconds of arc

[6-43569] X sin 2iVP/)x t\ Fig. 119.

where NPJ) is the north polar distance of the star, and where t is the interval

between the time of meridian passage and the time of transit expressed in

seconds of time. The number in square brackets is a Logarithm.

\Oree'n/iidch Ohs. 1898, p. xlviii.]
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Ex. 15. If the zenith distance z oi a. star of declination 8 be observed

when very near the meridian at the hour angle t, and if be the latitude,

show that to obtain the true meridional zenith distance we subtract from z

the quantity expressed in seconds,

2 sin^ ^t cos cos S 2 cot z fsva? ^t cos
(f>

cos gy
sin 1" sin z

) 2 cot « /sin^ ^t cos
(f>

cos gV
sin 1" \ sin z J

161. The altazimuth and the equatorial telescope.

The altazimuth is as its name indicates an instrument for

measuring the altitude and azimuth of a celestial body. It is

that particular case of the generalized instrument in which axis I

is vertical and axis II is horizontal. In its well known form of

the theodolite the altazimuth is of great use in surveying. It has

also its uses in the astronomical observatory, but a much more

important instrument for celestial observation is that known as

the Equatorial which may also be regarded as a particular case of

the generalized instrument (see § 142). The equatorial is charac-

terized by the circumstances that axis I is parallel to the earth's

axis and that axis II is parallel to the plane of the equator, but

is not otherwise restricted.

To apply the equations of the generalized instrument to the

equatorial we shall take the equator as the fundamental plane

and as we shall at first assume that the instrument is in perfect

adjustment we make ^=0, g' = 0, r = 0, and thus (1), (2), (3)

§142 become

sin S = sin R'; sin (A, — «) cos B = — sin R cos R';

cos (A, — a) cos S = cos-R cosR' (1).

When a and S are given there are in general two solutions to

this set of equations. We may have

R =0, R = a — \,

or we may have

R' = 180° - 8, R = 180° -X + a.

This means, as already explained, that there are two ways of

setting the instrument on a given point a,B and that in one of

these ways 8 is the reading of R' and in the other S is the sup-

plement of R'.

li R = we have a = X from which we learn that the quantity

X is the right ascension of the origin of graduation on circle I.

It is convenient to arrange that this point shall be the southerly
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point of the circle I. In this case X = ^ and X-a is the hour
angle west of the star o, S, so that when the equatorial, being in

perfect adjustment, is directed on a star, the reading R of circle I

gives the hour angle east of that star.

The convenience of that particular mounting of a telescope

which makes it an equatorial depends mainly on the fact that

when the telescope has been pointed on a star a rotation of the

instrument about its axis I, which in this case is generally called

its polar axis, will counteract the effect of the diurnal motion.

Mechanism known as au equatorial clock is provided by which

the instrument is rotated about its polar axis with a velocity

equal and opposite to that of the rotation of the earth about its

axis. When all is in perfect adjustment and the equatorial clock

keeping perfect time, a star appears fixed in the field of view.

We have supposed in the equatorial that axis I points exactly

to the pole and that axis II is at right angles to axis I. Of course

these conditions are not perfectly realized in the actual instrument

and we shall now prove the following theorem f which is of

practical importance in the adjustment of the equatorial in-

strument.

The axis of an equatorial is directed to a point at a small

distance I from the true pole and in hour angle h. The telescope

is directed so that the image of a star, in declination S and hour

angle ^i (expressed in seconds of time), coincides with the inter-

section of two wires respectively parallel, and at right angles

to, a great circle passing through the pole of the instrument. If

the clockwork gains n seconds per day, then by the time the hour

angle of the star has increased to h^, the displacements of the

star's image parallel to the two wires will be

- 21 sin i {K - K) cos {h-HK + K)} sin 8 +
\f~Q^^^°QQ

and 21 sin J (h^ — Aj) sin {h — ^{hi + h^)]

respectively if the refraction be neglected.

Let A (Fig. 120) be the true pole and AZ the meridian. Let

A' be the point towards which the axis of the instrument is

directed. Then AA' = Z and z A'AZ = h.

Let G be the position of the star to which the telescope is

•)- Communicated by Dr Bambaut.

B. A. 31
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directed ; then while the star moves from to 5 so that AB = AG,
the telescope is carried from G to B' so that A'B' = A'C. The
angle CAZ = hi. Let 6, (jj, -v/r, and p denote the angles A'B'B,

BOB', AGA' and the arc BB' respectively.

We have thus two isosceles triangles ABG and A'B'G whose
sides and angles differ by small quantities of the order I.

Since 6 = c, ^lABG= zACB, b' = c', and ZA'B'G=zA'GB',
we have

A6 = Ac, AB = Aa

Fig. 120.

By the differential formulae of § 4, we have in general

Aa = cosG.Ab + cos 5 . Ac + sin 6 sin G . A^,

Ac = cos 5 . Aa + cos A.Ab + sinb sin A . AC,

or in this case Act = 2 cos C. A6 + sin b sin G.AA,

and AG =2 (sin^^A- cos^ G) cosec b cosec A . Ab
— sin C cos C cosec A . AA.

In the triangle AGA' we have

sin I sin (h - h^ = sin b' sin i/r,

sin I cos (h-hi) = sin b cos 6' - cos b sin 6' cos i/r,

or, to the first order of small quantities,

t/t = Z sin (A - Ai)/sin b,

Ab = -Uos(h-hi).

Wehavealso G -ylr = G' -^^ ^ = AG+^^r.
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In the triangle BB'G, since Z 5' = z C" = ^ A'GB', we have

sin p sin (C- 6) = sin a sin ^,

sin /3 cos (C- 6) = cos a sin a'— sin a cos a' cos ^,

or approximately,

p sin (G — 0) =
<f)

sin a,

p cos {G —6) = Aa.

Hence /a sin ^ = Aa sin — ^ sin a cos G,

p cos ^ = Aa cos C+ ^ sin a sin (7,

or /3 sin 6= sin 0. Aa — sin a cos G . AC— sin a cos Ct/t,

pcos^ = cos(7. Aa+ sin asinC. AO+ sina sin G .<^.

Substituting in the first of these the values already found for

Aa and A(7, we obtain after a. little reduction

psiD.6 = 2 {sin G cosG-sm^\A cot C+ cos^ Ocot G] A6

+ sin h . AJ. — sin a sin G cot G . yjr

= {2 cos'^A . A6 — sin a sin . i|rj cot C + sin 6 . A4.

But cot G = tan ^ J. cos b and sin a sin C = sin 6 sin A, therefore

/) sin ^ = 2 sin ^^ cos ^ j4 cos b . A6

— 2 sin^^A cos 6 sin b .yfr + sinb. AA.

Substituting here the values found for A6 and yfr, we obtain

josin 6 = — 2lsm^A cos{h — }h — ^A)cosb + smb.AA.

Similarly

pcosd= 2sin^ J4 . A6 + sin 6sin J. .-v/r

= — 2lsm^^A cos(h — hi) + 21 sin ^A cos J^ sin {h — hi)

= 2lsiu^Asin{h — hi — ^A).

But p sin 6 and p cos are the displacements in, and at right

angles to the parallel, from which the required result follows.

CONCLUDING EXERCISES.

Ex. 1. An equatorial instrument being supposed in perfect adjustment

except that the polar axis, though in the meridian, has an inclination error 6,

show that even if the equatorial clock is running perfectly, the apparent

place of a circumpolar star instead of being permanently at the centre of

the field of view, traces out an ellipse whose principal semi-axes are 6 and

5 sin 8.

[Math. Trip. 1905.]

31—2
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Let P be the true pole, P' the actual pole of the equatorial (Fig. 121).

Then h, S are the true hour angle and declination

of 8, and A+ AA, 8+ A6 the apparent values.

