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PREFACE.

I: may be necessary briefly to state the arrangement
of the present T'reatise.

In the first Chapters, I have explained, in a general
way, certain of the obvious Phenomena of the Heavens :
then, with a view of affording the Student the means
of distinctly apprehending the methods, by which, those
Phenomena are observed, and their quantities and laws
ascertained, I have described, although not minutely,
some of the principal instruments of an Observatory.
By an attentive consideration of the means, by which,
in practice, right ascensions and latitudes are estimated
and computed, a more precise notion of those quantities
may, perhaps, be obtained, than either from the terms
of a definition, or from their representation in a geome-
trical diagram.

But, an observation expressed by the graduations
of a quadrant, or the seconds of a sidereal clock, cannot

be immediately used for Astronomical purposes. It must
b
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previously be reduced or corrected. To the theories,
then, of the necessary corrections, 1 have very soon
called the attention of the Student: since, without a
knowledge of them, he would be unable to understand
the common process of regulating a sidereal clock, or
that, by which, the difference of the latitudes of two
places is usually determined.

The corrections are five ; Refraction, Parallax, Aber-
ration, Precession, and Nutation. 'The two latter, al-
though they may be investigated on the principles of
Physical Astronomy, are yet, in the ordinary processes
of Plane Astronomy, equally necessary with the pre-
ceding.

To the Theory of the fixed Stars, which includes,
as subordinate ones, the theories of the corrections that
have been enumerated, succeed, the Solar, Planetary,
and Lunar Theories. Of these, the last is, by many
degrees, the most difficult. "And, since, in its present
improved state, it is not made to rest solely on obser-
vation, 1 have been compelled, in endeavouring to

elucidate it, slightly to trespass on the province of Phy-
sical Astronomy.

The Equation of Tuime, which, essentially, depends

on the Sun’s motion, is placed immediately after its
Theory.
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On the same principle of arrangement, Eclipses are
made to succeed the Solar and Lunar Theories. The
method of computing them is that, which M. Biot has, in
the last Edition of his Physical Astronomy, adopted,
probably, from a Memoir of Delambre’s * on the passage
of Mercury over the Sun’s disk. The traces of this
method, may be discerned in a Posthumous work ¢, of
the celebrated T'obias Mayer, on Solar Eclipses.

The method just noticed is as extensive as it is
simple. For, it equally applies to Eclipses, Occultations
of fixed Stars by the Moon, and the Transits of inferior
Planets over the Sun’s disk. And this circumstance has
determined the places of the two latter subjects, which
are immediately after that of the former.

In the last Chapters are discussed, the methods of

~ computing Time, Geographical Latitude and Longitude,
and the Calendar.

Such is the arrangement of the present Treatise.
And, since it could not be entirely regulated by the
necessary connexion of the subjects, it has, occasionally,
been so, by certain views, of what seemed, their proper
and patural sequence. It so happens, therefore, that

% Mew. Inst, tom. IIL. p. 392. (1802).
t Mayer, Opera Inedita. vol. I. p. 23.
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the more difficult investigations ‘are not invariably pre-
ceded by the more easy. The methods, for instance,
of computing the Time, Geographical Latitude and Lon-
gitude, follow the Lunar Inequalities, Eclipses, Occul-
tations, and Transits; but, since they do not follow by
strict consequence, the latter, if it so suits the convenience
of the Student, may, in a first perusal, be omitted.

I have been solicitous to supply every part of the
Treatise with suitable Examples. For, they are found
to be in Astronomy, more than in any other science, the

means of explanation.

They become the means of explanation for reasons
different from those which operate in other cases. For,
Astronomical Examples are not always the mere trans-
lations of a rule, or of an algebraical formula, or of
a geometrical construction, into arithmetical results.
But, frequently, they are of a different description,
and require the aid of certain subsidiary departments
of Astronomical Science not then the subjects of con-
sideration.

For instance, the difference of the latitudes of two
places is equal to the sum or the difference of the zenith
distances of the same Star. This rule cannot be applied
according to its strict letter ; for, when we descend into
its detail, we may be obliged to reduce the observed
zenith distances by four corrections. Consequently, we
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ought either to have previously established, or we must
proceed to investigate, the theories of those corrections.
This instance will also serve to shew, what frequently
happens, that a rule shall possess a seeming facility in
its general enunciation, which vanishes when we become
minute and are in quest of actual results.

There is, in fact, scarcely any thing in Astronomical
science single, or produced, at first, perfect by its processes.
No series of propositions, as in Geometry, originating
from a simple principle and terminating in exactness of
result. But, every thing is in connexion; when first
disengaged, imperfect, and advanced towards accuracy
only by successive approximation.

Consider, for instance, the Sun’s Parallax. That
essential element is determined by no simple process,
but is, as it were, extricated by laborious calculations
from a phenomenon in which, at first sight, it does not
seem involved. Again, the common method of deter-
mining the Longitude at Sea rests on whatever is most
refined in theory and exact in practice: on Newton’s
system in its most improved state, and on the most
accurate of Maskelyne’s observations.

The preceding remarks, besides their proper purpose,
may perhaps serve to shew that an Astronomical T'reatise,
with any pretensions to utility, cannot be contained
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within a small compass. Itought to teach the Principles
of Astronomy; but it cannot well do that, except by
| detailing and explaining its best methods: that is, by
explaining methods such as are practised, and as they
are practised. Now, the methods of Astronomy are’
very numerous, and the details of several of them
very tedious.

Some methods are merely speculative ; such as cannot
be practised, although founded precisely on the same
principle as other methods that are practised, For in-
stance, the separation of the Sun from a Star, in a given
time, is equally certain and of the same kind, as the
separation of the Moon from a Star, but since, in
practice, it is not so ascertainable, it cannot be made
the basis, as the latter is, of a method of finding the
Longitude.

The exclusion then of methods merely curious, and of
no practical utility, has been one mean of contracting
the bulk of this Treatise. Another I have found, in
omitting to explain the systems of Ptolemy and of Tycho
Brahe. These do not now, as formerly, require confu-
tation. 'The spirit of defending them is extinct. They
are not only exploded but forgotten. And, were they not,
it would be right to divert the attention of the Student,
from what is foreign, fanciful, and antiquated, to real
inventions and discoveries of more modern date, and
purely of English origin.
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The present Treatise is not intended to explain
Physical Astronomy and the system of Newton. But,
the discoveries and inventions of Bradley and Halley are
within its scope. Their numerous and accurate obser-
vations and their various Astronomical methods, would
alone place them in the first rank of illustrious Astro-
nomers. But, they have an higher title to pre-eminence.
In point of genius, they are, after Newton, unrivalled.
The first, for his two Theories. of Aberration and
Nutation : the last, for his invention of the methods of
determining the Sun’s Parallax from the transit of Venus,
and the Longitude from the Lunar motions.

This Lunar method of determining the Longitude
was not reduced to practice by its author. That it has
been since, is owing to Hadley and Maskelyne. The
first, by his Quadrant, furnishing the instrumental, the
latter, by the Nautical Almanack, the mathematical
means.

This last-mentioned Astronomical Work, for such
it is, and the most useful one ever published, is alone a
sufficient basis for the fame of its author. Besides its
results, it contains many valuable remarks and precepts.
It is a collection of most convenient Astronomical Tables,
and should be in the hands of every Student who is de-
sirous of learning Astronomy ; and who, for that end,
must be conversant with Examples and Tables.
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But, mere precepts and instances will not effect every
thing. In order to remove the imperfection necessarily
attached to knowledge acquired solely in the closet, in-
struments must be used and observations made. The
means of doing this, however, are not easily had ; and,
it is to be regretted, they are not afforded to the Students
of this University. An Observatory is still wanting to
its utility and splendor.



PREFACE
TO THE SECOND EDITION.

———

"I'sic present Edition is, in its plan, like the former.
In matter and manner, however, it is so different that
the Author, instead of calling it a new Edition, might
have called it a new Work.

It is not worth the while to point out the changes
which the Work has undergone. Few of its readers
will trouble themselves on that point. The fact worth
enquiring about is whether the Work be a good Work,
not whether it be better than that it comes after.

That it is better may be presumed from the very
circumstance of its coming after. Nor can there be
any arrogance in attributing its improved state to the
change that, during the two Editions, has taken place
in the Author’s knowledge. The usual effect of time,
in this réspect, has not been counteracted. The other
cause which ought to improve a treatise, namely, the
improved state of the science treated of, has, of late, but
slowly operated. Astronomical Scienceé is now, nearly,

the same as it was ten years ago. Having reached a
c
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kind of maximum state of excellence, its changes are
minute and must continue to be so. All great changes
ended with Bradley. He swept the ground of discovery,
and left little to be gathered by those that follow him.

Yet, during the 60 years that have elapsed since
Bradley, it cannot be said, but that Astronomy has
greatly advanced, although not by the aid of discoveries,
such as those of Aberration and Nutation. The aid
has come partly, indeed, from the Observatory, but
principally from Physical Astronomy : which, originating
with Newton, has, under his successors, Mayer, Clairaut,
Euler and Laplace, grown up into an exceedingly great
science.

Of the benefits thence accruing to Astronomy, the
most excellent, by many degrees, are the Lunar Theories
of Mayer and Laplace; or, as it may be stated, the
Lunar Tables deduced from those Theories, and the
Observations of Bradley and Maskelyne. If we go
back to Halley’s time, the improvement in such Tables
will appear most striking. Halley states that, in his time,
the differences between Observations and the results of
Newton’s Theory amounted frequently to 5 minutes,
which differences now (if we speak of their mean states)
do not much exceed as many seconds.

Navigation has been made more safe by means of
these Lunar Tables: which, perhaps, is the only prac-



PREFACE. Xix

tical good that Astronomy has conferred on Society.
Its other benefits are philosophical and intellectual.
Should these be held to be of no moment, we might,
perhaps, at the present time, shut up our Observatories,
and live upon the hoards of Astronomical Science. We
are now possessed of sufficient means, as far as Astro-
nomy is concerned*, for determining the place of a
vessel at sea; and if we would enable the mariner on the
Atlantic or Indian Ocean to determine his place, to
within less than 10 miles, we must provide him with
better means of observation: with an Instrument more
excellent than the Sextant.

But, such is the present ardour for philosophical
pursuits, the duties of an Observatory, instead of ceasing,
are likely to become more arduous. Within a few years
from the present date, an Astronomical Society has
been formed in the Metropolis, and an Observatory
nearly established here. These Institutions indicative,
as we have said, of the spirit of the times, can hardly fail
to augment Science: they will do some good although
perhaps not all the good that is intended to be done
by them.

* The words of the commission that appoints the Astronomer Royal
of Greenwich enjoin him, ¢to apply himself with the utmost care and
diligence to the rectifying the Tables of the Motions of the Heavens,
and the places of the Fixed Stars, in order to find out the so much
desired Longitude at sea, for the perfecting the Art of Navigation.’
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As the latter of these Institutions may, in future
times, become one not merely of local interest, we shall
be excused if we say something farther concerning it.

The good resulting from Observatories, whatever it
may be, practical or intellectual, the founders (if we
may so call them) of the present Observatory are anxious
to secure. Their first and chief object is to have Obser-
vations made as good as they can be made. 'The
second, to have as many as possible of such Obser-
vations. In order to obtain the first, the best Instru- .
ments that Europe can furnish are ordered to be made.
To secure the second object, houses are attached to
the Observatory for the constant residence of the
Observers.

Another object of the Institution is, the instruction
of Academical Students in the use of Instruments, and
in practical Astronomy: an object, it'should seem, not
incompatible with the former, but secondary and sub-
ordinate. Instruction alone could have been imparted
by means much more simple than those which are now
put into action.

But good Observations * will not necessarily be made,

* Two circumstances (there may be more) are unfavorable to the
Observatory we are speaking of. One is, the not sufficient vicinity
to the Artists of London: the other, common to our Island, and the
same as that of which Lacaille complains, ¢ Constans nimis Parisiis
tempore hiberno nebularum, imbrium et nubium mora, eorumque
tempore zstivo frequens reditus, &c.’
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hecause he, who ought to make them, is obliged to
reside in an Observatory furnished with good Instru-
ments. Something else remains to be done: some
regulation to be made, or motive supplied, to compel
(as it were} Observers to employ, in the duties of an
Observatory, the time they must spend there. To effect
this, there will not be found, perhaps, any means so
simple and efficacious as that of some absolute rule for
printing and publishing annually the Observations, and
for sending copies thereof to the principal Observatories
of Europe. Other Regulations may be suggested to
counteract the proneness of Institutions, like the one
spoken of, to become worse. But they should be simple
and few. Regulations may, indeed, prevent much wrong
from being done; but they rarely create a zeal for the
performance of duties. The minute detail of the hours,
modes, and objects of Observation, would never supply
motives to him who should be insensible to his own
personal reputation, and the honor of his Country and
University.

The augmentations of Astronomical Science have,
with scarcely any exception, come from publick Ob-
servatories : which fact is to be accounted for, from the
excellence of the Observers’ Instruments, the constant
discharge of their duties, and, above all, the zealous
discharge of those duties by the influence of publick
opinion. A like moral controul will, probably, operate
here, and serve to carry into effect the enlightened in-
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tentions of the munificent Patrons of our Observatory. It
has not been built merely to prevent its being said that
an University, famous for its science, was without such
an Institution : nor to add to the title and emolument of
an individual ; nor to be used as a kind of Astronomical
toy, and to become the mere resort of leisurely amateurs
and random star-gazers: nor, which is indeed a better
but still a subordinate object, to confirm or correct
results elsewhere obtained, to see, for instance, that
Observations have been rightly made at Paris and
Palermo. The chief object of the Observatory is, by
its own means, to enlarge the boundaries of Science ; to
extend the fame of the University that founds it, is a
secondary one, or rather, will be a sure consequence, if
the first shall be obtained.

Caius College,
Dec. 27, 1822.









AN
ELEMENTARY TREATISE

ON

ASTRONOMY.

CHAP. L

Certain Phenomena of the Heavens explained by the
Rotation of the Earth.

I~ an Elementary Treatise on Plane Astronomy, two objects
are required to be accomplished: 1st, The description and gene-
ral explanation of the heavenly phenomena. 2dly, The establish-
ment of methods for exactly ascertaming and computing such
phenomena.  Our attention will be first directed to the former of
these two objects. f

If, on a clear night, we observe the Heavens *, they will appear
toundergo a continual change. Some stars will be seen ascending
from a quarter called the East, or rising; others descending
towards the opposite quarter the West, or setting. ~In some
intermediate point, between the East and West, each star will
reach its greatest height, or, will culminate: The greatest heights
of the several stars will be different, but they will ‘all appear to
be attained towards the same part of the Heavens; which part
1s called the South.

If we now turn our backs to the South and observe the
North, the opposite quarter, new phenomena will present them-
selves. Some stars will appear, as before, rising, reaching their

* Ea'pbsition du Systéme du Monde, p. 2.
A
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greatest heights, and setting ; but, besides these phenomena, other
stars will be seen that never set, and that move with different
degrees of velocity ; and there are some stars thaf, to appearance,
are nearly stationary. About one of these stationary stars, the
other stars that never set appear to revolve, and to describe circles.
Such stationary star is called the Polar Star: and the stars revolving
round it, Circumpolar.

The Polar Star, that which is usually so denominated, is not,
when accurately observed, or observed by means of instruments,
strictly stationary. It is not, therefore, to be held as the place
of the Pole, whichis indeed an imaginary point, always, however,
as we shall hereafter see, ascertainable by theory and observation.
In such point or pole, a star, if we suppose it there placed, would
appear stationary.

Almost all the stars in the Heavens retain towards each other
the same relative position; no mutual approach or recess takes
place between them: and accordingly they are called Fized Stars.
There are, however, certain stars, called Planets, not under the
above conditions, and which continually change their places. The
Sun and Moon also, the two celestial objects of the greatest
interest, are from day to day changing their places in the Heavens.

A spectator at sea, or placed in a level country, may imagine
himself in the centre of a plane, extended equally on all sides,
and bounded by a circular or curved line apparently separating
the sky and sea, or the sky and land. The plane so extended
and bounded is called the spectator’s Horizon, and sometimes
the sensible Horizon. Tt is the boundary of the spectator’s view,
and when stars first appear just above it, they are said to rise:
when they sink beneath it, they are said to set. On this imaginary
plane the concave heavens, or the hemisphere of the heavens, may
be fancied to rest.

The surface of the sea is not strictly plane; a few simple
observations are sufficient to shew that it is a convex surface,
the convexity being towards the heavens, and the spectator being
placed on its summit, The preceding definition, therefore, of the
horizon, must be slightly altered : it must now be defined to be
a plane which, at the summit just mentioned, (the place indeed
of the spectator) is a tangent plane to the earth’s convex surface,
extended on all sides till it is bounded by the sky.
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The convex surface of the Earth is nearly spherical; more
nearly spheroidical : the Earth being, (as it appears probable from
various reasons) a spheroid of small eccentricity. The plane of
the horizon, therefore, is a tangent plane to the spheroid at the
place of the spectator, and a perpendicular to the plane at such
place passes very nearly through the centre of the Earth. The
perpendicular line just mentioned tends, if produced upwards,
to a point in the Heavens called the Zenith. The opposite point
in the line’s direction continued downwards is called the Nadir.

If the eye of the spectator were in that plane which has been
defined to be the plane of the horizon, stars would not appear
to have risen whilst they were beneath that plane. But it is other-
wise, if the spectator be elevated above the horizon either by
being on a tower, or eminence, or on a ship; indeed, as mere
elevation above the horizon is the circumstance that modifies the
preceding statement (see p. 2. 1. 28.) his own stature will cause stars
to appear to have risen before they are above the horizontal plane.
Thus if, on the Earth’s surfaice ABD, A4 be the place of the
spectator’s feet, or the bottom of a tower on which he is, da

drawn a tangent to the surface at the point 4, may represent his
sensible horizon. If the eye be supposed to be at A4, it cannot
see an object till it is level with or above Aa. But if the place
of the eye be transferred to O, an object may be seen if it be level
with or above the line O Bb.

The line O Bbis a line drawn from the spectator’s eye at O
and touching the earth’s surface at Bj; and the horizon, were
it supposed to be composed of such lines as O.Bb would be
a comical surface having its apex in O.

The depression of b below a, measured by the angle amb
is technically denominated, the Dip: which, from O 4, the eye’s
elevation, and the radius of the Earth, may easily be computed.
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The tangent plane in which @ 4b lies, has been called by
Astronomers (as we have seen), the Sensible Horizon : but they
have also imagined, for the purposes of calculation, another horizon
the plane of which, parallel to the former, passes through’ the
Earth’s centre, and is denominated the Rational Horizon. HCHh,
parallel to a4 b, may represent this latter plane. It is plain that
both the Sensible and the Ratienal horizon are merely relative:
in other words, they must change with a change in the spectator’s
place. Of a spectator at 4, ab perpendicular to CAZ is the

sensible, and H h, parallel to a b, the rational horizon; and £ is his
zenith, Of a spectator at B, ed perpendicular to CBZ’ is the
sensible, and H'#/, parallel to ed, the rational horizon : and 2’ is
his zenith. ' :

Let us consider a little farther the appearances that would take
place, were a spectator stationed at sea, or in the midst of a level
country. Suppose then O (see fig. p. 5.) to represent his station
and SENW the imaginary circular boundary of a plane extended
beneath his feet to be his horizon. If a star rose at 4 it would
describe a curve above the horizontal plane, and sink beneath it,
or set, at some point a. In like manner another star rising at B
would describe a curve above the plane of horizon, and set at
some point b. But this circumstance also, wherever the stars
A, B were, would always take place; namely, the equality of ab,
the distance of the points of setting with 4B with the distance
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of the points of rising. If the arc 4B equals the arc ab, then
the chord A4a is parallel to the chord Bb: and a diameter such
as SON drawn perpendicularly to 4 a, and consequently bisecting

S
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it, will be perpendicular to and will bisect all other chords such
as Bb: and will moreover bisect the arcs ASa, BSb, &c. The
points S and N determined after the preceding manner are the
South and North points of the horizon, or (as it is called)
the Azimuth circle SENW. EOW drawn perpendicularly to
SON determines E and W, .the East and West points, which
together with the two preceding form the four Cardinal points.
SENW has been called the 4zimuth circle, and azimuth distances
are measured from the South and North points. S4 is the
azimuth of the star rising at 4, Sa of its setting at «.

The complement of the azimuth of a star is its Amplitude:
and amplitude is accordingly measured from the East and West
points. Thus the Amplitude of the Star’s rising at 4 is EA; the
Amplitude of its setting at a is- Wa.

A star rising at 4 will gradually ascend above the plane of the
horizon till it attains its greatest height; it will then decline, by
like degrees, until it sets or disappears at a. If we conceive
a plane passing through S and N and perpendicular to the plane
of the horizon, then a star rising at 4 and  ascending after the
manner just described will be at its greatest height above the hori-
zontal plane when it reaches the perpendicular plane. The same
will happen to every other star. The greatest heights of different
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stars will be different, but they will-all be attained to in that plane
which, passing through S and N, is perpendicular to the plane
of the horizon. The perpendicular plane above described is
called the plane of the Meridian ; because, the middle of the day
happens when the Sun in his ascent above the horizon reaches it.
It is usual to suppose this plane bounded by a circle passing
through S and N, and having therefore the same radius as the
horlzon or azimuth circle SENW : which, in fact, is to suppose
these circles to be the great circles of the same sphere.

The meridian intersects(see 1. 2.) the horizonin S and N'the South
and North points: it must also pass through the zenith (see p. 4.)
and through the pole (see ll. 1, 2 &c.) Every circle, the plane of
which is perpendicular to the plane of the horizon, is denominated
a Vertical circle. The meridian, therefore, is a vertical circle.
The vertical circle, which passes through E and W the East and
West points, is distinguished by the name of the Prime Vertical.

We have spoken of the risings and settings of stars, such as they
will appear to be to a spectator placed at C the centre of the plane
of the horizon, but, hitherto, we have said nothing, of the intervals
of time elapsed between the respective risings and settings. Now
a spectator in our northern climate, looking towards § the south,
cannot fail to remark"that a star between its rising at F and
setting at f'is longer above the horizon than a star which rises at
4 and sets at a: which kind of inequality takes place, and in
a greater degree, with every star successively placed between
A4 and S. But he may also note that every star takes the same
time in passing from its rising through jts setting to its rising
again. A star therefore at 4 is longer below the horizon than a star
at F, and still much longer than a star at E. But a star rising
at L the East point has this peculiarity : namely, that it is above
the horizon exactly as long as it is below. On this account the
great circle in which such star moves is called the Equator.

The phenomena that have been described may be explained
by supposing the concave Heavens, in form like an hollow sphere,
to reyolve round an axis passing through the pole and the centre
of the Earth, and in a time equal the interval between two suc-
cessive risings of a star.

Thus, ]et PCp be the axis, HCh the rational horizon: then
€2 drawn perpendicularly to H (see p.4. 1. 10.) determines Z the
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spectator’s zenith*. EQ is perpendicular to Pp and vu, Hg, kl,
mn, hr, (representing the projections of circles to the planesof which
Pp is perpendicular) parallel to EQ. If we conceive the plane of

g % u
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=

this diagram to be placed perpendicularly on the plane of the former
(see p. 6.) which was meant to represent the horizon, so as to be
adapted to northern latitudes, then the plane PEpl will be
the plane of the meridian, E will be the point of the greatest
ascent of a star rising at C, and if we suppose ¢, s to be the ortho-
graphical projections on the plane of the meridian of the points
A, B, thennand ! will be the points of the greatest ascents of stars
rising at A and B. Now suppose the figure to revolve round Pp:
then #n will be proportional to the star’s ascent from ¢, the place
of rising, to n its greater elevation, and ¢m, every point of which
is below the horizon, will be proportional to the time from the star’s
greatest depression (at m) beneath the horizon te its rising at ¢,
and ¢m, asitis evident, is greater than ¢z : again, since CE=CQ,
the time that a star is above the horizon is exactly equal to the
time of its depression beneath that plane (p. 6.1. 29). A starrising
at s will be above the horizon during a time proportional to 2 S/, and
below it during a time proportional to 2 Sk: and, as it is evident,
281 is greater than 2 Sk (p. 6

Suppose a star to be exactly at H, then it can never set, but
it will be a circumpolar star (see p. 2.) : and such will be all stars

* For the rational horizon is parallel to the sensible.
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situated between H and P. A star placed at P would appear
to be at rest.

Each of the stars of which we have spoken must (from the
very nature of the scheme intended to explain their phenomena,)
consume an equal portion between two of its successive risings :
which portion of time may be called a Sidereal day, and which
it is usual to divide into 24 equal parts, or kours of Sidereal time.

The preceding scheme is intended to shew, that the hypothesis
of the revolution of the sphere of the Heavens round an axis
passing through the poles, will adequately account for all those
common phenomena relative to the risings, settings, ascents, &c.
of stars which will present themselves to a spectator situated as we
have described him to be. The hypothesis, therefore, is, at the
least, a probable one. There is, however, another hypothesis
equally probable with the former or rather more so, as being
more simple, which hypothesis makes the concave Heavens to
be at rest, but the globe of the Earth to revolve within them,
round an axis, and in a direction from West to East.

Each hypothesis equally explains such phenomena as have been
alreadydescribed: and since also to each hypothesis the same mathe-
matical explanations and reasonings are applicable, we will adhere
to the one already made use of and its connected diagram, and
deduce some farther results.

