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PREFACE.

XT may be necessary briefly to state the arrangement
of the present Treatise.

In the first Chapters, I have explained, in a general

way, certain of the obvious Phenomena of the Heavens :

then, with a view of affording the Student the means

of distinctly apprehending the methods, by which, those

Phenomena are observed, and their quantities and laws

ascertained, I have described, although not minutely,

some of the principal instruments of an Observatory.

By an attentive consideration of the means, by which,

in practice, right ascensions and latitudes are estimated

and computed, a more precise notion of those quantities

may, perhaps, be obtained, than either from the terms

of a definition, or from their representation in a geome-
trical diagram.

But, an observation expressed by the graduations
of a quadrant, or the seconds of a sidereal clock, cannot

be immediately used for Astronomical purposes. It must

b
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previously be reduced or corrected. To the theories,

then, of the necessary corrections, I have very soon

called the attention of the Student: since, without a

knowledge of them, he would be unable to understand

the common process of regulating a sidereal clock, or

that, by which, the difference of the latitudes of two

places is usually determined.

The corrections are five ; Refraction, Parallax, Aber-

ration, Precession, and Nutation. The two latter, al-

though they may be investigated on the principles of

Physical Astronomy, are yet, in the ordinary processes

of Plane Astronomy, equally necessary with the pre-

ceding.

To the Theory of the fixed Stars, which includes,

as subordinate ones, the theories of the corrections that

have been enumerated, succeed, the Solar, Planetary,

and Lunar Theories. Of these, the last is, by many

degrees, the most difficult. And, since, in its present

improved state, it is not made to rest solely on obser-

vation, I have been compelled, in endeavouring to

elucidate it, slightly to trespass on the province of Phy-
sical Astronomy.

. %

The Equation of Time, which, essentially, depends

on the Sun's motion, is placed immediately after its

Theory.
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On the same principle of arrangement, Eclipses are

made to succeed the Solar and Lunar Theories. The

method of computing them is that, which M. Biot has, in

the last Edition of his Physical Astronomy, adopted,

probably, from a Memoir of Delambre's* on the passage

of Mercury over the Sun's disk. The traces of this

method, may be discerned in a Posthumous workf, of

the celebrated Tobias Mayer, on Solar Eclipses.

The method just noticed is as extensive as it is

simple. For, it equally applies to Eclipses, Occultations

of fixed Stars by the Moon, and the Transits of inferior

Planets over the Sun's disk. And this circumstance has

determined the places of the two latter subjects, which

are immediately after that of the former.

In the last Chapters are discussed, the methods of

computing Time, Geographical Latitude and Longitude,

and the Calendar.

Such is the arrangement of the present Treatise.

And, since it could not be entirely regulated by the

necessary connexion of the subjects, it has, occasionally,

been so, by certain views, of what seemed, their proper

and natural sequence. It so happens, therefore, that

* Mem. Inst. torn. III. p. 392. (1802).

t Mayer, Opera Incrlita. vol. I. p. 23.
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the more difficult investigations are not invariably pre-

ceded by the more easy. The methods, for instance,

of computing the Time, Geographical Latitude and Lon-

gitude, follow the Lunar Inequalities, Eclipses, Occul-

tations, and Transits; but, since they do not follow by

strict consequence, the latter, if it so suits the convenience

of the Student, may, in a first perusal, be omitted.

I have been solicitous to supply every part of the

Treatise with suitable Examples. For, they are found

to be in Astronomy, more than in any other science, the

means of explanation.

They become the means of explanation for reasons

different from those which operate in other cases. For,

Astronomical Examples are not always the mere trans-

lations of a rule, or of an algebraical formula, or of

a geometrical construction, into arithmetical results.

But, frequently, they are of a different description,

and require the aid of certain subsidiary departments

of Astronomical Science not then the subjects of con-

sideration.

For instance, the difference of the latitudes of two

places is equal to the sum or the difference of the zenith

distances of the same Star. This rule cannot be applied

according to its strict letter; for, when we descend into

its detail, we may be obliged to reduce the observed

zenith distances by four corrections. Consequently, we
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ought either to have previously established, or we must

proceed to investigate, the theories of those corrections.

This instance will also serve to shew, what frequently

happens, that a rule shall possess a seeming facility in

its general enunciation,, which vanishes when we become

minute and are in quest of actual results.

There is, in fact, scarcely any thing in Astronomical

science single, or produced, at first, perfectby its processes.

No series of propositions, as in Geometry, originating

from a simple principle and terminating in exactness of

result. But, every thing is in connexion ; when first

disengaged, imperfect, and advanced towards accuracy

only by successive approximation.

Consider, for instance, the Sun's Parallax. That

essential element is determined by no simple process,

but is, as it were, extricated by laborious calculations

from a phenomenon in which, at first sight, it does not

seem involved. Again, the common method of deter-

mining the Longitude at Sea rests on whatever is most

refined in theory and exact in practice : on Newton's

system in its most improved state, and on the most

accurate of Maskelyne's observations.

The preceding remarks, besides their proper purpose,

may perhaps serve to shew that an Astronomical Treatise,

with any pretensions to utility, cannot be contained
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within a small compass. It ought to teach the Principles

of Astronomy; but it cannot well do that, except by

detailing and explaining its best methods : that is, by

explaining methods such as are practised, and as they

are practised. Now, the methods of Astronomy are

very numerous, and the details of several of them

very tedious.

Some methods are merely speculative ; such as cannot

be practised, although founded precisely on the same

principle as other methods that are practised. For in-

stance, the separation of the Sun from a Star, in a given

time, is equally certain and of the same kind, as the

separation of the Moon from a Star, but since, in

practice, it is not so ascertainable, it cannot be made

the basis, as the latter is, of a method of finding the

Longitude.

The exclusion then of methods merely curious, and of

no practical utility, has been one mean of contracting
the bulk of this Treatise. Another I have found, in

omitting to explain the systems of Ptolemy and of Tycho
Brahe. These do not now, as formerly, require confu-

tation. The spirit of defending them is extinct. They
are not only exploded but forgotten. And, were they not,

it would be right to divert the attention of the Student,
from what is foreign, fanciful, and antiquated, to real

inventions and discoveries of more modern date, and

purely of English origin.
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The present Treatise is not intended to explain

Physical Astronomy and the system of Newton. But,

the discoveries and inventions of Bradley and Halley are

within its scope. Their numerous and accurate obser-

vations and their various Astronomical methods, would

alone place them in the first rank of illustrious Astro-

nomers. But, they have an higher title to pre-eminence.

In point of genius,, they are, after Newton, unrivalled.

The first, for his two Theories of Aberration and

Nutation : the last, for his invention of the methods of

determining the Sun's Parallax from the transit of Venus,

and the Longitude from the Lunar motions.

This Lunar method of determining the Longitude

was not reduced to practice by its author. That it has

been since, is owing to Hadley and Maskelyne. The

first, by his Quadrant, furnishing the instrumental, the

latter, by the Nautical Almanack, the mathematical

means.

This last-mentioned Astronomical Work, for such

it is, and the most useful one ever published, is alone a

sufficient basis for the fame of its author. Besides its

results, it contains many valuable remarks and precepts.

It is a collection of most convenient Astronomical Tables,

and should be in the hands of every Student who is de-

sirous of learning Astronomy ; and who, for that end,

must be conversant with Examples and Tables.
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But, mere precepts and instances will not effect every

thing. In order to remove the imperfection necessarily

attached to knowledge acquired solely in the closet, in-

struments must be used and observations made. The

means of doing this, however,, 'are not easily had ; and,

it is to be regretted, they are not afforded to the Students

of this University. An Observatory is still wanting to

its utility and splendor.



PREFACE
TO THE SECOND EDITION.

_L HE present Edition is, in its plan, like the former.

In matter and manner, however, it is so different that

the Author,, instead of calling it a new Edition, might

have called it a new Work.

It is not worth the while to point out the changes

which the Work has undergone. Few of its readers

will trouble themselves on that point. The fact worth

enquiring about is whether the Work be a good Work,

not whether it be better than that it comes after.

That it is better may be presumed from the very

circumstance of its coming after. Nor can there be

any arrogance in attributing its improved state to the

change that, during the two Editions, has taken place

in the Author's knowledge. The usual effect of time,

in this respect, has not been counteracted. The other

cause which ought to improve a treatise, namely, the

improved state of the science treated of, has, of late, but

slowly operated. Astronomical Science is now, nearly,

the same as it was ten years ago. Having reached a

c
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kind of maximum state of excellence, its changes are

minute and must continue to be so. All great changes

ended with Bradley. He swept the ground of discovery,

and left little to be gathered by those that follow him.

Yet, during the 60 years that have elapsed since

Bradley, it cannot be said, but that Astronomy has

greatly advanced, although not by the aid of discoveries,

such as those of Aberration and Nutation. The aid

has come partly, indeed, from the Observatory, but

principally from Physical Astronomy : which, originating

with Newton, has, under his successors, Mayer, Clairaut,

Euler and Laplace, grown up into an exceedingly great

science.

Of the benefits thence accruing to Astronomy, the

most excellent, by many degrees, are the Lunar Theories

of Mayer and Laplace ; or, as it may be stated, the

Lunar Tables deduced from those Theories, and the

Observations of Bradley and Maskelyne. If we go
back to Halley's time, the improvement in such Tables

will appear most striking. Halley states that, in his time,

the differences between Observations and the results of

Newton's Theory amounted frequently to 5 minutes,

which differences now (if we speak of their mean states)

do not much exceed as many seconds.

Navigation has been made more safe by means of

these Lunar Tables : which, perhaps, is the only prac-
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tical good that Astronomy has conferred on Society.

Its other benefits are philosophical and intellectual.

Should these be held to be of no moment, we might,

perhaps, at the present time, shut up our Observatories,

and live upon the hoards of Astronomical Science. We
are now possessed of sufficient means, as far as Astro-

nomy is concerned *, for determining the place of a

vessel at sea ; and if we would enable the mariner on the

Atlantic or Indian Ocean to determine his place, to

within less than 10 miles, we must provide him with

better means of observation : with an Instrument more

excellent than the Sextant.

But, such is the present ardour for philosophical

pursuits, the duties of an Observatory, instead of ceasing,

are likely to become more arduous. Within a few years

from the present date, an Astronomical Society has

been formed in the Metropolis, and an Observatory

nearly established here. These Institutions indicative,

as we have said, of the spirit of the times, can hardly fail

to augment Science : they will do some good although

perhaps not all the good that is intended to be done

by them.

* The words of the commission that appoints the Astronomer Royal
of Greenwich enjoin him, to apply himself with the utmost care and

diligence to the rectifying the Tables of the Motions of the Heavens,
and the places of the Fixed Stars, in order to find out the so much
desired Longitude at sea, for the perfecting the Art of Navigation.'
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As the latter of these Institutions may, in future

times, become one not merely of local interest, we shall

be excused if we say something farther concerning it.

The good resulting from Observatories, whatever it

may be, practical or intellectual, the founders (if we

may so call them) of the present Observatory are anxious

to secure. Their first and chief object is to have Obser-

vations made as good as they can be made. The

second, to have as many as possible of such Obser-

vations. In order to obtain the first, the best Instru-

ments that Europe can furnish are ordered to be made.

To secure the second object, houses are attached to

the Observatory for the constant residence of the

Observers.

Another object of the Institution is, the instruction

of Academical Students in the use of Instruments, and

in practical Astronomy: an object, it 'should seem, not

incompatible with the former, but secondary and sub-

ordinate. Instruction alone could have been imparted

by means much more simple than those which are now-

put into action.

But good Observations* will not necessarily be made,

* Two circumstances (there may be more) are unfavorable to the

Observatory we are speaking of. One is, the not sufficient
vicinity

to the Artists of London : the other, common to our Island, and the

same as that of which Lacaille complains,
' Constans nimis Parisiis

tempore hiberno nebularum, imbrium et nubium mora, eorumque
tempore aestivo frequens reditus, &c/
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because he, who ought to make them, is obliged to

reside in an Observatory furnished with good Instru-

ments. Something else remains to be done : some

regulation to be made, or motive supplied, to compel

(as it were) Observers to employ, in the duties of an

Observatory, the time they must spend there. To effect

this, there will not be found, perhaps, any means so

simple and efficacious as that of some absolute rule for

printing and publishing annually the Observations, and

for sending copies thereof to the principal Observatories

of Europe. Other Regulations may be suggested to

counteract the proneness of Institutions, like the one

spoken of, to become worse. But they should be simple

and few. Regulations may, indeed, prevent much wrong
from being done; but they rarely create a zeal for the

performance of duties. The minute detail of the hours,

modes, and objects of Observation, would never supply

motives to him who should be insensible to his own

personal reputation, and the honor of his Country and

University.

The augmentations of Astronomical Science have,

with scarcely any exception, come from publick Ob-

servatories : which fact is to be accounted for, from the

excellence of the Observers' Instruments, the constant

discharge of their duties, and, above all, the zealous

discharge of those duties by the influence of publick

opinion. A like moral controul will, probably, operate

here, and serve to carry into effect the enlightened in-
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tentions of the munificent Patrons of our Observatory. It

has not been built merely to prevent its being said that

an University, famous for its science,, was without such

an Institution : nor to add to the title and emolument of

an individual; nor to be used as a kind of Astronomical

toy, and to become the mere resort of leisurely amateurs

and random star-gazers : nor, which is indeed a better

but still a subordinate object, to confirm or correct

results elsewhere obtained, to see, for instance, that

Observations have been rightly made at Paris and

Palermo. The chief object of the Observatory is, by
its own means, to enlarge the boundaries of Science ; to

extend the fame of the University that founds it, is a

secondary one, or rather, will be a sure consequence, if

the first shall be obtained.

Caius College,

Dec. 27, 1822.
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AN

ELEMENTARY TREATISE

ASTRONOMY. <

CHAP. I.

Certain Phenomena of the Heavens explained by the

Rotation of the Earth.

IN an Elementary Treatise on Plane Astronomy, two objects

are required to be accomplished: 1st, The description and gene-
ral explanation of the heavenly phenomena. 2dly, The establish-

ment of methods for exactly ascertaining and computing such

phenomena. Our attention will be first directed to the former of

these two objects.

If, on a clear night, we observe the Heavens *, they will appear
to undergo a continual change. Some stars will be seen ascending

from a quarter called the East, or rising; others descending

towards the opposite quarter the West, or setting. In some

intermediate point, between the East and West, each star will

reach its greatest height, or, will culminate : The greatest heights

of the several stars will be different, but they will all appear to

be attained towards the same part of the Heavens
; which part

is called the South.

If we now turn our backs to the South and observe the

North, the opposite quarter, new phenomena will present them-

selves. Some stars will appear, as before, rising, reaching their

*
Exposition du Systeme du Monde, p. 2.

A



greatest heights, and setting; but, besides these phenomena, other

stars will be seen that never set, and that move with different

degrees of velocity ; and there are some stars that, to appearance,

are nearly stationary. About one of these stationary stars, the

other stars that never set appear to revolve, and to describe circles.

Such stationary star is called the Polar Star: and the stars revolving

round it, Circumpolar.
The Polar Star, that which is usually so denominated, is not,

when accurately observed, or observed by means of instruments,

strictly stationary. It is not, therefore, to be held as the place

of the Pole, which is indeed an imaginary point, always, however,

as we shall hereafter see, ascertainable by theory and observation.

In such point or pole, a star, if we suppose it there placed, would

appear stationary.

Almost all the stars in the Heavens retain towards each other

the same relative position ;
no mutual approach or recess takes

place between them : and accordingly they are called Fixed Stars.

There are, however, certain stars, called Planets, not under the

above conditions, and which continually change their places. The

Sun and Moon also, the two celestial objects of the greatest

interest, are from day to day changing their places in the Heavens.

A spectator at sea, or placed in a level country, may imagine
himself in the centre of a plane, extended equally on all sides,

and bounded by a circular or curved line apparently separating
the sky and sea, or the sky and land. The plane so extended

and bounded is called the spectator's Horizon, and sometimes

the sensible Horizon. It is the boundary of the spectator's view,
and when stars first appear just above it, they are said to rise :

when they sink beneath it, they are said to set. On this imaginary

plane the concave heavens, or the hemisphere of the heavens, may
be fancied to rest.

The surface of the sea is not strictly plane; a few simple
observations are sufficient to shew that it is a convex surface,
the convexity being towards the heavens, and the spectator being
placed on its summit, The preceding definition, therefore, of the

horizon, must be slightly altered : it must now be defined to be
a plane which, at the summit just mentioned, (the place indeed
of the spectator) is a tangent plane to the earth's convex surface,
extended on all sides till it is bounded by the sky.



The convex surface of the Earth is nearly spherical; more

nearly spheroidical : the Earth being, (as it appears probable from

various reasons) a spheroid of small eccentricity. The plane of

the horizon, therefore, is a tangent plane to the spheroid at the

place of the spectator, and a perpendicular to the plane at such

place passes very nearly through the centre of the Earth. The

perpendicular line just mentioned tends, if produced upwards,
to a point in the Heavens called the Zenith. The opposite point
in the line's direction continued downwards is called the Nadir.

If the eye of the spectator were in that plane which has been

defined to be the plane of the horizon, stars would not appear
to have risen whilst they were beneath that plane. But it is other-

wise, if the spectator be elevated above the horizon either by

being on a tower, or eminence, or on a ship; indeed, as mere

elevation above the horizon is the circumstance that modifies the

preceding statement (see p. 2. 1. 28.) his own stature will cause stars

to appear to have risen before they are above the horizontal plane.

Thus if, on the Earth's surface ABD, A be the place of the

spectator's feet, or the bottom of a tower on which he is, A a

drawn a tangent to the surface at the point A> may represent his

sensible horizon. If the eye be supposed to be at A, it cannot

see an object till it is level with or above A a. But if the place

of the eye be transferred to O} an object may be seen if it be level

with or above the line OBb.

The line O B b is a line drawn from the spectator's eye at O
and touching the earth's surface at JB; and the horizon, were

it supposed to be composed of such lines as OBb would be

a conical surface having its apex in O.

The depression of b below a, measured by the angle amb
is technically denominated, the Dip : which, from O A, the eye's

elevation, and the radius of the Earth, may easily be computed.



The tangent plane in which aAb lies, has been called by
Astronomers (as we have seen), the Sensible Horizon : but they

have also imagined, for the purposes of calculation, another horizon

the plane of which, parallel to the former, passes through the

Earth's centre, and is denominated the Rational Horizon. HCht

parallel to aA b, may represent this latter plane. It is plain that

both the Sensible and the Rational horizon are merely relative:

in other words, they must change with a change in the spectator's

place. Of a spectator at A3 a b perpendicular to CAZ is the

sensible, and Hh, parallel to a b, the rational horizon ; and Z is his

zenith. Of a spectator at J5, ed perpendicular to CBZ' is the

sensible, and H'fi, parallel to ed, the rational horizon: and Z' is

his zenith.

Let us consider a little farther the appearances that would take

place, were a spectator stationed at sea, or in the midst of a level

country. Suppose then O (see tig. p. 5.) to represent his station

and SENW the imaginary circular boundary of a plane extended

beneath his feet to be his horizon. If a star rose at A it would

describe a curve above the horizontal plane, and sink beneath it,

or set, at some point a. In like manner another star rising at B
would describe a curve above the plane of horizon, and set at

some point b. But this circumstance also, wherever the stars

A, B were, would always take place ; namely, the equality of a b,

the distance of the points of setting with AB with the distance



of the points of rising. If the arc AB equals the arc a b, then

the chord A a is parallel to the chord JBb: and a diameter such

as SON drawn perpendicularly to A a, and consequently bisecting

it, will be perpendicular to and will bisect all other chords such

as Bb: and will moreover bisect the arcs AS a, BSb, &c. The

points A^ and N determined after the preceding manner are the

South and North points of the horizon, or (as it is called)

the Azimuth circle SENfV. EOW drawn perpendicularly to

SON determines E and W9 the East and West points, which

together with the two preceding form the four Cardinal points.

SENJVhas been called the Azimuth circle, and azimuth distances

are measured from the South and North points. SA is the

azimuth of the star rising at A, Sa of its setting at a.

The complement of the azimuth of a star is its Amplitude:
and amplitude is accordingly measured from the East and West

points. Thus the Amplitude of the Star's rising at A is EA-, the

Amplitude of its setting at a is Wa.
A star rising at A will gradually ascend above the plane of the

horizon till it attains its greatest height; it will then decline, by
like degrees, until it sets or disappears at a. If we conceive

a plane passing through S and N and perpendicular to the plane
of the horizon, then a star rising at A and ascending after the

manner just described will be at its greatest height above the hori-

zontal plane when it reaches the perpendicular plane. The same

will happen to every other star. The greatest heights of different



stars will be different, but they will all be attained to in that plane

which, passing* through S and N, is perpendicular to the plane
of the horizon. The perpendicular plane above described is

called the plane of the Meridian ; because, the middle of the day

happens when the Sun in his ascent above the horizon reaches it.

It is usual to suppose this plane bounded by a circle passing

through S and N, and having therefore the same radius as the

horizon or azimuth circle SENW: which, in fact, is to suppose
these circles to be the great circles of the same sphere.

The meridian intersects (see 1. 2.) the horizon in S and Nthe South

and North points : it must also pass through the zenith (see p. 4.)

and through the pole (see II. ], 2 &c.) Every circle, the plane of

which is perpendicular to the plane of the horizon, is denominated

a Vertical circle. The meridian, therefore, is a vertical circle.

The vertical circle, which passes through E and W the East and

West points, is distinguished by the name of the Prime Vertical.

We have spoken of the risings and settings of stars, such as they
will appear to be to a spectator placed at C the centre of the plane
of the horizon, but, hitherto, we have said nothing, of the intervals

of time elapsed between the respective risings and settings. Now
a spectator in our northern climate, looking towards 5 the south,

cannot fail to remark that a star between its rising at F and

setting aty' is lopger above the horizon than a star which rises at

A and sets at a : which kind of inequality takes place, and in

a greater degree, with every star successively placed between

A and S. But he may also note that every star takes the same

time in passing from its rising through its setting to its rising

again. A star therefore atA is longer below the horizon than a star

at F, and still much longer than a star at E. But a star rising

at E the East point has this peculiarity : namely, that it is above

the horizon exactly as long as it is below. On this account the

great circle in which such star moves is called the Equator.
The phenomena that have been described may be explained

by supposing the concave Heavens, in form like an hollow sphere,

to revolve round an axis passing through the pole and the centre

of the Earth, and in a time equal the interval between two suc-

cessive risings of a star.

Thus, let PCp be the axis, HCh the rational horizon: then

CZ drawn perpendicularly to Hh (see p. 4. 1. 10.) determines Zthe



spectator's zenith*. EQ is perpendicular to Pp and vti, Hg,kl,
m H, h r, (representing the projections of circles to the planes ofwhich

Pp is perpendicular) parallel to EQ. If we conceive the plane of

this diagram to be placed perpendicularly on the plane of the former

(see p. 6.) which was meant to represent the horizon, so as to be

adapted to northern latitudes,, then the plane PEpl will be
the plane of the meridian., E will be the point of the greatest
ascent of a star rising at C, and if we suppose t, s to be the ortho-

graphical projections on the plane of the meridian of the points

A, By then n and / will be the points of the greatest ascents of stars

rising at A and JB. Now suppose the figure to revolve round Pp:
then tn will be proportional to the star's ascent from t, the place
of rising, to n its greater elevation, and tm, every point of which
is below the horizon, will be proportional to the time from the star's

greatest depression (at m) beneath the horizon to its rising at t,

and tm, as it is evident, is greater than tn: again, since CE= CQ,
the time that a star is above the horizon is exactly equal to the

time of its depression beneath that plane (p. 6. 1. 29). A star rising

at .$ will be above the horizon during a time proportional to 2 S /, and

below it during a time proportional to 2 5 k: and, as it is evident,

ZSl is greater than QSk (p. 6.)

Suppose a star to be exactly at H, then it can never set, but

it will be a circumpolar star (see p. 2.) : and such will be all stars

* For the rational horizon is parallel to the sensible.
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situated between H and P. A star placed at P would appear

to be at rest.

Each of the stars of which we have spoken must (from the

very nature of the scheme intended to explain their phenomena,)
consume an equal portion between two of its successive risings :

which portion of time may be called a Sidereal day, and which

it is usual to divide into 24 equal parts, or hours of Sidereal time.

The preceding scheme is intended to shew, that the hypothesis

of the revolution of the sphere of the Heavens round an axis

passing through the poles, will adequately account for all those

common phenomena relative to the risings, settings, ascents^ &c.

of stars which will present themselves to a spectator situated as we
have described him to be. The hypothesis, therefore, is, at the

least, a probable one. There is, however, another hypothesis

equally probable with the former or rather more so, as being

more simple, which hypothesis makes the concave Heavens to

be at rest, but the globe of the Earth to revolve within them,

round an axis, and in a direction from West to East.

Each hypothesis equally explains such phenomena as have been

already described : and since also to each hypothesis the same mathe-

matical explanations and reasonings are applicable, we will adhere

to the one already made use of and its connected diagram, and

deduce some farther results.

The line EQ is intended to represent the Equator, Ik, nm, vu,&c.

which, from the supposition of the revolution of the figure round

Pp, must be parallel to EQ, are called Parallels of Declination.

The decimation of a star is its angular distance from the Equator.
The declination, therefore, of a star, which appears to move in

the parallel k I is kQ (which is the measure of the angle subtended

by kQ at the centre of the sphere); the declination of a star whose

parallel is mn, is mQ or n E: of the circumpolar star at v, vQ
is the declination

;
v P is its distance from the pole, or, as it is

called (P being the north pole) its north polar distance: mp is the

south polar distance of a star at m, the complement, as it is plain,

of m Q the star's south declination. A secondary is a great circle

passing through the poles of that other great circle to which it is

a secondary. Thus HphP, the meridian, is a secondary to the

horizon Hh. The circle P sp&c. is a secondary to the Equator JEQ.

The prime Vertical (see p, 6.) a secondary to the horizon, as indeed



is every great circle passing through Z and a point in Hh : a great

circle, however, of this latter description, is farther distinguished

by being called a Vertical Circle, since its plane, perpendicular
to that of the horizon, is, in other words, vertical.

What Declination and its complement Polar distance are with

respect to the Equator, Altitude and its complement, Zenith dis-

tance, are with regard to the horizon. The former is the star's

angular distance from the spectator's horizon measured on a ver-

tical circle : the latter is the distance from the zenith of the same

spectator. The altitude, for instance, of the Equator, or of a star

therein situated, is Eh: its zenith distance is ZE : the altitude

of a star at ^^, is nh ; its zenith distance is Zn.

Since the sphere, with all the stars supposed to be fixed in its

surface, revolves in 24 hours of sidereal time, the stars situated in

different parallels will appear to more with different velocities.

A star near to P will appear scarcely to move : the velocity of a star

describing v u will be as much less than the velocity of a star situ-

ated in the Equator, as u v is less than EQ: but uv has to EQ the

same proportion as its radius has to the radius of the Equator : or

that proportion which the sine of the angle PCu has to CM: but

sin. PCw=sin. Pw=sin. North polar distance,

or =cos. declination,

If therefore we call V the velocity of a star or point in the Equator,
the velocity of any other star= V. cos. star's declination.

The Hour-angles are those angles at the Pole which, contained

between two secondaries to the Equator, intercept the space passed
B
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over by a star, in any assigned time, either on the Equator or on

a parallel. Thus if a star move from 5 to /, the hour-angle is said

to be sPs or bPb, which is measured by ab, ab being an arc

of the equator. Now aby or the angle b Pa, must be proportional

to the time, for since the point b is, by reason of the sphere's

revolution, transferred from C to Q or through an arc of 90, in

6 hours, it must be transferred from C to b and from b to a, by
reason of the sphere's uniform revolution, in times which bear,

respectively, that proportion to 6 hours which C b, a b, estimated

in degrees, bear to 90 degrees. If a b, therefore, contains 1, the

time through b a, or the hour-angle aPb = ^th
of 6 hours, or

jLths

of an hour, or the value of the horary angle aPb, or sPs is Oh .

06666 &c. or 4m .

The Poles and the Equator, that have hitherto been described,

belong to the celestial sphere ;
but the Earth also has its Equator,

Poles and Axis. Conceive an interior sphere, in the figure of p. 7,

described round C to represent the Earth, then the plane of its

Equator and axis will be such parts of the Equator EQ and axis

Pp as are contained within the sphere representing the Earth and

are terminated by its surface. Or, we may reverse the process and

give to the Celestial Sphere its Equator and Axis, by extending
to \he Heavens the Earth's Equator and Axis.

Places situated on the Earth's surface are said to have Latitude,

which is to be defined, distance from the Earth's Equator. But

the Latitude of a place in its astronomical meaning, or with refer-

ence to its astronomical measure, is an arc of the meridian inter-

cepted between the zenith of the place and the celestial Equator,

or, which is the same thing, it is the complement of the arc which

lies between the zenith of the place and the pole : which latter

arc, therefore, may be called the Co-latitude of the place.

If the Pole Star, that which is usually so called, were exactly

situated in the Pole, the method of determining the latitude

of a place, by means of that arc which is its complement, would

be a very simple one : since the plumb-line determines the zenith.

But the Pole Star being, in fact, a circumpolar star, its angular

distance from the zenith will vary with the time of observation.

Its distance, therefore, cannot give the true value of the co-latitude,

or its distance requires a correction in order to give the co-latitude
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truly. Such method then of determining the latitude cannot be

a very simple one^ and can only be practised subsequently to, and

by the aid of, an improved or refined state of astronomical science.

It is now mentioned for the purpose of giving the student some

general notion of latitude and of the means of measuring it.

If a circumpolar star can be made subservient to the finding

the latitude, any other known star may, and for like reasons. It

is sufficient to measure the angular distance from such star, when
on the meridian, and the zenith, which latter point, as we have

already said, the plumb-line determines ;
that is, it is that point

in the heavens to which the plumb-line, if we imagine it to be

continued upwards, is directed. The polar distance of the star

is known (since that condition is implied in the expression of known

star), therefore the co-latitude of the place (PZ in the figure

of p. Q.) is either the star's polar distance minus the meridional

distance of the star from the zenith, or the star's polar distance

plus the star's distance from the zenith. For instance, if the star

be at /.

PZ=Pl-Zl
if situ, PZ= Pu+Zu.

It is easy to shew, on grounds like those that have been laid

down, that the difference of the latitudes of two places may be de-

termined simply from the distances of the same star from their



repective zeniths. Thus, if the star *y (fig. p. 9.) should lie

between Zt Z', the two zeniths,

= (90 P#) - (90 PZ)
= lat. of Z' ~ lat. of Z

in which operation it is not necessary to know the declination

of the star y.

Suppose the star 7 Draconis should be 2' 4".9 North of the

Greenwich Observatory, and 19' 23".3 South of the Observatory at

Blenheim, then ZZ' = Zy+ Z'y
= 2' 4".9+ 19' 23".3 = 2l' 28".2

the difference between the latitudes of the two Observatories:

consequently if the latitude of one Observatory were known, that

of the other might be determined : for instance, if the latitude

of Greenwich be taken at

51 28' 40",

that of Blenhein must equal

51 28' 40"+ 21' 28".2 = 51 50' 8".2.

As a second instance, if the zenith distance of y Draconis from the

Dublin Observatory on January 1, 1818, be 1 52' 20".7, then the

difference of latitudes between the two Observatories of Green-

wich and Dublin is

1 52'20".7 + 2' 14".9= 1 54' 35".6,

supposing the distance ofy Draconis from the zenith of Greenwich

to be, at the same time, 2' 14".9.
*

There are other methods explicable, as to their general nature,

even in this early stage of our progress, that may be used in deter-

* We have taken what were, nearly, the mean or reduced zenith

distances of7 Draconis from the two Observatories at the beginning of 1818.

It will appear, and fully, during the progress of the work, why the zenith

distance of a star does not always remain the same at the same place.

The star 7 Draconis is continually approaching the zenith of Greenwich,

and receding, by equal quantities, from that of Dublin.



13

mining the latitudes of places. For instance, if we determine the

respective zenith distances of two known stars at two places, we

may deduce the difference of latitude of those places. In point

of theory it matters not where the stars, relatively to the zeniths

of the places of observation, are situated : but the excellence

of the practical method depends on this circumstance, that the

star observed should be near the zenith of the place of observation :

for, in such a case, one great cause of inequality, namely, the

refraction of the air, would be nearly rescinded, and the accuracy
of determining the difference of latitudes would rest on the ascer-

tained or ascertainable difference of the declinations of the two stars.

In this first chapter we have advanced, very little beyond the

general description of the ordinary appearances of the Heavens,
and their explanation on the hypothesis of the revolution of the

starry sphere. The revolution of that sphere (the Primum Mobile

as it was called) from East to West, with the supposed quiescence
ofthe Earth, will account for the risings, settings, durations of ascent

and descent of the stars equally well (and we may add, on the

same principle), as the rotation of the Earth round its axis from

West to East, the Heavens being supposed quiescent. The first

is the most obvious hypothesis, the latter, when more closely

viewed, the most simple hypothesis. The stars seem to move round

us
;
but when we consider the prodigious velocity with which, by

reason of their immense distance (a point easily made out) they

must revolve, we are disposed to search out for and to adopt some

other hypothesis that is free of so revolting a circumstance.

There is, indeed, no summary proof to be given of the truth or

falsehood of either of the hypotheses. One, for several reasons that

will hereafter appear, is much more probable than the other.

Indeed the hypothesis of the revolution of the sphere is inadequate,
as astronomical science now stands, to solve all the phenomena.
We must, however, be content, at present, to take for granted

the truth of the hypothesis of the Earth's rotation. If it continues

to explain simply and satisfactorily, other astronomical phenomena
than those already noted, the probability of its being a true hy-

pothesis will go on increasing.
We shall never indeed arrive at a term when we shall be able

to pronounce it absolutely proved to be true. The nature of the

subject excludes such a possibility.
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We will now proceed to notice some other phenomena different

from those that have preceded and not explicable solely on the

hypothesis of the Earth's rotation. They need not, however, be

considered as overturning that hypothesis. It will be more

simple to consider that hypothesis to be established, and the

new phenomena as indicating the necessity of some additional

hypothesis, or the existence of certain circumstances of motion

and translation that take place contemporaneously with the

Earth's rotation and consistently with it.



CHAP. II.

On the proper Motions of the Earth, Moon, and Planets.

IN the preceding Chapter the phenomena described and ex-

plained are chiefly phenomena of stars called, from their pre-

serving the same invariable distance from each other, Fixed Stars.

Their risings, settings, the times of their elevation above the

horizon, of their depression beneath it, are easily explicable, as

\ve have seen, on the hypothesis of the Earth's rotation round an

axis inclined, in our latitude and in every habitable latitude, to

the horizon.

There are other heavenly bodies, the Sun, the Moon, and the

planets, that assume only in part, or nearly, those appearances
that belong to the fixed stars. The Sun, for instance, if he

should rise at the same point in the horizon, which a fixed star

rises in, would set in the evening, nearly where the star sets. The

length of day would not seem to differ from the time of the star's

ascent above the horizon : and his meridian height, would, to

common observation, appear to be the same as that of the greatest

elevation of the star above the horizon. The same circumstances

would appear to take place with the Moon and Planets. But

minute differences are not to be detected by common observation.

The Sun and star, if they rose exactly at the same point of

the horizon, would not pass the meridian exactly at the same

point. On any day between the middle of winter and the middle

of summer, the Sun rising where the star rises would pass the

meridian in some point above the star's passage : during the

other half year, in some point below. But in order to distinguish

these circumstances some nicety of observation is requisite.

If, however, we examine a star and the Sun, or a star and one

of the planets for a longer interval than a day, their separation or

their approach, which is perpetually taking place, will become

manifest even without the aid of instruments.

Suppose, for instance, at the beginning of March, that we
observed the Sun and a star to rise at the same pointF (fig. p. 5.)

of the horizon : they would set nearly at the same pointy* and
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cross the meridian nearly at the same point. The next day the star

would still rise at the same point P, but the Sun would rise at

some point between F and E, would set at some point between

f and Wt and would pass the meridian above the point of the

star's passage. The like would happen on each succeeding day.

The Sun would rise nearer and nearer to the east, would set

nearer to the west, and pass the meridian more and more above

the Star. In about C20 days from the time of the first observation,

the Sun would rise in the east (at E) set in the west at W, and

reach a meridional height equal to the co-latitude of the place of

observation. After that time the Sun would rise between the

east and north points of horizon (E and IV) and set between the

west and north (W and N) till about the end of June, at which

time, having, reached his extreme intermediate point of rising

between E and N, and his greatest meridional height, he will

begin to reiterate his course of risings and meridional heights,

and passing the term from which we began (see 1. 1.) to date

them, he will reach, between E and S, his farthest point of rising

from E, will ascend to his least meridional height*, and again

begin to regress.

If we take a line MM' and erect on it perpendiculars ME,
me, m'e

1

, &c. to represent the Sun's meridional heights on suc-

cessive days, ME representing the height on the day when the

E'

Sun rose in the east, n S his greatest height on the day when he

rose on a point of the horizon nearest the north, &c. then the

curve passing through the meridian Sun, during the year, will

be of the form ESk WE, the part KWE' being similar to ESK.

* Either on that day or on the preceding.
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If we go no farther than the preceding instance, it is clear,

if the stars be supposed to be fixed and their phenomena ac-

counted for by the rotation of the Earth, that the phenomena just

described as appertaining to the Sun cannot be so accounted for
;

they plainly indicate the Sun to have a proper and peculiar

motion, or, which we shall find to be the same thing, the place of

observation (meaning thereby the Earth) to have a proper motion,

or, one distinct from the conversion of the Heavens. But it is

easy to make other observations that shall plainly indicate a

proper motion in the Sun, and shew the necessity, if we would

explain the phenomena, of correcting or of adding to the hypo-
thesis of the Earth's rotation : which cannot be the sole hypothesis.

As a second instance, leading to the same inference as the

former, let us take that of the Sun and a star when they set

nearly together. Suppose, on a particular day, that we observe

a certain star to set a little after the Sun. On the following day
and on each successive day, the star's setting will follow more

closely that of the Sun : till their proximity will become so close

as to cause the light of the former to fade away and to be ex-

tinguished by the effulgence of the latter : the star, therefore, for

some time, will disappear ; but, if, after a few days, we direct our

view to the rising Sun, we shall perceive the star emerging, as it

were, from its beams, and, after this, on succeeding mornings,

preceding, by still greater and greater intervals, the Sun in its

rising.

The latter part of the phenomenon, which we have just

noticed, namely, that of the star's rising just before the Sun, is

technically called the Heliacal rising of the star. There are only

certain stars that can so rise, and that only at particular times of

the year. Their heliacal risings, therefore, must be indicative of

those times. It was by such observations that the rude notions

of antiquity recognised the seasons, and regulated the labours of

the year *.

The phenomenon which we have last described indicates, like

the former, the Sun to have a proper motion among the fixed

* The Egyptians looked for the inundation of the Nile at the time of

the heliacal rising of Sinus, or, as they called it, of Thoth the Wateh-

Dog.



18

stars : towards those stars that set after him mudfrom- those stars

that rise before him : which are circumstances of the same kind,

or indicate the same direction of the Sun's motion. The Sun's

motion, however, although, as it has been described, is first towards

a certain star, and then, having passed it, from it, is not made in

a direction either the same as that of the star's parallel (see

p. 8, 1. 26, &c.) or parallel to it, but in some oblique direction :

which indeed may easily be collected from those circumstances

which were described in pages 15, 16. as belonging to the first

phenomenon. For it was there shewn, by noting the points of

the horizon at which the Sun rose on successive days, that the

Sun has an horizontal motion, or, as it is technically called

(see p. 5.) a motion in azimuth; and, also, by noting his me-

ridional heights on those days, that the^ Sun has a motion per-

pendicularly to the plane of the horizon : which two motions so

detected must be the parts of a compound oblique motion.

The apparent motion of the fixed stars is from east to west : the

real motion of the Earth (according to the preceding supposition,

(see p. 13.) which causes the former apparent one, from west to

east, and, in our hemisphere, to a spectator looking towards the

south, from the right hand to the left : and in the same direction,

that is, from the right towards the left, or from the west towards

the east, is the Sun's proper motion.

The fact of a motion of the Sun from the west to the east is

sufficient to explain why certain remarkable stars and groups
of stars, called Constellations,, are seen in the south at different

hours of the night during the year. For, the hour depends

solely on the Sun : it is noon, when he is in the south. Stars

.directly opposite to him are, therefore, by the rotation of the

Earth, brought on the meridian at midnight. But the stars on the

meridian at 12 one night, cannot again be there, at the same hour,

on the succeeding night : for, the Sun having shifted his place

a little to the east, the stars before opposite to him are now

opposite a part of the Heavens to the west of the Sun : that is,

they must come on the meridian a little before midnight : and on

succeeding nights more and more before midnight. It thus

happens then that every star is, during the year, on the meridian

at all the hours of the four and twenty. There are some stars

indeed that may be on the meridian, and yet, by reason of the

Sun's brightness, may not be discerned there.
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If we apply to the Moon the same kind of observations that

have been described to be used for detecting the Sun's motion,

we shall find the Moon to move, by a proper motion, amongst
the fixed stars towards the same parts, (that is, in a general way
of speaking, from west to east) as the Sun, but with greater

rapidity and not by similar and regular changes of place, whether

we consider the azimuthal or the meridional changes, (see

p. 18.)

For instance, the Sun's annual path traced out in p. 16.

will be nearly the same every year. But a path so traced out for

the Moon, during one of her revolutions, would not be her path
in her next revolution round the Earth. The Moon, therefore,

has a proper motion of her own and not similar to the Sun's :

we may go farther and state that, as far as we can judge from

common observations, the two motions are unconnected, or there

is no single principle which will account both for the one and

the other.

Besides the Sun and Moon there are certain other stars which

have their proper motions : and motions so peculiar and irregular

as to have procured to the stars possessing them the denomination

of Planets. They sometimes appear to move, like the Moon,
towards the east : at other times, however, towards the west ;

and there are conjunctures, when, during several successive

nights, they appear nearly stationary. It will be seen hereafter

that there is no real difference between the direction of the

planets' motions and that of the Earth.

If the spectator be supposed to have taken his stand at the

Sun, he will view the Earth as one of the planets, and, then, all

the planets constantly moving in the same direction. That they

sometimes appear stationary, and, at other times, retrograde (that

is, moving in a direction contrary to their usual one) is to be

attributed to the motion of the Earth, which motion combined

with that of the planets, causes them, under certain circum-

stances, to appear to move otherwise than they are really moving.
The retrogradation of a planet is a phenomenon partaking some-

what of the nature of an illusion.

The motions from west to east that we have spoken of, take

place and must be combined with that diurnal motion from east

to west, which arises from the rotation of the Earth. This latter
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motion is so great, that, as it were, it overpowers the former, and,

with an inattentive spectator, prevents it from being observed.

Even the Moon, which of all the planets has the swiftest proper
motion towards the east, shifts her place in the course of a day

by not more than 13; whilst, by the rotation of the Earth, she

is seemingly carried in the same time through 360. There are,

however, conjunctures when we cannot but recognise her proper
motion

; when, for instance, the Moon is near a star previously

to an occultation : for moving over a space equal to her diameter

in an hour she then visibly approaches the star.

As the stars which are fixed seem to move by reason of the

Earth's rotation, so the Sun, which is, in fact, stationary, seems to

move by reason of the Earth's revolution round him. But it

makes no difference either in the explanation of phenomena, or in

the deduction of such results as belong to the subject ;
whether

we suppose the Earth to move round the Sun, or the Sun to

move round the Earth. A spectator at E sees the Sun S in the

heavens at the place X . Transferred to =*= he sees the Sun in

<Y The Sun appears to him to have moved from K to <Y> :

the same appearance as that of a real translation of S from X
to T

Of the Solar System, composed of the Earth, the Moon, the

Planets, their Satellites, and certain stars more erratic than the

planets, and called Comets, the Sun, the chief body, occupies
the centre. Round the Sun, in their order, at different distances,

and in different periods, revolve Mercury, Venus, the Earth,



Mars, Vesta, Juno, Ceres, Pallas, Jupiter, Saturn, the Georgium
Sidus.

These planets Astronomers have distinguished (as they have

also the Sun and Moon) by appropriate symbols : thus

The Sun ........

Mercury ........ $

Venus .......... $

The Earth .......
Mars...... . . , . .

Vesta ..........
]

Juno .......... f

Ceres

Pallas

Jupiter
Saturn

The Georgium Sidusl

orHerschel. j

The Moon . .

Mercury, Venus, Mars, Jupiter and Saturn, are what are

called the old Planets, discernible by the naked eye, and conse-

quently known to the antients *. The Georgium Sidus, (or in

order to give it what the others have, a mythological denomina-

tion, Uranus) was discovered in 1778 by Dr. Herschel, and

therefore, it is frequently called by Foreigners, the Herschel.

The other four planets Vesta, Juno, Ceres, Pallas, (at first fan-

tastically called Asteroids) have been discovered since 1801, the

first and fourth by Olbers, the second by Harding, and the third

by Piazzi. The latter new planets are extremely small and

cannot be seen without a telescope, which is the case also with

the Georgium Sidus, not indeed by reason of his small size, but

of his great distance.

The system which has been briefly described is sometimes

called, from its author Copernicus, the Copernican. The charac-

teristical point, it must be noted, in his system is the placing the

Sun, as an immoveable and the chief body, in the centre of it.

In the next Chapter we will consider whether, on the pro-

posed hypotheses and the established facts, we are able to

account for the vicissitudes of seasons and the different durations

of day and night. The only thing aimed at will be something of

* Maxume vero sunt admirabiles motus earum quinque stellarum,

quae falso vocantur errantes, nihil enim errat, quod in orani aeternitate

conservat progressus et regressus reliquosque motus constantes et ratos.

Cic. de Nat. Deorum, Lib. II. 19, 20.
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the nature of a popular explanation, probably accounting for the

phenomena, on hypotheses that are simple and consistent with

themselves. Independent and rigorous demonstrations belong not

to the present subject of enquiry : as far indeed as the establish-

ment of systems and the verification of hypotheses are concerned.

The purely mathematical demonstrations which are subsidiary

are, indeed, as true in Astronomy as in any other science : but the

theory they have acted in aid of, they may have vainly propped,
and it may be false. A theory if false may be proved to be so

by one instance : whereas the truth of a theory can hardly ever

be easily or soon established.



CHAP. III.

On the Vicissitude of Seasons, and of Day and Night.

THE daily rotation of the Earth round its axis, and the annuaF

revolution of the Earth round the Sun, are the two hypotheses

"which, in the preceding Chapters, have been found adequate to

explain several of the ordinary phenomena of the Heavens. A
condition attending the former hypothesis is that the axis of the

Earth always preserves its parallelism. For the polar star is

always (to common observation at least) quiescent, and the cir-

cumpolar stars always describe circles of the same magnitude.
A condition attending the second hypothesis is that the path of

the Earth's circuit, or its orbit, lies in one plane : since the points

of the Heaven in which the Sun, during the year, is successively

seen, lie in one or the same plane.

If the Earth's axis of rotation were perpendicular to the

plane of its orbit, the planes of the equator and of the orbit would

be coincident. The Sun would always describe the^ same

parallel of declination
;

if he rose once at the east point E, (see

fig. pp. 5 and 7.) he would always rise there, his apparent
diurnal course would be always in the equator, and his annual

course would be amongst those fixed stars which lie in the celestial

equator. But we have seen (pp. 15, &c.) that this is not the

case
;

his annual course is made obliquely to the equator, or,

since it is made in the same plane, the plane of his orbit is in-

clined to the plane of the equator, and (which is only to repeat

the same thing in different words) the axis of the Earth is inclined

to the plane of the Earth's orbit.

This point enables us at once to explain the vicissitudes of the

seasons, and the different durations of day and night, as depen-
dent on the combined circumstances of the time of the year and

of the latitude of the place.

Let S be the Sun, E the Earth in three positions 1, 2, 3, of

her orbit
; let also Pp be the Earth's axis, EQ the equator, and

PAQp must be conceived to be a section of the Earth perpen-
dicular to the plane passing through the orbit EEE ;

so that



PAQp will be opposite to the Sun, and to a spectator at A

will be a meridian *. The axes Pp are drawn parallel to each

other in the three positions.

Let us first consider the position marked 1, in which the angle

SEP is the greatest possible. The spectator, situated in a

northern latitude, is supposed to be at A : his zenith at Z, and

his rational horizon will be Hh, Hh being perpendicular to EZ.
The Sun in this position, as it is plain, is the most below the

equator EQ, and least above the horizon when on the meridian
;

*
Diagrams in Astronomy are not only imperfect representations,

since solids are to be represented in piano, but, with regard to proportion,

preposterous representations of the things they ought to exhibit. The

first is a real evil, the latter a very slight one ; for, the demonstration in

the text is equally clear whether E2 be the half or the double of what it

is in the above Figure, it is in fact, independent of the represented relative

proportion of E2 to SE; yet, the former is to the latter, in fact, as

1 to 22984, and not, as in the Figure, as 1 to about 3 or 4. The first

evil, however, if we do not recur to schemes of solid representation, admits

of no remedy, except from the student's attention. The orbit 1, 2, 3,

must be conceived as viewed obliquely, and then PAHp to be perpendi-

cular to it. Or, if the orbit be conceived coincident with the plane of the

paper on which it is drawn, then the plane passing through PAHp is per-

pendicular to the paper.



and, according to the construction of the diagram, the Sun is on

the meridian of the spectator A. The position 1, corresponds to

that case of p. 16, in which the Sun rose between the east and

south points at his farthest point from the east.

In this position of the Earth, a plane drawn perpendicular to

SE, at the point E, would divide the Earth into two hemispheres,
one illumined, the other in darkness as it is represented in

Fig. of p. 29
' the south pole (p) being in the former, the north pole

(P) in the latter. In this case, since the boundary (df) of light

and darkness falls between A and P, it is clear that the spectator
at A would, by the rotation of the Earth round P/>, be transferred

from A to c in a less time than he would be transferred from c

to a: but 2Ac is proportional to his day, Qca to his night.

Again, since 2A k is proportional to 12 hours, the duration of

the day (2Ac) would be less than 12 hours, and the duration of

the night (2 cfl) greater than 12 hours, and the difference would

be measured by 2cAr.

This difference is easily computed in any given latitude :

through c draw PCM, a quadrant of a secondary to the equator,

then, by similar figures, mE bears to QE the same proportion as

ck bears to Ak : now, in the right-angled spherical triangle cEm,
we have

cm = QA = (see p. 10.) the latitude of the place,

/.cEm = 90 SEQ = co-declination of the Sun,

whence by Naper's Rule, (see Trig. ed. 3. p. 146.)

rad. x sin. mE = co-tan. cEm x tan. cm
=s tan. 's dec. X tan. lat.

Suppose, for instance, the latitude of the place to be 51 52'

and the Sun's declination (which must be his greatest south de-

clination) to be taken equal to 23 28', then we shall have

log. tan. lat. (51 52') 10.10510

log. tan. dec. (23 28') 9.63761

.'. 10 -f log. sin. mE = 19.742? 1

/. (by the Tables) mE = 33 34' 20", nearly,

and (15 being equal 1 hour) in time. . . = 2h 14m 17% nearly;

D
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consequently, the length of the day = 12
h 4h 28* 34*

= 7
h 31m 26s

,

and the length of the night = 16 28 34.

We may also arrive at this result by means of a diagram

like the present. Thus, let Z be the zenith of the place, take

ZQ = 51 52' and draw QJE, representing the equator, through the

centre; also Q7kf=23 28', and draw Mvm parallel to QE :

then Mvm (see p. 8.) is the Sun's parallel of declination :

and (Hh being the horizon drawn perpendicularly to ZE) QMv
measures the time the Sun is above the horizon (Mm mea-

suring 12 hours), or QQt measures the length of the day, and

2QE + 2tE the length of the night, 2QE measuring 12 hours :

in order to find 2 E, the difference of day and night, we have by

Naper's Rule,

rad. x sin. tE = cotan. L tEv x tan. tv

= tan. ZEQ X tan. QM
= tan. lat. x tan. 's dec.

as before (see p. 25.)

At the point v, which is the intersection of the parallel of

declination Mvm and of the horizon Hh, the Sun rises. In the

case which we have taken, it is the point of the Sun's rising that

is farthest from the east towards the south (see p. 16.). Its

distance from E may be computed by solving the right-angled

triangle t Ev thus:



27

By Naper*, r X sin. tv = cos. lat. x sin. Ev,

log. r-h log. sin. 23 28' 19.6001 1

log. cos. 51 52' 9-79063

log. sin. Ev = .w/|. s?u- . . 9.80948

.'. Efl= 40 9' 25".

- In the position (3), which is diametrically opposite to (1), the

Sun, (since the axes Pp, Pp are parallel to each other) is as much
above the equator as he was below in the position (1). If there-

fore we were to draw, as before, a plane passing through E and

perpendicular to SE, it would separate the Earth into two hemi-

spheres, one illumined by the Sun, the other deprived of his light :

but, in this latter case, the north pole P would be as much
within the illumined part as the southern pole p was in the posi-

tion (1).

The length of the day, therefore, will be what the length of

the night was in the position (1), and vice versa : and the Sun
in rising will now rise between the east and the north points, and

as much towards the north, as in the position (1) it rose towards

the south. This scarcely needs any proof; a proof, however, if

required, might easily be had by the aid of the diagram already

used. Thus take NQ equal the Sun's greatest northern decli-

nation, and draw Nun parallel to the equator QE: then the Sun

will rise at M, and, in order to find Eu, we have (supposing a

secondary to the equator to pass through u\

rad. x sin. O *s dec = sin. Eu X sin. QEH,

or rad. X sin. 's dec. = sin. Eu x cos. lat.

the same equation as that given above, for determining Ev ;

.'. since NQ = QM, Eu = Ev, and consequently the arc Eu, or

the Sun's amplitude, (see p. 5.) equals 40 9' 25".

The instances taken have been those, in which the Sun is

most below and most above the equator : but the scheme will

serve for other positions of the Earth : and, the computations for

the lengths of day and night, and for the distance from the east,

*
Trigonometry, p. 146*.
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will be similar : since, instead of 23 28', we have only to sub-

stitute some other number of degrees, representing the decli-

nation.

In the position (2), the Sun is neither above nor below the

equator, but in its plane produced. In the preceding diagram,
Q would be the Sun's place : and the parallel described in 12

hours would be Qq, and, EQ being = Eq*, the days and nights

would be equal. The position (2) represents the Earth in spring.

In the preceding instances we have supposed the spectator

situated in some northern latitude between P the north pole and

Q the equator. If we suppose him transferred from A (see

fig. of p. 2Q.) towards Q, the zenith Z, which is always in EA
produced,, will descend towards the equator, and the point h (Hh

being always perpendicular to EA) will approach to P. When
A reaches Q, or when the spectator is at the equator, h and P
will coincide, and the axis of the Earth will lie in the spectator's
horizon. The diagram, therefore, of p. 26, will now assume

the following appearance, i which the parallels of declination

Mm, Nn, always bisected by Pp, are now bisected by Hh. In

other words, the Sun (if Mm, -Nn represent his parallels of de-

clination) will, whatever be his declination, remain as long above

as below the horizon : or the days and the nights of a spec-

*
g is omitted (Fig. p. 26.) in the point where QE produced cuts the

circle
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tator at the equator consist, whatever be the season, each, of 12

hours. If Mm, Nn represent the parallels of decimation be-

longing to stars, then the inference is that every star is as long
above as below the horizon, and that there are no circumpolar
stars.

If the spectator, instead of moving towards Q, move towards

P, the arc A c which represents, or relatively measures, half his

day, will decrease : At the point d, the spectator will be in

darkness during the 24 hours *
: but, since the figure is con-

structed for the greatest southern declination of the Sun, the

above circumstance, namely, that of a night's duration of 24

hours, cannot take place either on a preceding or a following day :

since, in either case, the Sun's declination, being less than his

greatest declination, will cause the boundary of light and dark-

ness to fall a little within the point A (the place of the spectator)

and P.

Between d and P the spectator will be always within the

darkened hemisphere, an&, at P, the zenith and pole will coincide,

as will the equator and horizon : the following diagram will

represent the circumstances of the spectator's situation, which it

will represent not only when it corresponds to fig. 1, (see p. 24,)

that is, for the greatest southern declination of the Sun, but for

any other declination. Thus, it must be continual night whilst

* IfEQ=23 28', PEd=23e
28', which angle, if the spectator be

at c?, is the complement of his latitude. Consequently, in latitude 66 32',

on the shortest day, there is no direct light from the Sun. He would at

noon just appear on the south point of the horizon.
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the Sun describes any parallel beneath QHh, or whilst the Sun is

QH

to the south of the equator ;
and continual night, when the Sun's

declination is northern. A spectator then, if we imagine him

in such an extreme situation, would, during one half of the year,

experience continual day, and, during the other half, continual

night.

We have spoken (see p. 26.) of the Sun's describing a

parallel of declination, which expression is not strictly correct :

since the Sun's declination, which is perpetually changing, will be a

little different at the end of 24 hours from what it was at their

beginning. If the Sun is ascending from the equator towards the

north, he will be higher above the horizon of the spectator at the

north pole at the end of 24 hours than at the beginning. Instead,

therefore, of describing a parallel to the horizon (the horizon and

equator in this instance are coincident) he will describe a spiral,

and, in such a curve, he will appear continually ascending above

the horizon till he has reached his greatest northern declination.

From that summit he will, by like steps, descend, during a quarter
of a year, or thereabouts, to the horizon and equator.

But if the Sun does not describe an exact parallel to the

horizon of a spectator situated at the pole, a fixed star does.

Every star, in fact, that is then visible, is a circumpolar star :

equally elevated above the horizon wherever viewed ;
a spectator

in fact, placed exactly in the pole has neither a meridian nor any
cast and west points.
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Whatever be the circumstances relating to the durations of

light and darkness which a spectator experiences in a northern

latitude, when the Sun has a south declination, the same will a

spectator, situated in a corresponding southern latitude, experience
when the Sun has a corresponding north declination. Or the

durations of day and night, when the Sun has a certain declina-

tion, will become reciprocally the durations of night and day
when the Sun has an equal contrary declination. Thus, the Earth

occupying the position (3) (in which the Sun is supposed to be at

his greatest northern declination) the length of the day to a

spectator in north latitude 66 3%' (see Note to p. 2Q.) would, on

his longest day, be just 24 hours. The Sun, at midnight, would

just cease to be visible on the north point of the horizon.

It has appeared (see p. 26.) that PEd= SEQ =23 28'

when the Sun is at his greatest northern declination. Draw from

d (fig. p. 29-) a parallel db to the equator, and also a similar parallel

from the pointy*: the parallels or small circles thus determined

are denominated respectively the Arctic and Antarctic circles, or

generally the Polar Circles. The distance of the former from

the north pole, and of the latter from the south pole, is equal to

the Sun's greatest declination.

The vicissitudes of seasons, inasmuch as they depend on the

durations of day and night, have been explained from the revo-

lution of the Earth round the Sun, and from the rotation of the

Earth round an axis constantly inclined at the same angle to the

plane of the Earth's orbit. If the Sun be the source of heat as

well as of light, then heat will be imparted to an inhabitant of a

northern latitude, during a less time in the position (l) than in the

position (3). But, besides this circumstance, the Sun's rays fall

more obliquely on A in the position (1) than in the position (3),

for in (I) z SEA = L AEQ + z SEQ,
and in (3) L SEA = z AEQ -SEQ.

This, in some degree, will account for the differences of tempera-
ture experienced by the same spectator at different seasons of the

year; and one of the causes previously assigned, namely, the

degree of obliquity of the Sun's rays, will explain why the regions

near the equator are, cateris paribus, hotter than the more remote.

The distinction of the Earth's surface into climates and zones has
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been long made. Within two parallels of declination, each distant

from the equator 23 28', and called Tropics, the Torrid Zones

lie : the Frigid Zones lie within the arctic circle and north pole,

and the antarctic circle and south pole. The Temperate Zones are

included within the tropics and the polar circles.

The above must be viewed merely as general and arbitrary

divisions. We cannot affirm a place not to be cold solely because

it is within the temperate zone. Local causes have vast influence.

The temperature of the air at a place is not proportional solely to

the place's latitude and the Sun's declination and distance*.

* We have not supposed hitherto the Sun's distance to be variable,

which it is.



CHAP. IV.

On the Phases and Eclipses of the Moon.

IF, in arranging the heavenly phenomena, we had purposed
to give precedence to those which were either more obvious or

which excited greater curiosity, we ought to have considered the

Moon previously to the Sun and the planets. The proper
motions of the latter, and their other phenomena, do not obtrude

themselves so forcibly on our notice, as those of the Moon.

Venus, to unassisted vision, always appears to shine with a full

orb : but viewed through a telescope she assumes, like the Moon,
her several Phases, and shines with an orb more or less deficient.

The Earth, as it was stated in p. 20, moves round the Sun.

The Moon also (such is the doctrine to be laid down) moves

round the Earth but, in an orbit, the plane of which is not co-

incident with, or parallel to, the plane of the Earth's orbit. If to

these we add another condition, namely, that the Sun illuminates

the Moon, and that the inhabitants of the Earth perceive the

effects of such illumination, we shall possess the means of ex-

plaining why, at some times, the whole face or disk of the Moon
is luminous, whilst, at other times, only portions of it are : we

shall, in other words, be able to explain the Moon's Phases.

Let M, M', M" be three different positions of the Moon in

M

her orbit, and let the dotted curve line represent the outline of a

E
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portion of the plane of the ecliptic, which plane we must sup-

pose inclined to that of the Moon's orbit. JE is meant to

represent the Earth, and the Sun is supposed to be so far distant

that lines from it to M, M', M", &c. and E may, for small

portions near those points, be held as parallel. Nn is the line

of the nodes, that is, the intersection of the plane of the Moon's

orbit with the plane of the ecliptic, or the plane of the Earth's

orbit round the Sun. Now Ss is the direction of light issuing

from the Sun to illuminate the Moon : suppose the Moon to be

a sphere ;
then a plane, passing through its centre and perpendi-

cularly to Ss, would divide the Moon into two hemispheres, the

convex surface of the one being bright, that of the other dark. But,

except in certain positions, a spectator at E will see only part of

the illumined hemisphere. Divide the Moon into two hemi-

spheres by a plane passing through the Moon's centre, and drawn

perpendicularly to a line joining that centre and the spectator,

then the hemisphere, which is towards the spectator, is the one

he views. Mm (in the figure of p. 33.) perpendicular to S s is

the projected boundary of light and darkness : ab, perpendicular

to, a line drawn from JE to the centre of the Moon, is the pro-

jected boundary of vision : a spectator at JE, therefore, views only
that illumined part of the Moon's disk, of which mb and two lines,

drawn from the Moon's centre to m and 6, form the projected

boundary. If the Moon, therefore, were at c between the Sun
and Earth, a b, and Mm coinciding, no portion of her illumined

disk would be visible : but, at M", the whole illumined disk would
be visible, (supposing the planes of the Earth's orbit and of the

Moon's to be so inclined, that the Earth impede no light from

falling on the Moon) ; at M', (in which position it is intended

that the lines M'm1

, a b' should be perpendicular to each other)

the Moon will shine with half a face.

There are several technical denominations given to the Moon
in the above positions. At c, the Moon is a new Moon; at M",
afull Moon; at M1

, supposing half of her disk to be luminous,

the Moon is said to be dichotomized. In the course of her

circuit, which occupies a period of about 29 days, the Moon
must, it is plain, exhibit all her Phases : the narrowest crescent

near to d : an half Moon at M
',

a full orb at M." : past that

state, her orb becomes deficient, and the Moon wanes, till reach-
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big a line joining the Earth and the Sun she turns her dark side

entirely to the spectator.

In the position c when the Moon is new, she passes the me-

ridian at the same time the Sun does, or, in other words, she is

on the meridian at noontide. In the position M, she must,
since the Earth's rotation is from west to east, pass the meridian

after the Sun, and it is her western limb which appears illuminated.

At M", the Moon, at her full, comes on the meridian at

midnight : and past M" and beginning to wane, she becomes

deficient on her western side.

The Moon's orbit, as it has been already remarked, is in-

clined to the ecliptic. The line Nn is meant to represent the

intersection of their two planes. Now the line Nn, technically

denominated the line of the nodes, is found to be continually

changing its position. If during these changes it should occupy
the position M"Ec, whilst the Moon were either at c or at M",
then the Moon, Earth and Sun would be situated in the same

right line, and give occasion to the phenomenon of an eclipse.

Suppose, in the first place, the Moon to be at c, and the

Sun to be in the line EC produced. Then a spectator at E
would either see the Moon as a dark spot, or dark circle, con-

centric with the Sun's disk and within it, or, if we choose to

conceive the Moon sufficiently large, the spectator would be

unable to see the Sun by reason of the Moon's interference.

The phenomenon, in the first of these predicaments, is called an

Annular Solar Eclipse, in the latter, a Total Solar Eclipse.

In the second place, if the Moon be at M", the Earth, being

interposed between the Moon and Sun, must intercept some of

the Sun's light in its passage to the Moon. It may (if we argue
the matter independently of the actual magnitudes of the Sun
and Earth) intercept the whole

; and, under any consideration, it

must cause the Moon to be less illuminated than it would be, did

it not intervene. In fact, the Earth being a sphere or nearly so,

its shadow will be conical and towards the Moon. We may,

hypothetically, assign such dimensions to the Earth that the

vertex of its shadow shall fall within the Earth and the Moon, in

which case the Moon's disk would be only dimmed but not

eclipsed ; but, according to the actual dimensions of the Earth

and its distance from the Moon, the shadow of the former always
extends beyond the latter and causes it to be eclipsed
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From the preceding account of the causes of eclipses, we

may easily infer a material distinction between a lunar and a solar

eclipse. When the forme; happens, the Moon is deprived of the

Sun's light, and is darkened by the Earth's shadow ; and every

spectator on the Earth, that can see the Moon, sees her eclipsed.

In the case of a solar eclipse, the Sun is not darkened but con-

cealed, either entirely or partially, by the intervention of the

Moon. The Sun may appear, on its rising, eclipsed to one in-

habitant of the Earth, whilst, at the same time, to another

inhabitant, in a different region, he may set with a full and bright

orb. It will require the aid of computations to point out the

exact circumstances of eclipses : that matter is reserved for a

future Chapter. We will close the present by observing that the

Earth's shadow, at the Moon, is sufficiently large to eclipse the

whole of the latter body. The section of the Moon's shadow,

on the contrary, at the Earth, is a round spot, of no great dimen-

sions, that rapidly passes over the parts of the Earth's surface

which it successively eclipses.

We have, in the present Chapter, supposed the Earth to be

either spherical, or nearly so, and to cast a conical shadow. In

the next Chapter we will briefly examine the grounds on which

such supposition is built.



CHAP. V.

On the Earth ; its Figure and Dimensions.

ONE of the proofs of the spherical form of the Earth is

drawn from the phenomena of the preceding Chapter. In all

lunar eclipses, the boundary of the Earth's shadow on the Moon's

disk is apparently circular : such as ought to be the section of a

conical shadow of a sphere. A considerable defect of sphericity

might, however, exist in the Earth's figure without its being
detected by this phenomenon.

There are, besides, other circumstances that render probable,

and with like nature and degree of evidence, the globular form

of the Earth. A ship, viewed as it approaches us, first comes in

sight by shewing us the tops of her masts : next, more and more

of the masts are seen, and, lastly, the hull. And, this pheno-
menon is the same, whatever be the quarter, be it the east, west,

north, or south, that the ship approaches from.

Again, on a rock or mountain surrounded by the sea, such as

is the Peak of Teneriffe, the sea appears, as it were, depressed,
and equally on all sides of the spectator. On the mountain just
alluded to, the angular distance between the zenith and any

point of the horizon is nearly Q2 degress. The Sun, therefore,

must there rise sooner and set later (by about 12m in the case

before us) than to an observer on the plain : and, which is the

same phenomenon or one immediately following from it, the

summit of the mountain will be illuminated 12 minutes before

Sun-rise and 12 minutes after Sun-set. The same phenomenon,
modified solely with regard to time, and consistently with the

hypothesis of the sea's spherical surface, is always found to take

place in mountains of less or greater height.

The preceding circumstances shew that the Earth is round,

and that it is neither flat like a plane, nor concave like a bowl :

but they will not serve, not being of a sufficiently precise nature,

to found thereon a proof of the Earth's sphericity. That the
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Earth cannot be a perfect sphere it is indeed easy to shew,

although it is not easy to shew what is precisely its figure. The

disposition of mankind to believe in the existence of simple and

regular bodies first suggested a sphere, and then a spheroid, as

the Earth's figure. And the labours of mathematicians have

been directed, these last hundred years, to ascertain the truth of

the latter suggestion. It is a matter, no unworthy of notice,

that the Moon which, by one of the circumstances of her eclipses,

(see p. 37, 1. 4.) proves the roundness of the Earth, in another

way (by one of her inequalities) proves its non-sphericity and the

degree thereof.

We have not yet mentioned an argument, an analogical one,

indeed, and not a very strong one, by which it is inferred that

the Earth, one of the planets, is round, because Venus, Jupiter,

&c. appear to be so. If we argue similarly with respect to

the nature of the Earth's deviation from a spherical form, we

ought to infer that the Earth resembles an oblate spheroid bulging
out at its equator and flattened at its poles, because Jupiter is so

formed. Indeed, if the Earth be not a rigid mass, such ought to

be its figure. It is easy to see, on mechanical principles, that

a fluid globe revolving like the Earth round an axis would become

protuberant in its equatoreal parts.

What has preceded relates to the figure of the Earth ;
but its

dimensions are an object of enquiry. If the Earth be a sphere,
what is its radius? if a spheroid, what is (as it technically is

called) its Ellipticity ? These are questions about which Astro-

nomers have been busied from the earliest times.

If we look to all the curious apparatus of methods, instru-

mental as well as computative, by which modem science has

attempted to measure the Earth, there cannot well be a wider

interval than that which exists between the rude Essay of

Erastothenes made more than 2000 years ago, and what is now

practised. The methods, however, rest on a common ground.
At Syene, in the Thebais, the Sun on the meridian, at the time

of the solstice, was vertical. It illuminated the bottoms of wells,

and the highest buildings cast no shadow. On the same day the

Sun's distance from the zenith of Alexandria was observed to be

7 12'. Let C be the centre of the Earth, s the Sun vertical to



39

E (Syene), and let the angle s AZ, the angular distance at A

(Alexandria) of s from Z the zenith of A, be 7 12' : then

we have the Z EGA = z ZAs z CsA
= 7 12'

if we neglect, by reason of its smallness, the Z CsA, the angle
which the Earth's radius, in this case, subtends at the Sun.

Hence the Earth's circumference equals
360

7 12'
X EA, and is

known in linear dimensions when EA is so expressed.

If the distance of Syene and Alexandria be assumed equal to

5000 Stadia * and those places be supposed to lie (which they do

not) in the same meridian, then

360
the Earth's circumference =

, x 5000^=50 x 5000*

=250000 stadia,

and the number of stadia contained in 1 degree would be

*
According to Lalande, the Egyptian Stade= 114.13 toises, and a

French toise = 6 ft 4in.34 .
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694
8

.444, &c. ( =

It is not necessary to stop here to shew the various sources of

inaccuracy, in the above method. Let us attend to the modern

way of proceeding. If we advance towards the north, the pole
star approaches our zenith, or, if we proceed along the same

meridian, the star which we at first observed in our zenith,

recedes from it. Suppose between two stations of our progress
that the pole star has become 1 nearer to the zenith, or (which

is the same thing) that the star, which was vertical at the first

station, is 1 distant from the zenith of the second station
; then,

if the actual distance between the two stations should be 69i
miles, the Earth's circumference, which contains 360 degrees or

360 such differences of latitude as are equal to 1, would equal
360

X 69J and would be about 25020 miles : and its diameter

would be about 7960 miles.