Let ST be perpendicular to the meridian,

then

smPTAs,nh= ia.nST.

Taking the logarithmic differentials

dcot py+secAcosecA. aA=0,

but cot Pr= tan S sec A,

whence Ah=—6 tan S sin h,

and A8=-dcosh.

Thus the star appears displaced by quantities

x= —6 cos A,

y= — 5 tan 8 sin Ax cos S,

whence
y^

6^^ 6'^sa^^h
= 1.

Pig. 121.

Ex. 2. The polar axis of an equatorial telescope is slightly out of adjust-

ment, so that in hour angles Aj and h^ its declination circle, whose zero is in

adjustment, reads too great by amounts dx and d^. Draw two lines PS,

PT, proportional to di, d^, and making an angle h^—hx. Describe a circle

through PST. Show that the position of the instrumental pole is repre-

sented by P', where PP' is a diameter of the circle ; and find the errors of

adjustment in altitude and azimuth.

If S be any star whose polar distance and hour angle are A and Aj and if

P' is the instrumental pole whose position is similarly defined by the quantities

X and A, we have in the triangle SPP'

cos A'= cos A cos X 4- sin A sin X cos (A - Aj).

We are also given that A'=A — c?i , hence

cos (A — rfi)= cos A cos X + sin A sin X cos (A — Ai),

or neglecting squares and higher powers of the small quantities X and d-^

we find dx='k cos {h-hi).

Similarly <^2=^ cos (A - A2).

Hence the construction follows, and we see that the diameter of the circle

is equal to X.

Ex. 3. The declination axis of an equatorial makes an angle 90° H- a; with

the polar axis, and the telescope an angle 90° 4-y with the declination axis.

The telescope is then pointed on a star in the meridian and on the equator,

and the position wire of the micrometer set so that the star runs along it

when the instrument is not being driven by the clock. It is then pointed on

a star at declination S also in or near the meridian. Show that this star will

cross the field at an angle -a;(secS- l)-|-y tan 8 to the position wire.

[Sheepshanks Exhibition, 1900.]
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Let P be the pole of the heavens, A the point to which the declination
axis is directed and S a star in declination S. Then

JP=90° + a;, AS=QO'+y and PS=W-b.
If Q denote the angle ASP we have

^ — sin ^+ sin ?/ sin 8
cos §= ^ ,

cosy cos 8

or approximately,
90°-§= -^secS+ytanS.

The star will move across the field in a direction perpendicular to the

meridian. Hence 90°— § is the angle its path will appear to make with AS
which is fixed in the instrument.

At the equator we have
90°- §0=-^-

Hence §o- §= —^(sec8-l)+ytan 8.

Ex. 4. An equatorial telescope whose axis is adjusted to the apparent

pole is pointed to a star very near the meridian ; show that, if the telescope

is to follow the star accurately, the rate of the clock must be diminished

in the ratio of

1-KCotAtanz : 1, ,

where X is the latitude of the place of observation.

[Math. Trip.]

Let P be the true pole, Z the zenith and S the position of a star in any

hour angle h. Let P' and <S" be the positions of the pole and of the star

as affected by refraction. Then PP'= k cot X and SS'= k tan z, where z is the

zenith distance of the star.

If h' be the angle ZP'S', i.e. the apparent hour angle of S', on applying

the differential formulae (i) of § (4) to the triangle ZPS, we find

sin h cos X
AA=A'— A=AXsin A tan 8+ Az

sin z cos 8

'

Hence

h'-h= K icotXtanS ^SsinA.
(

cos z cos oj

dh' dh f . , , ^ cos X "I , dh cos X sin z . dz
-77 - -r= K ScotXtan8 rVcosA tt-k —» jsmA-j-.
dt dt {_ coszcosSJ dt cos''zcos8 dt

On the meridian we have A=0 and 8=X-0, hence in this case

—

;

5- = K cot X -(tan 8 —
dt dt

{ . sin X ^dh

\ cos z cos 8j dt

, , sm(X-0)cos0—smX c?A ,,, dh
= lcCOtX ^^

'-

-pr r -j-= -KCOtXtan0;TT.
cos 3 cos (X — 2) dt at

Therefore ^= { 1 - k cot X tan z} ^ .
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Ex. 5. A telescope is mounted on a stand with free movement in altitude

and azimuth. Show that it may he made to move equatorially if a wire be

attached to the end of the telescope connecting it with a certain fixed point.

[Sheepshanks Exhibition.]

Ex. 6. A photographic plate attached to an equatorial telescope of focal

length F is exposed for one hour on the pole with the driving clock in action.

Show that if there be an error of adjustment a in the polar axis, the trails of

all star images on the plate will be arcs of equal circles and the lengths of the

trails will be 7raF/l2.

[Math. Trip.]

Ex. 7. Show how the small errors of adjustment in the axis of an

equatorial telescope may be determined by measures of the apparent difier-

ence of declination of two pairs of stars whose true differences of declination

are given, and point out how the stars of each pair should "be situated in hour

angle to obtain the most reliable results.

[Dr Rambaut.]

Let AZ be the meridian, A the pole and A' the point towards which the

axis is pointing.

Let AA' = X and LA'AZ=h.

Let B and C be one pair of stars, and let

the telescope be pointed at G so that its

image falls on the intersection of the cross

wires, one of which is supposed to lie in the

great circle A'O, and the other at right angles

to it.

Let the telescope be turned in hour angle

so that the N. and S. wire shall pass through

the star B. If A'B is produced to B' so

that A'B'= A'C, then B' will be the position

of the cross wires and the distance BB' ( =y)
is the measured difference of declination.

We have therefore
Fig. 122.

i/=BB'= A'C-'A'B,

or, if the sides and angles of the AA'BC axe denoted by the letters a', b', c',

A', B', 0" we have

y= h'-d (i).

The sides and angles of the t\A'BC differ from those of ABO only by
quantities of the order X, and since BC is common to both we see that

da = 0. Also

db=-\cosA'AO and dC=-A'OA=-X sin A'A C/sin b.

If we denote the angle A'AZ by h, CAZ by h,^, and BAZ by Aj, we have

da= Q; db= ~\coa{h-h^; dC=-\sm{h— h^le,va.b.
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We have also in general (see § 4)

dc= cos Bda+ coaAdb+H sin a sin b dO,

substituting the values just found for da, dh and dC in this we obtain

t?c= - X cos ^ cos {h-h^-\ sin A sin (Ji - h^.

From (i) we have

y=h — c-\-dh— dc,

therefore y=6-c+X sin 4 sin ih — h^— X (1 -cos^) cos {h^-h^

=6-c+ 2Xsin J^ . sin{A--^ (^i+ ^2)}'

If 8i and Sg are the declinations of B and C respectively, then

6-c=8i-82,
and therefore

y= Si - 82+ 2X sin ^ (Ai - Aj) sin {A - i (Ai + i^a)}-

If we write X=\ sin h and r'=X cos A, then X is the distance of A' from

the meridian, and T is the projection of X on the meridian towards the

zenith, and we find

2 sin i (^ - Aj) cos \ {hi + Aj) X- 2 sin J (Aj - h^) sin |^ (Aj+Aj) F
, .

=^-(81-82) (ii),

which may be written

(sin Ai - sin Aj) X+ (cos Ai - cos Aj) F=y - (81 - 82) (iii).

Similar observations on another pair of stars will furnish a second equation

of the same form which with (iii) will enable us to determine X and Y.

To find X most favourably we must make its coefficient in (ii) or (iii) as

large as possible. It is clear that this is a maximum when the hour angles

are 90° and 270°, i.e. the two stars should lie on the six-hour circle. In

this case we find

2X=y-(8i-82).