Theline EQ is intended torepresentthe Equator, Ik, n m, vu, &c.
which, from the supposition of the revolution of the figure round
P p, must be parallel to EQ, are called Parallels of Declination.
The declination of a star is itsangular distance from the Equator.
The declination, therefore, of a star,  which appears to move in
the parallel £7is k Q (which is the measure of the angle subtended
by kQ at the centre of the sphere); the declination of a star whose
parallel is mn, is m Q or n E: of the circumpélar star at v, vQ
is the declination; v P is its distance from the pole, or, as itis
called (P being the north pole) its north polar distance: mp is the
south polar distance of a star at m, the complement, as it is plain,
of m Q the star’s south declination. A secondary is a great circle
passing through the poles of that other great circle to which it is
a secondary. Thus Hph P, the meridian, is a secoudary to the
horizon Hh. The circle Psp &c.isa secondary tothe Equator EQ.
The prime Vertical (see p. 6.)a secondary to the horizon, as indeed
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is every great circle passing through Z and a point in HA: a great
circle, however, of this latter description, is farther distingnished
by being called a Vertical Circle, since its plane, perpendicular
to that of the korizon, is, in other words, vertical.

What Declination and its complement Polar distance are with
respect to the Equator, Altitude and its complement, Zenith dis-
tance, are with regard to the horizon. The former is the star’s
angular distance from the spectator’s horizon measured on a ver-
tical circle: the latter is the distance from the zenith of the same
spectator. The altitude, for instance, of the Equator, or of a star
therein situated, is EA: its zenith distance is ZE: the altitude
of a star at n, is 7/ ; its zenith distance is Zn. '

Since the sphere, with all the stars supposed to be fixed in its
surface, revolves in 24 hours of sidereal time, the stars situated in
different parallels will appear to more with different velocities.
A star near to P will appear scarcely to move: the velocity of a star.
describing vu will be as much less than the velocity of a star situ-
ated in the Equator, as uv is less than EQ: but uv has to EQ the
same proportion as its radius has to the radius of the Equator: or
that proportion which the sine of the angle PCu has to Cu: but

sin. PCu=sin. P u=sin. North polar distance,
or =cos. declination.

If therefore we call 7 the velocity of a star or point in the Equator,
the velocity of any other star="V. cos. star’s declination.
The Hour-angles are those angles at the Pole which, contained

between two secondaries to the Equator, intercept the space passed
B
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over by a star, in any assigned time, either on the Equator or on
- a parallel. Thus if a star move from s to s, the hour-angle is said
to be s Ps’ or b Pb, which is measured by ab, ab being an are
of the equator. Now abd, or the angle b P a, must be proportional
to the time, for since the point b is, by reason of the sphere’s
revolution, transferred from C to Q or through an arc of 90°, in
6 hours, 1t must be transferred from C to b and from b to a, by
reason of the sphere’s uniform revolution, in times which bear,
respectively, that proportion to 6 hours which Cb, ab, estimated
in degrees, bear to 90 degrees. If ab, therefore, contains 1°, the
time through b a, or the hour-anglea P b =91°6th of 6 hours, or Sthis

of an hour, or the value of the horary angle a Pb, or s Ps" is O.
06666 &c. or 4™.

The Poles and the Eguator, that have hitherto been described,
belong to the celestial sphere ; but the Earth also has its Equator,
Poles and Axis. Conceive an interior sphere, in the figure of p. 7,
described round C to represent the Earth, then the plane of its
Equator and axis will be such parts of the Equator EQ and axis
Pp as are contained within the sphere representing the Earth and
are terminated by its surface. Or, we may reverse the process and
give to the Celestial Sphere its Equator and Axis, by extending
to Yhe Heavens the Earth’s Equator and Axis.

Places situated on the Earth’s surface are said to have Latitude,
which is to be defined, distance from the Earth’s Equator. But
the Latitude of a place in its astronomical meaning, or with refer-
ence to its astronomical measure, is an arc of the meridian inter-
cepted between the zenith of the place and the celestial Equator,
or, whichis the same thing, it is the complement of the arc which
lies between the zenith of the place and the pole: which latter
arc, therefore, may be called the Co-latitude of the place.

If the Pole Star, that which is usually so called, were exactly
situated in the Pole, the method of determining the latitude
of a place, by means of that arc which is its complement, would
be a very simple one : since the plumb-line determines the zenith.
But the Pole Star being, in fact, a circumpolar star, its angular
distance from the zenith will vary with the time of observation.
Its distance, therefore, cannot give the true value of the co-latitude,
or its distance requires a correction in order to give the co-latitude
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truly. Such method then of determining the latitude cannot be
a very simple one, and can only be practised subsequently to, and
by the aid of, an improved or refined state of astronomical science.
It is now mentioned for the purpose of giving the student some
general notion of latitude and of the means of measuring it.

If a circumpolar star can be made subservient to the finding
the latitude, any other known star may, and for like reasons. It
is sufficient to measure the angular distance from such star, when
on the meridian, and the zenith, which latter point, as we have
already said, the plumb-line determines; that is, it is that point
in the heavens to which the plumb-line, if we imagine it to be
continued upwards, is directed. The polar distance of the star
is known (since that condition is implied in the expression of known
star), therefore the co-latitude of the place (P& in the figure
of p. 9.) is either the star’s polar distance minus the meridional
distance of the star from the zenith, or the star’s polar distance
plus the star’s distance from the zenith. For instance, if the star
be at /.
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if at u, PZ=Pu-Ru.

It is easy to shew, on grounds like those that have been laid
down, that the difference of the latitudes of two places may be de-
termined simply from the distances of the same star from their
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repective zeniths. Thus, if the star « (fig. p. 9.) should lle
between 3, Z', the two zeniths,

R =2y + 3y
but 3%'=PZ— P2
=(90— P3)— (90— P2)
= lat. of Z'-.lat. of 2

in which operation it is not necessary to know the declination
of the star .

Suppose the star y Draconis should be ¢’ 4”.9 North of the
Greenwich Observatory, and 19° 23”.3 South of the Observatory at
Blenheim, then £3'= 2y + 2y =2 4".9+19'23".3=21"28".2
the difference between the latitudes of the two Observatories:
consequently if the latitude of one Observatory were known, that

of the other might be determined: for instance, if the latitude
of Greenwich be taken at

51° 28 40",
that of Blenhein must equal
51° 28’ 40”21 28".2= 51° 50' 8".2.
As a second instance, if the zenith distance of y Draconis from the
Dublin Observatory on January 1, 1818, be 1° 52/ 20".7, then the
difference of latitudes between the two Observatories of Green-
wich and Dublin is

1° 52 20".7+ 2 147.9= 1° 54’ 35".6,

supposing the distance of oy Draconis from the zenith of Greenwich
to be, at the same time, 2’ 14”.9, *

There are other methods explicable, as to their general nature,
even in this early stage of our progress, that may be used in deter-

* We have taken what were, nearly, the mean or reduced zenith
distances of y Draconis from the two Observatories at the beginning of 1818.
It will appear, and fully, during the progress of the work, why the zenith
distance of a star does not always remain the same at the same place.
The star ¢ Draconis is continually approaching the zenith of Greenwich,
and receding, by equal quantities, from that of Dublin.
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mining the latitudes of places. For instance, if we determine the
respective zenith distances of two known stars at two places, we
may deduce the difference of latitude of those places. In point
of theory it matters not where the stars, relatively to the zeniths
of the places of observation, are situated: but the excellence
of the practical method depends on this circumstance, that the
star observed should be near the zenith of the place of observation:
for, in such a case, one great cause of inequality, namely, the
refraction of the air, would be nearly rescinded, and the accuracy
of determining the difference of latitudes would rest on the ascer-
tained or ascertainable difference of the declinations of the two stars.

In this first chapter we have advanced, very little beyond the
general description of the ordinary appearances of the Heavens,
and their explanation on the hypothesis of the revolution of the
starry sphere. The revolution of that sphere (the Primum Mobile
as it was called) from East to West, with the supposed quiescence
of the Earth, will account for the risings, settings, durations of ascent
and descent of the stars equally well (and we may add, on the
same principle), as the rotation of the Earth round its axis from
West to East, the Heavens being supposed quiescent. The first
is the most obvious hypothesis, the latter, when more closely
viewed, the most simple hypothesis. The stars seem to move round
us ; but when we consider the prodigious velocity with which, by
reason of their immense distance (a point easily made out) they

-must revolve, we are disposed to search out for and to adopt some

other hypothesis that is free of so revolting a circumstance.
There is, indeed, no summary proof to be given of the truth or
falsehood of either of the hypotheses. One, for several reasons that
will hereafter appear, is much more probable than the other.
Indeed the hypothesis of the revolution of the sphere is inadequate,
as astronomical science now stands, to solve all the phenomena.

- We must, however, be content, at present, to take for granted
the truth of the hypothesis of the Earth’s rotation. If it continues
to explain simply and satisfactorily, other astronomical phenomena
than those already noted, the probability of its being a true hy-
pothesis will go on increasing. -

We -shall never indeed arrive at a term when we shall be able

to pronounce it absolutely proved to be true. The nature of the
subject excludes such a possibility.
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We will now proceed to notice some other phenomena different
from those that have preceded and mot explicable solely on the
hypothesis of the Earth’s rotation. They need not, however, be
considered as overturning that hypothesis, It will be more
simple to consider that hypothesis to be established, and the
new phenomena as indicating the necessity of some additional
hypothesis, or the existence of certain circumstances of motion
and translation that take place contemporaneously with the
Earth’s rotation and consistently with it.



CHAP. 1L

On the proper Motions of the Earth, Moon, and Planets.

Ix the preceding Chapter the phenomena described and ex-
plained are chiefly phenomena of stars called, from their pre-
serving the same invariable distance from each other, Fized Stars.
Their risings, settings, the times of their elevation above the
horizon, of their depression beneath it, are easily explicable, as
we have seen, on the hypothesis of the Earth’s rotation round an
a;&is inclined, in our latitude and in every habitable latitude, to
the horizon.

There are other heavenly bodies, the Sun, the Moon, and the
planets, that assume only in part, or nearly, those appearances
that belong to the fixed stars. The Sun, for instance, if he
should rise at the same point in the horizon, which a fixed star
rises in, would set in the evening, nearly where the star sets. The
length of day would not seem to differ from the time of the star’s
ascent above the horizon: and his meridian height, would, to
common observation, appear to be the same as that of the greatest
elevation of the star above the horizon. The same circumstances
would appear to take place with the Moon and Planets. But
minute differences are not to be detected by common observation.
The Sun and star, if they rose exactly at the same point of
the horizon, would not pass the meridian exactly at the same
point. On any day between the middle of winter and the middle
of summer, the Sun rising where the star rises would pass the
meridian in some point above the star’s passage: during the
other half year, in some point below. But in order to distinguish
these circumstances some nicety of observation is requisite.
If, however, we examine a star and the Sun, or a star and one
of the planets for a longer interval than a day, their separation or
their approach, which is perpetually taking place, will become
manifest even without the aid of instruments.

Suppose, for instance, at the beginning of March, that we
observed the Sun and a star to rise at the same point F (fig. p. 5.)
of the horizon : they would set nearly at the same point f* and
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cross the meridian nearly at the same point. The next day the star
would still rise at the same point F, but the Sun would rise at
some point between F and E, would set at some point between
fand W, and would pass the meridian above the point of the
star’s passage. The like would happen on each succeeding day.
The Sun would rise nearer and nearer to the east, would set
nearer to the west, and pass the meridian more and more above
the Star. In about 20 days from the time of the first observation,
the Sun would rise in the east (at E) set in the west at W, and
reach a meridional height equal to the co-latitude of the place of
observation. After that time the Sun would rise between the
east and north points of horizon (F and N) and set between the
west and north (W and N) till about the end of June, at which
time, having, reached his extreme intermediate point of rising
between E and N, and his greatest meridional height, he w111
begin to reiterate his course of risings and meridional heights,
and passing the term from which we began (see 1. 1.) to date
them, he will reach, between E and S, his farthest point of rising
from E, will ascend to his least meridional height*, and agam
begin to regress.

. If we take a line MM’ and erect on it perpendiculars ME,
me, m'¢/, &c. to represent the Sun’s meridional heights on suc-
cessive days, ME representing the height on the day when the

4
ST/
o
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Sun rose in the east, n.S his greatest height on the day when he
rose on a point of the horizon nearest the north, &c. then the
curve passing through the meridian Sun, during the year, will
be of the form ESk WE/, the part K WE’ being similar to ESK.

* Either on that day or on the preceding.
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If we go no farther than the preceding instance, it is clear,
if the stars be supposed to be fixed and their phenomena ac-
counted for by the rotation of the Earth, that the phenomena just
described as appertaining to the Sun cannot be so accounted for ;
they plainly ‘indicate ‘the Sun to have a proper and peculiar
motion, or, which we shall find to be the same thing, the place of
observation (meaning thereby the Earth) to have a proper motion,
or, one distinct from the conversion of the Heavens. But it is
easy to make other observations that shall plainly indicate a
proper motion in the Sun, and shew the necessity, if we would
explain the phenomena, of correcting or of adding to the hypo-
thesis of the Earth’s rotation : which cannot be the sole hypothesis.

As a second instance, leading to the same inference as the
former, let us take that of the Sun and a star when ‘they set
nearly together. Suppose, on a particular day, that we observe
a certain star to set a little after the Sun. On the following day
and on each successive day, the star’s setting will follow more
closely that of the Sun: till their proximity will become so close
as to cause the light of the former to fade away and to be ex-
tinguished by the effulgence of the latter : the star, therefore, for
some time, will disappear ; but, if, after a few days, we direct our
view to the rising Sun, we shall perceive the star emerging, as it
were, from its beams, and, after this, on succeeding mornings,
preceding, by still greater and greater intervals,” the Sun in its
rising.

" The latter part of the phenomenon, which we have just
noticed, namely, that of the star’s rising just before the Suu, is
technically called the Heliacal rising of the star. There are only
certain stars that can so rise, and that only at particular times of
the year. Their heliacal risings, therefore, must be indicative of
those times. It was by such observations that the rude notions
of antiquity recognised the seasons, and regulated the labours of
the year *.

The phenomenon which we have last described indicates, like
the former, the Sun to have a proper motion among the fixed

* The Egyptians looked for the inundation of the Nile at the time of
the heliacal rising of Sirius, or, as they called it, of Thoth the Wateh-
Dog. v

C
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stars : towards those stars that set after liim and from those stars
that rise before him : which are circumstances of the same kind,
or indicate the same direction of the Sun’s motion. The Sun’s
motion, however, although, asit has been described, is first towards
a certain star, and then, having passed it, from it, is not made in
a direction either the same as that of the star’s parallel (see
p- 8, 1. 26, &c.) or parallel to it, but in some oblique direction :
which indeed may easily be collected from those circumstances
which were described in pages 15, 16. as belonging to the first
phenomenon. For it was there shewn, by noting the points of
the horizon at which the Sun rose 6n successive days, that the
Sun has an horizontal motion, or, as it is technically called
(see p. 5.) a motion in azimuth; and, also, by noting his me-
ridional heights on those days, that the’ Sun has a motion per-
pendicularly to the plane of the horizon: which two motions so
detected must be the parts of a compound oblique motion.

The apparent motion of the fixed stars is from east to west : the
real motion of the Earth (acecording to the preceding supposition,
(see p. 13.) which causes the former apparent one, from west to
east, and, in our hemisphere, to a spectator looking towards the
south, from the right hand to the left: and in the same direction,
that is, from the right towards the left, or from the west towards
the east, is the Sun’s proper motion. 5

The fact of a motion of the Sun from the west to the east is
sufficient to explain why certain remarkable stars and groups
of stars, called Constellations, are seen in the south at different
hours of the night during the year. For, the hour depends
solely on the Sun : it is noon, when he is in the south. Stars
directly opposite to him are, therefore, by the rotation of the
Earth, brought on the meridian at midnight. But the stars on the
meridian at 12 one night, cannot again be there, at the same hour,
on the succeeding night: for, the Sun having shifted his place
a little to the east, the stars before opposite to him are now
opposite a part of the Heavens to the west of the Sun: that is,
they must come on the meridian a little before midnight: and on
succeeding ‘nights more and more before midnight. It thus
happens then that every star is, during the year, on the meridian
at all the hours of the four and twenty. There are some stars
indeed that may be on the meridian, and yet, by reason of the
Sun’s brightness, may not be discerned there.
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If we apply to the Moon the same kind of observations that
have been described to be used for detecting the Sun’s motion,
we shall find the Moon to move, by a proper motion, amongst
the fixed stars towards the same parts, (that is, in a general way
of speaking, from west to east) as the Sun, but with greater
rapidity and not by similar and regular changes of place, whether
we consider the azimuthal or the meridional changes, (see
p- 18.) ~
For instance, the Sun’s annual path traced out in p. 16.
will be nearly the same every year. But a path so traced out for
the Moon, during one of her revolutions, would not be her path
in her next revolution round the Earth. The Moon, therefore,
has a proper motion of her own and not similar to the Sun’s:
we may go farther and state that, as far as we can judge from
common observations, the two motions are unconnected, or there
is no single principle which will account both for the one and
the other.

Besides the Sun and Moon there are certain other stars which
have their proper motions : and motions so peculiar and irregular
as to have procured to the stars possessing them the denomination
of Planets. They sometimes appear to move, like the Moon,
towards the east: at other times, however, towards the west;
and there are conjunctures, when, during several .successive
nights, they appear nearly stationary. It will be seen hereafter
that there is no real difference between the direction of the
planets’ motions and that of the Earth.

If the spectator be supposed to have taken his stand at the
Sun, he will view the Earth as one of the planets, and, then, all
the planets constantly moving in the same direction. That they
sometimes appear statlonary, and, at other times, retrograde (that
is, moving in a direction contrary to their usual one) is to be
attributed to the motion of the Earth, which motion combined
with that. of the planets, causes them, under certain circum-
stances, to appear to move otherwise than they are really moving.
The retrogradation of a planet is a phenomenon partaking some-
what of the nature of an illusion.

The motions from west to east that we have spoken of, take-
place and must he combined with that diurnal motion from east
to west, which arises from the rotation of the Earth. This latter
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motion is so great, that, as it were, it overpowers the former, and,
with an inattentive spectator, prevents it from being observed.
Even the Moon, which of all the planets has the swiftest proper
motion towards the east, shifts her place in the course of a day
by not more than 13°; whilst, by the rotation of the Earth, she
1s seemingly carried in the same time through 360°. There are,
however, conjunctures when we cannot but recognise her proper
motion ; when, for instance, the Moon is near a star previously
to an occultation : for moving over a space equal to her diameter
in an hour she then visibly approaches the star.

As the stars which are fixed seem to move by reason of the
Earth’s rotation, so the Sun, which is, in fact, stationary, seems to
move by reason of the Earth’s revolution round him. But it
makes no difference either in the explanation of phenomena, or in
the deduction of such results as belong to the subject; whether
we suppose the Earth to move round the Sun, or the Sun to
move round the Earth. A spectator at E sees the Sun S in the

& E

* v

heavens at the place > . Transferred to = he sees the Sun in
o¢ . The Sun appears to him to have moved from ¥ to o :
the same appearance as that of a real translation of S from X
to .

Of the Solar System, composed of the Earth,. the Moon, the
Planets, their Satellites, and certain stars more erratic than the
planets, and called Comets, the Sun, the chief body, occupies
the centre. Round the Sun, in their order, at different distances,
and in differént periods, revolve Mercury, Venus, the Earth,
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Mars, Vesta, Juno, Ceres, Pallas, Jupiter, Saturn, the Georgium

Sidus.
These planets Astronomers have distinguished (as they have

also the Sun and Moon) by appropriate symbols thus

TheSun........ (0} Ceressigmadinw, i ?
Mercury .. ...... ¥ Pallas. .. ... O (o]
Venns/ lnion sunilus ? Jupiter.......... A
The Earth . ...... ® Satuth ..o:8. al o b
Marsse 28 Jpund! 3 - The Georgium Sidus} I
LT Bt ||  or Herschel

TG, "« en o ots 0 's o s b 3 The Moon ....... D

Mercury, Venus, Mars, Jupiter and Saturn, are what are
called the old Planets, discernible by the naked eye, and conse-
quently known to the antients*. The Georgium Sidus, (or in
order to give it what the others have, a mythological denomina-
tion, Uranus) was discovered in 1778 by Dr. Herschel, and
therefore, it is frequently called by Foreigners, the Herschel.
The other four planets Vesta, Juno, Ceres, Pallas, (at first fan-
tastically called Asteroids) have been discovered since 1801, the
first and fourth by Olbers, the second by Harding, and the third
by Piazzi. The latter new planets are extremely small and
cannot be seen without a telescope, which is the case also with
the Georgium Sidus, not indeed by reason of his small size, but
of his great distance.

The system which has been briefly described is sometimes
called, from its author Copernicus, the Copernican. The charac-
teristical point, it must be noted, in his system is the placing the
Sun, as an immoveable and the chief body, in the centre of it.

In the next Chapter we will consider whether, on the pro-
‘posed” hypotheses and the established facts, we are able to
account for the vicissitudes of seasons‘and the different durations
of day and night. The only thing aimed at will be something of

* Maxume vero sunt admirabiles motus earum quinque stellarum,
qu falsd vocantur errantes, nihil enim errat, quod in omni =ternitate
conservat progressus et regressus reliquosque motus constantes et ratos.
Cic. de Nat, Deorum, Lib. I1. 19, 20.
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the nature of a popular explanation, probably accounting for the
phenomena, on hypotheses that are simple and consistent with
themselves. Independent and rigorous demonstrations belong not
to the present subject of enquiry : as far indeed as the establish-
ment of systems and the verif.cation of hypotheses are concerned.
The purely mathematical demonstrations which are subsidiary
are, indeed, as true in Astronomy as in any other science : but the
theory they have acted in aid of, they may have vainly propped,
and it may be false. A theory if false may be proved to be so
by one instance: whereas the truth of a theory can hardly ever
be easily or soon established.



CHAP. III1.

On the Vicissitude of Sea;sons, and of Day and Night.

T daily rotation of the Earth round its axis, and the annuat
revolution of the Earth round the Sun, are the two hypotheses
“‘which, in the preceding Chapters, have been found adequate to
explain several of the ordinary phenomena of the Heavens. A
condition attending the former hypothesis is that the axis of the
Earth always preserves its parallelism. For the polar star is
always (to common observation at least) quiescent, and the cir-
cumpolar stars always describe circles of the same magnitude.
A condition attending the second hypothesis is that the path of
the Earth’s circuit, or its orbit, lies in one plane : since the points
of the Heaven in which the Sun, during the year, 1s successively
seen, lie in one or the same plane.

If the Earth’s axis of rotation were perpendicular to the
plane of its orbit, the planes of the equator and of the orbit would
be coincident. The Sun would always describe the same
parallel of declination ; if he rose once at the east point E, (see
fig. pp. 5 and 7.) he would always rise there, his apparent
diurnal course would be always in the equator, and his annual
course would be amongst those fixed stars which lie in the celestial
equator. But we have seen (pp. 15, &c.) that this is not the
case; his annual course is made obliquely to the equator, or,
since it is made in the same plane, the plane of his orbit is in-
clined to the plane of the equator, and (which 1s only to repeat
the same thing in different words) the axis of the Earth is inclined
to the plane of the Earth’s orbit. :

This point enables us at once to explain the vicissitudes of the
seasons, and the different durations of day and nmight, as depen-
dent on the combined circumstances of the time of the year and
of the latitude of the place.

Let S be the Sun, E the Earth in three positions 1, 2, 3, of
her orbit ; let also Pp be the Earth’s axis, EQ the equator, and
P AQp must be conceived to be a section of the Earth perpen-
dicular to the plane passing through the orbit EEE; so that
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PAQp will be opposite to the Sun, and to a spectator at A

will be a meridian *. The axes Pp are drawn parallel to each
other in the three positions.

Let us first consider the.position marked 1, in which the angle
SEP is the greatest possible. The spectator, situated in ‘a
northern latitude, is supposed to be at A : his zenith at £, and
his rational horizon will be I4, H h being perpendicular to EZ:
The Sun in this position, as:it is plain, is the most below the
equator EQ and least above the horizon when on the ‘meridian ;

* Diagrams in Astronomy ‘are not only imperfect representations,
since solids are to be represented in plano, but, with regard to proportion,
preposterous representations of the things they ought to exhibit. The
first is a real evil, the latter a very slight one; for, the demonstration in
the text is equally clear whether E@ be the half or the double of what it
is in the above Figure, it is in fact, independent of the represented relative
proportion of EQ to SE; yet, the former is to the latter, in fact, as
1 to 22984, and not, as in the Figure, as 1 to about 3 or 4. The first
evil, however, if we do not recur to schemes of solid representation, admits
of no remedy, exeept from the student’s attention. The orbit 1, 2, 3,
must be conceived as viewed obliquely, and then PAHp to be perpendi-
cular to it. O, if the orbit be conceived coincident with the plane of the
paper on which it is drawn, then the plane passing through PAHp is per-
pendicular to the paper.’ » :
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and, according to the construction of the diagram, the Sun is on
the meridian of the spectator A. The position 1, corresponds to
that case of p. 16, in which the Sun rose between the east and
south points at his farthest point from the east.

In this position of the Earth, a plane drawn perpendicular to
SE, at the point E, would divide the Earth into two hemispheres,
one illumined, the other in darkness as it is represented in
Fig. of p. 29 : the south pole (p) being in the former, the north pole
(P) in the latter. In this case, since the boundary (df) of light
and darkness falls between A and P, it is clear that the spectator
at A would, by the rotation of the Earth round P p, be transferred
from A to cin aless time than he would be transferred from ¢
to a: but 2A¢ 1is proportional to his day, 2ca to his night.
Again, since 24k is proportional to 12 hours, the duration of
the day (24'c) would be less than 12 hours, and the duration of
the night (2 ca) greater than 12 hours, and the difference would
be measured by 2ck.