This method, it is plain, is founded on the same principle as

that of the Astronomer of Alexandria ; and, if it be pursued, it

must needs furnish a proof of the Earth's ellipticity, or rather,

of the defect of its figure from perfect sphericity. For, were the

Earth a perfect sphere, the same linear distance (69\ miles for

instance) ought always to be found between any two places on

the same meridian and differing in their latitude by 1. This,

however, is not the case. In latitude 66 the linear distance

between two places, under the above predicaments, is found to

be 122457 yards. But, near the equator, such distance is found

to be 121027 yards. The former distance being 69^ miles

-H37 yards, the latter 69j miles 1293 yards. And it is

established as a fact, by means of observations and measurements,
that degrees (by which we mean their linear values) increase as

we move from the equator to the pole.
If the Earth be supposed to be a spheroid, its measurement is

to be conducted, as in the hypothesis of its being a sphere, by

finding the difference of latitudes between two places, and by

measuring and computing the linear distance between them.

The axes of the spheroid cannot, it is plain, be determined by
so simple a process as that which gives the radius of the sphere.



It is a question of pure mathematics to assign, from two degrees,

one measured at the equator, the other near the pole (or any two

other places), the eccentricity of that ellipse, which, by revolving

round its minor axis, shall generate the spheroid to which it is

believed the Earth is like. If all meridians were similar, and all

measurements equally to be relied on, the same eccentricity

ought to result, wherever the two degrees, the data of the

problem, should have been measured. But the case is otherwise.

One mathematician by comparing a degree measured in Lapland,

with a degree measured in France, assigns for the
307.405

Earth's oblateness; results from Col. Lambton's measure-
320

ments in India : who compared (for so may the problem be

mathematically solved) a degree of the meridian with a degree

perpendicular to it. Lalande thinks , Delambre to be its

300 309
true value. In fact the question, whether we look to its the-

oretical or to its practical part, is a very difficult one, and likely,

for many years, to remain doubtful, and to be the subject of

discussion.

There is another method of determining the Earth's oblate-

ness, founded on the different times of vibration of the same

pendulum in different latitudes, or rather, on those differences

of vibration which depend solely on an augmented or diminished

gravity. The variation of gravity, or of the weight of a body,
arises from two causes : the non-spherical form of the Earth and

its rotation. From the first cause, the attraction is not, as in the

case of an attracting sphere, the same as if all the matter of the

spheroid were collected into the centre, and the resulting force

directed to that centre. Two plumb-lines (and the directions of

gravity are no other than the directions of such lines) containing,

at the pole, an angle equal to 1, will meet in a point of the polar

diameter beyond the centre of the spheroid. At the equator two

such lines, so conditioned, would meet in a point of the equa-
toreal diameter short of the centre. Jn other situations the point

of concourse will not be in a diameter passing through one of the

extremities of the arc.
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The second cause, the Earth's rotation, gives rise to a cen-

trifugal force, a resolved part of which, acts in the direction of

gravity and diminishes it. This centrifugal force is nothing at the

poles and greatest at the equator, and that resolved part of it,

which counteracts gravity, varies as the square of the cosine of

latitude.

This enquiry, like the former one, is not easy, and, whatever be

the mathematical skill bestowed upon it, must always terminate in

doubtful results. For it rests on two hypotheses very difficult to

be verified, 1
st

, the spheroidal form of the Earth, and 2dly , an

assumed regularity and law in the disposition of its materials.

If we refer to p. 4, we shall find that the rational and

sensible horizons are parallel to each other, and distant from each

other by an interval equal the Earth's radius. Now that radius, as

we havejust seen, is about 4000 miles. It is, however, a distance,

compared with that of a fixed star from the Earth, of no relative

value : from which it follows that, in what regards the fixed stars,

we may suppose the two horizons coincident : or, which amounts

to the same thing, any calculation, made with respect to a fixed star

by a spectator on the surface of the Earth, is precisely the same

as if the spectator had been placed in the Earth's centre, to

which point, on other occasions, that is, when the Moon or a

planet is concerned, it is usual to refer or reduce Astronomical

computations.
In order to prove what has been just asserted, let S represent

the Sun, 5 a fixed star, and E, E' two positions of the Earth in

opposite points of her orbit. At these two positions the angles

sEL, sE'L can be determined by observation and calculation,
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and, on comparing them, they are found to be equal ; but

sEL = tsE'L+ tE'sE, consequently, the angle EsEf
has no value, or, the distance sE is so immense that the diameter

of the Earth's orbit subtends no angle at s. There is no assign-

able proportion, therefore, between sE and EE'
'

, and, a fortiori,
none between the Earth's radius and sE: since EE 1

is to the

Earth's radius as 45968 to 1 *.

We have in this, as in each preliminary Chapter, treated its

subject in a popular manner. The explanation has been general,

and consequently vague, and indeed it is scarcely worth any

thing if it were not preparatory to discussions of greater pre-

cision. We have spoken (see pp. 38, &c.) of the antient mea-

surement of the Earth as of a rude method : but that which is

afterwards described as the modern method may, notwithstanding

any thing contained in that description, be equally so. In fact,

the superiority of one method over another, cannot be shewn

except by entering into their respective details. Those of the

first may be comprised, as they have been, in a few lines : the

details of the latter are sufficient to fill a large volume.

We have spoken of the zenith distance of the Sun at Alex-

andria, in the time of the solstice, as being 7 12', and of two

places differing from each other in latitude by 1; and a student,

in the outset of his Astronomical career, may imagine that nothing

is easier than to form a notion of these angular distances. It is

not likely, indeed, that he should anticipate (for he can only know

them till after trial) the difficulties that await him. The angular

distance of a star on the meridian from the zenith is the angle

contained between a straight line drawn from the star to the

spectator, and a line vertical to the spectator (the direction, in

fact, of the plumb-line.) Now the first point of enquiry (which

Erastothenes did not enter into) is, whether the star is really in the

direction of the former line, or whether the direction of the ray

of light when it enters the eye coincides with that of the former

line. If it does not, then is the angle we see and measure, not

* If * were near the pole of the ecliptic, and Es= 200000 ES, the

angle EsE' would be about 2": but since no such angle can be detected,

or at the utmost, an angle not exceeding 2", the ratio of Es to the Earth's

radius must be at the least, that of 4569800000 to 1.
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the angle we are in search of. We may be able to correct the

former angle, and thence find the latter, but then there comes a

second point of enquiry, whether or not the correction known for

one case will suit all others
; whether, for instance, the same

quantity of correction which reduced the observed zenith distance

(7 12') of the Sun at Alexandria, would truly reduce an observed

distance at another place, at Rhodes for instance, where, at the

solstice, the Sun's zenith distance would be about 13 degrees.

If we would answer these questions we must enter into an inves-

tigation, which is no other than that of the Laws of Refraction.
But the enquiry would not terminate with the settling of

those laws. Suppose we knew how much the light of a star

would be made to deviate, by reason of the atmosphere, from

a line joining the star and the spectator, would the deviation of

the same star, to the spectator at the same place, be the same at

whatever hour the star passed the meridian ? The student, it is

probable, would here also feel no hesitation in answering that the

star's apparent angular distance must be independent of the time of

its transit over the meridian, and that, if refraction were away, a

star would always pass the meridian of Greenwich at the same

distance from the zenith of Greenwich (such distance being de-

termined by an instrument) whether the hour of transit were 9 in

the morning or noon.

The fact, however, is otherwise, and, as it will be shewn here-

after, there is, besides refraction/ a cause of inequality which

makes the instrumental zenith distance different from, if we may
so call it, the true zenith distance : which cause of inequality is

connected with the time of the star's transit over the meridian.

But the process of correction would not cease here
;
there are,

at the least, six causes of inequality, each of which will render

the observed angle, whether it be an angle between two stars,

or, between the zenith of the observer and a star on the meridian,

unequal to the true one. So hard to be understood then, not-

withstanding its apparent simplicity, is the expression, of the

difference of the latitude of two places being 1. Erastothenes

if he had possessed the most perfect of modern instruments, had

he possessed them without modern science, could not have ascer-

tained the Earth's dimensions.

But although this be the case : although it is essential to know
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the quantities and the laws of those corrections, by which we are

to derive the latitude of a place, or any other angle, which may
be the object of research, from the observed or instrumental

angle ; still, it is plain, this latter angle is of primary importance.
If we are unable to determine that exactly, the corrections pro-
vided by Astronomical Science may be of little or no use. Their

sum may be less than the error of observation, which error, in

such a case, would vitiate all subsequent processes founded on
the observation.

It will, therefore, be following something like a natural order,

to describe the instruments by which angular distances are mea-

sured, previously to the investigation of methods for correcting
such distances. And, in pursuit of this plan, we shall not

digress into a description of antient instruments nor (however in-

structive in itself such an enquiry may be) into the history of

their successive improvements. We shall be content to describe

the instruments which are essentially necessary to determine the

places of the heavenly bodies ;
those instruments which are

called, for distinction's sake, the Capital Instruments of an

Observatory, which, indeed, are few in number, and simple in their

construction, each being appropriated to one class only of

observations. The tendency (if we may so describe it) of im-

provement in Astronomical Instruments has been towards sim-

plicity in their construction. In former times Astronomers

endeavoured, in their instruments, to imitate the celestial sphere :

which were formed in call effigiem ; hence came their Astrolabes

and Armillary Spheres. According to modern practice, all im-

portant observations are made on stars on the meridian. It is

there that Astronomers, with fixed instruments, wait for a star

instead of attending on its course from east to west.



CHAP. V.

On Astronomical Instruments.

THE position of a point in a plane may be determined, by
means of two rectangular co-ordinates (as they are called), that is,

of two lines perpendicular to each other and measured from the

same point. In like manner, the position of a star on the

celestial sphere may be determined by portions of two great

circles, perpendicular to each other, and measured from the

same point. Thus, let P be the pole, AmQ, a portion of the

equator, s a star, and Psm a circle of declination: then, if A

should be a known point or known star in the equator, the

position of s on the sphere will be determined from Am and A t

( = wzs) : since we have only to set off Am, on AmQ the equa-

tor, to draw the quadrant mP and to set off, onmP, ms equal to

At. Now, the right ascension of a star is its distance measured

on the equator from a fixed point in the equator. If that point

be Ay Am will be the right ascension of the star s, ms its decli-

nation, Ps its polar distance, and Zt its zenith distance, when s

is on the meridian, the position of which is represented by PZA.
We must consider what are the means of measuring A t and

Am when the star s is on the meridian.

With regard to the first point ;
we have only (by which term,

however, we do not mean to signify the great facility of the
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operation) to divide a quadrantal arch such as aeb into a number
of equal parts, to place it in the plane of the meridian, and to

direct a telescope in the direction eC to the star t : then eb will

express, by a certain number of the above-mentioned equal parts,

the zenith distance of the star s on the meridian, and ea will

express the altitude. Besides the conditions mentioned, it is

clear that Cb must be vertical, which it will become by being
made coincident with, or parallel to, the direction of the plumb-
line.

With regard to the second point : there are no obvious means,
and certainly no simple ones, of instrumentally measuring the

angular distance between A (even supposing it to be a star) and

m the point where the secondary passes through 5. Other means,
than those of instruments giving angular distances, must be

resorted to : and Astronomers have called in time to express,

intermediately , the right ascension of a star : which plan may be

thus explained.

Suppose (for the sake of simplicity) A to be a star, and the

point m to be carried, by the rotation of the sphere, in the direc-

tion mA : then m and S would be on the meridian at A and t

at the same instant, and the arc Am, the measure of the angle
s PA, would bear to the whole circle, or to 360 degrees, that

proportion which the time elapsed, between the transits of A
and s over the meridian, bears to the whole time of the sphere's

rotation
;
and contrariwise, an observed or noted time between the

transits would, in terms of time, be the right ascension Am, which,
if 24 hours be assumed as the time of the sphere's rotation (or of

the Earth's diurnal rotation) would equal x 360 .

To enable us, then, to find the right ascension of stars, there

are, according to the above plan, two instruments necessary : a

telescope in the plane of the meridian to observe A and the star

s when on the meridian, and a clock to note the respective times

of their being there. The instant of a star's passage cross the

meridian being denominated its transit, the telescope used for

observing the star, at that instant, is denominated the Transit

Instrument. The three capital instruments then ofan Observatory,
are the Astronomical Quadrant, the Astronomical Clock, and the

Transit Instrument.
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In point of theory, or if we regard solely the mere purpose of

explanation, the two former instruments are the only ones essen-

tially necessary, because no reason, not suggested by actual ex-

periment, can be assigned why the office of the third instrument

should not be performed by the quadrant, which is supposed to

be placed in the plane of the meridian, and to be furnished with

a telescope capable of being pointed to any part of the meridian.

The special use, or the practical convenience of the transit in-

strument, depends on reasons altogether practical and not yet

explained.

We will now proceed to a more particular description of the

Astronomical Quadrant, which may be considered as repre-

senting a class of instruments, known by the names of Declina-

tion Circles, and of Mural Circles, and designed for the measur-

ing of zenith distances and polar distances.

The annexed figure is meant to represent a mural quadrant,

or one fixed in the plane of the meridian. TV is a telescope

T

moveable about a centre at V : and Vv is a plumb-line, which

is, in general, a fine thread or wire with a weight attached to it,

and, for the sake of steadiness, plunged in water.

The first point to be considered is the division of the quad-
rantal arc AB.

The most usual graduation of the arc consists of 90 degrees :

but many quadrants (the two 8 feet mural circles of Greenwich,
for instance,) have, besides this usual graduation, a second one,
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consisting of 96 equal parts*. An observation is to be read off

(as the phrase is) on each scale, and then, by means of a com-

puted Table, the divisions of the ninety- six scale are to be

reduced to those of the ninety.

But the graduation is not limited to 90 or 96 parts or degrees.
Each degree is itself divided into a number of equal parts,

each part containing a certain number of minutes : the number
of minutes being the less (we are speaking practically) the

greater the instrument. In quadrants and circles of nine inch

radius, the smallest division on the limb of the instrument contains

generally 30 or 20 minutes. Quadrant of 18 inches are divided

to 15 minutes. The 8 feet mural quadrants of Greenwich, and

the 6 feet mural circle, are divided into equal parts of 5 minutes

each.

There are, however, certain little and subsidiary instruments,

called Verniers, attached to that end of the telescope which

moves along the arc of the quadrant, that enable us to read off
the observations to a greater nicety, and that (if we may so

express ourselves) stand in the stead of a minuter graduation of

the limb of the instrument. We will now explain the principle
and use of the Vernier.

Let A B represent part of the limb of a quadrant (of that, for

instance, which was represented in p. 48.), Tt part of the

telescope which moves along the limb, and Mm- a thin plate of

* The graduation of ninety-six degrees was adopted on principles of

mechanical convenience; and for the purpose of lessening the great dif-

ficulty which attends the graduation of instruments. A chord of 60 degrees,

in the common division of the circle, being equal to the radius, a chord of 64

degrees, will be equal to radius, when the quadrant is divided into 96 equal

parts, or degrees. Hence, by means of a line equal to the radius of the

quadrant, two points can be determined on its arc, containing 64 out of 96

equal parts ; and, by the continual bisection of 64 (
= 2 . 2 . 2 . 2 . 2 . 2) a,

division equal to one of those equal parts is obtained. It is very easy to

conceive a circle divided into 360 equal parts or to describe it as so divided :

but the practical effecting of the graduation requires a great deal more than

mere dexterity of hand, as artists will testify, or, as any one who will make

the trial, will soon experience.



50

metal (the Vernier) attached to the telescope at w, and together

with the telescope, moveable along the limb of the quadrant.

A

In the present scheme the vernier is divided into five equal parts,

the sum of which is equal to the sum of four equal divisions of

the quadrant : and this equality is represented in the figure : in

which the lozenge, that mark on the vernier to which would

correspond, coincides * with the division or mark on the quadrant
marked 41, whilst the mark 5 of the vernier coincides with the

mark 45 of the instrument. In reading off we must first look to

* Instead of coincides with, we ought, perhaps to say, is opposite to,

or in the same right line with, the mark 41 of the instrument. The

engraver having separated the boundary of the vernier from the circular

line on which the division-marks of the limb of the instrument abut

prevents a coincidence from taking place. We may farther note, that one

boundary of the vernier is the fourth concentrical circular line, reckoned

from the left hand : the other is the seventh, reckoned in the same way.
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the lozenge for the position that is intended by the instrument

maker to mark the altitude of the observed star or other object.

Thus, as the figure is drawn, if the telescope were properly
directed to a star, the altitude of such star would be 41 : and in

such a simple case the vernier is of no use. But suppose the

telescope were directed to a star a little higher than the former,

then the lozenge would be moved from the division 41 towards

45, and let us suppose it just so far moved that the second mark

(1) of the vernier coincides with the division of the quadrant next

succeeding the 41 st
(the 42d

) *. In this case it is clear the lozenge

(to which we are to look in noting the altitude) has been moved

through a space equal to the difference between one division of

the instrument and one of the vernier. The altitude of the star

then is 41 + this difference : which difference must now be

estimated.

In the figure to which we are at present referring, the divisions

of the instrument are intended to represent divisions of one

degree each, and, since four of these divisions, or 4, are equal
to five divisions of the vernier, the difference between a division

of the quadrant and the vernier is

4 1

1 1 = = 12',
5 5

so that the altitude of the star is to be read off equal to

41 12',

and this is the most simple illustration of the use and property

(for such it is) of the vernier.

If a star still higher be supposed to be observed, and the

telescope and its attached vernier be so moved, that the mark 2

of the vernier coincides with the 43d of the instrument, then the

index or lozenge has been moved from its original place, opposite
to 41, through a space equal to twice the difference of the

divisions of the quadrant and vernier, and consequently, the

altitude must now be

41 + 2 X 12', or 41* 24'.

* To avoid confusion, and to lessen the difficulties of the engraver, the

divisions which lie between 41 and 45, namely, 42, 43, 44, are not

figured.
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If the mark 3 of the vernier coincided with the 44th
of the in-

strument the altitude would be

41 + 3 X 12', or 41 3&.

If the marks 4 and 45 should coincide, the vernier and the

lozenge must have moved through a space equal to five times the

difference of a division of the instrument and of the vernier, or

through a space equal to one division of the vernier
;
and in such

case the altitude would be

4
41 -f 4 x 12', or 41 -f- 1,

o

each of which equals 41 48'.

If the mark 5 should be found to coincide with the mark next

to the 45
th

of the quadrant (which mark would be 46) ; then, it is

plain, the vernier and every mark on it and, of course, the lozenge,

must have been moved through a space equal to one division of

the instrument, or through 1 ; and the altitude of the star, if such

were the object observed, would be 42 .

In this situation, the vernier would have returned to a position

precisely similar to its original one (that in which the lozenge
coincided with 41), and any subsequent translations or movements

of the vernier, producing exact coincidences (or coincidences seem-

ingly such) between any two marks or lines of the vernier and

instrument, will be precisely similar to those that have been just

explained.

But it is obvious that the motions or translations of the

telescope and attached vernier may be less, in degree, than those

which have hitherto been spoken of. The spaces through which

the telescope moves, may be less than the difference between a

division of the instrument and a division of the vernier, in which

case, there would be no exact coincidence between any two marks

or lines of the respective divisions. If, for instance, the telescope
should be moved from the position in which o of the vernier

coincided with 41 of the instrument, and through a space less

than the difference of a division of the instrument and the vernier
;

the mark 1 would not reach 42 of the instrument, and the altitude

to be noted would be something between 41 and 41 12', and

which the observer, should there be no other mechanism belong-

ing to the vernier than what we have described, must estimate by

guess and according to the best of his judgment.



53

In the scheme illustrating the use of the vernier, we have

chosen to consider each division of the instrument to be equal
to 1, in which case the vernier will not note smaller angles than

twelve minutes : but if each division, instead of 1, were l', the

accuracy of the vernier would then extend to twelve seconds :

and, generally, when five divisions of the vernier are equal four of

the quadrant, the difference between a division of the one and

the other will always be equal to ~
,

o

since L V = L
,

o

L being a division of the quadrant, and V of the vernier.

It is clear then, the smaller the divisions of the instrument are,

the more minutely (with regard to degrees and parts of degrees)
will an observed angle be noted by means of the vernier. But

supposing, in an instrument of a given size, the magnitude of each

division to be settled, (and there are practical and mechanical

reasons that prevent the instrument from being subdivided beyond
a certain point) a question will then arise concerning the length
of the vernier, or, as the case is stated, concerning the number of

its divisions. Instead of five of its divisions being equal to four

of the instrument, will it not be better to make ten of its divisions

equal to nine of the instrument? or twenty equal to nineteen, or

sixty equal to fifty-nine ? In fine, if n divisions of the vernier are

to equal n 1 of the instrument, what is the value which it is

most commodious to assign to n ?

Let, as before, L denote the value of a division of the instru-

ment, and V that of one of the vernier, then since

(it 1)L = nV,

consequently, L being given, L V is less, the greater n is.

But n cannot exceed a certain limit, for the magnitude of each

division being (see p. 49-) supposed to be assigned, and each

division being an aliquot part of a circle, the arc of the quad-
rant can only contain a certain number of such divisions ;

for
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instance, if each division contains fifteen minutes, the quadrant
contains 4 x 90, or 360 of such divisions, and, in such a case,

the limiting value of n is 360, and the difference between a

division of the quadrant and one of the vernier, with such extreme

value of n, would equal

j 15 x so"
. 1JL --!., "

360
=

360 6
' '

2
' = ^ *5 '

But it is plain that a vernier extending along the whole limb

of the instrument would be very incommodious (to say the least) :

and a like objection would lie against verniers either half or a

quarter of the arc of a quadrant : so that there are (in this as

in every other case relative to the construction of instruments)

certain practical considerations that limit, in a quadrant of a given
radius and given number of divisions, the length of the vernier.

It is proper then now to state what are usually the propor-
tions between the length of the vernier and the radius of the in-

struments.

Quadrants and circular instruments of 9 inches radius, are

frequently divided into equal parts, each consisting of 20 minutes,

and 59 of such equal parts are made equal to 60 divisions of

their verniers. In this case

60 60

so that, with such instruments, you can read off, by the aid of

their verniers, to an accuracy of 20 seconds. In this case, the

vernier must occupy on the limb of the instrument a space, at the

least, equal to 19 40'.

There are quadrants, of 18 inches radius, divided to every 15

minutes, and in which 14 of such divisions are equal to 15 of the

vernier. In these instruments then

,

15 15

and the space occupied by the vernier, is, at the least, equal to

3 30'.

It would appear then that, in this case, we are not able to read

off' so accurately as before, although the instrument is twice the
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size of the former. The fact is, that that happens here which we
before alluded to in p. 52. The divisions of the instrument and

vernier differ so much, that, in taking an altitude, the telescope,

will probably occupy a position, in which there is no exact coin-

cidence between a dividing mark of the vernier and one of the

quadrant. But, instead of guessing what the defect between the

two nearest coincidences is,*the observer is assisted by a piece of

mechanism attached to the instrument, which enables him to

compute that defect. This we will now briefly explain.

The part E can be fastened to the limb of the quadrant by
means of a screw. jPG a screw, (Fig. p. 50.) with a milled head

at F, works in a collar fixed in the under part of E, and in a

female screw fixed in the under part of the telescope Tt. When
the part E, then, is fixed or clamped, and the screw is turned

round by its milled head at F, it must communicate a direct

motion to the female screw (and, consequently, to the telescope
and vernier) in the direction of FG. Attached to the male

screw, or to the small cylinder on which it is formed, is an index

D moveable together with the screw and on a thin graduated im-

moveable plate, the profile only of which is shewn in the Figure

of p. 50. It is more fully exhibited in the above figure, in

which F, D, E, represent the same parts as in the former figure.
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Suppose now the screw to be of that fineness that, whilst it is

turned round, or whilst the screw-head and the index D make

one complete revolution, the vernier is so far advanced on the

limb of the quadrant, that the mark 1 of the vernier is brought

into coincidence with 42 of the limb : then, in our scheme of illus-

tration, one revolution of the screw is equal to 12'. If the cir-

cumference of the thin plate then (see Fig. p. 55.) be divided

into 60 equal parts, one of such equal parts must be equal to 12" :

and if, in order to make a coincidence between the lozenge of the

vernier and any division of the limb, it were necessary so to turn

the screw that the index D should be moved from D to d, and

15 graduations should be contained between Dd, then the space
moved through by the vernier on the limb would be equal to

15 X 12", or 3'.

Similar results will take place, if the instrument and vernier

be differently divided : thus, if each degree of the quadrant be

divided into 4 equal parts, and 14 of such parts be equal to 15 of

the vernier, the difference between the respective divisions being

l', one graduation of the brass plate would equal 3", supposing,

now, that three revolutions of the screw move the vernier through
a space equal l'. In the annexed Figure, in which a degree is

divided into four equal parts, the lozenge or index of the vernier

occupies a position between 41 15' and 41 30'. The dividing
mark 2 of the vernier very nearly coincides with the mark of the

quadrant which denotes 41 45'. If it exactly coincided, then
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*he lozenge,, or index, being advanced beyond the mark next to 41 ,

(the mark denoting 41 15') by a space exactly double the dif-

ference of a division of the instrument and one of the vernier, the

altitude or angular distance denoted by the instrument would be

41 15' + 2 x l', or 41 if,

but the angular distance is, obviously, of somewhat greater value.

Suppose, in order to carry the vernier so far back as to make its

division 2 coincide exactly with that division of the instrument,

which is just behind it (the division 41 45'), that we must so much

turn the screw F (see Figure of p. 55,) that the index: D should be

advanced from o to d, or through a quarter of the circumference,

then this quarter, which is 15 x 3
rf

or 45", is the value of the

space through which the vernier has been moved, or of the

distance between 2 of the vernier and 41 45' of the instrument :

it measures, therefore, the excess of the altitude, which the in-

strument ought to denote, above 41 1?'; in other words, the

altitude is now to be estimated equal to 4 1 1 7' 45".

By this contrivance, then, without any inconvenient minuteness

of division of the limb of the instrument, or of inconvenient

length of vernier, we are enabled to read off angles to as great an

exactness as that of 3 seconds. In the Greenwich mural quadrants,

by a similar contrivance, the angles may be read off to one second.

That part of the vernier which we have been just describing, and

which enables us to measure minute differences, is called a

Micrometer. The two Greenwich mural quadrants, of 8 feet

jadii, are, as we have said, furnished with such. But the mural

circle is furnished with a micrometer of a different construction.

Having now examined the methods of reading off the altitude

to which the index of the vernier, in a fixed position, points, we
will next consider by what means the vernier is brought to such

fixed position. The vernier is attached to the telescope, and the

telescope is moved, till the star (the altitude of which we are

seeking) is seen through it. But, as the field of view is not a

mere point, there is not one certain position of the telescope in

which only we can see the star. If the star should appear to be

nearly in the middle of the view, we may move the telescope, a

little upwards and a little downwards, and still see the star. It is

evident then, since the altitude we are seeking for is a certain and

H



58

determinate quantity, that we require some rule for stopping and

fixing the telescope. We cannot say that the telescope is in its

just position when the star appears in the centre of the field of

view, because the eye cannot judge of that circumstance with suf-

ficient precision. We must therefore place some fixed point in the

field of view, and in the focus of the eye-glass, which fixed point
is to be the centre of the field of view, or to be considered as

such, and the telescope is to be judged to be in its proper position,

when the fixed point and the star appear to be coincident, or

when, as the technical phrase is, the point bisects the star.

The intersection of two fixed wires placed in the focus of the

object-glass of the telescope, will furnish us with such a fixed

point ;
and one wire may be vertical, the other horizontal, de may

represent the former,y*A the latter, and then a would be the inter-

section, or their centre. These wires, as we have said, are fixed

in the principal focus of the object-glass, and then must be

viewed with the eye-glass : or, if they are attached to the tube

containing the eye-glasses, that tube must be moved so that the

wires shall be in the above principal focus : in either of these

cases the eye sees distinctly, at the same time, the wires and the

image of a star : and the observation is to be held as made when

the star is upon, or is bisected by, the point a.

We gain, at the least, this advantage by the above method, that

all stars are observed according to it, and that any error attached

to it must equally affect all stars : in other words, that the error

must be a common one, and consequently all observations may
be immediately corrected should the quantity of that error be
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once detected. We will now consider by what means that error

may be detected and valued.

Let the subjoined Figure represent (in part) the Astronomical

Quadrant, placed in the plane of the meridian, and with its gra-

duated face opposite the east, and suppose the telescope to be

directed to a star the altitude of which is 85.
If A be the intersection, or centre of the cross wires (what

answers to a in the Figure of p. 58,) and OA be the direction

of a ray of light passing through O the object-glass and coming to

its focus at A, then, the image of the star and the centre of the

wires being coincident, the observation (see p. 58, 1. 6, from

bottom) is properly made, and the index of the vernier, being
made to coincide with 85 of the quadrant, will properly denote

the star's altitude, and also, (the instrument being supposed to be

truly graduated) the vernier, in other positions of the telescope,

directed to other stars, will justly note their altitudes.

Suppose now from some accident, or, purposely, the system
of cross wires to be deranged, so that their centre, instead of
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being at A, is moved, through a little space, to C, so that A is be-

tween C and/) TFthe plumb-line, the line passing through A, C,

being supposed to be in the plane of the meridian. In this new

position of the cross-wires (the telescope retaining its position)
the star is no longer bisected by their centre, but will be seen in

the field of view, a little to the south of that centre, or towards

the plumb-line. In order then to bring the star on the centre,

that end of the telescope in which A, C, are, (the telescope being
moveable about a pivot or centre of motion situated near its

other end) must be pushed a little to the south and towards the

plumb-line, 23" for instance, in which case the index of the

vernier, moving with the telescope, will point to 85 C)' 23". We
have now then to enquire (putting aside the supposition of the

star's altitude being exactly 85) why the altitude, in this case, is

not justly indicated.

Suppose we are able to turn the quadrant half round, or that

we possess some means or other of placing its graduated face

\vhich, in the Figure of p. 59, is opposite to the east, opposite to*

the west, and let the above Figure represent the quadrant in this
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latter position : in which, OA would be directed as db is, not, as

before, to the south of the zenith, but to the north. In order

then to bring the star into the field of view, the telescope must

be moved past the graduation of 90, to that of 95. In this

latter position, the image of the star and the point A would

be coincident, but C being now the centre of the cross-wires, in

order to bring the star upon C5 the end of the telescope which

contains the eye-glasses and cross-wires must be pushed towards

the plumb-line (as the Figure is constructed) or from the division

of 90. It must be pushed also, since the distance AC is

supposed to remain invariable, just as much as it was in the

former position of the quadrant (the position of p. 590 that

is, through 23". The index of the vernier now then will point
to a graduation of

95 0' 23",

or, which is the same thing, will indicate a zenith distance equal
to

5 0' 23",

whereas, the altitude in the first position of the quadrant being
85 0' 23", the zenith distance will be

4 59' 37".

Half the sum of these two zenith distances is 5, the true

zenith distance, and half their difference (46") is the error caused

by the derangement of the cross-wires after they had been once

adjusted.

This error or derangement has a technical denomination : the

line between O and A, A being the centre of the cross-wires, or

the line between O and C, C being the centre of the cross-wires,

is called the Line of Collimation, and the error, of which we have

treated, and shewn the method of detecting and valuing, is called

the Error of the Line of Collimqtion, or, more briefly, the Error

of Collimation *.

* This error may be corrected by moving and adjusting the cross-

wires, so that C (in the Figure we have used) may be -replaced in A- But

it is plain we may leave the system of cross-wires untouched, and so alter

the index of the vernier, that it shall, the telescope being directed to the

star, note its true altitude. On this account the error of collimation is

frequently called the Index Error.
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We have then, in all cases, in which we are able to turn

the instrument half way round in azimuth, or through 180

of azimuth, this simple rule for finding the zenith distance of an

observed star : add the zenith distance, or the mean of several

zenith distances, taken with the face of the instrument to the east,

to the zenith distance, or the mean of several zenith distances,

taken with the face of the instrument to the west
;
half this sum

is the star's zenith distance : and, half the difference of the above

observed zenith distances is the error of the line of collimation.

The rule is the same, if, instead of the zenith distances of

stars, we seek to determine their altitudes. We subjoin an

instance or two, in which the instrument used, instead of a quad-

rant, is a circle.

Altitudes.

6th Sept. Star Rigel, position E.* .... 30 2l' 36".25

position W 30 20 22.05

sum = 60 41 58.30

true altitude = 30 20 59.15

difference = 1 14.20

error of collimation = 37. 1O

Again, $ Sagittarii W. . . . 8 56' 45". 8

E. ...8 58 7.1

sum 17 54 52.9

true altitude. ... 8 57 26.45

difference. ... 1 21.3

error of collimation. . . . 40.65.

If great accuracy be required, the above operations arc re-

peated with several stars, and the mean of the whole taken for

the error of collimation : thus,

* Position E, position W, denote
respectively the graduated side of

the circle turned towards the east and west. Rigel, Sirius, a, 0, y, c.

Capellae, are the names of certain known stars.
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Error of Collimation.

Rigel 37" . 05

Sirius 40 . 05

S Sagittarii 40 . 06

X 42 .

a Capellae 39-45
9 37 . 12

7 37 . 35

i 37 . 87

8)310.95

Mean error of collimation 38 . 87

That process, then, of turning the quadrant, or the circle, half

way round in azimuth, which finds the altitude and zenith distance,

finds also the error of the line of collimation ;' but it is unim-

portant to know this latter, if, every time that an altitude is to be

determined, the above-mentioned process be resorted to. We
may, however, as it is plain, having once determined the quantity
of the error of the line of collimation, employ it as a correction

either additive or subtractive, to the zenith distances of stars deter-

mined from one position of the quadrant only, that is, when its face

is constantly turned either towards the east, or towards the west.

Thus, suppose that by the mean of twenty observations made
at Greenwich, the quadrant facing the east,

the north zenith distance of y Draconis = ''

2l".76.

By the mean of 30 observations

the quadrant facing the west, the zenith distance. . = 2' 1 5".48

0' 6".2S

.". error of collimation = 3". 14.

This is the error deduced from one star, y Draconis, which

star is to the north of the zenith of the Greenwich Observatory.

When, therefore, the face of the quadrant is to the west, the above

correction (3
f/

. 14) must be added to the north zenith of stars, but

subtracted from the distances of those stars which are observed

to the south of the zenith *
: for, since the instrument, its face

* When the quadrant faces the west, a few stars only, those which are

near the zenith, can be observed to the south of the zenith (see

p. 64, 65.) .
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being towards the west, gives the north zenith distance of

y Draconis too little by 3". 14, (since instead of being 2' 15".48 it

ought to be 2' 18".62) it must also give the north zenith distances

of all stars too small by the same quantity : and if a star were

to the north of the zenith by an angular distance equal to

3". 14, it would, by the instrument, seem to be on the zenith
;
conse-

quently, a star on the zenith would by the index of the instrument

appear to be 3". 14 to the south of the zenith : and a star 1 to the

south of the zenith would appear to be, by the instrument,

1 3
7/

. 14 to the south. The contrary will happen if the obser-

vations are made with the face of the instrument to the east
;

for, then, the error of the line of collimation must be subtracted

from all north zenith distances, and added to south zenith dis-

tances
;
for instance, if we had the following observations :

Zenith distance of a Andromedse 23 24' 56".36 S.

7 Pegasi 37 19 32.46 S.

a Ceti 48 6 55.56, S.

then the zenith distances, corrected for the error of the line of

collimation, (and for that only) would be respectively,

23 24'' 59".5

37 19 35.6,

48 6 58.7.

It appears then, by what has preceded, that, in all quadrants
that can be turned round in azimuth, the altitudes and zenith

distances of stars can correctly be found as far as the line of colli-

mation is concerned. These, however, must generally be found by

applying to their quantities, determined by the quadrant, the error

of the line of collimation as a correction of such quantities.

They cannot be found, except for stars situated near the zenith,

by taking the half sum of zenith distances observed respectively,

with the face of the quadrant towards the east and west. The
reason is obvious from the inspection of the diagrams (see pp. 59,

60.) If AVB (see the following Figure,) should be in the plane
of the meridian, and A should be to the south of VB, the zenith

distances of those stars only that are to the north of the zenith
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could be determined by such an instrument. If the quadrant were

reversed, and the graduated rim now opposite the west were made

to face the east, the zenith distances of those stars only, that are

to the south of the zenith, could be observed. In such a case,

the reversion of the instrument would be useless, since, not

being able to observe the same star in the two positions of

the quadrant, we should be unable to deduce the error of the

line of collimation. To remedy this inconvenience, or rather to

enable us to avail ourselves of the azimuth motion of the instru-

ment, the arc of the instrument is made to exceed a quadrant,
and the graduation, as it is represented in Fig. of p. 59, is ex-

tended beyond 90 to 95 or 96. By this contrivance, the zenith

distance of the same star, which is not distant more than 5 or

6 from the zenith, may be observed in the two opposite positions

of the instrument, and the error of the line of collimation thence

deduced. The star 7 Draconis, for instance, which, when it

passes the meridian at London, is nearly vertical, would serve

the above purpose in every part of England.
But in circular instruments, or declination circles, and en-

dowed with an azimuth motion, any star, either near to, or distant

from the zenith, will serve to determine the error of the line of

collimation, and with such instruments the method given in

pp. 61, 62, &c. may always be practised ; that is, we may add the

mean of zenith distances observed when the instrument faces the

east, to the mean of zenith distances observed in the instrument's

reversed position, and then (the error of the line of collimation

I
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being, in fact, compensated for) half the sum will be the zenith

distance required.

Thus, suppose the telescope Tt to be directed to a star in the

south (so directed, as it must be always understood, that the image

Z

of the star and the middle of the cross-wires are seen, through the

eye-tube, in distinct coincidence) the face of the instrument being
towards the east : then, if the instrument be turned through 180

of azimuth, so that the face, before opposite to the east, be now

opposite to the west, T't
1

will be the position of the telescope.

In order, then, that it may be again directed to the star, and that

its position may be parallel to its former one Tt, it must be turned

through an angle equal to twice its zenith distance : and, con-

sequently, half the difference of the number of degrees indicated

by the vernier in its two positions (which difference is no other

than the number of degrees intercepted between the two positions

of the telescope and vernier) is the star's zenith distance.

It appears then, from what has preceded, that, in all quad-
rants and circles, used for taking altitudes and endowed with

azimuth motions, the altitudes so taken can be freed from the

error of collimation. But they are instruments of a limited size

only
*
(we are speaking of the practical convenience of the thing)

that admit of an azimuth motion
; instruments, for instance, of two

* The radii of astronomical quadrants and circles that have an

azimuth motion, and are portable, rarely exceed three feet: those of

portable zenith sectors may be somewhat larger. The radius of the

stationary circle of the Dublin Observatory, which has an azimuth motion,

is four feet, and the radius of the quadrant at Blenheim, made by

Ramsden, and with an azimuth motion, is six feet.
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or three feet radii. It would be, almost, an impracticable operation

to move, from day to day, such quadrants as the mural quadrants
of Greenwich are, of 8 feet radii, and which are very ponderous.
Such quadrants when once fixed must so remain, and, consequently,

such quadrants are inadequate, from their own properties, to

determine the errors of collimation of their telescopes. It is,

however, essential to determine those errors. Some subsidiary

instrument then must be called in for that purpose. Those circles

and quadrants that possess an azimuth motion will not answer

that purpose, since, by reason of their small dimensions, they

cannot, in the determination of angles, be relied on beyond a

certain degree. The error which we seek to investigate in the

large instrument (an eight feet mural quadrant for instance) may be

within the limits of inexactness (if we may so express ourselves)

of the smaller. For instance, a quadrant of two feet radius is

not to be relied on beyond 8 or 10 seconds : but the sought for

error of the line of collimation, of the mural quadrant of 8 feet

radius, may not exceed 4 seconds ;
a quantity of moment in this

latter instrument, by which it is purposed to determine angles to

within I or 2 seconds. It is in vain then we seek for an angle of

4 seconds in an instrument on which we cannot rely to 8 seconds :

and, indeed, the error of the line of collimation of a mural

quadrant can only be determined by an instrument, of, at least,

equal accuracy in the measuring of observed angles, and which,

therefore, probably requires, in its essential parts, equal dimen-

sions.

We have already, in explaining the principle of determining
the line of collimation, represented the parts or fragments of the

Astronomical Quadrant. Ifwe still farther contract the dimensions

of the Fig. of p. 60. and suppose the extremities of the graduated arc

to be at n and r, the graduation on each side of the lowest point
not exceeding 8 or 10 degrees, we shall have, what is, in fact and

principle, a Zenith Sector, an instrument for measuring small

angular distances from the zenith, and, (which is the essential

point,) capable of being reversed
;
which reversion in small in-

struments is effected by means of an azimuthal movement, and,

in large instruments, by removing the sector from an eastern to

a western wall.

The reason is obvious why these sectors can be moved whilst

the quadrants of equal radius cannot. The graduated arc, instead
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of containing 90 degrees, contains not more than 10 or 12 : some-

times much fewer degrees. The sector, therefore, can be made

much less ponderous and unwieldy than the quadrant. The fixed

mural quadrants at Greenwich are 8 feet, but the zenith sector's

radius exceeds 12 feet.

A sector then of these latter dimensions must, to the extent

of what it is able to perform^ be more accurate than the mural

quadrants. It is capable, for instance, of determining the

zenith distance of y Draconis, more exactly, than the mural

quadrant. But it is capable also of determining the zenith

distance of that star truly by taking the half sum of its zenith

distances observed on the eastern and western walls. The dif-

ference of that half sum and of the zenith distance of the star, in

one of the positions of the sector, is the error of the line of

collimation of the sector: the difference of that same half sum,
and of the zenith distance of y Draconis observed with the mural

quadrant, is the error of the line of collimation of the mural

quadrant. For instance, by observations of y Draconis made at

Greenwich in 1812 with the zenith sector.

Sector on the eastern wall, mean zenith distance = 2' 14
/7

.6l

Sector on the western wall, mean zenith distance = 2 22 . 63

2)4 37.24

Mean of eastern and western . . , 2 18.62

Error of line of collimation of the sector , 4.01

But by observations made the same year, on the same star,
with

the, brass quadrant,

the mean zenith distance = 9! 14".52
but (see 5th line above) mean of eastern and western= 2 18.62

error of line of collimation of the quadrant 4.1

which error (so it happens in this instance) is very nearly the
same as the former (see ?th line above,) whereas it might have
been different by 2, 3, &c. or more seconds.

By these means, then, the error of collimation of a mural
quadrant may be corrected, and, if we use such a quadrant,
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we must also be possessed of a zenith sector*. But the uses of

this latter instrument are not merely subsidiary and subordinate ones.

Its peculiar utility consists in finding, to a great degree of accu-

racy (we refer to a sector of a large radius, such as Bradley's or

the Greenwich one is) the zenith distances of stars situated near

the zenith : such, for instance, are, with respect to Greenwich,

j8 and 7 Draconis, Capella, a Cygni, a Persei, a Cassiopea*,

*i Ursae Majoris. What are the inferences to be drawn from

zenith distances, so circumstanced and so minutely observed,

will be hereafter explained.

Having now explained the constructions of the Astronomical

Quadrant and of the zenith sector, and shewn the method of

freeing them from one error, namely, that of collimation, we

ought not to dismiss the subject without explaining, in its prin-

ciple at least, the method of placing these instruments in the

plane of the meridian. We will confine our attention, in the

first instance, to a quadrant endowed with an azimuth motion.

A star (see pp. 4, 5,) rising from the horizon, attains its

greatest height in the plane of the meridian, and, quitting the

meridian, declines, by degrees like those by which it rose,

towards the horizon. At equal altitudes to the east and west of

the meridian, it is equally distant from its plane. The star so

circumstanced, and referred to the plane of the horizon by vertical

circles passing through 'it, is equally distant from the south point
of the horizon, or equally distant from the north. In other words,

it (see p. 5.) has equal azimuths. In the same positions *also,

namely, those of the star's equal altitudes, the star, with regard
to the timey is equally distant from the meridian. Draw two de-

clination circles (see p. 8,) one passing through the eastern, the

other through the western position of the star
; then, each circle

makes an equal angle with the great circle of the meridian.

But such angle, in the terms of sidereal time, expresses how
much time will elapse between the star's eastern and meridional

* We are speaking here, as it is plain, of fixed mural quadrants and

circles. A quadrant or circle, capable of being' reversed, is able to find its

own error of collimation. Such is, and perhaps the first of its kind with

regard to size and accuracy, the Dublin Circle of 8 feet diameter made by

Ramsden and Berge.
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altitudes, and also between its meridional and western. Two
methods then present themselves, by which the meridian may be

found. Half the difference of degrees, &c. on the azimuth circle

of the instrument, between any two equal altitudes of a star, is the

angular distance of the south or north point, from the eastern or

western azimuth of the star: or, half the difference of times

elapsed between any two equal altitudes of a star, is the time

that the star is on the meridian. In each case, we are able to

direct the telescope (to the line of the collimation of which the

face of the instrument is parallel) towards the meridian : and as,

in the course of a day, we may take several pairs of equal alti-

tudes, we are, by taking the mean of the azimuths, or the mean
of the times, able to determine the direction of the plane of the

meridian to a considerable accuracy *.

By either of the above methods, or by the aid of both, Astro-

nomical quadrants and circles, such as are furnished with

azimuth circles, may be placed, nearly, in the plane of the meridian.

By means of such instruments, and by other helps, mural quad-
rants and mural circles may also be placed in the plane of the

meridian. The operation is one of some nicety and is most accu-

rately performed by the aid of the Transit Instrument, previously

adjusted to move in the plane of the meridian. We will now, then,

proceed to explain the Transit Telescope, or Transit Instrument f.

Let AD represent a telescope fixed, as it is represented in the

figure, to an horizontal axis formed of two cones. The two small

ends of these cones are ground into two perfectly equal cylinders :

which cylindrical ends are called Pivots. These pivots rest on

two angular bearings, in form like the upper part of a Y, and de-

nominated Y's. The Y's are placed in two dove-tailed brass

* We may, for the above purposes, use the Sun and observe his equal

altitudes and azimuths. As we cannot pretend to bisect his centre, by a

wire of the telescope, we must make our times of observation, those in

which the limbs of the Sun are in contact with the wires of the instru-

ment. Since the Sun does not, like a star, describe a parallel of declina-

tion, there must be some small correction made, for his changes of decli-

nation, during the intervals of observing either equal pairs of azimuths or

equal pairs of altitudes.

f Instrument des Passages.
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grooves fastened in two stone pillars JE and W, so erected as to

be perfectly steady. One of the grooves is horizontal, the other

vertical, so that, by means of screws, one end of the axis may be

pushed a little forwards or backwards, and the other end may be

either slightly depressed or elevated. Which two small* move-

ments are necessary, as it will be soon explained, for two adjust-
ments of the telescope.

Let jE be called the eastern pillar, W the western. On the

eastern end of the axis is fixed (so that it revolves with the axis)

an index , the upper part of which, when the telescope revolves,

nearly slides along the graduated face of a circle, attached, as it

is shewn in the figure, to the eastern pillar. The use of this part

of the apparatus is to adjust the telescope to the zenith or polar

distance (for the one is as easily done as the other) of a star the

* The movements are of small extent since they are only subservient

minute adjustments.
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transit of which is to be observed. Thus, suppose the index of

n to be at o (in the upper part of the circle) when the telescope is

horizontal : then, by elevating the telescope, the index of n is

moved downwards : suppose the position to be that represented

in the figure, then the number of degrees between o and what

the index of n marks, is the altitude of the telescope : or, we

may so graduate the circle that the index shall mark the telescope's

zenith distance : or, if we make the o, the beginning of the

graduation, to belong to that position of the telescope in which it

is directed to the pole, the number of degrees, &c. between o

and any other position of the index, will mark either the telescope's

polar distance, or, if we please, may be made to mark the

telescope's declination
;
the telescope, in all these cases, being

supposed to move in the plane of the meridian.

There are several other parts and contrivances, belonging to

the instrument, not shewn in the Figure : for instance, one of the

cones is hollowed, and, opposite the orifice, there is placed, in the

pillar, a lamp which, throwing its light on a plane speculum,

placed in the axis of the telescope and inclined at an angle of 45,
illuminates the cross-wires. It is usual, also, in large transits to

have counterpoises by which the pressure of the pivots of the

axis on the Y's is relieved. We will now explain the three prin-

cipal adjustments of the transit.

1
st

, To make the axis, on which the telescope moves, hori-

zontal.

2d , To make the line of collimation move in a great vertical

circle, or, which is the same thing^ to make it perpendicular to

the horizontal axis.

3d , To make it move in that vertical circle which is the me-
ridian.

The first adjustment is effected by means of a level
;
and in

the figure of p. 71, it is intended to represent the level (JL) as

hanging, by means of its upright arms, (bent, however, in their

upper extremities) on the two pivots of the axis. The principle,

however, and mode of rendering any axis horizontal, by means

of a level, may be best explained by the subjoined Figure.

In this Figure, the spirit-level (including in that term, the

brass tube that partly envelopes it, the horizontal bar to which it

is affixed, and the two vertical arms by which it is hung on any
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a b, the end towards a lying on a crotchet which is capable of

nk f

being raised or lowered by a screw B. The end A of the tube

AD, which contains the level, is also capable of being lowered

or raised by means of a screw at A, as it is shewn in the Figure.
If a b were horizontal, and the tube of the spirit-level were

parallel to a b, then the bubble would occupy the middle, or,

the two extremities of the bubble would be equidistant from the

centre, and would be, for instance, aty and e. The same thing

would happen if the level were reversed, that is, if it were taken

off the rod, turned round, and again hung on, so that D in the

second position, should occupy the place that A did in the first, or

should be to the right hand. But, if ab should not be horizontal,

the above circumstances cannot take place. Suppose the end a

to be lower than the end b, then if the level should not be

parallel to a b, the bubble might still stand in the middle, by the

end at A being, by a certain quantity, higher than the end at .B.

But on reversing the level, the bubble cannot occupy its middle,

since then the lower part of the rod a b and the lower part of the

level would both be situated to the right hand. The bubble,

however, may not stand in the middle from two causes, the want

of horizontality in a b, and the want of parallelism to it in the

tube contained between AD.
If the level were parallel to a b : and the extremity of the

bubble, instead of being at e, should be at h, on reversing the

level, the other extremity of the bubble (which by the reversion

would be towards a) would be at k, fk being equal to eh. But

suppose this is found not to be the case, and that the extremity

of the bubble, on reversing the level, is at n, then the circum-

stance of the bubble not standing at the two points e

K
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cannot arise solely from the end a being higher than b, but the

level cannot be parallel to a b, and, in the case we have put, the

end at A must be lower than the end at D : when the level then is

in the second or the reversed position, so elevate the end at A, by
means of the screw A, that the extremity of the bubble shall

descend from n and occupy a place intermediate to n and k f

and then the level is made parallel to ab
;
this is the first adjust-

ment. Next, by means of the screw B, so depress the end a *,

that the extremities of the bubble shall be, (as they ought to be,

ef being the length of the bubble) at e and f\ then is ab

adjusted or made horizontal : this second adjustment completes
the operation.

In the preceding reasonings, a b has been considered, (the

whole of it,) as cylindrical. But this is not necessary : it is suf-

ficient if its extremities at a and b (the pivots), on which the level

is hung, be equal cylinders, the axes of which lie in the same

straight line. The intermediate parts of the axis of the transit

between the pivots, may be of any form : they may be formed, as

they generally are, of two cones. The preceding process, then,

will render the axis of the transit horizontal ;
the level, whether in

its primary or in its reversed position, being supposed to be hung
on the equally cylindrical pivots.

The axis being now horizontal, the next operation is to make

the line of collimation describe a great vertical circle, or, which is

now the same thing, to make the line of collimation perpendicular
to the axis of the transit.

The telescope AD (p. 71.) is furnished, like the telescope of

the quadrant, with a system of cross-wires placed in the principal

focus of the object-glass. Suppose the wires so placed that the

line of collimation (see p. 61,) is perpendicular to the axis of

the transit. If then a small and well-defined object be bisected

by the centre of the cross-wires, it will still be bisected when the

transit is lifted off its angular bearings, reversed and directed to

the object ; that is, illustrating our meaning by the Figure of

* The end of the cylinder at a rests upon an angular bearing (it might
have been a F), placed in a groove, and capable of being moved vertically

by the screw at E. This part is, in fact, the same as that which is men-

tioned in the brief description of page 7 1
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p. 71, if the end of the axis carrying the index n which is

placed on the eastern Y should be placed on the western. Let

now the wires be deranged, so that their intersection is moved,

not, as in the former case, in the plane of the meridian*, but in a

direction perpendicular to that plane, and suppose it moved a little

towards the east. In this case, the object before bisected is no

longer so, but will be seen in the field of view a little to the west

of the present centre of the cross-wires. Reverse the telescope,

then the centre will be towards the west and the original object
will be seen a little to the east of the centre : as much towards

the east as it was before towards the west. If therefore there

should be two objects or marks (on the horizon, for instance,)

bisected by the centre of the wires in the two positions of the

transit, the correction or adjustment of the line of collimation

would consist in moving the centre of the cross-wires half way
towards that object which is not on the centre.

But the moving the centre of the cross-wires, half way towards

an object, is a matter of guess and not of certainty. In order to

ascertain whether, in moving the centre, we have adjusted it

rightly, we may avail ourselves of that angular bearing, or Y9

which, (see p. 71,) by means of an horizontal groove and screw,

we can move, together with the pivot of the axis, in azimuth. So

move these then, that the object, to which we have already made
the centre to approach half way, may be exactly bisected by that

centre. Reverse the transit, and the object and centre are either

coincident, or very nearly so. If the latter be the case, again, by
their proper motion, move the centre of the wires half way towards

* We have supposed, in the quadrant, the derangement of the centre of

the cross-wires to be made in the plane of a vertical circle ; or, in the plane

of the meridian, if meridional altitudes are to be taken : for such derange-

ment is the essential one : a small deviation or derangement to the east or

west would very slightly affect the determination of the altitude. But in

the transit instrument the reverse is the case : the essential derangement

is that which moves the centre of the cross-wires to the east or west of the

meridian, and which makes the star to appear to pass the meridian too late

or too soon. A small derangement of the cross-wires in the direction of

the meridian, is of no consequence, since such derangement will neither

accelerate nor retard the star's transit.
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the object and move it the other half way by the screw that acts

on the axis *. Reverse the instrument, and again, if it be necessary,

repeat the above operations.

By these means, after a few trials, we are sure of making the

line of collimation, or axis of vision, perpendicular to the axis of

the transit ; and, when that is effected, the cross-wires are no

longer to be meddled with, although we must continue to use the

above horizontal movement of the axis (see pp. 71, Sec.) for the

purpose of placing the line of collimation in the plane of the

meridian. That line now moves in a vertical circle, and produced

passes through the zenith : it is farther necessary to make it pass

through the pole.

The transit instrument, (that which in the preceding pages we
have spoken of) is supported between two fixed pillars. It

must be supposed to be nearly in the meridian (the direction

of the meridian being known, to a tolerable degree of accuracy,

by some of the methods described in pp. 69, &c.) and to need

only some slight adjustments to place it there exactly. It would be

easy to effect this were the pole star exactly in the pole ; for, then,

it would be only requisite to bisect that star by the middle vertical

cross-wire. But the pole star being, in fact, a circumpolar one,

we must compute, by means of existing Tables and observations,

(for the question is not now concerning the independent derivation

of all Astronomical Elements from first principles) the time of its

transit, and, at that computed time, bisect the star by the middle

vertical wire. By these methods we may place the transit very

nearly in the plane of the meridian.

We will now shew how to place it there more exactly by means
either of the polar, or of any other circumpolar star.

The axis being horizontal, the optical axis perpendicular to it

passes through the zenith : let ZPH be the true meridian and

* It is plain that the horizontal or azimuthal motion given to the Y and

pivot, has nothing to do in the adjustment of the line of collimation. The

adjustment is solely effected by the screw (or other contrivance) that

gives motion to the cross-wires. The motion we can give to the axis only

enables us to ascertain whether the last adjustment we have made with

the cross-wires be sufficiently exact, or whether a farther one be necessary.
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Zsm the vertical circle described by the optical axis or line of

collimation : then Hm, which is the measure of the angle at Z,
is the deviation of the Transit from the meridian.

Let ss's'cr represent the circle described by a circumpolar

star, which is seen, through the transit telescope, at cr its inferior

passage, and at s its superior. Now, when the Transit is not in

the meridian, the time from cr to s cannot equal the time from s

through s and s" to <r : for, P being the pole, the former time is

p. 9,) proportional to the angle crPs, or

180 - Z sPs / crPs",

the latter to

>80 -f ^ sPs + Z crPs",

Hence,, if the interval between the inferior and superior

passage should be less than the interval between the superior and

inferior, the plane in which the Transit moves from the zenith to

the north of the horizon (P being the north pole) is to the east-

ward of the true meridian.

But, in order to estimate the quantity of deviation from the

observed difference of intervals between the passages, we must

compute the angles

sPs or sPZ, and <rPH,
now,

_,., sin. Zs
sin. sPZ = sin. sZP x -

,
sin. Ps

sin. Zff
sin. crP-fiT=sin. &PZ = sin. sZP x -.

sin. Per

Let / sZP (measured by Hm) = Z,

Ps = Per = TT,

the latitude -of the place (
= HP) = L,
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then since Z, or the deviation from the meridian, is, by the con-

ditions, very small, we have, nearly,

sin. Z = Z,

Z s = ZP~Ps = 90 - CL+ 7T),

Z<r = ZP + Ps = 90 - CL-7T),

consequently, sPZ (which is, nearly, = its sine)

cos. (L -f-7r)

sin. TT

^= Z (cos. L cot. TT sm. JL),

and <rPH= Z .^-~ = (cos. L cot. TT -f sin. L).
sin. TT

Hence^ the time from <r to 5= 1 80 2# cos. JC cot. TT,

and from s tocr= 180+ <2.Z cos. L cot. TT.

Let the former time = 12
h

A,
the latter = 12h + A

;

then, since 180 (see pp. 9, 10.) is the angular measure, or ex-

ponent of 12 hours of sidereal time,

12h A = 12
h -20. cos. L . cot. TT,

12
h + A = 12

h + 20 . cos. L . cot. TT,

whence

z=
,

2 COS. -L .COt. 7T

or, (see Trig. p. 18.)

A i= . sec. JL tan. TT,
2

and, the logarithmic formula will be (see Trig. p. 19.)

A
log. Z =

log. + log. sec. L + log. tan. TT 20,

which is the substance of the Rule that is given by Wollaston at

p. 74, of the Appendix to the Fasciculus Astronomicus.

As an example to this formula, let the observed star be

the pole star, with a north polar distance equal to 1 39' 25
//

.05,

and, the place of observation, Cambridge, assuming its latitude
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to be 52 12' 36" : and let A , the difference of the intervals of

the transits, equal 7
m 22s (= 442s

) : we have then

log. 221 = 2.3443923

log. sec. 52 12' 36" . . = 10.2127030

log. tan. 1 39' 25
/7

.05 = 8.4513064

21.0084017

Hence, log. Z = 1.0084017,

and Z = 10
s
. 195.

The result is here expressed in time, as it must needs be from

the expression of p. 78, 1. 18, if A be so expressed. It may,

however, (should it be thought necessary) be expressed in mea-

sures of space or of angular distance : for, since 24 hours of

sidereal time is held to be equivalent to be 360, l
h

will equal

15, l
m

will equal 15', and 1
s
will equal 15" : and, consequently,

10s
. 195 must equal 101.95" + -

(101.95"),

or 2' 32".925> which will be the value of the deviation of the

line of collimation from the plane of the meridian.

Nothing, however, is gained (if we look, in the present case,

to the practical convenience of the thing) by this conversion of a

measure in time into an angular measure : for the approach of the

plane, in which the line of collimation is, to the plane of the

meridian is effected (see p. 71.) by means of a screw: suppose,
for the sake of illustration, the head of this screw to be graduated
like that in the figure of p. 55. Let the time of the transit of an

equatoreal star over the middle vertical wire be noted on a par-
ticular day. Alter the inclination of the plane, in which the line

of collimation moves, to the plane of the meridian, by turning

the screw once round, and observe, the next day, the time of

the star's transit: suppose the difference of the times of transit, on

the two successive days, to amount to two seconds, then will one

revolution of the adjusting screw be equal to two seconds, half a

revolution to one second, one eighth of a revolution to one quarter

of a second, and so on : so that, having thus once obtained the

value of the motion of the adjusting screw we may immediately
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apply it to the result of Z, expressed in time, (see p. 79-).,

and correct, accordingly, the Transit's deviation.

It appears then, from the preceding computation, that a

deviation of about 10 seconds of time, in the transit telescope

from the plane of the meridian causes the time, between the

inferior and superior transit of the pole star, to differ, from the

time between the superior and inferior transit, by about 7 minutes.

The difference, it is probable, will not be the same in another

circumpolar star. Let us examine what it will be in Capella, the

north polar distance of which in January 1, 1819? was 44 19' 53",

and which, consequently, passes the meridians of Greenwich

and Cambridge to the south of their zeniths. In this case (esti*

mating separately the angles sPZ, o-P-fiT), we have

COS. (L+ 7T) = At . cos. (Li-f-Tr) co-sec. TT,
sin. TT

L = 52 12' 36"

TT = 44 19 53 .... log. co-sec. =10.1556425

96 32 29 .... log. cos. . . = 9.0566035

A = 10.195 .... log...... = 1.0084017

20.220Q477

/. log. sPZ = .2206477,

and sPZ = l".662:

for the inferior passage of Capella,

<T PH = 14".452.

It appears then from the above results that although the plane,
in which the line of collimation of the transit telescope moves,
deviates more than 10 seconds from the plane of the meridian, yet
the time of passing the middle vertical wire, at the superior
passage of Capella, differs but very little (1

8

.662) from the time
of passing the meridian

;
and the reason is obvious : Capella in

its upper passage, passes near the zenith, and the line of colli-

mation, by means of previous adjustments, describes a great
vertical circle, and, consequently, passes through the zenith.

But the case is different with the inferior passage ;
at that, the
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time of passing the middle vertical wire differs from the time of

passing the meridian by 14s
.452.

If we wish to determine the difference between the intervals

of the successive transits, we have

the time from er to s = 12
h 14S

.452 4- 1
8
.662,

from s to <r= 12
h + 148

.452 - l
s
.662,

and, consequently, the difference of times equals

28S
.904 3S

.324, or 258
.58.

But with the pole star the difference arising from the same

deviation of the transit telescope (10
s
.! 95) amounted to 442s

.

This latter star then, if all other things were equal, is much
better adapted than Capella, or than any other circumpolar star

(provided its north polar distance exceeds that of the pole star)

to adjust, by the preceding method, the transit telescope to the

plane of the meridian.

But there are circumstances attending the pole star that

detract from this superiority. The slowness of its motion is

such that it is difficult to note the exact time of its bisection by
the middle vertical wire of the telescope. There must always

be some uncertainty on this head : more or less, according to the

magnifying power of the telescope and the fineness of the wires

that are placed in the common focus of the object and eye-

glasses. In small Transits the star is hid for some seconds

behind the wire. In the late transit instrument* of Greenwich,

the uncertainty of the time was esteemed at about 2 seconds : in

* The transit instrument used by Bradley and Maskelyne was made

in 1750 by Bird, was eight feet in length, had an aperture limited to an

inch and half, and magnified 50 times. After Dollond's discovery of the

different relations which rays of light bear to different kinds of glass, but

possessing the same mean power of refraction, an achromatic object-glass,

of 2^ inches diameter, was substituted instead of the original one, the

eye-glasses were changed, and the magnifying power of the telescope

increased to eighty times. The present transit telescope put up July 16*,

1816, was made by Troughton, is ten feet in length, has an object-glass

of five inches diameter, and will magnify distinctly with a power of 300.

L
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the present transit instrument, it is reduced to about 1 second*.

But this uncertainty will, it is plain, be reduced within narrower

limits, by observing with stars that have greater north polar
distances. The time which an equatoreal star takes in passing
over a given interval, is to the time which Polaris takes in passing
over the same interval, nearly, as 183 is to 6000, or as 1 is to 33.

And in such proportion will the uncertainty, respecting the precise
time of a star's transit, be reduced.

But the above circumstance, the slowness of the motion of the

pole star, only renders that star less convenient than it otherwise

would be, for adjusting the plane in which the line of collimation

moves to the plane of the meridian. It is still, on the whole,
the most convenient star to be made use of.

On principles, like the preceding, is founded a method for

bringing the Transit into the plane of the meridian by means of

the pole star, and of another star which passes the meridian near

the zenith of the place of observation. Capella, for instance, as

we have seen, is, in our latitudes, under such predicaments. Now
in its superior passage, such a star, should the Transit deviate,

only slightly, from the meridian, would pass the meridian very

nearly (see p. 80,) at the time of its passing the middle vertical

wire of the telescope. Assume it to pass exactly, and then (that

is, when the star is on the middle wire) make the clock denote

the right ascension of Capella, known from Catalogues and

Astronomical Tables : or, wrhich is the same thing in practice,

note how much the clock differs from the registered right as-

cension. Next observe the clock when the pole star is on the

vertical wire. The time shewn by the clock cannot be the right

ascension of the pole star, or the interval of time between

Capella and the pole star being on the vertical wire, cannot be

the right ascension of the latter star, or the difference of the

catalogued right ascensions of the two stars, because the transit

instrument is not in the plane of the meridian. Compute

* These assertions are not to be taken absolutely and according to the

letter. The estimation of the time which a star hangs on the wire, or

takes in passing the wire, will vary with circumstances ; the state of the

air, the time of day, the brightness and magnitude of the star, &c.
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according to the difference of the right ascensions of the pole
star as shewn by the clock, and as expressed in catalogues, the

deviation of the transit instrument (see pp. 77, &c.) and adjust it

accordingly. The instrument so adjusted will be very nearly,
but not exactly, in the plane of the meridian.

It will be not exactly adjusted, because Capella, although
very nearly on the meridian, when on the vertical wire, was not
there exactly. If, as in the Figure of p. 77, the telescope
directed towards the pole, moves in a plane to the east of the

meridian, then Capella, in its superior passage, will be on the

vertical wire of the telescope^ after it has passed the meridian.

Suppose the error of time, as computed in p. 80, to be 1
s

.66,

and the right ascension of Capella to be 5
h

3
m

1 1
s

: then the

clock, when Capella is on the middle wire, ought not to denote
5h 3m 11

s

, but 5h 3m 12
S
.66. The clock, therefore, by the

rule (see p. 82,) is made too slow : suppose then the clock,

Polaris being on the vertical wire of the Transit*, to denote

50m s

, the catalogued right-ascension being 56m 18
s

. 6m 18
s

would, by the rule (see p. 82,) be the error of time from

which the deviation of the transit is to be computed, whereas

6m 18
s - 1

s
.66, or 6m 16

s
.44 ought to be the error, which, so

taken, would cause a slight difference, and a very slight one,

in the resulting quantity of the Transit's deviation. This slight

difference must be got rid of by a renewed process of computar.
tion and adjustment.

The line of collimation being now supposed, by means of the

previous adjustments, to describe a great circle passing both

through the pole of the Heavens, and the zenith of the observer,

the transit instrument is in a fit state to note the passages of

stars cross the meridian. A star passes the meridian at the

instant it is coincident with a the centre of the cross wires :

but if de were truly vertical, a star on any point of de would be

on the meridian. It is desirable then to make d e vertical, since

then we should have the power of observing the star's transit on

any part of de. This may be thus effected. Direct the transit

*
Transit, transit instrument, transit telescope, are used in these pages

to denote the same thing.
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telescope to some well-defined small object, so that it is bisected

d

by some point of de. Move the telescope round its horizontal axis

and observe whether the same object is bisected by every part of

de, or, in other words, whether it runs along the wire de. If it

does, the wire is vertical, or the middle wire is also a meridional

wire. If it happen otherwise, the wire must be adjusted till the

above test of its verticality be obtained.

When the transit instruments are large, the various adjust-

ments, that have been described, are not made without trouble

and difficulty. But the results now exacted of large transits are

of such nicety that we cannot rely on observations except we are

assured that, at the times of making them, the instruments were

properly adjusted. The transit instrument, then, requires a daily

and continued examination. But, in order to avoid the repe-
tition of troublesome verifications, two marks are set up, one to

the north, the other to the south, and their places determined by
means of the middle and meridional wire. The marks used at

Greenwich are vertical stripes of white paint on a black ground,
on buildings about two miles distant from the Observatory.

They are first placed by means of the instrument adjusted to the

meridian, and then are subsequently used to bring the instru-

ment into the meridian, should it become deranged.

But, besides the middle or meridional wire, it is usual to place
on each side of it and at equal distances from it, parallel side

wires. Their use is to check the observation at the middle wire,

and to supply its place, should it become defective by inter-
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vening clouds or other accidents. The old Transit at Greenwich

(see p. 81,) had four side wires, and, therefore, in all, five

wires. The present Transit has 7. There are five wires repre-

sented in the subjoined Figure, and numbered 1, 2, 3, 4, 5. If

c/

1 and 5 are equidistant from 3 the middle wire, half the sum of

the times at 1 and 5 will be the time at 3 : and adding together
the times at 1, 3 and 5, one third of their sum will the mean time

of transit cross the middle wire. The like will take place with

the wires 2, 4, if these be at equal distances from 3. And if we
add together the five times of

*

the star's passage cross the

wires 1, 2_, 3, 4, 5, and take one-fifth of the sum, the result will

be the mean time of the star's passage over the meridional wire.

Let t be the time at the middle wire ; t 20s
, t 40s

,
the

respective times at the wires 2 and 1, 4-20% t+ 4(f, at the

wires 4 and 5 : then the sum is 5t and one-fifth is ty the time at

the middle wire : and if the cases in practice were like this,

nothing would be gained by the side wires. But the fact is that

we are not able to note absolutely the times at the several wires.

It is probable no beat of the pendulum will happen exactly
when the star is on a wire. The beat of the pendulum may
happen just before the star reaches a wire, and the next beat

after the star has quitted the wire. The observer then is obliged,

in default of other means, to estimate, according to the best of

his judgment, the fraction of a second at which the star was on

the wire : which estimation must needs be somewhat uncertain

and erroneous. A tenth of a second may be put down too

much at one wire, and too little at another : but it is probable
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that the errors will, in degree at least, compensate one another,

and that the mean result will be entitled to more confidence

than a single observation at the middle wire.

Thus by an observation made in ]8l6 on a Ceti, the observer

saw the star a little to the left of wire 1
* at 2h 51m 12s

;
at the

next beat, that is, at the 13 seconds, it was to the right of the

wire, and judging the star's distances, to the left and right at the

times of the two beats, to be as 7 to 3, he put down the time at

the wire 1 at

2h 5lm 12
s

. 7.

The star took more than 18 seconds in passing to the second

wire. At the beat of the thirty-first second, the star was to the

left of the wire 2, at the thirty-second, to the right, and, the

distances being apportioned as before, the time at the second

wire was put down at

2
h

51
m 31 s

. 1:

in like manner

at the third wire at 2h 51m 49
s

.4,

at the fourth 2 52 7.6,

at the fifth 2 52 25.9.

Here the intervals of time between the wires are 18.4, 18.3, 18.2;

18.3, a little different the one from the other, not necessarily

different from real inequalities in the respective spaces between

the wires, but, probably, from the cause assigned above, namely,

the uncertainty of the observer when he guesses at the tenth of

a second. If we add the above five times together, their sum

amounts to

5 X (2
h

51
m

) -1- 246
S

.7,

the fifth of which is

2h 51
ra

49
s

.34.