To find the most favourable conditions for determining Twe make the

two hour angles 0° and 180°, and we have

2F=y-(8,-82).

In this case the two stars should be on the meridian.

Ex. 8. An equatorial telescope in north latitude X is driven by clockwork

gearing at true sidereal rate, and has its polar axis at the right elevation

but in a vertical plane inclined at a small angle a to the plane of the

meridian. The telescope is pointed to a star of south declination 8 which is

in the middle of the field of view when it is crossing the meridian. Neglect-

ing refraction, prove that it will remain in the field of view as long as it is

above the horizon, provided that the angular radius of the field is greater

than

a sec 8 {cos^ X - sin^ 8 sin^ (X -f 8)} *

.

[Math. Trip. I.]



FUNDAMENTAL INSTRUMENTS [CH. XXII

Ex. 9. If the declination wire in the meridian circle instead of being

exactly horizontal make an angle 90° — I with the meridian, and if 8' be the

observed declination of a star of true declination S, and near the meridian

with an hour angle t ; then show that

tan (5= tan S* cos <+ sec 8' sin < tan /.

Ex. 10. Hence show that if the pole star with true declination 8 appear

when about an hour on one side of the meridian to have the declination 8'

and the hour angle t', and when about an hour on the other side of the

meridian to have the declination 8", and the hour angle t", the small in-

clination / can be found from the equation

tan 8" cos J" — tan 8' cos t'

tani=
sec 8" sin t" -(- sec 8' sin t

Ex. 11. Show that the effect of the error of azimuth on the zenith distance

of a star observed with the meridian circle is

\a?' cos <\> sin z sec (0 — z) sin 1",

where a is the azimuth error, the latitude, and z the zenith distance.

[Coll. Exam. 1903.]

Let z+X he the apparent zenith distance as altered by azimuth of the

instrument

sin {(j)—z)= cos (z+ A') sin (p — sin (z + X) cos cp cos a,

whence X cos (0 — z) = ^ a^ sin z cos cf) sin 1".

Ex. 12. Show that in the reduction of a transit-circle observation of the

R.A. of the moon's bright limb, the effect of the motion of the moon in b.a.

and of its increase in semi-diameter, upon the reduction from the mean of the

wires observed to the centre wire, is expressed by multiplying the ordinary

reduction to centre by the factor

3600-1-/ sin (moon's geocentric z.D.) , , , ,,
„„„„ X^ j-2 -' X sec (moon's geoc. decl.),
3600 sm (moons apparent z.D.)

° "

where / is the rate of increase of the moon's r.a., expressed in seconds of

time per hour, for the instant of observation.

[Introduction to Greenwich Obs."]

Ex. 13. Show that it is possible for a transit instrument to point cor-

rectly to the zenith and to the south point of the horizon, but to be incorrect

between them. If c" be the collimation error of such a telescope, the error

in the time of transit of a star of zenith distance 45° is -02760 ooseo (45° -(-0)

seconds of time, where ip is the latitude of the place of observation. Should
this be added to or subtracted from the observed time?

[Coll. Exam. 1898.]

We have as in § 156

sin c+ (sin sin 5 - cos <^ cos b sin k) sin 8 — cos 6 cos i: sin t cos 8

-I- (cos
(f)

sin b+ aia<f) cos bsink) cos 8 cos t=0.
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For the meridian circle h, c, h and therefore t are small quantities.
Hence we may write

c+ (6sin<^-Acos<^)sin84-(6cos^+ isin^)cos8-<cos8=0.
By the conditions of the problem t= when 8=<^ (i.e. for a point at the

zenith) whence c+ 6=0, also t=0 when 8= 0-90° (i.e. for the south point),
whence c-\-k=0.

Hence for any other point we have

« cos 8= c {1 - (sin ^ - cos <^) sin S - (cos (^+ sin tf,) cos 8}

= c {1 - V2 cos (0 - 8 - 45°)}.

If the zenith distance of a star at oiilmination be 45° then 8=0-45° and

therefore sin (45°+ 0) .<= -c(\/2-l).

If c be expressed in seconds of arc and t in seconds of time,

15«= -•4142c coseo(45°+ 0).

As t is negative the hour angle of the star is east when on the instru-

mental meridian, and consequently the correction is

+ -02760 cosec (45°+ 0).

Ex. 14. Show that if 6, q, r are all so small that powers above the first

may be neglected the equations of the generalized instrument (1), (2), (3),

§ 142, assume the form

sin 8= sin ^'+ ^ sin R cos E,

sin(\-a)cos8= — sin^cos^'+ flsiniJ'+ cos /2(r+5'siniJ'),

cos (X - a) cos 8= cos jR cos iJ'+ sin ^ (?•+ J sin iJ').

Show that for these equations we have

First Solution.

iJ=a-X+rsec8 + S'tan8+5cos (a -\) tan 8,

R'=b-6sm{a-\).

Second Solution.

iJ=180°+a-X-rsec8-2'tan8+5cos(a-X)tan8,

iJ'=180°-8+ esin(a-X),

and explain how these formulae are applicable either to the altazimuth or the

equatorial as well as to the meridian circle.



EXPLANATION OF THE TABLES I. AND II.

In Table I. I have followed Newcomb and Hill in the "Astronomical

Papers for the American Ephemeris." The semi-axes major are the natural

numbers corresponding to the logarithmic values given by Newcomb and

Hill, and in expressing them in miles, I have, in conformity with the units

adopted in this volume, assumed 8"-80 as the solar parallax, and Clarke's

value, 3963'3 miles, as the equatorial semi-diameter of the Earth.

In Table II. will be found a consistent set of elements depending upon

the angular semi-diameters as at present used in the Nautical Almanac,

the masses of Newcomb and Hill, Clarke's semi-diameter of the earth

(3963-3 miles), the Solar Parallax 8"-80 and the Earth's mean density 5-56, as

found by Cornu and Bailie.
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INDEX AND GLOSSARY

The numbers refer to the pages.

Aberbation. An apparent change in the place of a celestial body due to the fact

that the velocity of light is not incomparably greater than the velocity with
which the observer is himself moving, 248. Different kinds of, 253. Annual,
254. Geometry of annual, 258. Apex of observer's movement, 258. Arising

from motion of the solar system as a whole, 253. Diurnal, 265. Planetary,

266. In K.A. and Decl., 254. In Long, and Lat., 257. Constant of, 260.

Determination of coefBcient of, 263. See Constant of Aberration.

AccuBACY in logarithmic calculation, 11.

Adams, J. C. Solution of Kepler's problem, 157. Graphical solution of Kepler's

problem, 163. Proof of Lambert's Theorem, 166. Expression for lunar

Parallax, 294.

Albkecht, Prof. Variations in latitude, 197.

Aldebaban, vii. Parallax of, 328.

Alms. Tables for solving Kepler's problem, 164.

Almtjoantab. An instrument invented by Chandler and essentially consisting

of a telescope rigidly fastened to a support floating freely on mercury. A
case of the generalized transit circle, 455

Altaib, vii. Parallax of, 328.

AiiiAziMUTH. An instrument for observing altitudes and azimuths, 480.

Altitude. The altitude of a star is the length of the arc of a vertical circle

drawn from the star to the celestial horizon, 78.

Ameeican Ephemeris, vii

Analogies. Delambre's, 8. Napier's, 10.

Anqle of position of a double star defined, 138.

Annhaibe de Bureau des Longitudes, 327.

AnncaIi aberration, 258.

Annual Parallax of Stars, 326.

Anomaly. Eccentric, 154. Mean, 155. True, 154.

Antinole. If a man is walking on the outside of a sphere along a graduated great

circle in the direction in which the numbers increase, i.e. from 0° to 1°

(not from 0° to 359°), he will have on his right hand that pole of the great

circle which is distinguished by the word antinole, 25. See Hole.