‘This difference is easily computed in any given latitude:
through ¢ draw Pcm, a quadrant of a secondury to the equator,
then, by similar figures, m E bears to QE the same proportion as
¢k bears to A : now, in the right-angled spherical triangle cEm,
we have :

cm = QA = (see p. 10.) the latitude of the place,

LcEm = 90° — SEQ = co-declination of the Sun,
whence by Naper’s Rule, (see Trig. ed. 3. p. 146.)

rad. x sin. m E = co-tan. cEm x tan. cm
= tan. @ ’s dec. X tan. lat.

Suppose, for instance, the latitude of the place to be 51° 52/
and the Sun’s declination (which must be his greatest south de-
clination) to be taken equal to 23° 28’, then we shall have

log. tan. lat. (51°52")......... 10.10510
log. tan. dec. (23° 28)). .. ...... 9.63761
.. 10 + log. sin. mE = 19.74271

.. (by the TablesymE ...... TSI = 33° 34’ 20", nearly,
and (15° being equal 1 hour) in time. .. = 2" 14™ 17*, nearly;
)
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consequently, the length of the day = 12" — 4" 28® 84’
v » =T 31 26,
and the length of the night = 16 28 34.

We may also arrive at this result by means of a diagram

like the present. Thus, let 2 be the zenith of the place, take
2Q=151° 52' and draw QE, representing the equator, through the
centre ; also QM =23° 28/, and draw Mom- parallel to QE:
then Mom (see p.8.) is the Sun’s parallel of ' declination :
and (Hk being the horizon drawn perpendicularly to SE) 2 Mv
measures the time the Sun is above the horizon (Mm mea-
suring 12 hours), or 2Q¢ measures the length of the day, and
2QE + 2t E the length of the night, 2QE measuring 12 hours :
in order to find 2¢ E, the difference of day and night, we have by
Naper’s Rule, ;
rad. X sin. t E = cotan. £t Ev X tan. tv
= tan. ZEQ x tan. QM

= tan. lat. x tan. ® ’s dec.
as before (see p. 25.)

At the point v, which is the intersection of the parallel of
declination Mvm and of the horizon H}%, the Sun rises. In the
case which we have taken, it is the point of the Sun’s rising that
is farthest from the east towards the south (see p. 16.). Its
distance ‘from E may be computed by solving the right-angled
triangle ¢ Ev thus:, :
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By Naper*, r X sin. tv = cos. lat. x sin. Ev,

log. 7+ log. sin. 23°28". .. .. ... 19.60011
log. cos. 51°52". . ... .., 9.79063

log. sin. Ev = .. ......9.80948
- Ev= 40" ¢’ 25". :

- In the position (3), which is diametrically opposite to (1), the
Sun, (since the axes Pp, Pp are parallel to each other) is as much
above the equator as he was below in the position (1). If there-
fore we were to draw, as before, a plane passing through E and

- perpendicular to SE, it would separate the Earth into two hemi-
spheres one illumined by the Sun, the other deprived of his light :
but, in this latter case, the north pole P would be as much
within the illumined part as the southern pole p was in the posi-
tion (1).

The length of the day, therefore, will be what the length of
the night was in the position (1), and vice versa : and the Sun
in rising will now rise between the east and the north points, and
as much towards the north, as in the position (1) it rose towards
the south. This scarcely needs any proof; a proof, however, if
required, might easily be had by the aid of the diagram already
used. Thus take NQ equal the Sun’s greatest northern decli-
nation, and draw Nun parallel to the equator QE : then the Sun
will rise at », and, in order to find Lu, we have (supposing a
secondary to the equator to pass through u),

rad. x sin. © ’sdec = sin. Eu X sin. QEH,
or rad. X sin. © ’s dec. = sin. Eu x cos. lat.

the same equation as that given above, for determining Ev;
*. since NQ =QM, Eu= Ev, and consequently the arc Eu, or
“the Sun’s amplitude, (see p. 5.) equals 40° 9’ 25",

The instances taken have been those, in which the Sun is
most below and most above the equator: but the scheme will
serve for other positions of the Earth: and, the computations for
the lengths of day and night, and for the distance from the east,

* Trigonometry, p. 146.
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will be similar : since, instead of 23° 28', we have only to sub-
stitute some other number of degrees, representing the decli-
nation.

In the position (2), the Sun is neither above nor below the
equator, but in its plane produced. In the preceding diagram,
Q would be the Sun’s place : and the parallel described in 12
hours would be Qg, and, EQ being=Eq¢*, the days and nights
would be equal. The position (2) represents the Earth in spring.
In the preceding instances we have supposed the spectator
situated in some northern latitude between P the north pole and
Q the equator. If we suppose him transferred from A (see
fig. of p. 29.) towards Q, the zenith 2, which is always in EA
produced, will descend towards the equator, and the point 4 (HE
being always perpendicular to EA) will approach to P. When
A reaches Q, or when the spectator is at the equator, % and P
will coincide, and the axis of the Earth will lie in the spectator’s
horizon. The diagram, therefore, of p. 26, will now assume
the following appearance, ip which the parallels of declination

z
M 2 N

’'H

m n

Mm, Na, always bisected by Pp, are now bisected by Hk. -In
other words, the Sun Gif Mm, Na represent his parallels of de-
clination) will, whatever be his declination, remain as long above
as below the horizon : or the days and the nights of a spec-

* ¢ is omitted (Fig. p. 26.)in the point where QE produced cuts the
circle.
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tator at the equator consist, whatever be the season, each, of 12
hours. If Mm, Nn represent the parallels of declination be-
longing to stars, then the inference is that every star is as long
above as below the horizon, and that there are no circumpolar
stars.

If the spectator, instead of moving towards @, move towards
P, the arc A c which represents, or relatively measures, half his

day, will decrease: At the point d, the spectator will be in
darkness during the 24 hours*: but, since the figure is con-
structed for the greatest southern declination of the Sun, the
above circumstance, namely, that of a night’s duration of 24
hours, cannot take place either-on a preceding or a following day :
since, in‘either case, the Sun’s declination, being less than his
greatest declination, will cause the boundary of light and dark-
ness to fall a little within the point A (the place of the spectator)
and P.

Between d and P the spectator will be always within the
darkened hemisphere, and, at P, the zenith and pole will coincide,
as will the equator and horizon: the following diagram will
represent the circumstances of the spectator’s situation, which it
will represent not only when it corresponds to fig. 1, (see p. 24,)
that 1s, for the greatest southern declination of the Sun, but for
any other declination. Thus, it must be continual night whilst

* If SEQ=23° 28', PEd=23° 28’, which angle, if the spectator be

at d, is the complement of his latitude, Consequently, in latitude 66° 32’,

_on the shortest day, there is no direct light from the Sun. He would at
noon just appear on the south point of the horizon.
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. the Sun describes any parallel beneath QH#%, or whilst the Sun is

Z

P
N =4 - —\72
QH{ ' e. \ﬁ
™ ; be

72

to the south of the equator ; and continual night, when the Sun’s
declination is northern. A spectator then, if we imagine him
in such an extreme situation, would, during one half of the year,
experience continual day, and, during the other half, continual
night.

We have spoken (see p. 26.) of the Sun’s describing a
parallel of declination, which expression is not strictly correct :
since the Sun’s declination, which is perpetually changimg, will be a
little different at the end of 24 hours from what it was at their
beginning. If the Sun is ascending from the equator towards the
north, he will be higher above the horizon of the spectator at the
north pole at the end of 24 hours than at the beginning. Instead,
therefore, of describing a parallel to the horizon (the horizon and
equator in this instance are coincident) he will describe a spiral,
and, in such a curve, he will appear continually ascending above
the horizon till he has reached his greatest northern dechnatlon.
From that summit he will, by like steps, descend, during a quarter
of a year, or thereabouts, to the horizon and equator.

But if the Sun does not describe an exact parallel to the
horizon of a spectator situated at the pole, a fixed star does.
Every star, in fact, that is- then visible, is a circumpolar star:
equally elevated above the horizon wherever viewed; a spectator
in fact, placed exactly in the pole has nelthel a merldlan ‘nor-any
east and west points.” -

\
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Whatever be the circumstances relating to the durations of
light and darkness which a spectator experiences in a northern
latitude, when the Sun has a soutk declination, the same will a
spectator, situated in a corresponding southern latitude, experience
when the Sun has a corresponding north declination. Or the
durations of day and night, when the Sun has a certain declina-
tion, will become reciprocally the durations of night and day
when the Sun has an equal contrary declination. Thus, the Earth
occupying the position (3) (in which the Sun is supposed to be at
his greatest northern declination) the length of the day to a
spectator in north latitude 66° 32’ (see Note to p. 29.) would, on
his longest day, be just 24 hours. The Sun, at midnight, would
Jjust cease to be visible on:the north point of the horizon.

It has appeared (see p.26.) that PEd=SEQ =23° 28’
when the Sun is at his greatest northern declination. Draw from
d (fig. p. 29.) a parallel d b to the equator, and also a similar parallel
from the point £: the parallels or small circles thus determined
are denominated respectively the Arctic and Antarctic circles, or
generally the Polar Circles. 'The distance of the former from
the north pole, and of the latter from the south pole, is equal to
the Sun’s greatest declination.

The vicissitudes of seasons, inasmuch as they depend on the
durations of day and night, have been explained from the revo-
lution of the Earth round the Sun, and from the rotation of the
Earth round an axis constantly inclined at the same angle to the
plane of the Earth’s orbit. If the Sun be the source of heat as
well as of light, then heat will be imparted to an inhabitant of a
northern latitude, during a less time in the position (1) than in the
position (3). But, besides this circumstance, the Sun’s rays fall
more obliquely on A in the position (1) than in the position (3),

forin(1) 2 SEA = « AEQ + ¢ SEQ,
andin (38) 2 SEA = ¢« AEQ- SEQ.

This, in some degree, will account for the differences of tempera-
ture experienced by the same spectator at different seasons of the
year; and one of the causes previously assigned, namely, the
degree of obliquity of the Sun’s rays, will explain why the regions
near the equator are, ceteris paribus, hotter than the more remote.
The distinction of the Earth’s surface into climates and zones has
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been long made. Within two parallels of declination, each distant
from the equator 23° 28/, and called Tropzcs, the Torrid Zones
lie : the Frigid Zones lie within the arctic circle and north pole,
and the antarctic circle and south pole. The Temperate Zones are
included within the tropics and the polar circles.

The above must be viewed merely as general and arbitrary
divisions. We cannot affirm a place not to be cold solely because
it is within the temperate zone. Local causes have vast influence.
The temperature of the air at a place is not proportional solely to
the place’s latitude and the Sun’s declination and distance *.

* We have not supposed hitherto the Sun’s distance to be variable,
which it is.



CHAP. 1V.

On the Phases and Eclipses of the Moon.

I, in arranging the heavenly phenomena, we had purposed
to give precedence to those which were either more obvious or
which excited greater curiosity, we ought to have considered the
Moon previously to the Sun and the planets. The proper
motions of the latter, and their other phenomena, do not obtrude
themselves so forcibly on our notice, as those of the Moon.
Venus, to unassisted vision, always appears to shine with a full
orb : but viewed through a telescope she assumes, like the Moon,
her several Phases, and shines with an orb more or less deficient.

The Earth, as it was stated in p. 20, moves round the Sun.
The Moon also (such is the doctrine to be laid down) moves
round the Earth but, in an orbit, the plane of which is not co-
ineident with, or parallel to, the plane of the Earth’s orbit. If to
these we add another condition, namely, that the Sun illuminates
the Moon, and that the inhabitants of the Earth perceive the
effects of such illumination, we_shall possess the means of ex-
plaining why, at some times, the whole face or disk of the Moon
is luminous, whilst, at other times, only portions of it are: we
shall, in other words, be able to explain the Moon’s Phases.

Let M, M’, M" be three different positions of the Moon in

M S

her orbit, and let the dotted curve line represent the outline of a
" :
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portion of the plane of the ecliptic, which plane we must sup-
pose inclined to that of the Moon’s orbit. E is meant to
represent the Earth, and the Sun is supposed to be so far distant
that lines from it to M, M’', M", &c. and E may, for small
portions near those points, be held as parallel. Nwnis the line
of the nodes, that is, the intersection of the plane of the Moon’s
orbit with the plane of the ecliptic, or the plane of the Earth’s
orbit round the Sun. Now Ss is the direction of light issuing
from the Sun to illuminate the Moon : suppose the Moon to be
a sphere ; then a plane, passing through its centre and perpendi-
cularly to Ss, would divide the Moon into two hemispheres, the
convex surface of the one being bright, that of the other dark. But,
except in certain positions, a spectator at E will see only part of
the illumined hemisphere. Divide the Moon into two hemi-
spheres by a plane passing through the Moon’s centre, and drawn
perpendicularly to a line joining that centre and the spectator,
then-the hemisphere, which is towards the spectator, is the one
he views. Mm (in the figure of p. 33.) perpendicular to Ssis
the projected boundary of light and darkness: ab, perpendicular
to.a line drawn from E to the centre of the Moon, is the pro-
Jjected boundary of vision: a spectator at E, therefore, views only
that illumined part of the Moon’s disk, of which 75 and two lines,
drawn from the Moon’s centre to m and b, form the projected
boundary. If the Moon, therefore, were at ¢ between the Sun
and Earth, ¢ b, and Mm coinciding, no portion of her illumined
disk would be visible : but, at M”, the whole illumined disk would
be visible, (supposing the planes of the Earth’s orbit and of the
Moon’s to be so inclined, that the Earth impede no light from
falling on the Moon); at M’, (in which position it is intended
that the lines M'm’, o'’ should be perpendicular to each other)
the Moon will shine with half a face.

There are several technical denominations given to the Moon
in the above positions. At ¢, the Moon is a new Moon; at M",
a_full Moon; at M', supposing half of her disk to be luminous,
the Moon is said to be dichotomized. In the course of her
circuit, which occupies a period of about 29 days, the Moon
must, it is plain, exhibit all her Phases: the narrowest crescent
near to d: an half Moon at M', a full orb at M”: past that
state, her orb becomes deficient, and the Moon wanes, till reach-
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mg a line joining the Earth and the Sun she turns her dark side
entirely to the spectator.

In the position ¢ when the Moon is new, she passes the me-
ridian at the same time the Sun does, or, in other words, she is
on the meridian at noontide. In the position M, she must,
since the Earth’s rotation is from west to east, pass the meridian
after the Sun, and it is her western limb which appears illuminated.
At M", the Moon, at her full, comes on the meridian at
midnight : and past M” and beginning to wane, she becomes
dqﬁczent on her western side.

The Moon’s orbit, as it has been already remarked, is in-
clined to the ecliptic. The line Nz is meant to represent the
intersection of their two planes. ~ Now the line N», technically
denominated the line of the nodes, is found to be continually
changing its position. If during these changes it should occupy
the position M" Ec, whilst the Moon were either at ¢ or at M",
then the Moon, Earth and Sun would be situated in the same
right line, and give occasion to the phenomenon of an eclipse.

Suppose, in the first place, the Moon to be at ¢, and the
Sun to be in the line Ec produced. Then a spectator at E
would either see the Moon as a dark spot, or dark circle, con-
centric with the Sun’s disk and within it, or, if we choose to
conceive the Moon sufficiently large, the spectator would be
unable to see the Sun by reason of the Moon’s interference.
The phenomenon, in the first of these predicaments, is called an
Annular Solar Eclipse, in the latter, a Total Solar Eclipse.

In the second place, if the Moon be at M", the Earth, being
interposed between the Moon and Sun, must intercept some of
the Sun’s light in its passage to the Moon. It may (if we argue
the matter independently of the actual magnitudes of the Sun
and Earth) intercept the whole ; and, under any consideration, it
must cause the Moon to be less illuminated than it would be, did
it not intervene. In fact, the Earth being a sphere or nearly so,
its shadow will be conical and towards the Moon. We may,
hypothetically, assign such dimensions to the Earth that the
vertex of its shadow shall fall within the Earth and the Moon, in
which case the Moon’s disk would be only dimmed but not
eclipsed ; but, according to the actual dimensions of the Earth
and its distance from the Moon, the shadow of the former always
extends beyond the latter and causes it to be eclipsed
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From the preceding account of the causes of eclipses, we
may easily infer a material distinction between a lunar and a solar
eclipse. When the former happens, the Moon is deprived of the
Sun’s light, and is darkened by the Earth’s shadow ; and every
spectator on the Earth, that can see the Moon, sees her eclipsed.
In the case of a solar eclipse, the Sun is not darkened but con-
cealed, either entirely or partially, by the intervention of the
Moon. The Sun may appear, on its rising, eclipsed to one in-
habitant of the Earth, whilst,. at the same time, to another
inhabitant, in a different region, he may set with a full and bright
orb. It will require the aid of computations to point out the
exact circumstances of eclipses: that matter is reserved for a
future Chapter. We will close the present by observing that the
Earth’s shadow, at the Moon, is sufficiently large to eclipse the
whole of the latter body. The section of the Moon’s shadow,
on the contrary, at the Earth, is a round spot, of no great dimen-
sions, that rapidly passes over the parts of the Earth’s surface
which it successwely eclipses.

We have, in the present Chapter, supposed the Earth to be
either spherical, or nearly so, and to cast a conical shadow. In
the next Chapter we will briefly examine the grounds on which
such supposition is built,



CHAP. V.

On the Earth ; its Figure and Dimensions.

O~ of the proofs of the spherical form of the Earth is
drawn from the phenomena of the preceding Chapter. In all
lunar eclipses, the boundary of the Earth’s shadow on the Moon’s
disk is apparently circular: such as ought to be the section of a
conical shadow of a sphere. A considerable defect of sphericity
might, however, exist in the Earth’s figure without its being
detected by this phenomenon.

There are, besides, other circumstances that render probable,
and with like nature and degree of evidence, the globular form
of the Earth. A ship, viewed as it approaches us, first comes in
sight by shewing us the tops of her masts : next, more and more
of the masts are seen, and, lastly, the hull. And; this pheno-
menon is the same, whatever be the quarter, be it the east, west,
north, or south, that the ship approaches from.

Again, on a rock or mountain surrounded by the sea, such as
is the Peak of Teneriffe, the sea appears, as it were, depressed,
and equally on all sides of the spectator. On the mountain just
alluded to, the angular distance between the zenith and any
point of the horizon is nearly 92 degress. The Sun, therefore,
must there rise sooner and set later (by about 12™ in the case
before us) than to an observer on the plain: and, which is the
same phenomenon or one immediately ‘following from it, the
summit of the mountain will be illuminated 12 minutes before
Sun-rise and 12 minutes after Sun-set. The same phenomenon,
modified solely with regard to time, and consistently with the
hypothesis of the sea’s spherical surface, is always found to take
place in mountains of less or greater height.

The precedmg circumstances shew that the Earth is round,
and that it is neither flat like a plane, nor concave like a bowl:
but they will not serve, not being of a sufficiently precise nature,
to found thereon a proof of the Earth’s sphericity. That the
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Earth camnnot be a perfect sphere it is indeed easy to shew,
although it is not easy to shew what is precisely its figure. The
disposition of mankind to believe in the existence of simple and
regular bodies first suggested a sphere, and then a spheroid, as
the Earth’s figure. And the labours of mathematicians have
been directed, these last hundred years, to ascertain the truth of
the latter suggestion. It is a matter, nof unworthy of notice,
that the Moon which, by one of the circumstances of her eclipses,
(see p. 37, 1. 4.) proves the roundness of the Earth, in another
way (by one of her inequalities) proves its non-sphericity and the
degree thereof.

We have not yet mentioned an argument, an analogical one,
indeed, and not a very strong one, by which it is inferred that
the Earth, one of the planets, is round, because Venus, Jupiter,
&e. appear to be so. If we argue similarly with respect to
the nature of the Earth’s deviation from a spherical form, we
ought to infer that the Earth resembles an oblate spheroid bu]gmg
out at its equator and flattened at its poles, because Jupiter is so
formed. Indeed, if the Earth be not a rigid mass, such ought to
be its figure. It is easy to see, on mechanical principles, that
a fluid globe revolving like the Earth round an axis would become
protuberant in its equatoreal parts.

What has preceded relates to the figure of the Earth; but its
dimensions are an object of enquiry. If the Earth be a sphere,
what is its radius? if a spheroid, what is (as it technically is
called) its Ellipticity? These are questions about which Astro-
nomers have been busied from the earliest times.

If we look to all the curious apparatus of methods, instru-
mental as well as computative, by which modern science has
attempted to measure the Earth, there cannot well be a wider
interval than that which exists between the rude Essay of
Erastothenes made more than 2000 years ago, and what is now
practised. The methods, however, rest on a common ground.
At Syene, in the Thebais, the Sun on the meridian, at the time
of the solstice, was vertical. It illuminated the bottoms of wells,
and the highest buildings cast no shadow. On the same day the
Sun’s distance from the zenith of Alexandria was observed to be
7° 12", Let C be the centre of the Earth, s the Sun vertical to
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E (Syene), and let the angle s 42, the angular distance at 4

7

7 -

(Alexandria) of s from Z the zenith of 4, be 7° 12': then
we have the ¢« ECA = £ Z4As — ¢ CsA
= £ R4s=17° 12,
if we neglect, by reason of its smallness, the £ CsA, the angle
which the Earth’s radius, in this case, subtends at the Sun.

60
Hence the Earth’s circumference equals —— 7 ¥ EA, and 1s

3
7°
known in linear dimensions when EA4 is so expressed.

If the distance of Syene and Alexandria be assumed equal to
5000 Stadia* and those places be supposed to lie (which they do
not) in the same meridian, then '

. 360°
the Earth’s circumference = T —— X 5000° =50 x 5000
=250000 stadia.

and the number of stadia contained in 1 degree would be

* According to Lalande, the Egyptian Stade= 114.13 toises, and a
French toise == 6% 4i°.34.
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694° 444, &e. (=5—

It is not necessary to stop here to shew the various sources of
inaccuracy, in the above method. Let us attend to the modern
way of proceeding. If we advance towards the north, the pole
star approaches our zenith, or, if we proceed along the same
meridian, the star which we at first observed in our zenith,
recedes from it. Suppose between two stations of our progress
that the pole star has become 1° nearer to the zenith, or (which
15 the same thing) that the star, which was vertical at the first
station, is 1° distant from the zenith of the second station ; then,
if the actual distance between the two stations should be 69%
miles, the Earth’s circumference, which contains 360 degrees or
360 such differences of latitude as are equal to 1°, would equal

0
% x 69% and would be about 25020 miles: and its diameter
would be about 7960 miles.

This method, it is plain, is founded on the same principle as
that of the Astronomer of Alexandria; and, if it be pursued, it
must needs furnish a proof of the Earth’s ellipticity, or rather,
of the defect of its figure from perfect sphericity. For, were the
Earth a perfect sphere, the same linear distance (69% miles for
instance) ought always to be found between any two places on
the same meridian and differing in their latitude by 1°. This,
however, is not the case. In latitude 66° the linear distance
between two places, under the above predicaments, is found to
be 122457 yards. But, near the equator, such distance is found
to be 121027 yards. The former distance being 69% miles
+ 137 yards, the latter 691 miles —1293 yards. And it is
established as a fact, by means of observations and measurements,
that degrees (by which we mean their linear values) increase as
we move from the equator to the pole.

If the Earth be supposed to be a spheroid, its measurement is
to be conducted, as in the hypothesis of its being a sphere, by
finding the difference of latitudes between two places, and by
measuring and computing the linear distance between them.
The axes of the spheroid cannot, it is plain, be determined by
so simple a process as that which gives the radius of the sphere.
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Tt is a question of pure mathematics to assign, from two degrees,
one measured at the equator, the other near the pole (or any two
other places), the eccentricity of that ellipse, which, by revolving
round its minor axis, shall generate the spheroid to which it is
believed the Earth is like. ' If all meridiaus were similar, and all
measurements equally to be relied on, the same eccentricity
ought to result, wherever the two degrees, the data of the
problem, should have been measured. But the case is otherwise.
One mathematician by comparing a degree measured in Lapland,

E : { 1
with a degree measured in France, assigns ——— for the
307.405

1
Earth’s oblateness ; 553 results from Col. Lambfon’s measure-

ments in India: who compared (for so may the problem be
mathematically solved) a degree of the meridian with a degree

s . . 1 1 .
perpendicular toit. Lalande thinks ——, Delambre — to be its
300 309

true value. In fact the question, whether we look to its the-
oretical or to its practical part, is a very difficult one, and likely,
for many years, to remain doubtful, and to be the subject of
discussion.

There is another method of determmmg the Earth’s oblale-
ness, founded on the different times of vibration of the same
pendulum in different latitudes, or rather, on those differences
of vibration which depend solely on an augmented or diminished
gravity. 'The variation of gravity, or of the weight of a body,
arises from two causes : the non-spherical form of the Earth and
its rotation. From the first cause, the attraction is not, as in the
case of an attracting sphere, the same as if all the matter of the
spheroid were collected into the centre, and the resulting force
directed to that centre. Two plumb-lines (and the directions of
gravity are no other than the directions of such lines) containing,
at the pole, an angle equal to 1°, will meet in a point of the polar
diameter beyond the centre of the spheroid. At the equator two
such lines, so conditioned, would meet in a point of the equa-
toreal diameter short of the ceutre. In other situations the point.
of concourse will not be in a dlameter ppassing through one of the
extremities of the arc.

r
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The second cause, the Earth’s rotation, gives rise to a cen-
trifugal force, a resolved part of which, acts in the direction of
gravity and diminishes it. This centrifugal force is nothing at the
poles and greatest at the equator, and that resolved part of it,
which counteracts gravity, varies as the square of the cosine of
latitude.