* Since objects appear inverted through the telescopes of Astronomical

instruments, a star will appear to enter the field of view to the right of the

extreme wire to the right, which, in the preceding figure, would cor-

respond to the wire 5. The principle, however, of the explanation is

precisely the same whether the object is seen inverted, or in its natural

position.
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The time at the middle wire* was

2h 51m 49
s

.4.

The former time, the mean time, is probably the truer time,

although it is plain that nothing positive can be affirmed on this

head.

The intervals between the wires are made very nearly equal

by the instrument maker. But the power and accuracy of

modern transit instruments is such that a good observer will,

from his observations, be able to discover inequalities in the in-

tervals not otherwise, or mechanically, ascertainable. The in-

tervals are examined, and their values in seconds of time found

by taking, from a great number of observations, the means of the

times a certain star takes in passing respectively from the first to

the second wire, from the second to the third, &c. If, as is fre-

quently the case, the intervals are unequal, then, in estimating the

*
It can very rarely happen that the minutes of the time at the middle

wire differ from the minutes of the deduced mean time. For that reason,

in registering the several times, the hours and minutes are only once

expressed for the middle wire, it being sufficient to note the seconds alone

at the side wires. Thus, the above results are thus registered.

I.

12.7

n.

31.1

Middle Wire.

2h 51m 49
8
.4

IV.

7.6

v.

25-9

Reduction of Wires.

49.34

The seconds added together make 126.7 : now, if we divide by 5, the first

figure of the seconds would be 2, which must be wrong, since the number

of seconds must be, what it is in the middle wire, nearly 49 : in order to

make the first figure 4, we must add 120 (two minutes) to 126.7 : the

sum 246.7 divided by 5 gives 49-34 : the two minutes (120
s
) added come

in fact, from the fourth and fifth wire ; where the minutes instead of 51, are

52. But, as it is plain, we need not concern ourselves about the minutes.

If the sum of the seconds added together and divided by 5 do not give

the first figure, the same as the first figure of the seconds at the middle

wire, we must add either 60, or 120, to the number of seconds till that

fact takes place, and the result cannot fail to be right. In the sixth

column entitled the Reduction of the Wires, the mean result of the seconds

is put down.
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time of a star's transit from the mean of the times at the several

wires, some allowance must be made for the inequalities of the

intervals *.

We subjoin an instance or two from the Greenwich Obser-

vations of 1816 to illustrate the preceding matter.
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is not necessary to add either 60, or 120, to 137.8. Accord-

ingly*

137.8 = 27.16,
o

the reduction of the wires, or the mean transit at the meridional

wire is

Oh
29

m
27

s
. 16.

In the third column the sum of seconds is 125.8: divide by 5,

and the first figure in the quotient is 2, but it ought to be 3, since

37 is the number of seconds at the middle wire, add therefore

60, and then

-
(185.8) = 37.l6,

5

the reduction of the wires, and the mean time of transit is

21 h 55m 37'. 16.

The mean time is expressed to the hundredths of a second.

But this is an exactness altogether arithmetical, or which results

from arithmetical operations, and is, in no wise, connected with

any presumption on the part of the observer to distinguish such

small portions of time *.

The intervals between the several wires, as estimated from

the same star (a Aquarii), are from the first and third rows,

18.6, 18.4, 18.1, 18.7,

18.0, 18.8, 18.5, 18.4,

so that, if we were limited to these two observations, we should

find it difficult to say whether the intervals between the wires

were equal or unequal.
The intervals between the wires from the observations of

a Cassiopeae are

32.6, 32.3, 32,5, 32.5,

in which, the intervals appear to be much more nearly equal than

they were in the former instances.

* " Tam exigua et evanescentia temporis momenta."

M



90

It appears from the above examples that the star a Cassiopeae
is almost twice as long in passing from wire to wire as the star

a Aquarii. The latter star is near the equator, its north polar

distance being (in 1816) about 91 12' 30", whereas the north

polar of a Cassiopeae was, at the same period, 34 28' 23".

Now it is easy to prove that the time of a star's describing small

spaces perpendicular to the meridian (such as the intervals of the

cross-wires would be) varies inversely as the cosine of its decli-

nation. For let P represent the pole, Pe, Pf two arcs of 90

each. Let st represent the interval of the wires, nearly, by
reason of its smallness, coincident with srt. Takeeg = st,
then (see pp. 9, 10.) a star apparently moves from s to t in the

same time as another star moves from e tof in.

But the time through st (= the time through ef) = time

through eq x = time through eq X =, nearly, time through

radius

eq X : . Hence, if the time through eq, that is. if the
co-sin, se

time of an equatoreal star moving across the interval eq be given,
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the time of moving across an equal interval (s Ovaries as
co-sin, se'

or, directly as the secant of the star's declination.

But there are no stars exactly in the equator, and conse-

quently, the equatoreal interval of time, through a space equal to

st, cannot be determined by direct observation. It may, how-

ever, be easily determined by observing the time that any known

star (a Aquarii, for instance,) takes in passing that interval, and

then by lessening that time in the ratio of the cosine of the star's

declination to radius. Thus the mean time of a Aquarii passing
an interval of the cross-wires being 18

s

.4, the time of an

imaginary equatoreal star passing the same interval, equals

188
.4 x cos. (1 12' 30") = 18

S
.395.

This is the quantity from one star, and, if we employ several

stars, we shall obtain, from a mean of the results, a result of

greater exactness. For instance, the north polar distance of

a Cygni is 45 22' 5", that of a Aquilae is 81 36' 42", and the

mean times which these stars took in passing the interval between

two successive cross-wires, were, respectively, 25s
. 8, and 18

8
.55.

Hence, since the cos. star's declination = sin. star's N. P. D.
we have

For a Cygni.

log. 25.8. . . . =1.4116

log. sin. 45 22'. . =9.8522

1.2638 = log. 18.35.

For a Aquilae.

log. 18.55. . . =1.2683

log. sin. 81 36'. . =9-9953

1.2636 = log. 18.35.

The time of an equatoreal star's passing an interval^between
the cross-wires, being thus determined by computation, from the

observed times of known stars, but not in the equator, the times

which other stars jwill take in passing the intervals of the wires

may be determined by increasing the equatoreal time in the ratio

of radius to the cosine of declination, or, in the ratio of radius to



92

the sine of north polar distance. Thus, the equatoreal time of

passing the interval being assumed equal to 18
8

.3, the times

which the stars j3 Draconis, /u Ursae Majoris, the north polar

distances of which are (in 1816), respectively, 37 33' 26",

47 34' 44", will take in passing the same interval, will be

18
S
.3 X sec. (52 26' 34"), and 18

S
.3 sec. (42 25' 16").

Hence,

log. 18.3 1.2624 log. 18.3 1.2624

log. sec. 52 26' . 10.2149 log. sec. 42 25' . '. 10.1318

11.4773 11.3942

Hence, deducting 10, the logarithms of the times are 1.4773,

and 1.3942, and the numbers 30.01, 24.786: which times

agree, very nearly, with the following observations made in

Sept. 1816: -KJH

I.
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By the preceding methods and computations the upright
wires of the transit telescope may be adjusted vertically, and the

intervals between the wires found in parts of sidereal time. For

the purpose of knowing whether the wires, which ought to be at

right angles to the former, are strictly horizontal, direct the teles-

cope towards a star near the equator, and if the star entering at

h (the telescope is supposed to reverse its objects) runs along the

hf, then hf is horizontal.

This test of the horizontality of the cross-wire, is literally

true only with respect to a star situated in the equator. If the

star be out of the equator it cannot be bisected during its

passage through the field of view by every point of the wire fh,
whatever be fh's position. The reason is easily arrived at.

When the telescope is directed to the equator, the cross-wire fh
is the chord of an arc of the equator, in the centre of which

great circle the eye is situated. The eye", therefore, being in the

same plane with the subtensefh and the arc which the star

describes, sees the star moving along the subtense (which in this

case is the cross wirefh) whilst it describes the arc. The same

would be true of the arc of every other great circle and its

subtense or chord. But if the star be out of the equator it does

not describe a great circle but a small circle. In the Figure,

p. 90^ let smt be an arc of a great circle: then a star de-

scribing smt would seem, to an eye situated in a plane passing

through smt and st, to describe st : but srt, part of a small

circle parallel to ef'is the star's apparent path, which, coinciding
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with the chord st at its two extremities s and t, would (the

telescope reversing) appear to describe a curve below the cross

horizontal wire, the apparent path of the star through the field

of view being the more curved, the less the star's north polar

distance.

The method given in p. 90, for determining the time of an

equatoreal star's passing the interval between two successive

wires, is, strictly examined, an approximate method. If we wish

for an exact one, we may obtain such by means of the Figure
of p. 90. Suppose st to represent the interval of the cross

wires, then

st = chord sr = 2 sin. (radius = sin. Ps)
2

e f= 2 sin. -* x sin. Ps (radius being = sin. 90) ;

but ef~ s x 360 (t being the time of describing srt)

t X 360 x 60 x 60"

24 X 60 X 60

t being now the number of seconds of time.

15"*
Hence st = 2 sin. X sin. Ps, which is a general ex-

pression, whatever Ps is, st the interval of the cross-wires being

supposed the same. Hence at the equator, t' being what t

becomes

15V
s* = 2. sin.

;

15" t 15" X*'
.". sin. X sin. Jr s = sin. :

2 2

15"* 15'Y
or, sin. X sin. star s north polar distance =: sin. .

2 2

But the sines of small arcs are nearly equal to the arcs them-

res. Cons

have, nearly^

15" t 15" t'

selves. Consequently, since ? are small arcs, we
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t . sin. star's north polar distance =: t'
9

which agrees with the formula of p. 90.

What has preceded relates to the transits of stars that are but

as points and without disks. We must now find out the

means of determining the transits of heavenly bodies, such as

the Sun and Moon, which have disks but no distinct or marked

centres. The transit, however, of a heavenly body means the

transit of its centre. In this case then, we cannot avail our-

selves of direct observation. But we may compute the time

when the centre (the Sun's centre, for instance) is on the middle

wire, from having noted the two times of contact of its western

and eastern limb with that wire. For, as it is plain, half of those

observed times is the time required.

Let mno represent the Sun's disk, in contact with de a

vertical wire. If the Sun's centre be crossing the meridian in

the direction ma, m cannot pass on to C, or the eastern limb

cannot come into contact with the middle wire, except by m's

moving through a space equal to mC, and in a time equal to that

in which a star, having the same declination with the Sun, would

describe a space equal the Sun's diameter. In half that time

then the middle point between m and C, or the Sun's centre, will

be at C, or on the middle wire.

But, as in the case of stars, so here we may avail ourselves of

the side-wires. Thus, the linear distances of the wires from the
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centre being supposed equal, half of the interval of the times

between a star being on the first and fifth wire, is the time that

a star is on the meridian ; so, half the time between the contacts

of the Sun's limb (whether it be the eastern or western limb)

with the first and fifth wire, is the time of the contact of the same

limb with the middle or meridional wire. But half the time

between the contacts of the Sun's western and eastern limb with

any given wire, is the time of the bisection of the Sun's centre by

the same wire. Add, therefore, the times of contact of the

western or first limb *, with the several wires, to the times of

contact of the eastern or second limb, with the same wires, and

the sum divided by the whole number of contacts, will be the

mean time of the Sun's passage cross the meridian.

Thus, by the Greenwich Observations of 1815, Nov. 6,

I.
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~ (28
h 85m 2s

.6), or, 14
h 42m 31'.3,

which differs from the mean time only by
s

.02.

Again, by observations made at Greenwich, Nov. 8, 1816,

with the new transit and with five of its seven wires,
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The sum of these times is

5 X (8
h 50

m
) + 95

9
.4.

The number of contacts is 5, and consequently, the mean
time of contact, of the Moon's second limb with the meridional

wire, is

8
h 50m 19

8
.08,

from which, deducting the time which the Moon takes in passing
over a space equal to her semi-diameter, we shall have the transit

of the Moon's centre over the meridian.

We must proceed in a like manner, when we wish to deter-

mine the altitude of the Sun's, or of the Moon's centre by the

quadrant or circle. The altitude of the upper (0 U. L.), or lower

limb (
L. L.) must be found by bringing it into contact with

the horizontal wire. The Sun's semi-diameter deducted or

added will give a result equal to the altitude of the Sun's centre.

Or, half the sum of the altitudes of the upper and lower limbs will

give the altitude of the centre.

Thus, by observations made in 18 1 6, with the Greenwich

mural circle.
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magnitude. Dr. Maskelyne appears to have taken their zenith

distances with the mural quadrant by making the middle hori-

zontal wire of its telescope bisect the planet's disk. Thus we
find in the Greenwich Observations of 1775,

Oct. 17 U centrum 72 36' 24"

Dec, 3 . . T? centrum 31 16 11.6.

In the observations made with the present mural circle of

Greenwich, the practice seems to be, to bring the upper or

lower limb into contact with the middle horizontal wire, and,

by means of a screw, with a graduated head^ to move another

wire (which always keeps a direction parallel the horizontal wire)

till" it comes into contact with the lower or upper illuminated

part of the planet.

Thus, by the Greenwich Observations of 1813,

July 25, $ L.L.

<? U. L

July 29, 5 L. L.

Mar. 10, U L. L

The construction and uses of, and the means of correcting,

the Astronomical Quadrant and Transit Instrument, being
now gone through, it remains to notice, briefly at least, the

Astronomical Clock, which, in p. 47, was mentioned as one of

the Capital Instruments of an Observatory ; which, indeed, is as

essential to the finding of the right ascensions of bodies as the

transit instrument.

The declination of a star can be found, and in angular mea-

sure, by one instrument. Tne right ascension of a star, (see

p. 47,) the other condition for determining its place, cannot

be conveniently or correctly found in angular distance by one

instrument. It is, according to the practice of modern science,

conveniently found by two instruments. The transit instrument

which observes the star when on the meridian, and the Astro-

nomical Clock, which marks the time of that observation.

If the stars which appear on the concave Heavens accede to,

or recede from, the meridian of a place, in consequence of the

N. P. D.

, 1140 17' 6" 2
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Earth's uniform rotation
;

a clock, which is to measure such

approach and recess, ought to go equably. A clock, then,

ought to preserve its equable motion during any change in the

state of the atmosphere, and during the vicissitudes of heat and

cold. It is not within the plan of the present Treatise to

describe the several contrivances by which ingenious artists have

endeavoured to make a clock possess the above requisites. We
shall confine ourselves to more simple views. We will first

state the method now practised of ascertaining the equable

motion of a clock, and next we will examine the reason and

principle of such method.

The first point is to examine whether the clock is adjusted to

sidereal time. The hour-hand moves through a circle of twenty-
four hours. The minute and second hands mark the minutes and

seconds. The second-hand moves over one of the divisions of its

circle between two successive beats of the pendulum. In twenty-
four hours then the pendulum makes 86400 vibrations, and the

second-hand moves over as many divisions. Set the several

hands to zero, or let them begin from Oh , when a given star is

bisected by the centre of the cross-wires, and if, when the star is

next bisected, the hour-hand shall have made a complete circuit

of twenty-four hours, and neither more nor less than a circuit,

then is the clock adjusted to sidereal time.

But this, should it take place, is no proof of the clock's

equable motion. During the twenty-four hours, the clock,

from the vicissitudes of heat and cold, may have been both re-

tarded and accelerated, whilst such circumstance would not be

discovered by the above test. In the second place, the clock

may go equably, although it is not adjusted to sidereal time.

For instance, suppose, on the first return of the preceding star

to the meridional wire of the telescope, the hour-hand to have

made a complete circuit, and besides, the second-hand to have

moved through three of its divisions, or that the pendulum has

made 86403 vibrations. On the second return, and between the

first and second, of the star, suppose the pendulum to have

again made 86403 vibrations, then the index-hand of the clock,

which, on the first return of the star, noted

Oh 3s

;
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would, on the second, note

Oh Om 6s

;

and, if the like circumstance took place at the end of the third

sidereal day, the clock would note

Oh Om 9
s
-

And in this case, it is plain, the mean gain of the clock in a

sidereal day (which gain is called its rate} would be three seconds.

It would not, indeed, be adjusted to sidereal time, but it may,
for all that appears to the contrary, have gone throughout its

circuit equably. We cannot, however, presume that it has so

gone; indeed, whether or not the clock be adjusted to sidereal

time, we are unable, from the observations of a single star, to

determine any thing relatively to the equability of its motion.

And indeed we should remain in the same uncertainty whatever

number of stars were observed, if we merely examined whether

their returns to the meridional wire were contemporaneous
with the returns of the index of the clock to the same divisions of

the dial-plate that marked their original departures, or happened
after the same number of beats of the pendulum. It is necessary
to examine the differences of the transits of different stars at dif-

ferent times. And if these differences should not be the same,
then we must conclude the clock, at one period or another, not

to have moved equably. Suppose, for instance, the clock being

adjusted to sidereal time in the way above described, (namely,
that its second-hand has moved through 86400 ( = 24 X 60 X 60)

of its divisions during two successive transits of the same star)

and that we observe a star on the meridian at midnight. Sup-

pose moreover, the clock to be then at its greatest acceleration.

Another star, by the clock, passes the meridian an hour after the

first
;
but l

h
or 15 cannot be the just difference of the right as-

censions of the two stars
; since, by the hypothesis, the clock, at

the time of the star's transit, was going beyond its mean rate.

But a star, which on a certain day is on the meridian at midnight,

will, on each succeeding night, pass the meridian at a more early

hour. If the cause, therefore, of the acceleration of the pen-
dulum, should happen to depend on the hour of observation, the

clock, on some night after the first, may be returning towards its

mean rate
; in which case, there will be fewer beats between the
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transits of the two stars than before : in other words, the differ-

ence of their right ascensions, will not, as before, be noted by
l
h

, but by some quantity less than l
h

. For instance, if the

number of beats of the pendulum between the two transits

should be 3599, the difference of the right ascensions as shewn

by the clock, would be Oh 59
m

59
s

. But the difference of the

right ascensions of the two stars being constant, cannot be ex-

pressed both by l
b and by O

b
59

m
59

s
: one or other of these

quantities must be wrong : or, should the clock, in the interval

of the transits, not happen to be going at its mean rate, neither

may be right.

From the preceding instance then,, which has been imagined,
we may perceive the possibility of ascertaining the equability of

a clock's motion, should an observer possess no other means

than his own observations. But Astronomical Science has pro-

vided, in its Catalogues of stars and its Tables, means much
more simple and expeditious. A clock adjusted to sidereal

time, and going equably, ought to shew between the transits of

two stars an interval of time equal to that difference of their

right ascensions, which Catalogues of Stars and the auxiliary

Tables afford. If not adjusted to sidereal time, but going

equably, it ought to note, between the transits of different stars,

intervals of time proportional to the differences of their right

ascensions : such right ascensions being computed from Cata-

logues and Tables. For instance,.

Right Ascension. Differences,

a Serpentis. . . . 15
h
35
m

18
8

.46 h

Sirius 6 37 7.32
58 U '>

a Arietis . , , . , 1 56 55.96 4 40 11.36.

If the clock, therefore, should, between the transits of a Serpentis
and of Sirius, note an interval of time equal to 8

h
58
m
8

s

, instead

of 8
h
58

m
11

s
. 14, it ought, on the supposition of an equable

motion, to note between the transits of Sirius and of a Arietis

a time equal to 4
h
40

m
11

8

.36 X
fa

8 5*
^ .

8
b
58

m
ll

s

.14

The practical method of determining the clock's daily rate,

that is, its gain or loss during two successive transits of a star, is
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Jan. 23.

Jo subtract the mean meridional passages of certain stars on one

day (as shewn by the clock) from the passages of the same stars

on the next, or on some following day. The sum of the differ-

ences divided by the number of days intervening between the

observations, and by the number of stars, is the clock's mean

daily rate
;

to which quotient, or result, should the clock gain,
the sign + is affixed

; should it lose, the sign .

Thus, by the Greenwich Observations of 1798, the mean
transits of the following stars were

Stars.

ri
h
56
m

55
8
.10 a Arietis.

Jan. 25, < 5 5 57.46 Rigel.

37.57 (5 14 39.32 ft Tauri.

Here the several differences are 1.78, 1.76, 1.75, their sum
5.29 divided by 2, the number of intervening days, is 2.645, and

again divided by 3, the number of stars, is .881; and, since the

clock gains, the mean daily rate is thus to be expressed, +08
.88.

In practice, a clock is adjusted very nearly to sidereal time.

Its daily gain or loss seldom exceeds three or four seconds. In

computing its rate then, we need not concern ourselves with the

degrees and minutes of the star's right ascension ;
it is sufficient to

attend solely to the seconds, and to those, which, in the Registers

of Observations, are inserted in a column entitled the Reduction

of the Wires, (see p, 88.)

Thus, in the Greenwich Observations of 1816, we find

|h 56
m

53
S
.32

5 55.70

14
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The daily rate of the clock from two successive transits of

a Lyrae is 1 .04, and therefore, the mean daily rate from the

two stars is -|-(2.24), or 1.12. It is part of the regular

daily business of an Observatory to determine the rate of the

clock. But the weather may prevent this practice, so that an

observer, in order to determine the rate of his clock, may be

obliged to compare observations distant from each other by
intervals of four or five days. The greater, however, the number
of intervening days, the less accurate is the method (that which has

been explained and exemplified) of determining the clock's rate.

Indeed, if the number of days be considerable, the method, as

we will hereafter shew, is erroneous.

The rate of the clock being determined, there remains

another point to be settled, which is the error of the clock de-

pendent partly on the rate and, under certain considerations,

caused entirely by it.

There are certain circumstances (circumstances of convention)

that require previously to be explained, in order that we may know
what the error of the clock is, or what it consists in. The posi-

tion of a star (as it has been explained in p. 46.) depends, or is

made to depend, on the arcs of two great circles, one measured

from the pole, the other along the equator and from some point
in it. The pole is not marked by any star, but is a point variable

with respect to the stars, ascertainable, however, at any given

period, by observation and comp.utation. The point from which

Astronomers have agreed to measure the right ascension is, like

the former, variable from time to time, but capable of being
ascertained at any assigned time. This point (a point of con-

vention) is the intersection of the equator and ecliptic : it is not,

and cannot be, permanently marked by any star, but still it is a

determinable point. All right ascensions are to be measured

from it. When such point is on the meridian, the clock, which

is adjusted to sidereal time, ought to mark O
h

. The right ascen-

sion of a star passing the meridian an hour after would be l
h

;
of

a second star, passing 2^- hours, 2
h
30 s

;
and so on. Suppose

then on Feb. 3, that the clock rightly noted, the right ascension

of a Arietis, and that it was

l
h

56
m

55',
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ten days after, on Feb. 13, if the daily rate of the clock were

-f- .88, the gain of the clock would be 8
s
.8 : consequently, at the

passage of a Arietis over the meridian, the clock would denote

l
h
57 3

8

.8,

and, if the right ascension of the star remained the same, the

clock's error would be 8
9

.8. In twelve days the rate having in-

creased to 1
8

.02, the clock's error would be

8",8 + 2.04, or 10\84.

In what manner the right ascension of a star is computed
will be hereafter explained. But admitting, for the present, that

we are able to find it, from Catalogues and subsidiary Tables,

it is easy to shew that the error of the clock, and the rate of the

clock may both be found by the same process. Thus, suppose,
on March 11, the catalogued apparent right ascension of Sirius

to be 6
h
37
m

19
8
.4

whilst the clock denoted .... 6 37 10.3

9.1

The clock then would, on March 10, be absolutely too slow

by 9
s

. 1, or its error would be 9*.l.

Again, on March 16, let the star's apparent R. A. 6
h
37
m

19
9
.3

the clock denoting. 6 37 14.1

5.2

On March l6th, then, the clock's error is 5
S

.2, too slow.

The clock's gain in five days is 9
8
.1 5.2 = 3.9, and conse-

quently, (see p. 103.) its mean daily rate, so estimated, is

-4- \ (3.9) = + ,78.
o

This latter result is the true daily rate : the daily rate, estimated

from the difference of the transits as shewn by the clock, would
be

+ 1 (3.8) = -f .76.
o
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Now the results for the daily rate do not agree. The ques-

tion, then, is which is the right result ;
and this immediately

leads us to the point to which, in p. 100, we promised to advert,

namely, the principle and ground of the practical method of

determining the rate of a clock.

Let the telescope be directed to a star (a Aquilae for instance,)

on some day, the 7th of March, and note the index of the clock

when the star is bisected by the centre of the cross-wires. If the

two events, the index at the same division, and the bisection of

the star, are contemporaneous on the 8th of March, on the Qth of

March, &c. the clock is said to be duly adjusted to sidereal time,

and its mean motion in twenty-four hours is said to be uniform.

Now this depends on the supposition, that the same abso-

lute time is always absolved between each successive transit

of a star over the meridian. And this latter supposition, the

equality of time between successive transits, is founded on

another, which is the uniformity of the Earth's rotation round its

axis. This supposition, then, is completely compatible with the

above rule. It remains now to examine, whether the time be-

tween two successive transits of the same star, depends solely on

the time of the Earth's rotation, and, if it should not solely

depend, whether the impeding circumstances are of magnitude
sufficient to vitiate the practical rule.

If the Earth's rotation were .uniform, and its axis produced
were always directed to the same point of the Heavens, and if,

besides, no cause, dependent on the relative position of the Earth

and a star, made the latter, at one time, appear on the meridian

before its real passage, at another time, after it, then would all

the several intervals between the successive transits be equal.
And this would also take place, if the deranging causes to which

we have alluded, altered equably, and the same way, the star's

right ascension. But, as it will be shewn in the succeeding

Chapters, the deranging causes not only exist, but are variable,

both as to degree and direction, in their effects. It is true their

effects are very small : so small as not to be ascertainable, in the

short intervals of two or three days, by our measures and reck-

onings. But still they exist, and become perceptible in their

accumulations.
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Although the Earth, then, should complete her diurnal

rotations in equal portions of absolute time, it does not thence

follow that a star will always return to the same point (the wire,

for instance, of a fixed telescope) after equal intervals of absolute

time. It may seem to do so when we compare one interval with

another that succeeds it : but it may seem to do so, only be-

cause we have no means, either by our eye or our ear, of dis-

tinguishing the hundredths of a second of time.

What then shall we define a sidereal day to be ? We may
define it to be the portion of time between two successive

transits of a star over the meridian : but then, if the preceding
statements be admitted to be true, all sidereal days would not be

equal. The definition, then, would not be a good one. If we
define a sidereal day to be the portion of time absolved whilst

the Earth makes a complete rotation round its axis, then, on the

hypothesis of an uniform rotation, all sidereal days would be

equal. It is no valid objection against this definition, that a

sidereal day, not being identical with the interval between two

successive transits of a star, and, therefore, not immediately ascer-

tainable by observation, would thus become a quantity to be

determined by calculation. A sidereal year must be so deter-

mined.

This is not the place to state the physical causes that prevent
the time of the recurrence of a star to the meridional wire of a

Transit from being solely dependent on the Earth's rotation :

but, if we wanted a practical proof of the fact, we could easily

find one in the instance of the pole star. That star is about

1 40' distant from the pole: but, if the times of the transits of

stars over the meridian arose solely from the Earth's uniform

rotation round a fixed axis, the several intervals between the

successive transits of the same star would all be exactly equal,

wherever that star were situated, whether near the equator or

near the pole. In such case, if on the first of next January, (1 822),

Polaris should be (as he will be) on the meridian at Oh 57
m 208

.3

of sidereal time, he ought to be again there on January 2, at the

same sidereal time
; whereas, on this latter day, the time of the

transit will be, nearly,

Oh o7
m

19*. 7,
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and the succeeding day, January 3, at

Oh 57
m

19^

and the apparent motion of Polaris will so increase that, after

ten days, he will be on the meridian at

Oh 57
m

13
8

.3,

and on January 20th, at

Oh 57
ra 6s

.3,

the apparent mean daily acceleration of the star being, during the

above period, about ths of a second.

In the above case, the real differences of the intervals of

successive transits become discernible from the peculiar situation

of the star. But, with other stars, the case is different. The

star Procyon (the lesser Dog Star)., for instance, which is near to

the equator, will be on the meridian, at the latter period,

(January 20, 1822), at

7
h

50m 0^.9,

and the real differences, between the intervals of its transits for

the next twenty days, are so minute as completely to baffle

detection, with whatever instrument the eye and ear be assisted.

The same circumstance takes place, very nearly, with other stars

that are not near the pole. It takes place with all those stars

which are used in determining the clock's daily rate. With

stars, then, such as the last, the rule for finding the clock's daily

rate, from the difference of two successive transits, is sufficiently

exact for all practical purposes. It can never, so applied, lead

into error
;
which it would do, were Polaris the star. The

latter star may indeed be used for finding either the clock's

error, or the clock's rate, but then we must have recourse to

operations less simple than those of merely noting the times of its

transits *.

* We have, on the preceding subjects, somewhat dilated, and been

digressive. But the subjects are those on which students (we are speaking

in general terms) have no precise notions, nor, through books in ordinary

use, any means of acquiring such.

It
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The three capital instruments of an Observatory, it has been

said, are the quadrant, the clock, and the Transit. But this is not

to be taken literally. In Observatories, where, generally, the

instruments are large, the quadrant is fixed, and is, what is called,

a Mural Quadrant. But then there must be two quadrants ;

one for stars north of the zenith, the other for stars south of the

zenith
; and, beside these, there must be introduced a fourth

instrument, called a Zenith Sector, subsidiary indeed to the quad-
rant in determining the error of its line of collimation, but, more-

over, of peculiar and great usefulness.

We may, however, should it be our object to have as few

instruments as possible, instead of two mural quadrants, use a

mural circle; and, since this instrument, according to the

present mode of constructing it, would be very loosely and im-

perfectly described, by saying, that it is formed by the putting

together of four quadrants, we will proceed to give a brief

description of it.

The circle, with its attached telescope, is made to revolve

by means of an horizontal axis
;
which axis works in collars fixed

in the stone wall, represented in the Figure. The wall faces the

east. The plane of the circle, as it is shewn in the Figure, is

parallel the wall, but the graduations are made on the outer rim

of the instrument, which rim is perpendicular to the wall.

It has been said, that art and science render each other mutual assist-

ance, and are contemporaneously progressive. In the subject which has

been under discussion, namely, that of the instrumental means of mea-

suring time, a refined state of science is absolutely necessary to enable us

to pronounce on the quality of such means. If the antients had invented

exact time-keepers, could they have verified their exactness ? Suppose,

for instance, a Watchmaker of Alexandria had constructed a perfect

clock, the Astronomer of Alexandria would have found it faulty, since

the clock would have indicated an inequality in the revolution of the

primum mobile. There seem to be no other means than Astronomical

ones of verifying time-keepers ; and these means, if they are to be exact,

cannot be made so, except with great difficulty, nor without the results

and formulae of refined science.
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These graduations are viewed and read off, by six microscopes

fixed to the wall, one of which microscopes is represented at A,

and the places of the five others (precisely similar to the former)

are marked by the letters JB, C, D, E, F. The microscopes are

distant from each other sixty degrees, or so placed, asmearly as

can be, by the instrument-maker.

The circle's diameter is six feet. Its rim is divided into

equal parts of five minutes each, and the readings off to a less

number of minutes and to single seconds, are effected by the

Micrometer Microscopes, A, B, &c. The construction of which

is as follows. The microscope A, or micrometer microscope
A is directed, as it is shewn in the Figure, to the rim on which

the graduations are made. Consider the object to the microscope
to be one graduation of the instrument, or the space occupied by
five minutes. The image of this space will be formed in the

conjugate focus of the object-glass, and will be. seen distinctly
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through the eye-glass of the microscope, when the above-men-

tioned image is in its focus. In this latter focus (the focus of

the eye-glass) are placed, a thin indented slip of metal and a

wire *
capable of being moved, in a parallel direction, from one

mark of division to another by means of a screw. The revo-

lutions of the screw, and parts of its revolution, are noted by
means of a screw-head aud graduated plate, similar in the prin-

ciple of its construction to the one of p. 55. Now it is desirable,

for the more convenient noting of the results of observations,

that, by five revolutions of the screw, the wire should be trans-

lated through the space occupied by five minutes : in which

case, one revolution would answer to one minute, and one-sixtieth

to one second. The mode of effecting this may be thus ex-

plained. Suppose, the object-glass of the microscope being at

a certain distance from the graduated rim, and there being
distinct vision, that the moveable wire appears to be translated

through the five minutes, by 5^- revolutions of the screw. In

such case, the image of the five minutes is too small. It will be

increased by moving the object-glass towards the graduated rim.

But, if the whole microscope be moved, there will no longer be

distinct vision, since the object being nearer to the object-

glass, its image will be formed at a greater distance from the

object-glass, and beyond the focus of the eye-glass. The eye-

glass, therefore, with its wire, &c. must, by a separate move-

ment, be withdrawn from the object glass till distinct vision

ensues. In this second position, a second trial must be made to

ascertain whether five revolutions of the screw are equal, or not,

to the translation of the wire over the image of that portion of

the divided limb which contains five minutes. Should there be

no equality, the adjustments must be made both of the object-

glass and of the eye-glass, by their peculiar movements, till five

revolutions of the screw shall correspond to the translation of

the wire over five minutes.

* Instead of one wire moveable, in a direction parallel to the marks of

graduation, two wires crossing each other, at an acute angle, are sub-

stituted. These wires, in measuring the distance from the index to a

graduation, are to be stopped when the mark of the graduation bisects the

angle of their intersection.



The adjustment, which we have described, is merely a matter

of convenience : it saves the observer the trouble of reducing the

graduations of the screw-head to their values in minutes and

seconds. If the microscope micrometer were suffered to remain

in its first state, then, since 5.5 revolutions =5', one revolution

would equal 50".454, &c.

But, whatever be the value of a revolution, the uses of the

moveable wire and the indented slip of brass are the same. A
star is observed on the centre of the cross-wires of the telescope.

On looking through the microscope, the index, or what serves as

one in the slip of brass, occupies a place between two gradua-
tions. The wire moved from the index, either to the upper or

lower graduation, measures by the revolutions of the screw-head,

the distance from the mark of graduation : and, for convenience,

each tooth of the indented brass answers (one revolution of the

screw being equal to one minute) to one minute : so that, if the

wire is moved from the index past two teeth, and the index of the

screw-head points to 55, then 2' 55'' are to be added to or sub-

tracted * from the degrees and minutes which are read off by the

naked eye, or without the aid of the micrometer microscope.
In every observation all the six microscopes are to be used

for the purpose of diminishing the errors of division,, and the

effects of partial expansion.
In reading off the angles at the several microscopes, we need

onlv to attend to the seconds
;
which may be thus explained.

Suppose a star to be in the pole and that the telescope is to be

directed to it. The whole circle then must be turned round in the

direction from B towards C, D, &c. and the end of the telescope

containing the object-glass, instead of being directed as it is in

the Figure, to a point in the south, between B and C, will be

directed to a point between D and A. If, the telescope being
directed to the pole, the reading off at the micrometer at A
were O7

0", the Index error, as it is called, would be 0. The

readings off at the other microscopes JP, E,*.B, C, D, (were

those microscopes placed at exactly equal distances from each

*
Accordingly, as the distance of the index from the upper or lower

graduation is measured.
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other) would be 60, 120, 180, 240, 300, But these circum-

stances are not likely to take place. The index error will

probably be of some magnitude : a few seconds, for instance :

that is> when the telescope is directed to the pole, the reading off

at the microscope A, instead of being 0' 0", may be + 5", or

7"> or S", &c. In like manner, the readings off at F, E, B,

C, D, may be, from their not being placed at exactly equal

distances, or from inequality of graduation, or from partial ex-

pansion, or conjointly from all these causes (for in practice they

may all operate) either

-60 0' 7", or 60 0' 10", or &c.

120 0' 8", or 120 O' 12", or &c.

&c. &c..

Suppose, independently of the dejgrees and minutes, the

seconds at the six microscopes to be respectively,

+5", +7", +4", +12", +8", +9";

then these are the several index errors : and, if the polar distance

of an observed star were read off only at one microscope, the

index error belonging to such microscope must be added to, or

subtracted from, the distance so read off. Thus, if the microscope
3 were only used, the index error of which is -{- 12", and the

north polar distance of /3 Ursa Minoris read off -were 1Q5 4' 46",

then, deducting 180 for the position of the microscope, and 12"

for the index error, we should have

the north polar of /3 UrsaB Minoris = 15 4' 34".

But, all the six microscopes being used, it is convenient

to consider a mean index error, which will be one-sixth of the

several index errors, and, which, in the preceding instance (see

45"
1. 16.) will be -, or ?".5.

6

We have in the preceding illustration, for the sake of sim-

plicity, supposed the telescope to be directed to the pole, which,
as it has been several times stated, is not marked by any star,

but is a point to be assigned by calculation and angular measure-

ment. But the illustration will be, in substance, the same if we

suppose the telescope directed to a known star., Polaris, for
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instance. If, by previous Catalogues and Tables, we should

know the north polar distance of this star to be 1 4l' 4l".3,

the micrometer microscope A marking 1 4l' 48".5 ;
then the

index error would be -r-7".2*? and, in like manner, we should

know, by the same star, the index errors for the other micro-

scopes, and thence the mean index error.

We shall, in another part of the Work, explain the use of

the observations made with this instrument, and of the index

error, in correcting the catalogues of polar distances. At

present we shall be content in shewing, by a kind of exemplifi-

cation, that the uses of the instrument do not depend on the

accurate positions of the several microscopes.

Suppose, the telescope being directed to the pole, the number

of seconds indicated by the micrometer microscope A to be 7.

Let B indicate b-\-Q3" (b, c, d, &c. denoting degrees and minutes)

C c+ 4

D d+ 5

E e+ 9
JP -

Let X be the north polar distance of any star, (of Capella,

for instance, X being = 44 12' 16"), and let the number of

seconds in X be 16, so that, Y being the degrees and minutes,,

Jfesy+16"; then, the instrument being directed to Capella,

(and, consequently, turned round through an angle X} and the

errors of division, expansion, and the uncertainty of the reading off

not being considered, the number of seconds in A, will be 23,

in B 39,

in C 20,

in D 21,

in E ..... 25,

in jF ..... 31,

the sum of these is 159, and one sixth is 26".5; the north polar

distance, therefore, of Capella by the instrument, and, by the

above method of taking the mean of the seconds, is

F+ 26".5 ( = 44 12' 26".5),

*
Therefore, the equation for the north polar distance is 7"-2,
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and, consequently, the mean index error

F+ 26".5 - X, or F+ 26".5 - (Y + 16"), or 10".5.

This is the index error from one star
;
but the process is the

same with any other star, since X may be any angle. If the

catalogues were exact, and there existed no source of error from

inequality of graduation, &c. the same index error would result

whatever star were observed. Thus, suppose the number of

seconds in X, instead of 16, to be 36, then the number of seconds

from the six microscopes instead of being 159 would be

15Q4-6 x 20, and consequently, the mean number would be

26".5 -1- 20 = 46".5,

and in this case the index error would be

F + 46".5 - (P + 36) = 10". 5.

But neither are the catalogues of stars perfect, nor is the in-

strument altogether exempt from the errors of graduation, and of

partial expansion. It will, therefore, happen in practice, that

the index error is different with different stars. If the index error

resulting from the observations of twelve stars, should be re-

spectively,

10".5, 9".S, 6".8, 13". I, 1J".2, 9".l,

8.4, 13.2, 8.5, 10.2, 7-9, 8-7,

116.9
the sum being 1 16".9, the mean would be = 9

//

.74.

This is not the place to enter more fully into the special uses

of the instrument. We will, however, give a specimen of the

method of registering the readings off by the six microscopes.

Oct. 15, 1812. Position of the telescope 0.

ar.
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The sum of the seconds, belonging to the six microscopes,

is, in the first row, equal to 255.8
;
one-sixth of which is 42.6,

the mean. The sum in the second row, is 1 76.6 : one-sixth of

which (as far as one decimal place) is 29-4 the mean. The sum

in the third row is 289. 1 : divide by 6, and the quotient is nearly

48.19 ; but, it is clear, it ought to be 58.19. Now if we look

to the number of seconds under C, which are 1.4, it is obvious

that if we attended solely to that microscope, the number of minutes

instead of being 35, would be 36, or the north polar distance of

a Aquihfi would be 81 36' l".4; but, as it is clear, from the

number of seconds belonging to the other microscopes, that the

mean number of minutes cannot exceed 35, we must, in taking

the mean of the seconds, consider 81 36' I
11

A, as 81 35' 6l".4,

or we must add 60 to the seconds added together in the usual

way, or, which is the more simple way, we must add 10 (=^-60)
to one-sixth of the former result; in which case, the mean

becomes 58.19, or nearly 58.2. In like manner, we must treat

other like cases, should they occur : which, it is plain, can be

but seldom. In some cases it may be necessary to add 120 to

the sum of the seconds : for instance, if the several seconds

were

57.1, 59,5, 1.9, 57.8, 57.8, 57.9, 1.1,

355 3
their sum is 235.3, add 120, and the mean is ^- = 59.2, or,

6

by the former rule, (see 1. 15,)

-
(235.3) + 20 = 59.2.

o

At the head of the preceding Table of results, (see p. 1 16,)

is written,
*
Position of the telescope 0.' For the purpose of

still farther lessening the errors of division, the telescope can be

placed in several
positions. When it is at the position 0, the

telescope is directed to the pole, and the microscope A, which is

the reading microscope, marks-O : and it is at the positions 10,

20, 30, when, the telescope, in each case, being pointed to the

pole, the microscope A marks 10, 20, 30, respectively.

The mural circle, like the transit instrument, requires three

adjustments. 1st, Its axis must be made horizontal. 2dly, Its
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line of collimation must be made perpendicular to the horizontal

axis. 3dly, The line of collimation must be made to move in

the plane of the meridian.

A simple mechanical contrivance exists for carrying the first

of the adjustments into complete effect. When the axis is made

horizontal, the line of collimation describes a vertical circle : but

it may describe a small vertical circle. To make it necessarily

describe a great vertical circle, and a meridional circle, there are

no mechanical means. Astronomical ones must be resorted to :

and even with those, the two latter corrections are not accom-

plished without great difficulty. We may, on this occasion, use

(as it was stated in p. 70,) the transit instrument. When a star

is on the meridional wire of the transit instrument, so move the

mural circle that the star may be on its middle wire. Next, observe

by the transit instrument when a star, on, or very near to, the

zenith, crosses the meridian : if, at that time, the star is on the

middle vertical wire of the telescope of the mural circle, then its

line of collimation is rightly adjusted. If the star is on the

middle wires of the two telescopes at different times, note their

difference and adjust accordingly*.

The great difficulties attending the verification of the line of

collimation of the mural circle, will always prevent its becoming
a good transit instrument. It acts, however, better in this last

office than the telescope of the mural quadrant, which slides

along the limb of the quadrant, the plane of which cannot be

made to be wholly in the plane of the meridian.

The mural circle is sufficient, as it is plain from its descrip-

tion, to determine, to the extent of 180 degrees, the differences of

the declinations of stars that are to the south and the north of the

zenith of the observer. There must be two quadrants to effect

the same object. Besides this advantage (the advantage of a

single instrument) the circle is better balanced, and its six

microscopes, which are firmly fixed in a stone wall, together with

the power of changing the position of its telescope (see p. 116,)

* This adjustment must be conducted by some formula which ex-

presses the relation between the difference of the times, and the inclination

of the line of collimation to the plane of the meridian.
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must, when we take the mean results of a great number of obser-

vations, do away with, or, at the least, very considerably lessen

the errors of division and of partial expansion.

But, it may be said, there being no plumb-line to mark the

zenith point, the mural circle is defective inasmuch as it does

not determine the zenith distances of stars : which distances are

necessary to be known, if we would determine the refraction.

The direct and special office of the mural circle is to determine

the angular meridional distances of stars. If we extend the

principle of its uses, and view the image of the pole star by re-

flection from a basin of quicksilver, we obtain the angular

distance between the star and its image. Such angular distance

is twice the elevation of the pole star above the horizon.

Hence its
- zenith distance becomes known, and the zenith

distances of other stars
;

the meridional angular distances of

which, from the pole star, are determined by the instrument.

Since we can make observations, like the preceding, of the

pole star both in its superior and inferior passage, we can thence

determine (on an assumed law and quantity of refraction) the

height of the pole itself above the horizon, which height (see

p. 10.) equals the latitude of the place of observation.

We cannot with the mural quadrant view the reflected

image of the pole star
;
nor can we at once, even if we use a

plumb-line, determine by it the zenith distances of stars. These

distances can only be truly known by knowing the error of colli-

mation. The instrument of itself is unable to determine that

error, and, in aid of its deficiences, we are obliged to have re-

course (see pp. 67, &c.) to a zenith sector.

This latter instrument, by double observations of a star near

the zenith, one set being made, with the face of the instrument

towards the east, the other with the face towards the west,

determines the star's true zenith distance (see pp. 63, 67, 68, &c.)

y Draconis is the star that has been most frequently observed at

Greenwich. If we observe, on any particular day, either with

the mural circle or mural quadrant, that star and other stars, we
obtain their meridional angular distances, or the differences of

their north polar distances. Hence, the zenith distance of

y Draconis being determined by the zenith sector, the zenith

distances of the above observed stars become known.
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Thus, suppose by observations in 1812, with the north mural

quadrant, that the zenith distances ofy Draconis, /BUrsae Minoris,
ct Cassiopeae appeared to be, respectively,

2' 20". 5, 23 26' 49".27, 4 l' 4l".l8
;

but, with the zenith sector, the true zenith distance of y Draconis

appeared to be

2' 18".5,

the true zenith distances of /3 Ursae Minoris, and a Cassiopeze,

consequently, were

23 26' 47".27, and 4 l' 39". 18.

At the time the instrumental zenith distances are read off,

the quadrant is adjusted to a certain position, by making the

plumb-line (see the figures of pp. 59, 60.) pass over the two
crosses that are on the face of the instrument. It is the office

of this plumb-line to keep the quadrant in a given position ; to be

so kept, in order to use observations made of stars when we are

unable to observe y Draconis. The error of the line of collima-

tion is presumed to be the same when the quadrant is adjusted

by making the plumb-line pass over the two crosses.

But, it is plain, the zenith sector may be used as an auxiliary

instrument to the mural circle as well as to the quadrant, and we

may determine by their means the latitude of the place of the

observation, and the zenith distances of stars. Thus, by the

mean of a great number of observations made in 1812, at Green-

wich, with the zenith sector, the zenith distance * of y Draconis

was found to be

2' 18".5...... = 7, see the Figure in the next page.

The north polar distance of the same star, found by the mural

circle, and reduced to the same period, was equal to

38 29' 3" .....,,

=Zy+Py = 38 Si'

* The distance reduced to January 1812. The meaning of this

phrase will be explained in the following Chapters.
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the co-latitude (see pp. 9, 10, &c.) of Greenwich. Again, for

all stars north of the zenith, and between Z and P,

Z* = ZP P*,
for stars south of the zenith,

Z* = P* - ZP,

from which formulae, Z % may be found, P 4? being determined

by the mural circle.

We may use then the zenith sector with the mural circle to deter-

mine the error of the line of collimation in the latter, and thence

to determine the zenith distances of stars. But, if we observe

stars by reflection, we may with the mural circle, and without

the aid of another instrument, determine the latitude of the place
of observation, and the zenith distances of stars. The peculiar

office, however, of the mural circle is to determine the angular
distances of those points at which the several stars pass the

meridian.

These distances are used in correcting the existing catalogues

of stars, and in determining, to greater degrees of exactness,

their north polar distances. In this use the mural circle need

not, like the quadrant, be brought by a plumb-line, or other

means, to a given position. That operation is superseded by

ascertaining the value of the index error. Thus, if at a certain

period the instrumental polar distance of j3 Ursae Minoris

appeared to be

15 4' 33".04
- i 19

and by the catalogue 15 4 34.23
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l".19 would be the index error by that star; the mean index

error is the sum of the several index errors divided by their

number. If the position of the telescope be changed, or if the

same number of microscopes (see p. 1 13,) be not used, the

index error will be different : but whatever it is, it stands in lieu

of, if we may so express ourselves, a mechanical adjustment of

the instrument.

But we may use in the same way, and on the same principle,

the two fixed mural quadrants. With the north mural quadrant
we can observe (supposing Greenwich to be the place of obser-

vation) y Draconis and other stars to the north of the zenith.

With the south mural quadrant, were its limb an exact quad-

rant, we should be unable to observe y Draconis: but (see

pp. 59, 60, 64.) the limb being extended a little beyond the

limits of an exact quadrant, we are enabled to observe y Draconis :

we can also observe with it (for this indeed, is its use) stars to

the south of the zenith. By connecting, therefore, the two sets

of observations, by means of the intermediate and common star

y Draconis, we can, without the plumb-line, determine the

meridional angular distances of all stars visible at Greenwich.

We may also, as with the mural circle, determine their north

polar distances by the aid of catalogues, and the use of an index

error*.

* It appears from the preceding matter, that neither mural quadrants
nor mural circles are perfect instruments. The directions of their lines

of collimation cannot be found without a zenith sector. Quadrants and

circles with azimuth motions resemble that latter instrument, and are all

capable of determining the directions of their lines of collimation, or of

making observations independent of the errors of collimation. In prin-

ciple then they are much more perfect instruments than fixed quadrants
and circles. But large instruments are absolutely necessary in the

present state of Astronomical Science, and for its future advancement,

and it is difficult to construct large instruments capable of being turned

half way round in azimuth on a vertical axis. Yet Ramsden constructed

for the Dublin Observatory a circle of eight feet diameter turning round

a vertical axis
; and it seems natural to presume that such an instrument

must have been defective, since, of late years, its construction has been

abandoned,

Q
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We have in the preceding pages given a description of the

capital Instruments of an Observatory, and which are used for

the making of observations in the meridian. On such obser-

abandoned, and fixed mural circles invented. But, theoretically viewed,

there seem eminent advantages attached to the former instrument.

Within the space of a few minutes it is capable of making a double

observation on a star, one with its face towards the east, the other towards

the west ; the first before the star is on the meridian, the other after.

Both observations must be reduced to the meridian by computation from

the intervals of the times at which they were made, and the passage of

the star over the meridian : which intervals may be most exactly known

from the transit telescope and the Astronomical clock. The vertically of

the axis, at each observation, is verified by a plumb-line. It may in

practice be difficult to make these observations, but they have a singular

and vast advantage in being free of all index error, and in determining,

simply and directly, and within a short period of time, the zenith

distance of a star. The index error of the mural circle, as it is proposed

to be found, is a complex quantity, neither admitting of a brief definition,

nor to be found by a single and simple process.

Small zenith sectors have an azimuthal motion round a vertical axis.

The reversion of the face of the Greenwich zenith sector is obtained by

moving the instrument from an eastern to a western wall. This is an

operation not easily performed. Mr. Troughton now proposes to construct

a zenith sector (or an instrument for like purposes) of twenty-five feet

radius, and capable of being turned round a vertical axis. Its range will

be small, not exceeding five minutes on each side of the zenith : it is

specially designed for observations of 7 Draconis which is distant, less

than three minutes, from the zenith of Greenwich.

The observations to be made with this instrument will be nearly free

of all inequality from refraction, and entirely free from index errors; they
will also from the great length and power of the telescope be, it is pro-

bable, very exact, and will serve to determine, to a greater degree of

exactness than has hitherto been done, the quantities of aberration and

nutation. They may also settle the question, now agitated, of the ex-

istence and quantity of parallax.

The detection of this latter inequality, it may be here stated, has been

made by an instrument, revolving, like the instrument just described,

round
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vations Astronomical Science is mainly founded. We must
resort to the same source whether we seek for exact data to

institute processes in Physical Astronomy, or to confirm their

results.

Of the other Astronomical instruments there are some from

which we derive neither the elements of Astronomical Science,
nor the verification of the results of its processes : but which are

employed in a practical application of those results. Of such

character are, Hadley's Quadrant, the Sextant and Reflecting

Circle, instruments of the same class and principle of construc-

tion. These are not instruments belonging to an observatory ;

but the equatoreal instrument does belong. Its use is to

observe phenomena, such as comets, and new planets, when

they are out of the meridian. Besides these instruments, there

is a repeating circle, portable, and principally useful in deter-

mining the latitudes of different stations, and their bearings with

respect to each other. An equal altitude and azimuth instrument

of which, amongst others, one use is to ascertain the quantity and

law of refraction. Some of these instruments will be briefly

described in a future Chapter of this Work.

From the description of the construction and uses of instru-

ments, we will proceed to consider the results of certain obser-

vations made with them : and the first observations that claim

our attention are those made on the Sun at the time of his

passing the meridian.

round a fixed axis : or rather the proof of its existence depends on the

accuracy of the Dublin circle (see p. 121.) The observations made with

the mural circle of Greenwich do not verify such parallax. On this dis-

cordance of the two instruments, much controversy has arisen which is

not yet settled ; and, whatever be the excellence of the latter instrument,

yet it must be allowed that the method of determining its index error

involves many debatcable points.



CHAP. VI.

Sun's Motion Path Ecliptic Obliquity of Ecliptic.

BY means of the Astronomical Quadrant, or of the circle, or

by any instrument of a like class, we are able to observe the

height either of the Sun's upper or his lower limb, and thence, of

determining, by measurement and computation, the height of his

centre. Let us first examine the observations of the north polar

distances (N. P. D.) of the Sun's limbs,

N. P. D. Difference in two Days.

Jan. 2, 1816, U. L. 112 40' 22".5

S, .... 0L. L. 113 7 37.5

4, . . . . U. L. 112 29 21.7 11' 0".8.

Again,
N. P. D, Difference in two Days.

March 31, 1816, U. L. 85 29' 26".2

April 1, .... L. L. 85 38 22.6

April 2,, . . U. L. 84 43 27.5 .". . 45' 58
/7

.7. -

From these observations two inferences may be drawn : the

first is, that the Sun, in the interval between January 2, and

April 2, has approached the north pole by an angular ascent

equal 27 56' 55" (=-- 112 40' 22".5 - 84 43' 27".5). The
second is, that his daily portions of ascent are not equal : since,

between January 2 and January 4, he ascended through 1 l' 0".8,

and between March 31 and April 2, through 45' 58
//

.7. So
that the Sun's daily meridional ascent, or change of declination,

or change of north polar distance (the fact is the same, but under

different denominations) in the former period was about one-

fourth of what it was in the latter.

We shall have like facts, and may make like inferences, in
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the heights of the Sun's centre observed at Cambridge, in the

months of January March and June of the year 1810.

Altitudes.

1810, Jan. 1 14 44' 40"

2 14 49 44

3 14 55 15

4, . . 15 1 13

Differences.

5' 4"

5 31

5 58

Therefore, the Sun, during these four days, was ascending in

the meridian, but not by equal increases of altitudes, as it appears

by the column of differences. Again, the altitudes of the Sun on

four successive days in March and June, were
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If the Sun had a motion merely in the meridian, then, since

the Earth's rotation is supposed to be equable, the intervals of

successive transits over the meridian would always be equal,

one with another and, besides, would be equal to the intervals

of the transits of a fixed star
; or, of a star having neither a

motion in the meridian nor one transversely to it. Now, neither

of these conditions takes place; for on Aug. 21, 1810, Hegulus
was on the meridian 1 minute 20 seconds before the Sun : on

the succeeding day 5 minutes 2 seconds : on the next, or twenty-

third, 8 minutes 44 seconds : so that it is plain, during these

intervals, the Sun must have shifted away from the meridian, and

moved transversely towards the east of it. Hence, to account for

the phenomena of the Sun on the meridian, namely, the changes
there both in the places and in the times of his transits, two

motions must be attributed to the Sun, one in the plane of the

meridian, the other transverse to it
;
which two motions, (ac-

cording to the doctrine of the composition of motion) are equiva-
lent to, or may be compounded into, one single oblique motion.

From the preceding instance it appears, that the Sun moves to

the east of the meridian, and of a fixed star (Regnlus), through
an angle which, in time, is equal to 3 minutes 42 seconds : but

this angle is not constant : if, for instance, one of the stars of

Sagittarius was, with the Sun, on the meridian, January, 2, 1810,

the next day the Sun would come later, than the star, to the

meridian, by 4 minutes 24 seconds
;
on January 4th, later by

8 minutes 48 seconds
;
on the 5th, by 13 minutes 12 seconds, &c.

Hence, neither is the Sun's motion perpendicular to the meridian

equable, nor, as it has appeared, his motion in the meridian.

These two may be considered as the two resolved parts of the

Sun's oblique motion.
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The following Table exhibits the Sun's meridian heights on

the 22d days of the several months of the year 1810.

January.
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day, from his place on the meridian the preceding day [see

Note, p. 125.] : and in the present case they are respectively

equal, in degrees, &c. to 54' 33", 54' 3l".5, 54' 3l".

The spaces te, t'e, &c., or the increments of the Sun's

altitude in the meridian, are respectively equal to

23' 41", 23' 39";

and the motions, in these directions, combined with the transverse

motions in the directions Et, et, compound, as has been before

remarked (p. 126,) the oblique motions Ee, ee
f

, &c..

In the Figure ESE
1

',
there are two altitudes nS, r W, one the

greatest, the other the least, which for the year 1810, (see p. 125,)

would happen on June 22, and December 22d
;
and the mean of

these two altitudes is

\ {(61 15' 5")+ (14 19' 42")} =37 5?' 2S"-5,

which is, very nearly, the Sun's altitude (ME) on March 21, or

Kk his altitude, Sept. 22*.

Now when the Sun is at these mean heights ME, K k, he is

in the equator. If, therefore, we knew when the Sun was in the

equator, we could, by then observing the altitude of his centre

determine that of the equator, which altitude (see p. 10.) is the

co-latitude of the place of observation. Contrarywise, if, by
observations other than those of the Sun, we determine the

latitude of the place of observation, we are thence enabled to

ascertain when the Sun is in the equator ;
which must happen

when his zenith distance is equal to the latitude.

In pages 10 and 11, &c. we have given some instances of the

method of determining the differences of the latitudes of places.

But the latitude itself may be found, from the greatest and least

altitudes of a circumpolar star above the horizon. Thus, if Hu,
Hv denote those altitudes of a star, the parallel of which is vu,

* The greatest and least altitudes (nS9 rW) are supposed to happen
on the noons of June, and of Dec. 22 ; which is not exactly true, as it will

be hereafter shewn.
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the latitude = PH = Hv -f-

= Hv + Pw
= Ifv -f Htt

= Hv + Hu latitude

consequently, the latitude = -^(Hv -f- /f?/),

and the co-latitude equals half the sum of the greatest and least

zenith distances. Thus, by observations made at Blackheath,

corr
d

. least zen. dist. Ursa min. Bod. 4...... 37 35' 55"

corr
d

. greatest zen. dist............. .... 39 27 57

|)77 3 52

co-latitude of Observatory.......... 38 31 56

Again,

corr
d

. least zen. dist. o Cephei............. 15 35' 2l"

corr
d

. greatest zen. dist .................. 61 28 31

|)77 3 52

co-latitude........ 38 31 56

By these means we should be able to recognise that twice in

a year, in March and September, the Sun was in the equator.

But, if the latitude were determined accurately, we should find

no meridian altitude of the Sun to be exactly equal to the co-lati-

tude : for instance, in the former cases, (pp. 125, &c.) the latitude

R
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of the place of observation being supposed, by observations of the

pole star, to be 52 12' 36", its co-latitude is, consequently,

37 47' 24". Now, amongst the altitudes stated in p. 125,

there is no one exactly equal to 37 4?' 24" : the altitude on

March 20th is too small, that on the 21st too large: the reason

of this is that, when the Sun was exactly in the equator, he was

not on the meridian of the observer's station. There is some

place to the east of Cambridge, at which the Sun was on the

meridian when in the equator: and this place may easily be

determined.

We may now pass from the Sun's tabulated places, obtained

by daily observations of his meridian altitudes, to the explanation

of the changes of places, as originating from, or explicable by,

his oblique motion.

The line MM 1

(see Fig. p. 127,) is intended to represent

the aggregate of the angular distances through which the Sun

recedes each day from a fixed star, that was with the Sun on the

meridian at e. This aggregate is 360*
;
MK =KM ', moreover

Kk= M'E' is the height of the equator, and a line EkE'

Z

containing 360, and extended oil a plane, may be conceived to

represent the equator. Reversely, the lines E kE', ESkE' may be

conceived to be wound round a sphere, the line EkE', coinciding

* This part being intended for general explanation only, t&e pre*

cession of the equinoxes is not taken account of.
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with Qeq, &c. ESkE 1

with eSs, &c., and the points c, e, e' &c. in

Fig. p. 127, with the points in Fig. p. 330, denoted by the

same letters. Suppose now the Sun to be in the equator at e
;

then, by the revolution of the sphere, the point e and the Sun,

would be transferred to the meridian at the point Q, and

hQ=ME will be the height of the equator: next, let the Sun
recede through the space ee ; the point e and the Sun will be

on the meridian at f, and fh = me (Fig. p. 127,) will be the

meridian altitude : on the succeeding day let the Sun, having stiU

farther receded through the space ee', be at e'
;
then his place on

the meridian will be f
1

, and his meridian altitude fh =m e
1

(Fig. p. 127.): and similar circumstances will take place till the

Sun has receded through the space e S (e S = a quadrant) when
his place on the meridian will be at g, and his meridian altitude

gh nS (Fig. p. 127,) then the greatest: after this the meridian

altitudes will decrease.

By supposing therefore the Sun to move in the curve eS, &c.

from c towards S, whilst the sphere revolves in the opposite

direction, from e towards Q, all the phenomena indicated by
observation admit of an adequate explanation. And, as the

diurnal phenomena were shewn (p. 8,) equally explicable

either by supposing the whole celestial sphere to revolve, the

Earth being quiescent, or, the Earth to revolve in a contrary

direction, the Heavens being at rest; so, these latter phenomena

may be accounted for, either by supposing the Sun to move in

an orbit such as e Ss, &c., and the Earth to be at rest, or the

Earth to move, but in a reverse direction, in an orbit similar to

S whilst the Sun remains at rest.

The above explanation does not depend, on the realform ojf

the orbit eSs, which may be either circular or elliptical, or of

any figure, provided that it lies in the same plane. For, the Sun

is continually seen in the direction of a line drawn from him to

the Earth
; but, whatever be his place in that line, he will always,

by the observer, be transferred to the imaginary concave spherical

surface of the Heavens.

The imaginary path of the Sun in the Heavens is called the

Ecliptic : the points E, E', (fig. p. 127,) of its intersection with the

equator, are called the Equinoctial points : they are the nodes of
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the equator ;
the points S, W, those of the greatest and least ele-

vations above the horizon, or, the places of the Sun, at his

greatest northern and southern declinations, are called the

Solstitial points.

The points of the intersection of the equator and the ecliptic

have been called the Nodes of the former
;
which they may be, by

likening the equator to the orbit of a revolving body ; for, gene-

rally, nodes are defined to be the intersections of the orbit of a

planet, or other revolving body, with the plane of the ecliptic.

The planes in which the ecliptic and equator lie, are inclined

to each other. The angle of their inclination is, for distinction,

called the Obliquity 'of
the Ecliptic : the angle of the inclination

of the planes is the same as the angle made by two tangents, at

the point e, to the arcs ee, eq*. (see Fig. p. 130.)

If from S a solstitial point, a great circle PS be drawn per-

pendicular to the ecliptic, and n S be taken equal to a quadrant,
then n is the pole of the ecliptic f.

The circle Gg, a tangent to the ecliptic at the solstitial point

S, and consequently parallel to the equator (and therefore a

parallel of declination) is called a Tropical Circle. A similar one

touches the ecliptic at the other solstitial point.

The small circle described round P in the circumference

of which the pole of the ecliptic is always found, is called a

Polar circle : sometimes the Arctic Circle (p. 38) ;
and a similar

one about the Earth's opposite pole is called the Antarctic circle.

A secondary (see p. 8,) to the equator, passing through E,
the equinoctial point, is called the Equinoctial Colure: one

passing through S, the Solstitial Colure.

Astronomers have divided the ecliptic into twelve equal parts
called Signs : consequently, the ecliptic containing 360 degrees,
each sign contains thirty degrees. Their names and characteristic

symbols are,

*
Trigonometry, p. 128.

f Ibid. P. 89. 1. 2. from bottom. This pole is situated in the sign of

the Dragon between the stars r and f, but nearer to the latter.
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Northern. Southern.

Aries T
Taurus 8

Gemini n

Cancer 25

L-eo SI

Virgo rrg

Libra =a=

Scorpio nt

Sagittarius $

Capricornus V?

Aquarius zz

Pisces . . X

These signs are situated within an imaginary belt, called the

Zodiac, extending eight degrees on each side of the ecliptic.

To each of the signSj certain clusters, or groups of stars,

called Constellations *, are appropriated. But the signs, astro-

nomically, serve merely to denote a certain number of degrees :

thus, in the Nautical Almanack, the Sun's longitude for July 1,

1810, is stated to be 3 signs, 8 degrees, 54 minutes, 19 seconds
;

which is equivalent to 98 degrees, 54 minutes, 19 seconds.

The longitude is also sometimes expressed by means of the

symbols of the constellations of the Zodiac. Thus, in Flamstead's

catalogue of the fixed %stars, the longitude of 7 Draconis is ex-

pressed by :

? 23 4/ 48",

which, since Sagittarius, represented by t, is the 9th sign, (the

* These groups of stars, or constellations, are by fancy imagined to

form the outlines of the figures of animals and instruments, and are de-

signated by their names. Thus, one group forms the figure of a Bear,

another that of a Lion, a third of a Dragon, a fourth of a Lyre. So there

are stars in the tail of the Bear, the head of the Dragon, the heart of the

Lion : which are farther distinguished by Greek characters ; the charac-

ters, according to their order, denoting the relative magnitudes of the stars.

Thus, a Arietis designates the largest star in Aries, fi Draconis, the

second star of the Dragon, tj Ursae Majoris, the star the fifth in size of

the greater Bear, &c.

t The particular stars of a constellation also are usually symbolically

represented : thus a $ means the first or principal star in Taurus or

the Bull
', \z, one of the inferior stars in Aquarius; /?n, a star of the

second magnitude in Virgo ; 7 :
,

a star of the third magnitude in

Libra.
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first point of which is accordingly distant from that of arcs by

8 x 90, or 240), denotes the longitude of 7 Draconis to be

2639
43' 48".

The term Longitude, which has been just introduced, means

an angular distance measured or computed along the ecliptic, and

from one of the intersections of the equator and ecliptic : which

intersection is called the First Point of Aries.

After having passed through the 30 of Aries, the Sun

enters Taurus, then Gemini, and, successively, the signs accord-

ing to the order in which they were enumerated (p. 133). The

motion of the Sun according to this order is said to be direct,

or in consequentia ; any motion in the reverse direction is said to

be retrograde, or in antecedentia.

What longitude is with respect to the ecliptic, right ascension

is with respect to the equator. It is angular distance, from the

first point of Aries, (see 1. 7,) measured along the equator.

And, what declination is relatively to the equator, latitude is to

the ecliptic : it is angular distance from the ecliptic, measured

by that arc of a secondary to the ecliptic passing through the star,

which lies between the star and the ecliptic. Thus, if <y> be the

first point of Aries, or denote the intersection of the equator and

ecliptic, and St be perpendicular to the part ^ t of a great circle,

St, T t are, respectively, the latitude and longitude of S, if T t

be part of the ecliptic : or, they are, respectively, the declination

and right ascension of <S, if y f be part of the equator. The

Sun, being always in the ecliptic, has no latitude : at the first

point of Aries, his declination, longitude, and right ascension, are

nothing : at the solstitial points, his declination is the greatest,

and his longitude and right ascension either 90, or 270.
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The longitude of the Sun varying, in the year, from to 360
a

,

becomes successively, during that period, equal to the several

longitudes of the stars. The longitude of a Arietis being in 1809,
I
8 4 59' 31", that of the Sun was equal to it on April 25th. The

longitude of Regulus being 4
8

27 10' 2?", that of the Sun was

equal to it on August 20th. When this happens, the Sun is said

to be in conjunction with the star. And, for conciseness of ex-

pression, Astronomers have invented another term called Oppo-
sition, which happens, when the longitude of the Sun differs from

that of the star by 180, or by 6 signs. The symbol for con-

junction is 6 , for opposition . Both the preceding terms

are comprehended under a third, called Syzygy. Thus, the

Sun having on Oct. 28?th, a longitude of 7* 4 39' 54", was,

during that day, in opposition to a Arietis. On April 25th,

then, he was in conjunction with a Arietis, on Oct. 28th, in oppo-

sition, and on both days in Syzygy with that star.

The Sun was stated to be in conjunction with a Arietis on

April 25th. But, the exact time of the day was not specified ;

that, however, may be found by a formula given in the Appendix :

or, very nearly, after the following manner :

long
6

. Apr. 25. . = 1
s 4 49

;

58". I
8 4 49' 58"

Apr. 26. . =1 5 48 15 long, of a<r 1 4 59 21

Inc. of long, in 24h 58 17 diff. of long 9 33

.'. 58' 17" : 9' 33" :: 24h : 3h 55m 57
s

;

consequently, the conjunction was April 25th, 3h 55
m
57

s

, without

estimating the precession of the equinoxes, by which the star's lon-

gitude was increased.

The Sun is said to be in quadrature with a star, or planet,

when the difference of their longitudes is 90 or 3
s

, or 270 or

9
s

. For instance, the Sun was in quadratures with a Arietis

when his longitude was either 4s 4
6
59' 3l", or 10

s
4 59' 3l" :

which two events took place on July 28th, and January 24th.

Again, the Sun was in quadratures with Regulus, when his lon-

gitude was either 7
s

27 10' 27", or 1
s
27 10' 27" : that is, either

on Nov. 19th, or May 18th. The symbol for quadratures is n ;

Thus a a Aquila denotes the Sun to be in quadratures with

the first star in the Eagle.
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The angle at t being a right one in the Figure of p. 134, we
could determine <y S, if <y t, and the angle <Y> were known. If

5 be the Sun, <y> SX part of the ecliptic, <y tY part of the

equator, the angle at f is the obliquity of the ecliptic. If there-

fore this latter quantity were known, we could from it, and T t

the Sun's right ascension, find the Sun's longitude. We will

now, then, briefly explain a method by which we may approximate
to the value of the obliquity.

It appeared in p. 125, that the Sun's altitudes on four

successive days were

61 14' 32", 61 15' l", 61 15' 5", 61 14' 44",

and the co-latitude being 37 47' 24", the corresponding decli-

nations of the Sun, were

23 27' 8", 23 27' 37", 23 27' 4l", 23 27' 20".

If the greatest of these, that is, 23 27
7

4l", represented the

Sun's greatest declination, it would measure the obliquity : for

when T S, T t are each equal to a quadrant, St is the measure

of the spherical angle at <Y> But it plainly does not represent

the greatest declination, since, if it did, the two adjacent decli-

nations would be equal, which they are not : the greatest declina-

tion then must have happened sometime between the noons of

June 21st, and June 22d, but nearer to the noon of the latter

day. It is a quantity somewhat greater than 23 27' 4l", and

certainly not differing from it by four seconds. For, assume it

to be the greatest declination, then, in fact, we assume the Sun's

longitude to be (what it is at the Solstice) 3 signs or 90. Now,
this latter assumption cannot err 30' from the truth, since the

change in the Sun's longitude for 12 hours is not quite equal to

that quantity. Suppose it, however, to be 30', that is, in the

Figure referred to, let X be the true place of the solstice, and

SX=30', or T S= 89 30', then by Naper's rule*,

rad. x sin. St = sin. T X sin. S Y ,

and rad. x sin. Xy = sin. T X sin. X T ;

consequently, eliminating sin. T, there results (since sin. X f = l)

* Woodhouse's Trigonometry, p. 146.



sin. St

.*. log. sin. ^y=10+ log. sin. 23 27'4l"-log. cos. SO',

but, 10+ log. sin. 23 27' 41". . . =19-6000260

log. cos. 30' ....... = 9.9999835

9.6000425

.*. Xy = 23 27' 44".5.