Apex of the earth's way, 250.

Aphelion, 154. See Perihelion.

Apogee, 154. See Perigee.

Appaeeni motion of Sun, 226—place of a star, 269—distance of two stars, 70.

Apse. A point in a planet's orbit where it is nearest to or farthest from the

sun is termed an apse, 154.
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Arctdrds, vii. The centre of an imaginary celestial sphere, 70. Parallax of, 328.

Areas. Law of Kepler relating to planetary motions, 145.

Arbument of the latitude used in expressing the coordinates of planets, 411.

Aries. First point of, 83. A line through the Sun's centre parallel to the

Earth's equator cuts the ecliptic in two points, the first of these, being

that through which the Sun passes in spring, is called the vernal equi-

noctial point or the first point in Aries, 83. Movement of, 18B. Con-

nection with the seasons, 202.

Art of Interpolation, 14.

Ascending node. If N and N' be the noles of two graduated great circles A
and B, and if NN' be a graduated great circle so that the graduation

increases from N to N', then the nole of NN' is the ascending node of

B upon A (descending node of A upon B), and the antinole of NN' is the

descending node of B upon A (ascending node of A upon jB), 33—of plane-

tary orbit, 407. See Node.

Ascension Island. Sir David Gill's investigations of the Parallax of Mars, 303

Ascension (Eight). The right ascension of a heavenly body is the arc on the

celestial sphere between the first point of Aries and the intersection of

the celestial equator with the hour circle through the centre of the

heavenly body, 82. How obtained, 204.

Asteroids. The minor planets of which the orbits generally lie between those

of Mars and Jupiter, 307.

Astronomical—clock, 202—latitude and longitude, 106—refraction, 118—instru-

ments, 458.

Astronomical constants (Newcomb) quoted, 308.

Astronomische Nachrichten, 197.

Atmosphere. Theories as to the Eartli's, 125.

Atmospheric refraction, 116. General theory of, 120. Differential Equation

for, 122. Cassini's formula, 125. Simpson's formula, 138. Bradley's

formula, 129. Determination from observation, 131. Effect on hour angle

and DecL, 133. Effect on apparent distance, 135. Effect on double star,

138. See Eefraction.

Atmospheric effect on Lunar Eclipses, 347.

Autumn. Explanation of the seasons, 242.

Autumnal Equinox. The epoch at which the Sun passes from the north to the

south of the equator, 14.

Axis or the Earth, 44. Of the Sun, 398. Of the Moon, 401.

Azimuth. The azimuth of a celestial body is the angle between the meridian

and the vertical circle through the centre of the body. In the present

volume azimuth is measured from 0° at the north point of the horizon
round by 90° at E., 180° at S. and 270° at W. so that the nadir is the nole

of the graduation of the horizon, 78. Effect of Parallax of Moon on, 291.

One of the errors of the meridian circle, 474.

Bagay. Logarithm tables in which the trigonometrical functions are given for

each second of arc, 12.

Baille on mean density of earth, 490.

Ball, Mr R. S., vii.

Barometer, as connected with atmospheric refraction, 131. ,

Bausohinger. Astronomical tables here used for numerical solution of Kepler's

problem, 158.

Beginning of the year, 190.

Berry, Mr Arthur, vi.
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Bessel. On Interpolation, 21. Day numbers, 188, 270. Occultations, 376. Ee-
fraotion, 122. Formula for reducing transit observations, 470

Bessblian elements for an eclipse of the Sun, 367. Applied to eclipse at a given
station, 370.

Beaeley. Discovery of aberration, 248. Of nutation, 176. Formula for re-
fraction, 129.

Beightness of Moon and planets, 419.

Bbown, Prof. E. W. Parallactic inequality of Moon, 310.

Bbuhn's logarithm tables to 7 places, 12.

Brunnow, vi. On the theory of refraction, 122. On planetary precession, 176.

Cagnoli. Solution of Kepler's problem, 167.

Calendab. Gregorian, 210. Julian, 210.

Cambbidqe geocentric latitude calculated, 46.

Campbell, Prof. Practical astronomy quoted, 122.

Canoee. Position of Sun at summer solstice, 243.

Canes venatici. A constellation. It contains the star 1830 Groombridge with
the largest proper motion of any star in the northern hemisphere, 195.

Cape or Goon Hope obseevatobt, 133. Annals of, quoted with reference to Solar

Parallax, 307. Refraction, 133.

Capella, vii. Parallax of, 328.

Capbiooends. Position of Sun at the winter solstice, 243.

Caedinal points. The points on the horizon which are due north, south, east,

west, 80.

Cassini. Theory of atmospheric refraction, 125. Laws of lunar libration, 401.

Celestul Equator, 85. Horizon, 72. Sphere, 68. Latitude and longitude, 106.

Centauei a, vii. Parallax of, 328. Proper motion of, 196.

Centee. Equation of the, 226.

Cephei a. Refraction of, 132.

Chandler. Variations in latitude by the movement of the North Pole, 196.

Inventor of the Almucantar, 457.

Chaet, see Map.

Chadvenet. Practical and spherical astronomy quoted, 344, 367.

Circle. Graduated great, 25. Nole of, 25. Inclination of, 32. Nodes of, 34.

Reading of a graduated, 458. Microscope used for reading, 429. Use of

several reading microscopes, 464. Generalized transit circle, a particular

case of the generalized instrument, 456.

CiRODLAE parts used in Napier's formulae for right-angled triangles, 5.

CiROUMPOLAR Stabs. Those stars which in the northern celestial hemisphere

are so near the northern celestial pole that they never pass below the

sensible horizon in the course of the diurnal rotation of the heavens are

called northern circumpolar stars. In like manner the stars near the south

pole which never set to observers in southern terrestrial latitudes are also

called circumpolar, 76.

Civil yeae defined, 210.

Clabke, Colonel. Dimensions of the earth, 44, 47, 308, 490.

Clock. Astronomical, 202. Errors of, how found, 204.

Co-latitdde of a place on the earth's surface is the complement of its lati-

tude, 76.

College Examination, 140, 141, 142, 162, 170, 181, 183, 198, 208, 224, 229, 235,

239, 266, 275, 280, 286, 296, 300, 325, 332, 338, 350, 363, 367, 367, 374,

375, 382, 386, 387, 388, 393, 396, 397, 405, 406, 417, 418, 420, 422, 425,

427, 429, 476, 477, 479, 488.
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CoLLiMATioN of astronomical instruments, 470.

CoLLiUEATioN. Error of. How determined by the oollimating telescopes, 472.

CoLLiMATOES used with meridian circles for the determination of the error of

collimation, 472.

Columbia College, New York, 222.

CoLUEE. The great circle passing through the North Pole of the Equator and

through the equinoctial points is called the Equinoctial Colore. The
great circle through the North Pole and the solstices is the Solstitial

Colure, 85.

Comets. Parabolic motion of, 166. Euler's theorem concerning, 165. Problems

on motion of, 423.

CoNFOEMAL. Two maps are said to be conformal when every small figure on

one is similar to the corresponding small figure on the other, 51.

Conjunction. Two planets are said to be in conjunction when their heliocentrie

longitudes are the same, 407.

Consecutive paets in a triangle, 3.

Constant of aberkation. If the eccentricity of the earth's orbit be neglected

the constant of aberration is the angle whose circular measure is the ratio

of the velocity of the Earth in its orbit to the velocity of light. The value

of the constant of aberration when the eccentricity is not deemed negligible

is given in Ex. 3, 261.

Constellations. For convenience of reference the stars are arranged into groups

of which each has received a name which applies generally to the region

which the group occupies. The stars in the group are distinguished in order

of brightness as a, ^, &c. Thus the three brightest stars in Orion are known
as a, Orionis, ;8 Orionis, y Orionis. The constellations through which
the sun passes in its apparent annual motion are called the signs of the

Zodiac.