This enquiry, like the former one, is not easy, and, whatever be
the mathematical skill bestowed upon it, must always terminate in
doubtful results.  For it rests on two hypotheses very difficult to
be verified, 1*, the spheroidal form of the Earth, and ily  an
assumed regularity and law in the disposition of its materials.

If we refer to p.4, we shall find that the . rational and
sensible horizons are parallel to each other, and distant from each
other by an interval equal the Earth’s radius. Now that radius, as
we have just seen, is about 4000 miles. Itis, however, a distance,
compared with that of a fixed star from the Earth, of no relative
value : from which it follows that, in what regards the fixed stars,
we may suppose the two horizons coincident: or, which amounts
to the same thing, any calculation, made with respect to a fixed star
by a spectator on the surface of the Earth, is precisely the same
as if the spectator had been placed in the Earth’s centre, to
which point, on other occasions, that is, when the Moon or a
planet is concerned, it is usual to refer or reduce Astronomical
computations.

In order to prove what has been just asserted, let S represent
the Sun, s a fixed star, and E, E’ two positions of the Earth in

opposite points of her orbit, At these two positions the angles
sEL, sE'L can be determined by observation and calculation,
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and, on comparing them, they are found to be equal: but
¢sEL= ¢sE'L+ ¢E'sE, consequently, the angle EsE'
has no value, or, the distance s E is so immense that the diameter
of the Earth’s orbit subtends no angle at s. There is no assign-
able proportion, therefore, between s E and EE’, and, a Sfortiori,
none between the Earth’s radius and s E: since EE’ is to the
Earth’s radius as 45968 to 1*.

We have in this, as in each preliminary Chapter, treated its
subject in a popular manner. The explanation has been general,
and consequently vague, and indeed it is scarcely worth any
thing if it were not preparatory to discussions of greater pre-
cision. We have spoken (see pp. 38, &c.) of the antient mea-
surement of the Earth as of a rude method : but that which is
afterwards described as the modern method may, notwithstanding
any thing contained in that description, be equally so. In fact,
the superiority of one method over another, cannot be shewn
except by entering into their respective details. Those of the
first may be comprised, as they have been, in a few lines: the
details of the latter are sufficient to fill a large volume.

We have spoken of the zenith distance- of the Sun at Alex-
andria, in the time of the solstice, as being 7° 12/, and of two
places differing from each other in latitude by 1°; and a student,
in the outset of his Astronomical career, may imagine that nothing
is easier than to form a notion of these angular distances. Itis
not likely, indeed, that he should anticipate (for he can only know
them till after trial) the difficulties that await him. The angular
distance of a star on the meridian from the zenith is the angle
contained between a straight line drawn from the star to the
spectator, and a line vertical to the spectator (the direction, in
fact, of the plumb-line.) Now the first point of enquiry (which
Erastothenes did not enter into) is, whether the star is really in the
direction of the former line, or whether the direction of the ray
of light when it enters the eye coincides with that of the former
line. If it does not, then is the angle we see and measure, not

* If s were near the pole of the ecliptic, and Es=200000ES, the
angle EsE’ would be about 2”: but since no such angle can be detected,
or at the utmost, an angle not exceeding 2”, the ratio of Es to the Earth’s
radins must be at the least, that of 4569800000 to 1.
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the angle we are in search of. We may be able to correct the
former angle, and thence find the latter, but then there comes a
second point of enquiry, whether or not the correction known for
one case will suit all others; whether, for instance, the same
quantity of correction which reduced the observed zenith distance
(7° 12)) of the Sun at Alexandria, would truly reduce an observed
distance at another place, at Rhodes for instance, where, at the
solstice, the Sun’s zenith distance would be about 13 degrees.
1f we would answer these questions we must enter into an inves-
tigation, which is no other than that of the Laws of Refraction.

But the enquiry would not terminate with the settling of
those laws. ~ Suppose we knew how much the light of a star
would be made to deviate, by reason of the atmosphere, from
a line joining the star and the spectator, would the deviation of
the same star, to the spectator at the same place, be the same at
whatever hour the star passed the meridian? The student, it is
probable, would here also feel no hesitation in answering that the
star’s apparent angular distance must be independent of the time of
its transit over the meridian, and that, if refraction were away, a
star would always pass the meridian of Greenwich at the same
distance from the zenith of Greenwich (such distance being de-
termined by an instrument) whether the hour of transit were 9 in
the morning or noon.

The fact, however, is otherwise, and, as it will be shewn here-
after, there. 1s, besides refraction, a cause of inequality which
makes the instrumental zenith distance different from, if we may
so call it, the true zenith distance: which cause of inequality is
connected with the time of the star’s transit over the. meridian.

But the process of correction would not cease here ; there are,
at the least, six causes of ¢nequality, each of which will render
the observed angle, whether it be an -angle between two stars,
or, between the zenith of the observer and a star on the meridian,
unequal to the true one. So hard to be understood then, not-
withstanding its apparent simplicity, is the expression, of the
difference of the latitude of two places beiug 1°. Erastothenes
if he had possessed the most perfect of modern instruments, had
he possessed them without modern science, could not have ascer-
tained the Earth’s dimensions.

But although this be the case: although it is essential to know
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the quantities and the laws of those corrections, by which we are
to derive the latitude of a placé, or any other angle, which may
be the object of research, from the observed or instrumental
angle ; still, it is plain, this latter angle is of primary importance.
If we are unable to determine that exactly, the corrections pro-
vided by Astronomical Science may be of little or no use. Their
sum may be less than the error of observation, which error, in
such a case, would vitiate all subsequent processes founded on
the observation. .

It will, therefore, be following something like a natural order,
to describe the instruments by which angular distances are mea-
sured, previously to the investigation of methods for correcting
such distances. And, in pursuit of this plan, we shall not
digress into a description of antient instruments nor (however in-
structive in itself such an enquiry may be) into the history of
their successive improvements. We shall be content to describe
the instruments which are essentially necessary to determine the
places of the heavenly bodies; those instruments which are
called, for distinction’s sake, the Capital Instruments of an
Observatory, which, indeed, are few in number, and simple in their
construction, each being appropriated to one class only of
observations. The tendency (if we may so describe it) of im-
provement in- Astronomical Instruments has been towards sim-
plicity in their construction. In former times Astronomers
endeavoured, in their instruments, to imitate the celestial sphere :
which were formed in cali effigiem ; hence came their Astrolabes
and Armillary Spheres.  According to modern practice, all im-
portant observations are made on stars on the meridian. Itis
there that Astronomers, with fixed instruments, wait for a star
mstead of attending on its course from east to west.



CHAP. V.

On Astronomical Instruments.

The position of a point in a plane may be determined, by
means of two rectangular co-ordinates (as they are called), that is,
of two lines perpendicular to each other and measured -from the
same point. In like manner, the position of a star on the
celestial sphere may be determined by portions of two great
circles, perpendicular to each other, and measured from the
same point. - Thus, let P be the pole, 4mQ a portion of the
equator, s a star, and Psm a circle of declination: then, if 4

Z

should be a known point or known star in the equator, the
position of s on the sphere will be determined from Am and 4 ¢
(=ms): since we have only to set off Am, on Am Q the equa-
tor, to draw the quadrant m P and to set off, on m P, m s equal to
At. Now, the right ascension of a star is its distance measured
on the equator from a fixed point in the equator. If that point
be 4, Am will be the right ascension of the star s, ms its decli-
nation, P's its polar distance, and Z¢ its zenith distance, when s
is on the meridian, the position of which is represented by PZA4.

We must consider what are-the means of measuring A¢ and
A m when the star s is on the meridian.

With regard to the first point; we have only (by which term,
however, we do not mean to signify the great facility of the
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operation) to divide a quadrantal arch such as aeb into a number
of equal parts, to place it in the plane of the meridian, and to
direct a telescope in the direction e C to the star ¢: then eb will
express, by a certain number of the above-mentioned equal parts,
the zenith distance of the star s on the meridian, and ea will
express the altitude. Besides the conditions mentioned, it is
clear that Cb must be vertical, which it will become by being
made coincident with, or parallel to, the direction of the plumb-
line.

With regard to the second point : there are no obvious means,
and certainly no simple ones, of instrumentally measuring the
angular distance between A (even supposing it.to be a star) and
m the point where the secondary passes through s.  Other means,
than those of instruments giving angular distances, must be
resorted to: and Astronomers have called in fime to express,
intermediately, the right ascension of a star : which plan may be
thus explained.

Suppose (for the sake of simplicity) A to be a star, and the
point m to be carried, by the rotation of the sphere, in the direc-
tion m A : then m and § would be on the meridian at A and ¢
at the same instant, and the arc 4m, the measure of the angle
sPA, would bear to the whole circle, or to 360 degrees, that
proportion which the time elapsed, between the transits of 4
and s over the meridian, bears to .the whole time of the sphere’s
rotation; and contrariwise, an observed or noted time between the
transits would, in terms of time, be the right ascension Am, which,
if 24 hours be assumed as the time of the sphere’s rotation (or of

. . h
the Earth’s diurnal rotation) would equal P iy 360°.

To enable us, then, to find the right ascension of stars, there
are, according to the above plan, two instruments necessary: a
telescope in the plane of the meridian to observe A and the star
s when on the meridian, and a clock to note the respective times
of their being there. The instant of a star’s passage cross the
meridian being denominated its ¢ransit, the telescope used for
observing the star, at that instant, is denominated the Transit
Instrument. The three capital instruments then of an Observatory,

are the Astronomical Quadrant, the Astronomical Clock, and the
Transit Instrument.
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In point of theory, ‘or if we regard solely the mere purpose of
explanation, the two former instruments are the only ones essen-
tially necessary, because no reason, not suggested by actual ex-
periment, can be assigned why the office of the third instrument
should not be performed by the quadrant, which is supposed to
‘be placed in the plane of the meridian, and to be furnished with
a telescope capable of being pointed to any part of the meridian.
The special use, or the practical convenience of the transit in-
strument, depends on reasons altogether practical and not yet
explained.

We will now proceed to a more particular description of the
Astronomical Quadrant, which may be considered as repre-
senting a class of instruments, known by the names of Declina-
tion Circles, and of Mural Circles, and designed for the measur-
ing of zenith distances and polar distances.

The annexed figure is meant to represent @ mural quadrant,
or one fixed in the plane of the meridian. TV is a telescope
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moveable about a centre at V': and /v is a plumb-line, which
is, in general, a fine thread or wire with a weight attached to it,
and, for the sake of steadiness, plunged in water. b
The first point to be considered is the division of the quad-
rantal arc 4 B.
* The most usual graduation of the arc consists of 90 degrees :
but many quadrants (the two 8 feet mural circles of Greenwich,
for instance,) have, besides this usual graduation, a second .one,
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consisting of 96 equal parts*, An observation is to be read of’
(as the phrase is) on each scale, and then, by means of a com-
puted Table, the divisions of the ninety-six scale are to be
reduced to those of the ninety.

But the graduation is not limited to 90 or 96 parts or degrees.
Each - degree is itself divided into a number of equal parts,
each part containing .a certain number of minutes: the number
of minutes being the less (we are speaking practically) the
greater the instrument. In quadrants and circles of nine inch
radius, the smallest division on the /imb of the instrument contains
generally 30 or 20 minutes. Quadrant of 18 inches are divided
to 15 minutes. The 8 feet mural quadrants of Greenwich, and
the 6 feet mural circle, are divided into equal parts of 5 minutes
each.

There are, however, certain little and subsidiary instruments,
called Verniers, attached to that end of the telescope which
moves along the arc of the quadrant, that enable us to read off
. the observations to a greater nicety, and that (if we may so
express ourselves) stand in the stead of a minuter graduation of
the limb of the instrument. We will now explain the principle
and use of the Vernier. i

Let A B represent part of the limb of a quadrant (of that, for
instance, which was represented in p. 48.), Tt part of the
telescope which moves along the limb, and nm a thin plate of

. * The graduation of ninety-six degrees was adopted on principles of
mechanical convenience; and for the purpose of lessening the great dif-
ficulty which attends the graduation of iustruments. A chord of 60 degrees,
in the common division of the circle, being equal to the radius, a chord of 64
degrees, will be equal to radius, when the quadrant is divided into 96 equal
parts, or degrees. Hence, by means of a line equal to the radius of the
quadrant, two points can be determined on its arc, containing G4 out of 96
equal parts ; and, by, the, continual bisection of 64(=2.2.2.2.2.2) a,
division equal to one of those equal parts is obtained. It is very easy to
conceive a circle divided into 360 equal parts or to describe it as so divided :
but the practical effecting of the graduation requires a great deal more than.
mere dexterity of hand, as artists will testify, or, as any one.who Wm make:

the trial, will soon experience.

G
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metal (the Vernier) attached to the telescope at n, and together
with the-telescope, moveable along the limb of the quadrant.

(e A

In the present scheme the vernier- is divided into five equal parts,
the sum of which is equal to the sum of. four equal divisions of
the quadrant : and this equality is represented in the figure : in
which the lozenge, that mark on the vernier to which o would
correspond, coincides * with the division or mark on the quadrant
marked 41, whilst the mark 5 of the vernier coincides with the
mark 45 of the instrument. In reading off we must first look to

* Instead of coincides with, we ought, perhaps to say, is opposite to,
or in the same right line with, the mark 41 of the instrument. The
engraver having separated the boundary of the vernier from the circular
line on which the division-marks of the limb of the instrument abut
prevents a coincidence from taking place. We may farther note, that one
boundary of the vernier is the fourth concentrical circular line, reckoned
from the left hand : the other is the seventh, reckoned in the same way.
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the lozenge for the position that is intended by the instrument
maker to mark _the altitude of the observed star or other object.
Thus, as the figure is drawn, if the telescope were properly
directed to a star, the altitude of such star would be 41° : and in
such a simple case the vernier is of no use. But suppose the
telescope were directed to a star a little higher than the former,
then the lozenge would be moved from the division 41 towards
45, and let us suppose it just so far moved that the second mark
(1) of the vernier coincides with the division of the quadrant next
succeeding the 41° (the 423 *. In this case it is clear the lozenge
(to which we are to look in noting the altitude) has been moved
through a space equal to the difference between one division of
the instrument and one of the vernier. The altitude of the star
then is 41° 4~ this difference : which difference must now be
estimated. .

In the figure to which we are at present referring, the divisions
of the instrument are intended .to represent divisions of one
degree each, and, ‘since four of these divisions, or 4°, are equal
to five divisions of the vernier, the difference between a division
of the quadrant and the vernier is

, o
‘1"——--‘?1" =L = 12,
: 5 5
so that the altitude of the star is to be read off equal to
41° 12,
and this is the most simple illustration of the use and property
(for such it is) of the vernier.

If a star still higher be supposed to be observed, and the
telescope and its attached vernier be so moved, that the mark 2
of the vernier coincides with the 43* of the instrument, then the
index or lozenge has been moved from its original place, opposite
to 41, through a space equal to twice the difference of the
divisions of the quadrant and vernier, and consequently, the
altitude must now be

41° 4 2 x 12, or 41° ¢4’

* To avoid confusion, and to lessen the difficulties of the engraver, the
divisions which lie between 41 and 45, namely, 42, 43, 44, are not
figured.
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1f the mark 38 of the vernier coincided with the 44" of the in-
strument the altitude would be

41° 4+ 8 x 12/, or 41° 36'.

If the marks 4 and 45 should coincide, the vernier and the
lozenge must have moved through a space equal to five times the
difference of a division of the instrument and of the vernier, or
through a space equal to one division of the vernier; and in such
case the altitude would be

2
41° 4 4 x 12/, or 41° +3 194
each of which equals 41° 48’

If the mark 5 should be found to coincide with the mark next
to the 45" of the quadrant (which mark would be 46) ; then, it is
plain, the vernier and every mark on it and, of course, the lozenge,
must have been moved . through a space equal to one division of
the instrument, or through 1°; and the altitude of the star, if such
were the object observed, would be 42°.

In this situation, the vernier would have returned to a position
precisely similar to its original one (that in which the lozenge
coincided with 41), and any subsequent translations or movements
of the vernier, producing exact coincidences (or coincidences seem-
ingly such) between any two marks or lines of the vernier and
instrument, will be precisely similar to those that have been just
explained. :

But it is obvious that the. motions or 'translations of the
telescope and attached vernier may be less, in degree, than those
which have hitherto been spoken of. -The spaces through which
the telescope moves, may be less than the difference between a
division of the instrument and a division of the vernier, in which
case, there would be no exact coincidence between any two marks
or lines of the respective divisions. If, for instance, the telescope
should be moved from the position in which o of the vernier
coincided with 41 of the instrument, and through a space less
than the difference of a division of the instrument and the vernier ;
the mark 1 would not reach 42 of the instrument, and the altitude
to be noted would be something between 41° and 41° 12/, and
which the observer, should there be no other mechanism belong-
ing to the vernier than what we have described, must estimate by
guess and according to the best of his judgment.
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In the scheme illustrating the use of the vernier, we have
chosen to consider each division of the instrument to be equal
to 1°, in which case the vernier will not note smaller angles than
twelve minutes: but if each division, instead of 1°, were 1’, the
accuracy of the vernier would then extend to twelve seconds :
and, generally, when five divisions of the vernier are equal four of
the quadrant the difference between a division of the one and

: L
the other will always be equal to —,
5

since L— V = L—%Ij,

L being a division of the quadrant, and V of the vernier.

It is clear then, the smaller the divisions of the instrument are,

the more minutely (with regard to degrees and parts of degrees)
" will an observed angle be noted by means of the vernier. But
supposing, in an instrument of a given size, the magnitude of each
division to be settled, (and there are practical and mechanical
reasons that prevent the instrument from being subdivided beyond
a certain point) a question will then arise concerning the length
of the vernier, or, as the case 1is stated, concerning the number of
its divisions. Instead of five of its divisions being equal to four
of the instrument, will it not be better to make ten of its divisions
equal to nine of the instrument? or twenty equal to nineteen, or
sixty equal to fifty-nine ? In fine, if n divisions of the vernier are
to equal n— 1 of the instrument, what is the value which it is
most commodious to assign to n ?

Let, as before, L denote the value of a division of the instru-
ment, and V that of one of the vernier, then since

mn—1D)L =2V,

1L= £;

n n

| Festis SR

consequently, L being given, L— V is less, the greater # is.
But 7 cannot exceed a certain limit, for the magnitude of each
division being (see p. 49.) supposed to be assigned, and each.
division being an aliquot part of a circle, the arc of the quad-
rant can only contain a certain number of such divisions; for
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instance, if each division contains fifteen minutes, the quadrant
contains 4 X 90°, or 360 of such divisions, and, in such a case,
the limiting value of # is 360, and the difference between a
division of the quadrant and one of the vernier, with such extreme
value of », would equal

15 15 x 60" _ 15" 5
360 s60 6 2

But it is plain that a vernier extending along the whole limb
of the instrument would be very incommodious (to say the least):
and a like objection would lie against verniers either half or a
quarter of the arc of a quadrant: so that there are (in this as
in every other case relative to the construction of instruments)
certain practical considerations that limit, in a quadrant of a given
radius and given number of divisions, the length of the vernier.

It is proper then now to state what are usually the propor-
tions between the length of the vernier and the radius of the in-
struments.

Quadrants and circular instruments of 9 inches radius, are
frequently divided into equal parts, each consisting of 20 minutes,
and 59 of such equal parts are made equal to 60 dmsxons of
their verniers. In this case

L 00 "
by S 800" Borviny e
so that, with such instruments, you can read off, by the aid of
their verniers, to an accuracy of 20 seconds. In this case, the
vernier must occupy on the limb of the instrument a space, at the
least, equal to 19° 40'.

There are quadrants, of 18 inches radius, divided to every 15
minutes, and in which 14 of such divisions are equal to 15 of the
vernier. In these instruments then

and the space occupied by the vernier, is, at the least, equal to
3° 30

It would appear then that, in this case, we are not able to read
off so accurately as before, although the instrument is twice the
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size of the former. The factis, that that happens here which we
before alluded to in p. 52. The divisions of the instrument and
vernier differ.so much, that, in taking an altitude, the telescope,
will probably occupy a position, in which there is no exact coin-
cidence between a dividing mark of the vernier and one of the
quadrant. But, instead of guessing what the defect -between the
two nearest coincidences is, the observer 1s assisted by .a piece of
mechanism attached to the instrument, which enables him to
compute that defect. This we will now briefly explain.

The part E can be fastened to the limb of the quadrant by
means of a screw. FG a screw, (Fig. p. 50.) with a milled head
at F, works in a collar fixed in the under part of E, and in a
female screw fixed in the under part of the telescope T't. When
the part E, then, is fixed or clamped, and the screw is turned
round by its milled head at F, it must communicate a direct
motion to the female screw (and, consequently, to the telescope
and vernier) in. the direction of FG. Attached to the male
screw, or to the small cylinder on which it is formed, is an index
D moveable together with the screw and on a thin graduated im-
moveable plate, the profile only of which is shewn in the Figure

of p.50. Itis more fully exhibited in the above figure, in
which F, D, E, represent the same parts as in the former figure,
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Suppose now the screw to be of that fineness that, whilst it is
turned round, or whilst the screw-head and the index D make
one complete revolution, the vernier is “so far advanced on the
limb of the quadrant, that the mark 1 of the vernier is brought
into coincidence with 42 of the limb : then, in our scheme of illus-
tration, one revolution of the screw is equal to 12'.  If the cir-
cumference of the thin plate then (see Fig. p. 55.) be divided
into 60 equal parts, one of such equal parts must be equal to 12" :
and if, in order to make a coincidence between the lozenge of the
vernier and any division of the limb, it were necessary so to turn
the screw that the index D should be moved from D to d, and
15 graduations should be contained between Dd, then the space
moved through by the vernier on the limb would be equal: to
15 x 12", or 3.

Similar results will take place, if the instrument and vernier
be differently divided : thus, if each degree of the quadrant he
divided into 4 equal parts, and 14 of such parts be equal to 15 of
the vernier, the difference between the respective divisions being
1', one graduation of the brass plate would equal 3”, supposing,
now, that three revolutions of the screw move the vernier through
a space equal 1. In the annexed Figure, in which a degree is

divided into four equal parts, the lozenge or index of the vernier
occupies a position between 41° 15’ and 41° 30". The dividing
mark 2 of the vernier very nearly coincides with the mark of the
quadrant which denotes 41° 45'. If it exactly coincided, then
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the lozenge, or index, being advanced beyond the mark next to 41,
(the mark denoting 41° 15") by a space exactly double the dif-
ference of a division of the instrument and one of the vernier, the
altitude or angular distance denoted by the instrument would be

41° 15 + 2 x 1, or 41° 17,

but the angular distance is, obviously, of somewhat greater value.
Suppose, in order to carry the vernier so far back as to make its
division 2 coincide exactly with that division of the instrument,
which is just behind it (the division 41° 45"), that we must so much
turn the screw F (see Figure of p. 55,) that the index .D should be
advanced from o to d, or through a quarter of the circumference,
‘then this quarter, which is 15 x 3" or 45", is the value of the
space through which the vernier has been moved, or of the
distance between 2 of the vernier and 41° 45’ of the instrument :
it measures, therefore, the excess of the altitude, which the in-
strument ought to denote, above 41° 17’; in other words, the
altitude is now to be estimated equal to 41° 17" 45".

By this contrivance, then, without any inconvenient minuteness
of division of the limb of the instrument, or of inconvenient
length of vernier, we are enabled to read off angles to as great an
exactness as that of 3 seconds. In the Greenwich mural quadrants,
by a similar contrivance, the angles may be read off to one second.
That part of the vernier which we have been just describing, and
which enables us to measure minute differences, is called a
Micrometer. The two Greenwich mural quadrants, of 8 feet
radii, are, as we have said, furnished with such. But the mural
circle is furnished with a micrometer of a different construction.

Having now examined the methods of reading off the altitude
to which the index of the vernier, in a fixed position, points, we
will next consider by what means the vernier is brought to such
fixed position. The vernier is attached to the telescope, and the
telescope is moved, till the star (the altitude of which we are
seeking) is seen through it. But, as the field of view is not a
mere point, there is not one certain position of the telescope in
which only we can see the star. If the star should appear to be
nearly in the middle of the view, we may move the telescope, a
little upwards and a little downwards, and still see the star. Tt is
evident then, since the altitude we are seeking for is a certain and

H
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determinate quantity, that we require some rule for stopping and
tixing the telescope. We cannot say that the telescope is in its
Just position when the star appears in the centre of the field of
view, because the eye cannot judge of that circumstance with suf-
ficient precision. We must therefore place some fixed point in the
field of view, and in the focus of the eye-glass, which fixed point
18 to be the centre of the field of view, or to be considered as
such, and the telescope is to be judged to be in its proper position,
when the fixed point and the star appear to be coincident, or
when, as the technical phrase is, the point bisects the star.

The intersection of two fixed wires placed in the focus of the
object-glass of the telescope, will -furnish us with such a fixed
point; and one wire may be vertical, the other horizontal. de may

d

e

represent the former, fA the latter, and then ¢ would be the inter-
section, or their centre. These wires, as we have said, are fixed
in the principal focus of the object-glass, and then must be
viewed with the eye-glass: or, if they are attached to the tube
containing the eye-glasses, that tube must be moved so that the
wires shall be in the above principal focus: in either of these
cases the eye sees distinctly, at the same time, the wires and the
image of a star: and the observation is to be held as made when
the star is upon, or is bisected by, the point a.