But since, in the case we have taken, the error in longitude must

be less than 30', the real obliquity must be some quantity be-

tween 23 27' 4l", and 23 27' 44". And, if the error in longi-

tude, instead of being 30', were only 3', the error in declination,

instead of being 3".5, would be only 3".5 .
-

5 ,
or .035" *. In

the present instance the former error is about 20', and therefore

the latter is l".5 nearly, and consequently the obliquity f differs

very little from 23 27' 42".5.

We have thus, from the greatest observed altitude of the Sun

and the latitude of the place of observation, deduced the greatest

northern declination of the Sun : which declination is the mea-

sure of the obliquity. By a similar process we may observe the

least meridional altitude of the Sun, and, if the Sun should not

have exactly reached, or should just have past, the point of his

greatest depression or declination, we may, as in the former

instance, approximate to the time and value of such depression.

This extreme southern declination of the Sun is, like the

northern, a measure of the obliquity. And the mean obliquity

* For the variations in declination near the solstice, are nearly, as

the square of the variation in longitude : for, in the former Figure,

r x sin. p = sin. y* . sin. I (l
=S y*, p= St)

.. r . dp . cos. p = dl.sin. V
s
. cos. I (taking the differentials.)

.. dp = . - cos. /= .tan. y .cos. /(since at sols., = V* nearly.)
r cos. p r

.-. dp = tan. y . sin. (90/)= tan. y.sin. dl= tan. r,

since at the solstice /=90 dl nearly,

t The obliquity thus determined is the apparent obliquity.
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for any year, would be half the sum of the two extreme decli-

nations computed for that year, or (in which case we do not need

to know the latitude) would be half the difference of the greatest

und least altitudes of the Sun, or half the difference of the least

and greatest zenith distances*.

Thus, by observations made in 1807, at Blackheath,

Winter solstice, Sun's zenith distance 74 55* 56".02

Summer 28 8 .68

2)46 55 47.34

Mean obliquity for 1807 23 27 53.67

According to received theories, the portions of the ecliptic

that lie to the north and south of the equator are exactly similar

to each other. The greatest southern declination of the Sun,

then, ought to give, for the measure of the obliquity, the same

quantity as the greatest northern declination gives. But there is

some discordance of observations on this head. According to

Dr. Maskelyne, Mr. Pond, Dr. Brinkley, M. Oriani, and

M. Arago, the observations of the winter solstice give a less

obliquity than observations of the summer solstice. M. Bessel,

on the contrary, from his own observations finds the two mea-

sures of the obliquity concordant, and labours to shew that the

latter observations of Bradley and those of Maskelyne made with

the mural quadrant, and corrected for its errors, are of the same

character.

The anomalous phenomenon (for such it is) of an inequality
between the greatest northern and so'uthern declinations of the

Sun, may arise from some unknown modification of refraction.

The question, certainly, is very intimately connected with the

law and quantity of refraction. That source of inequality has

not hitherto become the subject of consideration. This, there-

fore, would not be the place, did we possess the means, of solving
the difficulty that has been stated. We will merely, in addition

to what has been said, subjoin the various results of the mean

obliquity that different Astronomers, with instruments of different

size and construction, have arrived at.

* These distances, &c. must be corrected distances if the mean

obliquity is to result from them.
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kStronomers.



140

instrument of observation. The Dublin circle, by a double obser-

vation, gives the true zenith distance. The repeating circle does

the same : so, probably, does M. Bessel's two feet circle. The

mural circle of Greenwich also gives the Sun's zenith distance,

not, however, after the manner of the preceding instruments,

but by the mediation of the zenith sector. By the mural circle,

in which neither level nor plumb-line is employed, the Sun's

north polar distance is determined.

One of the methods, that have been briefly described for

determining the obliquity of the ecliptic, consists in deducting
from the Sun's greatest altitude, found by computation from the

greatest observed meridional altitude, the co-latitude of the place

of observation : the latter quantity being determined (see

pp. 129, &c.) from the greatest and least altitudes of circumpolar
stars. The quantity remaining after the above deduction is the

Sun's greatest declination. By a like method, we may, at any

time, whether the Sun be on or past the meridian, find his

declination. In the first case, the declination is merely the dif-

ference between the meridional altitude and co-latitude : In the

second, the difference between the meridional altitude increased

or diminished by the change of altitude proportional to the time

from the passage over the meridian, and the co-latitude. For

instance, in the first case,

June 21, 1810, Sun's U. L......... 61 29' 16"

L. L......... 61 46

30 2

Altitude of Sun's centre. ....... 61 15 1

Co-latitude of Cambridge ...... 37 47 24

Sun's declination June 21, at 12
h
app*. time 23 27 37

To illustrate the second case, let it be required to find the

Sun's declination on June 21, at three o'clock in the afternoon

(civil time). Let the meridional altitude of the Sun's centre be

found as above

On June 22, let it be ......... 6l 15' 5"

Altitude on 21st . . . . 6l 15 1

Increase of altitude in 24 hours .004
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Therefore, the increase in three hours (supposing the increase to

A!'

be equable) is equal to 4" x = = 0".5, consequently,

The alt. of Sun's centre, June 21, 3 o'clock = 61 15' l".5

Co-latitude . . 37 47 24

Declination of Sun, June 21, 3 o'clock . . 23 27 37.5

In the present Chapter, some instances have been given of

the uses of the quadrant *, and transit instrument. The Sun has

been observed on the meridian, and the attention of the Student

directed to the changes both in the place and in the time of the

Sun's passage. Twice a year, in March and September, the Sun
is in the equator. From the first of these periods he continually,

in his passages over the meridian, ascends towards the zenith till

about the end of June when he becomes,, with regard to his

zenith distance, which is then the least, nearly stationary. From
about the end of June to the latter end of September, the Sun's

zenith distance, at his passage over the meridian, continually in-

creases and with daily increments larger and larger. From his

passage cross the equator, in September, the Sun's zenith

distances increase till December, but at a diminished rate of in-

crease
;
so that, towards the end of December, the Sun having

reached his greatest zenith distance, becomes, with regard to

such zenith distance, nearly stationary, or is at his solstice.

The Sun's declination at this latter (our winter's) solstice is equal
his declination at the other, the summer solstice, and either decli-

nation is the measure of the obliquity of the ecliptic.

The above are obvious inferences from the registered obser-

vations of the Astronomical quadrant. Like inferences may be

made from the observations of the transit instrument and clock.

If the Sun and a star are on the meridian together on a certain

day, on the following day the star will pass before the Sun : but

the interval of time by which it precedes the Sun will not be

* The quadrant is here, as in many other places, used as the generic

term of all instruments that are used for determining meridional angular

distances.
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constant, whatever be the star, or, which amounts to the sanie

thing, whatever be the day of observation. Thus, if on June 20,

the Sun and a star are on the meridian together, on June 21, the

star will pass the meridian about 4 9
s

before the Sun
;
but

a month after, the time of a like precedence, or acceleration of

passage, of another star will not exceed 3
m

5o
8

: a month after,

it will be farther reduced to 3m 41 s

; and, a month after, to

3m 35s
. Now this motion, to the east of a star, is a motion in

right ascension. The Sun, therefore, has a motion in right

ascension but not an equable one: he has also (see p. 141,)

a motion in declination and not an equable one.

We will consider farther, in the next Chapter, the method of

estimating the right ascension of an heavenly body.
We might also with the Quadrant and Circle make other

observations of the Sun than those already mentioned. Thus, by

moving the instrument itself round its axis, or (the instrument

being steady) by means of a moveable horizontal wire placed in

the focus of the eye-glass of the telescope of the instrument, we
can measure the Sun's diameter. Now such measurements are

found to vary according to the season of the year at which they

are made. The inference from this is, that the Sun is, in differ-

ent parts of the year, at different distances from the observer. So

that, with respect to the Sun, the observations indicate a third

inequality in addition to the two already mentioned.

But, it is to be remarked, .the observations hitherto re-

ferred to of the Sun, whether of his north polar or zenith

distance, or of the time of his passage over the meridian, are real

observations (in the literal and natural signification of the term),

such as faithful instruments ought to give us. They are, indeed,

first in importance to the Astronomer, and the foundation of all

his theories. But -they soon become subservient to the deduction

of another kind of right ascensions and declinations, more abstract

in their nature, and independent of the circumstances of individual

observations.

For instance, the zenith distance of Sirius (the great dog star)

might be 68 43' 30" on one day, and 68 43' 22" on the suc-

ceeding day. Each distance might be truly given by the instru-

ment, but either the one or the other, or each, must be viewed as

a modification of the true, distance (which in twenty-four
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would not be changed) produced by some deranging cause. The
Astronomer would contend, in this instance, the cause to be in the

atmosphere, which, by bending the ray of light coming from the

star, makes each zenith distance less than it would have been had

not the light passed through a refracting medium : and he could

go on to account for the difference (eight seconds) of the refrac-

tion of light from the same star from changes in the weight and

temperature of the air. A change, for instance, of ten degrees
of Fahrenheit's thermometer, and of 1 inch of the barometer *,

would produce a change of eight seconds in the apparent altitude

of Sirius : and other variations of the thermometer and barometer

would account for the same .fact : in this instance, then, the in-

strumental, or apparent zenith distance, is noted and reduced, by

correcting it, to a mean zenith distance, or which would be such,

did no other cause than that we have mentioned prevent the

apparent and mean places of the star from coinciding.

Besides the one mentioned, there are, however, several other

causes that produce the same effect. But, whatever they are, the

observer, in the first instance, must be sure that his instrument is

correct, and then must attend to its faithful report of phenomena.
The observation is made just as it would be, were the observer

placed in the centre of the Earth, at rest, and in an atmosphere
that permitted light to pass through in right lines. What other

phenomena, observations, so made, are indicative of, or proceed

from, it is the business of Astronomical Science to explain.

Towards such explanation our present course is now proceed-

ing.

* In registering an observation the states of the thermometer and

barometer are always put down, see pp. 98, 99



CHAP. VII.

On the Methods of finding the Right Ascensions of Stars ; from

equal Altitudes near the Equinoxes, and from the Obliquity

and Declination. Latitudes and Longitudes of Stars.

Angles of Position.

THE position of a star has been made to depend, as we
have seen, on the arcs of two great circles perpendicular to each

other. One of these circles is the equator, the other a great

circle passing through its pole.

The declination of a star is its distance from the equator j

and its measure is the arc, of a great circle passing through the

pole of the equator and the star, intercepted between the star and

equator. The polar distance is the complement* of the decli-

nation : these terms are sufficiently significant, and the practical

methods of instrumentally measuring, by observation, the quan-
tities signified by the terms, admit of an easy explanation.

With regard to polar distances
;

there is no star in the pole
from which we can, by our instruments, at once determine the

angular distances of other stars : but (see pp. 120, Sec.) we can

always, by observations of circ unipolar stars, determine where the

pole is : that is, we are always able, at an assigned time, to state

what number of the degrees, minutes and seconds of our instru-

ment, the star Polaris, for instance, is distant from the north pole,

and, consequently, since we can also by the same instrument

observe the angular distances of Polaris and other stars, we
can assign their north polar distances.

But with regard to the right ascensions of stars, the pro-

ceeding is not so natural and obvious. There is no point in the

equator permanently marked by a star, or other phenomenon,
from which we can take our departure in measuring right ascen-

sions
; nor, as in the former case, is there any point assignable

by being the middle point between two phenomena. To find,
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therefore, what we are in quest of, we must not confine our

views to the stars and their apparent revolutions. If we look to

the Sun, however, we shall find a convenient point, for dating

right ascensions from, in the intersection of his path with the

equator.
This point, in several of its qualities or in the circumstances

attending it, is like that other point, the celestial pole, from

which polar distances are measured. It is a point neither

marked by a star nor capable of being permanently so marked.

But though, like the pole, it be variable relatively to the stars,

supposing them to be really fixed, yet it can, at any specified

time, be assigned : that is, the Astronomer, if he knows his

business, is able to tell in how many hours, minutes, seconds,

and parts of seconds, after the passage of Sirius (for instance),

this point, the intersection of the equator and ecliptic, shaft

also pass the meridian. If this can be done, the right ascen-

sions of all stars become known from the intervals between

their passages over the meridian and that of Sirius.

The place of the pole is determined from the zenith distances

of a circumpolar star, at its superior and inferior passage over

the meridian.

The star, at each passage, is at the same distance from the

pole. The intersection of the equator and ecliptic, the Vernal

Equinox, or as, still more technically, it is called, the First Point

of Aries, may be determined from equal meridional altitudes of

the Sun, and according to a method which we shall now proceed
to describe.

In the subjoined Figure, E represents the vernal equinox, k

E'

31
jtij{\

the autumnal, ESkE' is the ecliptic, EkE 1

the equator, and

T
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me, m'e', &c. are the several meridional heights corresponding to

the intervals of time Mm, Mm, &c.

Let eon a day near the time of the equinox be the Sun's place,

me his meridional altitude : let b be his place, after an interval of

nearly six months, then if a b were equal to me, Ka would equal

Mm, since the portion of the curve SbK is supposed to be

similar to SeE. But since the ordinates me, me', ab, &c. re-

present meridional altitudes only, it will happen that there is no

meridional altitude near to K exactly equal to me: a b may be

very nearly equal to me, but it will be either a little greater or a

little less : suppose it the next less, or that the preceding meri-

dional altitude is greater than me: then the Sun's declination at

b (
= ab KK) is less than the declination ate (

=meME),
but equal to it, at some time between the noon at e and the

previous noon : which time must be determined by compu-
tation.

Let X represent the Sun's right ascension at e, then if Ka
were equal to Mm, 180^, or 12

h X would represent his

right ascension at b. But Ka being less than Mm, 12
b X

represents the Sun's right ascension at some time previous to his

being at b, and some greater quantity, 12
h

X-\-e, for instance,

(e being a small quantity) will represent his right ascension at b.

Let also Y represent the star's right ascension.

On the day at which the Sun is at e observe the transits of

the Sun and star, and, by the clock, note the difference of their

transits : represent the difference by d. Let also d
1

represent
the difference of the transits of the star and Sun when the latter

is at b : then, we have (supposing the star's apparent place not
to bave changed) these two equations,

Y - X = d,

12
h - A' -f e - Y = d',

whence

V "~"" _________
2

r = :

' 8> + <*-* + *
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Example from the Greenwich Observations of 1816. Transits

of Pollux and the Sun.

f7
h 36ra

(f.5 I Pollux,
March 31, -I

<0 41 9-31 I
Sun's centre.

App*. diff. of transits 6 54 51. 19

f 7
U 33m 31

S
.32

Sept. 12, ]9 Ml 21 3.7

Pollux,

Sun's centre.

3 47 32.37

The parts of the bottom line represent the apparent differ-

ences of the transits : but these differences must be corrected

(see pp. 103, 104, &c.) on account of the clock's daily rate.

Now on March 31, the clock's daily rate (estimated from three

stars was -r-8). On Sept. 12, from six stars, 1.45*: and

the portions of these, proportional to the differences of the

respective transits are + .23 and .226. But, if the clock gains,

the difference of transits shewn by it must be greater than the

real difference, or than the difference of the right ascensions :

and the contrary must take place, if the clock loses. Hence,

diminishing the first difference by .23, and increasing the second

% .226,

d = 6h 54
m

5Cr\96,

d' = 3 47 32.596;

*
Sept. 1 1 .
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whence

d + d' = 10
h 42

m
23s

.556,

d - d'= 3 7 18.374.

We must now see what the altitudes of the Sun were on the

noons of March 31, and Sept. 12th.
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be found by immediate observation, (see p. 98.) or may be

taken from the Nautical Almanack. The correction for parallax
will be explained in a subsequent Chapter.

We have now

me = 42 44' 53"

a b = 42 39 59.7

4 53.3

the difference of meridional altitudes, or the difference of the

Sun's declinations on the days of March 31, and Sept* 12. Now
by observations on September llth, the Sun's altitude was

. 43 2' 53".7,

and his right ascension, on the same day, by the clock (allowing

for its rate),

ll
h

17
m

28s
. 1.

Between the two apparent noons, then, of Sept. llth, and

Sept. 12th, the Sun's altitude from 42 52' 53" had decreased to

42 39' 59".7. The decrement then of altitude, which is also-

the decrement of declination, was 22' 54'', whilst, in the same

interval, the increment of right ascension was 3
m 35s

.6.

Hence, 22' 54" : 3m 358
.6 :: 4* 53". 7 : 46s

.023*.

The fourth term 46s
.023, is the value of e.

Hence, (see p. 146,)

*
Log. 3m 35*.6 = 2.3336488

log. 4 53.3 = 2.4673121

4,8009609

log. 22 54 3.1379867

1.6629742 = log. 46.022,
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This determination of the star's right ascension is not quite-

exact
; for, in the process by which it was obtained it was

assumed, that the star's right ascension was the same on Sept. 12,

as on March 31. This assumption, however, is not correct.

The apparent right ascension of the star is different at the two

periods : or, in other and plainer words, the index of the Astro-

nomical Clock would not mark the same time when the Star,

on Sept. 12th, was on the meridional wire of the telescope, as

it did on March 31, supposing the clock, in the interval,

adjusted to sidereal time to have preserved a perfectly equable
motion.

The difference of the apparent right ascensions of the star at

the two periods, is, indeed, but small, not exceeding eight-tenths
of a second. If, as it will be in the present instance, the

apparent right ascension be greater on Sept. 12th, than on

March 31, the second of the equations of p. 146, instead of

being

12h - X + e Y=d',
will become

12" - X + e-(Y+y} = d',

Y+y, representing the star's right ascension on Sept 12th
;

or

y representing the increase of right ascension
; consequently, the

resulting values of X and Y, will be

+ e y
-

------------

2 2'

Y _
I2

h + d - d'+ t y
2

"

2
'

Hence, if we makey = 0".71 (which is nearly its value) we
shall have

X, or Sun's R. A. = Oh
S9

m
10

$

.88,

F, or Star's R. A. = 7 34 1.85, nearly.

The student at present, must be content to take for granted
that the value of y is rightly assigned. It is the result of four

small corrections due to inequalities not yet explained. It, in

truth, happens here as it will repeatedly happen again, that, in

conducting an Astronomical process we are obliged to anticipate
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the results of future demonstrations and to draw on funds not yet

established.

The preceding value of y is very small, and, as it will be

hereafter shewn, it can in no case be much larger. It is merely
the difference of the apparent right ascensions of Pollux at the

two periods of March 31, and Sept. 12, and it is only a portion

(not a proportional portion) of the star's annual increase of right

ascension. That there is such an increase may be easily shewn

by finding from two observations, made at different periods, the

corresponding right ascensions of the star : and, in order to

obviate an objection that may be made against the preceding

method, inasmuch as it is therein assumed, that the increase of

the star's right ascension, during an interval of about six months,
is either nothing or a small but undetermined quantity, we shall

find the right ascension by a different method.

The method consists in finding the Sun's right ascension from

two observed or known declinations : one the solstitial declination,

or (see p. 136.) the obliquity of the ecliptic, the other an

observed declination near the equinox. The star's right ascen-

sion will be the Sun's right ascension at the latter observation

plus the difference of the times of the meridional transits of the

Sun and star.

The two periods of observation are March 31, 1816, and

March 24,, 1768.

For the first of these periods, we have (see p. 149.)

me, or altitude of Sun's centre ... =42 44' 53"

co-latitude of Greenwich =38 31 21.5

Sun's decimation March 31, 1816 . . 4 13 31.5

Let the obliquity of the ecliptic for that time be assumed

equal to 23 27' 50".8.

For the latter period we have from Maskelyne's Observations,

reduced according to the methods of p. 148.

alt. Sun's centre. 40 16' 2"

co-latitude 38 3 1 21 .5

Sun's declination, March 21, 1768 1 44 40.5

Let the apparent obliquity at that period be assumed equal to

23 28' 14".*.
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To find the right ascension, we have, in each case, this

formula :

rad. X sin. <Y* t = cotan. Z <Y>Xtan. St,

X

or, rad, X sin. R.A. = cotan. obliquity X tan. dec.

March 31, 1816.

rad = 30

tan. 4 IS
7

3l".5 . . = 8.8685352

cot. 23 27 50.8. . = 10.3624424

(=log. 9 47 59) 9.2309776

March 24, 1768.

rad = - 10

tan. 1 44' 40".5 = 8.4837088

cot. 23 28 14.8 = 10.3623042

(=log. 4 1 21) : . . 8.8460130

Hence, (reducing the angular measures into measures of time)

March 31, 1816, Sun's R.A = Oh 39
m

ll
s
.8

diff. of transits of Sun and star 6 54 50.96

Star's R. A 7 34 2.76

March 24, 1768, Sun's R. A Oh l6
m
5

8
.6

diff. of transits (from Maskelyne's Obsv
n
'.) 7 15 2.46

Star's R. A 7 31 8.06

The difference between these two right ascensions is

2
m 548

.7,

an increase that has taken place in forty-eight years, and, conse-
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quently, if the same increase would always happen in every forty-

eight years, the mean annual increase would be

S8
.63.

But it so happens that, of the inequalities causing the right ascen-

sion to vary, one inequality is variable both in degree and direc-

tion : it is not the same on March 24, 18 16, and March 24, 1817 :

and, in the case before us, it diminishes the right ascension of

Pollux by l".22 in the March of 181G, and increases it by l".3

in the March of 1768. The difference of these quantities is

2".52 : so that, setting aside this variable inequality (which has

its cause in the variable action of the Moon on the Earth) the

increase of Pollux's right ascension in forty-eight years will be

2m 548
.7 -f 2".52

;
or 2

m
57".22,

and the mean annual increase of right ascension,

3
9
.69.

This augmentation of right ascension then exists : and it is part
of this, (but not, as we said in p. 151, a proportional part) that

causes the right ascension of Pollux on March 31, 1816, to be

different from its right ascension on Sept. 12, 1816.

The first method which has been described for finding the

right ascension is due to Flamstead. It is held by practical

Astronomers to be a good method. The Sun is observed at

equal zenith distances,, and, therefore, any error assigned by the

Tables in the quantity of refraction, or any error in the instru-

ment, would equally affect each observation. We are tolerably

sure of ascertaining (which is the essential part of the method)

when the Sun is at equal distances from the zenith. It is less

important to know the exact quantities of those zenith distances.

We must not hope to obtain, exactly, the right ascension of

a star by one observation and process. On this, as on all like

occasions, the process must be repeated, and the mean taken of

several results
; taken, as the true result, or as the result that is

most nearly true. Thus, in the instance adduced, observations

(should circumstances permit it) should be made on March 30,

and Sept. 13 : on March 29, and Sept. 14, &c. : and like sets of

observations should be made on different years.

The right ascension of one star being settled, the right ascen-

sions of other stars may thence be deduced. Thus, taking the

u
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apparent right ascension of Pollux on March 31, 18 16, to be

7
b 34m 28

.2, let the index of the clock be set to that time when

Pollux is on the meridional wire of the transit telescope. The

clock, if it goes rightly, will denote the right ascensions of other

stars when they are bisected by the meridional wire. Thus, on

the above day,

Capella passing the meridional wire at 5
h
3
m

5
s

.5

Ald6baran 5 3 21.2

Procyon 7 29 3Q.7

a Arietis 1 56 47.6

such times would be the apparent right ascensions of those stars.

a Arietis, the principal star in the constellation of the Ram,

passes the meridian, as we see, atlh 56m 47
s

.6. But the Jirst

point of Aries, is, as it has been already mentioned, a term alto-

gether technical. It is, if we conceive the ecliptic and equator
to be traced out in the Heavens, one of the intersections of those

circles, namely, that in which the Sun would be at the time of the

vernal equinox. When this point is on the meridian on March 31,

1816, the clock would note Oh Om s

, if, going regularly, it

noted 7
h 34m 2s

.2 when Pollux was on the meridian
; 7

h 34m 2s
.2

being supposed to be the truly computed apparent right ascen-

sion of that star.

In illustrating the preceding method of finding the right

ascensions of stars, we have employed the star Pollux : but, it is

plain, there are many other stars that would, equally well, have

served that purpose. Dr. Maskelyne found, according to the

preceding methods (or at least on their principle) the right ascen-

sion of a Aquilae : that was, what he called, his fundamental star,

the right ascension of which regulated the right ascensions of

other stars.

But it may be here noted that, whatever the star and the

time of observation, the result of the process merely gives the

apparent right ascension of the star at that time : and, conse-

quently, the right ascensions of other stars, deduced from that of

the fundamental one by means of the differences of their transits,

will be merely their apparent right ascensions for the same time.

The day after the observation, the right ascensions will, in strict-

ne^ss of theory, be different, although imperceptibly so. But, a

month after the time of the first observation, the right ascen-
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sions of the stars will be found to have altered, or, the clock,

going rightly, will no longer indicate the original times of their

transits.

This has been (see pp. 106, &c.) already adverted to; the full

explanation of the phenomenon cannot be given till all the

inequalities^ that prevent the times of the recurrence of a star to

the same horary wire, or to the meridional wire, of a transit

telescope, from being entirely regulated by the time of the Earth's

rotation. The present purpose of mentioning the circumstance

is to shew that a catalogue of the right ascensions of stars made
from the observations of two, three, or four years, and even by
the best instruments, would, without the aid of theory, or of results

obtained during long periods of time, be an imperfect catalogue.

The results from the observations of-a few years are quite insuf-

ficient. For, although we might by such establish as a fact that

both the right ascensions and declinations did not remain the

same, but, upon the whole, did either continually increase or

diminish, still the mean values of such increases and diminutions

would be entirely vitiated, by the operation of certain variable

and recurring inequalities. We have already seen an instance of

this in the case of Pollux, The interval of forty-eight years is

not sufficiently large to give accurately the mean value of the

annual increase of the right ascension of that star. If, however,
we possessed good observations distant from each other by two

hundred years, then, since the utmost effect of the variable ine-

quality, of which we have spoken, must be less than 3
s

, the mean
annual increase of the star's right ascension found as it was in

p. 153, cannot be erroneous beyond
s

.015. But this mean

increase is only one point gained in the formation of the cata-

logue of stars. We may know the right ascension of Pollux on

March 31, 1816, and its annual change, and still not be able to

determine its right ascension on March 31, 1817, or on Sept. 12,

1816.

But although the exact determination of these and other

points is not within our present reach, still, enough has been

done for the elucidation of the general principles of the methods

by which the places of the pole and of the first point of Aries,

are determined. Both these points are perpetually changing their

positions ; but, such is the advanced state of Astronomical

Science, they can alwavs be exactly found.
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We will now proceed to subjects related to the one which

has been just discussed.

The right ascensions and declinations of the Sun and stars

are deduced from observation. Their longitudes and latitudes,

not being subjects of immediate observation, are deduced, by

computation, and by processes purely mathematical, from right

ascensions and declinations. In the case of the Sun, the com-

putation is very easy, resting on the solution of a right-angled

triangle. One or two examples will be sufficient for the illus-

tration of this part of the subject.

Thus, let v be part of the ecliptic, and <Y> t part of the

equator, and let S t be part of a circle of declination : and let the

Sun's longitude Nov. 28, 1810, be required, his declination being
21 16' 4", and right ascension I6

h
14m 588

.4, or in space,
243 44' 36".

By Naper's rule, r X cos. /> S = cos. T t X cos. St
;

/. log., cos. T t or log. cos. 243 44' 36". .. =9.6458083

log. cos. St, or log. cos. 21 16 4 =9.9693672

10-hlog. cos. vS .. 19.6151755

/. <Y> 5=245 39' 10" the longitude required ;

or = 8s
5 39' 10".

2dly, Required the Sun's longitude Nov. 29, from his decli-

nation = 21 26' 35", and obliquity = 23 27' 4l".S.
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By Naper, r X sin. st = sin. <y> S X sin. S*p f ;

/. log. r+ log. sin. 21 26' 35" ...... = 19.5629781

log. sin. 23 27 41.3 ...... = 9.6000276

log. sin. T S ............ = 9.962Q505

.'. longitude = 246 40' 6", or 8" 6 40' 6".

3dly, Required the Sun's longitude Nov. 30, from his J
I6h 23m 34% and the obliquity of the ecliptic

= 23 27' 42".3.

By Naper, r X cos. S<r t = cotan. S<y> X tan. <y> ;

.'. log. r + log. cos. 23 27' 42".3 = 19-9625237

log tan. I6
h 23m 34s

. 1 = 10.3492191

log. cotan. T S ........ = 9-6133046
/. longitude ....... , . - = 247 40' 56'',

or = 8s
7 40' 56".

The longitude in these examples is computed from the right as-

cension and declination, conditions given by observation. But, in

the construction of the Nautical Almanack, the reverse operation
takes place. The Solar Tables give the Sun's longitude : thence,

and from the obliquity of the ecliptic, the right ascension and

declination are computed, by trigonometrical operations, similar

to the preceding.

The longitudes and latitudes of stars (their respective angular

distances from the first point of Aries and the ecliptic) are found

from their right ascensions and declinations
; by processes, how-

ever, less simple than the preceding.

Let P, TT be the poles of the equator A Q, and of the ecliptic
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EC : then since PQ=90, and 7rC= 90, P^r=Ca, but CQ is

the measure of the obliquity ;
therefore PTT is.

Let s be a star, Psn part of a circle of decimation passing

through it, irsm part of a circle of latitude. Ps is the star's

north polar, TTS is the complement of the star's latitude
;

the

angle sP TT depends on the star's right ascension, and the angle

STrP on the star's longitude.

In the present figure, T represents the first point of Aries, and

the order of the signs is from <y to C : therefore, the star's longi-

tude measured according to that order will be T in, the measure

of the angle <v> Trm, which latter angle equals 90 ZsTrP;

consequently, in this case (the star being in the first quadrant),

the longitude (L) = 90 - L STrP,
= 90 - C (C= ZSTrP).

The star's right ascension is Tw, which measures ^ TPn,
which angle equals Z TrPs 90 ; consequently, in this case,

the right ascension (JR). . = Z ?rPs 90,
U= Z.TrPs) = A - 90,

and, consequently, A == 90 -{- JR.

This is the case in thejirst quadrant, as it is called, or, the

above equation is true when the star (s) is situated within the

quadrant PT Q, or, when the star's right ascension is less than

six hours of sidereal time. The relation of A to the right
ascension is different in the other quadrants ;

in the 2d quadrant A = 270 JR, and cos. A~ sin. JR
in the 3d quadrant A= 270 JR, and cos. A= sin. JR
in the 4th quadrant A = JR - 270, and cos. A = - sin. JR
in the 1st (as we have seen) A = 90 + -#^ and cos. A = sin. JR

In all these cases, cos. A = sin. ^l : which equation,
will enable us to lay down a simple and general formula for the

value of the star's latitude.

In the oblique spherical triangle s TT P,

cos. TTS = COS. PTT.COS. Ps -}- sin. PTr.sin. Ps.cos. irPs.

Let TTS = A, PTT = /, Ps = 5, then

cos. A = cos. /.cos. S sin. /sin. S sin. JR,.
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Hence, (see Trigonometry, pp. 39, 171.)

1 2 sin.* = cos. I.cos.S sin. /.sin.

+ . r . . o x90 JR.\
% sin. I. sin. o. sin. f 1

= cos. (/+ J) + 2 sin. I sin. 5 . sin.
3

(
9 ~

and

'

. o A a (/+) .
-

* , /90 JR\2 sin. = 2 sin. 2 sin. I. sin. c . sin. ( 1 .

2 2 V 2 X

Let sin. /,sin. $. sin.
2

( ) = sin.* M
\ 2 X

then

A xT _l_ -Sv
- sin.*M,

(Trig. p. 31.) = sin. f -f in I . sin.

and, logarithmically expressed,

sin. =

Hence, we have this rule for finding the latitude of a star

from its right ascension and north polar distance, and the obliquity

of the ecliptic.

1st. Add twice the logarithmic sine of half the difference be-

tween the right ascension and 90, to the sum of the logarithmic
sines of the obliquity, and the star's polar distance : half this

whole sum diminished by 20 will be the logarithmic sine of an

auxiliary angle M.

2d. Form two arcs by adding M to the half sum of the

obliquity and north polar distance, and by taking M awayfrom
that half sum; half the sum of the logarithmic sines of these two

latter arcs is the logarithmic sine of half the complement of the

star's latitude.
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EXAMPLE 1.

Required the latitude of a Arietis, its mean right ascension

(for 1815) being.................... l
h 56m 45".9

its mean north polar distance........ 67 25 1 .7

and the mean obliquity of the ecliptic*. 23 27 46.3

Reduce J3, to degrees at the rate of twenty-four hours to

360, or of l
h

to 15 : then

1st,

JR = 29 ll'28".5

90^1 = 60 48 31.5

I (90- jR)= 30 24 15.75........ log. sin. 9.7042361

19.4084722

N. P. D. = 67 25 1.7 ........ log. sin. 9-9653546

I = 23 27 46.3 . . . ..... log. sin. 9.6000517
2 log. rad. 20

^.f.u.-r _ ^ ^ ^ 2)18.9738785

M = 17 52 12.3 log. sin. M 9-4869392

2dly,

.'. M = 17 52' 12".3

+ M= 63 18 36.3 log. sin. 9.9510705

- M = 27 34 1 1.7 log. sin. 9-6654221

2

N.P.D.-hJT

2

2)19.6164926

(log. sin. 40 l' ll
/7

.3).. . 9-8082463

Hence, the complement of latitude = 80 2
7
22".6

and the latitude = 9 57 37 . 4.

* This is very nearly the mean obliquity for 1815, supposing, accord-

ing to Bradley, the mean obliquity for 1750 to be 23 28' 18", and also

that the secular diminution of the obliquity is 50". The true value

of the mean obliquity is, probably, two seconds greater.
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EXAMPLE 2.

Required the latitude of Pollux in 1815,

M = 7
h 33m 588

.7 = 113 29' 40"-5,

N.P.D = 61 32 12.4.

1st,

M =113 29' 40".5

(M -
90) = 11 44 50.25 log. sin. = 9-3087681

2

18.61/5362

N.P.D. = 61 32' 12".4 log. sin. 9-9440497
/ (obliquity)

= 23 27 46.3 log. sin. 9.6000517

2 log. rad. - 20

N.P.D +/= 84 59 58.7 2)l8.l6l6376

(log. sin. M) 9.0808188

N.P.D. +/ = 42 29 59.3 M = 6 55' 5".75
2

2dly,

M = 6 55' 5".75

N.P.D.+I
\-M= 49 25 5.05 ....

log. sin. = 9-8805143

N.P.D. + /-~M= 35 34 53.55.- --log. sin. 9-7648191
2

2)19-6453334

(log. sin. 41 39' 50".8) 9-8226667

Hence the complement of star's latitude is . . 83 19' 41'".6

and the star's latitude 6 40 18.4.
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EXAMPLE 3.

Required the latitude of Spica Virginis (in 1815.)

its M = I3
h

15
m
27

S
.53 = 198 5l' 52".9-5

N. P. D. .. = 100 11 28.9

1st,

JR =198 51' 52".95

M - 90 = 54 25 &(
.

A7 log. sin.= 9-9103198

2

19-8206396

N. P. D. = 100 1 1

7
28".9 log.' sin. 9-9930933

/ = 23 27 46.3 log. sin. 9-6000517

2 log. rad. - 20

N.P.D.-f / =123 39 15.2 2)19-4137846

N P D 4-1
- = 61 49 37.6 (log. sin. M} 9-7068923

.'. M = 30 36' 39". 1

2dly,

M = 30 36'"39".1

f
' ' -~t

"' +M = 92 26 16.7 log. sin. = 9-9996068
2

'

: : M=3l 12 58.5 log.sin.= 9.7145557

2)19.7141625

(log. sin. 46 l' 12".4) 9-8570812

Hence the star's distance from the pole of the ecliptic is

92* 2' 24
/;

.8, and the star's south latitude is 2 2
;

24". 8.
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EXAMPLE 4.

Required the latitude of a Aquilae for the year 1815.

M =295 26' 1 7". 7

N. P. D.= 81 36 40.6

1st,

JR = 295 26' I?''.?

- 90 = 102 43 8.8. ..... * log. sin.= 9-9892102
2

2

19.9784204

N. P. D. = 81 36' 40".6 ......
log. sin. 9-9953285

1= 23 2746.3 log. sin. 9-6000517

2 log. rad.= -20

N.P.D. + 1 = 105 426-9 2)19-5738006

N -P-P- +/= 5.3.13.45

Gog. sin. 37 44* 38
/;

.09) 9-7869003

2dly,

N.P D +/-' '^

-^-^

=37 44
X

38
/;

.09

= 90 17 11-5 .......... log. sin. 9-9999946

M=14 47 15.4 ......... -log. sin. 9-4069438

2)19-4069384

(= log. sin. 30 20
7

42
/7

.25) 9-/034692

Hence, the star's distance from the pole of the ecliptic is

60 41' 24".5, and, consequently, the sta^s latitude is 29 18
7

3o".5
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EXAMPLE 5.

Required the latitude of a Pegasi (in 1815).

its M = 343 53' 15".75,

aad N.P.D. = 75 47 12.7-

1st,

jfl= S43 53' 15".75

/R on
=126 58 37.87 .log. sin. = 9-9026692

19.8053384

N. P. D. = 75 47' 12".7 - log. sin. 9-9864981

/ = 23 27 46.3 log. sin. 9-6000517

2 log. rad. 20

N.P. D.-f/ = 99 14 59^ 2)19-3918882

(log. sin. M) 9-6959441

N.P.D.-M _
4g0 S7/ 2g

,,

3
. M = 2g0 46

, u/,

25

j|f=29 46' 14"".25

N.P.D. 4- /

2

N.P.D.

-fM=79 23 43.75 log. sin. 9-9925185

-M=19 51 15.25 log. sin. 9.5310040

2)19-5235225

(log. sin. 35 17' 40") 9.7617612

Hence, the distance of the star from the pole of the ecliptic

is 70 35' 20" : and, consequently, the star's latitude is

19 24
7

40".
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EXAMPLE 6.

Required the latitude of 7 Draconis in 1750.

itsJR =267 42' 7"

itsN.P.D = 38 28 16

and obliquity
= 23 28 18

M = 267 42' 7"

90

2)177 42 7

JR - 90 = 88 51 3.5 log. sin. = 9-9999126

2

19.9998253

N. P. D. = 38 28' 16" -log. sin. 9.7938741

1= 23 28 18 log. 9-6002054

N.P. D4-/= 61 56 34 2)19-3939048

N.P.D. + J^ 5g (log. sin. M) 96969524
2

M = 29 50 48.4 M= 29 50' 48".4

N.P.D. + 7

2

N.P.D.

r= 60 49 5.4 log. sin. = 9.9410524

- M = 1 7 28,6 log. sin. = 8.2928518

2)18.2339042

(log. sin. 7 31' 18".55) 9-1 169521

consequently, the complement of star's latitude = 15 2 37 .1

and star's latitude * 74 57 22.9
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EXAMPLE 7.

Required the latitude of 7 Draconis in 1815, its right ascen-

sion being
-
VV 268 4/ 40"'2

its north polar distance 38 29 4.95

and the obliquity of the ecliptic 23 27 52.5

M =268 4' 40".2

3D QQO
=89 2 20.1 log, sin. 9-Q999389

2

19.9998778

N. P. D.= 38 29' 4".95 log. sin. 9-7940038

I = 23 27 52.5 log. sin. 9-6000817

2 log. rad. 20

N. P.D. + /= 61 56 57.45 2)19-3939633

N P D 4-7 = 30 58 28.72 (log. sin. M) 9-6969816

M = 29 50 56.43

' ' '

-+M = 60 49 25..15 log. sin.= 9.9410757
2

N.P.D. -M= 1 7 32.29 log. sin. = 8.2932485

2)18.2343242

(log. sin. 7 Si' 3l'
;

.7) 9- 1 7 1621

complement of the star's latitude is 15 3
7

3'
7
.4

and star's latitude 74 56 56.6.

If instead of the above value for the obliquity, we had

assumed it equal to 23 27 46 .3, the resulting value of the

star's latitude would have been 74 56
X

5l".
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EXAMPLE 8.

Required the latitude of Polaris in 1800 : its right ascensiou

being ----j ......... . ............ .'. . 13 b' 15"

its north polar distance (S) .......... 1 4o 34".5

and the obliquity of the ecliptic...... 23 2? 54.8

^l=J3 o 15"

=38 2722.5 .................. 9.7937323

2

19.5874646

3=1 45' 34".5 log. sin. 8.4872189

/ ^-23 27 54.8 log. sin. 9-6000929

2 log. r= 20

3+ 7 = 25 13 29-3 2)17.6747764

log. sin. (3 56' 35".7) 8.8373882

^! r = 1236'44".6
2

M = 3 56 35.7

J
I T

-
-hM = 16 33 20.2 log. sin. = 9.4547617

Jlf= 8 40 8.9 log. sin. 9-1781950

2)18.6329567

(log. sin. 1 1 57' 38".9) 9-3164783

% complement of star's latitude = 1 1 57
7

38
/x

.9

/. complement . = 23 55 17-8

/. star's latitude. . - . . = 66 4 42.2
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We will now proceed the investigate a formula for the star's

longitude.

The angle sir P (C), as it was mentioned in p. 158,

depends on the longitude. In the subjoined Figure _L= 90 C
;

consequently,

in the 1st quadrant C=90 L; .*. cos. C=sin. L
in the 2d C= L - 90, cos. C=sin. L
in the 3d C= L 90, cos. C=sin. L
in the 4th C= 360 -f 90 - L, cos. C=sin. L.

Now,

COS. sP - COS. S7T . COS. PV
cos.

sin. STT . sin. PTT

cos. ^ cos. A . cos. /
'. sin. L ( = cos. C) ==

: : 7
sin. A sin. /

But, (see Trigonometry, p. 39)

2 sin.
2

in. L,sin

consequently,

. a /90-f\ _cos. 5 (cos. A cos. I sin. A sin. J)

\ Q s sin. A sin. JL

and (see Trigonometry, pp. 30, 33.)



sm

sin.

169

(A
-f-/-h^\

i ) sm -

\ 2 / sin. A . sin. /

and, logarithmically expressed,

90 4- L
,

.

log. sm.

o /^++ ,

- /^_ A
|1

20 + log, sm.
{
---

) 4 log. sin.
(^

-----
SJ

log. sin. A log. sin. /

EXAMPLE 1.

To find the longitude of a Arietis for the beginning of the

year 1"815.

(seep. 160.) A = 80 2
;

24".56. . . . log. sin. = 99934050

/ = 23 27 46.3 log. sin. = 9-600051?

S = 67 25 1.7 W) 19.5934567

2)170 55 12.56

|-sum 85 27 36.28 .log. sin. = 9.9986352

sum $ 18 2 34.58 log. sin.
-

9.4909872

2 log. rad. = 20

39.4896224

(d) 19.5934567

2)19.8961657

(log. sin. 62 32
7

20
/;

.5) 9-9480828

90 + L = 125 4' 41"

L = 35 4 41

= 1
s

5 4 4K
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EXAMPLE 2.

Required the longitude of Pollux for 1815.

(see p. 161.) A =83 19' 4l".6 log. sin.=9-9970490

1=23 27 46.3 log. sin.=9 6000517

3= 61 32 12.4 (d) 19.5971007

2)168 19 40.3

sum = 84 9 50.15 log. sin. =9.997743 1

sum - S = 22 37 37.7 -

log. sin, = 9-585 1587

2 log. rad.= 20

39.5829018

(d) 19.5971007

2)19.9858011

9.9929005

Now 9.9929005 is the logarithmic sine of 79 40' 6" : it is

also the logarithmic sine of 100 19' 6'' the supplement of the

former : and this latter angle is the proper angle, since the star

(see p. 158, 161,) is situated in the second quadrant.

Hence,

90 + L = 200 39' 48",

L = 110 39 48

or = 3' 20 39 48.
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EXAMPLE 3.

Required the longitude of Spica Virginis in 1815.

/see p. 162.) A = 92 2' 24".8 log. sin. = 9-9997247

/= 23 27 46.3 log. sin. = 9-6000517

S=100 11 28.9 (d) 195997764

2)215 41 40

\ sum =107 50 50 .
log. sin.= 9-9785809

sum - I = 7 39 22 log. sin.= 9.1245924

2 log. rad. =20

39-1031733

(d) 19.5997764

2)19-5033969

9.7516984

Now 9-7516984 is the logarithmic sine of 34 22' 14".5,

and of the supplement 145 37' 45
/7

.5, and, since the star'sM
(see p. 163,) is greater than 12

h
^ it must be the latter of these

angles that is the true one
; consequently,

90 + L = 291 15' 31"

and L = 201 15 31

or = 6" 21 15 31.
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EXAMPLE 4.

Required the longitude of a Aquilae in 1815.

A = 60 41' 24".5 ........ log. sin.= 9-940509O

1= 23 27 46.3 ....... ...log. sin. = 9-6000517

i= 81 36 40.6 19.5405607

165 45 51.4

|sum= 82 52 55.7 ...... ---- log. sin.= 9-9966401

\ sum 3= 1 16 15.1 .......... log. sin.= 8.3459399

$ log. rad. =20

38.3425800

19.5405607

2)18.8020193

9.4010096

Now 9.4010096 is, the logarithmic sine of the arcs

14 34' 56".9

165 25 3.1

374 3456.9

&c.

Now, if either of the two first arcs were taken, the star's longi-

tude would be less than 9 signs ; whereas, since its right ascen-

sion is 19
h 41* 45% it must be greater. Taking, therefore, the

third arc, we have

90 + L = 749 9' 53//
.8

and L = 659 9 53.8

= 360 + 299 9 53.8,

and thence, rejecting 360, we have the longitude

= 9" 29 9' 53".8.
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EXAMPLE 5.

Required the longitude of a Pegasi in 1815.

(see p. 164.) A = 70 35' 20" log. sin. = 9-9745846

1= 23 27 46.3 V-A-. log. sin. = 9.6000517

3= 75 47 12.7 (d) 19-5746363

2)169 50 19

\ sum = 84 55 9.5 - log. sin.= 9-9982902

sum = 9 7 56.8 log. sin. = 9-2006233

2 log. rad. = 20

39.1989135

(d) 19-5746363

2)19.6242772"

9.8121386

Now 9.8121386 is the logarithmic sine of the arcs

40 27' 15".5, 180 (40 27' 15".5), 360 + 40 27' 15".5, &c.

Assuming the third^ for reasons such as are stated in the last

Example,

90 + L = 2 X (400 27' 15".5)

= 800 54' 31"

and L = 710 54 31

= 360 + 350 54
7

Si";

and rejecting 360,

the longitude = 1 1
1

20 54' 3.l";
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EXAMPLE 6.

Required the longitude of 7 Draconis in 1750.

(see p. 165,) A = 15 2' 37".l log. sin. 9.4142288

/= 23 28 18 log. sin. 9-6002054

3= 38 28 16 (d) 19.0144342

2)76 59 11.1

J sum =38 29 35.5 log. sin. 9.7940847.7

\ sum $ = 1 19.5 log sin. 6.5859420

2 log. rad. 20

36.3800267.7

19.0144342

2)17.3655925

8.6827962

Now 8.6827962 is the logarithm of 2 45' 40" and of

(180 2 45' 40"), and if, for reasons such as have been

alledged, we take the latter arc, we have

90 + L = 354 28' 40"

and L = 264 28 40

= 8
s 24 28 40.
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EXAMPLE 7.

Required the longitude of Polaris in 1800.

A = 23 55' 17".8 log. sin. = 9.6079754
/= 23 27 54.8 log. sin. = 9.6000930

$= 1 45 34.5 19-2080684

2)49 8 47.1

f sum = 24 34 23.5 log. sin. = 9.6189423
sum 5 = 22 48 49 log. sin. = 9.5885345

2 log. rad. =20

39.2074768

19-2080684

2)19-9994084

(log. sin. 87 53' 8") 9.9997042

= 175 46' 16",

and L = 85 46' 16", or 2s 25 46' 16".

The longitudes and latitudes of stars are of some, but not of

frequent use, in Astronomy. They are useful in the Theory of

the Aberration of Light, and in certain methods founded on the

occultations of stars by the Moon. They are also useful in the

comparison of catalogues of stars made at different epochs, and

afford us, as we shall hereafter see, the most direct mode of find-

ing the quantity of the Precession of the Equinoxes *.

There are certain angles, technically called Angles of
Position, dependent, like the latitudes and longitudes of stars, on

their right ascensions and declinations, and the obliquity of

the ecliptic, and thence deducible.

*
Tfyere

are Tables of the latitudes and longitudes of stars in

Lalande's Astronomy , edition 3. In the Connoissance des Terns of 1788,
for the Epoch of 1756 : and in that of 1804, for the Epoch of 1800.
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Now, the angle of position of a star, or of any point in the

Heavens, is the angle formed at the star or point, by the arcs of

a circle of declination and of a circle of latitude passing through
that star or point. In the subjoined Figure it is the angle TrsP.

In the Chapter on the Aberration of Light, we shall see the uses

of these angles of position. Our present business is concerning
the method of computing them.

Let P denote the angle TrsP,, then, (see Trig. p. 141.)

sin. P X sin. $ = sin. sirP x sin. /;

but (see p. 168,) sin. STrP cos. i/;

therefore, to compute P, we have,

sin. P X sin. $ = cos. L x sin. /,

and, in logarithms,

log. sin. P =
log. cos. L -f- log. sin. I log. sin. $

;

or we may compute the angle of position thus,

sin. P : sin. sPw :: sin. / : sin. A
;

but (see p. 156,) sin. sPir = cos. JR;

.'. sin. P X sin. A == + cos. M x sin. /,

and

log. sin. P =
log. cos. JR -f log. sin. J log. sin. A .
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EXAMPLE 1.

Required the angle of position of a Arietis for 1815,

(see p. 169,)

log. cos. 1
s

5 4' 41" = 9.9129496

log. sin. 23 2? 46.3 = 9-600051?

19-5130013

log. shi. O8
67 25' l".7 = 9-9653546

(log. sin. 20 39 52.3) == 9-5476467

Therefore the angle of position is

20 39' 52".3.

EXAMPLE 2.

Required the angle of position of y Draconis in 1815,

(see p. 166.)

In this Example we will use the second formula of com-

putation

log. cos. 268 2' 40".2 = 8.5255869

log. sin. 23 27 52.5 = 9-6000816

18.1256685

log. sin. 74 56' 56" 9-4144395

(log. sin. 2 56 53.2) 8.71 12290

The angle of position, therefore, is

2 56' 53".S.
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EXAMPLE 3.

Required the angle of position of Polaris in 1800, see

pp. 167, 175.

log. cos. 13 5'15"...> = 8.86770Q3

log. sin. 23 27 54.8 = 9.6000936

18.4678029

log. sin. 1 45 34.5 = 8.4872199

Gog. 72 59 39.3) 9-9805830

therefore the angle of position is

72 59' 39".3.

If a star be situated on the solstitial colure, its right ascen-

sion is either 90 or 270 : in each case, cos. JR. = 0, conse-

quently, since

sin. P. sin. A = cos. JR. sin. /,

P = 0. 7 Draconis, as we have seen in p. 166, is very near to

the solstitial colure (its longitude = 8
8 24 28' 40"), and its

angle of position is less than three degrees. The mean right

ascension of a star not continuing the same from year to year,

and even the star's latitude and the obliquity of the ecliptic being

subject to certain minute changes (secular variations) the angle
of position must vary. Lalande's Astronomy, vol. I. p. 488,
and the Connoisance des Terns for 1804, contain the angles of

positions of several stars, together with their annual variations.

The values of those angles thus then become known for several

years adjacent to the year for which they are computed. The
most simple method of computing the variations is to take the

fluxion or differential of some expression involving P, M, S, &c.

Thus, we have (see p. 176,)

sin. P. sin. A = cos. M .sin. /;

/. dP . cos. P sin. A -f d A . sin. P . cos. A =
d JR. . sin. JR sin. / + dl . cos. JR. . cos. /.
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If we neglect, by reason of their smallness, the second and

fourth terms, there remains for computing dP, this equation,

siu. JR. . sin. /
dP

cos. P. sin. A

EXAMPLE I.

It is required to find the annual variation of the angle of

position of *y Draconis in 1815 (see pp. 166, 177)

sin. M = sin. 268 4' 40" = - .9994

sin. / = sin. 23 27 46 = .398

cos. P = cos. 2 56 53 = .9986

sin. A = sin. 15 3 3 = .2597

and dJR (to be subsequently computed) = 20".7 ;

EXAMPLE II.

Required the annual variation of the angle of position of

a Arietis, the epoch being the year 1815, (see pp. 160, 177,)

sin. M = sin. 29 ll' 28" = .487

sin. / = sin. 23 27 46 = .398

cos. P = cos. 20 39 52 = .935

sin. A = cos. 9 57 35 = .985

and dM = 50
/7

.25 *
;

Hence, the angle of position for the year 1 800, would be

20 39' 5^.3 + 10".5 X 15;

that is, 20 42' 29
/7
.8.

* The variation of the right ascension will be computed in a subse-

quent Chapter.



180

This result does not exactly agree with that which is given

at p. 431, of the Connoisance des Terns for 1804. The angle of

position for 1800 is there set down at 20 42' 44". Part of the!

difference between the two results arises from the obliquity of

the ecliptic being assumed of different values in the two processes.

M. Chabrol (the computer in the French Almanac) has assumed

the value of the mean obliquity equal to

23 27' 58".

If we take the secular diminution of the obliquity to be

45".7, then,, in fifteen years (the interval between 1800 and 1815)

the diminution would amount to 6".85: consequently, the

obliquity in 1815, on the above grounds,, would be

23 27' 58" - 6".85 = 23P
27' 5l".15*,

whereas (see p. 160,) we have assumed it equal to

23 27' 46".3.

Now, if the obliquity be lessened, the other quantities, such

as the right ascension and north polar distance, remaining the same,
the angle of position will also be lessened : and its diminution

may be computed from this formula, (see p. 178,)

cos. JT . sin. A

If we take d/=5", cos. ^l=.873, cos. J=r.917, we have

dP = 5" x
- X -917 = 4".3.
.935 x .985

This quantity added to 29 42
;

29".8 (see p. 179,) will make
the angle of position equal

29 42' 34". 1.

* The mean obliquity for 1813 is stated by Mr. Pond, (Phil. Trans.

1813,) to be 23o 2r 5(fm Therefore if the secular diminution be 45".7,
the mean obliquity for 1815 is 23 27' 49".196\
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By formulae, in principle like the preceding, may the latitude

of a star computed for one value of the obliquity, be changed
into the latitude due to another value of the obliquity, sup-

posing the obliquity alone to vary and to vary by a small

quantity.

The latitudes and longitudes of stars, the angles of position,

their annual variations, &c. are, as we have already said, mere

matters of computation. They are useful, like other Astrono-

mical formulae, in the elucidation of theories, in the succinct

expressions of results, and in the construction of Tables. The

quantities on which they depend, or from which they are

derived, are the obliquity of the ecliptic, the right ascensions and

declinations of stars. These latter are determined by observa-

tions, not, indeed, from single observations, nor from those of

one or two years, but from observations made at different and

distant epochs and continued through a series of years. The

longitude of a star may be computed in a few minutes
;
but it

requires the observations of fifty years to settle its right ascen-

sion.

We wish to make one remark more before we quit this

subject. The preceding latitudes, longitudes, &c. are intended

to be the mean latitudes and longitudes, and are computed from

the mean values of the obliquity, and of the right ascensions and

declinations. This, for the present, must be taken as a mere

statement. We have not hitherto advanced far enough to give a

distinct explanation of those mean quantities which are, indeed,

(it may be here premised) the fictions of Astronomers : abstract

quantities never seen nor observed, but which would be, if our

theories be right, were certain obstructive or deranging circum-

stances removed.

In order to aid the computation of formulae by which the

variations of the latitude, longitude, and angle of position of a

star may be expressed, we subjoin a few formulae which the

attentive Student, by the aid of the annexed references, may
easily investigate :
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P the angle of position,

X the latitude of a star,

L its longitude,

5 its north polar distance,

JR its right ascension,

/ the obliquity of the ecliptic.

Then,

1. tan. JR. = tan. L . cos. / tan. X sec. X sin. / -

Trig. p. 117,

2. cos. 3 =sin. L . cos. X sin. J+sin. X cos. / 140

3. tan. L =sin. I cot. $ sec. JR -j- tan. JR. cos. / 157

4. sin. X = cos. $ cos. / sin. $ sin. /. sin. JR, 140

5. cot. P =cos. $. tan. JR,+ sin. $ . sec. JR . cot. J. . . . 157

6. cot. P =cos. X sec. L cot, I sin. X tan. L 157

7. cos. JR. sin. S == cos. L .cos. X TWg. p. 141

8. sin. P sin. 3 == sin. J, cos. L 141

9. sin. P cos. X = sin. Z". cos. Jil 141

10. sin. JR = sin. L . cos. P + cos. L sin. P. sin. X.

11. cos. / cos. JR= cos. L. cos. P sin. L sin. P sin. L.



CHAP. VIII.

Comparison of the Catalogues of Stars madefor different Epochs.
The annual Increments of the Longitudes of all Stars nearly
the same. The Precession of the Equinoxes. Comparison of
the Latitudes of Stars computedfor different Epochs. The

Latitudes of Stars subject only to slight. Variations. Com-

parison of the North Polar Distances and Right Ascensions of
Stars. Suggested Formula of their Variations. Conse-

quences respecting the Length of the Year, fyc. that follow

from thefact of the Precession.

IN the preceding Chapter, the terms Mean and Apparent

Right Ascension, Mean and Apparent North Polar Distance, &c.

have frequently occurred, without a formal definition of their

meanings. Indeed, a definition is not easily given : for, in order

to its being intelligible, it ought to enumerate the several cir-

cumstances that make a star's mean place to differ from its

apparent : which enumeration depends on what is to follow.

The mean place of a star differs from its apparent place at a

given epoch, not for one cause only, but for several. The mean

place of a star at one epoch, differs from its mean place at

another epoch, almost solely, from one cause : with the expla-
nation of this latter point our course of explanation will begin.

We will first shew that the place of a star is different in the year

1815 from what it was in 1760.

The place of a star depends on its distance from the first

point of Aries and from the pole of the equator : or (for so also

may its position be determined) from the first point of Aries and

the pole of ecliptic. We may determine then whether a star's

place is changed or not, by comparing together its registered

right ascensions and polar distances for two different epochs : or,

by comparing together its longitudes and latitudes computed
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(see pp. 160, &c.) from those right ascensions and polar distances.

We will begin with the latter comparison, although it may seem

to be more simple to compare together right ascensions and polar

distances, which, indeed, may be considered as objects of im-

mediate observation.
- ^ -*.

In order to deduce the variations of the longitudes and lati-

tudes of some of the principal stars, we will compare our results

(see pp. 160, &c.) with Delambre's Catalogue of Longitudes
and Latitudes inserted in the Connoisance des Terns for the year

1756. The following Tables contain this comparison (see

pp. 160, 161, &c.)

LONGITUDES.
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quantity. If we divide the numbers in the fourth column by 59 1,

[the
results will be (as they are expressed in the fifth column) the

[mean annual increases of the longitudes.

By the mere comparison then of the longitudes of stars at

different epochs, we arrive at the important fact of the nearly

\equal increases of those longitudes at the rate of about 50"

mnually. We may account for it (or assign a probable reason

for the fact) either by supposing the whole sphere, on which the

I stars seem placed, to be slowly turned (in addition to its diurnal

I

rotation round the prolonged axis of the Earth) round an axis

passing through the poles of the ecliptic, or by supposing the

intersection of the equator and ecliptic, thefirst point of Aries

as it technically is called, to have retrograded.

This retrogradation (the fact in its relation to Astronomical

calculations is the same in either supposition) is technically called

the Precession of the Equinoxes*. Its mean value estimated from

the five preceding stars is = 50".23.
o

But the Precession is an Astronomical element of too much

importance to be estimated from a, few pbservations, or (we
should say, if we did not know the past state of science) from

observations not distant from each other by more than sixty

years. If the observations of Hipparchus, who lived one

hundred and twenty years before the Christian a?ra were as

accurate as the observations now made, or as the observations

made in Flamstead's time, we should be able thence to determine

the mean quantity of the precession with the greatest precision.

But the antient observations are very little to be relied on.

t Since the number of years is 59 (= 601), we may easily com-

pute the annual increase from the whole increase : thus, if the latter be

1 23' 34",

ri' 23" 34"' 1

the former is / 1 23 34 \

) 1 23, &c.V

1 24 58 59

A A
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That they are inaccurate, we have evidence from the very state-

ments that have come down to us from Hipparchus and Ptolemy'

The longitude of Spica Virginis (see p. 171,) in 1815 was

6s
21 15' 3 l"; therefore, since the longitude of the autumnal

equinox is 6s

, it may be said, that the latter precedes the star by

21 15' 3l". Hipparchus (according to Ptolemy) says that, in his

time, the star preceded the autumnal equinox by 6 instead of 8*,

which it did, according to the observations of Timocharis, made

in the year 2Q5 before our aera. Now, M. Delambre very

justly observes, first, that these round numbers of 6 and 8 degrees

throw great doubts on the precision of the observations
; secondly

that the quantity 2 of the precession, at the rate 'of 50" annually

would give an interval of time equal to 144 years instead of 160

or 170 years that intervened between the two observations: so

that, it is probable, the observations made or computed were

inaccurate to the amount of a quarter of a degree. Now such

an error diffused over even as great an interval as 1800 years

would still be of moment : it would amount to 0".833, and alto-

gether vitiate the investigation.

On this account it is better to compute the precession by

comparing together observations that are now making, with

observations made about the year 1750 by those distinguished
Astronomers Bradley and Lacaille. And this M. Delambre has

done
; by comparing a great number of his own observations with

those of Mayer and of the two last-mentioned Astronomers, he

finds the mean quantity of the precession to be 50".l.

M. Lalande, in his Astronomy, has computed the precession,

by comparing the longitude of Spica Virginis as assigned by
Hipparchus with the longitude of the same star computed in

1750. Thus,

128. A.C. Longitude of Spica Virginis. . =58 24 0'

1750. A. D .=6 2021

difference of longitudes .....=: 26 2 1

Ptolemy lived in the year 137 of our sera.
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Therefore the mean annual precession =
26 21'

1878
= 50" SO'" = 5CT.5.

By a number of like comparisons, the same author finds the

secular precession, that is, the amount of the accumulated pre-

cessions for 100 years, to be 1 23' 34". The mean annual pre-

cession corresponding to this is 50
//

.34
;
and the sum of such

annual precessions amounts to 1 in 7H- years.

If we suppose the precession to be 50".l, then, in

(360\=
j years, the fast point of Arfes will have retro-

5O. IS

graded through an entire circle.

The quantity 50''.1, which is the mean value of the precession,
is obtained from the differences of the longitudes of a great

many stars (three or four hundred for instance) computed at dif-

ferent epochs. This mean quantity may not agree with the mean

quantity derived from the observations of a single star, however

many, or accurately made, those observations may be. It will

not be the case with Pollux, the second star in the preceding Table.

The difference, however, between the mean quantities of the

precession, as they result from 300 stars or a single star, is, in all

cases, very small. Still the difference, which is proved to exist,

points out to some peculiarity in the single star. It cannot be,

like most of the other stars, entirely fixed, but must have, what is

called, (or what we are obliged to call from default of a know-

ledge of its cause) a proper motion. For this reason, namely,
that the mean longitude of a star is not altered solely from the

regression of the intersection of the equator and ecliptic, or by
the precession, Astronomers employ the term of Annual Varia-

tion, comprehending under it the effect both of precession and of

annual proper motion. This subject will be more fully treated

of in a subsequent Chapter.

The comparison of the longitudes of stars computed for the

two epochs of 1750 and 1815 establishes, as we have seen, the

important fact of the prece'ssion of the equinoxes. Let us now

compare the latitudes.
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LATITUDES.
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We will first examine the Table of North Polar Distances.

The first star, 7 Pegasi, is subjected to the greatest diminution

in north polar distance, a Arietis suffers less, and Aldebaran still

less. The north polar distance of the fourth star (rj Geminorum)
is augmented, but by a very small quantity. The north polar

distance of Pollux is augmented by a greater quantity, and

5 Ursa majoris by the greatest (20".09). The north polar

distance of 7 Draconis is very slightly augmented. Those of the

remaining stars are diminished, and the last star (a Pegasi) suffers

a diminution of north polar distance nearly equal to that of

7 Pegasi.

Now the slightest inspection of the Table will shew us that

these variations of north polar distances, whether we regard their

quantities or their directions, are entirely independent of the north

polar distances themselves. We must look, therefore, elsewhere

for a clue to lead us to the detection of the law (if any such

should exist) that regulates these variations of polar distance. If

we look to the second Table we shall easily perceive a connexion

between the above-mentioned variations and the right ascensions.

For instance, y Pegasi which has the smallest right ascen-

sion, suffers the greatest diminution in north polar distance.

The change in the north polar distance of r] Geminorum is very
small and positive, and its right ascension is a little more than 90.
It is, therefore, immediately suggested to us that, if its right
ascension had been exactly 90, its polar distance would have

been unaltered. Again, of the following stars, the north polar
distance of $ Ursae majoris is augmented by the largest quan-
tity (by a quantity equal the diminution of the north polar
distance of 7 Pegasi) and its right ascension a little exceeds 180.
We have next 7 Draconis

; its right ascension is a little less than

three quadrants, and the variation of its north polar distance

small and additive; then, 5
Sagittarii, its right ascension is a little

greater than three quadrants whilst the variation of its north polar
distance is nearly equal to that of the former star but subtractive.

The right ascension of a Pegasi is about seventeen degrees less

than 360, and the variation of its north polar distance is of the

same sign with that of 7 Pegasi, but somewhat less,
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To those who are acquainted, in the slightest degree, with

the properties of Trigonometrical lines, it will be obvious that the

above variations are analogous to the variations of the cosine of

an arc that passes through all its degrees of magnitude from to

360. Suppose, then, we should conjecture the variation in

north polar distance to be comprised under this formula

C . cos. JR,

in order to examine the truth of the conjecture, we have (taking

the mean of the two cosines),

cos. 33' 6" = .9999

cos. 28 46 47 = .8764

cos. 65 54 27 = .4028

cos. 90 28 57 = .0083.

Equate
- C.cos. 33' 6", and -

20".08, and We have

20" .08=
~9999

= 20 * 82' nearly'

and, accordingly,

-20".082X .8764 = -
17".5, nearly,

20".082X .4082 = - 8.1

- 20".082 X -.0083 = 0".l6,

which results agree, very nearly, with those of the last column of

of the Table, p. 189. And if we were to make a like experi-

ment of the truth of the formula C . cos. JR, with the remain-

ing stars, we should find a like near* agreement between its

results and the numbers of the above-mentioned last column.

* We cannot expect an exact agreement. In order to try whether

the conjectural formula (C.cos, JR) were true, we took the cosine of the

mean of the two arcs and multiplied it into ift
part of the whole variation

of north polar distance between the years 1756 and 1815. But this mode
of proceeding was adopted merely, as we said, for the purpose of pro-

curing a test of the truth of the formula. If C . cos. -#l be a true formula

20".08 x cos. 29 1 1' 27 ''.3 is the annual variation of a Arietis for the

year 1815 : which will differ (a little indeed) from

*-

7 ** ' 1?
X cos. (6> 42' 12".86 -f- 67 25' l".o9).



We have now then, from the mere examination of the regis-

tered right ascensions and declinations of stars and their com-

puted latitudes and longitudes, established, or rendered probable

the existence of, three important facts. The first is, the nearly

equal increases of the longitudes of all stars at the rate of about

fifty seconds of space annually ;
the second is, the very small

annual changes of their latitudes, or the nearly permanent

position of the pole of the ecliptic : the third is, the annual

variations of the declinations of stars regulated, both in their

directions and quantities, by the right ascensions.

The variations of the right ascensions of stars (see Table,

p. 18Q,) we have not examined for the purpose of finding out

their law, which is not so obvious, nor so easy to be detected, as

that of the variations in declination. We have, however, found

out sufficient to enable us to make further conjecture concerning
the cause (if there should be only one) which produces those

variations that have resulted from the preceding investigations..

For instance, let TT be the pole of the ecliptic <Y> L, P the

pole of the equator <y> v Q. Let the retrogradation of the inter-

section ( <y> ) of the equator and ecliptic be expressed by T T '
-

then Q the solstitial point, 90 distant from y* * must also regress
to some point q, and the position of the solstitial colure, from
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,that of TrPLQ, will become that of vrplq. Now, it has

appeared (see p. 179,) that the obliquity of the ecliptic is

subject to very slight variation. It may be supposed nearly

constant during small portions of time (during portions of a

year, for instance,) in which case, P may be supposed to have

regressed to p through a circular arc Pp, the radius of which is

?rP. Let cr be a star : P<7 is its polar distance when the pole is

at P, per its polar distance when the pole is transferred to p:
and per P & will be its change of polar distance arising from

precession.

The right ascension of the star, when the pole is at P, will

be wQ,<Y> , and, when the pole is transferred to p, stq<^'. The

increase, therefore, of right ascension arising from precession,
will be

st

or st -f- tqv 4- v'v ~ wQ rf ,

i

( y v being perpendicular to <Y> v),

or (since tqv = wQ<y>)

st + T '

We have then, on the supposition that the motion of the

pole of the equator is rightly represented by the preceding

scheme, a mode of computing the variation of right ascension. If

its variation and that of the polar distance, computed according
to the same scheme, should accord with the results of observations,

there would arise a presumption that the scheme was true, or that

it adequately represented the nature and law of the change of

the intersection of the equator and ecliptic.

We may add farther that, according to the above method of

representing the change of the position of the equator, the lati-

tudes of stars will remain unaltered : a consequence (see p. 188.)

which accords, very nearly, with the results of observation.

In a future Chapter we shall enter more fully into this

subject. It is sufficient for our present purpose to have shewn,

that the mere examination and comparison of registered obser-

vations is sufficient to suggest the laws of the variations of the

polar distances and right ascensions of stars and of schemes and

BB



194

formulae for representing and computing them. Whether the;

laws and formulae so suggested be true or not must be decided

by the test of observations. We can do nothing else than ti

whether or not the results of the formulae of computations accoi

with those of observations. Science furnishes us no surer clu<

than this to guide our researches. And Astronomy, exacted as il

may now seem, is merely a system built up by like trials ai

processes.

Before we proceed to this verification, we wish to deduce a

few results that necessarily follow from the Astronomicalfact of

the precession of the equinoxes.

The intersection of the equator and ecliptic happens when the

altitude of the Sun's centre is equal to the co-latitude of the

place. The instant of time, therefore, of the intersection, or of

the Sun's being in the equator is that, at which the above equality

takes place. Now, with fixed instruments, it is the Sun's meridional

altitude only which is observed. It may happen, indeed, but it

is very unlikely to happen, that the Sun's meridional altitude shall

be equal to the co-latitude of the place. The instant of time then

of the Sun's being in the equator, must, in almost every case, be

determined by computation : by observing one altitude less than

the co-latitude, and, on the succeeding noon, an altitude greater
than the co-latitude, and then by computing the time between the

two successive noons, at which the Sun was at that intermediate

altitude which is equal the co-latitude of the place.

For instance, by Observations at Greenwich in March 1770,

Z. D. Sun's Centre. Mean Time.

March 20. ..... 51 29' 59".5 12h 7
m
3GP.5

March 21 51 6 18.5.... 12 7 18.5

23 41 18

But latitude of Greenwich = 51 28' 38".5

Zenith distance of the Sun on 20th. .=51 29 59 . 5

1 21
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Hence, (since the interval of time, corresponding to the

change of 23' 4l" in the Sun's zenith distance, is

24h 18s = 86382s

), we have

23'4l"(= 85260'") : 86382s
:: l' 2l" : l

h 22 3'.2;

consequently,

at 12
h
7
ra 3&.5 + l

h 22m 3S

.2, or, at 13
h
29

m
39

8
.7 mean solar

time, the Sun's zenith distance was equal 51 28' 38".5 ; or, in

other words, the Sun was then in the equator.