Contact. Apparent contact of the discs of the planet and the Sun on the occasion

of the transit of a planet, 313. In Eclipses, 346, 368.

CooKsoN, Mr Bkyan. On Jupiter's satellites, 309.

CooBDiNATES. HeKographic, 398. Spherical, 26. Of a star, 82. In terms of

the readings of the generalized instrument, 436.

CoEDOBA ZONE, 5 h., 243. Parallax of the star, vii, 328.

CoENU on mean density of earth, 490.

CowELL, Mr P. H. Parallactic inequality of Moon, 311. On refractions, 131.

Ceommelin, Mr A. 0. D. Exercise relating to Jupiter, 429.

Culmination, upper and lower. At apparent noon when the Sun is at its highest

point above the horizon it is said to be in upper culmination. At mid-
night when the sun is at its lowest point below the horizon the sun
is in hwer culmination. In general a star or other celestial body cul-

minates when it crosses the meridian either above or below the horizon,
76-6. Of a planet, 99. Of the moon, 100. Effect of longitude on, 101.

Culminations of the first point of Aries, 211.

CuEVAiuEE along the terrestrial meridian, 47.

Cycle of Meton, 369.

Cygni, 61. Parallax of the star, vii, 137, 328.

Date line, terrestrial, 222.

Day. Sidereal, 87. Mean solar, 215. Apparent solar, 216.

Day numbees, Bessel's, 188, 270.

Declination. A great circle through the two celestial poles and a star is called

the hour circle of the star. The intercept > 90° on the hour circle
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between the star and the equator is the declination of the star. The
declination is positive if the star is in the northern hemisphere, and negative

if it is in the southern, 82, 83. How determined by the meridian circle, 475.

Declination (Magnetic). The angle between the direction in which the magnetic

needle points and the true north is called the magnetic declination, 79, 80.

Dbimos. a satellite of Mars, 152.

Delambbe, analogies, 8.

Delaunay. On solar parallax from the parallactic inequality of the moon, 310.

De Lisle. Method of finding solar parallax from the transit of Venus, 322.

Descending node, 34. See Ascending node.

De Sitter, Dr, vii. On Jupiter's satellites, 309.

Diameter. The apparent diameter of the heavenly body is the vertical angle of

the tangent cone drawn from the observer to the body. True and apparent

diameters in solar system, 492.

Differential formulae in the spherical triangle, 13. Applied to celestial sphere,

93. Difierential method of observing annual parallax, 338.

Distance. Of the moon, 294. Of the Sun, 299. Of the stars, 328. Apparent

distance of two stars, 70.

DioBNAL MOTION of the heavens, 72.

Division. Errors of, in a graduated circle, 462.

Dreyeb, Dr J. L. E., vi

DuNsiNK Observatosy referred to, 132, 137.

Earth. Axis of, 44. Dimensions of, 44. Rotation of, 87. Period of revolution

of, 217. Mean density of, 490. Preoessional and nutational movement of,

172, 185. Variation in the position of pole of, 196. Annual movement

of. 226. Elements of, 491, 492.

EocENiRioiTY. Of the orbit of a planet, 408. Of a graduated circle, 460. Of

the earth's orbit, 232.

Eclipse of Moon, 346. How calculated, 364. Point where it commences, 353.

Eclipse of Sun, 358. How calculated at a given station, 370. Besseliau elements

for, 367.

Eclipses of Jupiter's satellites, 309.

Ecliptic. The name of the great circle of the celestial sphere in which the

sun appears to perform its annual movement, 83.

Ecliptic limits. Lunar eclipse, 351. Solar, 365.

Edinburgh degree examination, 167.

Elements. The six elements of a planet's orbit, 409. Tables of, 491, 492.

Elkin, Dr, vii.

Elliptic motion, 145. Kepler's Laws regarding, 145. Newton's discoveries, 146.

Calculation of, 154.

Ellipticity. The elliptioity of the earth's figure is the ratio which the difference

between the equatorial and polar diameters of the earth bears to the

equatorial diameter, 48.

Encke. Discussion of transit of Venus, 303.

Ephemeris, vii.

Epoch. That element of a planet's orbit which expresses the time at which the

planet passes through perihehon, 408.

Equation of time. The equation of time is the correction to be added alge-

braically to the apparent solar time to obtain the mean solar time. It

may also be defined as the quantity which must be added to the mean

longitude of the sun to give the sun's right ascension, 232. Shown

graphically, 237. Stationary, 241. Vanishes four times a year, 239

B. A. 32
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Equation oi? the centre. The equation of the centre is the difference between

the true and mean longitudes of the sun, 161, 226, 230.

Equator. The celestial equator is that great circle of the celestial sphere which

is at right angles to the earth's axis. It is sometimes called the equinoctial.

The terrestrial equator is the intersection of the earth's surface by

a plane through the earth's centre and perpendicular to the earth's

axis, 74.

Equator op Moon, 401.

Equatorial telescope, 480. A case of the generalized instrument, 480. Errors

of, 480. The use of the equatorial clock, 481. Applied to celestial photo-

graphy, 486.

Equatorial Horizontal parallax, 278.

• Equatorial Sundial, 394.

Equinoctial points. The two opposite points in which the ecliptic intersects

the equator are called the Equinoctial points ; they are the nodes of the

ecliptic upon the Equator. The node at which the Sun passes from the

south to the north side of the Equator is the Vernal Equinoctial point

or First Point of Aries. The other node is the Autumnal Equinoctial point

or the first point of Libra, 84.

Equinox. This word denotes an Epoch at which the sun appears to pass through

one of the equinoctial points. The Vernal Equinox when the Sun enters

the First Point of Aries in 19H is Mar. 21 d. 5h. 54 m. and the Autumnal
Equinox when the Sun enters the First Point of Libra is Sep. 23 d. 16 h. 18 m.

Equinoxes. Nutation of, 171. Precession of, 171.

Eros, the asteroid used in determining solar parallax, 308.

Error, function showing probability of, 341. Index error of circles on the

generalized instrument, 446, 449. Error of eccentricity in a graduated

circle, 460. Of Division in a graduated circle, 462. Systematic errors of

graduation, 463. Of level, 473. Of collimation, 470. Of Azimuth, 474.

Of the astronomical clock how found, 474.

Euler's theorem, 165.

Everett on units quoted, 16B.

Examination, see Tripos, College, Smith's Prize, Sheepshanks.
Falmouth. Magnetic declination at, 79.

Figure of the Earth, 43.

First point of Aries, 83. See Aries.

Formula, fundamental of spherical trigonometry, 1—fundamental for generalized
instrument, 438.

Foucault's pendulum, 73.

Franz on the laws of rotation of the moon, 401.

Fundamental instruments of the Observatory included in a single equation, 460.
Fundamental formula for the reduction of observation of Transits, 470.

Gauss analogies, 8. On the determination of orbits, 410. On projection, 66.

Geminorum j8. Precession and nutation of, 191.

Generalized Instrument, principles of, 431. Fundamental equations for, 438.
Inverse form of, 440. Contrast of direct and inverse problems, 443. Index
errors of circles I. and II., 449, 446. Determination of q and v, 446. Figures
relating to, 432, 436. Single equation containing the theory of, 460.
Differential formulee, 463. Generalized transit circle, 455. Applied to the
Meridian circle the prime vertical instrument and the ahnuoantar, 457.

Geocentric place of a heavenly body, 408. Coordinates deduced from heliocentric,
412. Latitude, 44. Motion of a planet, 413.
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Geocenteio parallax of a celestial object is the angle between two lines drawn from
that object of which one is directed to the centre of the Earth and the other
to the observer, 277.