We gain, at the least, this advantage by the above method, that
ull stars are observed according to it, and that any error attached
to it must equally affect all stars: in other words, that the error
must be a common one, and consequently all observations may
be immediately corrected should the quantity of that error be

.
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once detected. We will now consider by what means that error
may be detected and valued.

Let the subjoined Figure represent (in part) the Astronomical
Quadrant, placed in the plane of the meridian, and with its gra-

0

AC

duated face opposite the east, and suppose the telescope to be
directed to a star the altitude of which is 85°.

If A be the intersection, or centre of the cross wires (what
answers to @ in the Figure of p. 58,) and OA be the direction
of aray of light passing through O the object-glass and coming to
its focus at 4, then, the image of the star and the centre of the
wires being coincident, the observation (see p.58, l. 6, from
bottom) is properly made, and ‘the index of the vernier, being
made to coincide with 85° of the quadrant, will properly denote
the star’s altitude, and also, (the instrument being supposed to be
truly graduated) the vernier, in other positions of the telescope,
directed to other stars, will justly note their altitudes.

Suppose now from some accident, or, purposely, the system
of cross wires to be deranged, so that their centre, instead of
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being at A, is moved, through a little space, to C, so that 4 is be-
tween C and p W the plumb-line, the line passing through 4, C,
being supposed to be in the plane of the meridian. In this new
position of ‘the cross-wires (the telescope retaining its position)
the star is no longer bisected by their centre, but will be seen in
the field of view, a little to the south of that centre, or towards
the plumb-line. In order then to bring the star on the centre,
that end of the telescope in which 4, C, are, (the telescope being
moveable about a pivot or centre of motion situated near its
other end) must be pushed a little to.the south and towards the:
plumb-line, 23" for instance, in which case the index of the
vernier, moving with the telescope, will point to 85° 0’ 23”. We
have now then to enquire (putting aside the supposition of the
star’s altitude being exactly 85°) why the altitude, in this case, is
not justly indicated.

Suppose we are able to: turn the quadrant half round, or that
we possess some meaus or other of placing its graduated face
which, in the Figure of p. 59, 1s opposite to the east, opposite to

(1)

the west, and let the above Figure represent the quadrant in this
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latter position : in which, OA would be directed as db is, not, as
before, to the south of the zenith, but to the north. In order
then to bring the star into the field of view, the telescope must
be moved past the graduation of 90° to that of 95°. In this
latter position, the image of the star and the point A would
be coincident, but C being now the centre of the cross-wires, in
order to bring the star upon C, the end of the telescope which
contains the eye-glasses and cross-wires must be pushed towards
the plumb-line (as the Figure is constructed) or from the division
of 90°. It must be pushed also, since the distance AC is
supposed to remain invariable, just as much as it was in the
former position of the quadrant (the position of p. 59.) that
is, through 23”. The index of the vernier now then will point
to a graduation of .

95° 0’ 29",
or, which is the same thing, will indicate a zenith distance equal
to

570 23",
whereas, the altitude in the first position of the quadrant being
85° 0’ 28", the zenith distance will be

4 59'"37".

Half the sum of these two zenith distances is 5°, the true
zenith distance, and half their difference (46”) is the error caused
by the derangement of the cross-wires after they had been once
adjusted.

This error or derangement has a technical denomination : the
line between O and A, A being the centre of the cross-wires, or
the line between O and C, C being the centre of the cross-wires,
1s called the Line of Collimation, and the error, of which we have
treated, and shewn the method of detecting and valuing, is called
the Error of the Line of Collimation, or, more briefly, the Error
of Collimation*.

* This error may be corrected by moving and adjusting the cross-
wires, so that C (in the Figure we have used) may bereplaced in 4. But
it is plain we may leave the system of cross-wires untouched, and so alter
the index of the vernier, that it shall, the telescope being directed to the
star, note its true altitude.” On this account the error of collimation is
frequently called the Index Error.
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We have then, in all cases, in which we are able to turn
the instrument half way round in azimuth, or through 180°
of azimuth, this simple rule for finding the zenith distance of an
observed star : add the zenith distance, or the mean of several
zenith distances, taken with the face of the instrument to the east,
to the zenith distance, or the mean of several zenith distances,
taken with thie face of the instrument to the west; half this sum
1s the star’s zenith distance : and, half the difference of the above
observed zenith distances is the error of the line of collimation.

The rule is the same, if, instead of the zenith distances- of
stars, we seek to determine their altitudes. We subjoin an

instance or two, in which the instrument used, instead of a quad-
rant, 1s a circle.

Altitudes.
Gth Sept. Star Rigel, position E.*. ... 30° 21’ 36" .25
position W.....30 20 22.05
sum = 60 41 58.30
true altitude = 30 20 59.15
difference = 0 1 }4.20
error of collimation = 37.10

Again, 3 Sagittarii W. . . . 8° 56" 45".8
E....8 58 7.1

sum. ... 17 54 52.9

true altitude. . . . 8 57 26.45
difference. . . . RS

error of collimation. . . . 40.65.

If great accuracy be required, the above operations are re-

peated with several stars, and the mean of the whole taken for
the error of collimation : thus,

* Position L, position W, denote respectively the graduated side of
the circle turned towards the east and west. Rigel, Sirius, a, 6, v, &c.
Capellz, are the names of certain known stars,
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Error of Collimation.

Rigel. . . ... i e ek
OTIUULS 2o o g e e ane 5.5 ...40.05
3 Sagittani. .. .. SRS
Ry ke o o .42. 0
a Capelle. . ......... 39 .45
O S ke A
ALY N B g o il 30
[ e R Tt Nk « s gl 37 .87

8)310.95

Mean error of collimation......38.87

That process, then, of turning the quadrant, or the circle, half
way round in azimuth, which finds the altitude and zenith distance,
finds also the error of the line of collimation ;* but it is unim-
portant to know this latter, if, every time that an altitude is to be
determined, the above-mentioned process be resorted to. We
may, however, as it is plain, having once determined the quantity
of the error of the line of collimation, employ it as a correction
either additive or subtractive, to the zenith distances of stars deter-
mined from one position of the quadrant only, thatis, when its face
is constantly turned either towards the east, or towards the west.

Thus, suppose that by the mean of twenty observations made
at Greenwich, the quadrant facing the east,

the north zenith distance of 4 Draconis. .. .. = ¢ 2V 76
By the mean of 30 observations
the quadrant facing the west, the zenith distance. . = 2' 15”.48
o' 6".es
. error of collimation. . . ... =  8".14.

.

This is the error deduced from one star, <y Draconis, which
star 1s to the north of the zenith of the Greenwich Observatory.
When, therefore, the face of the quadrant is to the west, the above
correction (3”.14) must be added to the north zenith of stars, but
subtracted from the distances of those stars which are observed
to the south of the zenith*: for, since the instrument, its face

* When the quadrant faces the west, a few stars only, those which are
near the zenith, can be observed to the soutk of the zenith (see
pp. 64, 65.) -
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being towards the west, gives the north zenith distance of
vy Dracoms too little by 3”.14 (since instead of being 2’ 15".48 it
ought to be 2' 18".62) it must also give the north zenith distances
of all stars too small by the same quantity: and if a star were
to the north of the zenith by an angular distance equal to
3”.14, it would, by the instrument, seem to be on the zenith ; conse-
quently, a star on the zenith would by the index of the instrument
appear to be 3”.14 to the south of the zenith: and a star 1° to the
south of the zenith would appear to be, by the instrument,
1° 3”.14 to the south. The contrary will happen if the obser-
vations are made with the face of the instrument to the east;
for, then, the error of the line of collimation must be subtracted
from all north zenith distances, and added to south zenith dis-
tances ; for instance, if we had the following observations:

Zenith distance of a Andromeda 23° 24’ 56”.36 S.
v Pegasi.... 37 1932.46 S.
aCeti...... 48 6 55.56, S.

then the zenith distances, corrected for the error of the line of
collimation, (and for that only) would be respectively,

23° 24/ 59".5
37 19 35.6,
48 6 58.7.

It appears then, by what has preceded, that, in all quadrants
that can be turned round in azimuth, the altitudes and zenith
distances of stars can correctly be found as far as the line of colli-

mation 1s concerned These, however, must generally. be found by
applying to their quantities, determined by the quadrant, the error
of the line of collimation as a correction of such quantities.
They cannot be found, except for stars situated near the zenith,
by taking the half sum of zenith distances observed respectively,
with the face of the quadrant towards the east and west. The
reason 1s obvious from the inspection of the diagrams (see pp. 59,
60.) If AVB (see the following Figure,) should be in the plane
of the meridian, and A should be to the south of VB, the zenith
distances of those stars only that are to the north of the zenith
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could be determined by such aninstrument. If the quadrant were
reversed, and the graduated rim now opposite the west were made

to face the east, the zenith distances of those stars only, that are
to the south of the zenith, could be observed. In such a case,
the reversion of the instrument would be useless, since, not
being able to observe the same star in the two positions of
the quadrant, we should be unable to deduce the error of the
line of collimation. - To remedy this inconvenience, or rather to
enable us to avail ourselves of the azimuth motion of the instru-
ment, the arc of the instrument is made to exceed a quadrant,
and the graduation, as it is represented in Fig. of p. 59, is ex-
tended beyond 90 to 95° or 96°. By this contrivance, the zenith
distance of the same star, which is not distant more than 5° or
6° from the zenith, may be observed in the two opposite positions
of the instrument, and the error of the line of collimation thence
deduced. The star « Draconis, for instance, which, when it
passes the meridian at London, is nearly vertical, would serve
the above purpose in every part of England.

But in circular instruments, or declination circles, and en-
dowed with an azimuth motion, any star, either near to, or distant
from the zenith, will serve to determine the error of the line of
collimation, and with such instruments the method given in
pp- 61, 62, &c. may always be practised ; that is, we may add the
mean of zenith distances observed when the instrument faces the
east, to the mean of zenith distances observed in the instrument’s
reversed position, and then (the error of the line of collimation

5 :
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being, in fact, compensated for) half the sum will be the zenith
distance required.

Thus, suppose the telescope T'¢ to be directed to a star in the
south (so directed, as it must be always understood, that the image

of the star and the middle of the cross-wires are seen, through the
eye-tube, in distinct coincidence) the face of the instrument being
towards the east: then, if the instrument be turned through 180°
of azimuth, so that the face, before opposite to the east, be now
opposite to the west, T"¢ will be the position of the telescope.
In order, then, that it may be again directed to the star, and that
its position may be parallel to its former one T'¢, it must be turned
through an angle equal to twice its zenith distance : and, con-
sequently, half the difference of the number of degrees indicated
by the vernier in its two positions (which difference is no other
than the number of degrees intercepted between the two positions
of the telescope and vernier) is the star’s zenith distance.

It appears then, from what has preceded, that, in all quad-
rants and circles, used for taking altitudes and endowed with
azimuth motions, the altitudes so taken can be freed from the
error of collimation. But they are instruments of a limited size
only * (we are speaking of the practical convenience of the thing)
that admit of an azimuth motion ; instruments, for instance, of two

* The radii of astronomical quadrants and circles that have an
azimuth motion, and are portable, rarely exceed three feet: those of
portable zenith sectors may be somewhat larger. The radius of the
stationary circle of the Dublin Observatory, which has an azimuth motion,
is four feet, and the radius of the quadrant at Blenheim, made by
Ramsden, and with an azimuth motion, is six feet.
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or three feetradii. It would be, almost, an impracticable operation
to move, from day to day, such quadrants as the mural quadrants
of Greenwich are, of 8 feet radii, and which are very ponderous.
Such quadrants when once fixed must so remain, and, consequently,
such quadrants are inadequate, from their own properties, to
determine the errors of collimation of their telescopes. It is,
however, essential to determine those errors.. Some subsidiary
instrument then must be called in for that purpose. Those circles
and quadrants that possess an azimuth motion will not answer
that purpose, since, by reason of their small dimensions, they
cannot, in the determination of angles, be relied on beyond a
certain degree. The error which we seek to investigate in the
large instrument (an eight feet mural quadrant for instance) may be
withia the limits of inexactness (if we may so express ourselves)
of the smaller. For instance, a quadrant of two feet radius is
not to be relied on beyond 8 or 10 seconds: but the sought for
error of the line of collimation, of the mural quadrant of 8 feet
radius, may not exceed 4 seconds; a quantity of moment in this
latter instrument, by which it is purposed to determine angles to
within 1 or 2 seconds. It is in vain then we seek for an angle of
4 seconds in an instrument on which we cannot rely to 8 seconds :
and, indeed, the error of the line of collimation of a mural
quadrant can only be determined by an instrument, of, at least,
equal accuracy in the measuring of observed angles, and which,
therefore, probably requires, in its essential parts, equal dimen-
sions. i

We have already, in explaining the principle of determining
the line of collimation, represented the parts or fragments of the
Astronomical Quadrant. Ifwe still farther contract the dimensions
of the Iig. of p. 60. and suppose the extremities of the graduated arc
to be at n and 7, the graduation on each side of the lowest point
not exceeding 8 or 10 degrees, we shall have, what is, in fact and
principle, a Zenith Sector, an instrument for measuring small
angular distances from the zenith, and, (which is the essential
point,) capable of being reversed ; which reversion in small in-
struments is effected by means of an azimuthal movement, and,
in large instruments, by removing the secfor from an eastern to
a western wall.

The reason is obvious why these sectors can be moved whilst
the quadrants of equal radius cannot. The graduated arc, instead
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of containing 90 degrees, contains not more than 10 or 12: some-
times much fewer degrees. The sector, therefore, can be made
much less ponderous and unwieldy than the quadrant. The fixed
mural quadrants at Greenwich are 8 feet, but the zenith sector’s
radius exceeds 12 feet.

. A sector then of these latter dimensions must, to the extent
of what it is able to perform, be more accurate than the mural
quadrants. It is capable, for instance, of determining  the
zenith distance of «y Draconis, more exactly, than the mural
quadrant. But it is capable also of determining the zenith
distance. of that star {ruly by taking the half sum of its zenith
distances observed on the eastern and western walls.- The dif-
ference of that half sum and of the zenith distance of the star, in
one of the positions of the sector, is the error of the line of
collimation of the sector: the difference of that same half sum,
and of the zenith distance of oy Draconis observed with the mural
quadrant, is the error of the line of collimation of the mural
quadrant. For instance, by observations of ¢y Draconis made at
Greenwich in 1812 with the zenith sector.

~

Sector on the eastern wall, mean zenith distance = 2’ 14”.61
Sector on the western wall, mean zenith distance = 2 22.63

’ 2)4 87.24
Mean of eastern and western. ... cven.. ..., 2 18.62
Error of line of collimation of the sector........ 0 4.01

But by observations made the same year, on the same star,
with thg brass quadrant,

the mean zenith distance = 2/ 14”.52
but (see 5th line above) mean of eastern and western= 2 18.62

error of line of collimation of the quadrant — 4.1

which error (so it happens in this instance) is very nearly the
same as the former (see 7th line above,) whereas it might have
been different by 2, 3, &c. or more seconds.

By these means, then, the‘error of collimation of a mural
quadrant may be corrected, and, if we use such a quadrant,
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we must also be possessed of a zenith sector*. But the uses of
this latter instrument are not merely subsidiary and subordinate ones.
Its peculiar utility consists in finding, to a great degree of accu-
racy (we refer to a sector of a large radius, such as Bradley’s or
the Greenwich one is) the zenith distances of stars situated near
the zenith : such, for instance, are, with respect to Greenwich,
B and « Draconis, Capella, a Cygni, a Persei, a Cassiopee,
n Urse Majoris. What are the inferences to be drawn from
zenith distances, so circumstanced and so minutely observed,
will be hereafter explained.

Having now explained the constructions of the Astronomical
Quadrant and of the zenith sector, and shewn the method of

\ freeing them from one error, namely, that of collimation, we
ought not to dismiss the subject without explaining, in its prin-
ciple at least, the method of placing these instruments in the
plane of the meridian. We will confine our attention, in the
first instance, to a quadrant endowed with an azimuth motion.

A star (see pp.4, 5,) rising from the horizon, attains its
greatest height in the plane of the meridian, and, quitting the
meridian, declines, by degrees like those by which it rose,
towards the horizon. At equal altitudes to the east and west of
the meridian, it is equally distant from its plane.” The star so
circumstanced, and referred to the plane of the horizon by vertical
circles passing throughit, is equally distant from the south point
of the horizon, or equally distant from the north. In other words,
it (see p.5.) has equal azimuths. In the same positions "also,
namely, those of the star’s equal altitudes, the star, with regard
to the time, is equally distant from the meridian. Draw two de-
clination circles (see p. 8,) one passing through the eastern, the
other through the western position of the star; then, each circle
makes an equal angle with the great circle of the meridian.
But such angle, in the terms of sidereal time, expresses how
much time will elapse between the star’s eastern and meridional

W i

* We are speaking hére, as itis plain, of fixed mural quadrants and
circles. A quadrant or circle, capable of being reversed, is able to find its
own error of collimation. Such is, and perhaps the first of its kind with

regard to size and accuracy, the Dublin Circle of § feet diameter made by
Ramsden and Berge. 3
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altitudes, and also between its meridional and western. Two
methods then present themselves, by which the meridian may be
found. Half the difference of degrees, &c. on the azimuth circle
of the instrument, between any two equal altitudes of a star, is the
angular distance of the south or north point, from the eastern or
western azimuth of the star: or, half the difference of times
elapsed between any two equal altitudes of a star, is the time
that the star 'is on the meridian. In each case, we are able to
direct the telescope (to the line of the collimation of which the
face of the instrument is parallel) towards the meridian: and as,
in the course of a day, we may take several pairs of equal alti-
tudes, we are, by taking the mean of the azimuths, or the mean
of the times, able to determine the direction of the plane of the
meridian to a considerable accuracy *.

By either of the above methods, or by the aid of both, Astro—
nomical quadrants and circles, such as are furmshed with
azimuth circles, may be placed, nearly, in the plane of the meridian.
By means of such instruments, and by other helps, mural quad-
rants and mural circles may also be placed in the plane of the
meridian. The operation is one of some nicety and is most accu-
rately performed by the aid of the Transit Instrument, previously
adjusted to move in the plane of the meridian. We will now, then,
proceed to explain the Transit Telescope, or Transit Instrument +.

Let AD represent a telescope fixed, as it is represented in the
figure, to an horizontal axis formed of two cones. The two small
ends‘of these cones are ground into two perfectly equal cylinders:
which cylindrical ends are called Pivots. These pivots rest on
two angular bearings, in form like the upper part of a Y, and de-
nominated Y’s. The Y’s are placed in two dove-tailed brass

* We may, for the above purposes, use the Sun and observe his equal
altitudes and azimuths. Aswe cannot pretend to bisect his centre, by a
wire of the telescope, we must make our times of observation, those in
which the limbs of the Sun are in contact with the wires of the instru-
ment. Since the Sun does not, like a star, describe a parallel of declina-
tion, there must be some small correction made, for his changes of decli-
nation, during the intervals of observmg either equal pairs of azimuths or

equal pairs of altitudes. ;

+ Instrument des Passages.
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grooves fastened in two stone pillars E and W, so erected as to
be perfectly steady. One of the grooves is horizontal, the other

vertical, so that, by means of screws, one end of the axis may be
pushed a little forwards or backwards, and the other end may be
either slightly depressed or elevated. Which two small* move-
ments are necessary, as it will be soon explained, for two adjust-
ments of the telescope. ;

Let E be called the eastern pillar, /W the western. On the
eastern end of the axis is fixed (so that it revolves with the axis)
an index n, the upper part of which, when the telescope revolves,
nearly slides along the graduated face of a circle, attached, as it
is shewn in the figure, to the eastern pillar. The use of this part
of the apparatus is to adjust the telescope to the zenith or polar
distance (for the one is as easily done as the other) of a star the

* The movements are of small extent since they are only subservient
minute adjustments.
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transit of which is to be observed. Thus, suppose the index of
n to be at o (in the upper part of the circle) when the telescope is
horizontal : then, by elevating the telescope, the index of n is
moved downwards : suppose the position to be that represented
in the figure, then the number of degrees between o and what
the index of m marks, is the altitude of the telescope: or, we
may so graduate the circle that the index shall mark the telescope’s
zenith distance: or, if we make the o, the beginning of the
graduation, to belong to that position of the telescope in which it
is directed to the pole, the number of degrees, &c. between o
and any other position of the index, will mark either the telescope’s
polar distance, or, if we please, may be made to mark the
telescope’s declination ; the telescope, in all these cases, being
supposed to move in the plane of the meridian.

There are several other parts and contrivances, belonging to
the instrument, not shewn in the Figure : for instance, one of the
cones is hollowed, and, opposite the orifice, there is placed, in the
pillar, a lamp which, throwing its light on a plane speculum,
placed in the axis of the telescope and inclined at an angle of 45°,
illuminates the cross-wires. It is usual, also, in large transits to
have counterpoises by which the pressure of the pivots of the
axis on the Y’s is relieved. We will now explain the three prin-
cipal adjustments of the transit.

1**, To make the axis, on which the telescope moves, hori-
zontal. :

2%, To make the line of collimation move in a great vertical
circle, or, which 1s the same thing, to make it perpendicular to
the horizontal axis.

3%, To make it move in that vertical circle which is the me-
ridian.
 The first adjustment is effected by means of a level ; and in
the figure of p. 71, it is intended. to represent the level (L) as
hanging, by means of its upright arms, (bent, however, in their
upper extremities) on the two pivots of the axis.” The principle,
however, and mode of rendering any axis horizontal, by means"
of a level, may be best explained by the subjoined Figure.

In this Figure, the spirit-level (including in that term, the
brass tube that partly envelopes it, the horizontal bar to which it
is affixed, and the two vertical arms by which it is hung on any
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cylinder or rod) is represented as hanging on a straight cylinder
ab, the end towards a lying on a crotchet which 1s capable of

nk f e
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being raised or lowered by a screw B. The end A of the tube
AD, which contains the level, is also capable of being lowered
or raised by means of a screw at 4, as it is shewn in the Figure.
If ab were horizontal, and the tube of the spirit-level were
parallel to ab, then the bubble would occupy the middle, or,
the two extremities of the bubble would be equidistant from the
centre, and would be, for instance, at fand e. The same thing
would happen if the level were reversed, that is, if it were taken
off the rod, turned round, and again hung on, so that D in the
second position, should occupy the place that 4 did in the first, or
should be to the right hand. But, if a b should not be horizontal,
the above circumstances cannot take place. Suppose the end a
to be lower than the end b, then if the level should not be
parallel to a b, the bubble might still stand in the middle, by the
end at A being, by a certain quantity, higher than the end at B.
But on reversing the level, the bubble cannot occupy its middle,
since then the lower part of the rod ab and the lower part of the
Ievel would both be situated to the right hand. The bubble,
however, may not stand in the middle from two causes, the want
of horizontality in ab, and the want of parallelism to it in the
tube contained between 4D.
If the level were parallel to ab: and the extremity of the
“bubble, instead of being at e, should be at A, on reversing the
level, the other extremity of the bubble (which by the reversion
would be towards @) would be at k, £k being equal to ek. But
suppose this is found not to be the case, and that the extremity
of the bubble, on reversing the level, is at n, then the circum-
stance of the bubble not standing at the two points e and f,
K
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cannot arise solely from the end a being higher than 0, but the
level cannot be parallel to a b, and, in the case we have put, the
end at A must be lower than the end at D : when the level then is
m the second or the reversed position, so elevate the end at 4, by
means of the screw 4, that the extremity of the bubble shall
descend from » and occupy a place intermediate to » and £,
and then the level is made parallel to ab ; this is the first adjust-
ment. Next, by means of the screw B, so depress the end a %,
that the extremities of the bubble shall be, (as they ought to be,
ef being the length of the bubble) at e and f'; then is ab
adjusted or made horizontal : this second adjustment ‘complétes
the operation..

In the preceding reasonings, ab has been consxdered (the
whole of it,) as cylindrical. But this is not necessary : it 1s suf-
ficient if its extremities at a and b (the pivots), on which the level
is hung, be equal cylinders, the axes of which lie in the same
straight line. The intermediate parts of the axis of the transit
between the pivots, may be of any form : they may be formed, as
they generally are, of two cones. The preceding process, then,
will render the axis of the fransit horizontal ; the level, whether in
its primary or in its reversed position, being supposed to be hung
on the equally cylindrical pivots.

The axis being now horizontal, the next operation is to make
the line of collimation describe a great vertical circle, or, which is
now the same thing, to make the lme of collimation perpendicular
to the axis of the transit.

The telescope AD (p. 71.) 1s furnished, like the telescope of
the quadrant, with a system of cross-wires placed in the principal
focus of the object-glass. Suppose the wires so placed that the
line of collimation (see p. 61,) is perpendicular to the axis of

_the transit.  If then a small and well-defined object be bisected
by the centre of the cross-wires, it will still be bisected when the
transit is lifted off its angular bearings, reversed and directed to
the object; that is, illustrating our meaning by the Figure of

#* The end of the cylinder at a rests upon an angular bearing (it might
have been a '), placed in a groove, and capable of being moved vertically
by the screw at B. = This part is, in fact, the same as that which is men-
tioned in the brief description of page 71.
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p. 71, if the end of the axis carrying the index n which is
placed on the eastern Y should be placed on the western. Let
now the wires be deranged, so that their intersection is moved,
not, as in the former case, in the plane of the meridian*, but in a
direction perpendicular to that plane, and suppose it moved a little
towards the east. ~ In this case, the ob_]ect before bisected 1s no
longer so, but will be seen in the field of view a little to-the west
of the present centre of the cross-wires. Reverse the telescope,
then the centre will be towards the west and the original object
will be seen a little to the east of the centre : as much towards
the east as it was before towards the west. If therefore there
should be two objects or marks (on the horizon, for Instance,)
bisected by the centre of the wires in the two positions of the
transit, the correction or adjustment of the line of collimation
would consist in moving the centre of the cross-wires half way
towards that object which is not on the centre.