Find, by a like process, the time of the Sun's being in the

equator in 1771, and the interval of the times is the length of an

equinoctial year. Or, by finding the time of the Sun's being in

the equator at some other epoch, in 1820 for instance, we may
find the interval of time due to fifty equinoctial years, and thence

the mean value of one equinoctial year. For instance,

Sun's Zenith Distance. Mean Time.

March 20, 1820. .51 32
7

52".5 12h 7
m

37
8
.8

March 21 51 9 11.5 12 7 19.5

23 41 00 18.3

Sun's zenith distance 51 32' 52".5

Equator's zenith distance 51 28 38.5

O 4 14

Hence, 85260'" : 86381'.7 :: 4' 14" : 4h 17
m

18".

The Sun therefore entered the equinox on March 20, 1820,

at l6h 24m 55s
. 8, and, consequently, the interval of time, between

the equinoxes of 1770 and 1820, equals

50 years -f l6
h 24m 55

9
.8 - I3

h
29

m 37M :

now, out of the fifty years, twelve are Bissextiles, or contain 366

days, consequently, the above interval equals

50 X 365d + 12d 2
h
55* 18

9

.7,

and one-fiftieth of this sum, or the mean value of one year

equals

365d 5h 49
m

6*.374.



196

This is an easy consequence when the interval between two

equinoxes is already known. But if, independently of previous

results, we sought, by direct processes, the length of the year,

we could more simply effect it, thus :

Sun's Zenith Distance. Mean Solar Time.

March 21, 1820 51 9' 1 1".5 12
h
7
m

19
S
.5

March 21, 1770 51 6 18.5... 12 7 18.2

02 53 00 1.3

We must then enquire at what time on March 21, 1770,

(civil time) the Sun's zenith distance was 51 9' ll".5 : because,

the interval between two equal zenith distances observed in 1770

and 1820, and each equal to the latitude of the place, must equal
the interval between any other two equal zenith distances

observed, respectively, in 1770 and 1820, and towards the same

equinox. The enquiry, then, is reduced to the finding of the

time due to a decrease of 2' 53" in zenith distance. Now,
(see p. 194,) the Sun's zenith distance on March 20, 1770, at

12
h
7
m
S68

.5 was 5 1
'

29' 59".5 ; therefore the decrease in zenith

distance in 24h 18
s

.3 was 23' 4l". Hence, as before,

23' 41" : 863S1
S

.7 :: 2' 53" : 2h 55m 14S

.94;

consequently, the interval of time between two equal zenith

distances of the Sun, near the same equinoctial point> in 1770
and 1820, is

365d x 50 + 12
J + 2h 55m 16

s
.24,

which is, nearly, the same result as was obtained before in p. 195.

Instead of equal zenith distances of the Sun's centre, we
may use (which will be a more simple operation) equal zenith

distances of his upper limb, or of his lower limb : and, since the

equal zenith distances may be apy where assumed (provided they
are referred to the same equinoctial point) we may find, by pro-
cesses like to the preceding, the length of the year from observed

equal distances of the Sun's centre, or of one of his limbs, at or

near the solstices.

The following is an instance of the determination of the

length of the year from observations of the altitudes of the Sun's

upper limb at Paris.
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Altitude of Sun's Upper Limb.

March 20, 1672. . 41 43' 0"

March 20, 1716. .41 27 10 41 27' 10"

March 21, 1716. . 41 51

15 50 23 50

15' 50"
But 7 r. x 24h = 15

h 56m 39
s

, nearly.
23 50"

Hence, since in this interval of forty-four years there were ten

bissextile years, the whole interval between the equal altitudes of

the Sun's upper limb is

44 X 365d
4- 10d 15

h 56
m
39

s

,

and one forty-fourth part, or the mean length of one of the years

is

365d 5
h

49
m s

. 88.

This value is different from the preceding one of p. 195 :

and, if we were to select and operate on the observations of

other epochs, the resulting value of the length of a mean year

would, most probably, differ from both of the preceding values.

The difference is too considerable to be attributed to the errors

of observation. There exists, as it will be shewn in the solar

theory, a real difference, which arises from the motion of the

Earth in an ellipse, the ellipse itself' being moveable.

Since then the Sun, after quitting the equinoctial, or the

solstitial point, does not continue to return to the same points in

intervals of time exactly equal, the lengths of all real equinoctial

years or tropical years, as they sometimes are called, cannot be

equal. The preceding value then of the length of a year, (see

pp. 195, 197,) whether it be the fiftieth or forty-fourth part of the

time absolved between similar positions of the Sun, ought not, if

we would preserve the analogies of language, to be called the

length of a mean solar year. It may be called, as, indeed, it

usually is, the mean length of an apparent solar year. The

length of a mean solar year, if we would derive it solely from

observation, must be obtained from the comparison of observa-

-
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lions, distant from each other by an interval of time equal to

that in which the apogee of the Earth's orbit progresses through

360*.

But, as it will be shewn hereafter, there are other means of

computing the length of a mean solar year, than those which are

founded on the comparison of observations separated from each

other by so long an interval. M. Delambre estimates the length

of the year at 365
d
5
h 48

m
51 8

.6 (=365.226396593684).

A sidereal year is the time elapsed from the Sun's quitting

a particular star to his next return to the same star
;
or the in-

terval between two successive periods, at each of which the

difference of longitude between the Sun and a star was the same

quantity. This year must differ from the equinoctial year, by
reason of the precession : it must be greater than the latter year

by the time taken up by the Sun in describing 50".l. The

length of a sidereal year, then, can be determined by no method

more obvious or more correct, than that of adding, to the com-

puted length of Jthe equinoctial year, the time of describing 50".l :

or, -which rests on the same principle, than that of finding the

time of describing 360 from the previously ascertained time of

describing 360-50".l. Thus, T denoting the length of the

equinoctial year,

-...," 360 -oOM

the length of the sidereal year : which therefore equals

365
d
.2236396593684 x __!^6000_

1295949.9

or 365d 6h
9
m

11
8

.5,

the difference, therefore, of the
length of a sidereal and equinoc-

tial year is

20m 19
s

.9-

" The progression of the apogee is not the sole cause of the inequality
of solar years (see vol. II. pp, 453, &c.)
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But as it appears by p. 198, the length of a sidereal year

may be immediately determined from observations. Thus,

April 1, 1669, at Oh 3
m

47
s

,

longitude of Procyon Sun's longitude = 39 8 59' 36",

In April 2, 1745, at ll
h
I0m 45

s

, there was the same differ-

ence of longitudes.

The interval of the two epochs is 76 years (18 of which were

bissextiles) -f l
d

1 l
h 6m 588

, or 27759
d

1 l
h 6m 58s

, But since an

exact number of sidereal years had elapsed, which number can

be no other than 76, we have the mean length of one year

equal to

In the Chapters on the Solar Theory and the Calendar, two

other kinds of years the Anomalistic and the Julian will be con-

sidered, and their lengths found. Indeed, in now treating of the

equinoctial and sidereal years, we have anticipated what will be

the subject of future enquiries. But the quantity of the pre-

cession of the equinoxes being found, the digression towards the

subject of the equinoctial ^ears was natural and of little dif-

ficulty.

But there are subjects of primary importance that now claim

our attention. If the Astronomical doctrine
'

that there arefixed

stars,' be true, it must be shewn why the apparent places of such

stars do not remain the same : why the apparent place of a star

is sometimes not the same on two successive days ;
in different

months of the same year ;
on the same days of different years.

We must, in fact, go into that investigation, the entrance to

which was merely pointed out in pp. 44, &c. The objects of

investigation are the causes that render unequal the places of

stars at different temperatures, in different seasons, in different

years, and in different positions of the observer. The know-

ledge of these causes, and the determination of their quantities

and laws, constitute, what is called, the Theory of Corrections,
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by which an observed, or apparent place of a star is reduced to

a mean place ;
and by which, if we illustrate it by an instance,

an observation of a Aquilae made at Palermo on April 1, 1800,

may be compared with an observation of the same star made at

Greenwich on June 15, 1819.



CHAP. IX.

THEORY OF CORRECTIONS.

On the^Corrections to be made to the observed or Apparent Right
Ascensions and Declinations of Stars in order to reduce

them to the Mean. Refraction. Aberration. Preces-

sion. Inequality of Precession. Nutation. Parallax.

THE inequalities that cause the apparent places of stars to

differ, sometimes from themselves and always from their mean

places, are not discernible without the aid of instruments.

They are exceedingly minute, and their existence does not affect

that explanation of the general phenomena of the Heavens, (see

pp. 7, 8, &c.) which is founded on the rotation of the Earth and

the permanence of the places of certain stars on the apparently

concave surface of the Heavens.

To the fact of the mere rotation of the Earth round its axis,

which is sufficient for the general explanation of phenomena, we
must add another, quite essential to their minute and particular

explanation, which is the uniformity of the Earth's rotation.

This latter is a fundamental principle admitting neither great nor

slight modifications, and proved to be true by its being the basis

of a large class of Astronomical calculations, and by the agree-
ment of their results with observations.

We cannot add to this, as fundamental principles of the same

kind and invariability, the parallelism of the Earth's axis of

rotation and the permanence of the places of the fixed stars.

Both these latter principles are very nearly, but not exactly, in-

variable. They require certain modifications which it will be

part of the business of the present Chapter to explain.

cc
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The fixed stars are so called from preserving (what nearly

takes place) the same distances from each other. If their mutual

distances were strictly invariable, still it would not follow that

their places were invariable: for, as we have seen, (see pp. 46,

152, &c.) the place of a fixed star is referred to two points, one,

the pole of the equator, the other, the intersection of the equator

and the ecliptic ;
which two points are not fixed.

The inequalities that arise from the motions of the pole and

the equinoctial point affect a star's place, and continue to do so

by the same kind of effect. That is, if the north polar distance

of a star be diminished from March to June, it will be still farther

diminished in the next October, and continue to be diminished

during succeeding portions of time. There is no periodical

variation nor recurrence of effect, except after exceedingly long

periods. But there are inequalities, if we may so express our-

selves, of a simpler kind, that affect, and irregularly, the star's

polar distance : on one day diminishing that distance by a

certain quantity : on the next, perhaps, by a larger quantity, and

on the third day, perhaps, by a quantity less than that of the first

diminution. The inequality we allude to is refraction; depending,
at a given altitude of the observed star, on the weight, tempera-
ture, and probably, moisture of the amosphere, and, consequently,
to be computed by means of the barometer, thermometer, and

hygrometer.

We will begin with this inequality : first explaining, in

a general way, its cause, and then establishing its existence as

a phenomenon, by means of one or two simple observations.

The atmosphere which surrounds the Earth is to be con-

sidered as a medium of variable density, decreasing as the distance

from the Earth's surface increases. A ray of light then from a

star, in its progress through the atmosphere to the eye of the

observer, continually passes from a rarer to a denser medium,
and, consequently, according to optical laws, is continually de-

flected. The deflections take place towards a perpendicular to

the medium at the point of the light's impact, and, consequently,
the variation of the density of the atmosphere being gradual, the
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path of the star's light through the atmosphere will be curvilinear

and, if we may so express it, convex towards the star. The star,

then, will seem to be in the direction of a tangent to that last

portion of its curvilinear path which enters the eye of the

observer : and, consequently, the star will appear to be elevated

above its true place.

This deviation must take place in a plane perpendicular to the

atmosphere, and passing through the star and the spectator. At

each point of the light's progress, the medium to the right and

left, in the direction of a perpendicular to the above plane, being

supposed, for small distances, to be the same, no lateral devi-

ation can take place. Hence the refraction takes place, and

entirely, in the plane of a vertical circle. The vertical plane
becomes the plane of the meridian when the star is to the north

or south of the spectator. Hence, in observations made with a

mural quadrant or circle, the whole effect of refraction takes

place in declination, whilst the right ascension continues unaltered.

The observations, therefore, made with a transit instrument are

independent of refraction, so that, if its middle wire be meridional,

the time of a star's transit will be the same at whatever point of

the wire it passes (see p. 83.).

This is a brief explanation of the inequality of refraction

from a consideration of its cause. We will now shew, by a

simple instance or two, its existence as a fact or phenomenon.

If the angular distance of Polaris and 7 Andromeda (both

being below the pole) be observed at Cambridge, it will be found

to be about* 46 4 1
7

: but if the same stars be observed when

y Andromeda passes the meridian to the south of the zenith,

its distance from Polaris will be greater than before, by about

eight minutes, and be very nearly 46 50'.

If similar observations be made at Paris of the same stars,

then, in the first case, their distance will be about 46 22', and,

in the latter, about 46 45'.

* The variations in the state of the air prevent the distance from

always being the same.
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We have then the angular distance of two stars (which ought,

were their light not impeded, to remain unaltered) represented by

four different instrumental angles. But the inequalities in these

angles are perfectly explicable on the principles that have been laid

down. For instance, by the observation at Paris, the distance of

the two stars, below the pole, was 46 22', whereas it was 46 4l'

at Cambridge. But the latitude of Paris being 48 50' 13".3,

and the north polar distance of y Andromedae 48 33' 12", the

latter star, when on the meridian below the pole, would not

be much more than 1?' above the horizon
; whereas, in a similar

position at Cambridge, the latitude of which is 52 13' 24" the

star's elevation would be more than 3 40
;
. Now, at the former

elevation, the light from y Andromedae would suffer much

greater refraction than at the latter, and, consequently, the

apparent distance between it and Polaris would be less at

Cambridge than at Paris, although Polaris itself would be a

little more elevated by refraction at the latter than at the former

place.

The other cases admit of a like explanation ;
the distance

between the stars when they are above the pole must be greater

than when below, because y Andromedae, in the first case, is not

more than 10 from the zenith when its light will not suffer

much refraction
; whereas, in the latter, it is very near the horizon

when its light will be refracted as much as it can be.

It is easy to find other instances of like nature : for example,
in the Greenwich Observations of Dec. 8, 1815, we have

Barometer.
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Now (see p. 129,) half the sum of the greatest and least

zenith distances of a circumpolar star, is equal to the co-latitude

of the place of observation. Hence the co-latitude of Green-

wich from the above two observations of Polaris is

\ (77 l' 9".4), or 38 30' 34".7,

from the observations of /3 Ursae minoris,

(77 0' 55".7), or 38 30' 27".85 :

the co-latitude, then, which should be an unalterable quantity, is

represented, by reason of some inequality, by two different quanti-

ties. But of this circumstance, as of the former, the explanation

(at least the general explanation) easily follows from the cause that

has been propounded. Each star, in both its positions, will be

apparently elevated by the deflection of its rays ;
its two zenith

distances, therefore, will be less than they ought to be, and, con-

sequently, half their sum, which is to represent the co-latitude,

will be less than its true value. Again, the defect of this half

sum from the true value of the co-latitude is greater in /3 Ursae

minoris than in Polaris
;
because the former star in its greatest

distance from the zenith is distant from it nearly 54, and there-

fore the course of its light is much more bent than that of the

light from Polaris.

But it is not only that different circumpolar stars give, ac-

cording to the preceding method, different values for the latitude,

but the same star will, on two different days, give different values.

Thus, by the Greenwich Observations of 1812.
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Two results not only differing from each other, but from those

that were given in p. 205. But here, as before, the differ-

ences in the results may be probably accounted for,, if we admit

the preceding principles of explanation. In the first place,

a Cephei at its lowest altitude will be much nearer to the

horizon than /3 Ursae minoris, and, therefore, will be more

elevated (more than proportionally elevated). In the second

place, the observations of a Cephei, below the pole, on the

sixteenth arid fourteenth, were made under different circumstances.

These different circumstances are the weight and temperature of

the air. On the latter day the barometer was four-tenths of an

inch higher, and the thermometer six degrees lower than on the

former day. For both reasons then (for each instrument shewed

the air to be denser) the star would be more elevated, and its

zenith distance more diminished, on the 16th than on the

14th; which is the fact shewn by the observations. If the

above were a solitary instance, no great reliance ought to be

placed on the preceding reasonings ; for, the errors of one or two

seconds of space may be the errors of the instrument, or of the

observer. But the Greenwich Observations contain numerous

similar instances, all tending to the same conclusion and to

exclude the supposition of instrumental or accidental error.

This inequality of refraction then causes the north polar

distances, and the zenith distances of stars to be apparently un-

equal on contiguous days. The law of the inequality is only
that which can be inferred from experiments and observations on

the state of the atmosphere.

The knowledge of the theory of refraction, and of the ex-

pression of its laws by formulae, enables us to divest observations

in altitude of one kind of inequality. Two north polar distances

or two zenith distances, then, of the same star on two following

days, or on days distant from each by short intervals, if unequal

by the instrument, ought when corrected for refraction, to appear

equal. In so small a portion of time, as that of two or three

days, the effect of other inequalities would not be sensible by the

instrument. Again, two observations of the zenith distances of the

same star, made at the interval of two, three, or four months, and
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corrected for refraction, if then unequal, would be so from some
other cause or causes. If we exclude, by our supposition, error

from the instrument and observation, and suppose the correction

for refraction properly made, two such observations as those that

have been just mentioned would be unequal from precession.

For, if this latter inequality causes, as it does in certain stars, an

annual variation of 20" in their north polar distances, it would,

supposing its operation uniform, cause a variation of 10" in half

a year, and of ,5
/;

in three months.

These two inequalities, then, of refraction and precession being
known and their effects rescinded, if the zenith distances of the same

star, observed at the interval of three, or of six months, should still

be unequal, it would be necessary to investigate the source of the

inequality. By such steps as have been described, that is, by cor-

recting observations for all known and ascertained causes, and then

by comparing the observations so corrected, Bradley found the

north polar distances and right ascensions of stars to be different at

different parts of the same year, but to be the same again in like

periods of different years. If the north polar distance of a star

were increased in March, it would be diminished in September.
In June the inequality would affect the star's right ascension, and

if it then increased the right ascension, it would in January,
diminish it. This inequality is now succinctly designated by
the term Aberration. Bradley discovered its cause, (and the

discovery is altogether a wonderful one) in the combination of

the motion of light with the motion of the Earth in her orbit.

His explanation is founded mainly on the fact which Roemer had

established from observations of the eclipses of Jupiter's

satellites, namely, that light is not instantaneously transmitted

but successively communicated and propagated, or that some

portion of time is necessary, (no matter how small that portion,)

for the light to pass along so short a space as that, for instance,

of the tube of a telescope.

The method of detecting a fourth or fifth inequality, would

resemble the method alfeady used. If observations of y Draconis

made during March 18 J 5, and corrected for the inequalities of

refraction, precession, and aberration, differed from the corrected
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observations of the same star made during July 1820, that is, if

its north polar distance and right ascension were represented in

the two periods by different quantities,
there would be some new

cause or causes of inequality to be detected. Such would be

the fact. Observations, like those described, would not agree

by reason of an inequality called Nutation. We will briefly

explain its cause.

We have hitherto (see pp. 185, &c.) viewed the precession

of the equinoxes as an Astronomical fact, established by the

comparison of the longitudes of stars at different epochs. This

effect may be conceived to take place, from the intersection of

the ecliptic and equator being endowed with a regressive motion,

describing, thereby, gradually and equably the whole arc of the

precession.

Now the cause of this regression is the action of the Sun
and Moon on the bulging equatoreal parts of the terrestrial,

spheroid. The actions of these two luminaries vary, that of the

first from its declination, that of the latter from the inclination of

its orbit to the ecliptic. From the variableness, then, of these

two actions there will arise two inequalities, one called the Solar

Inequality of Precession, the other the Nutatioti *.

When the preceding inequalities are known, a star's apparent

place may be divested of their effects and reduced to its mean

place. But another correction is still wanting in the case of the

Sun and planets. An Observer at the Cape of Good Hope,
and an Observer at Greenwich, would, on the same day, refer a

planet to different parts of the Heavens. But observations,
made at the above-mentioned places, ought to be true to all the

world. Each observer then applies, in addition to the five enu-
merated corrections, a sixth correction, and reduces his observa-
tions to the centre of the Earth. This last correction is called

* In the Tables published by Dr. Maskelyne in the Greenwich Obser-

vations, the Nutation is separated into two equations : one called the

Equation of the Equinoxes, the other deviation in right ascension, and

deviation in north polar distance.
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Parallax : it cannot be said to arise from any inequality : but is

used for the sake of simplicity and the convenience of Astrono-

mical computations*

In simple cases the effect of parallax may be easily shewn.

A spectator at A would see a star s, in the direction Asn.

Another spectator, situated in the point at which Cs cuts the

Earth's surface, or situated at C the Earth's centre, would see

the star s in the direction Csm. The difference of the star's

places, seen from A and C, is measured by the angle AsC called

the Parallax.

This is the parallax arising from the situation of the observer

on the surface of the Earth. But there is a parallax called an

Annual Parallax
; which is the difference of the places of a star

seen respectively from two opposite points of a diameter of the

Earth's orbit.

We have now enumerated, and briefly described, the causes of

those corrections by which the apparent places of stars at one

epoch may be reduced to their mean places, at the same, or at

any other, epoch. The first, refraction, is independent of the

time of the day and year, and varies with the state of the atmo-

D D
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sphere and the, altitude of the observed body. A knowledge of

its laws enables us to translate the angular distance, shewn by the

Astronomical instrument, into another distance, such as the

instrument would shew, did light pass through a perfectly per-

vious metlium.

The next inequality
is that of precession, which changes

the place of a star by changing, relatively to the Heavens, the

place of the observer. It depends on time, inasmuch as, if it

augments the north polar distance of a star in May 18 16, it will

still farther augment it in December, and still farther after an

increased lapse of time *. The former inequality affects only the

declinations of stars^ but this alters both their declinations and

right ascensions.

The third inequality_, Aberration, depends not on the year,

but on the time of the year. If it diminishes the right ascension

of a star in May 1, 1816, by a certain quantity, it will equally

diminish it in May 1817, and at similar times of succeeding years.

In the month of October it will augment the right ascension :

and, if in these months of May and October,, its diminishing and

augmenting effects on the star's right ascension are the greatest,

in the intermediate months of August and January/ its greatest

effects will be on the star's declination.

The term Nutation was originally meant to be significant,

agreeably to its import, of a like motion in the pole of the equator,

produced by the variable action of the Moon on that protuberant
shell of matter by which the Earth is made greater than a sphere.
The variableness of the action depends on the Moon's distance

from the equator : which depends,, for its mean quantity, on the

inclination of the lunar orbit to the ecliptic : which again, as it

will hereafter appear, depends on the longitude of the node of
the Moon's orbit. The inequality, then, of nutation will be the

same, when the longitude of the node is : it will vary, whilst the

place of the node continues (which is the fact) to regress, and
will have experienced all its vicissitudes of augmentation, max-
imum, diminution and mean state, during a period of regression ;

which period is about eighteen years and an half.

* We exclude from this statement all extraordinary cases of exception.



It is proposed to consider each of these inequalities in a

separate Chapter, and to obtain (except which we do nothing)
their mean values, and the formulas of the laws of their variations.

These being obtained, Tables may be constructed which will con-

t veniently exhibit, at any given epoch, the respective quantities of

the several inequalities affecting any particular star. The numbers

in the Tables are, technically, called Corrections, and, when they
are applied, with their proper signs, to the apparent places of

stars, the latter are said to be reduced to their mean places. The

apparent places are what the observer sees and what his instru-

ments shew to him. The mean places can never be the objects

of observation; but are, as it has tyeen already said, abstract

quantities, the results of computations, the last conclusions which

Astronomical Science, in its progress towards perfection, has

arrived at.



CHAP. X.

REFRACTION.

Refraction. General Explanation of its Effects. Computation

of its Effects on the Supposition of the Earth's Surface being

plane, and the Lamina of the Atmosphere parallel to it.

Error produced by that Supposition at 80 Zenith Distance.

Tycho Brake's, and Bradley's Methods of determining the

Refraction. Method of determining the Refraction by Obser-

vations of Circumpolar Stars. Different Formula of Re-

fraction. Dependence of the Value of the Latitude of the

Observatory on the Mean Refraction at 45 of Zenith

Distance.- Corrections of Refraction due to the Thermometer

and Barometer. Instances and Uses of the Formula and

Tables of Refraction. Explanation of certain Phenomena

arising from Refraction.

IN the preceding Chapter, we have explained, in a general

way, how stars become apparently elevated by the deflections of

their rays of light in their passages through the atmosphere.
The general effect is the same, whether the atmosphere be of an

uniform or of a variable density. Suppose s to be a star, and

that a ray of light sp falls on Mp m> the boundary between a

denser and a rarer medium, the former being beneath Mpm.
Let Pp be a perpendicular to this bounding surface

; then, the ray
instead of pursuing the course spx, is deflected at the pointy,
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into the direction/? a. Let Nn be a second boundary similar to

the former : then the ray, after the first refraction at p, instead of

pursuing the course pay, is deflected, at a, into that of a b.

Again, the ray is, a third time, deflected at b from the course

a b z into be. The eye of the spectator, supposed to be at c,

sees the star in the direction of cb. The inclination of the lines

c b and p s is the whole refraction, or deflection, which the ray has

undergone.

In what has preceded, the medium contained between Mpm
and Qcq has been parcelled out into different strata. But cir-

cumstances, similar to those that have been described, would

take place, if the medium had been distributed into a greater

number of strata. The deflections would have been more, but

all the same way : and, if we suppose the parcelling out of the

whole medium between Mpm and Qcq into minute portions to

be indefinitely continued, the course of the ray pabc will

become curvilinear, of which pa, a b, be, &c. are the elements.

We may, therefore, thus represent the course of the ray.

Let 5 be the star, c the spectator, and suppose a plane perpen-

dicular to the Earth's surface to pass through 5 and c; then (see

p. 203.) the media at the several points, on both sides of the

plane, being supposed to be the same, the refraction will take

place entirely in the plane j
that is, entirely in the plane of a
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vertical circle. The refraction also taking place, at every point

of the light's course, on the supposition that it is made through

a medium of a continually varying density, the path of the ray

of light will be such as spa be is-, and, cs', being a tangent to

such curve at its extreme element at c, will be apparently the

star's direction. Or, / will be the apparent place of the star s,

and the angle scs
1
will be the whole refraction.

Let A = the angle sch, equal to the star's elevation above

the horizon, then, if r be the refraction due to that elevation,

the star's apparent elevation = A -\- r
; and, if = 90 A, Z

being the zenith distance, the star's apparent zenith distance

If the star be in the zenith, r =
;
since the light, in its

descent, cuts the tangent plane of each succeeding stratum of the

atmosphere perpendicularly; consequently, there is no reason

why it should be deflected towards one part rather than towards

any other.

In the zenith then there is no refraction, in the horizon, the

greatest. In intermediate points, the refraction is of some mean

values, but not proportional to the angular distance of those

points from the horizon. The question we have now to consider

is, since the refraction varies with the star's elevation, that is,

since it is greater (other things being equal) the less the zenith

distance, what function of the zenith distance, or, what terms

involving the sine or tangent of such zenith distance, will repre-
sent the law of refraction. This is one part of the enquiry ;

the

other part respects the actual quantity of refraction at some
certain zenith distance, at 45, for instance, and at some state of

the air, held to be its mean state.

We have already in a previous Chapter, (see pp. 203, &c.)
established the general fact of refraction, and the facts of the in-

crease of refraction with the increase of zenith distance, and of

the small quantities of refraction at zenith distances less than 90.
On this latter fact as a condition, and the constant ratio existing
between the sines of incidence and refraction, we will found a

simple formula * of atmospheric refraction.

' This is principally taken from Dr. Brinkley's Investigations, (see
Irish Transactio?it>, for 1814.)



215

Let O be the Earth's centre, OC its radius, a b a boundary

between two media (such as were spoken of in p. 213,) sa a ray
of light refracted at a into the direction Ca.

Let

Oa = + $, $ very small relatively to a,

z. ZCa = 0,

/ = angle of incidence .

R == angle of refraction,

r = refraction measured by s a s ,

and sin. I = w.sin. R ;

then sin. J = w.sin. OaC = m sin. OCa.
OC

-

Oa

=. m sin. ^ T 1
J , nearly,

But sin. I = sin. (.R + r) = sin. 1^ cos. r -j- cos. U .sin. r

= sin. .R + r sin. l" . cos. R,

since, r being very small, sin. r= r sin. 1
;/

, and cos. r= 1, nearly.

Substitute now for sin. /, sin. R, cos. R,

and we have
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ro.sin. Z. ( 1 --^ = sin. Z. (l
--

)V / V as

+ r. sin. 1" . \/[l
- sin.

2 Z
(l
-

jj)*]
;

but

1 - sin.
2 Z .

(l
- ~

a)*
= 1 - sin.

2

Z.(l-^y, nearly,

*= cos.
9

Hence, the square root= cos. Z x fl + - tan.
2

Zj , nearly,

and

(m 1)A J .sin. Z
V d/

r =
sin. l

;/
.cos. Z. (l +- tan.*

\ a

(m

T. .tan. Z X ( I tan.
2 Z ) , nearly,

sin. 1 \ a /

sm. 1* sin. 1 .a

or, since

tan .

tan. JS + tan.
3 Z = tan. Z sec.* ,

m 1 _, m 1 5
r = :

-
. tan. Z --:

-
.
-

. tan. Z . sec.* Z.
sm. 1 sin. 1 a

If the terms (see 1. 2,) had been farther expanded, terms

involving tan.
5

Z, &c. would have been introduced into the

preceding formula, which would then have been of this from

r = A tan. Z + B tan.
3 Z + C.tan.5 Z + &c.

In the former expression, if a be made infinite, the second

term vanishes, and other terms, had they been introduced, would
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also have vanished, since they would have involved the power*

of -
. In this case then

a

m - I

r = -jf . tan. Z ;

sin. 1

and this is the expression for the refraction, supposing the Earth's

surface to be a plane, and light to be transmitted through a stratum

of uniformly dense air parallel to the Earth's surface.

But, if the Earth were a plane, and light were transmitted

through a number of parallel strata of increasing densities, the

refraction would be the same, as if the light, with its first angle
of incidence, impinged immediately on the last stratum of air, or

on that which is nearest to the Earth's surface. The refraction

in that case would be represented by

m - 1

77 . tan. Z.
sin. 1

The other terms of the series, therefore, arise, from the spherical

form of the Earth, and from the supposition of concentric laminae

of the atmosphere. Let us estimate the value of the second term,

namely, of

m 1 o .

JT .
-

. tan. Z < sec. Z,
sin. l" a

when Z = 80.

Let $, the height of an uniform atmosphere of the same

density as at the Earth's surface, = 5.095 miles, a, the Earth's

radius,, = 3979.

m (the ratio of the sines of incidence and refraction, the baro-

meter being =29.6, and the thermometer = 50) = 1.0002803 ;

)
then, since - = .00128, nearly,

a

E
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we have

*^_HJ
.
^ tan. Z . sec.

2 Z = 13".92, nearly,
sin. 1 a

In computing then the refraction, on the supposition of the

Earth being a plane, we fall, at 80 zenith distance, into an error

of about 14", the first term of the refraction being 5
7

27".9-

At 45, when tan. = 1, the first term, namely,

and the second.
Tl

.
- tan. Z sec.

2 Z = 0".148.
sin. 1 a

Hence the mean refraction (barometer = 29.6 inches, and

thermometer = 50) is equal to
v i

57
//

.817 - 0".148 = 57".67, nearly.

At distances from the zenith less than 45, the second term

will bear a still less proportion to the first term : so that, we

may safely conclude, for all zenith distances less than 45, the

refraction will vary nearly as the tangent of the zenith distance

and its mean quantity will be expounded by the term

Tf
. tan. Z, equal to 57".82 . tan. Z.

sin. 1

vn 1

In determining the value of the coefficient : 77 , no refer-
sm. 1

ence has been made to astronomical refractions. The value o

m was assumed equal to 1 .0002803, which value was taken from

certain direct experiments on the refractive power of air. We
shall, however, see that the observations of circumpolar star

*
Log. .0002803 = 6.4476251

log. tan. 80
'

'.;.''.''. :.
''.'".;

. ..=10.7536812
2 log. sec. 80 .v/.. ;

. =21.5206596

log. .00128 = 7.1072100
arithmetical complement of log. sin. 1" = 5.3144251

41.1436010

tak away 40 and 1,143601= log. 13.919.
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will enable us to compute the coefficient jj , and also the
sin. 1

coefficients of other terms, supposing the refraction to be repre-
sented by

A . tan. Z + B . tan.
3 Z + C tan.

5 Z + &c.

We will now briefly describe the methods by which Tycho
Brah6 and Bradley determined, astronomically, the quantities of

refraction.

Let H denote the latitude of the Observatory,

/ the obliquity of the ecliptic,

S the polar distance of a circumpolar star,

Z, Z' its two apparent meridional zenith distances,

S the Sun's apparent summer solstitial zenith distance,

S 1

, his winter;

if
p, p', r, r

1

, be the quantities of refraction due, respectively, to

the last apparent distances, then (see pp. 129, 140, 145, &c.)

H - I = S + r, X^?
H + I = S' + r',

180-2H= Z + p + Z' + p',

adding these three equations together, we have

180 = S + Sf + Z + Z' + r + r' + p + p'.

If the refraction varied as the tangent of the zenith distance,

or (see p. 217,) could adequately be expressed by .A. tan. Z,

the first term of the series, we should have, by substituting in the

preceding equation,

180 =
S + S' + Z + Z'+ A (tan. S + tan. S' + tan. Z + tan. Z\

from which equation, A would immediately become known, since

S, S', &c. are known from observations.

But the first term, A tan. Z, of the formula of refraction will

not represent the refraction with sufficient exactness when the

observed star is far from the zenith,
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The Sun, for instance, at the winter solstice, if Greenwich'

be the place of observation, will be distant from the zenith

by 51 28' 39".5 + 23 2?' 50", or nearly by 75. At such a

distance, in order to represent the refraction with sufficient exact-

ness, we must take account, at least, of the second term of the

formula. If B. tan.
3 Z represent that second term, the preceding

equation of p. 209, 1. 24, will be augmented by

B (tan.
3 S+ tan.

3 S' + tan.
3 Z + tan.3 '),

in which case, if we had observations of only one circumpolar
star (the pole star, for instance,) we should have one equation

involving two indeterminate quantities A and B.

We cannot, therefore, by the preceding method, and with the aid

of only one circumpolar star, determine the formula of refraction,

if we suppose it to consist of two terms. If we compute B from

the formula of p. 216, supposing m to be known, by direct ex-

periments on the refractive power of air, it will be equal to

0".073, nearly.

Since

A
180 - (S+S'+ Z+Z') - B(tan.

3 S + tan.
3
S'-ftan.

3 Z + tan.
3 Z1

}

tan. S + tan. S' + tan. Z -f- tan Z'

if we attribute to B certain small values, such as 0".05, 0".1, &c.

we may deduce, from the above expression, corresponding values

of A. But, with these changes in the values of A and B, the

latitude will also vary : for (see p. 219.)

2//= 180 -
[Z + Z'+A (tan. Z + tan. Z1

) + (tan.
3 Z+ tan.

3
')] j

consequently,

2 dH= dA (tan. +tan. ')
- dB (tan.

3 Z + tan.3 Z').

From such expressions, and from Bradley's Observations

(observations determining the values of Z, Z
1

, S, S') M. Delambre

has formed a small Table exhibiting the alterations which will take

place in the resulting values of the latitude, from the differences

of values assigned to the coefficient of the principal term of the

formula of refraction. This Table is subjoined.
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B.
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zenith distances, one less, the other greater than the original one,

S

MM'

he was able to -compute at what time between the two latter days

the Sun, could it have been observed on the meridian, would

have had the same zenith distance as at the first observation in

March. By observing also the difference .of transits between the

Sun and a star, Bradley was enabled to compute the arc compre-
hended between e and b (supposing those to be the positions of

the Sun when he was at equal distances from the zenith) : when
am then became 180, the Sun was in the equator : and by com-

puting (see pp. 149, &c.) the changes of zenith distance propor-
tional to the changes of right ascension, the illustrious Astro-

nomer, of whom we are speaking, was enabled to compute the

Sun's zenith distance when he was in the equator ; or, those two

equal zenith distances which were distant from each other by twelve

hours of right ascension. Now these observed zenith distances

were less than the true, by reason of refraction. Let S repre-
sent the zenith distance, and r its refraction, then the true zenith

distance is

Or |
-

O "| I

and S, according to Bradley, was 51 2?' 28"*.

The half sum of the observed zenith distances of Polaris, above

and below the pole, was found t equal to

38 30' 35".

* This result was the mean of several observations in 1746 and 1747.

f The mean apparent zenith distance of the pole was obtained by a

multitude of observations, of the pole star above and below the pole, made

between 1750 and 1752, and reduced by being corrected for Precession,

Aberration, and Nutation, lo January 175 J, Old Stile, (see Bradley *s

Observations, p. .0.)
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This, if there were no refraction (r') would be the value of ZP
(see fig. p. 7.) the co-latitude ;

the other value

51 27' 28",

ought, were there no refraction, to be the latitude, or the value of

the arc ZE : their sum

89 58' 3",

is less than 90, by l' 57" ;
which expresses the sum of the

equatoreal and polar refractions. Now, as before, (see p. 218,)

if the refraction varied as the tangent of the zenith distance, we
should have

r = A. tan. 51 27' 28",

/= A. tan. 38 30 35,

and, adding the equations together,

l' 57" (
= r + r') = A (tan. 51 27' 28" + tan. 38 30' 35").

Hence, since tan. 51 27' 28" = 1.2553, nearly,

and tan. 38 30 35 = .7956

2.0509

we have

A = -^ = 57".045,
2.0509

and accordingly,

the equatoreal refraction = 5?".045 X 1.2553 = 7l".6l,

the polar refraction. . . = 57
/;

.045 X .7956= 45".39.

Hence, the apparent zenith distance of the equator being

(see 1. 3,)

51 27' 28"

and the refraction 1 11.6

51 28 39.6 is the latitude,

and 57".045 is the mean refraction at the zenith distance of 45.

But these results depend, as it is clear, on the refraction

being represented, with sufficient exactness, by the term



57".045 tan. Z, at the apparent zenith distances of 51 27' 28",

and 38 30' 35" ; or, which amounts to the same thing, on the

smallness of the coefficient (B) of the second term of the fol-

lowing formula,

refraction = A tan. Z + B . tan.
3
Z.

Suppose B to equal (/'.I, then the sum of the terms in-

volving tan.
3 51 27' 28", and tan.

3 38 30' 35", (which terms are

neglected in Bradley 's Computation) will be 0".2482, and

(see p. 223,) A will equal to 57"-l67, and the latitude will equal

to

57". 167 X tan. 51 27' 28" 0". 1 . tan.
8
51 27' 28",

that is to

51 28' 39".56.

The quantity l' 57" is the sum of the equatoreal and polar
refractions ;

the exactness of which depends, on the accuracy of

the observations of the zenith distances of the Sun and of the

pole star. If we suppose an error of l" in each observation, the

sum of the refractions may remain the same, or be 1 1 7" 2".

But (see p. 223,),

117" 2" _ 117" l"

2.0509
"

2.0509
~~

1.0254

= 57
7/

.045 0".975

= 58".02, or 56".07,

in the first of which cases the resulting value of the latitude will

be greater than 51 28' 39".5, and, in the second, less.

When we suppose, in the preceding method, the refraction

to be represented by the single term,

57".045 tan. Z,
+

we determine the refractions for all zenith distances that are less

than the latitude of Greenwich. But how shall the refraction

be determined when the zenith distances are greater than that

latitude ? The above term, it is clear, will not apply to all

zenith distances : for it fails when Z= 90. Bradley determined
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the quantities of refraction, at zenith distances greater than the

latitude of his Observatory, by means of circumpolar stars. An
instance will best illustrate his method :

Zenith Distance ofa Cassiopeae above the pole= 4 23' 20"

refraction= 57".04 x tan. 4 23' 20". =0 4.5

true zenith distance 4 23 24.5

but co-latitude 38 31 39.5

north polar distance 34 8 15

zenith distance below the pole .72 39 54.5

observed zenith distance 72 36 55.5

refraction at last zenith distance 2 59

By these means, the quantity of refraction, at the zenith

distance of 72 36' 55", was determined : but the term

57".045 x tan. 72 36' 55",

gives a larger quantity. That single term, therefore, does not

represent the law of refraction at zenith distances equal to or

greater than 72 36' 55". If we assume a formula of two terms

to represent the refraction, we have from the above observations,

2' 59" = 57".045 . tan. 72 36' 55" - jB.tan.3 72 36' 55",

and if from such equation we determine JB, we determine it (see

p. 220,) on an assumed value of the latitude, the errors in the

determination of which may exceed B.

But, if we assume the refraction, to be represented by a for-

mula of two terms with indeterminate coefficients, and suppose
the latitude also to be undetermined, we must have, at least, the

observations of three circumpolar stars to furnish us with three

equations to determine the three above-mentioned unknown

quantities : or, if we suppose that a formula of three terms will

represent, more correctly, the refraction, there will be need of four

circumpolar stars. In the second Volume of the Systeme du

Base Metrique, &c. we have an instance of the determination of

the latitude and refraction, by assuming the latter to be repre-

sented by the following empirical formula,

refraction = A tan. Z + B tan.
3 Z -f C . tan.

6
Z.

FF
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The four circumpolar stars,, were Polaris, ft Ursae minoris,

a Draconis, and Ursae majoris, and the place of observation

was Mountjoy. Now, see p. 219, if H be the latitude, Z, Z
1

the least and greatest zenith distances of a circumpolar star, p,

p the refractions corresponding to Z, Z ,

180 2H= Z 4- Z 1 + p + /'.

Now, with the pole star, Z + Z' = 97 14' 2l".47

with ft Ursse minoris = 97 13 58 . 17

with a Draconis = 97 12 58 .6

with Ursae majoris = 97 9 31.65

computing, therefore, p + p ', from the formula,

A .(tan. Z+ tan. Z') +5 (tan.
3 Z+ tan.

3
Z'}+ C. (tan.

5 + tan.
5
2')

we obtain four values of 180 QH, or four equations involving

four indeterminate quantities, namely, H, A3 ~By C.

The four equations are

180 2 H
= 97 14' 2l".47 + 2.27634 A - 2.984405 + 3.9740 C
= 97 13 58.17 + 2.67976 A - 8.470445 + 33.31284 C
=97 12 58.6 + 3.75994^ -36.50251 B + 400.06998 C
= 97 9 31 .65 + 7.86330^4 - 439-269635 -f- 25581.807 C.

The resulting values of the coefficients are

A = 61". 1766
B = 0".2648

C = 0".002485.

Substitute these values in the four preceding equations, and those

equations become

180 - QH = 97 !6
/

39
//

.95

180 - 2 fif = 97 16 39.95

180 - 2# = 97 16 39.95
180 - 2# = 97 16 39.94.

Taking, then, the mean,

180 - 2H = 97 16' 39".9475,
and H = 41 21 40.02625.
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The formula of refraction is

r= 6l".1766 tan. Z - 0".2648 tan.3 Z + 0".002485 tan.
5
Z,

and making Z = 45,

r = 60".914285, instead of 57".045,

which it would be, nearly, according to Bradley.

In the above instance, we have, as M. Delambre justly

observes, a formula of refraction derived (with regard to the

numerical values of its coefficients) entirely from observations,

and satisfying eight observed zenith distances. The formula,

however, gives a mean refraction at 45 much greater than

Bradley's formula gives.

If we were to correct the apparent zenith distance of the

pole (rather the half sum of the apparent zenith distances of the

pole star above and below the pole) found by Bradley' s method

(see p. 223,) by the preceding formula, we should have

true co-latitude=38 30' 35"+6l".176 x tan. 38 30' 35"

- .26485 X tan. 3 38 3C/35"

+ &c.

= 38 31' 23".5, nearly,

and the latitude would = 51 28
7

36",5, a quantity less, by
three seconds, than the latitude found by Bradley's formula, in

which A (the coefficient) is 57".

We have already seen a similar instance (p. 221.). If we
increase the value of the coefficient (A) of the first term of the

formula of refraction, or increase the mean refraction at 45 of

zenith distance, we diminish the resulting value of the latitude.

In the preceding instance of observations made at Mountjoy, the

latitude of which is (see p. 226,) about 41 2 1
7

40", we diminish the

latitude as much as we increase A, and vice versa. And of this

circumstance (which is worthy of attention in the theory of re-

fractions) M. Delambre furnishes us with an additional confirma-

tion. The true, or actual, refraction is reduced to the mean, on the

score of temperature, (we shall soon more fully explain this part
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- 350 + 1

of the subject) by multiplying the former by , in Bradley
'

Theory, t denoting the number of degrees in Fahrenheit's scale

above zero. By this multiplier for temperature, the observations

made at Mountjoy were reduced, and the formula of p. 227,

obtained. But Astronomers are not all agreed upon the cor-

rectness of the above multiplier. The French use a different

one : according to them, the correcting multiplier is more

450 -f- t

nearly
-- If the actual observations then are reduced by

500

this last fraction, or by any other not the same as Bradley's, the

resulting coefficients of the formula of refraction will be dif-

ferent. M. Delambre informs us that he did reduce the observa-

tions by Mayer's Tables, and the formula of refraction became

r = 63".302 tan. Z-0".34396 tan.
3
Z+0".0033923 tan.

5
Z,

very different from the former one of p. 227, but, apparently,

equally well adapted to the observed zenith distances.

In this case, however, the latitude was diminished by 2", that

is, nearly, by the difference between 63".302, and 6l".176.

In deducing the coefficients of the formula of refraction,' and

the latitude, from the eight observed zenith distances of four cir-

cumpolar stars, the formula was made to consist of three

terms. If a fourth term, D tan.
7
Z, had been introduced, the

problem could not have been resolved : since there would have

been five unknown quantities, (A9 JB, C, D and H) and but four

equations. But, if we assume A to be of some value between

57" and 6l", we may, from equations, similar to those

of p. 226, and resulting from the observations, deduce the

latitude and the coefficients of the second, third, and fourth

terms. But, in each assumption, that will happen, which has

before been noted to happen. As A is assumed of greater value

H, the latitudej will, and by equal degrees, result of less. Thus,

Values of A Corresponding Values of H.

57". 13............ 41 21' 44". 1

58 .............. 41 21 43 . <2

.59 .............. 41 21 42 . 12

60 . .41 21 41 .2.
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The inference drawn, by M. Delambre, from this and other

instances, is, that the construction q/ a Table of Refractions by
observations is a truly indeterminate problem.

In determining the polar and equatoreal refractions from the

sum of refractions, Bradley assumed the refraction to vary as the

tangent of the zenith distance. But, he afterwards expressed
the law of its variation, more correctly, by the formula,

r = 57". tan. (Z 3r).

We are ignorant of the means by which he arrived at this

formula : whether they were empirical or theoretical. But the

formula is compact and elegant, and not difficult of application.

It gives the mean refraction at 45 of zenith distance equal to

57" . tan. (45 3r).

Suppose, in order to approximate to the value., that, at first,

Sr is neglected : then

r = 51" tan. 45 = 57" ;

.*. r at 45 = 57" tan. (45 2' 5l") = 56".9, nearly.

Again, and similarly, in order to find the mean refractions at

60 of zenith distance,

1
st

, r = 51" . tan. 60 = 5l" X 1.732 = l' 3S".7 ;

/. 3r = 4' 56". 1,

and secondly, (r) = 57" . tan. 59 55' 3".9 = l' 38".4.

Again, and similarly, if the altitudes were 27 39' 17", 62 13' 6",

First, Zenith distance = 62 20' 43".

r=57" . tan. 62 20' 43"==57" x 1.908 = l' 48".75,

Sr= 5' 26".25 = 5' 26", nearly.

i Secondly, (r) = 57" . tan. 62 15' 17" = l' 48".3,

Again, when zenith distance = 27 46' 54".

First, r = 57" . tan. 27 46' 54" = 30", nearly,

3 r = l' 30".

Secondly, (r) = 57" ! tan. 27 4o 24" = 29".99-
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By these means, that is, either by Bradley's formula or by

Brinkley's, or by that of the French mathematicians, the mean re-

fraction may be deduced. The results will not agree : accord-

ing to Bradley, the mean refraction at 45 = 56".9

according to the French = 57 . 5

*
according to Brinkley = 57-72.

But the true or actual refraction differs from the mean, if

the temperature and weight of the air are not the same, when

the observation is made, as they are supposed to be in the mean

state of the air. Such mean state is denoted or represented by

fifty degrees of Fahrenheit, and 29.60 inches of the common
barometer. If the temperature be at its mean state, but the air

less dense than at its mean state, or the height of the barometer

be less than 29-6, if it be, for instance, 29-35, then the actual

refraction is less than the mean, and in order to reduce it to the

latter state we must multiply the former by ; and, generally,
29.35

if h be the height of the barometer, by j
. If the barometer

stand at its mean height, but the temperature be greater or less

than 50, the actual refraction will be less or greater than the mean,
and the correction, by which the former is to be reduced to the

350+ 1

latter, is had by multiplying the former by , according to

Bradley, and by according to the French. If, there-
oUO

fore, (which will almost always happen) neither the barometer

nor thermometer be at their mean states,

29.6 350 -f-
the actual refraction x x .= mean refraction,

n 400

* The latitudes of Observatories determined from observations of cir-

cumpolar stars will vary according to the Tables of refractions by which

the observations are reduced. Thus,

Latitude of Dublin . . .

Latitude of Greenwich,

By French Tables.

53 23' 13".5

51 28 38

Bradley's.

53<> 23' 14".2

51 528 39.5
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and, if, according to Bradley, the mean refraction (r) be denoted

by
56".9 X tan. (Z 3r),

we have

the actual refraction (r)
=

g^ X x 56".9 . tan. (Z 3 r),

or, if we use the French corrections, and take one of M. De-

lambre's formulae,

500 h (60". tan. Z 0".14207 tan.
3

Z)Ji C60".t s

29.6 1-0".450 + 1 29.6 I 0".0045053 tan.
5 Z+ &c. J

We must now examine the grounds on which the preceding

corrections have been made.

With regard to the first correction, that of the barometer, it

is founded on this assumption (which is confirmed, very nearly,

by experiment) of the refraction increasing and diminishing, and

proportionally, with the increased and diminished densities of the

air. Of which latter, the greater and less heights of the baro-

meter are the indications and measures. Hence, if dr, dh, re-

present the corresponding variations of the refraction, and of the

height of the column of mercury in the barometer,

h + dh s
, dh^

r + dr=rx - - = r x
(l
+ -) .

The other correction, that for the thermometer, is obtained

on principles less simple and sure. The temperature increasing

increases the volume of air, which varies inversely as the density,

and the greater the density, the greater the refraction. What is

required to be known then, is, the relation between the increases

of temperature, and of the volume of air : or, in a more scientific

form, how much will the volume of air be increased by an increase

of 1 of temperature ? Let m be an indeterminate coefficient : then

if the volume of air at the mean temperature be V, it may be re-

presented by V X (1 -h m X 1), when the thermometer indicates

an increase of 1 of temperature, and TX (1+mk) when k is

the increase of temperature : if r be the refraction in the first

case, r' in the second, we have

r'
t

' V I

r
''

V.(\ + mk)
~

l+rnk"'
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and in order to determine w, we must have recourse to experi-

ment.

Now in order to determine m from actual observations, we
must get rid of r, and use another equation similar to the former :

let it be

r" = m X f '
.

in which the same star is observed and at the same place : for

then, we shall have m by the common process of elimination.

Thus, by the first and second equations,

r = /(I + m X /c) = r"(l + m x f) ;

r"
m =

in which equation, r", r , k, /, are known from actual obser-

vation.

To determine m, with correctness, select stars having low

altitudes, and compare those altitudes observed under the cir-

cumstances of great differences of temperature. M. Delambre

has selected such altitudes from Lemonnier's Histoire Celeste,

p. 32 : in which

r
1 = 10' 40", A; = 54,

r"= Q' 20", r = - 4. 5;

80"
/. m =- = .002415, nearly.

33120

Now 50 is the temperature at which mean refraction is held

to take place. The multiplier, therefore, for reducing the true

or actual refraction to the mean is

1 +.002415 x(f 50), or, .87924 + .002415*,

879240 + 2415* 364+ *
'

' whlch nearly equals to
414

>
a

not differing much from Bradley's (see p. 230,) which is-
40O
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If we examine the preceding method, it will be found liable

to considerable uncertainty. In order to procure large differ-

ences of refraction, those stars were, selected which are at con-

siderable distances from the zenith. Now, of such stars the re-

fractions are very irregular : by which it is to be understood, that

the refractions are not always the same, whilst those circum-

stances, that are supposed to cause refraction, do remain the

same. As a proof too of the uncertainty of the method, there

are considerable differences of opinion respecting the value of m.

We subjoin its values according to different authors.

Value of m.

Bradley...................002444

Lemonnier..................002415

Mayer. .. ................. .002012

Lacaille...................001644

Bonne....................001777

Laplace ..................002186

The uncertainty respecting the correction of refraction for

difference of temperature, is rather an embarrassing circumstance,

when minute inequalities are to be detected, or when a question
arises concerning the exact mean places of stars*.

* In the preceding instance the correction for temperature was astro-

nomically determined. But it has been determined, independently of the

observations of stars, and by direct experiments. Thus, a column of air

called J ,
at 32 of Fahrenheit, becomes 1.375, at 212. If the expansion

be held to be equable, at a temperature t, the column will be equal to

1 + - x (*
-

32), or 1 + ,002083 x (t
-

32);
1 oU

.'. at 50 (when mean refraction is held to happen) it will equal to 1.0375,

nearly. But the refraction, if it vary as the density, will vary inversely

as the volume of the same column of air : hence,

the true refraction equals the mean x
933343 + 2Q83f

'

which latter fraction is nearly equal to- (see Irish Trans. 1815,

Dr. Brinkley.)

GG
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We will take an instance to elucidate the preceding state-

ment. Let the observed star be Procyon and its zenith distance

(Greenwich being the place of observation) 45 46' 53", and

suppose, at the time of observation, Fahrenheit's Thermometer

to be 70.

The mean refraction by Bradley 's formula, [56".9 tan. (Z- 3r)]

equals 58".44 : and if we use Bradley's Correction for Tem-

perature (see p. 230,) we have the actual refraction equal to

58^44 X
4Q = 58".44X = 5o".66, nearly.350 -f 70 42

If we use the French Correction, then the actual refraction is

equal to

58".44 x
50 = 58".44 x = 56".2, nearly.450 + 70 104

The true zenith distance then of Procyon by Bradley's Cor-

rection would be 45 47' 48".66

and by the French Tables k 45 47 49-2

so that, under the circumstances of the observation, (the material

circumstance being the height of the thermometer) there would be

a difference in the north polar distance of the star of 0".54.

We have taken the temperature at 70 which is not enormous
in the month of July *, about the hour of noon, when Procyon
would pass the meridian. Suppose, now_, the same star to be

observed, half a year after, in January, when it would pass the

meridian about midnight, and that the thermometer is at 30 : in

400
this case the true refraction, by Bradley = 58".44 X = 6l".5,

500
by the French. =58".44 X = 6o".87.

* In July the Sun's right ascension is from 7h to 8h and Procyon's

right ascension being about 7 h 30m ,
the star passes the meridian about

noon-tide. In January the Sun's right ascension is from 19h to 20h
,
and

consequently, Procyon will be on the meridian about midnight.
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^v

In this case, the contrary to what happened in the former

takes place. The correction for reducing the apparent zenith dis- i

tance to the true is larger by Bradley 's than by the French Tables.

If, therefore, the star's place were deduced by observations like

the preceding, there would be uncertainty to the amount, in each

case, of more than half a second respecting the star's mean polar C i*

distance*. &*$&$ t

If we had used the French mean refraction at 45, instead of tf ^ *;"

the English, the mean refraction for Procyon instead of 58".44 t *~ 0-

would have been 59"4. * ft, JJ
It appears, from what has preceded, that there is, at present,*-

^ Q \

considerable doubt respecting that correction of refraction, which-f JJ j

is due to a variation of temperature. With regard to the cor- '<.

rection due to an increased or diminished density of the air, as fi

indicated by the height of the mercury in the barometer, there is,

amongst Astronomers, no difference of opinion. If h be the J
height of the barometer, the true refraction is less or greater than

the mean refraction (which is held to take place when h is 29.6

inches) as h is less or greater than 29.6 inchest, and in that pro-

portion ;
the principle is, the variation of the refraction as the

density of the air.

The states of the barometer and thermometer must be noted

down at the time of each observation. But, Astronomers hold

it needless to consult the hygrometer. According to M. Laplace,

Gay Lussac, and Biot, refraction is not influenced by the relative

moisture of the atmosphere.

* This illustration is taken from Dr. Brinkley's Paper on Parallax

(Irish Trans. 1815), in which he shews the effect of the uncertainty of the

correction for temperature on the index error of the mural circle.

f A very small correction must be applied to the height of the baro-

meter when the temperature is other than 50 its mean state. If the tem-

perature be above 50, part of the height of the mercury in the barometer

is owing to the expansion of the mercury : that part, therefore, must be

subducted. If the expansion be .0001 inch for one degree of Fahrenheit,

for 50 degrees, it will be( 50) x ,0001, hence the correcting frac-

tion (see p. 233.) for the barometer, instead of being ,. ,
will be

'
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There remains, however, much to be done on the subject of

refraction. We may, amongst other guesses, conjecture that,

from some defect in its theory, arises the difference in the values

of the obliquity of the ecliptic, as they result from observations oi

the winter and summer solstices. Maskelyne, with Bradley's

refractions, made the obliquity from the winter, less by 8" than

from the summer solstice. Delambre makes it less by 4/;

The formula of refraction may be so altered, as to make the two

values of the obliquity to agree. But, then, the altered formula,

applied to the observations of circumpolar stars, would produce
anomalous results

;
it would, for instance, produce different

values of the co-latitude.

There are other methods, than those already mentioned, for

determining the quantities of refraction. The method of the

Abb6 Lacaille is ingenious and founded on good principles. It

does not happen to every Astronomer to be able to practise a

similar method. Lacaille observed certain stars at Paris, and

the same stars at the Cape of Good Hope, and from such obser-

vations deduced the quantities of refraction corresponding to the

different altitudes of the same stars at the respective places of

observation. In order to illustrate his method, let Z be the
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zenith of the Paris Observatory, Z' that of the Cape, and let the

true zenith distances of a star S be esteemed to be ZAS, Z'BS,

respectively, then

ZAS = ACS + CSA
Z'BS BCS + CSB

.'. ZAS + ZBS = ACB + BSA = ACB,

if the angle of parallax (see p. 42,) BSA be neglected.

If then, Z, Z' be the apparent or observed zenith distances of

a star, r, r', the corresponding refractions, we have

ACB = Z + Z 1 + r + /:

A second star, the zenith distances of which are V, V, and the

refractions p, p',
will give a similar equation, viz.

ACB =V+ V + P + p',

and, a third star will give a third similar equation, a fourth star, a

fourth equation, and so on : if we suppose the refraction to vary

as the zenith distance (to equal A tan. Z\ we have, by equating
the two first equations,

A (tan. Z + tan. Z 1- tan. V - tan. V 1

}
= V+ V - Z - 2',

from which equation, Z, Z', F, F', the observed zenith distances,

being known, J. may be determined, and thence the angle ACB.

But if instead of r= A tan. , which imperfectly expresses

the law of refraction, we assume ^
r = A tan. Z + B . tan.

3
,

we must have three values of ACB t to determine A and B, and

ACB: and if we add to the last formula a third term C tan.
5

Z,
we must, in order to deduce A, B, C, and ACB have four

values of ACB9 or the zenith distances of four stars observed both

at the Cape of Good Hope, and at Paris.

According to the results of Lacaille obtained by the pre-

ceding method, the mean refraction at 45 is much greater than

56".9, which is Bradley's value : the coefficient A would equal 66".

The preceding method of Lacaille is one that cannot often

be resorted to. We will explain another method for determining
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the refraction which does not require the observer to change the

place of his observations, but which will admit of his changing it.

Let M be the star's apparent place, raised, by refraction,

above m its true place.

Suppose, by previous observations, to be known,

PZ, the co-latitude = 90 - H
Pm, the star's north polar distance. . = $

and, by immediate observations,

ZM, the star's zenith distance = Zy

ZPm, the hour angle = P,

then (see Trigonometry, p. 13Q>)

cos. (-f-7')(= cos. Zm) cos. P. cos. H . sin. $+ sin. H.cos. S,

from which formula, Z -f r becomes known, and thence

r = (Z + r)
- Z.

This is, what may be called, the bare scientific process, which,

however, in practice, becomes invested with circumstances that

require great attention. For instance, the observations of the

zenith distances may be made at a place, that is not the scite of

an Observatory, and the latitude of which may be uncertain to

the amount of two or three seconds. Indeed, if we are un-

certain about the quantities of refraction due to the zenith dis-

tances of stars, we must be uncertain with respect to the co-

latitude, which (see p. 129,) is half the sum of the greatest and
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least zenith distances of a circumpolar star. Let p, p
1

, be the

apparent zenith distances of such a star, p, p, the corresponding

refractions, then

90 - H = (p+p' + p +
p'}',

but dH representing the variation of the latitude from refraction,

/. dH = \ (p + p').

Hence, the error in determining the latitude, is half the sum
of the refractions due to the two zenith distances of the circum-

polar star used in determining it. If Polaris be that circum-

polar star, -j (p 4- p
1

)
=

p, nearly. In order then to determine

the error of the quantity of refraction resulting from the formula

of p. 238,, take its differential and substitute p instead of dH ;

if this be done,

dr . sin.(-f-r) jo(cos. H.cos. 5 cos. P.sin. H.sin.S)

whence dr may be computed.

In this deduction $ has been supposed constant, or not

subject to error. But, if the process of p. 237, be viewed as

an original one, in which the observer (and Lacaille was so cir-

cumstanced, nearly,) had to determine not only the quantities of

refraction, but the latitude of his Observatory and the declinations

of his stars, it is plain that the resulting values of the refraction

would be erroneous, from the errors of the latter quantities.

Now,

the apparent polar distance, or, $ + dS = ~(p p
f

)

the real polar distance, or S r: \ (p p
1 + p p')-,

.: di = i(p'-p),

which, if Polaris be the circumpolar star, is a very small quan-

tity.

In the above method, then, the refraction, an unknown

quantity, is to be determined from quantities which themselves

involve the refraction : a kind of dilemma, in which the Astro-

nomer repeatedly finds himself, but which the same kind of
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artifice, almost always, enables him to loose himself from. He
first neglects the indeterminate quantity where it appears in its in-

volved state and finds an approximate value. This first value is

then substituted, in every part of the original equation, and a

second value is obtained, which second value serves, as a stepping

stone, to ascend to a value nearer to the truth. The third, fourth,

&c. values (although it is scarcely ever necessary to proceed so

far) may be either taken as the true values, or may be made alike

subservient to truer values. Thus, in the instance before us,

the quantity of refraction is to be computed from the formula of

p. 238, the values of H and $ being those which result from

observation. The resulting value of the refraction will then

serve to correct H and 5, and, their corrected values being sub-

stituted in the formula, a second value of the refraction is to be

deduced, with which H and 3 are again to be corrected, &c. &c.

In the preceding method we must use a clock to determine

the hour angle P ; but there is an instrument, called an Altitude

and Azimuth Instrument, which will enable us to determine the

refraction without the aid of a clock. Now this instrument

determines, at once, both the altitude and azimuth of the star :

the latter truly, the former as it is made greater by refraction.

If we use the former figure and symbols, and make, besides, A
to represent the azimuth, we have

sin. PmZ (sin. _B) = sin. A . .

'

. :

sin. o

thence B becomes known.

Again, by Naper's Analogies, (Trig. p. 169,)

Zm /% -f- rx j
, cos.

tan. = tan. ( )
= tan. ? (flOP- H+i)

EXAMPLE.

Latitude of place of observation...... 51 3l' 0"

Star's observed altitude ............ 18 13 5

................. azimuth. ..... 74 53 30

. IS. P. D. . 66 32*
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B found.

sin. 74 53' 30" = 9*9847229

cos. 51 31 = 97939907

19.7787136

sin. 66 32 0. ... 9-9625076

9.8162060 = log. sin. 40 54' 56" = B.

Again,

(90 H+) = 52 30' 30" tan. = 10.1151503

(4+ B). . . . = 57 54 13 cos. = 9.7253768

(/4-JB), .. .= 15 59 17. .arith. comp. cos. =10.0193759

29.8599030

Rejecting 20, we have

log. tan. = 9.8599030,

Z + r
thence = 35 54' 53".5

Z + r = 71 49 47

but Z = 71 46 55

therefore, r, the refraction = 2 52

In the preceding instance the zenith distance is about 72; up
to that distance, and beyond it by about ten degrees, the formula?

and their deduced Tables, satisfy, (to borrow a French mode of

expression) the observations. That is, the half sum of the greatest

and least corrected zenith distances of a circumpolar star, is, very

nearly, the same quantity, whether the greatest zenith distance of

the star, be forty or eighty degrees. If we go beyond eighty, the

refractions are irregular.

Dr. Brinkley has shewn those of Capella
* to be so. Some

* The co-latitude of the Dublin Observatory being 36 36' 46".7,

and the north polar distance of Capella being greater than 44, the

greatest zenith of that star exceeds 80.
n 11



Tables (the French, for instance,) represent the refractions neai

to the horizon, more nearly than others : but, hitherto, there has

been invented no formula that restricts the irregularity of re-

fraction that begins to take place about 80 of zenith distance

Laplace's formula does not extend to distances beyond 74. At
82 30', the formulae of Bradley and Simpson are erroneous, to

the amount of 8".

But, if we advert to the results which M. Delambre has

given us of observations of stars near the horizon, it is hopeless
to expect to reduce all refractions under one law. Those bor-

dering on ninety degrees of zenith distance seem freed from al

restraint. They disagree amongst themselves, and are, in this

way, irregular ; namely, they are not the same, when other

circumstances, the altitude, and the heights of the barometer and

thermometer are the same. It is certain, then, that the theory of

refraction is imperfect : not solely because it does not restrict all

its cases within the same law, but because it has no tests of, or

means of measuring certain circumstances, on which, at great

zenith distances, the refraction must depend. This is a perplexity,

from which mathematical skill alone can never extricate us.

If the theory, however, be imperfect, the results of its for-

mulae, or its Tables, are easy of application ;
and we now subjoin

one or two specimens of those Tables and instances of their

uses. The specimens and the instances are both taken from the

Volumes of the Greenwich Observations.

From the Table I. of mean refractions, computed to every

ten minutes of zenith distance,

Zenith Distance.
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From TABLE II.

Apparent Zen. Dist.
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Extractsfrom the Greenwich Observations.

June,
1812.
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distance by the mean refraction. It is the true refraction that

must be added to the observed zenith distance : and that refraction

must be computed by Tables II. and III.

The Rule is : Take from Table 17, the logarithm (A) cor-

responding to the apparent zenith distance, and add. it to a loga-
rithm (_B) of Table III, answering to the proposed heights of the

barometer and thermometer. The sum (rejecting 10) is the loga-
rithm of the true refraction.

It will be necessary in this, as in the former, computation,
to deduce, by proportion, logarithms intermediate to those ex-

pressed in the Tables.

To compute the refraction on the 14th.

By Table II, diff. for l'. = 57.2

.\ for 4. . < . . 228.S

30" 28.6

4.7 4.5

4 34.7. 261.9

but logarithm for 77 20' 0" is 2.39690 ;

.'. logarithm for 77 24' 34".7 is 2.39951.9 U);

next,

log. barometer 29.7, thermometer 57. 9-99394

thermometer 60 9.99075

2)19.98469

999234.5

correction for .01 of barometer 14

9-99248,5 (B)

2.39951.9 (A)

(log. of 246.6) 2.39200.4

Hence the true refraction is 4' 6".6

and since the apparent zenith distance is . .77 24 34 . 7

the true zenith distance is. . . . 77 28 41 .3
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Again, in order to compute the refraction on the J6th r

log. barometer 29.6, thermometer 54 . . . .
= 9-99568

thermometer 57 . . . .
= 9-99247

'2)19.98815

9.99407.5

(A will be a little less than in the former instance) 2.39950 (A}

(log. of 247.5) : 2.39357-5

Hence the true refraction is .............. 4' 7".5

and since the apparent zenith distance is . . 77 24 33.9

the true zenith distance is ...... f . f 77 28 41 .4

In these two instances the mean of the two thermometers

has been taken to represent the temperature. In the next

instance (that of June 22,) we will compute the refraction from

the In thermometer.

From Table II, diff. for I
1

o"

/, for 4

r o" is
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In these three instances, the apparent zenith distances,

observed (see pp. 65, 66, &c.) by a mural quadrant, are expressed.

In the next instance we must deduce the zenith distance, the

north polar distance of the Sun's upper limb being observed by
the mural circle, (see pp. 1 10, &c.)

North polar distance, Sun's upper limb = 85 34' 28". 1

(pp. 1 12, &c.) index error +2.5

85 34 30. 6

co-latitude.. .38 31 21.5

apparent zenith distance Sun's upper limb 47 3 9-1

Computation for refraction,

From Table II, diff. for I
7

0" is 25.6

/. for 3 76.8

09 3 . 96

S 9 80.76

but log. for 47 0' 0" is 1.78533

/. for 47 3' 9" is 1.78613.76 (A).

But, from Table II,

log. barometer 29.9, thermometer 57, is 9-99685

correction for .05 72 ( B)

(log. of 60.75) 1.78360.76

If, therefore, we add this refraction ( = l' 0".75) to the

zenith distance of the Sun's upper limb, and add the Sun's semi-

diameter, we shall haVe the zenith distance of the Sun's centre.

Apparent zenith distance of the Sun's upper limb 47 3' 9"- 1

refraction 1 .75

Sun's semi-diameter 15 56.1

zenith distance of the Sun's centre 47 20 5.95

(see p. 209,) parallax
6.5

true zenith distance of the Sun's centre 47 19 59-45

and Irue altitude ;
. . : . 4<2 4O 0.55
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The explanation of the theory of refraction, the deduction of

its formula, the construction of Tables and their application, are

the main objects of the present Chapter. There is begun in it,

what will be continued, a series of investigations of those cor-

rections by which the star's apparent place may be reduced to its

mean place. The first in this series, the correction for refrac-

tion, is a correction for an inequality unlike, in its nature, to all

other inequalities. It can never, even during short intervals in

the same day, be presumed to be the same. It varies, every

hour, with the temperature, and requires the unceasing attention

of the observer to his thermometer and barometer.

But although what has been principally aimed at is, the

divesting of instrumental zenith distances of the errors of refrac-

tion, yet the principle, or the ascertained effects, of that ine-

quality may be applied (as to collateral objects) to the ex-

planation of certain ordinary phenomena. Such are the elliptical

forms of the orbs of the Sun and of the full Moon when near to

the horizon
;

or their then curtate vertical diameters. The

appearance of the Sun above the horizon, previously to the com-

puted time of its rising, &c.

The first phenomenon arises from the rapid variation of the

refraction when the observed body is near to the horizon. For

instance, the upper limb of the Sun in the horizon is elevated by

refraction, but the lower limb is much more than proportionally
elevated. Let

zenith distance of the Sun's upper limb be 90

if the refraction be ." 28 29

apparent zenith distance of the Sun's upper limb 89 31 31

Suppose the Sun's diameter to be 32,'
;

then, zenith distance of the Sun's lower limb is 90 32' 0"

but the refraction . , 32 46

.'. apparent zenith distance of the Sun's lower limb 89 59 14

subtract 89 31 31

Sun's apparent diameter 27 43
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The vertical diameter is, therefore, in this case, shortened

4
;

17" by the effect of refraction, whilst the horizontal diameter

s scarcely at all affected.