Geodesy is the science which treats of the dimensions and figure of the Earth, 43.
Clarke's Geodesy quoted, 44, 48, 49.

Geographical latitude, 44. See Latitude.

Geometrical principle of a mean motion, 212.

GiHBous. A term used to describe the phase of a planet when more than half
its disc is illuminated. The planet is said to be horned when less than
half its disc is illuminated, 424.

Gill, Sir David, K.C.B., vii. Observations of Jupiter's Satellites, 309. Solar
parallax from observations of Mars on Ascension Island, 303. On refraction,

131. Solar parallax from observations of Victoria, Iris, Sappho, 307.

Gladstone and Dale's law, 124.

Gnomonic projection, 66.

GoDFKAY s Astronomy quoted, 299, 417.

Geaddated great circle, 25. Beading of with microscopes, 458, 459, 464. Eccen-
tricity of, 460. Errors of division in, 462. Nole of, 25. Inclination of, 32.

Nodes of, 34.

Great Circle. A great circle on a sphere is a circle whose plane passes through
the centre of the sphere. Any circle whose plane does not pass through the

centre is called a small circle.

Greenwich observations, 131, 137, 479. Befraction Tables, 131. Star Catalogue,

191.

Gregorian Calendar, 210.

Groningen observations, vii.

Gboombeidge Star Catalogue, 195. Parallax of Star 1830 Groombridge, vii, 328.

Proper motion of the same star, 195. In Canes Venatici, 195, 196.

Gruis a, vii. Parallax of Star, 328.

Halley. Comet of, 158. Transit of Venus, 322.

Hansen's formula for reducing transit observations, 470.

Hartley, Mr W. E., vi.

Harvard College observatory, 309.

Harvest Moon, 385.

Hayn. Inclination of lunar Equator, 401.

Heliocentric place of a planet, 412. Coordinates deduced from geocentric, 412.

Latitude and longitude of a planet, 408.

Heliogbaphio Coordinates, 398.

Heliomeier principle of the, 304.

Hill, Dr G. Elements of planetary orbits, 490.

HiNKS, Mr A. E., vi, 143, 308.

Horizon. A plane perpendicular to a plumb line at a point on the surface of the

Earth is the sensible horizon of the point. A plane parallel to the sensible

horizon and drawn through the Earth's centre is the rational horizon. As
the Earth's radius is inappreciable in comparison with the distances of the

stars the sensible and rational horizons of a point intersect in a great circle

on the celestial sphere which is known as the celestial horizon, 72.

Horizontal parallax, 278.

Horizontal wire in the meridian circle, 467.

Horned as applied to a planet (see Gibbous), 425.

Hour angle. The angle which the hour circle from the north pole to a star makes

with the meridian is called the hour angle of the star. At upper culmination

32—2
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the hour angle of a star is zero and it increases by the diurnal motion from

0° to 360° in the direction South West North East, 86.

Hour cikcles are great circles of the celestial sphere which pass through the North

and South poles, 86.

HuYGENS quoted on aberration, 248.

Inclination of two graduated circles, 32. Of a planetary orbit, 408.

Independent Day Numbers, 188.

Index of Atmospheric refraction, 117.

Index error of Circle II. in the generalized instrument, 445. Of Circle I.,

449.

Innes on large proper motion of a star, 196.

Instruments of the observatory, fundamental equation for, 450.

Internal contact of planet when in transit across the Sun, 316.

International geodetic association, 197.

Interpolation, Art of, 14.

Intersections of two graduated circles, 33.

Inverse form of the equations of the generalized instrument, 440.

Iris, an asteroid used in investigating solar parallax, 307.

Julian Calendar, 210.

Jupiter. Culmination of, 99. Satellites of, 309. Synodic period of, 418. Ele-

ments of, 491, 492.

Kaptetn, vii. On proper motion of Star, 196.

Kepler. Laws of, 145. Problem, 166.

Kew. Magnetic declination at, 79.

KtJSTNEB. Variations in Latitude, 196.

Lagrange. Occultations of stars by moon, 376. Theorem known by his name,

155.

Lalande STAB 21185 in Catalogue, Parallax of, vii, 328.

Lambert's theorem of elliptic motion, 166.

Latitude. The astronomical or geographical latitude of a place on the Earth's

surface is the angle between the Plumb Line and the plane of the Equator.

Geocentric latitude is the angle between the radius from the Earth's centre

to the place of the observer and the plane of the meridian. If the Earth be

regarded as a sphere the astronomical and geocentric latitudes are identical,

44, 76. The celestial latitude of a star is the arc t- 90° of the celestial sphere

drawn from the place of the star perpendicular to the Ecliptic, 106.

Latitude. Argument of, used in expressing the coordinates of a planet, 411.

Laws of Kepler, 145.

Leap Yeah, 210.

Leathem. Edition of Todbunter's trigonometry quoted, 3, 8.

Level. Error of in the Meridian Circle, 473.

Leverrier. Bule for the solution of Kepler's problem, 163.

Libra. The constellation, 84, 242. In connection with Harvest Moon, 385.

LiBRATioN of Moon, 403.

Lick Observatory. Calculation of Moon's culmination at, 102.

Light. Velocity of determined by Newcomb, 308. Time in coming from the Stars,

328.

LoEWY method of observing refractions, 131.

Longitude (celestial) of a star is the arc of the Ecliptic from the First Point
of Aries to the point where a great circle passing through the star and
perpendicular to the Ecliptic cuts the latter measured in the direction

of the sun's apparent motion, 106.
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Longitude (terrestrial). The longitude of a place on the Earth's surface is the

angle which its meridian plane makes with a selected zero meridian which
is generally taken to be that of Greenwich, 222.

Looms' Practical Astronomy quoted, 289.

LoxODKOME. Assuming the earth to be a sphere a curve traced on its surface so as

to make a constant angle with all successive meridians is called a loxodrome
or rhumb-line, 57.

LuNAB eclipses, 346—equator, 401—parallax mean value of, 294—phases, 419.

Lunation. Period of, 3B8.

LuNisoiiAB Precession, 171.

Maddt's astronomy quoted, 416.

Magnetic Declination, 79.

Magnitude of a lunar eclipse, 349.

Map, 49. Conformal, 51. Mercator, 54. Stereographie, 58.

Maeineb's Compass, 80.

Mars. Solar ParaUax derived from observations of, 152. Elements of, 491, 492.

Maetin. Meridian Circle constructed by Pistor and Martin, 458.

Mathematical tkipos, see Tripos.

Mateb's formula for reducing transits, 470.

Mean distance of a planet is the semi-axis major of its orbit, 408—equatorial

horizontal parallax, 278—motion, geometrical principle of, 212—place of

a star at any time is the position which it would appear to occupy if it

could be viewed by an observer situated at the centre of the Sun, 269

—

right ascension, 192—sun is a fictitious body imagined as moving round

the celestial equator with uniform angular velocity, and so that its b.a. is

always equal to the mean longitude of the true Sun, 216—time at a

particular place is the westerly hour angle of the mean Sun turned into

time at the rate of 15° per hour, 200, 215—time deduced from sidereal

time, 220—density of Earth, 490.

Meecatok's pbojeotion, 54. Shown to be conformal, 54. Of a loxodrome, 57.

Stereographie projection deduced from, 61.

Meecurt, the planet. Movements of, 418. Rotation of, 429. Transit of across

Sun, 314. Elements of, 491, 492.

Mercury. Determination of error of level of the meridian circle by reflection

from a surface of Mercury, 473. Application of the same to determination

of declination, 476.

Meridian. The great circle of the celestial sphere which passes through the

pole and the zenith of the observer cuts the celestial sphere in the celestial

meridian. The plane of this great circle cuts the earth in the terrestrial

meridian, 75.