But the moving the centre of the cross-wires, half way towards
an object, is a matter of guess and not of certamty.  In order to
ascertain whether, in moving the centre, we have adjusted it
rightly, we may avail ourselves of that angular bearing, or Y,
which, (see p. 71,) by means of an horizontal groove and screw,
we can move, together with the pivot of the axis, in azimuth. So
move these then, that the object, to which we have already made
the centre to approach half way, may be exactly bisected by that
centre. Reverse the transit, and the object and centre are either
coincident, or very nearly so. If the latter be the case, again, by
their proper motion, move the centre of the wires half way towards

* We have supposed, in the quadrant, the derangefnent of the centre of
the cross-wires to be made in the plane of a vertical circle ; or, in the plane
of the meridian, if meridional altitudes are to be taken: for such derange-
ment is the essential one : a small deviation or derangement to the east or
west would »very slightly affect the determination of the altitude. But in
the transit instrument the reverse is the case : the essential derangement
is that which moves the centre of the cross-wires to the east or west of the
meridian, and which makes the star to appear to pass the meridian too late
or too soon. A small derangement of the cross-wires in the direction of
the meridian, is of no consequence, since such derangement will neither
dccelerate nor retard the star’s transit.
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the object and move it the other half way. by the screw that acts
on the axis*. Reverse the instrument, and again, if it be necessary,
repeat the above operations.

By these means, after a few trials, we are sure of making the
line of collimation, or axis of vision, perpendicular to the axis of
the transit; and, when that is effected, the cross-wires are no
longer to be meddled with, although we must continue to use the
above horizontal movement of the axis (see pp. 71, &c.) for the
purpose of placing the line of collimation in the plane of the
meridian. That line now moves in a vertical eircle, and produced
passes through the zenith: it is farther necessary to make it pass
through the pole.

The transit instrument, (that which in the preceding pages we
have spoken of) is supported between two fixed pillars. It
must be supposed to be nearly in the meridian (the direction
of the meridian being known, to a tolerable degree of accuracy,
by some of the methods described in pp. 69, &c.) and to need
only some slight adjustments to place it there exactly. It would be
easy to effect this were the pole star exactly in the pole; for, then,
it would be only requisite to bisect that star by the middle vertical
cross-wire. But the pole star being, in fact, a circumpolar one,
we must compute, hy means of existing Tables and observations,
(for the question is not now concerning the independent derivation
of all Astronomical Elements from first principles) the time of its
transit, and, at that computed time, bisect the star by the middle
vertical wire. By these methods we may place the transit very
nearly in the plane of the meridian.

We will now shew how to place it there more exactly by means
either of the polar, or of any other circumpolar star.

The axis being horizontal, the optical axis perpendicular to it
passes through the zenith: let SPH be the true meridian and

# It is plain that the horizontal or azimuthal motion given to the ¥ and
pivot, has nothing to do in the adjustment of the line of collimation. The
adjustment is solely effected by the screw (or other Contm’vance) that
gives motion to the cross-wires. The motion we can give to the axis only
enables us to ascertain whether the last adjustment we have made with
the cross-wires be sufficiently exact, or whether a farther one be necessary.
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Zsm the vertical circle described by the optical axis or line of

K s

collimation : then Hm, which is the measure of the angle at 2,
is the deviation of the Transit from the meridian.

Let ss's"c represent the circle described by a circumpolar
star, which is seen, through the transit telescope, at o its inferior
passage, and at s its superior. Now, when the Transit is not in
the mendlan, the time from ¢ to s cannot equal the time from s
through s’ and s to & : for, P being the pole, the former time is
p- 9,) proportional to the angle ¢ Ps, or

180° — £ sPs — s aPs,
the latter to /
180° + 2 sPs + < oPs".

Hence, if the interval between the inferior and supenor
passage should be less than the interval between the superior and
inferior, the plane in which the Transit moves from the zenith to
the north of the horizon (P being the north pole) is to the east-
ward of the true meridian.

But, in order to estimate the quantity of deviation from the
observed difference of intervals between the passages, we must
compute the angles

sPs or sPZ, and o PII,

now,
. A sin. s ;
sin. sPZ = sin. s2P x — I
sin, Ps
A%y - 1 sin. Zo
sin. 0 PH =sin. ¢ PZ = sin. sZP x ———. X
sin. P o

Let £ sZP (measured by Hm) = %,
iR suten Bimd= .7}

the latitude of the place (= HP) = L,
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then since 2, or the deviation from the meridian, is, by the con-
ditions, very small, we have, nearly,

R sin. 2 = &,
Zs = ZP~Ps =90° — (L+m),
RBo =ZP+Ps =90° — (L—m),
consequently, s PZ (which is, nearly, =its sine)

cos. (L + )

= : = Z(cos. L cot. w—sin. L),
. sin. 7
and cPH=Z. M: Z(cos. L cot. w +sin. L).

sin. 7
Hence, the time from ¢ to s =180°—2 & cos. L cot. ,
and from s too=180°+42% cos. L cot. .
Let the former time = 12" — A,
the latter = 12" 4+ A ;
then, since 180° (see pp. 9, 10.) is the angular measure, or ex-
ponent of 12 hours of sidereal time,

12" — A =12" — 22 .cos. L. cot. ,
12" + A = 12" + 22 .cos. L .cot. m,
whence
— A 4
" 2cos. L.cot. w’
or, (see T'rig. p. 18.)

A \
= —.sec. L tan. a,
- 2 .
and, the logarithmic formula will be (see Trig. p. 19.)

A g
log. & = log. 2 + log. sec. L + log. tan. w — 20,

which is the substance of the Rule that is given by Wollaston at
p. 74, of the Appendix to the Fasciculus Astronomicus.

As an example to this. formula, let the observed star be
the pole star, with a north polar distance equal to 1° 39’ 25".05,
and, the place of observation, Cambridge, assuming its latitude
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to be 52° 12’ 86" : and let A, the difference of the intervals of
the transits, equal 7™ 22° (= 442°) : we have then

log. 221 . . . .. oo o T2 2.3443028
log. sec. 52°12' 36" .. = 10.2127030
log. tan. 1° 39’ 25".05 = 8.4513064

21.0084017
Hence, log. & = 1.0084017,
and & = 10°.195.

The result is here expressed in fime, as it must needs be from
the expression of p. 78, 1. 18, if A be so expressed. It may,
however, (should it be thought necessary) be expressed in mea-
sures of space or of angular distance : for, since 24 hours of
sidereal time is held to be equivalent to be-360°, 1" will equal
15°%, 1™ will equal 15/, and 1* will equal 15" : and, consequently,

b .1
10°.195 must equal 101.95" + 3 (101.95"),

or 2 82".925, which will be the value of the deviation of the
line of collimation from the plane of the meridian.

Nothing, however, is gained (if we look, in the present case,
to the practical convenience of the thing) by this conversion of a
measure in time into an angular measure : for the approach of the
plane, in which the line of collimation is, to the plane of the
meridian is effected (see p.71.) by means of a screw: suppose,
for the sake of illustration, the head of this screw to be graduated
like that in the figure of p. 55. Let the time of the transit of an
equatoreal star over the middle vertical wire be noted on a par-
ticular day. Alter the inclination of the plane, in which the line
of collimation moves, . to the plane of the meridian, by turning
the screw once round, and observe, the next day, the time-of
the star’s transit: suppose the difference of the times of transit, on
the two successive days, to amount to two seconds, then will one
revolution of the adjusting screw be equal to two seconds, half a
revolution to one second, one eighth of a revolution to one quarter
of a second, and so on: so that, having thus once obtained the
value of the motion of the adjusting screw we may immediately
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apply it to the result of 2, expressed in time, (see p. 79.),
and correct, accordingly, the Transit’s deviation.

It appears then, from the preceding computation, that a
deviation of about 10 seconds of time, in the tramsit telescope
from the plane of the meridian causes the time, between the
inferior and superior transit of the pole star, to differ, from the
time between the superior and inferior transit, by about 7 minutes.
The difference, it is probable, will not be the same in another
circumpolar star. Let us examine what it will be in Capella, the
north polar distance of which in January 1, 1819, was 44° 19’ 53",
and which, consequently, passes the meridians of Greenwich
and Cambridge to the south of their zeniths. In this case (esti-
mating separately the angles sPZ, o PH ), we have.

cos. (L4-m)
sin.

L = 52° 12’ 36"

7T =44 19 53 .... log. co-sec. ==10.1556425

sP2=-2.

— Z.cos.(L+ ) co-sec. m,

96 32 29.... log. cos... = 9.0566035
A= 10.195 . . . . log... ... = 1.0084017

20.2206477
<. log. sPZ = .2206477, :
and sPZ = 17.662:
for the inferior passage of Capella,
o PH = 14" 452.

It appears then from the above results that although the plane,
in which the line of collimation of the transit telescope moves,
deviates more than 10 seconds from the plane of the meridian, yet
the time of passing the middle vertical wire, at the superior
‘passage of Capella, differs but very little (1°.662) from the time
of passing the meridian; and the reason is obvious : Capella in
its upper passage, passes near the zenith, and the line of colli-
mation, by meaus of previous adjustments, describes a great
vertical circle, and, consequently, passes through the zenith.
But the case is different with the inferior passage ; at that, the
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time of passing the middle vertical wire differs from the time of
passing the meridian by 14*.452.

If we wish to determine the difference hetween the intervals
of the successive transits, we have

the time from o to s = 12" — 14°.452 + 1°.662,
from s to o= 12" 4 14°.452 — 1°.662,
and, consequently, the difference of times equals
285904 — 35.324, or 25°.58.

But with the pole star the difference arising from the same
deviation of the transit telescope (10°.195) amounted to 442°.
This latter star then, if all other things were equal, is much
better adapted than Capella, or than any other circumpolar star
(provided its north polar distance exceeds that of the pole star)
to adjust, by the preceding method, the transit telescope to the
plane of the meridian.

But. there are circumstances attending the pole star that
detract from this superiority. The slowness of its motion is
such that it is difficult to note the exact time of its bisection by
the middle vertical wire of the telescope. 'There must always
be some uncertainty on this head : more or less, according to the
magnifying power of the telescope and the fineness of the wires
that are placed in the common focus of the object and eye-
glasses. In small Transits the star is hid for some seconds
behind the wire. In the late transit instrument* of Greenwich,
the uncertainty of the time was esteemed at about 2 seconds : in

* The transit iristru{nent used by Bradley and Maskelyne was made
in 1750 by Bird, was eight feet in length, had an aperture limited to an
inch and half, and magnified 50 times. After Dollond’s discovery of the
different relations which rays of light bear to different kinds of glass, but
possessing the same mean power of refraction, an ackromatic object-glass,
of 22 inches diameter, was substituted instead of the original one, the
eye-glasses were changed, and the magnifying power of the telescope
increased to eighty times. The present transit telescope put up July 16,
1816, was made by Troughton, is ten feet in length, has an object-glass
of five inches diameter, and will magnify distinctly with a power of 300.

L
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the present transit instrument, it is reduced to about 1 second #,
But this uncertainty will, it is plain, be reduced within narrower
limits, by observing with stars that have greater north polar
distances. The time which an equatoreal star takes in passing
over a given interval, is to the time which Polaris takes in passing
over the same interval, nearly, as 183 is to 6000, or as 1 is to 33.
And in such proportion will the uncertainty, respecting the precise
time of a star’s transit, be reduced. ,

But the above circumstance, the slowness of the motion of the
pole star, only renders that star less convenient than it otherwise
would be, for adjusting the plane in which the line of collimation
moves to the plane of the meridian. It is still, on the whole,
the most convenient star to be made use of.

On principles, like the preceding, is founded a method for
bringing the Transit into the plane of the meridian by means of
the pole star, and of another star which passes the meridian near
the zenith of the place of observation. Capella, for instance, as
we have seen, is, in our latitudes, under such predicaments. Now
m its superior passage, such a star, should the Trausit deviate,
only slightly, from the meridian, would pass the meridian very
nearly (see p. 80,) at the time of its passing the middle vertical
wire of the telescope. Assume it to pass exactly, and then (that
is, when the star is on the middle wire) make the clock denote
the right ascension of Capella, known from Catalogues and
Astronomical Tables : or, which is the same thing in practice,
note how much the clock differs from the registered right as-
cension. Next observe the clock when the pole’ star is on the
vertical wire. The time shewn by the clock cannot be the right
ascension of the pole star, or the interval of time between
Capella and the pole star being on the vertical wire, cannot be
the right ascension of the latter star, or the difference of ‘the
catalogued right ascensions of the two stars, because the transit
instrument is not in the plane of the meridian. Compute

s

* These assertions are not to be taken absolutely and according to the
letter, The estirnation of the time which a star kangs on the wire, or
takes in passing the wire, will vary with circumstances ; the state of the
air, the time of day, the brightness and magnitude of the star, &c.
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according to the difference of the right ascensions of the pole
star as shewn by the clock, and as expressed in catalogues, the
deviation of the transit instrument (see pp. 77, &c.) and adjust it
accordingly. The instrument so adjusted will be very nearly,
but not exactly, in the plane of the meridian.

It will be not exactly adjusted, because Capella, although
very nearly on the meridian, when on the vertical wire, was not
there exactly. If, as in ‘the Figure of p. 77, the telescope
directed towards the pole, moves in a plane to the east of the
meridian, then Capella, in its superior passage, will be on the
vertical wire of the telescope, after it has passed the meridian.
Supposé the error of time, as computed in p- 80, to be 1°.66,
and the right ascension of Capella to be 5" 3™ 11°: then the
clock, when Capella is on the middle wire, ought not to denote
5" 8™ 11%, but 5" 3™ 12°.66. The clock, therefore, by the
rule (see p. 82,) is made too slow: suppose then the clock,
Polaris being on'the. vertical wire of -the Transit*, to denote
50™ 0%, the catalogued right-ascension being 56™ 18°. 6™ 18*
would, by the rule (see p. 82,) be the error of time from
which the deviation of the transit is to be computed, whereas
6™ 18° — 1°.66, or 6™ 16°.44 ought to be the error, which, so
taken, would cause a slight difference, and a very slight one,
in the resulting quantity of the Transit’s deviation. This slight
difference must be got rid of by a renewed process of computa-.
tion. and adjustment.

The line of collimation being now supposed, by means. of the
previous adjustments, to describe a great circle passing both
through the pole of the Heavens, and the zenith of the observer,
the transit instrument is'in a fit state to note the passages of
stars cross: the meridian. ~ A star passes the meridian at the
instant it is coincident with a the centre of the cross wires:
but if de were truly vertical, a:star on any point of de would be
on the meridian. It is desirable then to make d e vertical, since
then we should have the power of observing the star’s transit on
any part of de.  This may be thus effected. Direct the transit

* Transit, transit instrument, transit telescope, are used in these pages
to denote the same thing.
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telescope to some well-defined small object, so that it is bisected

d

e

by some point of de. Move the telescope round its horizontal axis
and observe whether the same object is bisected by every part of
de, or, in other words, whether it 7uns along the wire de. If 1t
does, the wire is vertical, or the middle wire is also a meridional
wire. If it happen otherwise, the wire must be adjusted till the
above test of its verticality be obtained.

When the transit instruments are large, the various adjust-
ments, that have been described, are not made without trouble
and difficulty. But the results now exacted of large transits are
of such nicety that we cannot rely on observations except we are
assured that, at the times of making them, the instruments were
properly adjusted. The transit instrument, then, requires a daily
and continued examination. But, in order to avoid the repe-
tition of troublesome verifications, two marks are set up, one to
the north, the other to the south, and their places determined by
means of the middle and meridional wire. The marks used at
Greenwich are vertical stripes of white paint on a black ground,
on buildings about two miles distant from the Observatory.
They are first placed by means of the instrument adjusted to the
meridian, and then are subsequently used to bring the instru-
ment into the meridian, should it become déranged.

But, besides the middle or meridional wire, it is usual to place
on each side of it and at equal distances from it, parallel side
wires. Their use is to check the observation at the middle wire,
and to supply its place, should it become defective by inter-
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vening clouds or other accidents. The old Transit at Greenwich
(see p.81,) had four side wires, and, therefore, in all, five
wires. 'The present Transit has 7. There are five wires repre-
sented in the subjoined Figure, and numbered 1, 2, 3, 4, 5. If

o
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1 and 5 are equidistant from 3 the middle wire, half the sum of
the times at 1 and 5 will be the time at 3: and adding together
the times at 1, 3 and 5, one third of their sum will the mean time
of transit cross the middle wire. The like will take place with
the wires 2, 4, if these be at equal distances from 3. And if we
add together the five times of “the star’s passage cross the
wires 1, 2, 3, 4, 5, and take one-fifth of the sum, the result will
be the mean time of the star’s passage over the meridional wire.

Let ¢ be the time at the middle wire; ¢~ 20°, ¢—40°, the
respective times at the wires 2 and 1, ¢+420°% ¢+440°, at the
wires 4 and 5 : then the sum is 5¢ and one-fifth is ¢, the time at
the middle wire: and if the cases in practice were like this,
nothing would be gained by the side wires. But the fact is that
we are not able to note absolutely the times at the several wires.
It is probable no beat.of the pendulum will happen exactly
when the star is on a wire. . The beat of the pendulum may
happen just before the star reaches a wire, and the next beat
after the star has quitted the wire. The observer then is obliged,
n default of other means, to estimate, according to the best of
his judgment, the fraction of a second at which the star was on
the wire: which estimation must needs be somewhat uncertain
and erroneous. A tenth of a second may be put down too
much at one wire, and too little at another: but it is probable
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that the errors will, in degree at least, compensate one another,
and that the mean result will be entitled to more confidence
than a single observation at the middle wire.

Thus by an observation made in 1816 on a Ceti, the observer
saw the star a little to the left of wire 1* at 2" 51™ .12*; at the
next beat, that is, at the 13 seconds, it was to the right of the
wire, and judging the star’s distances, to the left and right at the
times of the two beats, to be as 7 to 3, he put down the time at
the wire 1 at

gt 51™ 1287,
The star took more than 18 seconds in passing to the second
wire. At the beat of the thirty-first second, the star was to the-
left of the wire 2, at the thirty-second, to the right, and, the
distances being apportioned as before, the time at the second:
wire was put down at
2" 51™ 3I.1:
in like manner
at the third wire at 2® 51™ 40°.4,
at the fourth ... .. 2 52 7.6,
at the fifth . . . ... 2 52 25.0.

Here the intervals of time between the wires are 18.4, 18.3, 18.2;
18.8, a little different the one from the other, not necessarily
different from real inequalities in the respective spaces between
the wires, but, probably, from the cause assigned above, namely,
the uncertainty of the observer when he guesses at the tenth of
asecond. If we add the above five times together, their sum
amounts to
5 x (2" 51™) 4 246°.7,

the fifth of which is

b 51™ 40°.34.

* Since objects appear inverted through the telescopes of Astronomical
instruments, a star will appear to enter the field of view to the right of the
extreme wire to the right, which, in the preceding figure, would cor-
respond to the wire 5. The principle, however, of the explanation is
precisely the same whether the object is seen inverted, or in its natural
position, .
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"The time at the middle wire * was
b 51™ 40°.4.

The former time, the mean time, is probably the truer time,
although it is plain that nothing positive can be affirmed on this
head.

The intervals between the wires are made very nearly equal
by the instrument maker. But the power and accuracy of
modern transit instruments is such that a good observer will,
from his observations, be able to discover inequalities in the in-
tervals not otherwise, or mechanically, ascertainable. The in-
tervals are examined, and their values in seconds of time found
by taking, from a great number of observations, the means of the
times a certain star takes in passing respectively from the first to
the second wire, from the second to the third, &c. If, as is fre-
quently the case, the intervals are unequal, then, in estimating the

* It can very rarely happen that the minutes of the time at the middle
wire differ from the minutes of the deduced mean time, For that reason,
in registering the several times, the hours and minutes are only once
‘expressed for the middle wire, it being sufficient to note the seconds alone
at the side wires, Thus, the above results are thus registered.

I.

12.7

II. | Middle Wire.
31.1 | 2* 51™ 49°4

1v. V.

7.6 | 259

Reduction of Wires,
49.34

The seconds added together make 126.7 : now, if we divide by 5, the first
figure of the seconds would be 2, which must be wrong, since the number
of seconds must be, what it is in the middle wire, nearly 49: in order to
make the first figure 4, we must add 120 (two minutes) to 126.7 : the
sum 246.7 divided by 5 gives 49.34 : the two minutes (120%) added come
in fact, from the fourth and fifth wire ; where the minutes instead of 51, are
52. But, as it is plain, we need not concern ourselves about the minutes.
If the sum of the seconds added together and divided by 5 do not give
the first figure, the same as the first figure of the seconds at the middle
wire, we must add either 60, or 120, to the number of seconds till that
fact takes place, and the result cannot fail to be right. In the sixth

column entitled the Reduction of the Wires, the mean result of the seconds
is put down,
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time of a star’s transit from the mean of the times at the several
wires, some allowance must be made for the inequalities of the
intervals *.

We subjoin an instance or two from the Greenwich Obser-
vations of 1816 to illustrate the preceding matter.

Middle Wire, d
Reduct,
I. | 1L 1II. 1V. | V. |of Wires. Stars.

Nov. 3. 1.4]20.0 |21 55™ 38°.4| 56.5 | 15.2| $8.30 | @ Aquarii.
22.6(55.2| 0 29 27.5| 0.0|32.5| 27.56 |a Cassiopez.

Nov. 4. | 0.4 118.4 (21 55 37.2(55.7|14.1| 87.16 | @ Aquarii.

The sum of the seconds at the five wires in the first hori-
zontal line is 131.5: but the first figure of the seconds (see
Note of p.87) must be 3, 38 being the seconds at the
middle wire. We must, therefore, add 60 to 131.5, in order
that the first Figure of the quotient may become 3, and, ac-

F 191.5
cordingly, QT— 38.30 the reduction of the wires: or, the
mean time of the star’s transit is
21" 55™ 38°.30.

Again, the sum of seconds in the second horizontal line is 137.8:
and dividing by 5 the first figure of the quotientis 2, which is
right, (27 being the number of seconds at the middle wire) or, it

# Delambre and other authors give rules for estimating the thickness
of the wires, and for allowing, in registering the observations, for such
thickness. But itis the practice at the Greenwich Observatory not to
make any allowance. The thickness of the wire used in the new transit
is g};;ths of an inch. - Which is a thickness greater, if we rely implicitly
on Dr. Maskelyne’s statement (see vol. III. Greenwich Observations,
p. 339.) than that of the wires in the old transit; which is, in the obser-

vations just alluded to, stated at 7a55th of an inch,




89

1s not necessary to add either GO, or 120, to 137.8. Accord-
mgly,

1387.8
—-77-— = 27.16,
o

the reduction of the wires, or the mean transit at the meridional
wire is

0" 20™ 27°.16,
In the third column the sum' of seconds is 125.8: divide by 5
and the first figure in the quotient is 2, but it ought to be 3, since

37 1s the number of seconds at the middle wire, add therefore.
60, and then

é (185.8) = 37.16,

the reduction of the wires, and the mean time of transit is
21® 55™ 37°.16.

The mean time is expressed to the hundredths of a second.
But this is an exactness altogether arithmetical, or which results
from arithmetical operations, and is, in no wise, connected with
any presumption on the part of the observer to distinguish such
small portions of time *.

The intervals between the several wires, as estimated from
the same star (a Aquafii), are from the first and third rows,

18.6, 18.4, 18.1, 18.7,
18.0, 18.8, 18.5, 18.4,

sothat, if we were limited to these two observations, we should
find it difficult’ to say whether the intervals between the wires
were equal or unequal. i

The intervals between /the: wires from ‘the observations of
a Cassiopez are

3205 +3%3,50: 32,0, 'y 38494

in which, the intervals appear to be much more vearly equal than
they were in the former instances.

* ¢Tam exigua et evanescentia temporis momenta.”
M
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It appears from the above examples that the star a Cassiopea
is almost twice as long in passing from wire to wire as the star
a Aquaril. The latter star is near the equator, its north polar
distance being (in 1816) about 91° 12’ 30", whereas the north
polar of a Cassiopez was, at the same period, 34° 28’ 23".
Now it is easy to prove that the time of a star’s describing small
spaces perpendicular to the meridian (such as the intervals of the
cross-wires would be) varies inversely as the cosine of its decli-
nation. For let P represent the pole, Pe, Pf two arcs of 90°

P

« q S

each. Let st represent the interval of the wires, nearly, by
reason of its smallness, coincident with sr¢. 'Take eq = st;
then (see pp. 9, 10.) a star apparently moves from s to ¢ in the
same time as another star moves from e to S

But the time through st (= the time through ef) = time

e 3 .
through eq x é—‘]-;-= time through e g % f—t =, nearly, time through
¢ h

radius

eq X Hence, if the time through eq, that is,r if the

co-sin. se -
time of an equatoreal star moving across the interval eq be given,
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the time of moving across an equal interval (§¢)varies as

co-sin. se’
or, directly as the secant of the star’s declination.

But there are no stars exactly in the equator, and conse-
quently, the equatoreal interval of time, through a space equal to
st, cannot be determined by direct observation. - It may, how-
ever, be easily determined by observing the time that any known
star (a Aquarii, for instance,) takes in passing that interval, and
then by lessening that time in the ratio of the cosine of the star’s
declination to radius. Thus the mean time of a Aquarii passing
an interval of the cross-wires being 18°.4, the time of an
imaginary equatoreal star passing the same interval, equals

18°.4 x cos. (1° 12’ 30”) = 18°.395.