The upper and lower boundaries of the Sun's disk, in the

preceding case, will be nearly elliptical : for, conceive a vertical

circle to pass through the Sun contiguous to that which passes

through his centre. That part of the vertical circle, which is in-

tercepted between the Sun's horizontal diameter and either the

upper or lower boundary of his disk, is nearly parallel to the

rertical semi-diameter. It may, then, be conceived as an ordinate

of the boundary curve. It would have been, were there no refrac-

ion, an ordinate of a circle (the Sun's orb being circular). It is

ess than this latter ordinate in the same proportion, nearly, as

the curtate vertical semi-diameter of the Sun is less than his

horizontal semi-diameter : and the above is the property of an

ordinate to an ellipse.

The Sun's disk, or a star, may also appear above the horizon

when it is, in fact, or, astronomically, below it. For instance,

the star v, the course of the light of which is vwc, will be seen in

the direction cv. On like principles, it is possible to see both

the Sun and the Moon above the horizon at the time of a central

I I
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eclipse, For suppose, at such a conjuncture, the Sun to be just

above the horizon
;
the Moon, being diametrically opposite, must,

indeed, be beneath the horizon, but may be so little beneath, as, by

refraction, to appear above. This phenomenon is recorded to

have happened at Paris on July 19, 1750.

The next correction is due to an inequality called Aberration

It is difficult to prescribe the natural order of the inequalities, and,

perhaps, we have already departed from it, in not first treating o

Precession. In fact, if the historical were the natural order, we
have already done so. The latter inequality was known to th<

antients, and its quantity, not very exactly indeed, assigned

whereas, it was not until the time of Tycho Brahe am
Dominic Cassini that the effects of refraction on observations

were computed and allowed for. The researches of preceding
Astronomers did not extend beyond some speculations concerning
its cause.

The historical order (the order of their successive discoveries) of

the inequalities, is, Precession, Refraction, Aberration, Nutation.

As for the inequality of Parallax (we are now speaking of those

inequalities that affect the fixed stars) we are doubtful what place
we ought to assign it. One hundred and fifty years ago. Flam-

stead thought he had discovered it, whereas its existence is now
doubted of at Greenwich. It cannot, therefore, be even now said

to be discovered. For the historical place of a discovery must

be dated from the time at which it is, beyond controversy, esta-

blished, and not from that at which it may have been either vaguely

surmised, or erroneously affirmed, to exist. But, dismissing this

enquiry, we have no difficulty .in assigning a place to parallax in

a scientific arrangement. It will be immediately after aberration:

because, the formulae of the latter inequality, become, with a very

slight alteration, the formula? of parallax. We shall not, indeed,
use those formulae in correcting observations, because the

effects of parallax on the right ascensions and declinations of

stars, if any, are, certainly, very inconsiderable. It is necessary,

however, to be possessed of its appropriate formulae
;
to know,

in fact, the laws of its variation, that, should the comparison of

reduced observations present us any anomalies, we may be able

to ascertain whether, and to what degree, such anomalies are

attributable to parallax.
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According, then, to the plan of the present Treatise, parallax

will be treated of immediately after aberration
; Next, Precession,

4he Inequality of Precession, Nutation. The north polar distances

and right ascensions of stars, corrected for these inequalities

(which with refraction are,, at present, the only accredited inequa-

lities) become, or are to be held as, the mean north polar distances

and mean right ascensions. Should these mean quantities, com-

puted for two, or more, epochs, and then compared by being re-

duced to the same, or a common epoch, be found to differ, the

causes of the differences would become subjects of enquiry : and

till such causes are detected, might be designated by the title of

Proper Motions.

The formal propositions of a scientific Treatise have many
advantages, but are not exempt from this objection : namely, that

the Student is too suddenly carried into the middle of the subject,

and too abruptly introduced into a system. He finds himself, with

little preparation, amongst arrangements that are the results ofmany
,trials, many failures, and much thought. -This evil will be felt in

the following subject. The principle on which aberration depends
is not an obvious one. Its effects do not admit of easy proof or

familiar illustration. They cannot be exhibited separately, but

are mixed up with embarrassing circumstances. But, in truth, it

does not happen in this, otherwise than it does in other subjects.

Jf the Student would thoroughly understand the doctrine of aber-

jration, he must look to the history of its rise and first promulgation.
Its propositions and precepts he must view, not as the first and

natural suggestions which arose in the mind of its author, but

as ideas carefully methodised and arranged for imparting instruc-

tion in the most convenient and concise form.



CHAP. XI.

ABERRATION.

Jts Principle. Illustration of it. Roemers Discovery of the

Progressive Motion of Light. The general Effect of Aber-

ration is the Apparent Translation of a Stars Place toward

the Path of the Earth's Motion. The partial Effects oj

Aberration on the Right Ascension and Declination of a Star

on its Latitude and Longitude. The Effects of Aberration

on a Star situated on the Solstitial Colure at the Seasons of
the Equinoxes and Solstices. Formula for the Aberration,

in Right Ascension; in Declination; in Latitude; in Lon-

gitude. Application and Use ofsuch Formula.

SUPPOSE a" to be the place of a star, and the eye of the observer,

who is at rest, to be at c, then, (if there were no refraction) the

star would be seen in the direction c t ; and this would be the

case, whether the light were instantaneously transmitted from a

to the eye at c, or gradually descended to it in the line <rc.

But let us now suppose the spectator to be in motion in the

direction of the line ce : then, in the case of the instantaneous

transmission of light, the eye at c would still view the star in the

direction co1

, but in the second case, namely, that in which light
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is supposed to take time in coming from <r to c, the fact would
be different, as we shall now shew.

Let t c be conceived to be the axis of a tube, of which ab,
ed are the parallel sides : then, if, whilst the light were descending
down the axis ic, the tube were carried in a direction parallel

to itself, from a towards e, the hinder part ab of the tube would

continually approach the light in the successive points of its

descent, and might, were its velocity sufficient, impinge on it
;

but, in any case, that is, whatever should be the velocity of the

tube's motion, the light, on arriving at the line nae, would no

longer be found at c the extremity of the axis of the tube.

Hence, if a star were at <r, it could not be seen in the direction

of the axis of the tube, if the tube were in motion. We must,

then, consider where the star, instead of being at <r, ought to be,

in order to be seen in the above-mentioned direction : where, in

short, its true place ought to be that <r may be its apparent place.

It cannot be such that '{he direction of a ray proceeding from

it shall be parallel to tc: the direction must be inclined to tc and

towards de, as, for instance, the line te is. If the ray of light be

so inclined, and describe te whilst the axis ct is moved, parallel

to itself, into the position ed, it will, in every point of its descent

through the tube, be found in the axis tc of the tube. The eye,

therefore, will judge the direction of the ray to be that of eta" :

or, under the above circumstances, a star at s will seem to be at cr*.

* Clairaut's Illustration is founded on the above principles. Sup-

A

pose G to be one of many drops falling in the direction G^ t How

ought
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The motion^ therefore, of the spectator, combined with the

motion of light, causes the star s to appear at a-
; and, the dif-

ference of the two places, of which the angle stcr is the mea-

sure, is the aberration.

This consequence must follow if light, instead of being in-

stantaneously transmitted, be successively propagated. What-

ever be the time of the light's transmission from t to e, no matter,

how small, the above phenomenon, or circumstance, must take

place in degree : whether the degree be large enough to become

sensible by our instruments remains to be considered.

The fact of the propagation or progression of light was

discovered by Roemer, and by means of the eclipses of Jupiter's

satellites. The time of the emersion of one of the satellites (the

first for instance) from the shadow of Jupiter's bpdy is determined

from a vast number of observations
;

the Earth, at the times of

such observations, being variously situated with respect to Jupiter.

The deduced time of the emersion of such satellite is the mean

time of its happening. But Roemer found that such mean time

did not always accord with a single observed time. It was some-

times greater, at other times less. The former was found to

happen when the Earth was at a distance from Jupiter less than

its mean distance
;
the latter when at a distance greater. These

ought a tube to be held by a person walking from C towards A and D that

the drops shall descend down the tube ? It cannot be held in the direc-

tion of AG : for then, if it were transferred from C to A, the drop would

come into contact with the hinder side of the tube. That side of the tube,

therefore, must be withdrawn from the direction of the falling drop : and

the quantity through which it must be withdrawn, must depend on the

relative velocities of the falling drop, and of the moving tube ; and may
be determined by drawing GH parallel to CA, and by completing the

parallelogram GHAC. CG is the direction in which the tube ought to be

held : GA, AC being the relative velocities of the drop of rain and of

the tube.

The principle also may be established by supposing two impacts to be

made on the eye at A : one from the light and measured by GA ; the other

from the Earth's motion measured by AC and in the direction from D to

A. The resulting effect would be AH.
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circumstances, then, are perfectly compatible with, and expli-
cable by, the principle that time is absolved whilst the reflected

light from the satellite, when it issues from the shadow, is trans-

mitted to the Earth. For, the time will be longer, the more
distant the Earth is from the Sun.

This is the first point which establishes, or renders probable,
the principle of the progression of light. The second point,

which is now to be considered, is the velocity of that progres-
sion : is it within such limits of magnitude that the aberration

can become sensible by our instruments ?

By a number of comparisons of the computed mean time at

which an emersion of Jupiter's satellite ought to happen, with

the observed times when the Earth was in positions most remote

from, and most near to, Jupiter, it is found that the reflected

light is about l6
m 26s

in traversing the Earth's orbit. If,

therefore, r be the radius of the Earth's orbit, the velocity of light

If 365d
.25638 be the Earth's period, the velocitygm j 3

s

of the Earth =
2r x 3.14159

365d
.25638

2 X 3. 14159 X 493
s

consequently,
velocity

velocity of light

which, expressed in seconds of space,
365d

.25638

is equal to 20".246 *.

If, therefore, t c be perpendicular to a e, the value of the angle

of aberration (the angle $<r) is 20".246
;
which is a quantity

easily cognisable by the best instruments.

But, if the place of the same star were always affected with

the same aberration, it would be impossible to detect it, what-

ever were its value. We must, therefore, consider whether the

change of the Earth's position will produce any change in the

angle of aberration.

*
Log. 493 =2.6928469

log. 3.U159. ..= .4971495

log. arc (
= rad.)= 5.3 144254

8.5044218

7.1980813

(log. 20.246) 1 .3063405

log. 365.2563 .... =2.5625976

log. 3600 =3.5563025

log. 12 = 1.0791812

7.1980813
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In the former Figure, the line nee was intended to be a tan-

gent to the Earth's orbit, (of which mace is a part) at the point

c. Let now, in the present Figure, ecap represent an opposite

portion of the Earth's orbit, ecq being a tangent to the point c,

and the Earth (since it must have described, after leaving its

first position, more than 90) now moving from c towards a.

In this case, and precisely for the reasons already alleged,

(see p. 253,) the star must be at s in order that its light may
descend down the axis of the tube and be seen in the direction cta~*.

In this case, then, from the combination of the motion of light

with the motion of the Earth in its orbit, the apparent place of the

star s will be cr, and the angle of aberration will be st <r. If the star

s be the same as before, the angle stcr may be of the same value

as it was in the former case : but there will be this difference in

the two cases. In the former case the angle made by se with the

tangent nek is seh, and the angle of the apparent direction of

the star with nek is crch, which equals to

/. seh stff.

In the second case

(Teh = L sah -f- ^ sttr.

The real angle, then, of the star's direction with the line of

the Earth's way, is diminished by aberration in the first case, and

augmented in the second, and may be, in certain corresponding
situations of the Earth, as much diminished as augmented.

* c t <r is meant to be a straight line as a t s is.
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We have thus, then, the certain means of detecting the aber-

ration by observing a star in opposite positions of the Earth's

orbit, or in different seasons of the year.

Let us now consider the nature of the angles seh, vch, and

their relations to the common Astronomical angles of declination,

right ascension, latitude and longitude.

If the plane passing through ae and es (Fig. 1.) be conceived

to be perpendicular to the plane of the Earth's orbit (of which

mace is a part) the angle seh would be the star's latitude. In

such a supposition, then, the star's latitude would be diminished

>y aberration. In the other Figure (Fig. 2.) and on a like sup-
position of the tube and star, the star's latitude would be aug-
mented by aberration.

The plane passing through ae and c<r may be, as in figs. 3, and

4, parallel to the plane of the ecliptic ;
in which case, the effect

of aberration will take place on the star's longitude : augmenting
it in the position of Fig. 3, diminishing it in that of Fig. 4.

These are particular effects of aberration. Its general effect,

without reference to declination or latitude, is to translate the

star's place towards the direction of the Earth's motion.

In the preceding illustrations, the eye of the spectator has been

supposed to coincide with the centre of the Earth, and to move
as that centre is moved. But this is a mere supposition. We
must, therefore, now consider what modifications of the pheno-
mena already described will be produced, the spectator being

placed, as he ought to be, on the Earth's surface, the Earth

revolving round its axis.

Let Prp be the Earth, Pp its axis, r a point on its surface :

draw rv parallel and equal to ce : then, if there were no rotation,

the point r would be translated through the space rv, in the

same time that c, the Earth's centre, is translated through ce.

The same effect, therefore, arising from the combined motion of

the light and of the Earth, would happen to a spectator at r, as,

we have shewn, would happen to a spectator at c : that is, the

apparent place of a star s would be at <r, and the angle of aber-

ration would be srar.

K R



258

But, during the translation of r through rv, the point r (<

the spectator) describes, in consequence of the Earth's rotation,

?n

an arc of a circle to the plane of which Pp, the Earth's axis,

perpendicular. The space, therefore, really described by tl

point, is the result of two motions, the one just mentioned, am
rv due to the motion of the Earth's centre, in the direction of

tangent to the point c of the Earth's orbit. The former motioi

will variously affect the aberration : sometimes, scarcely at all,

as would be the case, if the spectator were moving along rv, an<

rv should be in a plane passing through sr, Pp, perpendicular
to the ecliptic. Its greatest effect, however, in increasing the

aberration is very inconsiderable
;
the arc due to it being 0".3084*,

* Let (see figure in opposite page) C be the centre of the Earth, a a

spectator on its surface, and suppose the point a to describe a space a b in

8m 1 3 s
,
that is, in the time of the transmission of light from the Sun (s

to the Earth : then a s being perpendicular to a b,

= angle of aberration = 20".25, nearly,
ci s

but as = C s, nearly,=
ac

sin. 0's horizontal parallax
= r x 5/ .2957795

.'. 8".6 ab sr -777 X 20".2-i x 57.2957795.
o ,O

Again
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whilst the arc described by a point of the Earth's surface, and in

consequence of the Earth's motion in her orbit is 20".25.

With the slight modification, then, which has just been ex-

plained, the aberration of light would liappen to a spectator on

the Earth's surface as it would to a spectator placed in -fche

Earth s centre, and moving solely with the Earth's annual motion.

This enables us to make a great step in the doctrine of aberration.

Still, however, we must consider the spectator on the Earths

surface and the mode by which the effects of aberration will be

made manifest to him. His observations are those of right ascen-

sion and declination : quantities which have no existence when

the spectator is in the Earth's centre.

Again, let aw be the space described by o, during 8m 13 s
,
and in con-

sequence of the Earth's rotation : then

de 6rff "to

am 36o x 8m

24h
= 2 3' 18";

am 2 3' 18" 8".6
X

ifab be made=20".25, a^ = _ x 8".6 = 0",3084
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It is not difficult to shew that, in certain positions of the Eartl

the aberration will affect, solely, the declination of a particular st

and, in other positions, the right ascension. For instance, sui

pose c (fig. p. 258.) to be the position of the Earth's centre at

vernal equinox, P rp the meridian of the spectator, and let

time be such, that a line drawn from the Sun to c is perpendi-

cular to the plane of the meridian. The time, therefore, mus

be six in the morning; for, in six hours the meridian Prp will

brought opposite to the Sun, If s be a star situated in the sol-

stitial colure, the plane of the meridian produced, will pass

through s, or, s v will lie in that plane. In this position, then,

the spectator's motion, represented by rv, being in the plane of

the meridian, the aberration will take place, and exclusively, in

the same plane : s will be thereby depressed to <r, and the star's

north polar distance (P being the north pole) will be increased.

In like manner, if the Earth were at the opposite equinox, the

motion of the Earth being directly from the star, the aberration

would take place entirely in the plane of the meridian, but its effect

would be to elevate the star towards P the north pole, or to lessen

the star's north polar distance. The former effect took place
at six in the morning ; this must take place at six in the evening.
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If we suppose the Earth in a position intermediate to the

two last, and at the summer solstice, then, a line drawn from the

Sun to the Earth's centre will lie entirely in the plane of the me-

ridian when the star (the star which is on the solstitial colure) is

on the meridian. In this position the direction of the Earth's

motion, being a e, is at the time of the star's passing the meridian,

perpendicular to the meridian. The aberration, therefore, can

then have no effect in the direction of the meridian, or cannot

affect the star's declination. It will affect the right ascension,

and solely that. The star, situated in the solstitial colure, will

in the position of fig. 3, be on that part of the meridian which is

opposite to the Sun. The time of the star's passage over the

meridian, therefore, will be midnight.

In Fig. 4, the Earth is in a position opposite to the last posi-

tion, and is at the winter solstice. The motion of the Earth

being now from a towards e, the true place of the star being at

s, & will be the apparent place, and, as before, the translation of

place will be in a direction perpendicular to the plane of the
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meridian ;
in other words, the aberration will solely affect the

star's right ascension which it will diminish. The time of the

star's passing the meridian, in this position of the Earth, will be

noon.

The four positions of the Earth, at the vernal and autumnal

equinoxes, and at the solstices, which we have been considering

separately, are represented, under one view, in the following

Figure. The positions
of the Earth in the Figure 1, ?, 3, 4,

correspond, in the present Figure, to the positions at E, E", E 1

,

Em . The Earth too^ represented in the Fig'ure of p. 258, cor-

responds to its representation in the present Figure at E. There

is, however, this difference in the two cases. The rotation of

the Earth being from r towards h, the right ascension of the star

in the Figures of pp. 252 &c. is 270 or 18
h

; whereas, in the

present Figure, the right ascension is 90 or 6h
. The Earth,

therefore, moving from E towards/, the star's place <r is appa-

rently transferred to </, or, its north polar distance is diminished
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by aberration. The contrary to this happens in the position E".

In the position E
1
the right ascension of the star is diminished,

in that of E1

", increased by aberration. The times too differ

from the former times, when the star's right ascension is IS
11

.

The Earth being at E, the hour of the star's passing the meri-

dian is six in the evening ; at JE', noon : at E", six in the

morning ; at E lf/

, midnight.

But it is the star, with a right ascension of 270, or of I8
h

,

that is situated, nearly, as y Draconis is : which latter is the

principal star in the history of Bradley's discovery of the Aber-

ration of Light. The right ascension of y Draconis, at the

time of Bradley's Observations (1750) was about 267 42'. The

star, therefore, was, nearly, in the solstitial colure, and situated

as the star s is, in the Figures 1, 2, 3, 4, &c. of pp.252, &c. In

the position E, then, which is that of the Earth at the vernal

equinox, or about March 20th, y Draconis must have been on

the meridian about six in the morning (see p. 260,) and being

depressed towards Et, or from the north pole P, must have

passed the meridian to the south of its true place (see Phil.

Trans. No. 406, p. 640.) At the autumnal equinox, or about

September 20th, y Draconis must have been on the meridian

about six in the evening, and (see p. 260,) being elevated to-

wards P, must have passed the meridian to the north of its true

place : and in these two positions (of E and E") the effect of

aberration will take place, almost entirely, in the plane of the

meridian
; diminishing the star's declination in the first position,

augmenting it in the second.

In the position at E't when the Sun was at the summer

solstice, or about June 22, y Draconis must have passed the

meridian about midnight and later than it would have passed, had

there been no aberration. The Earth being at the winter sol-

stice, y Draconis must have passed the meridian about noon, and

sooner than it would have done, had there been no aberration.

In these two last positions, the effect of aberration would be

consumed, almost entirely, in retarding and accelerating, respec-

tively, the times of the star's transit
; or, in other words, in in-

creasing and diminishing its right ascension.
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It is easy to shew that the apparent translation of the star's

place towards the direction of the Earth's motion (which trans-

lation is the general and constant effect of aberration) is, in some

positions of the Earth, equivalent to, or amounts to the same as

a retardation, and, in other positions, to an acceleration, of the

star's transit. Thus, we have seen (see p. 258,) that the effect

of aberration will be the same to a spectator placed in the centre

of the Earth and moving with it, as to spectator placed on the

Earth's surface. In this latter case, the tube, or telescope abde,

moving with the motion of the Earth's centre, and, also, turning

round, by virtue of the Earth's rotation, will be directed towards

s before it occupies the position in the Figure : but, that is the

position in which s is seen, and apparently seen at o*
; s, therefore,

is not seen till after that the telescope has been directed towards

it
; or, is seen not so soon as it would have been had there been

no motion in the Earth, or. had there been an instantaneous

transmission of light ;
in other words, the time of its passing

across the middle wire of the telescope is retarded, or its right

ascension is increased.

In the opposite position which the Earth occupies in the

Figure 4, the spectator's motion, from that of the Earth in her

orbit, is from a towards e, but the axis of the telescope, by
reason of the Earth's rotation, will be in the direction ets after
it has been in that of eta: But it must be (see p. 261,) in this

latter position in order that s may be seen. , therefore, is seen

sooner * than it would be were there no aberration : or, its right
ascension is diminished by the effects of aberration.

The illustration of the principle of aberration (and no other

Astronomical subject stands more in need of illustration) has

been principally shewn by means of a star, situated in the sol-

stitial colure, and having a right ascension of eighteen hours.

The reason of this has been assigned ; y Draconis, the chief star

in Bradley's researches, is,, nearly, so circumstanced, but it is not

*
By being seen sooner, we mean the star, if observed by a transit, or

other, telescope, furnished with a system of cross wires, would sooner

occupy the centre of those wires (see pp. 74, &c.)
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exactly so circumstanced, It is distant about 2, or 8
m
of sidereal

time from the solstitial colure. When it passes the meridian,

therefore, about six in the morning, it will pass to the south of

its mean place, but its aberration will not be entirely in declina-

tion *. There will be, in this situation of the Earth, a small

* The aberration of a star, passing the meridian at six in the morn-

ing, and not situated in the solstitial colure, will be partly in declination

and partly in right ascension. This is a fair inference from what has

already been proved (see p. 2o'0,) namely, that the aberration of a star

sassing at the above hour and situated in the solstitial colure, is wholly

in declination. It is not difficult, however, to prove the same thing for-

mally and independently ; thus,

Conceive cSWa to be the horizon, 2nd cba the ecliptic elevated

above it ; also S to be the south, W the west, P the pole of the equator,

and the Sun at six in the evening, above the horizon, and consequently

Z

to the north of the point W. Draw 0T a tangent to the ecliptic, and ER
representing the Earth's way parallel to it, and in the plane of the ecliptic

c I Q a : then if o- be the star, the aberration (see p. 257,) will take

place in a plane passing through E <r, ER.

Now, if the star were in the solstitial colure, and on the meridian,

the Sun, at six o'clock, would be in the horizon, and the ecliptic, instead

of being as it is in the Figure, would pass through W: in that case also,

WE would be perpendicular to a line ER'
y
and since it is perpendicular

to E <r, it would be so also to a plane passing through E <r, ER' : but, EW
is perpendicular to the plane of the meridian ; consequently, in this case,

the plane of the meridian, would coincide with that passing through E<r,

ER', in which the aberration takes place, and, accordingly, as it has

been

LL
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aberration in right ascension. In other positions of the Earth,

the aberration of y Draconis, as well as the aberrations of oth<

stars, will, generally speaking, be partly in right ascension, am

partly in declination. Those must be, it is evident, particular

positions of the Earth (to be determined by calculations) in whicl

the aberration of a star shall take place entirely in the plane of

the meridian, or in a direction perpendicular to that plane.

Having now gone through the above preliminary illustrations of

the inequality of aberration, we will enter into the investigations ol

theformula, by which, at any assigned time, the aberrations of a

particular star, whether they be in latitude and longitude, or in

declination and right ascension, may be determined.

This process is purely mathematical. The first step is to

compute the aberration, such as takes place in a plane passinj

through the Earth's way (as it may be called) and the star.

This, however, is a quantity not seen or noted, except in

particular cases, by Astronomical instruments, s It must, there-

fore, be reduced, and expressed as an error affecting the right

ascension and declination ;
or the longitude and latitude. The

latter reduction, or the aberration of a star in longitude and

latitude, is of inferior importance. It is occasionally useful in

Astronomical calculations
;

in those, for instance, which belong
to the

'
occultations of stars by the Moon.' The expressions,

however, of the aberrations in right ascension and declination are

important expressions. They enable us, at once, to correct

been before shewn (p. 260.) the aberration would take place wholly in

the meridian. If, however, be to the north of TF, E Q will not be

perpendicular to the plane of the meridian, and the plane passing through

E <r, ER, instead of coinciding with the plane of the meridian passing

through E (r, ER ',
will be withdrawn from it towards the east. But, the

aberration takes place in such plane, and any line representing its effect,

may be resolved into two others, one perpendicular to the plane of SE <r,

representing the aberration in right ascension, the other in that plane and

representing the aberration in declination.

The aberration therefore of a star, not in the solstitial colure, which

passes the meridian at six o'clock, is not wholly in declination.
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the observations made with the mural quadrant and transit in-

strument, and to reduce, as much as they ought to be reduced,

on account of aberration, a star's apparent to its mean place.

General Expressionfor Aberration.

Let S be the Sun, E the Earth
; Efg its orbit

; ZT*p that

orbit extended to the fixed stars, and in which the signs are sup-

posed to lie
;
ET a tangent to the Earth's orbit at E

;
the

place of S amongst the fixed stars, or in the ecliptic as seen from

E the Earth
;

the place of E the Earth in the ecliptic, as seen

from the Sun S ; cr a fixed star
;

cr T the arc of a circle, (of which

the centre is E) passing through cr and T : then, by what has

preceded, the aberration of a star cr takes place in a plane cr ET,
passing through a" E and ET] and, the Earth moving according
to the order Efg, and towards T, the aberration may be repre-

sented by or Ear'.

The circle cr T, in the Figure, is not a great circle ;
it would

be one, if E coincided with S. INow this latter condition may
be conceived to take place : for, the annual parallax of the

Earth's orbit is insensible ; in other words, the radius SE of its
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concave in which the stars are conceived to be placed) may, by
reason of its smallness, be neglected.

If E then be considered as coincident with S, the arc cr T
measures the angle 0ET: hence, since *

sin. crEa-' : sin. erET :: velocity of the Earth : velocity of light;

and, since the velocities of the Earth and of light may be consi-

dered as constant
;

sin. a-Ea, or trEcr' (er jEcr' being very small) ocsin. &T,

or, the aberration oc sin. cr T : consequently, the aberration is the

greatest, when sin. crT is, that is, when <rT equals a quadrant,

or when cr is in TT the pole of the ecliptic.

By observation, the greatest effect of aberration is about 20
/;

.25

Hence, generally,
I

The aberration = 20".25 sin.

The Earth's orbit being nearly circular, SE is nearly perpen-
dicular to ET: and T is a quadrant, or T is 90 degrees
before the Earth's place seen from the Sun : and if y> represents

the first point of Aries, the longitude of T is T T
;
and the lon-

gitude of the Sun, which, by a spectator on the Earth's surface,

is referred to , is T O = T T+90 .

We have now obtained what may be called a general expres-
sion for the aberration : an expression for the aberration which

takes place in the circle v T, and which, except in particular

cases, does not affect, with its whole quantity, the observations

of right ascension and declination. The resolved parts, therefore,

of the general effect of aberration become the proper objects of

enquiry : and, with the view of investigating, most conveniently,
such resolved parts, we shall first determine those positions of

the point T (see the Figure of p. 267,) in which the resolved

parts, the aberrations in right ascension and declination, &c. are

nothing.

* In Fig. p. 252,

sin. cte : sin. tee (= sin. tec, nearly,) :: ce : t e,

or sin. 5/0- : sin. tec :: vel. : velocity of light.



General Construction for the Point T, when any resolved part

of the Aberration is equal to nothing.

Let, as before, cr be the star, TT the pole of the ecliptic CTL,
P the pole of the equator, JEQ, and <r T the arc of the circle, in

the plane of which, aberration takes place. Then, if <rT co*

incide with irZ, or with Pa, there is, respectively, no aberration

perpendicular to TT Z, or none perpendicular to Pa : in other words,
there is no aberration in longitude, or none in right ascension.

If <rT be perpendicular to TT Z or to Pa, there is no aberration

in the plane of IT Z, or none in that of P a
;
in other words,

there is either no aberration in latitude, or none in declination.

And the determination, on these principles, of the several posi-
tions of the point T when the respective aberrations are equal
to nothing, is preparatory to the investigation of the formulae that

expound, generally, the laws of the aberration.

Investigation of the Position of the Point T, when the Aberration

in North Polar Distance is equal to 0.

Draw <rD perpendicular to Per a at the point cr: then D
is the place of T when the aberration in declination, or in north

polar distance, is equal to 0. In the present Figure, the star is

io the second quadrant, and the angle D cr Z is greater than 90 ;

consequently, D Z is greater than 90. If, therefore, D d be

taken equal to a quadrant, d is between Z and i> . In order to
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compute DQ Z and dQ Z, we have, since the spherical triangle

D <r Z is right-angled at Z,

1 X sin. <rZ = cot. IXcrZ . tan. D Z

= cot. (90 + P) . tan. (90 + d Z),

P being the angle of position, P O-TT,

Hence, by Trigonometry) pp. 10, 35.

y-j

* tan. doZ(=- cot. D Z) =
*"'

. . . (1).
sin. star s latitude

From which expression the positions of the points d , D may
be determined.

If we place the star in any one of the three other quadrants we

shall obtain the same expression for tan. r/ Z.

Formula for the Aberration (A} in North Polar Distance.

Draw cr'n perpendicular to Per a, and an expresses the aber-

ration (A} in north polar distance : in order to compute it, we

have, supposing oV = 20".25 . sin. <rT, (see p. 268.,)
/ /^^ /i/-v// / e-

* T* '

an= cr cr . cos. n<rG = 20 .25 . sin* cr 1 . cos. were*

= 20".25 . sin. cr T. sin. D <r T
= 20/7

.25 .sin. JDor.sin. TD <r(Trig. p. 141.)

But, since D or is a right-angled triangle, we have by

Naper's rule,

1 X cos. D a-Z = sin. TD (r . cos.D Z,

and, consequently, IX sin. P = sin. T.D cr . sin. d Z.

Hence, substituting in the above value of crw, we have

A ( = crw) = 20
7

'.25 . sin. D T X .

8m '

7
.

sin. d Z

During a short period (a year, for instance,) P, and the

points d0t Z, may be considered to be constant
;
D T, therefore,

*
Bradley's Rule : see Phil. Trans. No. 406, p. 650 : see also Mem.

de VAcad. 1732, p. 213 : Clairaut : also T. Simpson's Essays, p. 16.
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is the only quantity, in the above value of A, that is variable
; and

A is the greatest, when sin. D T= 1, or when D T90. Let

M be that greatest value of A : then

J-rj. *vy . *cf . . _,.... \&J,
sin. a Z

rand
*<4. = If .sin. D T (3).

Hence, in order to compute the aberration for any assigned

time, we must compute from (1) the position of d : secondly,
the value of M from (2), and thirdly, A from (3), in which ex-

pression the position ofD being determined, and that of T, from

the assigned time, D T will be known.

We will shew how D T may be more conveniently expressed.
Let , , represent, respectively, the longitudes of the Sun
and Earth, then

D T = long. D -
long. T

= long. * +D 2-90 -
= long. * +D Z-r 90 0;

/. A = M .cos. (long. # + D Z 0),

and, if we make long, ifc + JD Z = Nf,

A = M cos. (N -
), or, = M.cos. (0 N).

The only variable quantity in the above expression of the

aberration of the same star is , the Sun's longitude. We shall

* See Bradley, Phil. Trans. No. 406, p. 650 : Clairaut, Mem. de

VAcad. 1737, p. 213: T. Simpson's Essays, p. 16. D
,

in the above

construction, is the node of a great circle drawn perpendicularly to the

circle of declination at the place of the star. The maximum of aberration

happens, therefore, when the Sun is in the above-mentioned, or in the

opposite, node. For, Dor=90; therefore D (see the Fig, of p. 267,)

= -0 +90 =180=Q. This is the conclusion which Delambre, by
a different way, has arrived at in Tom. III. p. 120. of his Astronomy.

f In the first and fourth quadrants D Z = 90 d Z.

In the second and third D Z = 90 -f d Z.
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again advert to this circumstance, as it affords the means of

easily expressing in Tables the results of the preceding formulae.

Investigation of the Position of the Point T, when the Aberration

in Right Ascension is equal to O.

If <r T coincide with P or, A is the corresponding position of

the point T: and, if we make ^O a = 90, a will be the corres-

ponding position of the Earth.

Now we have, by Naper's rule,

1 x sin. <r=tan. A Z.cot. P (since P= z ZtrAJ ;

'JOIK4 ?'*] *<

.'. tan. An Z =

or cot. AZ =

sin. cr/3

.cot. P ;

cot. P
sin. *'s lat.

.(4).

Formula for the Aberration in Right Ascension.

'.'.:' >1 J.lJ '\i-: ..- ^.y'jL .\i>"i

Draw o-'w perpendicularly to P<r^
;

the aberration in right
ascension (a) is measured by the angle nP<r' : and

</ o- or'. sin. n<r<r'

sin. sn
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but era' = 20
r/

.25 . sin. cr T, and sin. crT . sin. ficrcr' = sin. A Tt

sin. TA cr
;
and by Naper,

1 x cos. Z<rA , or, 1 X cos. P=cos. AQZ .$m.Q

= cos. ^4 . sin.

Hence, by substitution,

= 2o.25 .sin.xr.-
cos ' p

sin. *'s N. P. D.cos. A Z'

in which expression^ since, under the circumstances before stated,

(see p. 270,), A T is the sole variable quantity, a must become

a maximum (i) when sin. A T = 1, or A T = 90, or 270 ;

accordingly,

'

(5).
sin. *'s N. P. D. cos. A Z '

and * a = m . sin. A T (6).

This last expression admits of remarks and a transformation

like those made on the expression (3), thus,

A T = long. T long. A ;

i
but long. T = - 90,

and long. AQ
= long. * + A Z,

..

the upper sign to be used in the second and third quadrant,, the

lower in the first and fourth. Bqt in the second and third quad-

rants,

* The preceding method of deducing the expressions for the aberra-

rations in north polar distance and right ascension, very nearly resembles

a method given by Lalande at pp. 1.99, &c. torn. III. Astronomy, Ed. 2d.

His formulae, too, are similar
; instead of (5) his expression is

cos. 23 28'm = 20 '.25 .

which, since

cos. dec. cos. dec. A '

cos. P cos. 23 28'

cos. A
Q
/< cos. dec.

is the same, in substance, as (o).

M IV!
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A Z = QO - a Z,

in first and fourth .... = a Z 90 ;

.'. A T= -f- a Z -
long. #,

and

c = m.sm. (0 +a^Z -
long. * - 180)

= wi.sin. (0 -\-aQ Z long. *)

= m .sin. (0 n),

if we make n = long, ^r a Z.

In order then to compute the aberration (a) in right ascension,

we must, as in the former case, (see p. 271.) previously compute
the position of the point ,

and the maximum (m). But then

these two values being computed, the aberration for any time in

the year may be found by a simple process.

*

The subject is not without its intricacy : we will endeavour

to unfold it by the aid of instances. The stars selected for illus-

tration will be y Pegasi, a Arietis, Polaris, r\ Ursae majoris,

y Draconis, and a Aquarii ;
and the first steps will be made in

computing the maxima of aberration, and the positions of the

points D and A & *.

* In the Examples that succeed, we have not been solicitous to reduce

the longitudes, latitudes, and angles of position to the same epoch,
because there may be considerable variations in the values of those quan-

tities, without any changes, or, at most, with very slight ones, in the

resulting values of Af, m, N, and n. Polaris is the only star in which it

is necessary that the epoch appertaining to the values of the longitudes,

latitudes, &c. should not be more than ten years distant from that epoch
at which the values of M, m r N, and nt are required.



275

EXAMPLE I. 7 Pegasi.

For 1800, longitude = 6 26' 19"

latitude = 12 35 41

angle of position . . = 24 4 44

north polar distance = 75 54 4

which values are taken from the Cormoisance des Terns, for 1804.

d Z computed (p. 270,) A Z computed (p. 272,)

10-f 10 +

log. tan. 24 4' 44". . . . 19.65017- .'.... log. cot. 20.34983

log. sin. 12 35 41 9.33856 9-33856

(tan. d Z) 10.31161 (cot. A Z) 11.01127

dQZ = 63 59' 21" A Z = 5 33' 55"

.-. D Z = 26 39 >'.<> Z =95 33 55

but * long. = 6 26 19 6 26 19

/. N = 32 26 58 .-.- = 89 7 36

Secondly,

M m

log. r 10

log. 20".25 1.30642 * 1.30642

log. sin. 24 4' 44" 9-61063. . log. cos. 24 4
;

44" 9-96046

1091705 2 1.26688 (a)

log. sin. d Z 9-95362 log. sin. 75 54' 4" 9.98671

(log. M) 0.96343 log. cos. 5 3S 55 9-99795

19-98466 (b)

M = 9". 19 (log. i) 1.28222

hence m = J9
//

-15.
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Hence, (see p. 87O
A=M.cos. (0 -JV)= M.cos. (0 - 32 26' 58"),

and fl= msin.(0 - w)= w. sin. (0 +89 7 36),

from which two expressions, the aberrations in right ascensioi

and north polar distance may be determined for every day in

year.

The first of the tw:o preceding expressions involves the cosine

of the difference of two arcs : the second the sine of the sum of

two arcs, but negatively expressed. If we wish to express (and

it is convenient they should be so expressed) both aberrations by
the positive sines of the sums of two arcs, we must transform the

preceding formulae after the following manner :

M cos. (032 26' 58") =M cos. (0+57 33' 2" - 90)

=M sin. (0 +57 33 2)

- m sin. ( /!).== m . sin. (0+89 7' 36")

= -w.sin. (0 +6s + 89 ?' 36" ff)

= m.sin. (0+8s

29 l' 36"),

and if we express the above two formulae logarithmically, we
have

log. .4= log. sin. (0 + 1
s

27 33' 2") -f- .96343,

log. a= log. sin. (0+8 29 7 44) + 1 .28222,

and, if we wish to express the aberration in right ascension in

time,, we must subtract from 1.28222 (log. m) the log. 15-

(=1.17609) in which case, 0.10613 will be the logarithm of the

maximum.
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EXAMPLE II. a Arietis.

For the latitude, longitude, angle of position of this star in

1815, see pp. 160, &c.

T rj A n
CT Z -4 Z

10 4- 10 4-

log. tan. 20 39' 52" 19.57653 cot 20.42346

log. sin. 9 57 37 9.23796 9.23796

(tan. d Z) 10.33857 (cot. A Z) 1 1.18550

d Z = 65 21' 50" A Z = 3 43' 56"

/. D Z = 24 38 10 /. a Z =93 43 56

*'s long. =35 4 41 35 4 41

N = 59 42 51 -w = 58 39 15

Again,

M m

log. r 10

log. 20.25 ..... 1.30642 1.30642

log. sin. 9 57' 37" 9.54764 log. cos. 20 39' 52" 9.971 12

10.85406 21.27754 (a)

log. sin. 65 21' 50" 9.95855 log. sin. 67 25' l" 9-96535

(log. M) 89551 log. cos. 3 43 56 9-99908

M = 7".86 19-96443 (6)

(log. w) 1.31311 (<z b}

m = 20".56.

Hence,

aberration in IS. P. D.= 7".86 x cos. ( O -
1
s

29 42' 5l")

aberration in JR = 20".56 sin. (0 -f 1
s 28 39

X

15"),

or, expressed by the sines of the sums of arcs,

A = 7".86 . sin. ( -f 1
s

17' 9")

a = 2O".56.siii.(O +7 28 39 I5j>,
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EXAMPLE III. Polaris, (see pp. 167, 175, 178.)

d Z 4 Z

10-f 10 +
log. tan. 72 59' 39". . < . 20.51450 log. cot. = 19.48549

log. sin. 66 4 42 9.96099 9.96099

(log. tan. do zy 10.55351 (log. cot. A Z) 9-52450

d Z = 74 22' 50" A Z= 71 30' 2"

.'. D Z = 15 37 10 .-.fl Z=l6l 30 2

but *'s long. = 85 46 16 85 46 16

/. N. =101 23 26 7z= 75 43 46

Again,

M m

log. r 10

log. 20.25 1.30642 1.30642

log. sin. 72 59' 39" 9-98058 log. cos, 72 59' 39" 9.46608

11.28700 20.77250 (a)

log. sin. 74 22' 50" 9-98460 log sin. 1 45
;

34" 8.48722

(log. M) 1.30240 log. cos. 71 30 2 9.50146

M = 20
//

.06 17.98868 ()

(log. m) 2.78382 (a

m = 607".9 = 10' 7^.9.

Hence,

A =20".06 . cos. ( Q - N) = 20
/x

.06 . cos. ( O - 3s
1 1 23

/

^26
//

)

a= - 607".9 . sin. ( O -/z)= - 607
/;

.( sin. ( +2 15 43 46),

or, as before, (see pp. 276, 277,)

A = 20".o6.sin. (0 -f 11
s

18 36' 34"),

a = 607".9 sin.
( G + 8 15 43 46).
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ExAMPLE IV. TI Ursa, majoris.

Suppose the latitude, longitude, and angle of position of this

star (to be computed by the formulae of pp. 159, 168., 175) to be,

in the year 1725 (the time of Bradley 's Observations) as follow :

latitude 54 23' 53"

longitude 173 3 15

angle of position (P) 38 37 26

theN.P. D. is 39 18 5

dZ AJL
10+ 10 +
log. tan. 38* 3?' 26". 19-90253. .cot. 38 37' 26" 20.09746

log. sin. 54 23 53. . . 9-91013 9-91013

(log. tan. d Z) 9.99240 (log. cot. A Z) 10.18733

d Z = 1
s
14 29' 55" A Z = I

9
3 0' 33"

.'. D Z= 4 14 29 55 a Z = 1 26 59 27

but *'s long. =a 5 23 315 5 23 315

AT=10 7 33 10 n = 3 26 3 48

M m

log. r 10

log. 20.25 1.30642 1.30642

log. sin. 38 37' 26" 9-79532 log. cos. 38 37' 26" 9-89279

11.10174 21.19921 (a)

log. sin. 44 29 25 9-84565 log. sin. 56 59 27 9.92354

(log. M} 1.25609 log. sin. 39 18 5 9.80167

M = 18".03 19-72521 (6)

(log. m) 1.47400(0 6

m = 29". 78.

Hence,

A = 18".03.cos. (O 10
s

7 33' 10
r/

),

or = 18".03 .sin. (0 + 4 22 26 50),

a 29".78 .sin. (0 3 26 3 48),

or =s 29
//

.78 . sin. (0 + 23 56 12).
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EXAMPLE V. y Draconis.

(See the latitude, longitude, angle of position of this star for

1815, at pp. 166, 174, 177.)

d Z J Z

10+ 10 +

log. tan. 2 56' 53" . . 18.71 180 . . log cot. 2 56' 53" 21.28820

log. sin. 74 56 51 . . 9-98484 9-98484

(log. tan. d Z) 8.72696 (log. cot. AQ Z) 11.30336

d Z = s
3 3' 9" 4 Z = s 2 50' 50"

.'. D Z=3339 fl Z = 87 9 10

but #'s long. = 8 25 14 36 8 25 14 36

JV = 11 28 17 45 n = 5 28 5 26

M m

log. r ,10

log. 20.25 1.30642. 1.30642

log. sin. 2 56
7

53" 8.71122 log. cos. 2 56' 53" 9-99942

10.01764 21.30584 (a)

log. sin. 3 3' 9" 8.72633 log. cos. 2 50
;

50" 9-99946

(log. M) ........ 1.29131 sin P 38 29 5 9-79400

M = 19".557 19-79346

(log. m) 1.51238

m = 32".53.

Hence,

A = 19".557 . cos. (- 11
s 28 17

;

45"),

or = 19"-557 .sin.(0 -f 3 1 42 15),

fl =-.32//

.53.sin. (0 - 5 28 5 26),

or = 32".53 . sin. ( -f 1 .54 34).
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EXAMPLE VI. a Aquarii.

The Latitude &c. of this Star for the year 1800 are as follow :

latitude
s

10 4l' 34",

longitude 11 35 45,

(P) angle of position .... 20 17 48,

N. P. D. . 91 16 58.

d Z J Z

10-f 10+
log. tan. 20 1?' 48

//

, . 19.56802. . log. cot. 20 17' 48" 20.43198

log. sin. 10 41 34 . . 9.26777. ."T^"' 'f 9-26777

(log. tan. d Z} 10.30025 (log. cot. A Z) 11.16421

d Z = 2s 3 23' 37" A Z = s 3 55' 50"

.'. D Z = 26 36 23 aQ Z = 3 3 55 50

but #'s long. =11 33 45 1 1 33 45

.'. N=ll 27 10 8 n = 7 26 37 55

M m

log. r 10

log. 20".25 1.30642 1.30642

log. sin. 20 1?' 48" 9-54018 log. cos. 20 17' 48" 9-97216

10.84660 21.27858 (a)

log. sin. 63 23' 37" 9-95137 log. cos. 3 55' 50'' 9-99897

(log. M} 0.89523 log. cos. 1 16 58 9-99989

19-99886 (ft

M= 7".S56 (log. m) 1 .27972 (a- ft

m = 19".04.

Hence,

A = 7
/;

.856 . cos. ( O 1 1
s

27 10'' 8"),

or, = 7
/;

.856 , sin. ( O + 3 2 49 52),

a == - 19
/7

.04 . sin. (O - 7 26 37 55),

or, = 19
//

-04. sin. (O + 10 3 22 5).

NN
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From these expressions
* A and a may be deduced, for any

assigned time, by one operation. The assigned time gives O ,

the Sun's longitude : and we may deduce A and , either by

multiplying the coefficients, that express the maxima of aberra-

tion, into the natural sines of the sums of the arcs, or by a loga-

rithmic process : for instance, suppose the aberrations of

y Draconis were required for December 3
;

By the Nautical Almanack, . . = 8
9
10 34'

arc to be added (see p. 280.) =3 1 42 (negl
g

. the seconds)

11 12 16

natural sine of II
8

12 16' = - .3045;

.'. A = \9".55 x - .3045 = 5".95,

a quantity, with its affixed sign, to be added to the mean north

polar distance in order to obtain the apparent north polar

distance.
-v

**"* "'"- o*v

Again, to find, by the logarithmic process, the aberration of

ij Ursae majoris on the same day,

Q =88 10 34'

arc to be added (see p. 279.)=4 22 27

13 3 1 .... log. sin. =9.73630

log. M = 1.25609

(10-Hog.) A 10.99239

.*. A = 9"82 to be added to the mean north polar distance in

order to obtain the apparent north polar distance,

* These values of A, a, are to be added, as it has been already remarked,

to the mean north polar distances and mean right ascensions, in order to

obtain the apparent. If we wish for expressions still additive, and for the

reverse operation, we must increase, or diminish, according to the case,

the arcs, which are the arguments, by 6s
: thus in the last case,

A' = 7".856 . sin. (0 -H 9s 2 4Q/ 52"),

a' = 19".04 . sin. (0 + 4 3 22 5)

A'
y
and a', being quantities to be added to the apparent in order to obtain

the mean north polar distances and right ascension.
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With equal facility and brevity may the aberrations of other

stars be deduced for any assigned period : but still more conve-

niently by means of a Table : the columns of which should

contain log. M, log. m, N9 n, or, the sines of the sums of arcs

being used, quantities (N
;

, n') analogous to N, n. We will shew

a specimen of such a Table by means of the results we have

already obtained.

Stars.
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stars that have not great declinations. A Table for Polaris will

require to be renewed every eight or ten years. The resulting

values of A and a are to be added to the mean north polar dis-

tances, and mean right ascensions, respectively, in order to

obtain the apparent north polar distances and right ascensions.

In the Volume of the Greenwich Observations for 1812, &c.

there is inserted, at p. 250, a Table for ninety-six stars, similar to

the preceding one. It is founded, however, upon thejirst of the

formula which have been investigated for expressing the aber-

rations in north polar distance : upon this

A = M.cos. (O - N),
OC BS 7 '.i.r

j

II ! Icc(]8..; ... . . .

and since the Table is to be used for reducing apparent north

polar distances to mean, it gives results with signs different from

those that belong to the Table of p. 283. The two Tables,

however, are essentially the same *.

In the precept, (see p. 282,) for using the Table we are

directed to take G , the Sun's longitude, from the Nautical

Almanack. This part of the rule, however, stands in need of

some modification: for, if we look (see pp. 269, &c.) to the inves-

gation of the formulae, it is, clearly, a condition of such investi-

gation that the Sun's longitude should be that, which it ought to

be, at the time of the star's passage over the meridian f. The
Sun's longitude, therefore, taken from the Nautical Almanack is

not truly expressed, except (which is a particular case) the Sun

* The Tables may be deduced, the one from the other. For, in the

Tables for the aberrations in north polar distance, the sum of the respective

numbers (such as J\T/
, N~) always equals 9s or 21 s

. Thus, if the numbers

under the column JV
',
in a Table so constructed, should be for the stars,

a Cassiopeae, a Ceti, a Persei, a Coronae Bor. a Herculis, respectively,

c 8 s 29 22'
The numbers in a I A1

ft *

Table constructed like
the Greenwich Table I, \ 9 25 34
wouldbe I 5 J 56

V. 5 24 24-

t The observations of right ascension and north polar distance are

supposed to be made on the meridian.
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and star are on the meridian together : for instance, the right
ascension of tj Ursae majoris is 13

h 40m 7
s
, and on June 20, 1812,

the Sun's right ascension was = 5
h 55m 14s

; consequently, the

star was on the meridian about 7
h 45m after noon, at which

latter time, the Sun's longitude, by the Nautical Almanack, was
2s 28 54' 32" : this longitude, therefore, must be increased (if

59' be the Sun's increase of longitude in twenty-four hours) by
yh 4501

X 59', or, by about 19' 24". This quantity, then, in
24

the above instance, and like proportional quantities, in other

instances, must, in forming the arguments ( + Nf

), &c. be

added, as corrections to the Sun's longitude. A Table, in the

Greenwich Observations, immediately following that we have

already noticed, contains, for each star, the correction due to it

for every tenth day of the year.

The labour of an Astronomer, in reducing his observations,

is so great, that the construction of convenient Tables is a matter

of considerable importance. The Tables, which we have de-

scribed, hold a middle place between special and general Tables.

Special Tables express, in numbers,, the aberrations of certain

stars for every tenth day, or for every ten degrees of the Sun's

longitude. Such Tables are the most convenient and the most

sure in practice. They have, over other Tables^ that kind of

advantage which Taylor's Logarithms have over Sherwin's.

But they are inconvenient from the largeness of their Volume *.

General Tables of aberration are^ indeed, small in size, but

cannot be used without considerable computation. Besides the

labour of using them there are the chances (which are excluded

from Special Tables) of mistakes. From the right ascension,

and declination of the star and the day we may deduce from these

Tables the star's aberration
;
but not without six or seven small

processes of computation.

* M. Zach has, in his Tabula? Speciales Aberrationis et Nutationis :

Gotha, 1806, given the aberrations of six hundred zodiacal stars.

These are contained in two thick Volumes. Their learned Author

remarks that like Tables, for Piazzi's Catalogue of nine thousand stars,

would require fourteen octavo Volumes of five hundred pages each.
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By the Table which has been described and constructed, we

arrive, with little risk of a mistake, at the result after twice using

the Trigonometrical and Logarithmic Tables : once to take out

a logarithmic sine : again, to take out the number coresponding

to a resulting logarithm. But, perhaps, it will be better to shew

the convenience of the Table by one or two illustrations.

EXAMPLE I.

Required the aberration in right ascension and north polar

distance of Polaris* on July 23, 1800.

N = 11

o
c

18

27'

36

15 19 3, sin. = 9.97554

log. M = 1-30240

(10 + log. ^)=1 1.27794

A = 18".96

0=4'
= 8

a

27'

15 44

12 16 11 sin. = 9.44515

log. m = 2.78382

(10+ log. m) 12.22897

.-. m = 169".42 = 2' 49".42.

* It was mentioned in page 2.83, that Tables of Aberration will

serve, during fifty years, for stars, the polar distances of which are not

very small. But Polaris, the north polar distance of which is less than

2, requires to have a new Table of aberration constructed for it every ten

years, ft Ursae minoris is in a like predicament. We subjoin what, ac-

cording to M. Zach, would be tbe numbers and logarithms of maxima for

Polaris for the years 1790, 1800, 1810, 1820.

Log. M
1790 1.3035
1800 1.3034
1810 1.3033

] 820 1 .3032

N'

ll 5 19 1'

11 18 39
11 18 9
11 17 33
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EXAMPLE II.

Required the aberration in north polar distance of rj Ursze

majoris on Feb. 20th : and its aberration in right ascension on
Dec. 3, 1726.

Feb. 20th, O = 11
s

1 &
<see p. 284,) correct". 40

11 I 46

N' 4 22 27

15 24 13. ...... .sin,, = 9.95999

log. M = 1.25609

(10 + log. A) 11.21608

.:A = 16".44.

Again,
v

a

Dec. 3, = 8
s

1 1 30'

ri = 2 3 56

10 15 26 sin. = 9-84617

log. m = 1.47400

(10+ log. a) 11.32017

a == - 20".9.

EXAMPLE III.

Required the aberrations in north polar distance of a Arietis

on Feb. 16, and May 22, 1812.

Feb. 16, O = 10
s 26 44'

(see p. 284,) corr. = 009
10 26 53

N' . .,. 1 17

11 27 10 .. sin. = 8.69400

log. M= 0.89551

9.58951 .\4ss-.S88.
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Again,

May 22, = 2* 1 10'

correction =0 55

225
N' 1 7

3 2 12 . sin. = 9.99968

log. M = 0.89551

(10 + log. A) 10.89519

.'. A = + 7".85.

Before we proceed any farther with the mathematical pro-

cesses that belong to this subject, we will illustrate the formulae

already obtained, and shew how completely they explain the phe-

nomena observed by Bradley.

By p. 280, it appears

the aberr
n

. in N. P. D. of7 Draconis = 19".55 sin. ( O + 3s
1 42").

The aberration., therefore, is a maximum, equal to 19 .55,

and negative, when +3S
1 42' is equal to 9% and also a max-

imum, equal to 19"-55, and positive, when

O +- 3s
1 42' is equal to 15

s

;

that is, the star is, from the effect of aberration,

most northerly, when O = 5 28 18'',

most southerly , when O =11 28 18.

The Sun has the former longitude about Sept. 22, the latter

about March 19.

Now Bradley says (Phil. Trans. No. 406. p. 640.)
' About

the beginning of March (Old Stile) the star was found to be

more southerly than at the time of the first observation. It now,

indeed, seemed to have arrived at its utmost limit southward.'

Again, the aberration in north polar distance, will be nothing,

either when 4- 3s
1 42' = 6s

,

or, when O 4-3 1 42
.

= 12
;
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that is, either on June 20th, when = 2s 28 18'

or, on Dec. 20th, when Q = 8 28 18.

I
Now Bradley says (Phil. Trans. No. 406. p. 639-) 'on the

5th, llth and 12th, there appeared no material alteration in the

place of the star.' Which agrees with our results, since

Bradley's dates are according to the Old Stile. Again, we read

(p. 640.)
'

about the beginning of June (Old Stile) it (the star

y Draconis) passed at the same distance from the zenith as it

had done in December/

The formula belonging to tj Ursae Majoris furnishes us with

like illustrations. We have (see p. 279,)

A in N. P. D. = 18".03 . sin. ( O + 4s 22 2?')

(expressing the argument* in the nearest minutes), conse-

quently, A is a maximum, equal to 18".03, and negative, when

O + 4s 22 27' = 9
s

: it is, also, a maximum, equal to 18" ..03,

but positive, when + 4s 22 27' = 15
s

;
the first case

happens when O = 4s

7 33', about July 31,

the latter, when ........ O =10 7 33, about Jan. 27.

On this latter day, then, the star is most remote from the

north pole, or farthest south : and Bradley says (p. 658.)
'
it

was farthest south about the 17th of January/ the reckoning

being according to the Old Stile. .

There are several other inferences to be easily drawn from the

formulae of aberration ;
for instance, the aberration of y Draconis

in north polar distance is a maximum, either when

O = 5
s 28 18', or, = 11

s 28 18'.

Now, (see p. 280,)

the aberration (a) in M = 32".53 . sin. ( -f- 1 54' 34")

.'. = 32".53. sin. (6
s

22' 34"),

or = 32
//

.53.sin.(12 22 '34);

* The argument is the arc (0 + 4s 22 27').

O O
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when A in north polar distance is a maximum : but these values

of a, although very small, are not nothing. When the aberration

in north polar distance, therefore, is a maximum, it does not

follow that the aberration in right ascension is nothing ;
such

would be the case, if the star were situated exactly in the sol-

stitial colure. But y Draconis is not exactly so situated. If

we take rj Ursae majoris, we shall find that its aberration in right

ascension, is considerable when its aberration in north polar

distance is a maximum
; for, when this latter happens (see

p. 279,) O = 48
7 33' : at that time, therefore,

a = 29"-78 . sin. ( O + 2s
3 56')

= 29".78 . sin. (6
9

1 1 29')

= - 29".78 . sin. (1 1 29') = - 5".93.

The time at which any particular star passes the meridian,

when its aberration is either a maximum or nothing, is also easily

determined from the preceding formulae. For instance, when

y Draconis passes the meridian most to the north, the Sun's lon-

gitude (see p. 289,) is 5
s 28 IS

1

(on Sept. 22) : its right ascen-

sion, at that time equal ll
h 55m . But (see p. 165,) the star's

right ascension = 1 7
h 50m

;
and the difference between the right

ascensions (17
h 50m ll

h 55m ), or 5
h 55m , is, nearly, the time at

which the star passes the meridian after the Sun. The star then

passes the meridian, very nearly, at six in the evening : it would

pass (when its aberration in north polar distance is greatest)

exactly were it situated in the solstitial colure.

We arrive at like and consistent conclusions, if we investigate

the aberration when y Draconis did pass at six in the evening, or

at six in the morning : suppose we take the latter time, then

24h + 17
h 50 - 18

h = O's JR,;

.'. O'sj&:=23h 50m , and O = 11 s 27 17';

consequently, (see p. 280_,)

A = 19".55 . sin. (1 1 27 17' + 3s
1 42')

= 19".55.sin. (14 28 59)

= 19".55.sin. (2/28 59),

which is evidently less than 19".55 the maximum of aberration.
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-Again, when the aberration in right ascension of ij Ursae

majoris is a maximum, O =0S 26 4', or, 6* 26 4
X

; but, when

the Sun's longitude ( O ) is
s 26 4'

'sM = l
h 36m 44'

and since *'s M . =13 35

the approximate time of passing the meridian is . . 11 58 16

or q Ursae majoris, when its aberration in right ascension is the

greatest, passes the meridian about two minutes before midnight.

When the same star passes the meridian at six in the

evening,

J3
m 35

m - O's^R = 6h
; nearly,

and consequently, 'sM = 6h 25m,

O (the Sun's longitude) is about 3
s
5 48'

;

/. then A= 1S".03 (sin. 7
s 28 150= - 18".03 sin. (I

8 28 15'),

and a = 29".78 (sin. 5s
9 44') = 29".78 sin. (20 16').

There is, in the preceding instances, abundant evidence of

the truth of Bradley's observation (p. 644.)
'
I have since dis-

covered, that the maxima of these stars do not happen exactly

when they come to my instrument at those hours.'

We will continue, a little longer, the illustration and explana-
tion of Bradley's original methods.

In the preceding pages the coefficient 20
;/

.25 has been used

instead of 20", which is Bradley's value. It is the aberration

(see p. 268,) which a star, situated in the pole of the ecliptic,

will constantly have in the plane of the circular arc &T. But

Bradley did not determine its value either by observations of a

star in, or near to, the pole of the ecliptic. Had there been a

large star so situated it would not, for other reasons, have suited

Bradley's purpose. It would have been too remote from the

zenith of his Observatory, to have been observed by his Zenith

Sector, and if it could have been observed, its refractions would

have, in some degree, perplexed the deduction of results. The

stars that Bradley did observe were all within a few degrees of his

--..
'

' '*
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zenith. The greatest aberrations in north polar distance of sue

stars were observed, and the coefficient (20"), we are speaking o

deduced in the following manner :

Thus, instead of 20".25, suppose we represent the coefficien

of the expression of p. 177, 271. by an indeterminate quantity x
tVifnthen

sin. PM = x.
sm.dnZ

'

M was determined by observation, d Z and P (see pp. 270,) by

computation ;
and thence x was deduced. Thus, suppose

7 Draconis to have been the observed star, ^and the interval

between its most northward point of aberration, and it most

southward, to have been 39" : then 39" is twice the value of M
;

, _,

,.
sin. dn Z

and 2* = 39". . p .

sm. P

At the time of Bradley's observation, suppose (see p. 177,)

the values of d Z and P to have been (and these were nearly

their values) 3 52', 3 44', respectively : then , computing, by

logarithms, the value of the above expression, we have

log. 39" ...................... 1.59106

log. sin. 3 52' ................ 8.82888

10.41994

log. sin. 3 44' ................ 8.81366

(log. 40.05) .............. ..... 1.60628

.'. 2o: = 40".05, and x = 20
/;

.025.

This was the result from one of Bradley's stars. The other stars,

seven in number, gave, by similar computations, results a little

different. The following Table contains those results, not,

indeed, exactly those which Bradley obtained, but those which
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M. Zach, on repeating Bradley's computations, affirms to be the

true values.

Stars.
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explanation of the phenomenon he had discovered. A Nutation

of the Earth's axis, or an inclination of its position, naturally

suggested itself, (see Phil. Trans. No. 406, p. 641). In

September y Draconis was more northerly, that is, nearer to

the north pole, than it had been in the preceding June : might
not then the pole P have shifted its place from P to pi if it

had so shifted, then this must happen : the north polar distance

of a star
^, situated also in the solstitial colure, but in an

opposite part of it, that is, differing from it in its right ascension

by 180, would, instead of being P, be increased to p<, and

precisely by the quantity Pp. Now what was the fact ? The
north polar distance of , or P , was found to be increased, but

not by the quantity Pp, that, by which the north polar distance

of y had been diminished, but, by about half that quantity.

This, therefore, was quite decisive against the hypothesis of a

nutation of the axis, or of a shifting of the pole from P to p.

But, on Bradley's last hypothesis, that which has been pro-

pounded as the true one, is the phenomenon, just mentioned,

explicable ? The star was one in the constellation of Camelo-

pardalus, with a north polar distance equal to that of 7 Draconis;

its co-latitude, therefore was equal to the obliquity of the ecliptic

+ north polar distance, that is, it was about 62, and its latitude

accordingly, would be 28. Therefore since the latitude of

7 Draconis (see p. 5 7.) is 74: and the maximum (lV) = 20"x sin.,

star's latitude : hence,
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N(y Draconis) : N(< Camelopardali) :: sin. 74 : sin. 28

:: 9612 : 4694

:: 2.04, &c. : 1,

which result agrees with the observed phenomenon ;
and accord-

ingly, Bradley's theory explains it.

For the understanding of the subject of the present Chapter,
and for the application of its formulae, there is, perhaps, enough

already done. We wish, however, to say a word or two on

certain formulas from which general Tables of aberration are con-

structed. The Tables, of which the construction has been

given in the preceding pages, have been constructed by the

intervention, or aid, of certain angles, called Angles of Position,

and of the longitudes and latitudes of stars. Now these quanti-
ties depend and (see pp. 153, 168, &c.) are, in fact, derived (the

obliquity of the ecliptic being given) from the right ascensions and

declinations of stars. We ought, therefore, to consider whether

there may not be some simple or some convenient mode of ex-

pressing the inequalities of aberration, in terms of the star's

right ascension, declination, and of the Sun's longitude. For,

catalogues of these latter quantities are easily resorted to, being

usually inserted in Astronomical Treatises, and in National

Ephemerides. Whereas catalogues of the latitudes and longi-

tudes of stars and of their angles of position are rarely to be met

with.

We will now, then, proceed to deduce, from the formula we
have already established, those other formulae which it is, at the

least, an object of curiosity, to enquire after.

The aberration in right ascension (a) depends (see p. 272,)

on these two formulae,

cot. P
tan. a Z = T T-;

sin. X

cos. P
a = 20".2o. . : . y .sin. A T,

sin. o cos. A

X is the star's latitude, let L denote its longitude, then

JT=Q - 180 - L + a Z,
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and consequently, sin. AQ T = sin, (L ),

and since a Z = 90 + /J Z, sin. a Z = cos. -^ ;

/. a = 2Q".25.
C S '

a . {sin. (L- ) cot.cr 2 cos. (L )}
Sill.

20".25 cos. P .
sin. X

sin.

/ . N
sn. X \

.(sin. (L- 0)- cos.(L- 0)1V cot. P '

which latter is, in fact, Cagnoli's expression given in p. 441, of

his Trigonometry.

Again, by expanding the sine and cosine of the binomial arc,

20".25 (cos. (cos. L cos. P sin. L sin. P sin. X))

sin. $ v -f- sin. (cos. L sin. P sin. X+ sm - ^ cos - -P)'

= (by forms 11 and 10 of p. 182.)

20".25
.

*

a (sin. sin. JR + cos. cos. ^l . cos. I),
sin. d

which agrees with the first part of Delambre's expression given

at p. 111. torn. III. of his Astronomy. We may express the

latter form differently, by substituting, instead of

cos. /(= cos. 23 27' 56'
7

)

its numerical value.

Thus, 20
//

.25.cos. I = 18".575;

.-. a= -.'- -
(20^.25 . sin. sin. ^1+ 18

;/

.575 cos. cos.M
sin. o

1 TlO^.125 cos. (0"- A)- 10
/7

.125 cos. (0 +
sin. 8

'

I -f- 9
r/

.287 cos. (
-

JSi) + 9-287 cos. (

0".838.cos. (0 -f ^l)-19".412.cos. (0
.*. a =

sn.

which is the same expression which Delambre has given, in

p. 115. torn. Ill, Cagnoli, in p. 443, and Vince, in p. 236, of

their respective Treatises.

We may express differently the preceding formulae : thus,

since
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jn T fsin. sin, JR. (1 + cos./) 1
in. sin. JR =

<(
v ,

(4- sin. sin. M (1
- cos. /))

m r I (COS. COS. JR. (1 + COS. /) 1
cos. cos.M cos. /= T 1 4 i

t cos. .0 cos. JR (I cos. /)J

we have

cos. /) )

- cos. /))
'

10".125 cos.(
-

jR)(l -f

sn. I cos. (0 -f JR.) (1 cos. /)

which is Delambre's formula given in the Connoissance des Terns

for 1788, p. 239, and in that for 1810, p. 460.

Instead of 1 + cos. /, 1 cos. /, in the above expression,

we may substitute 2 .cos.
2 -

3 2 sin.
2 -

, and then

a= . '/.|cos.(0 -f- .l).sin.
2 - - cos.(0 - ^l). cos.

2 -
|,

sin. d
'

2 2 )

which is the expression of Delambre : (see his Astronomy,
torn. III. p. llo. also Suanberg's Exposition, &c. p. 115.)

By like transformations, the formula previously obtained, (see

p. 271,) for the aberration in north polar distance, may be trans-

formed into that which Delambre has used for the constructing of

his general Tables of aberration.

The subject of aberration has proved fruitful in the invention of

formulae and their dependent Tables. There is no great difficulty

in multiplying such formulae, or rather, as we wish to view the

matter, in variously modifying the formulae that have been originally

obtained, (see p. 271, &c.) We will give one more instance,

20'
7

.25
a= --: 5- (cos. cos. JR. cos. I + sin. sin. JR.),

sin. d

_ f . tan. . sin. JR\
.cos. cos. / *jcos. JR + f (

I cos. / >

20".2.5 _ tan.
a = :

sin. d v cos.

Let
tan . N

=- = tan. ( 4- 37) ;

cos. /

pp
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_ cos. G cos. I / cos. JR cos. ( O x

sin. ( O -fsin. <j

'

cos. ( O 4- #)
'

1 4- sin.

20
/7

.25 cos. O cos. I

sin.
. {cos. (O

cos. (

which formula is the foundation of the construction of M. Gauss's

Tables of aberration in right ascension.

The formulae for the aberrations in north polar distance ai

right ascension are the most important formulae, since they enabh

the observer to correct the observations made with the mui

quadrant, transit telescope, and zenith sector. The latitudes

longitudes of stars are, as it has been more than once said, angul;

quantities not observed but deducible from observations. It

rarely happens then that it becomes necessary to correct then

quantities for aberration. Still there are astronomical calcula-

tions in which the aberrations in latitude and longitude are re-

quired to be known. For that reason, we will now proceed to

deduce, and on the plan already acted on (see pp. 269, &c.) the

formulae for such aberrations.

Investigation of the Position of the Point T when the Aberration

in Latitude = 0.

Draw arK perpendicular to TT<T, a secondary to the ecliptic;

r

cX"*

then aK is the position of a T, and K of T, when the aberra-

tion in latitude is = 0.
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Now K Z is perpendicular to TT; and since K <r is drawn

so, K (see Trig. p. 128,) is the pole of the circle TT Z
;

.'. 1C

is a quadrant ;
.*. since K is 90 before the corresponding place

of the Earth, the Earth is at Z, or is in syzygy with the star.

Formula for the Aberration in Latitude.

Draw am perpendicular to TT; then crm (
= K) is the aber-

ration in latitude,

and &m, or A = <rcr'.cos. maa'
= 20".25sin. crT.sin. TvK
= 20.25 sin. KU T. sin. TK a,

But, since K is the pole of TT, the, angle T7C (r is measured

by o~Z, the star's latitude. Hence,,

X= 20".25 . sin. tf
or x sin. star's latitude.

Hence^ K, the aberration^ is a maximum (IV) when K T is equal

90 ;
that is, when Tis in Z or 180 distant from it

; or when the

Earth is in quadratures (see p. 135,) with the star : the formulae

"become then

N = 20".5 .sin. star's latitude. . . .(?),

K = N.sin.K T (8).

Investigation of the Position of the Point T when the Aberration

in Longitude = 0. (See Fig. in p. 298.)

This must happen, when ffT coincides with arZ : or, when

T falls in Z
;

that is, since T is 90 before the corresponding

place () of the Earth, when the Earth is in quadratures with

the star.

Fdrmulafor the Aberration in Longitude.

. ma ffff.si
The aberration ()=- LmirG =. =

Sin. 7TCT COS.

sin. crT. sin. ZffT
= 20". 25. =

cos. Z>cr
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But, since ZaT is a right-angled spherical triangle, by Naper's

rule, we have

1 x sin. ZT sin. aT X sin. ZcrT;

k " - sin. ZT
__

cos. Z

"cos. star's latitude 'cos. star's latitude

Hence A: is a maximum (ri) when cos. is the greatest, that is

when either =0, or 180 : in other words, when the Earth,

or Sun, is in syzygy with the star :

hence the maximum, or n
cos. star's latitude

and U n. cos. @Z (10).

We might have avoided this direct process and deduced the

aberrations in latitude and longitude from those in right ascension

and declination. In its technical enunciation, the enquiry woulc

have been to find the errors in latitude and longitude from the

given errors in right ascension and declination : which error

might have been found by two ways : either after Cotes's manner

as Cagnoli has done, or by deducing the values of dL, d\ from

some of the formulae given in p. 182.