Meridian circle. General theory of, 451, 456. A case of the generalized transit

circle, 457. Construction of, 466. Error of collimation in, 470. Error of level

in, 473. Error of azimuth in, 474. Determination of declinations by, 475.

Meridional wire in the meridian circle, 467.

Meton, cycle of, 359.

Micrometer, use of, in reading graduated circles, 459.

Milky way, 114.

Monthly Notices of the Royal Astronomical Society, 131, 139, 163, 164, 183, 308,

310, 311.

Moon, culmination of, 100. Distance from earth, 289. Eclipses of, 346. Libra-

tion of, 403. Occultations of stars by, 376. Phases and brightness of,

419. Rising and setting of, 390. Rotation of, 401.
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Motions, proper, of stars, 195.

Nadir. The point on the celestial sphere to which a plumb-line continued down-

wards through the earth would be directed. The nadir is the point of the

celestial sphere which is 180° from the zenith, 72.

Napier's, analogies, 8. Eules, 5.

National physioaij laboratory, 79.

Naoticai, almanac, vii, 186, 188, 189, 190, 191, 247, 295, 345, 400, 424, 426. Semi-

diameters of planets used in, 490.

Neptune the planet, elements of, 491, 492.

Newoomb, Professor Simon, vi. Astronomical constants, 308. Compendium of

spherical astronomy quoted, 122, 190. Constant of precession, 187. On

planetary precession, 176. On solar parallax, 303, 310. Velocity of light,

308. Tables of planets, 490.

Newton. Laws of motion, 146. Solution of Kepler's problem, 167.

Node. The points in which any great circle cuts another (taken as the circle

of reference) are called the nodes of the former. Of these two points,

that at which a point, moving around the great circle in the positive

direction, passes from the negative to the positive side of the reference

circle is the ascending node. The opposite point is the descending node,

33. Of a planetary orbit, 407. Closest approach of sun and moon at a

node, 364. See Ascending node.

NoLE. That pole of a graduated great circle which lies towards the left hand

of a man walking on the outside of the sphere along the circle in the

direction in which the graduation increases is called the note. The
opposite pole is called the antinole, 25.

NoKTH POLAR distance of a star, 83.

Nutation. The nutation in longitude is the periodical part of the movement
of the equinoctial points along the ecliptic. The nutation in obliquity

is the periodic change in the obliquity of the ecliptic, 185. See Pre-

cession.

Obliquity of the ecliptic. The inclination between the planes of the ecliptic

and equator is known as the obliquity of the ecliptic, 86, 205.

Obbekvatoet. Fundamental instruments in, 450.

Oocultations of stars by the moon, 376. Points of disappearance and re-

appearance, 381.

Opposition. A celestial body is said to be in opposition when the geocentric

longitude of the body is equal to the geocentric longitude of the Sun, 408.

Orbit. The orbit of a planet is the path in which » planet moves round the

Sun, 145. Of a planet found from observation, 408. Stationary points

in planetary, 415.

Oxford. Second public examination, 115. Senior scholarship examination,

130.

Parallactic angle, defined and calculated, 91.

Parallactic ellipse described by a star, 232,

Parallax. Parallax is the change in the apparent direction of a celestial body
as seen from two different points of view. Geocentric parallax is the

angle between the actual direction of the object as viewed from a place

on the surface of the earth and the direction in which it would appear
if it could be seen from the centre of the earth. Annual parallax is the

angle between the direction in which a star appears as seen from the earth
and the direction in which it would appear if it could be observed from
the centre of the sun, 277. Fundamental equation for finding the parallax
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in K.A. of the moon, 283. In decl., 284. Expreseions of both in series, 286.

Parallaetic displacement of moon expressed in series, 287. Parallax in

deol. of the moon when on the meridian expressed in series, 289. Mean
equatorial horizontal parallax of moon, 278. Shown to be 3422" by Adams,
295. Of sun by various methods, 301. From aberration, 308. From
Jupiter's satellites, 309. Of exterior planet by diurnal method, 303. Annual
parallax of stars, 326. In lat. and long, of stars, 336. In b. a. and decl. of

stars, 340. In distance of two adjacent stars, 333. In position angle,

333. Annual parallax how measured, 338.

Pabailel ciecles, 74.

Paeis, Conference of 1896 for deciding on the values to be adopted for astro-

nomical constants, 186.

Pegasus, constellation of, 84.

Penddlum, Foucault's, 73.

Pencmeka in eclipse. Lunar, 350. Solar, 360.

Pebioee and Apogee are the points in the orbit of the moon and the apparent

orbit of the sun when the celestial body is respectively at its least or

greatest distance from the earth, 164.

Pekihelion is the point of a planetary orbit when the planet is nearest the Sun.

Aphelion is the point at which the planet is farthest from the Sun, 408.

Longitude of perihelion, 408.

Peeiodic time. The periodic time of a planet, satellite, comet, or component

of a double star, is the period in which the body completes an entire

circuit of its primary, 146.

Peases of moon and planets, 419.

Phoeos, the inner satellite of Mars, 152.

Photogeaphy. Astronomical problems relating thereto, 143.

PiCAED quoted on aberration, 248.

PiCKEEiNG, Professor E. C, 309.

PiSTOB AND Maetin's meridian circle, 458.

Planet. Brightness of, 419. Culmination of, 99. Elements of, 408. Elongation of

elliptic motion of, 145. Geocentric motion of, 413. Orbit of found by obser-

vation, 408. Parallax of, 307. Phases of, 419. Stationary points on

orbit of, 415. Transits of, 312. See Mercury, Venus, Mars, Jupiter, Saturn.

Planetaey aberration, 266—precession, 176.

Pleiades, 70.

PoLAK DISTANCE. The arc of a great circle between a star and the pole is the polar

distance of the Star, 82.

PoLABis (pole star), 74. Precession of, 171. Parallax of, vii, 328.

Poles (celestial). A line through any point of the earth parallel to the earth's

axis intersects the celestial sphere in the two points known as the north

and soTjth celestial poles. In the diurnal motion each star appears to

revolve in a circle about the poles, 73.

Poles (terrestrial). The north and south terrestrial poles are the points in which

the axis of the earth intersects the earth's surface, 44.

Position angle. The position angle of a double star is the angle between the arc

drawn from the principal star to the pole and the arc joining the secondary

star to the principal star measured from the former anti-clockwise, 138.

Pbecession of the Equinoxes. By the precession of the equinoxes is meant the

slow secular movement of the equinoctial points along the ecliptic in the

opposite direction to increasing longitudes. Precession is due to the spher-

oidal form of the Earth and to the fact that the resultant attraction of the
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sun and moon on such a body does not in general pass through its centre

of inertia, 171. Cause of, 174. Constant of, 187. Formulse for, 178.

General precession, 177. Planetary, 176.

Pbime Veetioal. On the celestial sphere the prime vertical is the great circle

which passes through the zenith and is perpendicular to the meridian.

It cuts the horizon in the East and West points, 77.

Pbime vertical Instrument as a case of the generalized Transit circle, 457.

Pbitchaed, vii.

Pbobasle ebbob, 306.

Peocton, vii. Parallax of, 328.

Peojeotion Conformal, 51. Mercator, 54. Stereographic, 58. Gnomonic, 66.

Gauss', 66.

Peopeb motions of stars, 196.

QuADBANTAL triangles rules for, 5.

Eambaut, vi. Kepler's problem, 157. Eule for Delambre's Analogies, 8. Adjust-

ment of equatorial, 481, 486.

Eedcotion from mean to apparent places of Stars, 269. To the equator, 226.