This is the quantity from one star, and, if we employ several
stars, we shall obtain, from a mean of the results, a result of
greater exactness. For instamce, the north polar distance of
a Cygni is 45° 22’ 57, that of a Aquile is 81° 36’ 42", and the
mean times which these stars took in passing the interval between
two successive cross-wires, were, respectively, 25°.8, and 18°.55.
Hence, since the cos. star’s declination = sin, star’s N. P. D.
we have .

-

For a Cygni.
log. 25.8. ... =1.4116
log. sin. 45° 22, . =0.8522

1.2638 = log. 18.35.

For a Aquile.
log. 18.55. .. =1.2683
log. sin. 81° 36'. . =9.9953
1.2636 = log. 18.35.

The time of an equatoreal star’s passing an interval between
the cross-wires, being thus determined by computation, from the
observed times of known stars, but not in the equator, the times
which other stars will take in passing the intervals of the wires
may be determined by increasing the equatoreal time in the ratio
of radius to the cosine of declination, or, in the ratio of radius to
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the sine of north polar distance. Thus, the equatoreal time of
passing the interval being assumed equal to 18°.3, the times
which the stars 3 Draconis, u Urse Majoris, the north polar
distances of which are (in 1816), respectively, 87° 33 26",
47° 34’ 44", will take in passing the same interval, will be

18'.8 % sec. (52° 26" 34”), and 18°.3 sec. (42° 25" 16").

Hence,
107" 1500, ° 118 $12624 7.2 log 8. 905 v 1.2624
log. sec. 52° 26'.10.2149 . . ... log. sec. 42° 25'.%10.1318

11.4773 '11.3942

Hence, deducting 10, the logarithms of the times are 1.4773,
and 1.8942, aand the numbers 30.01, /24.786G: which times
agree, very nearly, with the following observations made in
Sept. 1816: .

S 1. 111. b s v. Stars.

N

41.5 | 115 | 17" 25™ 41°.6 | 11.6 | 41.7 | B Draconis.
54.6 19.5 { 10 10 44.1 9.0 | 33.8 | u Urse Majoris.

The mean interval, in time, of the first row is 30°.05 and of
the second 24°.775.

The pole star is about ten minutes in passing over the above
intervals *,

* Dr. Maskelyne in vol. III, of his Observations, observes that the
stars generally observed (some of the thirty-six stars of his catalogue) and
which are near the equator, move over the vertical wire (;ith of an
inch in thickness) in about Sths of a second. Consequently, the pole star,
) 10x60 2
347 o e

163 ) or about 4%
seconds in passing the vertical wire, or would appear to hang on the wire

for about that time.

under ordinary circumstances, would be about
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By the preceding methods and computations the upright
wires of the transit telescope may be adjusted vertically, and the
intervals between the wires found in parts of sidereal time. For
the purpose of knowing whether the wires, which ought to be at
right angles to the former, are strictly horizontal, direct the teles-
cope towards a star near the equator, and if the star entering at
h (the telescope is supposed to reverse its objects) runs -along the
kf, then kA f is horizontal. 4

This test of the horizontality of the cross-wire, is literally
true only with respect to a star situated in the equator. If the
star be out of the equator it cannot be bisected during its

4
T B

AT

2

passage through the field of view by every point of the wire f4,
whatever be fA’s position. The reason is easily arrived at.
When the telescope is directed to the equator, the cross-wire f%
is the chord of an arc of the equator, in the centre of which
great circle the eye is sitnated. . The eyé, therefore, being in the
same plane with the subtense f% and the arc which the star
descrlbes, sees the star moving along the subtense (which in this
case is the cross wire f4) whilst it describes the arc.  The same
would be true of the arc of every other greatf circle and its
subtense -or chord. Butif the star be out of the equator 1t does
not describe a great circle buta small circle. In the Figure,
p- 90, let sm¢ be an arc of a great circle: then a star de-
scribing sm¢ would seem, to an eye situated in a plane passing
through sm¢ and s¢, to describe s¢: but sr¢, part of a small
circle parallel to ef is the star’s apparent path, which, coinciding
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with the chord s¢ at its two extremities s and ¢, would (the
telescope reversing) appear to describe a curve below the cross
horizontal wire, the apparent path of the star through the field
of view being the more curved, the less the star’s north polar
distance. :

The method given in p. 90, for determining the time of an
equatoreal star’s passing the interval between two successive
wires, is, strictly examined, an approximate method. If we wish
for an exact one, we may obtain such by means of the Iigure
of p. 90. Suppose s¢ to represent the interval of the cross
wires, then 3 :

o S Z 7
st = chord srt=2 sin. 3T (radius == sin., Ps)

ef

=2 sin. e sin. Ps (radius being = sin. 90°) ;

RS 3 »: Ve
but ef = o x 360° (¢ being the time of describing srt)
_ £ X 360 x 60 x 60"
T 24x60x 60

t being now the number of seconds of time.
"

= 15"¢,

Hence st = 2 sin. X sin. Ps, which is a general ex-

pression, whatever Ps is, s? the interval of the cross-wires being
supposed the same. Hence at the equator, ¢ being what ¢
becomes
R v
st = 2.sln. ———;
2

/1

¢ ’ v 156"t
. sin. ok b X sin. Ps = sin. o g 3

]

15" : ; ; R4
x sin. star’s north polar distance = sin. Sl

or, sin.

But the sines of small arcs are nearly equal to the arcs them-
15"t 15"¢

)

selves. Consequently, since are small arcs, we

have, nearly,
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¢.sin. star’s north polar distance = ¢,

which agrees with the formula of p. 90.

What has preceded relates to the transits of stars that are but
as points and without disks. We must now find out the
means of determining the transits of heavenly bodies, such as
the Sun and Moon, which have disks but no distinct or marked
centres. The transit, however, of a heavenly body means the
transit of ‘its centre. In this case then, we cannot avail our-
selves of direct observation. But we may compute the time
when the centre (the Sun’s centre, for instance) is on the middle
wire, from having noted the two times of contact of its western
and eastern limb with that wire. For, as it is plain, half of those
observed times is the time required.

Let mno represent the Sun’s disk, in contact with de a
vertical wire. If the Sun’s centre be crossing the meridian in
the direction ma, m cannot pass onto C, or the eastern limb

e

cannot come into contact with the middle wire, except by m’s
moving through a space equal to mC, and in a time equal to that
in which a star, having the same declination with the Sun, would
describe a space equal the Sun’s diameter. In half that time
then the middle point between m and C, or the Sun’s centre, will
be at C, or on the middle wire.

But, as in the case of stars, so here we may avail ourselves of
the side-wires. Thus, the linear distances of the wires from the
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centre being supposed equal, half of the interval of the times
between a star being on the first and fifth wire, is the time that
a star is on the meridian ; so, half the time between the contacts
of the Sun’s limb (whether it be the eastern or western limb)
with the first and fifth wire, is the time of the contact of the same
limb with the middle or meridional wire. But half the time
between the contacts of the Sun’s western and eastern limb with
any given wire, is the time of the bisection of the Sun’s céntre by
the same wire. Add, therefore, the times of contact of the
western or first limb *, with the several wires, to the times of
contact of the eastern or second limb, with the same wires, and
the sum divided by the whole number of contacts, will be the
mean time of the Sun’s passage cross the meridian.

Thus, by the Greenwich Observations of 1815, Nov. 6,

1. Il III. Iv. V.

40™ 45°5 |41™ 4°.6] 14" 41™ 23,6 41™ 43° [42™ 1°8 | @ 1L
43 0.6 |43 19.7 |14 43 39 |43 57.8|44 1772 | @ 2L

The sum of the times of contactis 10 x 14" + 425"} 12°.8;
the number of contacts 1s 10. ; The mean time, therefore, of the
Sun’s transit is

14" 42 31°.28,

in which, as before, (see pp. 87, 88, &c.) 31°.28 is the reduction
of the wires. 'The time of the Sun’s transit estimated from half
the sum of the times at the middle wire, is S

* The telescope inverting objects, the Sun’s western limb appears to
the east, in the field of view, and the eastérn limb to the west, and the
Sun’s motion is apparently from the right to the left. The Sun’s limb
that first comes into contact with a vertical wire is symbolically denoted
thus @ 1L, and the other limb thus @2L: and the corresponding
symbols for the Moon are D 1L, » 2L.
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(28" 85™ 2°.6), or, 14" 42™ 31°.3,

01 =

which differs from the mean time only by 0°.02.

Again, by observations made at Greenwich, Nov. 8, 1816,
with the new transit and with five of its seven wires,

‘Meridional Wire,

1I. 111, Iv. V. VI.

51™ 20°.4 | 51™ 48%.5 | 14% 52™ 7°.6| 52™ 26°.71 52 46° {®@ 1L
53 45 (54 4.3 |14 54 234 |54 42.5| 55 1.6(l@2L

The sum of all the times is
10 x 14" 4 532® + 35°,

the number of contacts is 10; therefore, the mean transit of
the Sun’s centre is

14" 53" 155,
which is the same result as the half of the times at the middle wire.

We cannot use exactly the same method in finding the transit
of the Moon’s centre ; because the Moon shines only once with
a full orb during her revolution round the Earth. At all other
times, amongst which will almost always be found the times of
observation, either her western or eastern limb is more or less
deficient : so that, on' the deficient side, either no contact, or an
imperfect one, takes place. On this account the contact of one
limb only, that which is turned towards the Sun, is observed.
Thus amongst the Greenwich Observations, Jan. 15, 1816, we
find the following :

Meridional Wire.
II. 111, 1V, V. VI.

49™ 38°.6| 49™ 59° | 8" 50™ 18%8 | 50™ 39* | 51™ O° (D 2L

N
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The sum of these times is
5 X% (8" 50™ + 95°.4.

The number of contacts is 5, and consequently, the mean
time of contact, of the Moon’s second limb with the meridional
wire, is

8" 50" 19°.08,
from which, deducting the time which the Moon takes in passing
over a space equal to her semi-diameter, we shall have the transit
of the Moon’s ceiitre over the meridian.

We must proceed in a like manner, when we wish to deter-
mine the altitude of the Sun’s, or of the Moon’s centre by the
quadrant or circle. The altitude of the upper (® U. L.), or lower
limb (® L. L.) must be found by bringing it into contact with
the horizontal wire. The Sun’s semi-diameter deducted or
added will give a result equal to the altitude of the Sun’s centre.
Or, half the sum of the altitudes of the upperand lower limbs will
give the altitude of the centre.

Thus, by observations made in 1816, with the Greenwich
mural circle,

Thermometer,
Barometer. | In. Out. N.P.D.
June3.| 2989 [ 59 | 64 | @ U.L...... 67° 23’ 8"
June4.| 29.86 | 58 | 64 '_'@ L.L.......67 47 34.1

and by observations made in 1787, with the south mural quad_-;
rant of Greenwich,

‘ ' Z.D.
Juned. [ 2083 | 55158 @ L. L..... ..., 20 15" 50".3
0. U RY, L T 28 44 18.5

From the last of these observations the Sun’s diameter, as it
simply results from the difference of the two zenith distances, is
31’ 36".8.

The zenith distance of an heavenly body means the zenith
distance of its centre. Now the planets possess disks of sensible
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maguitude. Dr. Maskelyne appears to have taken their zenith
distances with the mural quadrant by making the middle hori-
zontal wire of its telescope ‘bisect the planet’s disk. Thus we
find in the Greenwich Observations of 1775,

Oct. 17.. o oo Y centrum........'72° 36 24"
Dec.83.c.c.u b centrum........31 16 11.6.

In the observations made with the present mural circle of
Greenwich, the practice seems to be, to bring the upper or
lower limb into contact with the middle horizontal wire, and,
by means of a screw, with a graduated head, to move another
wire (which always keeps a direction parallel the horizontal wire)
till it comes into contact with the lower or upper illuminated
part of the planet.

Thus, by the Greenwich Observations of 1813,

N.P.D. Diff.
July25, & L.L.......... 114217 6".2

"
.6
L UoR s ms due, it} 654376 8.
July29, @ L.L........... 74 56 29.8
y 9.5
74 36 20.3
MR 10,0 20 Fos it awmaies s 08.058:420.8 49
68 57 46.1 4%

The construction and uses of, and the means of correcting,
the Astronomical Quadrant and Transit Instrument, being
now gone through, it remains to notice, briefly at least, the
Astronomical Clock, which, in p. 47, was mentioned as one of
the Capital Instruments of an Observatory ; which, indeed, is as
essential to the finding of the right ascensions of bodies as the
transit instrument.

The declination of a star can be found,. and in angular mea-
sure, by one instrument. The right ascension of a star, (see
p- 47,) the other condition for .determining its place, cannot
be conveniently or correctly found in angular distance by one
instrument. It is, according to the practice of modern science,
conveniently found by two instruments. The transit instrument
which observes the star when on the meridian, and the Astro-
nomical Clock, which marks the time of that observation.

If the stars which appear on the concave Heavens accede to,
or recede from, the meridian of a place, in consequence of the
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Larth’s uniform rotation; a clock, which is to measure such
approach and recess, ought to go equably. A clock, then,
ought to preserve its equable motion during any change in the
state of the atmosphere, and during the vicissitudes of heat and
cold. Tt is' mot within the plan of the present Treatise to
describe the several contrivances by which ingenious artists have
endeavoured to make a clock possess the above requisites. We
shall confine ourselves to more simple views. We will fiist
state the method now practised of ascertaining the equable
motion of a clock, and next we will examine the reason and
principle of such method.

The first point is to examine whether the clock is adjusted to
sidereal time. 'The hour-hand moves through a circle of twenty-
four hours. The minute and second hands mark the minutes and
seconds. The second-hand moves over one of the divisions of its
circle between two successive beats of the pendulum. In twenty-
four hours then the pendulum makes 86400 vibrations, and the
second-hand moves over as many divisions. Set the ‘several
hands to zero, or let them begin from 0", when a given star is
bisected by the centre of the cross-wires, and if, when the star is
next bisected, the hour-hand shall have made a complete circuit
of twenty-four hours, and neither more nor less than a circuit,
then is the clock adjusted to sidereal time.

But this, should it take place, 1s no proof of the clock’s
equable motion, During the twenty-four hours, the clock,
from the vicissitudes of heat and cold, may have been both re-
tarded and accelerated, whilst such circumstance would not be
discovered by the above test. In the second place, the clock
may go equably, although it is not adjusted to sidereal time,
For instance, suppose, on the first return of the preceding star
to the meridional wire of the telescope, the hour-hand to have
made a complete circuit, and besides, the second-hand to have
moved through three of its divisions, or that the pendulum has
made 86403 vibrations.  On the second return, and between the
first and second, of the star, suppose the pendulum to have
again made 86403 vibrations, then the index-hand of the clock,
which, on the first return of the star, noted

o om S
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would, on the second, note
o* 0" 6;
and, if the like circumstance took place at the end of the third
sidereal day, the clock would note
o" 0® 9.

And in this case, .it is plain, the mean gain of the clock in a
sidereal day (which gain is called its rate) would be three seconds.
It would not, indeed, be adjusted to sidereal time, but it may,
for all that appears to the contrary, have gone throughout its
circuit equably. We cannot, however, presume that it has so
gone; indeed, whether or not the clock be adjusted to sidereal
time, we are unable, from the observations of a single star, to
determine any thing relatively to the equability of its motion.

And indeed we should remain in the same uncertainty whatever
number of stars were observed, if we merely examined whether
their returns to the meridional wire were contemporaneous
with the returns of the index of the clock to the same divisions of
the dial-plate that marked their original departures, or happened
after the same number of beats of the pendulum, It is necessary
to examine the differences of the transits of different stars at dif-
ferent times.  And if these differences should not be the same,
‘then we must conclude the clock, at one period or another, not
to have moved equably. Suppose, for instance, the clock being
adjusted to sidereal time in the way above described, (namely,
that its second-hand has moved through 86400 (=24 x 60 X 60)
of its divisions during two successive transits of the same star)
and that we observe a star on the meridian at midnight. Sup-
pose moreover, the clock to be then at its greatest acceleration.
Another star, by the clock, passes the meridian an hour after the
first; but 1" or 15° cannot be the just difference of the right as-
censions of the two stars ; since, by the hypothesis, the clock, at
the time of the star’s transit, was going beyond its mean rate.
But a star, which on a certain day 1s on the meridian at midnight,
will, on each succeeding night, pass the meridian at a more early
hour. . If the cause, therefore, of the acceleration of the pen-
dulum, should happen to depend on the hour of observation, the
clock, on some night after the first, may be returning towards its
mean rate ; in which case, there will be fewer beats between the
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transits of the two stars than before : in other words, the differ-
ence of their right ascensions, will not, as before, be noted by
1", but by some quantity less than 1". For instance, if the
number of beats of the pendulum between the two, transits
should be 3599, the difference of the right ascensions as shewn
by the clock, would be 0" 59™ 50°. But the difference of the
right ascensiouns of the two stars being constant, cannot be ex-
pressed both by 1* and by 0" 50™ 50°: one or other of these
quantities must be wrong: or, should the clock, in the interval
of the transits, not happen to be gomo' at its mean rate, neither
may be right.

From the precedmg instance then, which has been imagined,
we may perceive the possibility of ascertaining the equability- of
a clock’s motion, 'should an observer possess no other means
than his own observations. But Astronomical Science has pro-
vided, in its Catalogues of stars and its Tables, means much
more simple and expeditious. A clock adjusted to sidereal
time, and going equably, ought to shew between the transits of
two stars an interval of time equal to that difference of their
right ascensions, which Catalogues of Stars and the auxiliary
Tables afford. If not adjusted to sidereal time, but going
equably, it ought to note, between the transits of different stars,
intervals of time proportional to the differences of their right
ascensions : such right ascensions being computed from Cata-
logues and Tables. For instance,.

Right Ascension. Differences.
a Serpentis. . . . 15" 35™ 18°.46
St LR R P I | A T
a Arnetis..... 1 56 55.96 4 40 11.36.

8" 58™ 11°.14,

If the clock, therefore, should, between the transns ofa Serpentls
and of Sirius, note an interval of time equal to gt 58™ g° , instead
of 8" 58™ 11%.14, it ought, on the supposition of an equable
motion, to note between the transits of Sirius and of a Arietis
a time equal to 4" 40™ 11°.36 x 8 58" &
1 0T s8R 1114

The practical method of determining the clock’s daily rate,

that is, its gain or loss during two successive transits of a star, is
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to subtract the mean meridional passages of certain stars on one
day (as shewn by the clock) from the passages of the same stars
on the next, or on some following day. The sum of the differ-
ences, divided by the number of days intervening between the
observations, and by the number of stars, is the clock’s mean
daily rate; to which quotient, or result, should the clock gain,
the sign - is affixed ; should it Jose, the sign —.

Thus, by the Greenwich Observations of 1798, the mean
transits of the following stars were

T Stars.
1* 56™ 53%.32 1" 56™ 55°.10 a Arietis.

Jan. 23. {5 5 5570 Jan.25, {5 5 57.46 Rigel.
5 14 87.57 5 14 39.32 3 Tauri.

Here the several differences are 1.78, 1.76, 1.75, their sum
~ 5.20 divided by 2, the number of intervening days, is 2.645, and
again divided by 3, the number of stars, is .881; and, since the
clock gains, the mean daily rate is thus to be expressed, - 0°.88.

In practice, a clock is adjusted very nearly to sidereal time.
Its daily gain or loss seldom exceeds three or four seconds. In
computing its rate then, we need not concern ourselves with the
degrees and minutes of the star’s right ascension ; it is sufficient to
attend solely to the seconds, and to those, which, in the Registers
of Observations, are inserted in a column entitled the Reduction
of the Wires, (see p, 88.)

Thus, in the Greenwich Observations of 1816, we find

Reduction | Number of { Daily Rate ] Names of
of Wires. Days. of Clock. Stars.
Aug. 6 ..... 25.58 a Orionis.
Augs 7. oo ois 56.32 a Lyre.
55.28 1 — 1.04 | a Lyre.
Aug. 8 .... { X
23.18 2 —1.2 a Orconis.

The difference between the reductions of the wires, in the in-
terval of two days, for a Orionis is 2.4, and half, that is, 1.2, is to
be written — 1.2, since the clock loses, or its pendulum made
between the transits of a Orionis, on the sixth and eighth day,
only 172797.6 (=2 x 86400 — 2.4) beats.
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The daily rate of the clock from two successive transits of
a Lyre is — 1.04, and therefore, the mean daily rate from the
two stars 1s ———(2 24), or —1.12. It is part of the regular
daily business of an Observatory to determine the rate of the
clock. But the weather may prevent this practice, so that an
observer, in order to determine the rate of his clock, may be
obliged to compare observations distant from each other by
intervals of four or five days. The greater, however, the number
of intervening days, the less accurate is the method (that which has
been explained and exemplified) of determining the clock’s rate.
Indeed, if the number of days be considerable, the method, as
“we will hereafter shew, is erroneous.

The rate of the clock being determined, there remains
another point to be settled, which is the error of the clock de-
pendent partly on the rate and, under certain considerations,
caused entirely by it.

There are certain circumstances (cnrcumstances of convention)
that require previously to be explained, in order that we may know
what the error of the clock is, or what it consists in. The posi-
tion of a star (as it has been explained in p. 46.) depends,. or is
made to depend, on the arcs of two great circles, one measured
from the pole, the other along the equator and from some point
in it. The pole is not marked by any star, but is a point variable
with respect to the stars, ascertainable, however, at any given
period, by observation and computation. The point from which
Astronomers have agreed to measure the right ascension is, like
the former, variable from time to time, but capable of being
ascertained at any assigned time. This point (a point of con-
vention) is the intersection of the equator and ecliptic : it is not,
and cannot be, permanent]y marked by any star, but still itis a
determinable point. All right ascensions are to be measured
from it. When such point is on the merldlan, the clock, which
is adjusted to sidereal time, ought to mark 0". The right ascen-
sion of a star passing the meridian an hour after would be 1* ; of
a second star, passing 21 hours, 2" 30™ O ; and so on. Suppose
then on Feb. 3, that the clock rightly noted, the right ascension
of a Arietis, and that it was

™ 56™ 55°,
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ten days after, on Feb. 18, if the daily rate of the clock were
.88, the gain of the clock would be 8°.8 : consequently, at the
passage of a Arietis over the meridian, the clock would denote

1V ETx"38. ;
and, if the right ascension of the star remained the same, the

clock’s error would be 8°.8. In twelve days the rate having i inc>
creaséd to 1°.02, the clock’s error would be

8.8 + 2.04, or 10°.84.

In what manner the right ascension of a star is computed
will be hereafter explained. But admitting, for the present, that
we are able to find it, from Catalogues and subsidiary Tables,
it is easy to shew that the error of the clock, and the rate of the
clock may both be found by the same process. Thus, suppose,
on March 11, the catalogued apparent right ascension of Sirius

T e e i P i
whilst the clock denoted.... 6 87 10.3
9.1

The clock then would, on March 10, be absolutely too slow
by 9°.1, or its error would be 9'.1.

Again, on March 16, let the star’s apparent R. A. 6° 37™ 19".8
the clock denoting.«es.v cveesencee.s 6 37 14.1

5.2

On March 16th, then, the clock’s error is 5.2, too slow.

The clock’s gain in five days is 9°.1 — 5.2 =3.9, and conse-
quently, (see p. 103.) its mean daily rate, so estimated, is

1
K 5 (8.9 = + .78.
This latter result is the true daily rate : the daily rate, estimated
from the difference of the transits as shewn by the clock, would

be

1

(]
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Now the results for the daily rate do not agree. The ques-
tion, then, is which is the right result; and this immediately
leads us to the point to which, in' p. 100, we promised to advert,
namely, the principle and ground of the practical method of
determining the rate of a clock.

Let the telescope be directed to a star (e Aquila for instance,)
on some day, the 7th of March, and note the index of the clock
when the star is bisected by the centre of the cross-wires. If the
two events, the index at the same division, and the bisection of
the star, are contemporaneous on the 8th of March, on the 9th of
March, &c. the clock is said to be duly adjusted to sidereal time,
and its mean motion in twenty-four hours is said to be uniform.
Now this depends on the supposition, that the same abse-
lute time 1s always absolved between each successive transit
of a star over the meridian. And this latter supposition, the
equality of time between successive transits, is founded on
another, which is the uniformity of the Earth’s rotation round its
axis. This supposition, then, is completely compatible with the
above rule. It remains now to examine, whether the time be-
tween two successive transits of the same star, depends solely on
the time of the Earth’s rotation, and, if it should not solely
depend, whether the impeding circumstances are of magnitude
sufficient to vitiate the practical rule.

If the Earth’s rotation were uniform, and ‘its axis produced
were always directed to the same point of the Heavens, and if,
besides, no cause, dependent on the relative position of the Earth
and a star, made the latter, at one time, appear on the meridian
before its real passage, at another time, after it, then would all
the several intervals between the successive transits be equal.
And this would also take place, if the deranging causes to which
we have alluded, altered equably, and the same way, the star’s
right ascension. But, as it will be shewn in the succeeding
Chapters, the deranging causes not only exist, but are variable,
both as to degree and direction, in their effects. It is true their
effects are very small : so small as not to be ascertainable, in the
short intervals of two or three days, by our measures and reck-
onings. But still they exist, and become perceptible in their
accumulations.
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Although the Earth, then, should complete her diurnal
rotations in equal portions of absolute time, it does not thence
follow that a star will always return to the same point (the wire,
for instance, of a fixed telescope) after equal intervals of absolute
time. It may seem to do so when we compare one interval with
another that succeeds it: but it may seem to do so, only be-
cause we have no means, either by our eye or our ear, of dis-
tingnishiug the hundredths of a second of time.