It is plain, in investigating the formulae of aberration, that we

might have pursued a method the reverse of that which has been

now described : that is, the first steps of investigation might have

been directed to the finding out (and they are, in fact, the most

easily found) the aberrations in longitude and latitude : thence

we might have proceeded, by a route strictly mathematical, and

without any clue furnished by the nature of the enquiry, to the

aberrations in north polar distance and right ascension. Such,

generally, has been the course of investigation. Clairaut,

Thomas Simpson, Cagnoli, and Suanberg have followed it.

The last-mentioned Author, in his Treatise*, has derived his for-

mulae, from the differentials or the fluxions of equations 1
3 2, of

*
Exposition des Operationsfaites en Lapponie, pour la determination

cr*un arc du meridien, &c. Stockholm, 1805.
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p. 182. He goes, however, farther than the generality of authors*,
and adds, to his formulae, certain minute corrections which are due
to the eccentricity of the Earth's orbit.

But, as it has been already remarked, there is a great variety
in the ways of deducing the formulae of aberration. The formulae

of aberration in right ascension and north polar distance, being the

most important, have been investigated by the most direct and

shortest methods. Of such investigations, the curve of the star's

aberration, described during a year, was not a condition. It was

not enquired, since it was not essential to enquire, whether the

curve were circular or elliptical. The laws of the several aber-

rations (which laws are expressed by their appropriate formulae)

are indeed connected with the form of the curve, inasmuch as two

results derived from a common source are connected. If the

one were varied the other would : and, in consequence of this

sort of connexion, it is easy to see that, from one established or

proved, the other might be deduced as a Corollary or conse-

quence. From the nature, or law, then, of the curve apparently

described, during a year, by a star, in consequence of the prin-

ciple of aberration of lightt the respective formulae expressing
the aberration in its several directions may be supposed to be

derived. And, in fact, the original proposition in the present

theory was '
that the apparent path described by a star, in con-

sequence of aberration, was a circle the plane of which was

parallel to the ecliptic.'

* Delambre has done the same thing (see his Astronomy, pp. 110, &c.)

We have not entered into these investigations, of which, perhaps, the

chief use is the shewing that the corrections sought are so small, that they

may safely be neglected. If IT be the longitude of the perigee the term

to be added to the aberration in right ascension, (see p. 297-) is

-0".34
: 5- (cos. I . cos. JR. . cos. 7r 4- sin. JR sin. TT).

sin* o

The aberration on north polar distance will be

20".25 (cos. M sin. cos. I. sin. JR cos. )

+ 20",25 . sin. / cos. cos. S - 0".34 sin. I cos. TT cos. S

-ftf',34 {sin. 3 (cos. I sin. M cos. TT - cos. M sin. *)}.
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This certainly was a happy beginning of a beautiful Theory.
But the origin of the formulae was thrown a little farther back

than when they were made to commence from the effects of aber-

ration on the latitudes and longitudes of stars. These latter

quantities are not, except in particular cases, objects of observa-

tion. But the circle of aberration, is still less so; it is a mere

fiction whatever be the star in the Heavens we select for our

observation. It cannot be called a phenomenon, because it

would be only such were the circumstances of observation dif-

ferent from w^hat they really are. The curve would be a circle,

if we saw the aberrations in directions parallel to the plane of

the ecliptic. And this point we will now proceed to establish.

By p. 267, the aberration always takes place in a plane

passing through <r E, ET. But, T, in the course of a year, is

carried through the circle ZTY-, therefore, if we conceive Ecr to

remain parallel to itself, (which it may be conceived to do, by
reason of the relative smallness of ES) Eo~', will in a year gene-
rate round JEer a conical surface.

Draw rv parallel to JET; then, by p. 268,

rar : Ear :: velocity of the Earth : velocity of light.

Now, the latter velocity is assumed to be constant, and if the first

be, then rar is so also; that is, during the revolution "cr will
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describe a circle, parallel to the plane in which ET is, or parallel

to the plane of the ecliptic. This circle may be considered as

the base of the conical surface described by Er.

Since Ear is not necessarily perpendicular to the plane of the

ecliptic, and consequently not so to the plane of the circle de-

scribed by rcr, the generated surface belongs to that species of

cone which is called oblique.

The above is, as we have stated, a merely Geometrical

Theorem : the spectator sees no circle. The star always appears
to him in the direction of E<r', and he constantly refers cr' to the

imaginary concave surface of the heavens to which jEcr is perpen-
dicular : consequently, since the intersection of the oblique cone

by the concave surface, or by a tangent plane at cr, is an ellipse *,

the star, during the year, will constantly appear to be in the cir-

cumference of such curve.

In one case, indeed, if a star were situated in the pole of the

ecliptic, the star's apparent path will be circular; for, then,

JEcr will be perpendicular to the plane of the ecliptic, and the

conical surface generated by _Ecr', will belong to a right cone, or

a cone of revolution.

This is sufficiently plain, if cr r be constant, or if the Earth's

velocity be constant. But, if we suppose, which is the case in

nature, the Earth's velocity to vary, what then will be the ima-

ginary curve which err describes, or, what will appear to be the

curve of aberration of a star situated in TT the pole of the ecliptic ?

It is a curious result, that, in this, as well as in the preceding

simple case, the curve is a circle.

Let E be the Earth, in her elliptical orbit
;
S the Sun in one

focus, and let H be the other focus, HZ a perpendicular to

TEt, a tangent at E. Draw from cr the star, cr/* parallel to Bb,

* The intersection of an oblique cone by a plane not parallel to the

circular base of the cone, and not a sub-contrary section, is an ellipse.
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and <rr to TEt
;
and take err proportional to the Earth's velocity

at E.

Since the Z her = Z mtT= Z TJY; .'. the complement
of her, or Z rorF=: Z THZ, the complement of ZTH, in other

* 7 Jr *

terms, err, jff make equal angles with <rF, .HT. Moreover,
the Earth's velocity varies inversely as a perpendicular from S on

the tangent TEt, or, by Conies, directly as HZ : but, err varies

as the Earth's velocity, and therefore as HZ. Hence, err varying

as HZ, and revolving towards G V with the same angular velocity

as that with which HZ revolves towards HT, r and Z must

describe similar curves : but (Vince's Conies, p. 17. Edit. 1781.)

Z describes a circle, consequently r does.

At the point A, HZ is the least, and the angle THZ = ;

therefore in the line or F, the aberration ed is the least, and con-

sequently there perpendicular to the circle. In the opposite part
of the line, are is the greatest and also perpendicular to the circle.

Hence the centre of the circle is in the line de, and its dis-

. ere crd
tance from cr is equal to .

Such are the propositions which, as it has been remarked,

are, in gome Treatises, first established, and then become the
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foundation of the formulae of aberration. According to the view

which we have taken of the theory, they are not essential to it,

|

of no use to the practical Astronomer, and are speculative and

mathematical. Their excellence, however, as such, has been

|

the cause of their present introduction.

We must now (for this is one of the objects of an Elementary

Treatise) say a few words on the application and uses of the

formulae of Aberration.

When we speak of the comparison of the zenith distances^

or of the polar distances, of the same star at different epochs, we
cannot mean to speak of their observed distances. For, such

expressions would be altogether vague and ambiguous. We
mean to speak of distances cleared of inequalities, or alike

affected by the same inequality. And we cannot better illustrate

this point than by considering one of the methods of determining
the differences of the latitudes of places.

The difference of the distances of the same star from the

zeniths of two places, is the difference of the latitudes of those

places, if the star be either north or south of both zeniths

(see p. 12.) If north of one, and south of the other, then the

sum of the distances is the difference of the latitudes. If the

star be observed on the same day by two observers, then, since

the aberration would equally affect each observation, no correc-

tion, beyond that of refraction, would be necessary. The zenith

distances might be immediately added or subtracted. But, which

generally is the case, if we make an observation in one place, and

avail ourselves of an observation made previously in another, then

this latter will need correction. In the interval between the two

observations, or, in the interval between the actual observation,

and the epoch at which the star's place is registered in Tables,

the star, with respect to the pole, and consequently to the

zenith, will have changed its mean place : it must, therefore, by
the means of Tables, be brought up from its tabulated place, to

its mean place at the time of observation. But, at that time,

from the effect of aberration, the observed star is either seen

to the north or the south of its true place. The quantity of

deviation therefore, or the aberration in declination, must be

QQ
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either added to, or subtracted from, the place of the observed

star
; or, subtracted from dr added to the place of the tabulated

star. The latter is the usual mode, by which, accordingly, the

apparent and not the mean zenith distances of stars are compared.

The following instance will illustrate the preceding explanation :

May 10, 1802, Blenheim Observ. apparent zenith

distance (north) of 7 Draconis 19' 44".59

1802. Greenwich mean zen. dist. (south) 2 16.65

Aberration to May 10 12 . 58

May 10, 1802, Apparent zenith distance of y Draconis

at Greenwich 2' 4".07
j

.*. sum. of zen. dist. or difference of latitudes *. . 21 48.66

and since latitude of Greenwich Observatory . . 51 28 3Q.5

*
\

latitude of Blenheim 51 50 28.16

In a similar way, may the difference of the latitudes of places

be determined, if, instead of a recorded observation and one

actually made, we use two recorded observations. Thus, we

may determine the difference of the latitudes of Cambridge and

Greenwich, by means of a zenith distance of y Draconis made,
in the former place, June 3, 1790, and of a zenith distance of

the same star made in the latter, Jan. 5, 1797. The two obser-

vations, by applying, with other corrections, that of aberration,

may be reduced either to June 3, 1790, or to Jan. 5, 1797, or

both may be reduced to some other; for instance, Jan. 1, 1790,

or Jan. 1, 1800.

With regard to the formulae of aberration in right ascension,

we will now shew their use in regulating astronomical clocks. The
foundation of all our methods of making time the measure of right

ascensions, is the supposition of the Earth's equable rotation round

its axis. If that rotation alone regulated the intervals between the

successive transits of stars over the meridian, all such transits would

* The aberration is additive to the north polar distance ; therefore

since 7 Draconis is north of the zenith, subtractive of such zenith distance.
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equal, and performed in twenty-four hours of sidereal time. In

ich a case, nothing would be more simple than the mode of

jgulating a clock. We should have merely to observe the star

the middle wire of the transit telescope, and to note the con-

jmporaneous position of the index of the clock. But other

:umstances influence the intervals between the transits of

Jtars. Of such circumstances the inequality of aberration is one.

Iflt (see p. 264,) sometimes causes a star to appear on the middle

Wire, sooner than it otherwise would have done, at other times

pater. The intervals between the transits of stars, then, which

'ould be equal from the Earth's rotation, can no longer be so.

{But if the observer should know by how much they are unequal,

could, as truly, although not so simply, regulate his clock as

the first supposition. And this knowledge is afforded him by
le formulae of aberration, or their derived Tables.

Our attention, in the preceding pages, has been directed to

ic fixed stars : but, it is plain, the places of the Sun and of the

1 planets must be affected with aberration. Thus, during the

(passage of the Sun's light to the Earth (in 8
m

13
s

) the Sun itself

I describes 20
//

.25 in its orbit. The Sun, therefore, in consequence

[of the progressive motion of light, is seen 20".25 behind its true

iplace. The true place being that in which the Sun at the instant

I
at which it is seen. The same result will follow from the ex-

pression for the aberration in longitude, which is

20".25
-

: X cos. Z,
cos. ^K s latitude

in the case of the Sun, the denominator = cos. 0=1,
cos. Z = cos. 180 = 1

;

therefore the aberration = 20". 25.

A planet's place is differently affected by the aberration of

light. In the case of a fixed star, we have shewn (see p. 253, &c.)

that a star's place s would be apparently transferred to a-. Now

suppose s to be a planet, and whilst its light is descending to th'e

Earth that it moves from s to cr
; then, the true and apparent

places of the star will coincide
;
there will be no aberration ; or,

he star, in consequence of the aberration of light, will be neither
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before nor behind its true "place : the true place, as we have said,

\<r *. s

being that which it ought to have at the moment of its being seen.

In the above supposition, which is a particular one, the Earth

and planet moving, the same way, through equal spaces, tht

planet has no geocentric motion; or, a spectator on the Earth

refers, at the beginning and end of the interval of the time, the

planet to the same point in the Heavens.

Let the next supposition be that of the planet's describing
a space less than scr, whilst its light is transmitted to the Earth :

the true place then of the planet would be between s and cr,

whilst, in consequence of the aberration of light, its apparent

place was at cr. The deviation arising then from these two

causes would be an angle less than s t cr, and formed by two

lines drawn, respectively, from that intermediate position, oi

which we have spoken, and from crl It would be equal to an

aberration caused by the Earth moving' with a velocity which is

the difference of its own and the planet's, and is, as before, the

planet's geocentric motion
; or, the angle which, to a spectator

on the Earth, is apparently described by the planet.

If the planet moving the same way as the Earth, should move
faster than the Earth, or if, during the transmission of its light

to the spectator, it should have moved from s to a point beyond
cr, then, the planet will appear behind its true place.
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If the planet (*) should be movingfrom or, or, iii a direction

contrary to that of the spectator's motion, then by reason of the

aberration of light, the planet's place would seem to be at tr,

but the planet itself would be at some point to the right of s
;

and, consequently, the whole aberration, or deviation, would be

some angle greater than sta", and would be equal to the aberra-

tion which would arise, did the planet remain at rest, whilst the

Earth moves with the sum of its own and of the planet's motion.

It is also equal to the planet's geocentric motion, or to the angle
which a spectator on the Earth's surface imagines the planet to

describe.

The expressions, then, which are essential to be known, in

constructing the formulae of aberration for the planets, are the

geocentric motions of the planets ;
which are quantities not, as

yet, investigated.

The coefficients of the geocentric motions are easily investi-

gated.

M
Let M be a planet's horary motion, then -

is its motion

during one second. If 1 represent the Sun's distance from the

Earth, d the planet's distance from the Earth, then, since light

takes 8
m 13

s
.2 of time, to pass over the radius (l) of the Earth's

orbit, its time of describing d will be 8
m

1 3
8
.2 X d, consequently,

if M, therefore, be the horary motion (whether it be in longitude,

latitude, declination, or right ascension) the corresponding aber-

ration will be

0.137 Md.

To the above inequalities of refraction and aberration that of

parallax succeeds
;
of which there are two kinds

;
one arising

from, or being, the difference of the place of a star seen from
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different points of the Earth's orbit
;
the other, the difference of

a star's place seen from different parts of the Earth. The for-

mulae of the first kind applied to the fixed stars, would enable

us, were their parallaxes sensible, to correct their apparent
zenith distances, &c. just as we have already corrected such

distances on account of refraction and aberration. But, in fact,

this reduction is never made. The maximum of parallax, if

parallax exist, does not exceed two seconds. Still, for reasons

already stated (see p. 250.) it is useful to know its laws :

which, in the beginning of the next Chapter, will be laid down

and mathematically expressed in formulaB. Such formula are

made to succeed those of aberration, because (this, indeed, is not

a reason drawn from the natural order or connexion of the

subjects) they may, by the most simple process, be derived from

them.



CHAP. XII.

ON PARALLAX.

Its Formula similar to the Formula of Aberration. Values of

the Parallaxes ofparticular Stars deduced from the Tables

of Aberration. Table of Parallaxes similar to the Table of
Aberrations. Expressions for the Parallax in Right Ascen-

sions; North Polar Distance ; in Longitude; in Latitude.

Attempts made to establish the Existence of Parallax.

Parallax of a Planet. Method of determining it. Its

Use and Exemplification.

THE description of the present Figure is nearly the same as

that of the Figure of p. 267- - sP is the arc of a circle of which

E is the centre : s is a star seen, from the point S, in the direc-

tion Ss<r, and, from the point E, (the Earth's place), in the
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direction Escr
1

. The difference of these two places of the star,

or, the angle SsE is the parallax ;

since, Es : ES :: sin. ESs : sin. SsE,

ES
sin. SsE', or, nearly, SsE= .sin. ESs.

^ JLJ S

ES
Now , the star being the same, is, nearly, a constant

quantity.: it would be exactly so, if the eccentricity of the

Earth's orbit, which is small, were nothing. Again,

z ESs= zPEs- zEsS = /PEs, nearly,

(in extreme cases it cannot be supposed to differ from it by 1 ).

Hence,

ES
the parallax (P) = .sin. PEs

Jli S

ES .= -
. sin. P s

;Es

P, therefore, is a maximum (B) when Ps = 90, that is, when

the star is in TT the pole of the ecliptic : consequently,

ES
"E~S>

and P = B . sin. Ps.

The Earth's orbit being, nearly,' circular, ET is, nearly, per-

pendicular to SEP, and PT (SE being extremely small rela-

tively to SP) is, nearly, a quadrant. Now (see p. 268,) the

aberration varies as the sine of s T, and, as we have just seen,

the parallax varies as the sine of sP; sP will become sT after

E has described 90 : consequently, the formula which ex-

pressed the variation of the aberration, three months previously,

will now express that of the parallax : or, since the aberrations in

opposite points of the Earth's orbit are equal, although in dif-

ferent directions, the formula for the aberration, three months

hence, will be the formula for the parallax at the present time.
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We will now consider which of these two formulae ought to

be taken, so that the signs may be the same in each.

The star <S viewed from E is seen at cr' : from S at <r ; there-

fore, by the effect of parallax, the star, in the above positions, is

elevated above the ecliptic. By the effect of aberration (see

pp. 252, 8cc.) a star, the Earth being at g and moving according
to gEj, is depressed towards the ecliptic, and elevated when the

Earth is aty*: consequently, it is the expression for the aberra-

tion three months after the present time that we must take to

represent the parallax.

The only point that remains to be considered is the coeffi-

cient. In the formula for aberration, the coefficient is 20".25 : that

for parallax has been represented by B. Find, therefore, by the

formulae, or by the derived Tables, the aberration (A} which

would take place if the Sun's longitude were increased by three

signs, and the parallax

For instance, to find the parallaxes in north polar distance of

o Cygni on June 21, August 1, and November 11, add three

signs to the Sun's longitudes on these days, and take out from

the Tables (or compute) the corresponding aberrations : which

will be, nearly, the aberrations on Sept. 22, Nov. 1, and Feb. 8 :

and which aberrations (corrections to the observed distances), will

be respectively,

-15".65, -18", -r-tf',56,

the parallaxes will be, (supposing B the semi-annual parallax to

be one second)

= - o".78, -^ = - 0.89,
^ = 0".32.

' '

20.25
'

20.25 20.25

By such means we obtain the values of the parallax from the

Tables of aberration : but we may easily, from the principles

that have been laid* down, deduce the formulae of parallax.

Thus, according to the method explained in p. 274, &c. the star

R R
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being a Cygni, the number N' is 2s

53', and the

log. M= 1.2613; .'. log. A=s log. sin. (0 -f 2
s

53')+ 1.2613 :

to convert this into a formula for parallax, we must, (see p. 313,)

add 3s
to , and, should l" be the semi-annual parallax, deduct

1.30642 (the logarithm of 20".25) from 1.2613 the logarithm of

the maximum. Hence,

log. P (in N. P. D.) = log. sin. ( +5' 53') + 1.9549-

Let us apply this formulae to deduce the preceding results,

June 21, 0=2" 29 5l'

5 53

# 44. ........ log. sin. = 9.9407

log. max. = 1.9549

(log. .786)' 19.8956

>. parallax = 0".78,

the sine of 8
s Oe

44' being negative.

-Again,

August 1, Q = 48 8 59'

5 53

9 9 52. .. log. sin. = 9.9935

1.9549

(log. .88) 19.9484

/. parallax = <)",88.

Again,

Nov. 11, =r 7
s

18 69'

5 53

12 19 52
log. sin. = 9.5312

T.9549

(log. .306) 19.4861

*. parallax = O
x/

.306.
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Generally, if

log. A = log. sin. ( + N') + log. M9

log.P(inN.P.D.) = log. sin. (O + 90 + 2V ') + log. M~ 1.3064,

\" being the semi-annual parallax.

We might, then, were it worth the while, from a Table of

Aberrations, (see p. 283,) form a Table of Parallaxes : for

instance,

Stars.
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Again, L and X representing, respectively, the longitude and

latitude of a star,

20".25
the aberration in longitude = cos. (L G ) ;

cos. X

l"
.'. the parallax in longitude = sin. (L G ).

Again.,

Aberration in latitude = 20".25 . sin. X . sin. (L G ) ;

.*. parallax in latitude = \" . sin. X . cos. (L G )

Hence, when the aberrations in longitude and latitude are the

greatest, the parallaxes in longitude and latitude are the least :

and conversely.

Since the variations of the parallax and aberration are ex-

pressed by the same formulae, the curves (should any question
arise concerning them) of aberration and parallax are similar.

That is, (see p. 303.) the curve apparently described by a

star, in consequence of parallax, is an ellipse, of which the

minor axis is 2". sin. X, 2" representing the major axis, or,

generally, if 2vr should represent the major axis, STT sin. X would

represent the minor.

These ellipses, like those that represent the aberration, are

easily traced out. M. Lalande in his Astronomy, vol. Ill, has

traced out the ellipses of parallaxes of Sirius and Arcturus : now
the latitude of Sirius (1805) =0S

39 33' 40"

of Arcturus 30 52 1?

longitude of- Sirius 3 1 1
- 23

of Arcturus 6 21 30 0.

Hence, (see 1. 7,)

paral. in lat. of Sirius = \" . sin. (39 33' 40") x cos. (3
s

1 1 23'- G )

.'. the parallax is a maximum either when G = 3s
11 23'

or when G = 9 11 23

the two maxima of parallax happens then, about July 3, and

Januarys, and are, respectively, equal to 0".6367, -f-0
A
'.6367:
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draw, therefore, as line parallel to the ecliptic equal to 2", and,

through its middle point, draw, on each side of it, a line equal
to .636? which will be the semi-minor axis. The whole line will

be the minor axis ;
at the extremity farthest from the ecliptic the

star will appear to be on January 3,' at the extremity nearest to

the ecliptic on July 3.

In order to find when Sirius will appear to be at the ex-

tremity of the major axis, we must make in the expression for

the parallax in longitude, namely, in

- sec. X sin. (3
s

1 1 23' -
),

3
s

11 23' = 3
s

; whence = 11 23':

the time, corresponding to this longitude, is April 1 : at the in-

terval of half a year, the star is at the other extremity of the axis

major.

With regard to Arcturus, the expressions for his parallaxes in

latitude and longitude are, respectively,

l" . sin. X . cos. (6
8
21 30' - ),

and l" . sec. X . sin. (6 21 30 0);

consequently, he is at the extremities of his minor axis, either

when = 6s 21 30', or =21 30' : that is, on October 15th,

and April llth
;
and he is at the extremities of the major axis of

the ellipse of parallax, either when =38

21 30', or =9* 21 30',

that is, on July 14, and January 12. The minor axis of the

ellipse is 2". sin. 30 52' 17", or 2 X .513 = l".026.

It was in the observations of the pole star that Flamstead

thought he discovered the existence of parallax. Now (see

p. 278,) the aberration in N. P. D. = 20".06 sin. ( -f 1 1
s

1 8 17') ;

2C/' 06
/. (see p. 313,) the parallax

= '

sin.( + 14 18 17)

= 0".99.sin (O -f 2 18 17).

The parallax, therefore, is nothing when = 3
s
11 43', and

very small, when O is nearly of the above value ;
that is, about

the middle of summer. In winter the same thing will take

place ;
that is, the parallax in declination, (supposing the star to
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have au annual parallax) will be extremely small. Now,
Flamstead, from his observations, found the declination of the

pole star to be less in summer than in winter by about 40
'

; 4or,

which is the same thing, he found the diameter of the small

circle, described by Polaris round the pole,, to be larger in sum-

mer than in winter by about l' 20". But this phenomenon
could not, as we have shewn, arise from parallax : still it was a

phenomenon : in other words, the observations of Flamstead

were just*: there was such a difference as he noted, but it arose

not from parallax but aberration : which it is easy to shew :

thus, by the expression in the preceding page,

when O = 3
8

11 43',

the aberration in N. P. D.= 20".06 . sin. 15" = 20".06,

and, at the opposite point of the Earth's orbit, = 20".06.

Hence, the north polar distance was greater, or the declination

less, in the former period than in the latter by 20".06-f-20" .06,

or 40".12, which agrees exactly with Flamstead's Observations,

but overturns his inferences.

The preceding part of this Chapter relates to the fixed stars.

Should these, or any of them, have an annual parallax, their

apparent places in right ascension and north polar distance will,

by reason of such parallax, differ from their mean. The correc-

tions, for reducing the one to the other are furnished by the

preceding formula: which formulas (see p. 315,) are, with regard
to the analytical law of their construction, the same as the

formulee of aberration. We could easily, then, correct the

* < The observations of Mr. Flamstead of the different distances of the

pole star at different times of the year, which were through mistake

looked upon by some as a proof of the annual parallax of it, seem to have

been made with much greater care than those of Dr. Hook. For though

they do not all exactly correspond with each other, yet from the whole

Mr. Flamstead concluded that the star was 35", 40", or 45" nearer the

pole in December than hi May or July; and according to my hypothesis
it ought to appear 40" nearer in December than in June/ Bradley,
Phil. Trans. No. 106, p. 66l.
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right ascension and north polar distance of a star on account of

parallax, if a certain annual parallax were assigned to it; or, from

observing the maxima of parallax in north polar distance, we
could (as in the case of aberration, see p. 2Q2,) assign the

radius of that circle of parallax which a star situated in the pole
of the ecliptic would apparently describe. There is no difficulty,

indeed, in correcting an observed distance on an assumed quan-

tity of parallax, nor, should any differences in the places of stars,

not accounted for on established theories, be observed, any dif-

ficulty in determining, whether such differences can be imputed
to parallax. The real difficulty is to make observations that

can be relied on to the fractions of a second of space : since the

question is, whether there can be shewn in observations parts of

a second of space not accounted for on known theories, and not

attributable to the errors of observation.

The subject has, at various times, occupied the attention of

Astronomers. Before the discovery of the aberration of light,

the main object, in the search after parallax, was the establish-

ment of the Copernican System
* as far as that could be effected

by the proof of the Earth's motion. This was Hook's object,

Flamstead's, and Bradley
?
s. The first asserted the existence ot

parallax by relying on his own faulty observations : the second

by faulty inferences. From good observations Bradley shewed

the errors of Hook's observations, and of Flamstead's reasonings ;

he made it evident that the latter Astronomer, in his search after

parallax, had stumbled on the "effects of aberration, which he

mistook for those of the former inequality. Bradley himself

thought f that the stars had no sensible parallax, and that he

* ' To furnish the learned with an Experimentum Crucis to determine

between the Tychonic and Copernican Systems/ Hooke's Treatise en-

titled, An attempt to prove the Motion of the Earth by Observations.

f-

* I am of opinion, that if it were 1", I should have perceived it, in

the great number of observations that I made especially of y Draconis :

which agreeing with the hypothesis (without allowing any thing for

parallax) nearly as when the Sun was in conjunction with, as in opposition

to this star, it seems very probable that the parallax of it is not so great as

one single second; and consequently, that it is above 400000 times

farther from us than the Sun.' Phil. Trans, for Dec. 1/28. p. 66*0.
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must have discovered such an inequality in 7 Draconis and

rj Ursae majoris, had the parallax in either of these stars amounted

to l". It is right, however, to observe that this remark of

Bradley is not much to be relied on, since it was made at a time

when the stars were subject to an inequality, of the existence of

which he was then ignorant.

The question of parallax has, of late years, been revived by
Dr. Brinkley* who thinks that he has found parallax in a Aquilae,

a Lyra, a Cygni. In consequence of this opinion, fixed tele-

scopes have been directed, at the Greenwich Observatory,

towards certain stars, with this special object in view : namely,
that each telescope should take into its field of view, at least, two

stars differing from each other in right ascension. One of these

telescopes is directed towards a Cygni, of which the north polar

distance is about 45 22' and right ascension 20h 35
m

. But the

north polar polar distance of /3 Auriga? is about 45 5'. There-

fore, since the difference of their declinations does not exceed 18',

the telescope can be so placed that each star, when it passes the

meridian, shall be in the field of view : one passing to the north

of a middle wire, the other to the south. Now the right ascen-

sion of /3 Aurigae is about 5
h 46m , and, therefore, it will pass the

meridian about 14h 40m before a Cygni. The effects of

parallax will in certain seasons be to decrease the north polar

distances of both stars : in other seasons to increase them : and

in others to increase the north polar distance of one whilst it

decreases that of the other : and conversely. These combined

effects are shewn by means of a micrometer which measures

every day (every day on which an observation can be made) the

difference of the declinations of the two stars. We ought rather

to have said, that the combined effects of parallax (should there

be any) may be extricated from the differences of declination

which, by means of the micrometer attached to the telescope, are

instrumentally shewn. For, besides the substantial difference of

the mean declinations, the apparent distance of the two stars

arises from the different effects of aberration, nutation, &c. on

the two stars. These latter effects being accounted for, or the

* Irish Transactions, vol. XII. Trans. Royal Society, 1818.
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observations being corrected, if there should appear to be any
other difference than that of the mean declination, the causes of

such difference would become matter of enquiry. In order to

ascertain whether parallax is one, or a sole cause, we must

compare the unaccounted for differences with the mathema-

tical calculations of the combined effects of parallax. This is

easily effected : Thus, computing, on the principles and according
to the methods of pp. 274, &c. the numbers due to the parallaxes
in north polar distance of a Cygni and /3 Aurigae, and the maxima,
we have

the number for a Cygni = 5s

53', maximum = 0".913

for /3 Auriga*= 17 17, maximum =0".367 ;

consequently, the combined effect of parallax in north polar
distance on these two stars is

0".913 X sin. ( O + 58

53') 0".367 . sin. ( O +09

17 I?')-

For instance, if we wish to find the combined effect on July 1 ,

October 1, and Oct. 11, we have

or Cygni, July 1. f3 Auriga, July 1.

= 3s

9 23'.............. 3s

9 23'

5 53 .............. 17 17

8 10 16 log. sin.= 9.9737 3 26 40 log. sin.= 9.9549

log. 913= 9-9549 log. 367=9.5652

log. (-.848) 9.9286 (log. .327) 9-5157

Hence, the combined effect = -O".848 0".327= l
//

.75.

Again,

a Cygni, Oct. 1. /3 Aurigae, Oct. I.

= 6" 8 8'. 6
s

8 8'

5 53 17 17

11 9 1 log.sin.=9.5540 6 25 25 log. sin.= 9-6326

log. 91 3=9.9549 log. 3678 =9-5652

(log. .318) 9.5089 log. (-.157) 9.1978

/. combined effect = 0".3J8 + 0".157 = 0".l6l.

ss



Again,
a Cygni, Oct. 11. ft Aurigae, Oct. 11.

O = 6" 18 0' 6s
18 0'

5 53 17 17

11 18 53 log. sin. = 9.2851 7 5 17 log. sin. =9-76l6

log. 913 = 9.9549 log. .3678 = 9.5652

(log. -.173) 9-2400 (-.212) 9.3268

.*. combined effect = 0".173 + 0".212 = //

.039.

But we will now dismiss this class of parallaxes, the discus-

sion of which is not suited to an Elementary Treatise, and turn

our attention to the parallaxes of the planets, which can not only
be proved to exist, but which are, in Practical Astronomy, usec

for determining the distances of those planets that are affected by
them.

We have already (see p. 209.) entered on this subject. If s

be a planet, C the centre of the Earth, Z the zenith of the spec-
tator placed at A, then s is seen from A in the direction Asm,

and from C in the direction Csm. If the latter be held, or be de-

fined, to be the true or Astronomical direction, then A s n is the

apparent. As far as parallax is concerned, m is the planet's true
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place, n its apparent, and the angular distance of these places,

or the angle nsm( = AsC) is the diurnal parallax.

By Plane Trigonometry,

n A AC rj AC - VA
sin. CsA = -77- x sin. CAs = -77- . sin. ZA s

;

Cs Ls

but ZAs is the star's apparent zenith distance^ consequently, if

CA, Cs be held to be constant,

sin. CsA, or sin. parallax oc sin. apparent zenith distance.

Hence, the parallax is greatest when the zenith distance = 90,
or when the planet appears in the horizon. Let P be the greatest

parallax, p the parallax at any other zenith distance, then

sin. P : sin. p :: 1 : sin. apparent zenith distance
;

.*. sin. p = sin. P . sin. zenith distance

= sin. P . sin. (D -f- p),

D being the angle ZCs.

We may thus 'approximate to the value of p in terms of P
and D,

sin. p =. sin. P sin. D cos. |>+ sin. P cos. D sin. p ;

.*. tan. p = sin. P sin. jD+ sin. P cos. D. tan.jj.

Instead of tan. p in the last term, substitute its value as expressed

by the equation just obtained
;

then

an.p= sin. P.sin.D-f-sin.
:

*P.sin.Dcos.D + sin.
a
P.cos/*Z)tan.j)'

Repeat the operation, and

tan. p = sin. P . sin. D+ sin.
2 P . sin . D . cos. D

-f sin.3 P. cos.
2 D sin. D + sin.

4 P cos.
3 D . sin. D

-f- sin.
4 P cos.

4 JD tan. p :

the law of the terms is evident
; but, for almost every case that

can occur, the summation of the three first terms will be suf-

ficient, P not exceeding 1.

If, instead of tan. p, we wish to have an expression for p,
we may easily obtain such by means of the expression

p = tan. p y tan.
3
p,

which is the approximate expression for the arc in terms of the

tangent, when the arc is small. The second term of this expres-

sion ( Y tan.
3
p) will produce from the equation



324

tan. p = sin. D.sin. P + sin. D. cos. I). sin.* P

+ sin. D.cos.* D. sin.
3 P

sin
3 D sin

3 P
a term such as

'

'-

; if, therefore, we do not con-

tinue the series beyond terms involving sin.
3
P, we have

p = sin. D . sin. P + | sin. 2 D sin.
2 P -f

sin.
3 P

(sin.
D cos.

2 D - ^ ) ;

sin.
3 D

3 ^ sin.
3 D

but sin. D cos.* D = sin. D sin.
3 D

3 3

4 sin.
3 D

3
"'

sin. 3 D
(see Trigonometry, p. 47.) =

Hence,

;>
= sin. D . sin. P -f^ sin. 2D . sin.

2 P -fj sin. 3D . sin.
3
P,

which, as it may be fairly conjectured, is only part of a series

obeying the same law.

In an assigned instance, the resulting arithmetical value ofp
would be in terms of the radius. It is more convenient to have

such value expressed in seconds of angular space. Now, p
being small,

p : arc (=r jp) :: sin. l" : l";

""' 1

"--'- arc(=^) =^ ;

.'. expressed in seconds,

,=>" ^ .-in.p |

sin ' 2jP
.cin.P

1

s
'

m ' 3D
, 3jn p

sin. l" 2 . sin. l"
'

3 . sin. l"
*

There are, besides what we have given., other series and ex-

pressions for computing the parallax, from D the zenith distance,
and P the horizontal parallax. D can always be determined

(very nearly at least) by observation, but hitherto no method has

been given of determining P. In short, although we know
what parallax is, can symbolically express it, and can compute
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the parallax at a given zenith distance from the horizontal, yet
we are at present without a practical method of determining it.

We will now turn our attention to that point.

Let A and B be two places on the Earth's surface situated in

the same meridian
;

and suppose, by the methods described

/*

in pp. 12, 129, their latitudes to be determined. When the planet

S is on the meridian, let its zenith distances ZAS (z), Z'BS (*'),

be, respectively, observed at A and B
; then, since ACB the

difference or sum of the latitudes (in the diagram the sum) is

known, we have

L JSB = 360 (180 2+ 180 - z
1 + ACB)

= z + z' - ACB
;

hence the angle ASB, (sometimes called the parallax, being the

angle which a chord AB subtends at S,) is known : call this angle

Ay and the angles CSB, CSA, p', p, respectively.

A is not the angle (see the former Figure) which we are seek-

ing : it is, either the angle CSB (p) or the angle CSA (p). Now

,
CB CA CB

sin. p ==sm. 2.-^xT, and sin. p ~ sin. z .777;
= sm z ~7rz :

C3 Co L/o
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sin. z
f

hence, sin. p', or, sin. (A p) =: sin.jp. , or,

sin. z
1

sin. A . cos. p cos. A . sm. p= sin. p . :r
sin. z

whence, dividing by sin. A . sin. p, and transposing,

sin. z'

cot. p = cot. A -\ : : .

sin. z . sin. A
This formula may be thus adapted to logarithmic computa-

tion :

/ sin. z' \
cot. p = cot. A I 1 -f I

;V sin. z . cos. A/

make - = (tan.0)
9

;
/. cot. p = cot. A . (sec. Of-,

sin. z . cos. A
and consequently,

log. cot. p = log. cot. A -r- 2 log. sec. 20 ;

being determined from

log. tan. = | (30 -f- log- sin. z log. sin. z log. cos. A).

From this formula, p may be computed ;
but since, in point

of fact, the parallax of all heavenly bodies that are observed is

very small, a much simpler formula, and accurate enough for

computation, may be exhibited :

Thus, A, p, p, being very small, are nearly equal their sines \

instead of

sin. (Ap) = sin. p. ~~
, we may write

sin. z

sin. z'A p = p . ; ; whence
sin. z

A sin. z

sin. z + sin. z'
'

A . sin. z
or =



If we wish to express the horizontal parallax, since

sin. p = sin. P . sin. z, or p = P . sin. z,

P= -. _
sin. z + sin. z

and, if we restore the value of A, making / ACB = L + Lf

-z' - (LL')p =
sin. 2;-f-sin. z'

As an example to this formula, we may take the observations

of Lacaille, at the Cape of Good Hope, and of Wargentin, at

Stockholm :

1751, Oct. 6.

At the Cape, zen. dist. (z) of <? 25 2' 0"...... sin. z = .4231

At Stockholm, zen. dist. (z
1

) . . 68 41 6...... sin. /= .9287

z+ z*---- 93 16 6 sin. z+sm.z'= 1.3518,

lat. (L) of the Cape (south) .......... 33 55' 5"

lat (L') of Stockholm .............. 59 20 30

L -f L'. .93 15 35

... * + z'-(L-r-L')=3l";
Si"

.'. P, the horizontal parallax,
=- = 22".9.

1 .35 18

This Example is, in appearance, solved somewhat differently

by Lacaille. Instead of computing the latitudes, he immediately

computes the angle A : thus, if a star \xz were on the meridian

with Mars (S), Mars would appear below \ xz to an observer

at JB, or Stockholm
; below, in this case by l' 26" : it would also

appear, to an observer A at the Cape, below \xz , and by
l' 57"; the difference of l' 57" and l' 26" is 3l" the angle A.

\sz , whose declination in 1751 was about 8 50', in fact,

was not on the meridian with Mars; therefore, Lacaille says,
" Mars was below the parallel of \<ccr

"
: now, the point at which

this parallel crossed the meridian, he could easily ascertain by

observing the decimation of X ;
it was simply the place of \ on

the meridian.
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The two places of observation are the Cape of Good Hope
and Stockholm : and, the longitudes of these two places are,

respectively, 18 23' ?" E., 183'5l"E; consequently, they are

not under the same meridian
; therefore, a condition of the

method (see p. 325,) is not preserved : and indeed it is not

essentially necessary to preserve it. For, the difference of lon-

gitude 19' 16", in time, answers to l
m

17
8

: accordingly,, Mars

would be on the meridian of the Cape l
m
17% before he had

been on that of Stockholm. If, in that interval, his declination

had not altered, no correction would be necessary : but, if in 24

hours his declination should have altered one minute, then the

60"
change of declination due to l

m
17

s would be X 77,
^4 X OU X OO

77
//

or _ or .0534" : that is, if Mars had been on the meri-
24 x 60

dian at the Cape when observed at Stockholm, the zenith distance

instead of being 25 2
7
0" would have been 25 2' 0" .0534".

Hence it appears that it is of no use, in an example like the

preceding, to notice the very small correction arising from a

difference of longitudes : it also appears that the method itself

is applicable, even if the difference of longitudes should be

greater than in the example.

By the result of the computation (p. 327,) the parallax of

Mars was found to be about twenty-three seconds. Of planets
more distant than Mars, the parallax must, it is plain, be less.

Hence, for such planets, the above method, although in theory

very exact, can practically be of little use. It cannot be relied

on : for, when the parallax does not exceed ten or twelve

seconds, the probable errors of observation will bear so large

a proportion to it, as materially to affect the certainty of the

result. Hence, the method cannot be successfully applied to the

Sun, whose parallax is less than nine seconds : neither to Jupiter,

Saturn, nor the Georgian Planet.

The Moon, however, the parallaxes of which are considerable,

the greatest being 6l' 32", the least 53' 52", and the mean, (or

rather the parallax at the mean distance,) 57' 1 l".4, is a proper
instance for the method. Yet, with the Moon, the method



329

requires some modification. We must take into consideration,

the spheroidical figure of the Earth.

Suppose the meridian AJEB not to be circular; then, the

produced radii CA, CB, are not necessarily perpendicular to it,

and consequently, Z, Z' are not the zeniths of the observers at A
and B. But, if XAx, YBy, be perpendicular to the meridian,

or vertical, or in the direction of a plumb-line^ then X, Y are the

true zeniths, and the angles SAX, SBY, are the observed zenith

distances : now

CA
sin. ASC, or, sin. p

- x sin. CAS =
C o

CA
x sin. (SAX - ZAX;}

Go

.*. if z still represents the angle SAZ, it will equal the difference

of the zenith distance and the angle contained between the

radius and vertical. Hence,

CA . ,
CB . ,

sin. p =7777 sin. z, similarly, sm. p = -^ -. sin. z ;Go Go

and, hence, if we take, instead of sin. p, sin. p, p arid p',

CA sin. z + CB.sin. z'

p + p', or A =
CS

rad (T^

and since P, the horizontal parallax,
= -

, , (p. 327,)
V*

'

_
rad. x A

CA . sin . z -|-. CI? . sin. z

Let us take, as an example to this method, the observations

of Lacaille and Wargentin, see Mem. Acad. des Sciences. Paris

1761 :

1751, Nov. 5.
"
Correct.

At the Cape, zen. dist. D 's north limb 56 39' 40" 13' 54"

parallel of tf more north than D . 1 46 32.8

at Stockholm zen. dist. D '$ limb .... 38 4 52. ... 14 14

parallel of tf more north than D 18 37.2.

TT
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Hence, (see p. 327,) the difference of the quantities in the

second and fourth line being 1 27' 5o".6,

A = 1 27' 55".6.

Now to find z, z, we must from the zenith distances subtract the

corrections 13' 54", 14' 14", which are the angles between the

vertical and the radius. Accordingly,

z = 56 25' 46" sin. z = .8332

z' = 37 50 38 sin. z' = .6135

sin. z + sin. z' = 1.4467

Hence if we suppose CA, CB equal, we shall have (p. 329,)

1 27
7

55"
the horizontal parallax = ^ = 1 0' 46": the only

1 .4467

difference, between this and the preceding method, consisting in

the reduction of the zenith distances.

The reduction, or the value of the angle of the vertical, is

taken from one of Lalande's Tables, computed for an Ellipticity

, and is, in fact, too large.

The expression or formula, from which the table just alluded

to is computed, may be easily deduced. It is merely requisite to

investigate the angle contained between the normal and radius

vector, in an ellipse of small eccentricity.

CA
In a sphere, the horizontal parallax P =

, and, conse-

quently, the distance CS remaining the same, the horizontal

parallax, whatever be the place of observation, would be the

same. In a spheroid,

_ A . x rad. @
~CA sin. z + CjBsin. 2"

consequently, the horizontal parallax, observed at different places,

would be different. And with the Moon this is found to be the

case : so that, (and there is something curious in the circum-

stance), this planet which, by her eclipses, shews, in a general
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way, the Earth to be round, by her parallaxes, proves the Earth

not to be spherical (see p. 38).

The preceding method, by which the parallaxes of Mars and

the Moon have been determined, is not sufficiently accurate in

practice, to determine the Sun's. That, however, is a most

important Astronomical element, and requires to be exactly deter-

mined : which it has been by Dr. Maskelyne, and by means of

the transit of Venus ;
a method of determination, not immediate

and direct, but which infers the quantity required, on the suppo-
sition that the planetary motions are known to a very considerable

degree of exactness*.

It is the distance of an heavenly body, as it is clear from

pages 329, 330, that causes its parallax to be small : and the

Sun's distance is so great, that its parallax, equal to 8". 75,

(8".81, according to Laplace) cannot accurately be determined

by the preceding method (p. 330.). The same method therefore,

will not apply to bodies more distant from us than the Sun
;

neither to Jupiter, to Saturn, nor to the Georgian planet.

The smaller the parallax of a body, the greater is its distance :

and, if we take, which we may do by reason of its smallness, the

parallax instead of its sine, the mathematical relation between the

parallax and distance (d\ is

rad.
d = .

This last expression is not, as it stands, fit for computation.

It was deduced from sin. P = '-

, in which the radius is
a

* It is with this, as with many other parts in Astronomy, described

in the following passage by the Abb& Lacaille : "Dans PAstronomie

on ne parvient a. donner une certaine precision a quelque theorie qu'en

revenant incessament sur ces pas et en remaniant tous les Calculs, a

mesure que 1'on decouvre quelque nouvel element, qui y devoit entrer,

ou que Ton perfectionne quelqu'un de ceux qui se compliquent avec les

autres." Mem. de FAcad. 1757, p. 108.
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supposed 1. But to a tabular radius ?, (see Trig. p. 17,)

sin. P rad.

d = :

y

_ x rad. , or = X rad. .

sin. P Jr

Now, since P is to be expressed in degrees, minutes, seconds, &c.

we must express the radius r also, in degrees, minutes, &c. : and

since, to a radius 1, the circumference = 2(3.14159), we have

180
2(3.14159) : 360 :: 1 : r=- = 57.2957795.

3.14159

Hence, the last of the two expressions for d becomes

57.2957795
d = --- x rad. :

and from this or the former, d = X rad. , may the dis-
sin. P

tances of heavenly bodies be computed.

If we express the radius r, in degrees, minutes, &c. of French

measure (Trig. p. 23)., we shall have

63. 66 19
d =- X rad. .

Hence, in the case of the Sun, if P =8". 81, or, in French

measure, = 27
/7

.2,

rad-' or =6

In the case of Mars, P = 24
7/

.624, or in French measure,

the. distance of Mars from the Earth at the time of observation.

In the case of the Moon, P = 5f 1 1".4, or, in French mea-

sure, = 1.059,

57.2957795 63.66l9
<*=

57
/ n //

<4
rad-> r=

10;059
rad. = 60.1. rad. .
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Hence the mean distance of the Moon is about 60 radii of

the Earth.

Here, the greatest and least distances are., respectively,

63. 6619 ,63. 6619 -
TT- rad. eH, and rad. B, or

0.99567 1.13714

63.94145 X rad.
,
and 55.98725 rad. *.

The general use of parallax is, then, to determine the distances

of heavenly bodies : but the special object for which it has been

here introduced, is the reduction or correction., which must be

made, by means of it, to the observed place of a body ;
to pre-

pare, for instance, an observed altitude of the Moon, for the

deducing its declination. Now since, by the principle of the re-

duction, we imagine a spectator to be in the centre of the Earth, it

is plain, from the inspection of the Figure, p. 322, that the planet
seen from the surface, must be lower, that is, nearer to the hori-

zon than seen from the centre. But, this last is assumed to be

the true place, or, it is made the place in Astronomical computa-
tions : and, accordingly, a body seen from the surface must be

said to be below its true place, or to be depressed by parallax.

This depression takes place in a plane passing through, the

centre of the Earth, the spectator, and the observed heavenly

body ;
it takes place, therefore, like refraction, in the plane of

a vertical circle. Now, the meridian is a vertical circle
;

the

declination of an heavenly body then, as determined by its me-

ridian altitude (see p. 151,) w'ill be affected by the whole

quantity of parallax ;
but its right ascension, as determined by

the time of transit over the meridian, will not be at all affected.

We will now subjoin two instances, in the first of which the

Sun's declination is deduced from his observed zenith distance :

in the second the Moon's declination from her observed altitude :

both observations are corrected for refraction and parallax : in

* It is plain from the above instances, that it is shorter to compute

by the French than by the English expression : for, in the former, we

may immediately divide the numerator (63.66 19) by the denominator ;

which we cannot do in the latter.
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the former instance, then, the refraction is added to the zenith

distance, the parallax subtracted : in the latter the refraction is

taken away from the altitude, the parallax added.

EXAMPLE I.

Altitude of Sun's upper limb. 62 30' 30".5

error of collimation 34 . 5

62 29 56

apparent zenith distance .......... 27 30 4 sin. .4617

refraction..................... 29

27 30 33

(8" X .4617) Parallax......... 4

27 30 29

semi-diameter of the Sun......... 15 46

27 46 15

latitude of the place of observation . . 48 50 14

declination of the Sun 21 3 59

EXAMPLE II.

Altitude of Moon's upper limb 51 1 1' 24''

refraction r 45

ri;
51 10 39

(55' 24" x .6246) Parallax. . , 34 36.2

51 45 15.2

semi-diameter . . . . 15 8.8

altitude of Moon's center 51 30 6.4

co-latitude of Greenwich 33 3] 21 .5

decimation of the Moon 12 58 44.9

In this case, the horizontal parallax for Greenwich is taken= 55' 24"; and the multiplier .6246 is the natural sine of
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38 $9' 18", which is the zenith distance 38 49' 2l" diminished

by 10' 3", the value of the vertical angle (see p. 330.)

55' 24" represents the horizontal parallax for Greenwich,

being the parallax on a spheroid at the latitude 51 28' 40", de-

duced from, what is called, the Equatoreal parallax ; which is

the difference of the Moon's place in the Heavens seen from the

equator and the Earth's centre : the Moon being in the horizon

i of the spectator. But this equatoreal parallax is deduced from
1 the equatoreal parallax at the mean distance of the Moon*,
which according to Mayer, is 57' ll".4. There is, therefore, the

equatoreal parallax at the mean distance
;
the horizontal equa-

toreal at any distance
;

the horizontal for any latitude, and the

common parallax for any altitude : and, in observations of the
' Moon and in calculations from them, all these circumstances

must be attended to.

The quantity of parallax has been computed (see p. 327,) by
means of observations made in the meridian. It may also be

I

computed, as refraction was (p. 238,) by observations out of the

plane of the meridian
; for, in these latter, parallax, which causes

a variation in the right ascension, may be computed from such

variation. For instance, let M be a planet in its true place, m

in its apparent place, Mm lying in a vertical circle ZMm (see

p. 238.). Now, m being the place instead of M, the time from

the passage over the meridian, will be represented by the angle

* The Moon's greatest parallax is 6l' 32"; her least 53' 52".
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ZPm, instead of the angle ZPM : the change, therefore, in the

time, or in the apparent right ascension of the planet, caused by

parallax, is represented by the angle FPv; and this change may
be thus estimated: if M were a fixed star, Mm would be

nothing, and there would be no parallax affecting the time, 01

the right ascension : two fixed stars then, near to each other,

that crossed the vertical wire of a telescope in the plane of th<

meridian, after an interval of t seconds, would also cross th<

vertical wire of the telescope in a plane, not that of the meridian,

after the same interval t. But if, instead of one of the fixed

stars, we take a planet having parallax, then if the above-men-

tioned interval were t seconds on the meridian (where parallax

does not affect the right ascension,) it could not be t seconds out

of the meridian, but, as the figure shews, something more
;

for

instance, t-\-e seconds. Now e is reckoned, or known, by means

of a chronometer ;
and thence, a horizontal parallax (P) may be

computed from this formula

15 X eX cos. dec.

cos. lat. x sin. hour angle
'

which may be thus proved :

Vv = Mn . sec. VM= Mm. sin. ZMP . sec. VM
= P . sin. ZM . sin. ZMP . sec. VM
= P. sin. ZP . sin. ZPM . sec. VM,

(for sin. ZM. sin. ZMP = sin. ZP . sin. ZPM Trig. p. 155.)

Hence,

sin. 2P.sin. ZPM. sec. VM'

or, since 360 : 24h :: Vv : e
;
and since sin. ZP = cos. latitude,

I 1
sin. ZPM=sin. hour angle (h\ sec. VM=

P =

cos. VM cos. dec.

15 .e.cos. dec.

cos. lat. X sin. hour angle

This expression applies to the case when the planet and star

are observed, firstly, on the meridian, and afterwards when they

have passed it : if they are observed before they are on the me-
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ridian, then a similar expression would obtain for a line V 1V
analogous to Vv

;
and we should have

P cos. lat. sin. ti -

VV =
cos. dec.

Hence, if the difference e belongs to two observations of the

star and planet, the one made to the east, the other to the west of

the meridian, we have

T , . T7., ,
P cos. lat. sin. h P cos. lat. sin. A'

Vv+V'v, or ex 15 = -\ ,

cos. dec. cos. dec.

and accordingly,

e X 15 cos, dec.P =
cos. lat. x (sin. A-j-sin. K}

\A 1 K. \S rtr\c* /!.,<

(Trig. p. 31.)

cos. lat. x (sin. A+sin.

e X 15 x cos.

/ . ft*t-A\ s
2 cos. lat. f sin.

J cos. f

In the preceding investigation it has been supposed, that e

arises solely from parallax : but since, during the observations,

the planet will have moved either from, or towards the star, the

noted difference of time, or excess above t seconds., will be com-

pounded of the effect of parallax, and of the time due to the

planet's motion, during the interval of the observations.

EXAMPLE.

Aug. 15, 1719. Paris. By the observations of M. Maraldi

at 9
h I8m , Mars passed the vertical wire 10

m
17

s
after a small

star in Aquarius; and, seven hours being elapsed, 10
m

J
s
after.

But in this interval (seven hours) Mars had approached the

star by fourteen seconds
;
that is, had there been no parallax, the

former difference of passage, which was 10 17
s
, would have

been reduced to 10m 17
s

14
s

, or, 10
m
3s

: but, by the second

observation, the difference of passage is only 10
m

1
s

, consequently,
the effect of parallax is (10

m 3
s

)-(10
m

1
s

), or 28
: and this is

the value to be substituted for e in the preceding expression :

and since, by observations at the time, it appeared that

U U
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Declination = 15 0' 0" log. cos. . . .9-9849438

h = 56 39 (log. 15 1.1760913)

h' = 49 15

h + h' = 52 57 log, sin. . ..9-9020628

h- h'
= 3 42 log. cos.. . .9-9990938

latitude of Paris = 48 50 12 log. cos 9-8183630

We have, from the logarithmic formula of p. 337,

log. P= log. 15 + 20+ log. cos. 15

-
(log. cos. 48 50' 12" -f log. sin. 52 57'+ log. cos. 3 42')

= 1.4415155 ;

.-. P, the horizontal parallax of Mars, is 27
7/
.638 (See Mem.

de VAcad. 1722 ;
and Lalande's Jstron. torn. II. p. 356).

Some additions to the preceding investigations will be subse-

quently given in the Chapters on the
'
Occultations of fixed Stars,'

and
'

the Transit of VenusJ



CHAP. XIII.

ON PRECESSION.

Formula for computing the Precession in North Polar Distance

and Right Ascension. Uses of the Formula in correcting

Observations.

W E have already shewn in pp. 189> &c. by a mere compa-
rison of the catalogues of stars formed for different epochs, that

the north polar distances and right ascensions of stars are conti-

nually varying ;
the latter, generally increasing with the time : the

former, however, decreasing, if the stars be in either the first or

fourth quadrant of right ascension, but increasing, if the stars be

in the second or third.

It was also shewn in the pages just referred to, that the above

phenomena, of the changes in the north polar distances and right

ascensions, could be accounted for, by attributing to the pole of

the equator a slow circular motion, and contrary to the order of

the signs, round the pole of the ecliptic.

This circular motion of the pole produces a corresponding

change in the equator. It makes to vary, the intersection of the

equator and ecliptic, and produces, in that point of intersection,

a retrograde motion denominated the Precession of the Equinoxes,

The philosophers, who observed the phenomena of precession

and of the changes in the positions of stars, conjectured that such

phenomena could be accounted for, by attributing a motion to the

pole of the equator round that of the ecliptic. Physical Astro-

nomy has shewn this conjecture to be true. We may, therefore,

recur to the diagram of p. 192, in which the path of the pole of

the Earth is represented by a small circle described round the

pole of the ecliptic, and, by means of it, compute the formulas

of the changes of the north polar distance and right ascensions

of stars.
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If cr then be a star situated in the second quadrant of right

ascension, the polar distance, by the translation of the pole from

P to p, is changed from Per to pa- ;
and the variation of north

polar distance is

pa- Pa- ~pr, nearly,

but pr = Pp. cos. Ppr
= Pp . sin. qps

= Z PTrp.sin. TrP.sin. qps\

now, the angle P ?rp, is the angle described in a given time (during
the translation of P to p} by P round TT : its measure is equal to

the arc that represents the retrogradation of the point T , or, in

other words, the precession <Y> T '

Suppose Pp to represent
the motion of P during a year, then (see p. 187.) T T '= 50".l :

again, qps is equal to (according to the position of the star in

the present diagram)

#'sM - 3s
:

and TTP measures the obliquity (I) of the ecliptic, hence,

per Po- = 50". 1 sin. J.sin.(#'s Jl 3
f

)

= - 50". 1 . sin. /.cos. #'s jJl.
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According to the construction of the present diagram, the

star is in the second quadrant of right ascension : consequently,
cos. JR. is negative, and pa- P<r is positive, as it appears to

be in the Figure, per Per, the variation in north polar distance,

or the precession in north polar distance will also be positive

in the third quadrant, but negative in the first and fourth quad-
rants. These results will immediately appear to be true results

by constructing three diagrams like the preceding. But we rnay
avoid this prolixity of investigation by employing one of the

general equations of page 182, and by taking its fluxion or

differential.

Thus, (Equation 2.) is

cos. $ = sin. it . cos. X . sin. / 4- sin. X cos. J;

.'. d$ . sin. $= dL cos. L . cos. X sin. / (X, /, invariable)

(by Eq
n

. 7.) = dL . cos. M . sin. S . sin. I
;

consequently,

d$ = dL . cos. JR . sin. J,

which is a general expression for the precession (d) in north polar

distance, whatever be the star's place. Hence, when the right

ascension is < 90, or > 270, d$ is negative ; when > 90 and

<270, positive. When JR = 90, or = 270^, that is, when the

star is in the solstitial colure, cos. jR=0, and there is no pre-
cession in north polar distance. When JR = 0, or = 180,
cos. JR = + 1, consequently, the precession in north polar

distance of stars situated in the equinoctial colure is the greatest,

y Pegasi is nearly so situated, and its precession in north

polar distance, nearly equals to

50". 1 sin. 23 27' 50" = - 19".9 :

all which conclusions agree with those of Chapter VIII.

By a like way we may arrive at the precession in right ascen-

sion. Thus, the equation (4) of p. 182, is

sin. X = cos. $ . cos. / sin. 3 . sin. / . sin. JR ;

.*. = dS (sin. 3 cos. I + cos. $ sin. I sin. JR)

dJR . sin. 5 sin. / cos. JR k
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In this equation, instead of d$, write its value

dL. sin. I. cos. JR : after which substitution, each side of the

equation is divisible by sin. /.cos. ^l; accordingly,

dJR, sin. $ = dL (sin. $ .cos. /-fcos.$. sin. /.sin. JR),

and dJR=z50".l (cos. I -f cot. 3 sin. /. sin. J&\

which is the expression for the precession in right ascension

during a year*.

The precession in north polar distance depends, as the ex-

pression for it shews, on the right ascension and not on the decli-

nation. The precession in right ascension depends both on the

star's right ascension and its declination.

The first term in the preceding formula is

50". 1 .cos./,

which involves neither the right ascension nor the declination.

It is independent, therefore, of the star's place, or, in other

words (and as it is commonly stated) it is expressive of that part

of the precession in right ascension which is common to all stars.

Let a star be situated in the equator, then $ = 90, and

cot. < = 0, consequently,

dJR = 50".l .cos. / = 50".l X .917S=45".95.

The precession, therefore, of an equatoreal star in right ascen-

sion is expressed by that part of the precession which is said to

be common to all the stars, and which is also the same as the

retrogradation of thefirst point of Aries in right ascension.

* We may easily obtain the same expression from the diagram of

p. 340. Thus, the right ascension VQw becomes, by the effect of pre-

cession, T'qs-, and

T'g = T'v+^-M*
= fv -f yQw-f-fs.

The variation in right ascension, therefore, is

E=rT. cos. /= 50.l. cos. J^^
sin. <r sin.

as Prcot. Pcr= P;>.sin. Ppr.cot. Po- =
. sin. TT P .sin. Ppr . cot. P <r=50".l .sin. /sin. ifc'sM cot. N. P. D.

precession in -51= 50".! (cos. /-f-sin. /.sin. JR. cot. N. P. D.)
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We are enabled, ty means of the preceding formula?;
to extend the uses of the catalogues of fixed stars. For in-

stance, from a catalogue constructed for the epoch of 1800, we
can take the mean right ascensions and mean polar distances of

stars for the 1
st of January 1800, and by adding to, or subtract-

ing from these mean distances, the annual precessions in right

ascension and north polar distance, we obtain the mean right

ascensions and the mean north polar distances for the 1st of

January 1801, and 1799, respectively. By adding and subtract-

ing twice and thrice the annual precessions, we obtain, in like

manner, and nearly, the mean right ascensions an<Lmean north

polar distance for the beginnings of the years 1802, 1803, 1798,

1797. But the greater the interval of years between the epoch of

the catalogue and that for which we deduce, by this method, the

right ascensions and north polar distances, the less exact are the

results. The reason is plain from the inspection of the formula.

Those formulae involve the right ascension and north polar
distance. If we compute the annual precession for 1800, we
use the right ascension and north polar distance for 1800 : but, if

we compute the precession for 1804, we ought to use the right

ascension and north polar distance for 1 804, both which quanti-
ties are changed from what they were in 1800: for instance, if

JR. be the star's right ascension in 1800,

the precession in N. P. D. = 50". 1 . sin. /. cos. JR
; .

but in 1 804, the right ascension will have become JR -f A JR :

therefore if I the obliquity be supposed to be the same,

the pre
n

. in N. P. D. for 1804 = 50".l . sin. /. cos. (&,+ A JR).

If the subject needed any farther illustration we might take

the instance of y Draconis. In 1760 the right ascension of this

star was 267 45' 50", and its precession in north polar distance,

thence computed, was equal to 0". 78. In 1815, the star's right
ascension had increased to 268 4' 40".2, and the precession, ac-

cordingly, decreased to 0".7. When the star, in consequence of
the precession of the equinoxes, shall have reached the solstitial

colure, it is ckar that the precession in north polar distance will

be nothing.
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For the reasons that have been just stated, if we wish to

make a catalogue of stars serviceable tor 10, 20, &c. or more

years, we must add to the registered mean right ascensions and

north polar distances not ten times or twenty times, of &c. the

computed annual precessions, (which are the differentials of the

right ascensions and north polar distances), but the real incre-

ments of such right ascensions and north polar distances, or

some quantities that approximate to the values of those incre-

ments. Such approximations we may derive from the preceding

expressions. Thus, since

d$ = dL. sin. I. cos. JR,

<P= dL.dJR. sin. I. sin. JR

= dL*(sm. I. cos. /.sin. jR-f sin.
a / sin.

aM cot. $),

but, A 3 = dS + jd*i, nearly;

J .*. A 5 = dL.sin. /.cos. JR

+ dL*. (sin. /. cos. / . sin. JR + sin.
2 / . sin.

2 JR cot. S).

If t be the time, dL = 50" . 1 x t,

A S = 50". 1 X t . sin. /. cos. JR

+ f . (50". I)
2

, t*. sin. / . cos. / sin. JR (1 + tan. / . sin. JR cot. 3).

If we apply this to the pole star for the year 1 800, and take

its place from pages 167, &c,

A 3 = \g".5t +
In computing the above formula the obliquity / has been

supposed to be constant : if, as it really is the case, / be sup-

posed to vary we must add to the above value of A the term

- 50".l.d/.cos. /cos. M,
dl being equal to 0".457.

On like principles we may compute the value of d* JEt, and

from it complete, or, rather, more accurately determine, the value

of the precession in right ascension : thus, since

dM = dL.cos. I -f dL. sin. /. sin. JR. cot, ,

d?JR = dL . dJR . sin. /.cos. ^l . cot. &

dL . dS . sin. / . sin. JR . co-sec.
4
5,

neglecting the terms that would involve dL
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The differences of the precessions in north polar distance and

right ascension thus determined will enable us, from the north

polar distances and right ascensions tabulated for a certain epoch,
to deduce, with considerable exactness, the real changes under-

gone by those quantities during the intervals of several years. But,
if the intervals should be very large, it would be a more sure

operation to compute from the right ascension, north polar
distance and obliquity, the latitudes and longitudes of the stars.

Now the precession (dL) is known very exactly; .'. LdL is

known, from which, by some of the formulae of p. 182, we may
computefM dM, and S d.

.

The general expression for the precession in right ascension

is

50". 1 . (cos. I + sin. I. sin. JR, . cot. S).

In the third and fourth quadrant of right ascension, that is, if

the star's right ascension should be > 12
h

, the sin. JR, becomes

negative, and consequently, the second term of the above formula

is negative. If it should exceed the first term, the precession in

right ascension would be negative : and this happens with one

(/3 Ursae minoris) of the forty-five principal stars inserted in the

Nautical Almanack. Its annual precession in right ascension is

nearly (y.267 *.

This circumstance (that of a negative precession in right

ascension) will not take place with any of the thirty-six principal

stars formerly inserted in Dr. Maskelyne's Catalogue : for,

amongst the last twenty stars, the right ascensions of which are

*
According to the subjoined computation,

log. cot. S, or log. cot. 15 6' 24"......... 10.5690

log. sin. JR, or log. sin. 42 35 ......... 9.8303

log. sin. 7, or log. sin. 23 27 50 ......... 9.6000

cos. I = .9172; .-. precession = 50". 1 (.9 172 --9985)
= 50". 1 x .0813 = 4.''.07, nearly, and in time

= 5
.267, nearly.

XX
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greater than 12
h
, the star that has the least north polar distance,

is a Lyrae, the co-tangent of which distance (51 24') is <1:

consequently, since sin. JR cannot, in its greatest negative value,

exceed 1, and since cos. 23 27' 50" is > sin. 23 2?' 50",

cos. 23 27' 50" + sin. 23 2?' 50" . sin.M . cot. 51 24',

must be positive.

In Wollaston's Catalogue of circumpolar stars there are

abundant instances of stars, the annual precessions of which in

right ascension are negative.

Since the precessions in right ascension of some stars are

positive, of others negative, there must be some stars so situated

as not, during short periods, at least, to be affected in their right

ascensions by the precession. The places of such stars must

depend on the equation,

cos. / -f sin. /. sin. JR cot. $ = 0,

which equation, in other terms, is

sin. JR -j- tan. $ cot. 1=0.
But the equation (5) of p. 182, is

cot. P = cos. $ tan. JR + in. $ . sec- JR . cot. /,

cot. P. cos. M .

or = sin. JR + tan. o . cot. 1 ;

cos. o

therefore cot. P must =0, or P the angle of position must
= 90.

The sixth equation of p. 182, is

cot. P = cos. X sec. L cot. I sin. X . tan. L
;

therefore if P = 90,

cot. X = tan. I . sin. L.

Hence, by assuming certain values of the longitude, we may
determine the corresponding latitudes : for instance,

let L = 10, then log. sin. 10 =19-23967

log. tan. 23 28'. . . . = 9.63761

28.87728

/. cot. X = 8.87728, and X = 85 4l'.
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In like manner we may form other corresponding values, and

arrange them thus

Dng
s

. 0, 10 0', 20 0', 30 0', 50 0', 70 0', 90 0',

at
s

. 90, 85 41, 81 34, 79 44, 71 36, 67 47, 66 32.

We will now give one or two Examples of the formulae of

precession.

EXAMPLE I.

Required the annual precession in JR, of 7 Pegasi (Algeriib).

supposing its right ascension to be Oh 2m 56".79, and its north

polar distance to = 75 55' 44",

50".l . cos. I, computed.

log. r. 10

log. 50".l = 1.69983

log. cos. I = 9.96251

11.66234 = log. 45.95.

50". 1 . sin. J. sin. JR. cot. S, computed.

-log. r
3 -30

log. 50".l. ; 1.69983

log. sin. 23 28' 9.60012

log. sin. 2
m 568

8.10716

log. cot. 76 55' 44" , . . , &.39906

2.80617 = log. 0.640

Hence the annual precession in right ascension is equal to

45".95 + 0".0640 = 46".014,

and, in time, = 3s
.067, nearly.
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EXAMPLE II.

Required the annual precession in north polar distance of the

same star.

-
log.r* 20

log.50".l 1.6998

log. sin. 23 28' 9.6001

log. cos. 2m 56" 9.9999

1.2998 = log. 19".94.

EXAMPLE III.

The right ascension of a Serpentis being, in 1800,, = 15
h 34m 25*.2,

and its north polar distance = 82 56* 9".2, it is required to find

its precessions in right ascension and north polar distance.

50". 1 . sin. I . sin. JR . cot. $, computed.

-
log. r

s
. . .-30

log. 50".l 1.6998

log. sin. 15h 34m 258
9.9057

log. sin. 23 28' 0" 9.6001

log. cot. 82 56 9 9.0933

.2989 = log. l".99.

But, since JR > 12
b
, this part of the precession must be taken

negatively, and written l".99.

Hence, since the common part of the precession (see p. 342,)

is 45".98, we have the

annual precession of a Serpentis in JR= 45".98 - l".99 = 43".99,

50".l . sin. I. cos. jH, computed.

log. r
2 = 20

log.50".l = 1.6998

log. sin. 23 28' = 9.6001

log. cos. 15b 34m = 9.7733

1.0732 = log. ll".8S
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and since the ^R is > 12h , the precession in north polar distance

is negative and = 11 ".83.

By such easy computations, may the annual precessions be

found, and as easily may the precessions for parts of a year be

found. In fact, if t be the number of days elapsed since the

beginning of the year, the precession must be equal to the annual

precession multiplied into the fraction -
;

for instance,

EXAMPLE IV.

Let it be required to find the precession in north polar
distance of a Arietis on May 22, 1812.

-log. r
a
...... -20

log. 50". 1 ...... 1.6998

log. sin 2328/

0" 9-6001

log. cos. 29 8 56 9-9412

1.2411 = log. 17".42.

Again, log. 142 ... .2.1522 (142 days from Jan. 1, to May 22.)

3.3933

log. 365 ........ 2.5622

.8311 = log. 6".778.

Hence, the annual precession is 17"*42, and the precession

up to May 22 = 6".78, nearly, on the supposition of an

equable generation of precession.

The uses of the formula? of precession are like those of aber-

ration
; they enable us to correct observations : to reduce north

polar or zenith distances, observed at different times to the same

time. For, since the pole of the Earth is, within certain and

narrow limits, continually pointing to different parts of the

Heavens, the distances of the pole from the stars must be con-

tinually changing. The distance, therefore, of the zenith of a

place from any particular star is continually varying ; for the

distance of the zenith from the pole must remain the same, whilst

the Earth preserves its axis of rotation. If, therefore, we had
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to determine the difference of the latitudes of Greenwich and

Blenheim, from two observed zenith distances of the same star,

we should be unable to determine the difference, except,

amongst other conditions, we knew that of the times at which

the observations were respectively made.

For instance, if the star y Draconis were, on the 1st of

January 1800, 19' 23" south of the zenith of Blenheim, it would

the next year be 19' 23".? south : the succeeding year 19' 24".4

south. The difference, therefore, of the latitudes of Greenwich

And Blenheim, determined by adding the mean zenith distance of

y Draconis at Blenheim on March 1, 1800, to the mean zenith

distance of the same star at Greenwich on April 30, 1801, would

be altogether an erroneous determination/ In order to procure
a right one, we must reduce, by other corrections^ as well as by
that of precession, the zenith distance of y Draconis observed at

Greenwich on April 30, 1801, to that which was its zenith

distance on March 1, 1800; or the zenith distance of the same

star observed at Blenheim on March 1, 1800, to what would be

its distance on April 30, 1801 : or, both the zenith distances

must be reduced to those zenith distances which would be, or

were, the true zenith distances at some common epoch; either,

for instance, the 1
st

of January 1798, or the 1
st

of October 1803.