Befkaotion (Astronomical). Kefraction is an effect of the earth's atmosphere

on light passing through it, in virtue of which the rays do not generally

pass through the atmosphere in straight lines but are bent towards the

surface of the earth, so that a star appears displaced towards the zenith

of the observer, 116. Determination from observations, 131. Effect on

apparent distance, 135. Horizontal, law of, 127. Integration of differential

equation, 124. Effect on position angle, 138. Effect of pressure and
temperature, 131. Table of, 120.

Eegulus, distance from Moon calculated, 114.

Ehumb line, 57. See Loxodrome.

Eight ascension, 82, 208. See Ascension, right.

Eiqht-angled teiangles, 5.

EisiNQ of a heavenly body, 74, 103, 383.

EoEMEB. Aberration of light, 248.

EoTATiON of the Earth, 87. Of the Moon, 403. Of the Sun, 398.

EoCTH quoted, 146, 163, 166.

E0SSELL, H. N., vii. On movements of the planet Eros, 310.

Sampson, Professor E. A. On Jupiter's Satellites, 309.

Sappho, asteroid used by Sir David Gill in investigating the Solar parallax, 307.

Saeos. a period of 18 years 11 days, 359.

Satellites of Jupiter, 309. Of Mars, 152.

Satuen. Disappearance of rings, 428. Elements of the planet, 491, 492.

SoHJELLEEUp's Catalogue of red Stars, 336.

SoHDB quoted, 422.

Seasons. Explanation of the, 242. ,

Seeligeb on the heliometer, 304.

Setting of a celestial body, 74, 383.

Shadow of the Earth, 346.

Sheepshanks exhibition, 181, 217, 325, 428, 429, 484, 486.

SiDEEEAL Time. The sidereal time is the west hour angle of the First Point of

Aries turned into time at the rate of 15° per hour, 87, 201. Sidereal time at

Mean Noon, 218. Determination of mean time from sidereal time, 220.

SiDEEEAL Day, 87. Year, 210.

Simpson's formula for refraction, 128.

SiBics, vii. Parallax of, 328.
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Smith's Prize, 324.

SoLAB ECLIPSES, 358. Elementary theory of, 361. Solar parallax, from aberration,

308, from Earth's Mass, 310, from Jupiter's satellites, 309. In e. a. and
Deel., 299. Solar system Tables of, 491, 492.

Solstices. The points on the ecliptic in longitude 90° and 270° are called the

Summer and Winter Solstices respectively, from the fact that when the Sun is

near these points of its orbit its declination is almost stationary, 85.

Sphere celestial, 69—great circles on, 74—poles of, 76—systems of coordinates

on, 78.

Sphebical triangle, 1. General formula, 1. Delambre's analogies, 8. Napier's

analogies, 10. Differential formula, 13. Bight-angled triangles, 5. Quad-
rantal triangles, 5.

Sfheboii), terrestrial, Clarke's dimensions of, 44.

Spicek lines, in Meridian circle, 459.

Spring. Explanation of the seasons, 242.

Squares. Method of least, 343.

Stars, fixed. The stars are often described as fixed Stars to distinguish them from

the planets which have large apparent motion. Many stars and probably

all have what is called proper motion, 195, by which they continually change

their places, though the changes are too small to produce any conspicuous

dislocation of their relative positions. Culmination of, 98. Occultation

of, 376. Parallax of, 338. Determination of places by the meridian circle,

475.

Stationary points in a planet's orbit, 416.

Stellar parallax (annual). Determination of, 338.

Steeeogeaphic projection, 58. Formulse for, 63.

Stockholm. Observatory at, 78.

Stone, E. J. quoted, 46.

Stonihuest. Magnetic declination at, 79.

Steatton, Mr F. J. M., vi.

Style, 394. See Sundial.

SuBSOLAE point in Sumner's method, 403.

SuBSTYLB, 395. See Sundial.

SuMMEE. Explanation of the seasons, 242.

Sumner. Method of finding place of a ship at sea, 403. Sumner lines, 404.

Stereographic projection of Sumner lines, 405.

Sun. Apparent motion of, 152. Eclipses of, 358. Setting and Rising, 388. Parallax

from aberration, 308. From Jupiter's Satellites, 309. Prom Transit of

Venus, 313, 320. Elements of, 492.

Sun's surface, coordinates on, 397.

Sundial, 394.

Syndics of university press, vii.

Synodic period. By the synodic period of two planets is meant the average

interval between two successive occasions on which the planets have the

same heliocentric longitude, 150.

Table of lunar parallax in hour angle, 287. Of atmospheric refraction, 120. Of

annual parallax of Stars, 328. Of the elements of the solar system, 491,

492.

Teeresteial date line, 222.

Thompson, Professor Silvanus, 78.

Time. Apparent, 216. Astronomical, 217. Civil, 217. Ectuation of, 232.

Greenwich, 23. Local, 235. Mean Solar, 215. Sidereal, 72, 201. Year, 210
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Todhuntee's trigonometry quoted, 3, 8, 227.

Total Eclipse of Moon, 349. Of Sun, 363.

TowNLEY, Sidney D. Variations in latitude, 197.

Tbaits. Name applied to the fine dividing lines on a graduated circle, 458.

Tbansfokmation of spherical coordinates, 36.

Tbansit of a celestial body across the meridian defined, 75. Of a planet across

the Sun, 312.

Transit circle, generalized, a particular case of the generalized instrument, 455.

Tbigonometby fundamental formulae, 1 et seq.

Tbipos, Mathematical, 97, 98, 104, 105, 109, 112, 115, 130, 140, 142, 152, 169, 181,

195, 206, 207, 211, 219, 224, 225, 229, 236, 240, 242, 246, 247, 256, 257,

261, 266, 269, 275, 276, 286, 296, 300, 323, 324, 332, 337, 344, 345, 360,

352, 366, 374, 375, 382, 385, 386, 387, 388, 393, 397, 406, 417, 418, 420,

421, 422, 423, 424, 427, 428, 429, 430, 476, 477, 478, 483, 485, 486, 487.

Tbopical yeae, 210.

Tubneb, Professor H. H. Parallactic inequality of the Moon, 311. Transformation

of coordinates, 183.

Twilight. The explanation of, 392.

Uhbba in Lunar eclipse, 346. In Solar, 360.

Units and Physical Constants, Everett's book quoted, 117.

Ueancs. The planet, elements of, 491, 492.

Ubsa majoe, a oiroumpolar constellation, 70.

Valencia, magnetic declination at, 79.

Valeniinee. Handvforterbuch der Astronomie, vi.

Vega, vii. Parallax of the star, 328.

Venus. Brightest, 420. Occultation of, 382. Phases of, 426. The Transit of, 312.

Elements of, 491, 492.

Veenal equinox, 84. See Equinoctial points.

Veetical circle. Any great circle which passes through the zenith is a vertical

circle of the celestial sphere, 30.

Veetical (Prime). See Prime vertical.

VioTOBiA an asteroid used in measuring the solar parallax, 307.

VfASHiNQTON, observations at the observatory of, 303.

Watson's theoretical astronomy quoted, 412.

Whittakeb, Professor E. T., vii, 122.

WiMEOBNE Minster, Sundial at, 396.

Winter. Explanation of the seasons, 242.

Yeae sideeeal, 210. Tropical, 210. Civil, 210. Beginning of, 190.

Zenith. A line perpendicular to the surface of standing water is called a plumb
line. If continued upwards it meets the celestial sphere in the zenith and
produced downwards it meets the celestial sphere in the nadir. The Zenith

is the antinole of the horizon when graduated for reading azimuths, 72.

Zenith distance. The zenith distance of a star is the arc of the celestial sphere

from the zenith to the Star. The zenith distance added to the altitude

makes 90°, 79.

Zenith distance calculated from hour angle and declination, 90.
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