What then shall we define a sidereal day to be? We may
define it to be the portion of time between two successive
transits of a star over the meridian : but then, if the preceding
statements be admitted to be true, all sidereal days would not be
equal.  The definition, then, would not be a good one. If we
define a sidereal day to be the portion of time absolved whilst
the Earth makes a complete rotation round its axis, then, on the:
hypothesis of an uniform rotation, all sidereal days would be
equal. It is no valid objection against this definition, that a
sidereal day, not being identical with the interval between two
successive transits of a star, and, therefore, not immediately ascer-
tainable by observation, would thus become a quantity to be’
determined by calculation. A sidereal year must be so deter-
mined. 3

This 1s not the place to state the physical causes that prevent
the time of the recurrence of a star to the meridional wire of a
Transit from being solely dependent on the Earth’s rotation:
but, if we wanted a practical proof of the fact, we could easily
find one in the instance of the pole star. That star is about
1° 40" distant from the pole: but, if the times of the transits of
stars over the meridian arose solely from the Earth’s uniform
rotation round a fixed axis, the several intervals between the.
successive transits of the same star would all be exactly equal,
wherever that star were situated, whether near the equator or
near the pole. In such case, if on the first of next January, (1822),
Polaris should be (as he will be) on the meridian at 0" 57™ 20°.3
of sidereal time, he ought to be again there on January 2, at the
same sidereal time ; whereas, on this latter day, the time of the
transit will be, nearly,

Oh 57"\ ]93_7,



108

‘and the succeeding day, January 3, at

o* 57" 19,
and the apparent motion of Polaris will so increase that, after
ten days, he will be on the meridian at

* o 57™ 13'.3,
and on January 20th, at
o" 57 6.3,

the apparent mean daily acceleration of the star being, during the
above period, about %iths of a second.

In the above case, the real differences of the intervals of
successive transits become discernible from the peculiar situation
of the star. But, with other stars, the case is different. The
star Procyon (the lesser Dog Star), for instance, which is near to
the equator, will be on the meridian, at the latter period,
(January 20, 1822), at

" s50m 0.9,

and the real differences, between the intervals of its transits for
the next twenty days, are so minute as completely to baffle
detection, with whatever instrument the eye.and ear be assisted.
The same circumstance takes place, very nearly, with other stars
that are not near the pole. It takes place with all those stars
which are used in determining the clock’s daily rate. With
stars, then, such as the last, the rule for finding the clock’s daily
rate, from the difference of two successive transits, is sufficiently
exact for all practical purposes. It can never, so applied, lead
into error ; which it would do, were Polaris the star. The
latter star may indeed be used for finding either the clock’s
error, ‘or the clock’s rate, but then we must have recourse to
operations less simple than those of merely noting the times of its
transits *.

* We have, on the preceding subjects, somewhat dilated, and been
digressive. But the subjects are those on which students (we are speaking
in'general terms) have no precise notions, nor, through books in ordinary
use, any means of acquiring such..

> It
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The three capital instruments of an Observatory, it has been
said, are the quadrant, the clock, and the Transit. But this is not
to be taken literally. In Observatories, where, generally, the
instruments are large, the quadrant is fixed, and is, what is called,
a Mural Quadrant. But then there must be two quadrants
one for stars north of the zenith, the other for stars south of the
zenith ; and, beside these, there must be introduced a fourth
instrument, called a Zenith Sector, subsidiary indeed to the quad-
rant in determining the error of its line of collimation, but, more-
over, of peculiar and great usefulness.

We may, however, should it be our object to have as few
instruments as possible, instead of two mural quadrants, use a
mural ‘circle; and, since this instrument, according to the
present mode of constructing it, would be very loosely and im-
perfectly described, by saying, that it is formed by the putting
together of four gqnadrants, we will proceed to glve a brief
descnptlon of it.

The circle, with its attached telescope, is made to revolve
by means of an horizontal axis ; which axis works in collars fixed
in the stone wall, represented in the Figure. The wall faces the
east. The plane of the circle, as it is shewn in the Figure, is
parallel the wall, but the graduations are made on the outer rim
of the imstrument, which rim is perpendicular to the wall.

It has been said, that art and science render each other mutual assist-
ance, and are contemporaneously progressive. In the subject which has
been under discussion, namely, that of the instrumental means of mea-
suring time, a refined state of science is absolutely necessary to enable us
to pronounce on the quality of such means. If the antients had invented
exact time-keepers, could they have verified their exactness? Suppose,
for -instance, a Watchmaker of Alexandria had constructed a perfect
clock, the Astronomer of Alexandria would have found it faulty, since
the clock would have indicated an inequality in the revolution of the
primum mobile. There seem to be no other means than Astronomical
ones of verifying time-keepers; and these means, if they are to be exact,
cannot be made so, except with great dlﬂiculty, nor without the results
and formulz of refined science.
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These graduations are viewed and read off, by six microscopes
fixed to the wall, one of which microscopes is represented at 4,

“and the places of the five others (precisely similar to the former)
are marked by the letters B, C, D, E, F. The microscopes are
distant from each other sixty degrees, or so placed, assnearly as
can be, by the instrument-maker.

The circle’s diameter is six feet. Itsrim is divided into
equal parts of five minutes each, and the readings off to a less
number of minutes and to single seconds, are effected by the
Micrometer Microscopes, A, B, &c. The construction of which
is as follows. The microscope 4, or micrometer microscope
A is directed, as it is shewn in the Figure, to the rim on which
the graduations are made. Consider the object to the microscope
to be one graduation of the instrument, or the space occupied by
five minutes. The image of this space will be formed in the
conjugate focus of the ohject-glass, and will bhe seen distinctly
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through the eye-glass of the microscope, when the above-men-
tioned image is in its focus. In this latter focus (the focus of
the eye-glass) are placed, a thin indented slip of metal and a
wire * eapable of being moved, in a parallel direction, from one
mark of division to another by means of a screw. The revo-
lutions of the screw, and parts of its revolution, are noted by
_means of a’ screw-head aud graduated plate, similar in the prin-
ciple of its construction to the one of p. 55. Now it is desirable,
for the more convenient noting of the results of observations,
that, by five revolutions of the screw, the wire should be trans-
lated through the space occupied by five minutes: in which
case, one revolution would answer to one minute, and one-sixtieth
to one second. The mode of effecting this may be thus ex-
plained. Suppose, the object-glass of the microscope being at
a certain distance from the graduated rim, and there being
distinct vision, that the moveable wire appears to be translated
through the five minutes, by 53 revolutions of the screw. In
such case, the image of the five minutes is too small. It will be
increased by moving the object-glass towards the graduated rim.
But, if the whole microscope be moved, there will no longer be
* distinct vision, since the object being nearer to the object-
glass, its image will be formed at a greater distance from the
object-glass, and beyond the focus of the eye-glass. The eye-
glass, therefore, with its wire, &c. must, by a separate move-
ment, be withdrawn from the object-glass till distinct vision
ensues. In this second position, a second trial must be made to
ascertain whether five revolutions of the screw are equal, or not,
to the translation of the wire over the image of that portion of
the divided limb which contains five minutes. Should there be
no equality, the adjustments must be made both of the object-
glass and of the eye-glass, by their peculiar movements, till five
revolutions of the screw shall correspond to the translation of
the wire over five minutes.

* Instead of one wire moveable, in a direction parallel to the marks of
graduation, two wires crossing each other, at an acute angle, are sub-
stituted. These wires, in measuring the distance from the index to a
graduation, are to be stopped when the mark of the graduation bisects the
angle of their intersection.
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The adjustment, which we have described, is merely a matter
of convenience : it saves the observer the trouble of reducing the
graduations of the screw-head to their values in minutes and
seconds. If the microscope micrometer were suffered to remain
in its first state, then, since 5.5 revolutions =5, one revolution
would equal 50".454, &c. 3

But, whatever be the value of a revolution, the uses of the
moveable wire and the indented slip of brass are the same. A
star is observed on the centre of the cross-wires of the telescope.
On looking through the microscope, the index, or what serves as
one in the slip of brass, occupies a place between two gradua-
tions. The wire moved from the index, either to the upper or
lower graduation, measures by the revolutions of the screw-head,
the distance from the mark of graduation: and, for convenience,
each tooth of the indented brass answers (one revolution of the
screw being equal to one minute) to one minute: so that, if the
wire 1s moved from the index past two teeth, and the index of the
screw-head points to 55, then 2’ 55” are to be added to or sub-
tracted * from the degrees and minutes which are read off by the
naked eye, or without the aid of the micrometer microscope.

In every observation all the six microscopes are to be used
for the purpose of diminishing the errors of division, and the
effects of partial expansion.

In reading off the angles at the several microscopes; we need
only to attend to the seconds; which may be thus explained.
Suppose a star to be in the pole and that the telescope is to be
directed to it. The whole circle then must be turned round in the
direction from B towards C, D, &c. and the end of the telescope
containing the object-glass, instead of being directed as it is in
the Figure, to a point in the south, between B and C, will be
directed to a point between D and A. If, the telescope being
directed to the pole, the reading off at the micrometer at A
were 0° 0’ 0", the Index error, as it is called, would be 0. The
readings off at the other microscopes F, E,.B, C, D, (were
those microscopes placed at exactly equal distances from each

* Accordingly, as the distance of the index from the upper or lower
graduation is measured.
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other) would be 60°, 120°, 180°, 240° 300°, But these circum-
stances are not likely to take place. The indexr error will
probably be of some magnitude : a few seconds, for instance :
that is, when the telescope is directed to the pole, the reading off
at the microscope 4, instead of being 0° 0’ 0”, may be =+ 5", or
+ 7", or +8", &c. Inlike manner, the readings off at F, E, B,
C, D, may be, from their not being placed at exactly equal
distances, or from inequality of graduation, or from partial ex-
pansion, or conjointly from all these causes (for in practice they
may all operate) either

=60° 0’ 7", or 60° O’ 10", or &e.
120° o' 8", or 120° O’ 12", or &ec.
&e. &e..

Suppose, indepeundently of the degrees and minutes, the

seconds at the six microscopes to be respectively,
+5II’ + 7", +4”’ + 12”’ + 8”, + 9// ;

then these are the several inder errors: and, if the polar distance
of an observed star were read off ouly at one microscope, the
index error belonging to such microscope must be added to, or
subtracted from, the distance so read off. Thus, if the microscope
B were only used, the index error of which is 412", and the
north polar distance of 3 Urse Minoris read off were 195° 4! 46",
then, deducting 180° for the position of the microscope, and 12"
for the index error, we should have

the north polar of 3 Urse Minoris. ... =15° 4' 34,

But, all the six microscopes being used, it is convenient
to consider a mean index error, which will be one-sixth of the

several index errors, and, which, in the preceding instance (see
"

45
1. 16.) will be —6-—, or 7".5.

We have in the preceding illustration, for the. sake of sim-
plicity, supposed the telescope to be directed to the pole, which,
as it has been several times stated, is not marked by any star,
but is a point to be assigned by calculation and angular measure-
ment. But the illustration will be, in substance, the same if we
suppose the telescope directed to a known star, Polaris, for

P-
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instance.  If, by previous Catalogues and Tables, we should
know the north polar distance of this star to be 1° 41’ 41".3;
the micrometer microscope A marking 1° 41" 48”.5; then the
index error would be + 7”.2*, and, in like manner, we should
know, by the same star, the index errors for the other micro-
scopes, and thence the mean index error.

We shall, in another part of the Work, explain the use of
the observations made with this instrument, and of the index
error, in correcting the catalogues of polar distances. . At
present we shall be content in shewing, by a kind of exemplifi-
cation, that the uses of the instrument do not depend on the
accurate positions of the several microscopes.

Suppose, the telescope being directed to the pole, the number
of seconds indicated by the micrometer microscope 4 to be 7.

Let B indicate 5+23" (b, c, d, &c. denoting degrees and minutes)
| G .c+ 4
D7 ad s
I A T
P

Let X be the north polar distance of any star, (of Capella,
for instance, X being = 44° 12’ 16”), and let the number of
seconds in X be 16, so that, Y being the degrees and minutes,
X=Y 4 16"; then, the instrument being directed to Capella,
(and, consequently, turned round through an angle X) and the
errors of division, expansion, and the uncertainty of the reading off
not being considered, the number of seconds in 4, will be 23,

B e sl 39,
e Ot Y 20,
11 EMY ) Mo 21,
in E. Jalid 3
Ty visd (PR RL| [ 31,

the sum of these is 159, and one sixth is 26”.5; the north polar
distance, therefore, of Capella by the instrument, and, by the
above method of taking the mean of the seconds, is

Y + 26".5 (=44 12" 26".5),

* Therefore, the eguation for the north polar distance-is —7".2.
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and, consequently, the mean index error
Y+26"5 — X, or Y+ 26"5 — (Y + 16"), or 10".5.

This 1s the index error from one star; but the process is the
same with ‘any other star, since X may be any angle. If the
catalogues were exact, and there existed no source of error from
inequality of graduation, &c. the same index error would result
whatever star were observed. Thus, suppose the number of
seconds in X, instead of 16, to be 36, then the number of seconds
from the six microscopes instead of being 159 would be
150 4+6 x 20, and consequently, the mean number would be

26”.5 4+ 20 = 46".5,
and in this case the index error would be
Y + 46".5 — (P + 36) = 10".5.

But neither are the catalogues of stars perfect, nor is the in-

* strument altogether exempt from the errors of graduation, and of

partial expansion. It will, therefore, happen in practice, that
the index error is different with different stars. If the index error
resulting from the observations of twelve stars, should be re-
spectively, ®

105, 9.3, 6"8, 13”1, 11”2, 9.1,

8.4, 18.2, 8.5, 102, 7.9, ° 8.7,

116.9 e
= 9".74.
= 9.7

the sum being 1_16".9, the mean would be

This is not the place to enter more fully into the special uses
of the instrument. We will, however, give a specimen of the
method of registering the readings off by the six microscopes.

Oct. 15, 1812. Position of the telescope 0°.

Stars.

Min.

A,

B.

Therm. |Names of Deg.& Microscopes-
ar. |In.|Ouat. |-

C. | D.

E.

Mean.

N.P. D.

)-12| 51| 53
49
9.131 50 | 47

v Drac.
a Lyrea.

a Aquile.

o/
38 28
51 22
8135

40".2
28.1
56.5

14".5]46".0]41”.2

30.0
58.0

33.5128.0
1.457.2

42".5
27.2
57.4

41".4
29.8
58.6

42”.6
29.4
58.2

o 1 2

38 28 42.6
51 22 29.4
81 35 58.9
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The sum of the seconds, belonging to the six microscopes,
is, in the first row, equal to 255.8; one-sixth of which is 42.6,
the mean. The sum in the second row, is 176.6 : one-sixth of
which (as far as one decimal place) is 29.4 the mean. The sum
in the third row is 289.1: divide by 6, and the quotient is nearly
48.19; but, it is clear, it ought to be 58.19. Now if we look
to the number of seconds under C, which are 1.4, it is obvions
that if we attended solely to that microscope, the number of minutes -
instead of being 35, would be 36, or the north polar distance of
a Aquilz would be 81° 36’ 1”7.4; but, as it is clear, from the
number of seconds ‘belonging to the other microscopes, that the
mean number of minutes cannot exceed 35, we must, in taking
the mean of the seconds, consider 81° 36’ 1”.4, as 81° 35’ 61”.4,
or we must add 60 to the seconds added together in the usual
way, or, which is the more simple way, we must add 10 (=-£60)
to one-sixth of the former result; in which case, the mean
becomes 58.19, or nearly 58.2. In like manner, we must treat
other like cases, should they occur : which, it is plain, can be
but seldom. In some cases it may be necessary to add 120 to
the sum of the seconds: for instance, if the several seconds
were

57.1, 59,5, 1.9, 57.8, 57.8, 57.9, 1.1,

5 X . 35
their sum 1s 235.3, add 120, and the mean 1is

=59.2, or,
by the former rule, (see 1. 15,) °

= (235.9) + 20 = 50.2.

At the head of the plreceding Table of results, (see p. 116,)
is written, ‘ Position of the telescope 0°” For the purpose of
still farther lessening the errors of division, the telescope can be
placed in several positions. When it is at the position 0°, the
telescope is directed to the pole, and the microscope A, which is
the reading microscope, marks-0° : and it is at the positions 10°,
20°, 30°, when, the telescope, in each case, being pointed to the
pole, the microscope A marks 10°, 20°, 30°, respectively.

The mural circle, like the transit instrument, requires three
adjustments.  1st, Its axis must be made horizontal. 2dly, Its
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line of collimation must be made perpendicular to the horizontal
axis. 38dly, The line of collimation must be made to move in
the plane of the meridian.

A simple mechanical contrivance exists for carrying the first
of the adjustments into complete effect. When the axis is made
horizontal, the line of collimation describes a vertical circle : but
it may describe a small vertical circle. 'To make it necessarily
describe a great vertical circle, and a meridional circle, there are
no mechanical means. Astronomical ones must be resorted to :
and even with those, the two latter corrections are not accom-
plished without great difficulty. We may, on this occasion, use
(as it was stated in p. 70,) the transit instrument. When a star
13 on the meridional wire of the transit instrument, so move the
mural circle that the star may be onits middle wire. Next, observe
by the transit instrument when a star, on, or very near to, the
zenith, crosses the meridian : if, at that time, the star is on the
middle vertical wire of the telescope of the mural circle, then its
line of collimation is rightly adjusted. If the star is on the
middle wires of the two telescopes at different times, note their
difference and adjust accordingly *.

The great difficulties attending the verification of the line of
collimation of the mural circle, will always prevent its becoming
a good transit instrument. It acts, however, better in this last
office than the telescope of the mural quadrant, which slides
along the limb of the quadrant, the plane of which cannot be
made to be wholly in the plane of the meridian.

The mural circle is sufficient, as it is plain from its descrip-
tion, to determine, to the extent of 180 degrees, the differences of
the declinations of stars that are to the south and the north of the
zenith of the observer. ' There must be fwo quadrants to effect
the same object.- Besides this advantage (the advantage of a
single instrument) the circle is better balanced, and its six
microscopes, which are firmly fixed in a stone wall, together with
the power of changing the position of its telescope (see p. 116,)

* This adjustment must be conducted by some formula which ex-
presses the relation between the difference of the times, and the inclination
of the line of collimation to the plane of the meridian. i
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must, when we take the mean results of a great number of obser~
vations, do away with, or, at the least, very considerably lessen
the errors of division-and of partial expansion,

But, it may be said, there being no plumb-line to mark the
zenith point, the mural circle is defective inasmuch as it does
not determine the zenith distances of stars : which distances are
necessary to be known, if we would determine the refraction.
The direct and special oﬂlce of the mural circle is to determine
the angular meridional distances of stars. If we extend the
prmmple of its uses, and view the image of the pole star by re-
flection from a basin of qmcksnlver, we obtain the angular
distance between the star and its image. Such angular distance
is twice the elevation of the pole star above the horizon.
Hence its - zenith distance becomes known, and the zenith
distances of other stars; the meridional angular distances of
which, from the pole star, are determined by the Instrument.

Since we can make observations, like the preceding, of the
pole star both in its superior and inferior passage, we can thence
determine (on an assumed law and quantity of refraction) the
height of the pole itself above the horizon, which height (see
p- 10.) equals the latitude of the place of observation.

We cannot with the mural quadrant view the reflected
image of the pole star; nor can we at once, even if we use a
plumb-line, determine by it the zenith distances of stars.. These
distances can only be truly known by knowing the error of colli-
mation. The instrument of itself is unable to determine that
error, and, in aid of its deficiences, we are obliged to have re-
course (see pp. 67, &c.) to a zenith sector.

"This latter instrument, by double observations of a star near
the zenith, one set being made, with the face of the instrument
towards the east, the other with the face towards the west,
determines the star’s true zenith distance (see pp. 63, 67, 68, &c.)
v Draconis is the star that has been most frequently observed at
Greenwich. - If we observe, on any particular day, either with
the mural circle or mural quadrant, that star and other stars, we
obtain their meridional angular distances, or the differences of
their north polar distances. Hence, the zenith distance of
«v Draconis being determined by the zenith sector, the zenith
distances of the above observed stars become known.
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Thus, suppose by observations in 1812, with the north mural
quadrant, that the zenith distances.of oy Draconis, [3 Ursa Minoris,
a Cassiope® appeared to be, respectively,

2’ 20".5, 2326 49".27, 4° Y 41".18;

but, with the zenith sector, the true zenith distance of oy Draconis
appeared to be-

o' 18".5,

the true zenith distances of (3 Urse Minoris, and a Cassiopez,
consequently, were

23° 26’ 47”27, and 4° 1" 39".18.

At the time the instrumental zenith distances are read off,
the quadrant is adjusted to a certain position, by making the
plumb-line (see the figures of pp. 59, 60.) pass over the two
crosses that are on the face of the instrument. It is the office
of this plumb-line to keep the quadrant in a given position; to be
so kept, in order to use observations made of stars when we are
unable to observe <y Draconis. The error of the line of collima-
tion is presumed to be the same when the quadrant is adjusted
by making the plumb-line pass over the two crosses.

But, it is plain, the zenith sector may be used as an auxiliary
instrument to the mural. circle as well as to the quadrant, and we
may determine by their means the latitude of the place of the
observation, and the zenith distances of stars. Thus, by the
mean of a great number of observations made in 1812, at Green-
wich, with the zenith sector, the zenith distance * of -y Draconis
was found to be ~

0° 2 18"5. ... 0 = Ry, see the Figure in the next page.

The north polar distance of the same star, found by the mural
circle, and reduced to the same period, was equal to

38° 29 3"....,. =Pw;
. ZP=Zy4 P~y = 38° 3V 21”5,

* The distance reduced to January 1812. The meaning of Athis
phrase will be explained in the following Chapters.
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the co-latitude (see pp. 9, 10, &c.) of Greenwich. Again, for

all stars north of the zenith, and between £ and P,
Sk = 3P — Px,
for stars south of the zenith,

¢ sk = Pk — 2P,
from which formule, & % may be found, P % being determined
by the mural circle.

'We may use then the zenith sector with the mural circle to deter-
mine the error of the line of collimation in the latter, and thence
to determine the zenith distances of stars. But, if we observe
stars by reflection, we may with the mural circle, and without
the aid of another instrument, determine the latitude of the placé
of observation, and the zenith distances of stars. 'The peculiar
office, however, of the mural circle is to determine the angular
distances of those points at which the several stars pass the
meridian. .

These distances are used in correcting the existing catalogues
of stars, and in determining, to greater degrees of exactness,
their north polar distances. In this use the mural circle need
not, like the quadrant, be brought by a plumb-line, or other
means, to a given position. That operation is superseded by
ascertaining the value of the index error. Thus, if at a certain
period the instrumental polar distance of (3 Urse Minoris
appeared to be

15° 4’ 33".04

¥ — 1710,
and by the catalogue. . ...15 4 34.23
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—1”.19 would be the index error by that star; the mean index
error is the sum of the several index errors divided by their
number. If the position of the telescope be changed, or if the
same number of microscopes (see p. 113,) be not used, the
index error will be different : but whatever it 1s, . it stands in lieu
of, if we may so express ourselves, a mechanical adjustment of
the instrument.

But we may use in the same way, and on the same principle,
the two fixed mural quadrants. With the north mural quadrant
we can observe (supposing Greenwich to be the place of obser-
vation) «y Draconis and other stars to the tiorth of the zenith.
With the south mural quadrant, were its limb an exact quad-
rant, we should be unable to observe ey Draconis: but (see
pp. 59, 60, 64.) the limb being extended a little beyond the
limits of an exact quadrant, we are enabled to observe «y Draconis :
we can also observe with it (for this indeed, is its use) stars to.
- the south of the zenith. By connecting, therefore, the two sets
of observations, by’ means of the intermediate and common star
o Draconis, we can, without the plumb-line, determine the
meridional angular distances of all stars visible at Greenwich.
We may also, as with the mural circle, determine their north
polar distances by the aid of catalogues, and the use of an index
error *,

* It appears from the preceding matter, that neither mural quadrants
nor mural circles are perfect instruments. The directions of their lines
of collimation cannot he found without a zenith sector. Quadrants and
circles with azimuth motions resemble that latter instrument, and are all
capable of determining the directions of their lines of collimation, or of
making observations independent of the errors of collimation. In prin-
ciple then they are much more perfect instruments than fixed quadrants
and circles. - But large instruments are absolutely necessary in the
present state of Astrorfomical Science, and for its future advancement,
and it is difficult to construct large instruments capable of being turned
half way round in azimuth on a vertical axis. Yet Ramsden constructed
for the Dublin Observatory a circle of eight feet diameter turning round
a vertical axis; and it seems natural to presume that such an instrument
must have been defective, since, of late years, its construction has been

abandoned,

Q
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We have in the preceding pages given a description of the
capital Instruments of an Observatory, and which are used for
the making of observations in the meridian. On such obser-

abandoned, and fixed mural circles invented. But, theoretically viewed,
there seem eminent advantages attached to the former instrument.
Within the space of a few minutes it is capable of making a double
observation on a star, one with its face towards the east, the other towards
the west ;" the first before the star is on the meridian, the other after.
Both observations must be reduced to the meridian'by computation from
the intervals of the times at which they were made, and the passage of
the star over the meridian: which intervals may be most exactly known
from the transit telescope and the Astronomical clock. The verticality of
the axis, at each observation, is verified by a plumb-line. It may in
practice be difficult to make 