As far then as the preceding matter of the Treatise informs us

concerning the influence of the inequalities, that make the

apparent place of a star different from its mean place, we must,
in order to use observations like the preceding, and for the pur-

poses specified, know the states of the barometer and thermo-

meter at each place of observation, that we may thence determine

the respective quantities of refraction. We must also know the

days of the months, in order to determine the difference of the

effects of aberration, which inequality, with a given star, is inde-

pendent of latitude and of every condition save that of the Sun's

longitude : and, in the third place, we must know the year and

the number of days elapsed from its beginning, in order to know
how much, past a given epoch, the zenith of the place has

altered with respect to the star, by reason of the pole's motion.

In the ensuing Chapters, we shall see the necessity of correcting
the star's place for other reasons than those already stated.
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From the formulae that have been given, Tables have been

constructed. In the Greenwich Observations for 1812, two

Tables of M. Zach's are inserted, by which the precession in

north polar distance of any star for any day in the year may be

found. The first, from the star's right ascension, which is the

argument, gives the annual precession in north polar distance :

the second Table gives a decimal number, corresponding to the

day of the month (on which it is required to find the precession)

by which the annual precession is to be multiplied. Thus, the

number of seconds in the first Table belonging to the argument
29 8

7

(which is the right ascension of a Arietis) is 17".47.

The decimal number corresponding to May 22, is .386 : there-

fore, the precession of a Arietis from January I , to May 22, is

17".47 x .386 equal to 6".7 (see p. 349.)

In order to shew the usefulness of the formulae of precession
in right ascension, we will take, as an instance, the method of

regulating Astronomical Clocks.

In order to know (see pp. 103, &c.) whether a clock be too fast

or too slow, we observe the hour, minute, and second noted by

it, when a known star is, or is computed to be, on the meridional

wire of the Transit Telescope. If the clock were neither too

fast nor too slow, it would, at that instant, denote the star's

apparent right ascension. In order to ascertain this circumstance,

we must compute the star's apparent right ascension. The first

step in such computation, is to take the star's mean right ascen-

sion from a catalogue of stars constructed for a certain epoch ;

the next step is to add the increase of right ascension that has

accrued, in the interval between the above epoch and the time of

observation. This increase, in other words, is (leaving out of

consideration any proper or peculiar motion which the star may
have) the star's precession in right ascension. So that, if we
would make the comparison of the clock's time with time com-

puted from Astronomical elements, we must, in the second step

of our computation, be able to assign the star's precession in

right ascension.

For instance, suppose a Arietis to be on the meridional wire

of the transit telescope on May 20th, 1822, when the sidereal



352

clock indicates l
h 58

m
0', and that we are obliged to use

a catalogue of stars computed for the epoch of Jan. 1, 1819 "

then, from such catalogue, we have,

firstly, mean right ascension, January 1, 1819 l
h 56 59

9
.36

secondly, from the same catalogue, and by the for- i

mula of p. 344, the annual precession = 3".34;/"0 10.02

therefore for three years, precesssion J

precession to May 20th, (=:3
8
.34 x .381) 1.27

mean right ascen. of a Arietis on May 20, 1822. ..15? 10.65

If we stopped at these corrections, the clock would appear
to be too fast by 48s

.93 : but, as we have shewn, in the Chapter
on Aberration, the star, by the effect of that inequality, will

appear sobner on the meridional wire than it otherwise would do,

and by i
s.205. From that cause, therefore, the apparent right

ascension will be greater than the mean : in computing, there-

fore, the former from the latter, we must subtract 1
3

.205 from the

latter; and, accordingly, since

Mean right ascension, on May 20, 1822, is = l
h
57

m
10

s
.65

Aberration =0 1 .205

Apparent right ascension 1 57 9.445

We have not, at present, theory and formulae, to continue

farther the process of corrections, and to compute, to a greater

degree of exactness, the star's apparent right ascension. If the

last result were true and final, it would make the clock too fast

by 50*.555.

But it will be soon our business, to explain the existence of

two other inequalities, and to assign their quantities and laws. It

will, then, appear that, in the instance before us, the apparent

right ascension of a Arietis must be increased by lunar nutation

(by
s

.584) and diminished by Solar nutation. What are the causes

of these two inequalities, and the laws to which they are subjected,
we will proceed to explain in the following Chapter.



CHAP. XIV.

ON SOLAR AND LUNAR NUTATION.

The Origin of the Nutations in the Inequable Generation of the

Precession. Formula of the Lunar Nutation in Right As-

cension and North Polar Distance; made similar to the For-

mula of Aberration and Parallax. Formula of the Solar

similar to those of the Lunar Nutation. History of the

Discovery of Nutation. *

THE two inequalities that give the title to the present

Chapter, are intimately connected with that of the preceding.
For the purpose of pointing out that connexion, we must look to

the physical causes of these inequalities ; and, in the inequable

action of the cause of precession, we shall be able to trace the

origin of the Lunar and Solar Nutations.

The actions of the Sun and Moon on the excess of the

Earth, which is an oblate spheroid, above the inscribed sphere,

produce the retrogradation of the equinoctial points, or, as it is

technically called, the Precession of the Equinoxes. The material

circumstance in the production of this phenomenon, is that excess

of matter, just spoken of. The other circumstances, scarcely

less material, and, indeed, essential to the phenomenon, are the

inclination of the Sun's orbit to the equator, and the inclination

of the Moon's orbit to that of the Sun's, and, consequently, to

the Earth's equator. If the Sun and Moon were constantly in

he plane of the equator, there would, notwithstanding the Earth's

spheroidical form, be no precession. When either luminary is in

the equator, its action, in producing precession, is nothing.

Twice a jear, therefore, namely, at the two equinoxes, the Sun's

force in causing precession is nothing, and twice a year, at

the solstices, it is the greatest. It must, therefore, be of some

mean value, in the intermediate times. The retrogradation,

therefore, of the equinoctial points, inasmuch as it arises from the

Y Y
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Sun, cannot be equable, since the cause producing it is, on no

two successive days of the year, exactly the same. There arises,

therefore, an inequality of precession. In consequence of such

inequality, the precession in right ascension of a Arietis (taking

one of the instances of the last Chapter, see p. 352,) on

May 20th, will not bear that proportion to the annual precession

(3
8
.34) which the number of days, between January 1, and

May 20, bears to three hundred and sixty-five days ; and, gene-

rally, the precession for fifty days, whether it be in right ascen-

sion or in north polar distance, will not be necessarily equal to

- x p, p representing the precession. The exact portion of

the annual precession (in right ascension or in north polar

distance) to which it is equal, or the correction necessary to be

made to the mean portion, will depend on the season of the year

to which the fifty days belong.

The precession, therefore, after being used as a correction,

itself requires to be corrected. This, however, is easily effected

by altering the number by which (see p. 349,) it is necessary to

multiply the annual precession, in order to obtain its proportional

part. Thus, of the star a Serpentis, the annual precession in right

ascension of which is 2S
.Q35, the mean proportional precession on

120
April 30, would be x 2*.Q35 = .328 x 2

S

.Q35, and .328 would

be the multiplier : but this is too large, the actual precession gene-
rated from January 1st to April 30th, being less than the pro-

portional part of the mean. It may be made duly less then, by

merely lessening the multiplier. .328 : in the present instance, it

would be reduced to .30, which number, and like numbers, in like

instances, are furnished by proper Tables (see Wollaston's Fasci-

culus, Appendix, p. 42). This, however, it is to be noted, is

not the sole method for correcting the precession.

The inequable retrogradation of the equinoctial points, or the

inequality of precession, is not the sole effect produced by the

unequal action of the Sun on the Earth's excess of matter above

an inscribed sphere. The obliquity of the ecliptic, which, were

the precession uniform, would not be affected by the cause pro-



355

ducing precession, is subject to a semi-annual equation : since,

as in the inequality of precession, the force causing a change in

the obliquity arrives, twice in a year, at its maximum.

These two effects, one of an inequality of precession, the

other of an oscillation of the plane of the equator, constitute,

what technically is called, the Solar Nutation.

There is also, as it may be conjectured from the arguments

just alledged, a Lunar Nutation. The precession of the equinoxes
is produced by the joint action of the Sun and Moon. As the

Sun not being in the equator, causes that part of the precession,
which is due to his action, to be inequably generated, so the

Moon, continually altering her declination, is continually causing

precession with an unequal force. But the period of the ine-

qualities of its action, from their evanescent state to a state of

maximum, is different from the period of the inequality of the

Sun's action. It is no semi-annual period. The lunar period

depends, however, on principles the same as those that regulate

the solar. When the Moon's orbit, which is continually chang-

ing its position, returns, and not, at the end of an interval, to the

same position which it had at the beginning, the interval *so cir-

cumstanced is the period required. Now this is regulated by the

motion of the Moon's nodes. The Moon's orbit is inclined to

the ecliptic, and its nodes retrograde in the ecliptic. The

period of this retrogradation is about eighteen years and seven

months. At the beginning, suppose the Moon's node to have

been in the node of the equator and ecliptic, then, at the end of

eighteen years and seven months, the same node will have

described 360 contrary to the order of the signs, and returned to

thejirst point of Aries, and, during this retrogradation of the

node, the lunar orbit will have occupied every position which it

can occupy relative to the equator. The inequality of the

Moon's action, then, in causing precession, will have passed

through all its vicissitudes.

But, as in the former case, this is not the sole effect of the

inequality of the Moon's force. The plane of the equator will

be made to oscillate ; so that, according to the longitude of the

node of the Moon's orbit, it will be necessary to correct the

mean obliquity on account of the lunar nutation.
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We have seen in pp. 192, 193, that the phenomena of pre-

cession can be accounted for, by supposing the pole of the equa-
tor to describe uniformly a small circle round the pole of the

ecliptic in a period of 25869 years. But these new phenomena
of precession render some modification necessary in the preceding

hypothesis. By reason of the solar nutation, the pole of the

equator will oscillate, during half a year, about its mean place in

the above-mentioned small circle, and the retrogradation of the

pole will not be uniform. There will be a like oscillation and

a like inequability of precession from the lunar nutation, but

during a longer period. From both causes then, the north polar

distances and the right ascensions of stars will be changed.

Their precessions in north polar distance and right ascension

computed according to the methods of pp. 344, &c. will not be

the true precessions. In order to make the former the true

precessions, we must correct them both for solar and for lunar

nutation.

We have, in the preceding pages, described the causes of the

lunar and solar nutations. But the lunar nutation, which is, by

far, the most considerable, was not sought for and found out

from a previous persuasion, or belief of the existence of its cause.

Bradley, soon after the discovery of the aberration of light,

noticed it as a phenomenon, and then assigned its cause, and the

laws of its variation. But the solar nutation has never appeared
to Astronomers as a phenomenon. It could scarcely be expected
to be noticed as such, since its maximum is less than half a

second. Its existence and quantity are derived from Physical

Astronomy ; and, on such authority, it is introduced as a correc-

tion of Astronomical observations.

We will now proceed to the deduction of the formulae of the

lunar nutation. Similar formulae will express the laws of the

solar nutation : the formula;, considered as variable expressions,
will differ only in

their^coefficients.
One set of formula? belong

to the inequality of the Moon's action on the Earth's excess

above an inscribed sphere ;
the other to the inequality of the

Sun's action on the same excess.

In deriving these formula, we must begin with borrowing
certain results established by Physical Astronomy. It has been
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proved, in confirmation of Bradley's conjectures, that the pheno-
mena of nutation are explicable on the hypothesis of the pole of

the Earth, describing, round its mean place (that place which, see

p. 337, it would hold in the small circle described round the

pole of the ecliptic, were there no inequality of precession) an

ellipse, in a period equal to the revolution of the Moon's nodes.

The major axis of this ellipse is situated in the solstitial colure

and equal to 19
/7

.296 ; it bears that proportion to the minor axis

(such are the results of theory) which the cosine of the obliquity
bears to the cosine of twice the obliquity : consequently, the

minor axis will be 14".364*.

Let CdA represent such an ellipse, P being the mean place
of the pole, TT the pole of the ecliptic. CDAO is a circle

TT

described with the centre P and radius CP. <^ L is the ecliptic,

<Y> w the equator, ITPL the solstitial colure. In order to de-

termine the true place of the pole, take the angle APO "equal to

* These are M. Zach's numbers. Bradley's are 18", 16". Maske-

lyne's 19".l, and Laplace's J9".l6\ See Mecanique Celeste, Liv. V.

p. 351.
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the retrogradation of the Moon's ascending node from <y> : draw

Ot perpendicular to PA, and the point in the ellipse, through

which Oi passes, is the true place of the pole.
This construc-

tion being admitted, the nutations in right ascensions and north

polar distance may, Pp being very small, be thus easily com-

puted.

Nutation in North Polar Distance.

The nutation in N. P. D.=P<r p<r
= Pp.cos.pP<r, nearly,

= Pp.cos.(APp + AP)
=Pp.cos.(APp + M - 90)

=Pp.sm.(APp -f A).

Nutation in Right Ascension.

The right ascension of a star is, by the effect of nutation,

changed from p w into v 'ts. Now

Y 't s = Y 'v+ Y^7 4- ts, nearly,

.' .
< w <Y> 'tfs = Y v ts

sin. ers

= Y Y cos. <y T Pp - sin. pP& -
~

p~ ^ .

in which expression T 7

t> (= f T' cos. r T'V) is, as in the case

of precession, common to all stars.

In order to reduce farther the above expression, we have

pP(T= APp+ AP(r = (in the present figure) APp+M 90,

,
sin. APp

and YT =Ll = Pp . : ;

sin. PTT

.'. - T'v - ts = Pp. sin. APp. co-tan. I

- Pp . sin. (^Pp-f^l - 90) . cot. N. P. D.

= Pp . sin. APp . cot. 1+ Pp . cos. (APp + JR.) . cot. 3,

S representing the north polar distance.

But these forms are not convenient for computation. In
order to render them convenient, we must, from the properties of
the ellipse, deduce the values of Pp, and of the tangent of APp,
and then substitute such values in the above expressions : thus,
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Pp _ sec. APp _
cos. APO

_
cos. (12

s

SI)

PO
""

sec. APO
'

cos. APp cos. ^Pp

=-'--
, a designating the longitude of the Moon's as-

cos. APp
cending node.

Again,

tan. APp pi Pd Pd
tan. APO

"
Oi

Z

PD
= '*

PO'
T> 7 T> i

.-. tan. ^Pp =
. tan. ^PO = .tan. (12

s a)

Now substitute, and there will result

The Nutation in North Polar Distance

= -
.

'-
(sin. jtPp.cos. JR,-r-cos.^P.sin. JR)

cos. APp
= PO (tan. APp . cos.M cos. SI + cos. SI . sin. JR)
= P rf cos. JR sin. SI + PO . cos. SI . sin. JR

.7
;/

.i82 cos. M sin. SI +9/;

.648 . cos. a sin. M,
which is the difference, as far as nutation is concerned, between

the mean and apparent north polar distance. The apparent
north polar distance, therefore, must be had by adding the pre-

ceding quantity, with its sign changed, to the mean.

Nutation in right ascension = Pd. sin. a cot. /

+PO . cos. a -cos. JR cot. S+ P d . sin. a sin. JR cot. $,

which, as far as nutation is concerned, is the difference of the

mean and apparent right ascensions : and, consequently, the

above expression must be subtracted from the mean, in order to

obtain the apparent right ascension ; or, which is the same,

must be added after a negative sign has been prefixed ;
in which

case, we have, substituting for PO, Pd their numericaf values,

The Nutation in Right Ascension

= 7". 182. sin. a cot. /

9".648 . cos. a cos. JR . cot. S 7
;/

.182 . sin. a sin. JR cot. S.
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Of the expressions for the nutations in north polar distance and

right ascension, each admits of a maximum value : in order to

find that value of Si which gives the nutation in north polar

distance a maximum, we have

= 7". 182 . cos. JR cos. Si -f9".648 sin. Si sin. JR ;

7". 182 b

a

which is the value of tan. Si , when the nutation is a hiaximum.

Let A" be the corresponding value of Si , M the maximum,
then (see p. 359, 1. 16, &c.)

M = b . cos. JR sin. X a . sin. JR cos. X

= a . sin. JR ( co-tan. JR sin. A"-j- cos. X )\ a /

= a sin. JR (sin. X . tan. X + cos. X)
sin. JR= a . T? .

cos. A
We may now express the nutation at any time (what takes

place with any given longitude of the Moon's node) in terms of

the maximum, and of the corresponding value of the longitude of

the node : thus,

The Nutation in North Polar Distance

= b cos. JR . sin. Si a . sin. JR cos. 3

= a . sin. JR ( cot. JR sin. Si +cos. SI )\ a /
= 3f .cos. X (tan. A sin. SI + cos. SI)
=M (sin. X sin. Si + cos. X cos. 1)

= M.cos. (SI
- A)

= M.cos. (SI 4- 15
s A 15

s

)

= M. sin. (SI + 15
s

AT),

or (should M, when its arithmetical value is deduced from the

expression of 1. 13, be negative)

= iUT.shi. (SI +21' A)*.

* Since X cannot exceed 12 s
,
we are sure, by using 15s and 21', of

having 15' A, and 21 g

A, expressed by a positive arc. If the result-

ing arc exceeds 12 we may cast out 12* : for sin. (12'+^) = sin. A.
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Hence, as in the case of aberration (see pp. 274, &c.) we can

always find the nutation by adding, to, the longitude of the Moon's

ascending node, an arc equal to 15
s

X, or= 2 1
8

X, the value

of which arc will depend on the star's right ascension.

In the same way we may reduce the expression for the nuta-

tion in right ascension. Thus, the nutation in right ascension,

= b. sin. Si cot. I

a . cos. Si cos. JR cot. $ b . sin. Si sin. JR cot. .

In order then to obtain that value (F) of Si which shall make
the nutation a maximum, we have

b cos. Si . (cot. / + sin. JR cot. )
= a . sin. SI . cos. JR cot. 8

;

therefore, writing Y instead of Si ,

b cot. I + sin. ^R.cot. $

a
'

cos. JR. cot. 8

Hence the maximum (TO) of nutation in right ascension,

= b . sin. F. (cot. J-f sin. JR cot. 3) a . cos. F cos. ^R cot. 5

a . cos. JR cot. $

cos. F

By means of this expression we may, as in the case of the

nutation in north polar distance, (see p. 360.) express the nuta-

tion in right ascension in terms of m, and of the corresponding
value of Si

'

thus, the nutation in right ascension, (ri)

=: b. sin. Si (cot. J+ sin. JR cot. 5) a . cos. SI cos. JR cot. 5

= a . cos. JR cot. 8 . tan. Fsin. Si a. cos. JR cot. 8 cos. Si

* /sin. F sin. Si + cos. F cos. SI \= a . cos. JR cot. o ( =r I

V cos. F /

= m . cos. (SI F)

= m sin. (Si + 15
s

F),

or (should the value of my when arithmetically deduced, be nega-

tive)

= m. sin. (a + 1
s - F).

Hence* as in the former case, (see p. 360.) and in the case

zz



of aberrations, the nutation may be expressed by the sine of a

positive arc.

We may, then, thus symbolically express the formulae of the

Nutation.

Formula of the Nutation in North Polar Distance.

7
f/

182
tan. X = cot. M= 0".744 cot. JR. ...... (l)

9.648

in logarithms, log. tan. Z= 9.87182 + log. cot. JR 10;

next,

M== - 9.648 . = - 9".648 . sin. M sec. X (2
cos. X

in logarithms, log. M= .984437+ log. sin. JR+ log. sec. Jf 20,

and thirdly,

(nutation) N = M sin. (SI + 15
s - X) (3)

in logarithms, log. IV= log. .M+log. sin. (SI -f 15
s

X) 10.

Formula of the Nutation in Right Ascension.

/cot. / + sin. JR . cot. $\
tan. F= 0".744 (

3-
) (4)V cos. JR cot. d /

9
/7

.648 . cos. M . cot. S
m = -* (5)

cos. F

in logarithms,

log. m= .984437-f log. cos. JR+ log. cot. $ - log. cos. F 10,

and thirdly, n = m . sin. (Si + 15
s - F) (6)

in logarithms, log. w=log. m + log. sin. (SI + 15
s

F) 10.

It now remains to assign, in particular instances, the peculiar

values of the arcs 15
s - X, 15

s - F, or 2 1* - X, 21 s - F, which

are to be added to SI .
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EXAMPLE I. 7 Pegasi, (1800.)

X computed. Y computed.
- 10 .... - 10 - 40= 40

= 44' ll".85. . cot. = 11.890852 log. .744= 9.871820

(see p. 362.) 9.871820 cot. / . . = 10.362458

log. tan. (89
;

38") . . 11.762672 sec.M. . = 10.000036

but tan. Xis negative; /.X= 90 59', nearly tan. S . . = 10.601938

and + 15
s - X = 11

s

29 l' ( = log. 6.858) .836252

Again,
20 = 20

log. .744 = 9.871808

tan. M = 8.109147

(log. .0095) 3.981955

But,

6.858 + .0095 = 6.868,

and 6.868 = tan. 81 43', nearly,

.-. F = 2S 21 43'.

M computed,

see p. 362.

20 -20

log. 9-648 984437

log. sin. M 8.109111

log. sec. X 11.765443

(log. M) t 858985

m computed.

30 -30

984431
cos. M. . 9.999963

cot. S. . . 9.398061

sec. F. . 10.819448

(log. m). . 1.201903

Hence,

N = M. sin. (SI + 11
s

29 l'),

and log. N = .8589 + log. sin. (Si + 11
s
29 l').

Again,

w = m.sin. (a + 15
s 2

8

21 43')

= wa.sin.'($l -f 21 2 21 43)

= m.sin. (SI +18 8 17)

= m. sin. (SI +608 17),

and log. w = L202 + log. sin. (a + 6
s 8 170
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EXAMPLE II. a Arietis (1815.)

X computed. Y computed.

10= -10 40 =-40
m=29 II

7

28". . cot. = 10.252838 log. .744= 9-871820

9.871820 cot. I. . = 10.3624;

(tan. 53 6' 44") ...... 10.124658 sec. M- . = 10.05898^

but tan. X is negative; /. X= 126 53
7

16" tan. S. . = 10.38199

= 4s 6 53' 16" (log. 4.7342) .675256 i

.-. 15
8 - X = 10s 23 7

7

, nearly.

Again,
- 10 = 10

log. .744 = 9.871820

tan. M = 9.747161

(log. .41588) * 9.618981

Now, 4.7342 4- .4158 = 5.15008,

and 5.15008 = tan. 79 O
7

4l";

.-. F = 2
s

19 I
7

, nearly,

M computed. ra computed,

see p. 362.

-20= 20 30=-30
.984437 .984437

sin. M = 9.688174 cos. M 9-941012

sec. X = 10.221662 cot. 8 9.618008

(log. M) .894273 sec. F 10.719845

) 1.263302

Hence,
N= M. sin. (SI + 10

s 23
e

7
7

),

and log. N = .8943 + log. sin. (a + 10
s
23 7'),

Again,
w= -m.sin. (SI -f 15

s -2s

19 I
7

)

= m.s'm. (SI + 21
s 2

s

19 l')

= m.sin. (a + 18
s

10 59
7

)

= m.sin. (& +68
10 59

7

),

and log. n = 1.2633 + log. sin. (SI + 6
s
10 59').
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EXAMPLE III. Polaris, (1800).

X computed. Y computed.

-10 =-10 -40= 40
jR=13 5' 15". . cot. = 10.633762 log. .744= 9.871820

9.871820 cot. /. . = 10.362458

tan. (72 39' 35") 10.505582 sec. ^t..= 10.011422

but tan. X is negative; .'. X= 107 20' 25" tan. S . . = 8.486050

= 3
s

1 7 20' 25" (log. .05392) 2.73 1 750

/. 15
s - X= II

8 12 39' 35".

Again,
- 10 = -10

log. 744 = 9.871820

tan. M = 9.366237

(log. .1730) 9.238057

Now .1730 4- .05392 = .2269,

and .2269 = tan. 12 47' ;

/. Y = 12 47'.

M computed. m computed.

-20= 20 -30= 30

.98443 98443
sin, M = 9.35481 cos. M. . 9-98857

sec. X = 10.52588 cot.S. . 11.51261

(log. M) .86512 sec. Y= 10.01091

(log. m) 2.49652

Hence,
N = M. sin. (SI + 11 s 12 39' 35"),

and log. N = .8651 + log. sin. (SI + 1 I
s 12 39

7

35").

Again,

n = - m . sin. (Si + 15
s - 12 47')

= m. sin. (SI +21 12 47)

= m.sin. (Sl+20
8

17 13')

= 77z.sin.(a + 8 17 13),

and log. n = 2.4965 + log. sin. (Si + 8* 17 13').
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EXAMPLE IV. a Aquarii, (1800), see pp. 281, &c.

.X computed. Y computed.
- 10= 10 -40= -40

JR= 328 59! 26". . cot.= 10.21906 log. .744= 9-87182

9.87182 cot. /. . =10.36246

tan. (50 57' 6") 10.09088 sec.M . = 10.06751

now, since cot. JR is negative tan. S. . . = 11.65989

tan. X (see p. 362.) is positive (log. 91.556) 1.96168

.'. X = 1
s 20 57', nearly.

-Again, - 20= 20

log. .744 9-87182

tan.M 9-78037

( = log. .4489) 7.65219

Now 91.556 +.4489 = 92.005,

and 92.005 = tan. 89 22'
;

but tan. Y is negative ;

.-. Y = 6
s -

(2
8

29 22')

= 3 38.

M computed. m computed.

-20= -20 30= 30

.98443 98443
sin. M. . . 9-71342 cos. M 9-93248
sec. X. . . . 10.20067 "cot. $ 8.34010

(log. M). . .89852 sec. F 11.95665

(log. m) 1.21366

Hence,

N=M.s\n.(Sl + 15
s -I 8

20 57'),

= M.sin. (SI + 1
s

9 3')

and log. N= .8985 + log. sin. (ft+ l
8

9 3')

-Again,

n = m.sin. (Si + 21
s

3 38)

= m.sin. (SI -f 17
s

29 22')

= m. sin. (SI + 5 29 22),

and log. n = 1.2136+ log. sin; (Si + 5
8

29 22').
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The Solar Nutation arises from like causes as the Lunar, and
admits of similar formulae. As an ellipse, made the locus of the

true place of the pole, served to exhibit the effects of the lunar

nutation, so an ellipse, of different, and much smaller dimensions

may be made to represent the path which the true pole of the

equator would, by reason of the Sun's inequality of force in

causing precession, describe about the mean place of the pole.

Thus, in the present Figure, the ellipse A dC will serve to re-

present the locus of the pole, when ^P = .435, Pd= .3Q9, and

APO, instead of being = Si, is equal to 2 , or twice the Sun's

longitude, according to the order of the signs; the equations,

therefore, for the solar nutation in north polar distance, and right

ascension., analogous to those of p. 362, will be

The Solar Nutation in North Polar Distance

= - .399 cos. JR . sin. 20+ .435 sin. M . cos. 2 ,

The Solar Nutation in Right Ascension

= .399 sin. 2 cot. I

.435 cos. 2O cos. M . cot. S .399 sin. 2 sin.M cot. S,

which equations admit of transformations precisely similar to
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those which the equations of the lunar nutation (see pp. 360, &c.)

were made to undergo. Hence, we have these formulae similar

to those of p. 362. for north polar distance,

SQQ
tan. X'= - cot. JR, and

.435

log. tan. X 1 = 9-96248 + log. cot. M -
10,

M' = - .435 . sin.M . sec. X 1

and log. M' = .63849 + log. sin.M + log. sec. X' -20,

N 1 = M'. sin. (20 + 15
s - X'),

or (see p. S6l.) = M' sin. (2 O + 21
s - X'),

log. N' = log. M'+ log. sin. (2 O + 15
s - X 1

} 10,

for right ascension,

3QQ
tan. Y' = '-

(cot. I sec.M . tan. $ -f tan. M) ;

.435

Q17
/. tan. Y' = tan. Y x

,

744

m' = .435 cos. M cot. S sec. F',

and log. m
1= 9-63849 + log. cos. JR + log. cot. -f log. sec. Y' 30,

w'= ro'.sin. (2 + 15
s - F'),

log. w'= log. wi' + log. sin. (2 O + 15
s

Y') - 10.

Hence it appears, that we may very easily deduce the solar

nutations, if we have computed the lunar, since in the processes
of computation, there are several parts nearly the same. Thus,
if we take the last instance, that of a Aquarii, (see p. 366.)

we have

- 10= 10

tan. M 10.21906 log. tan. Y = 11.96381

9-96248 .09166

(log. tan. X'} 10.18154 log. tan. Y 1 = 12.05547

.-. X 1 = 56 38' 28",

15"- X 1 = 13
s

3 22';

but 12.05547 = log. tan. 89 28
7

, nearly,
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and since tan Y' is negative,

Y 1 = 3
s

32',

15' Y 1 = 11 29 28.

M f

computed. m computed.

20= -20 30= 30

log. ratio of axes. . .63849 63849

sin.M 9.71342 cos.M 9.93248

sec. X' 10.25973 cot. 8.34010

(log. M1

} 61 164 sec. Y' 12.03113

(log. m'} 94220

Hence,

JV' = M' sin. (2O + 13
s

3 22')

= M 1

sin. (80-4-13 22),

and log. N' = .6116 +log. sin. (2 + 1

s

3 22') 10,

n1 = m . sin. (2 + 15
8

3
s

32')

= m' sin. (2 + 5
s

29 28'),

and log. n = .942 -f- log. sin. (2 +5S

29 28') 10*.

* The expressions for the solar nutation are thus made similar to the

expressions for the lunar: but they require a separate investigation.

There is not the same ratio between the axes of the ellipse that belongs to

the solar nutation, as between the axes belonging to the ellipse of the lunar

nutation. M. Zach, however, (seep. 120. Tabulce Speciales Aberrationis

et Nutationis) and M. Delambre commenting on him (see Connoissance

des Terns of 1810. p. 463.) derive the solar from the lunar corrections by

merely multiplying the latter by a constant quantity: which is" no just

operation.

3 A
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The lunar and solar nutations are now then expressed by for-

mulae similar to those by which the aberrations of stars (see

pp. 283, &c.) have been expressed; and, we might form Tables

like that of which a specimen has been given in p. 283. Thus,

LUNAR NUTATION.
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Hence,

the apparent north polar distance =91 16' 58" ~ 17".07*

-f 7".856 .sin. (O -f-3
8

2 49' 52") (aberration, p. 281.)

+ 7".915 . sin. (Si + 1 9 3' 0). .. .(lunar nutation, p. 370.)

4- 0".4ti8.sin.(2Q + 1 3 22 0).... (solar nutation, p. 370.)

and, in a specific instance, when the values of the longitudes of

the Sun and of the Moon's ascending node would be assigned,

the resulting value of the apparent north polar distance would

agree with the observed and instrumental distance cleared of the

effects of refraction.

On the footing of mere theory, we ought to add to the pre-

ceding terms (see 11. 2, &c.) that express the several corrections, a

similar term (see p. 313, &c.) on account of parallax. But its co-

efficient is, at present, either insensible or unknown. We do not,

therefore, correct for parallax : but we must correct on account

of the 'star's proper motion: the quantity of which correction,

resting on no theory, is determined solely by observation.

We have assigned the formula for determining the apparent
north polar distance of a Aquarii for some time (t) in the year
1800. But, as it has been explained, the same formula (except-

ing its first and fourth term) will serve to express the north polar

distance of a Aquarii for any time in any other year ; provided such

year be not too remote from the epoch for which the numbers and

maxima (see p. 366.) have been computed. Thus, the numbers

and maxima have been computed for a Arietis, supposing the

epoch to be 1815 : but, the same numbers and maxima will serve

to compute, with no practical error, the aberrations and nuta-

tions of that star for any time during 1822. The like will

happen with other stars
;

for instance, suppose it were necessary
to express and compute the apparent right ascension of a Arietis

on May 20th, 1822 : then we have, from the Catalogue of 1819-

Star's mean right ascension, Jan. I, 1819 l
h
56
m

59*.36

three years precession (
= 3. x 3

8

.34) , . . 10 . 02

proportional precession to May 22 (
= 3 .34 x .3801) 1 . 27

and from the Nautical Almanack and Tables,
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O = 1
s
28 50' 39"

SI = 10 20 20

also see p. 283, No. for aberration = 7 28 39

p. 370, for lunar nutation = -6 10 59

p. 370, for solar = 6 8-55

consequently, see pp. 283, &c.

the argument for aberration is 9
9

27 '29'.5, nearly,

for lunar nutation 17 1 19

for solar nutation 10 6 36

whilst, by the same pages, the maxima (expressed in time) are,

respectively,

& (20'.564),

'

(18.335), & (1
9

.017).

Hence on May 20th, 1822, the apparent right ascension of

a Arietis is

l
h

57
m 10

S

.65 ^
= l

h
57

m
10'.65

+ 5̂ (20.564) sin. ( 9 27 29'.5) .....= - 1.21

+ i (18.335) sin. (17 1 19) = +0.58

+ 5 ( 1.017) sin. (10 6 36) = -0.05

1 57 9-97

The apparent right ascension, therefore, of a Arietis will be

very nearly l
h
57

m
1.0".

Of the four corrections that have been applied, in the pre-

ceding instance (and of like corrections with other stars) three are

dependent on the time elapsed from the beginning of the year ;

namely, the proportional part of the precession, the aberration,

and the solar nutation. If these corrections, therefore, be com-

puted for every day of a certain year and their results taken, such

results will serve for every day on succeeding years, and, without

material error, will be right results during a century. Such is,

nearly, the practice of Astronomers. They compute to every
tenth day of the year, and insert in Tables, the results of preces-

sion, and aberration. Thus, in the preceding instance, we have
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the precession, in right ascension = I
8

. 27

the inequality of preces.
n

in JR, or solar nutat. in JR.= . 05

the aberration in right ascension = 1.21

+ 0.01

and this result is called, (see Table X, in the first Volume
of the Greenwich Observations) the Correction oj the Star's

Right Ascension in time.

The fourth correction, that of the lunar nutation, depends
on the longitude of the Moon's ascending node, and conse-

quently will not, like the other corrections, be the same on the

corresponding days of successive years. It is computed from a

separate Table, of which the argument is the longitude of the

Moon's node.

The deduction of formulae for correcting, on account of the

lunar and solar nutations, the apparent north polar distances and

right ascensions of stars, ought to be considered as the essential

business of the present Chapter ; which, therefore, might here

be closed. But, before this is done, we wish to make a short

digression towards certain collateral objects : some of little

moment, or merely curious : others distinguished solely by their

celebrity in Astronomical history.

In aberration, we pointed out its origin and cause, and then,

with such means as we were using, deduced its formulae.

Nothing was then borrowed from a foreign or an unexplained

theory. But it has been otherwise in the subject of nutation.

Some general idea, indeed, was given of its cause, but no formulae

deduced from such explanation. The means of deducing them

were borrowed from Physical Astronomy and taken on trust.

And, in order to obtain the most convenient means of computing
such formulae, we supposed (which indeed is one of the results of

Physical Astronomy on this subject) the locus of the pole to be

an ellipse. But, it is to be observed, this is only one way of

viewing the subject : it is neither the essential nor the only way.
All the computations might have conducted, and their results

arrived at, without an ellipse to represent either the solar or lunar

nutation. The inequality of the lunar force in causing precession



374

produces an equation of precession, and an equation of the ob-

liquity. The inequality of the solar force does the same thing.

Let

the lunar equation of precession, or d^ = 18 .03584 sin. Si

the equation of obliquity, or dl = 9 -6 . cos. St ,

and from these two equations, by the means either of spherical

triangles, (as Cagnoli has done pp. 439, &c. of his Trigonometry}

or by taking the differentials of some of the equations of page 182,

(as Suanberg has done, pp. 108, &c. of his Exposition des Ope-

rations, &c.) the corresponding variations of the right ascension

and north polar distance, or, technically, the nutations in right

ascension and north polar distance, may be deduced.

In like manner, if we represent the inequality or equation of

precession arising from the Sun by

dy '= - l". 002 . sin. 2 O ,

and the equation of obliquity, by d I = 0".435 . cos. 2 O 5

we may deduce, by the method just described, the corresponding
variations in the right ascensions and north polar distances of

stars, which, technically, will be the solar nutations in right as-

censions and north polar distance, or which, as it is sometimes

said, arise from the solar inequality of precession.

Instead of this, which is, perhaps, the most direct method, we
have followed Bradley's. This latter is usually adopted in

Astronomical Treatises,, and, certainly, possesses the merit of

being clear and intelligible. But it is apt to cause the student to

form erroneous conceptions : to make him view as a fact, or phe-

nomenon, what is merely a mathematical fiction. If we could

trace out in the Heavens the path of the pole of the equator it

would not be an ellipse. It would be such a curve were there

no inequality of the Sun's force, and were not the mean place

of the pole itself in motion along a circular arc. But this latter

motion takes place, and, besides, the path of the true pole, by
reason of the solar nutation, would, were other causes abstracted,

itself be elliptical.

The path, therefore, described by the true pole, by virtue of

three motions, or in consequence of precession, and (for such
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they are) its two inequalities, is some epicycloidal curve *, of fto

very easy description.

Instead of deducing the nutations in north polar distance and

right ascension from the nutation of the obliquity, and the nuta-
tion of longitude, (see pp, 374, 357.) we have deduced them from
the assumption of the locus of the pole being an ellipse. From
formulae so deduced we may derive, as consequences, the nuta-

tions of obliquity and longitude.

Thus,

N(m N. P. D.) = 9".64.sin. M .cos. a -7". 18 cos. M. sin. SI .

Now the change produced, by nutation, in the north polar
distance of a star situated on the solstitial colure, will be equal
to the change of obliquity from the same cause. Let the right

ascension, therefore, = 90, in which case sin. JR, = 1, cos. JR, = 0,

and the nutation of obliquity = 9"'64 . cos. a .

Hence, the nutation of the obliquity is the greatest when SI,

either = 0, or = 180, that is, either when the Moon's node is

in <r , or in =^ . Again, (see p. 359-)

n (in jR) = 9". 648 . cos. JR cos. SI . cot. $

- l". 182. sin. JR. sin. SI . cot. 5 l6".544. sin. a.

Let o = 90, then

w(in^l) = - l6
//

.544.sin. a, .

* In point of practical accuracy, nothing would be gained by investi-

gating such a curve, and thereby deducing the changes in the north polar

distances and right ascensions of stars. The present method of allowing

for those changes consists in adding together three terms : one due to the

precession, a second due to the lunar inequality of precession, a third due

to the solar inequality : each term, if we speak of theoretical exactness,

inaccurate : but so slightly inaccurate that their sum will differ, by no

difference of moment, from the single term or formula which, computed

on exacter principles, shall express either the change in north polar

distance, or in right ascension.
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which is the lunar inequality of precession in right ascension,

hence, the nutation in longitude = n X secant obliquity

= I6".544.sin. SI X sec. 23 28'

= 18".034.sin. Si,

which nutation is technically called the Equation of the Equi-
noxes in Longitude, (see Maskelyne's Tables, Tab. XLII.)

Similar equations for the changes in the obliquity and preces-

sion may be deduced from the formulae of solar nutation.

Thus, since

the solar nutation (in N. P. D.) =

.435 sin. JR cos. 2 O - .399 cos. JR . sin. 2 O ,

we have, taking JR = 90,

the solar nutation of obliquity = .435 cos. 2 Q ,

which is sometimes called, the Solar Equation of obliquity.

Again, (see p. 367.)

the solar nutation (in JR)~ .435 cos. JR cos. 2 O cot.

.399 sin. JR sin. 2 O cot. S - 0".918 . sin. 2 O .

Hence, making fi = 90,

the solar nutation of the equinoxes in JR= 0".918 sin. 2 O
and in longitude = .918 . sin. 2 O sec. obliquity

= l".sin. 2 O , nearly.

The former equation, the solar equation of obliquity, is, in

Maskelyne's Tables, combined with the secular diminution of the

obliquity caused by the action of the planets ;
the effect of

which action is a change not, as in the case of nutation, of the

equator but of the ecliptic. Thus, if the secular diminution of

the obliquity be 45". 7 : the annual diminution will be
7/

.457,

and the diminution for half a year, or about June 22, will be

'.229
*

if we represent the Sun's longitude at that time by 3s

,

we shall have the whole diminution from the beginning of the

year,

= 0".229 + -435 cos. 6s

= -0".229 - .435 = .714.
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Again, on March 21, the proportional part of the annual

diminution is nearly .189, and since O =0S
, the whole dimi-

nution is

.189 + .435. cos. 2O = .246,

on January 10, it will be

-.457 X + .435 cos. 2 X (9
s

20) = -
.34, nearly,

(see Table XXXI, and its explanation in the 1st Volume of

Maskelyne's Observations.)

The apparent obliquity of the ecliptic is inserted in the first

pages of the Nautical Almanack : it is equal to the mean obli-

quity at a given epoch -f- the proportional quantity of the secular

diminution + the solar nutation of obliquity -f- the lunar nuta-

tion. Thus, to find the apparent obliquity on Jan. 1, 1820.

The mean obliquity in 1813 23 2?' 50"

proportional part of secular diminution ( = 7 x .457) = 3.2

= 9
8

103'48", sol. nutat. = .435xcos.(18
9 207 /

)= -0.4

ft = 6 2 1
7

, lunar nutation = 9"-64.cos. (6 22') = +9.58

hence, the apparent obliquity in Jan. 1 =23 27 55.98

and in the same way we must compute the apparent obliquity on

April 1, July 1, October 1, and December 31.

There are several occasions on which it is necessary to know
the apparent, or the true obliquity of the ecliptic; for instance,

when (as in pp. 151, &c.) the Sun's right ascension is computed
from his observed zenith distance and the obliquity ; and,

generally, in all cases, where it is necessary, at any assigned time,

to compute the corresponding position of an heavenly body.

But there are other occasions when the mean value, of the

obliquity is employed : for instance, in the catalogues of the

longitudes and latitudes of stars
;
which longitudes and latitudes

(see pp. 160, &c.) are computed from that mean value which the

obliquity had at the catalogue's epoch.
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Some stars are more affected in their positions, by nutation,

than others. In order to determine the places of those stars that

are either the most or the least affected, we have

(N) nutation in N.P. D. = 9".648 sin, ^R.cos. Si

7". 182 cos. JR.. sin. Si.

If ^R = go, or 270, or, if the star be situated in the solstitial

colure,

N= 9".648 . cos. a .

If JR= 0, or = 180, or, if the star be situated in the equi-

noctial colure,

N = + 7".182.sin. a

Again,

n(m&) = - 9".648cos.^l.cos. a cot. 8

-
7"* 182 sin.M sin. a .cot. $ 16".544 . sin. a

If the star be in the solstitial colure,

n = ( + 7". 182 cot. S - 16".544) sin. a -

If the star be in the equinoctial golure,

n= + 9".648 cos. a . cot. 8 - l6".544 . sin. a .

The formulae that have been in pp. 362, 369. deduced are suf

ficient, in all cases, for the computations of the quantities of th<

solar and lunar nutation. They have been propounded also as

the most convenient formulae of computation. There are, indeed,

other formulae of computation, some of which (although this is,

in a slight degree, to neglect the main and essential business of

the Treatise) we will now consider.

By Trigonometry, p. 21,

sin. JR cos. a = j sin. (M+ SI) -f j sin. (M- a>
and cos. M sin. a = sin. (M+ a) -

|- sin.(M- a).

Hence, the above formula for the nutation in north polai

distance, becomes

N= l".233 . sin. (M + a ) + 8".415 sin. OR a ),
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in this expression, substitute, instead of JR, 180-t-jil, and the

resulting expression will be one for the nutation of a star having
a right ascension opposite to the former, that is,

N' =s l".233.sin. (m-fSl) 8".415 sin.(.l- ft),

an expression equal in quantity to the former, but in a different

direction (see Phil. Trans. No. 435, pp. 12, 13, also p. 294.

of this Treatise).

By a similar transformation, the expression for the nutation

in right ascension becomes

n= - 8".415 . cot. S . cos. (A - SI ) l".233 . cot. . cos. (JR + SI )

- 16".544 sin. & ,

and under these two latter forms, which are Lambert's,, the nuta-

tions in north polar distance and right ascension are usually

expressed (see Delambre, Chap. xxx". torn. 3. Connoissance des

Terns. 1810. p. 463. Cagnoli's Trigonometry, p. 440. Vince's

Astronomy, Vol. II. p. 132.)

With regard to the Astronomical uses of the theory of nuta-

tion and of its formula, the same may be said, both for explana-
tion and illustration, as has been already said on the subjects of

precession and aberration. The aberration will be nearly the

same, on the same days of different years : so will be the solar

nutation. The lunar nutation will, almost certainly, be different.

If, therefore, to take our old instance, we would determine, the

difference of the latitudes of the Observatories of Greenwich and

Blenheim, from two recorded instrumental observations of

*y Draconis, we must know, besides the zenith distances deter-

mined by the instruments, the states of the thermometer and

barometer at the instants of the two observations in order thence

to determine the refractions ; secondly, the interval of years

between the two observations in order to determine the difference

of the precessions in north polar distance
; thirdly, the days of

the year in order to determine the respective proportional changes
of precession ;

the inequalities of precession (or the solar nuta-

tions in north polar distance) and the aberrations ; and, lastly,

we must know the particular years and days, in order to know

the respective positions of the Moon's ascending node and thence

to determine the lunar nutations.
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But it is not on the occasions of determining the latitudes,

which are rare occasions, that the knowledge of the nutation, and '

of the other corrections is chiefly necessary. Such knowledge is *

required in the daily business of an Observatory. The first

operation is to observe the star and to register the observation :

the second is to clear the observation of its inequalities, or to

reduce it. For instance, in order to determine the error of the

line of collimation of the brass quadrant of Greenwich, there

were observed with it forty-six zenith distances of y Draconis,

at different times of the year, from Feb. 21, 1811, to Dec. 29,

1811. Each of these distances was an apparent distance, and

each different, the one from the other. Reduced to the same

eppch, which was the beginning of the year, each would express
the mean zenith distance, and (were the observations exactly

made, and the theories by which they are reduced, correct) by the

same quantity. This is not the case, if it were, one observation

would do as well as forty-six. But the accuracy which cannot be

hoped for from one observation is attained by taking the mean of

many. In order to effect this, each zenith distance must, as it

has been said, be reduced, or corrected for aberration, solar

nutation, lunar nutation, and precession. The following is a

specimen of registering the observations and their reductions :

Observed Zenith Distances of y Draconis reduced to the beginning
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The corrections in the several columns are, in practice, taken

from appropriate Tables : but they may, amongst other methods
of computation, be computed by those which have been deduced

in this Treatise : for instance, we may compute the numbers

under the third column from 19".55 sin. (0 -f 38
1 42' 15"),

5th, from 0".966 sin. (SI + 3 1 30'),

6th, from 50". 1 x -^- . sin. (23 280 . cos. 268',
365

when, instead of O and Si , the respective values of the longi-
tudes of the Sun and of the Moon's node are substituted on

Feb. 21, 22, &c. and Aug. 2, 6,, &c.

The preceding expressions for computing the aberration, &c.

are adapted (see p. 380.) to reduce the mean to the apparent

polar distance. Now, 7 Draconis is north of the zenith of the

Observatory of Greenwich. The resulting numerical values,

therefore, of the aberration, &c. if additive of the north polar

distance, are subtractive of the zenith distance
;
and conversely :

but, the above Table reduces the apparent zenith distance to the

mean ; consequently, the numbers in that Table will have the

same sign as the numbers computed by the preceding formulae.

The numbers 'expressing the aberration, &c. being either

taken from Tables, or computed, are added together with their

proper signs. The results are inserted in the seventh column.

The numbers in the seventh column added to those in the second

(which express the observed zenith distances) give the mean zenith

distance on the beginning of the year 1811. For instance, the

sum of the equations in the first horizontal line is -f- 8".27 ;
the

observed zenith distance, in the second column, is 2' f ; conse-

quently, the mean zenith distance is 2
7

15".27 ;
which number,

as well as all similarly obtained numbers, is inserted in the eighth

column. The numbers in the eighth column added together and

divided by their number (46 in the Table of which we have given

a specimen) give the mean value of the mean zenith distances *.

* In the above specimen and its explanation, we may perceive the

use of the theories of the inequalities in deducing certain results. The

result,
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The corrections, the theories of which have been investigated,

are precession, aberration, the lunar and solar nutations. By
these the instrumental and apparent zenith distances of 7 Draconis

observed in March, April, &c. of any particular year may be

reduced to the mean zenith distance at the beginning of the same

year ; and, consequently, the mean zenith distances of the same

star on the beginnings of different years may be compared toge-

ther. A like reduction and comparison may be made of the right

ascension of a star. With regard to the mean zenith distances and

mean right ascensions of stars at the beginnings of different years,

if these differ, they ought to differ, supposing all the corrections

to have been accurately assigned, solely from the effect of pre-

cession. If the differences should not be accounted for from

that effect, a new source of inequality would be indicated, if the

effects of precession will account for the differences in the mean

zenith distances of some stars, but not of others, there would, in

that case, arise an indication of some peculiarity affecting these

latter stars. But instead of describing, in general terms, the

result, in the adduced instance, is the. mean zenith distance of 7 Draconis

on Jan. 1, 1811. We may be required to go a step farther, and to shew

the use of the results obtained in the above Table. Those results were

obtained for the purpose of thence deducing the error of the line of colli-

mation of the brass mural quadrant of Greenwich. But, see p. 67, such

results alone are not sufficient. They must be compared with other

results obtained by the Zenith sector (see p. 6*8.) Thus, in the Volume

of Observations, a few pages after those we have quoted, there is a Table

of the zenith distances of 7 Draconis observed with the zenith sector,

partly with its face towards the east, and partly towards the west. All

these observed zenith distances are reduced, precisely as the preceding ones

have been, to the beginning of 1811. The mean of such reduced zenith

distances is (see p. 6*8.) the true mean zenith distance of 7 Draconis.

The difference of this last mean and the mean obtained by the brass mural

quadrant is the error of the line of collimation. We may infer,. and not

wrongly, from the preceding instance (which is one of many similar ones)

that the business of an Observatory does not admit of being very leisurely

and not laboriously conducted. The method of finding the error of the

line of collimation is, usually described in four or five lines. The actual

finding of it requires, as we have seen, the observations of fifty days, many
arithmetical computations and the use of extensive Tables.
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method of detecting inequalities, it will be better to exemplify
it. And, as a first instance, we will describe the method which

Bradley followed in extricating, from certain observed differences

in the declinations of stars firstly, the inequality of aberration,

and, secondly, that of nutation. This being done we will shew,

on like principles, that there is still some change in the places of

stars to be explained, or at least to make account of, even when

they are reduced to the same epoch by the corrections that are

due to the inequalities of precession, aberration, lunar and solar

nutation.

These investigations will be carried on in the next Chapter,
in which, we will also briefly advert to the methods which were

first resorted to, for representing the lunar and solar nutations.



CHAP. XV.

On the Means by which Bradley separated Nutation from the

Inequalities of Precession and Aberration. On the successive

Corrections applied to the Apparent Place of a Star. On the

Secular Diminution of the Obliquity.

IN treating of the several inequalities of precession, aberra-

tion, and nutation, it is necessary, in order to avoid being per-

plexed by the mere words of a theory, to recur to the simple
facts of observation. Now, the observations of Bradley were on

the Declinations of Stars, or, what amounts to the same thing

at a given place, on their zenith distances*; and, the phenomena
of his observations, were changes in the observed zenith distances

of the same stars
; happening sometimes, at different parts of the

same year, and at other times, at corresponding seasons of dif-

ferent years.

The star y Draconis, passing the meridian very near the

zenith of Bradley's Observatory, and being/ consequently, little

affected by refraction, was the chief star of his observations.

This star (see pp. 288, &c.) in March passed more to the south

of the zenith by about 39" than it did in September : that is,

whatever was its mean place, the difference of its two zenith

distances, or of its declinations, was, in half a year, observed to

be about 3Q
1

'. Other stars, also, changed their declinations.

The changes of declination of a small star in Camelopardalus

(the 35th of Hevelius), with an opposite right ascension to that

of 7 Draconis, were observed at the same times as those of the

latter star : and, it was Bradley's argument, that, if these phe-

*
Bradley's observations were made with a Zenith Sector, adapted

to measure the small portions, or minutes of declination, and of zenith

distances, near the zenith.
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nomena (changes of declination) arose from a real nutation of the

Earth's axis, the pole must have moved as much towards

y Draconis, as from the star in Camelopardalus ; but (see p. 295.)

this not being the case, the hypothesis of a nutation of the

Earth's axis would not account for the observed phenomenon :

more strictly speaking, it would not completely account for it,

for, in fact, some part of the observed changes of declination was

due to the effect of nutation,

Bradley, as we have seen, (p. 295.) solved the above pheno-
mena by the theory of aberration. Now. if such theory, with

the known one of precession, would account for all observed

changes of zenith distances, or, of north polar distances, then,

there could be no changes but what arose from precession and

aberration. Hence, since (p. 276.) the aberration is the same, at

the same season of the year, the distance of y Draconis, in

September 1728, ought to have differed from his distance, in

September 1727, only by the annual precession in north polar

distances the distance, in September 1729, from the distance,

in September 1727, by twice the annual precession in north

polar distance
;
and so on. Such, however, was not the observed

fact. In 1728, after the effect of precession had been allowed

for, y Draconis was nearer the north, by about 0".8 than in

1727. In 1729, nearer than in 1727, by l".5. In 1730, by
4".5. In 1731, by nearly 8". Here then was a new pheno*-

menon, a change of north polar distance, indicating an inequality

not yet discovered.

Bradley observed other stars besides y Draconis; amongst
others, the small star above-mentioned (p. 295.) of Camelo-

pardalus : and, it is not a little worthy of notice, this same star,

which, in the case of the former inequality, (that of aberration)

directed him to reject the hypothesis of a nutation of the Earth's

axis, here determined him to adopt it. For, within the same

periods, the changes in north polar distance of y Draconis and

of the star in Camelopardalus, were equal and in contrary direc-

tions : that is, whilst the former, through the years 1728, 1729,

1730, 1731, was approaching the zenith, and consequently, the

pole, the latter was, by equal steps, receding from the zenith,

and consequently from the pole. These phenomena then of the

3c
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changes in north polar distances, which (not like those of aberra-

tion that take place in different parts of the same year, and recur

in the corresponding parts of different years) were observed,

through a term of years, could adequately be explained by sup-

posing, during that term, a nutation in the Earth's axis, towards

7 Draconis, and, from the small star in Camelopardalus.

After 1731, Bradley observed contrary effects to happen;

that is, 7 Draconis receded from the zenith and north pole, and

the star in Camelopardalus, by equal steps, approached those

points; and this access and recess continued till 1741, (a period

of more than nine years) ;
after which, the former star again began

to approach the zenith, and the latter to recede from it. These

phenomena, then, that took place between 1731 and 1741, could

be adequately explained by supposing, during that term, a nuta-

tion in the Earth's axis, from 7 Draconis and towards the small

star in Camelopardalus.

The mere hypothesis of a nutation, or vibratory motion in

the Earth's axis, would have found little reception amongst men
of science, if no arguments had been adduced to render such

nutation probable : that is, if some physical cause, likely to pro-
duce it, had not been suggested. Previously, however, to the

suggestion of the real and immediate physical cause, Bradley

enquired, whether this seeming nutation of the Earth's axis was

connected with any concomitant circumstance, or phenomenon :

such circumstance he found to be the position of the nodes of;

the Moon's orbit.

The star 7 Draconis was (after the effects of precession had

been allowed for) most remote from the pole, when the Moon's
node was in Aries, and least, when in Libra : and, after a com-

plete revolution of the Moon's nodes^ the distances of all the 1

observed stars, at the end, differed from the distances at the

beginning, by the effect of precession only. Hence, the phe-
nomenon of a nutation, and the longitude of the Moon's node
were connected. But, the inclination of the Moon's orbit varies

with the longitude of the node : the former is greatest, when the

latter is equal to nothing ;
and least, when the latter is six signs.

Hence, the nutation and inclination were connected together.-
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But, the Moon's action, on the bulging equatoreal parts of the

Earth, is greater the more distant the Moon is from the equator ;

and her mean action greater, the greater the inclination of her

orbit. Hence, the phenomenon of the nutation was connected,

with the variable action of the Moon in causing precession ;
and

this last connexion made nutation the effect, and the variation of

the Moon's action the cause. And this was the physical cause

which seemed to Bradley to afford an adequate solution of the

phenomenon he observed : and subsequent researches have con-

firmed the sagacity of his conjectures.

The real distance of any star (y Draconis for instance) from

the north pole of the equator, is changed continually and con-

stantly, by the effect of precession only. The variations in that

distance from aberration and nutation are periodical, and recur,

the former in the space of a year, the latter in the time of a

revolution of the Moon's nodes. Hence, although, in any phe-
nomenon of a change in the north polar distance of a star, the

effects of several causes may be blended together and com-

pounded ; yet the method is plain, by which we may disengage
and separate them. For instance, since the revolution of the

Moon's nodes is completed in about eighteen years, and since the

-aberration and the solar inequality are the same, at the same time

of the year, the north polar distance of y Draconis in 1745,

ought to differ from its north polar distance in 1727, almost

solely by the effect of precession : that is, since the latter north

polar distance was 38 28' 10",2, and the precession 0".8, the

north polar distance in 1745 ought to have been 38 27' 56".

And such difference was, by Bradley's observations, (see Phil.

Trans. No. 485, p. 27.) found very nearly to exist.

Again, between September 6, 1728, and September 6, 1730,

the aberration and solar inequality being the same, the respective

north polar distances of y Draconis at those periods ought to

differ, by twice the annual precession in north polar, distance,

and by the effect of nutation : and hence the effect of nutation

in an interval of two years, between two known positions of the

Moon's ascending node, would be known.

Again, between September 6, 1728, and March 6, 1729, the
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solar inequality being the same, the respective north polar distances

of y Draconis ought to differ from each other by the precession in

north polar distance due to half a year, by the nutation for the

same time, and (see p. 122.) nearly by the sum of the greatest

aberrations in north polar distance ;
and the whole difference

would consist almost entirely of aberration, since the precession

and nutation together would aot amount to a second.

Again, the Moon's ascending node being, March 28, 1727,

in Aries, and July 17, 1736, in Libra; the respective north

polar distance of y Draconis would differ by the precession due

to nine years three months, by the solar inequality of precession,

by aberration, and by the sum of the two maximum effects of

nutation. But, between March 28, 1727, and March 28, J736,

(since then the solar inequality and the aberration would be the

same) the north polar distances would differ by the effect of pre-

cession, (a known quantity) and, nearly, by the sum of the two

maximum effects in nutation* Hence, it would be easy to

disengage, and numerically exhibit, (what is a material element),

the maximum effect of nutation.

By examining various and numerous observations and by dis-

criminating those that happened at particular conjunctures,

Bradley found abundant confirmation of the truth of his two

theories, aberration and nutation. During a period of more than

twenty years, he accounted for the phenomena of observation,

that is, the changes in the declinations of various stars, by making
those changes or variations consist of three parts ; the first due to

precession ; the second to aberration
; and, the third to nutation ;

the quantities and laws of the two latter, being assigned on the

principles and by the formulae of his theories,

We cannot sufficiently admire the patience, the sagacity, and

the genius of this Astronomer, who, from a previously unobserved

variation not amounting to more than forty seconds, extricated,

and reduced to form and regularity, two curious and beautiful

theories.

The following Table exhibits the coincidence of his theories

with observations. (See Phil. Trans. No, 485, p. 27,)
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7 Draconis.
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any particular division in the zenith sector; it would, at the

end of the period, be really farther from the zenith by preces-

sion
; really farther or nearer, by nutation

;
and apparently nearer

or farther by aberration. By the mean distance of the star from

the division 38 25' of the zenith sector (see last column in

preceding Table), Bradley means the distance on March 27, 1727,

such as would have been the distance, had there been neither

nutation, nor aberration. But, in that year, the nutation, (the

node of the Moon's orbit being in Aries} was the greatest.

Hence, in September 1727, (see the first horizontal row of the

preceding Table) the observed or apparent distance of *y Draconis

would differ from the mean, by the effect of precession (j x .8)

in half a year, by the maximum effect of aberration, and by

nearly the greatest effect of nutation. The apparent distance

then of the star being 70
r/

.5, the mean (according to Bradley)

would be

70".5 0".4 -f 19".2 - 8".9 = 80".4.

Again^ reversing the process. If SO" were the mean distance,

then, on March 6, 1729, the star would appear by aberration

farther distant about I9
r/

.3 : would really be more distant by the

effect of two years' precession in north polar distance (2 X .8 ;)

and would really be more distant than it would be if the Moon's

orbit were at its mean inclination (the 1 being either in ffi or in

V?) by the effect of nutation (7".4). The apparent* distance

therefore would be

80" + l".6 + 19".3 + 7".4 = 108".3.

The mean distances deduced according to the preceding ex-

planation, by means of corrections,, from Bradley's two theories

of aberration and nutation,, and from the known effect of pre-

cession, ought, if the theories be true, to be invariably the same :

and their very near equality (see last column in Table, p. 389.)

establishes, almost beyond a doubt, the truth of those theories.

* There is some violation of the propriety of language in calling

that apparent, which depends on real causes, viz. the changes of the

place of the pole from precession and nutation. In strictness, apparent
should have been confined to aberration, refraction.
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The division in the zenith sector, from which, as a fixed

point, Bradley measured the distances of y Draconis, (the north

polar distance of which he calls 38 25
;

) is not the division cor-

responding to the zenith of the Observatory at Wansted. If

it had been, the apparent north polar distances of y Draconis on

Sept. 3, 1727, and on March 6, 172Q, would have been, re-

spectively, 38 26' 10".5, and 38 26' 48".3.

Having now explained the method by which Bradley detected,

in the small differences of the declinations of certain fixed stars,

the existence of several inequalities, we will briefly state, after

what manner, he first thought that the effects of nutation could

be represented.

Bradley supposed the path described by the true pole round

its mean place, by reason of the inequality of the Moon's force

in causing precession, to be a circle. Thus, in the subjoined

Figure, let TT be the pole of the ecliptic, P the mean place of

the pole of the equator, and let DOAB be a circle described

round P as a centre and with a radius PA (
= Q".6). Moreover,

A is to be the true place of the pole, when the ascending node
of the Moon's orbit is y (the first point of Aries). The other

positions of the true pole are to be determined by supposing it to

move equably along the circle AOD, &c. in a direction contrary
to the order of the signs, and to describe the circle, in a period

equal to that of the retrogradation of the Moon's nodes.



The Moon's node then being at any distance from <y> , take

the angle APO equal to that distance, and O is the true place

of the pole.

Such point being assumed to be the true place, the changes

in the north polar distances and in right ascensions of stars are

to be computed, exactly as they were when p, a point in the

ellipse, was assumed to be the pole's place (see p. 358.)

This Memoir of Bradley's is inserted in No. 485, of the

Philosophical Transactions. Towards the end of it, its Author

suggests that the effects of nutation would be more truly repre-

sented, by supposing the locus of the pole to be an ellipse,

instead of a circle, the transverse and conjugate axes, AC and

DB, being nearly 18" and 16" respectively. Not, however,

perfectly satisfied of the justness of this last suggestion, Bradley
wished it to be tried by theory ; and, such trial, as we have seen

in the last Chapter, has, since Bradley's time, been made.

In the inequalities of precession, aberration, and the lunar

nutation, observation has preceded theory. These inequalities

were first detected as phenomena, and then their physical causes

assigned. It has not been so with the solar nutation, which

was never, (such is its minuteness), distinctly perceived as a phe-
nomenon. It was first conjectured to exist from analogy. The

inequality of the Moon's force in generating precession being
found to cause a lunar nutation, the inequality of the Sun's force

it was presumed, would also cause a solar nutation resembling
the lunar. Its law and quantity have, accordingly, been com-

puted, and the numerical results applied as corrections of obser-

vations .

In the solar, as in the lunar nutation, the true pole describes,

round the mean place of the pole, an ellipse, the semi-axis major
of which ellipse, in the case of the solar nutation, is less than

half a second. The corrections, therefore, of the north polar
distances and right ascensions of stars, in consequence of this

deviation of the pole, are very small. And this last circumstance

makes it of little consequence, whether, in computing the above
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errors in the places of stars, we consider the pole to be erratic

in an ellipse or in a circle
* which Dr. Maskelyne f and other

writers consider as its locus.

We will again mention, for the sake of preventing any false

conceptions on this subject, that the two ellipses, as the respective

curves of deviation of the true pole, in consequence of the inequa-
lities of the lunar and solar force in causing precession, are merely
mathematical schemes and contrivances for the convenient com-

putation of the changes produced in the places of stars. The

changes to be computed are very small : which is the reason

* The solar inequality has been thus represented : TT, P, are, respec-

tively, the poles of the ecliptic and the equator. By virtue of the preces-

sion, P will describe, and contrary to the order of the signs, the arcs of a

small circle Ppk. After a lapse of time, suppose p to be the mtan place

of the pole : the true place will be nearer to *-, or farther from TT, or to

the right or left of jo, according to the position of the Sun. In order to

determine its place, describe round p as a centre, and with a radius

= 0".435, avs, and take, according to the order of the signs, the angle

apv equal to twice the Sun's longitude : then, v is the true place of the

pole, the pole being at b (P b = radius of the small circle) when the Sun

was at V.

f Explanation and use of the Tables inserted in the 1st Volume of the

Greenwich Observations.

3D
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why we may separately compute the effects of precession and of

the two nutations, combine them and obtain a result scarcely

different from the true result ;
the true result being that which

would be obtained by placing the pole in that curve which

would be described, by the combination of its three movements ;

one circular round the pole of the ecliptic, and representing the

mean effect of the luni-solar precession : the second elliptical

by reason of the inequality of the lunar precession : the third also

elliptical and caused by the inequality of the solar precession.

In the next Chapter we will consider whether the theories of

the preceding inequalities completely explain the differences ol

the declinations and of the right ascensions of stars, either com-

puted or observed, at different epochs.



CHAP. XVI.

On the proper Motions of Stars : the Means of discovering such;

their ambiguous Nature ; arisingfrom the Means used for

determining the Precession. Instances of the Methods used

forfolding the proper Motions of a Star in Right Ascension

and Declination.

IN order to compute the right ascensions and declinations of

stars, there are necessary, firstly, a catalogue of their mean right

ascensions and mean declinations at a certain epoch ; and,

secondly, Tables, computed by the aid of theory and observation,

for supplying the amount of those differences which will be

found to exist between the above-mentioned right ascensions and

declinations, and their values at a different epoch, whether such

values be the mean or the true values.

If the comparison between the right ascensions and declina-

tions be a comparison between their mean values at different

epochs, then certain inequalities will be rescinded and have none

effect in producing differences of the mean values : for instance,

aberration and the two nutations (or the two sources of ine-

qualities of precession) will be in such predicament.

The differences of the mean values will depend solely (if

there be no other inequalities than those treated of in the pre-

ceding part of the Treatise) on Precession. Thus, if in July 9,

1821, the north polar distance of a Lyrae be observed, such north

polar distance, is an apparent distance, or true distance. When
corrected for aberration, for the solar and lunar nutation, and for

that part of the annual precession which is proportional to the

interval between January 1, and July 9, it will express the mean

north polar distance of a Lyrae for January 1, 1821. And it

ought, were the preceding enumeration of the sources of ine-

quality complete, to differ from the mean value of 1815 (sup-

posing that to be the epoch of the existing or standard catalogue)
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by the sum of six annual precessions. And the like is to be said

of the polar distances and right ascensions of other stars.

Now the fact is that, after the completion of the above

process, the differences of the polar distances and right ascen-

sions of stars are not found to be exactly accounted for by the

quantity and law of precession : in some stars the differences are

greater than what they ought to be by the effect of precession, in

others less. And this fact being ascertained, our attention is

drawn towards the mode by which the quantity of precession is

ascertained.

The precession, or the retrogradation of the intersection of

the equator and ecliptic on the ecliptic, is not a phenomenon of

immediate observation. It requires, in all cases, some slight

computation ;
which computation may be made either from the

changes it produces on the right ascensions of stars, or from the

changes in north polar distances, or from the differences of the

longitudes of stars computed, for different epochs *, and from

the respective values of the right ascensions and polar distances

of stars belonging to those epochs (see Chapter VIII). Now,
whichever be the method used, the mean quantity of the pre-

cession is that which results from a great number of stars, three or

four hundred, for instance ; and even if there were any undetected

inequality equally affecting, however, all the stars, yet, since

the effect of such inequality would be blended with that of pre-

cession, the quantity of the precession (or what is so deemed)
obtained from all the stars, ought to agree with the mean pre-
cession deduced from numerous observations of any one star.

But, if we suppose any peculiar movements to belong to any

one, or to more stars, such peculiar movements would affect the

quantity of precession determined by the preceding method, and

vitiate it. Reversely, if the mean quantity of the precession
deduced from the comparison of three hundred stars should differ

from the quantity resulting from the comparison of fifty longi-
tudes of the star Arcturus, for instance, it would infallibly follow

* See pp. 184, &c. of this Work. M. Zach computed the longitudes

of thirty-five principal stars, in order to determine the precession.
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as a consequence, either that Arcturus was subjected to some
motion to which all other stars were not, or that some or all of
those stars were subject to motions from which Arcturus was

exempt.

Such motions, not generally affecting all stars, are called by
Astronomers, Proper Motions, and are to be assigned to stars

not from any theory but solely by observation.

It is clear, however, that if there exists no other method of

detecting these proper motions than what has been just described,
that they can never be entirely disengaged from the effect of pre-
cession and exhibited separately ;

since they themselves enter into

the composition of precession. All that can be done is to deter-

mine how much the annual changes of the mean right ascension

and mean north polar distance of each star differ from its mean

precession in right ascension and mean precession in north polar

distance; understanding, thereby, those values which are com-

puted, by the formulae of pp. 340, 341, and from a quantity

(50".l) held to be the mean quantity of the precession.

These annual changes, which are compounded of the pre-
cession and certain proper motions, are technically denominated

the Annual Variations in right ascension and north polar

distance, and are inserted as such in the catalogues of stars.

The annual precessions in north polar distance and right ascen-

sion are then subjected to a certain law (see pp. 1QO, &c. 340,

341.) but the annual variations are altogether irregular, never

differing, however, from the former, except by minute quantities.

We have seen, then, that the precession, as its results from

Astronomical methods, is not the actual retrogradation of the in-

tersection of the equator and ecliptic on the ecliptic. We will

now consider another point. Is the retrogradation (supposing it

capable of being determined) produced solely by the influence of

the Sun and Moon on the excess of the Earth above a sphere ?

Is it, in fact, a luni-solar precession ? This is a question which

we must go out of the precincts of Plane Astronomy to find an

answer to.
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We have already seen, (Chap. XV.) that the obliquity of

thet ediptic, besides its periodical variations (see pp. 375, 376.)

is subject to an inequality of a very long period
* and called a

Secular Inequality. The effect of this inequality is the diminu-

tion of the mean inclination at the rate of 45".7 in a century.

It is caused by the action of the planets on the Sun : the effect

of which action is to draw the Sun out of the plane of the curve

in which he is moving ;
so that, unlike the periodical changes of

obliquity, which arise from the oscillations of the equator, or the

nutations of the Earth's axis, the secular diminution of the

obliquity arises from the displacement of the ecliptic itself. But

this is not the sole effect of the action of the planets ; for,

besides the changes of obliquity, the intersection of the equator
and ecliptic is made to move, not by a retrograde, but by a

direct motion, or according to the order of the signs along the

equator. And, estimated in that direction, its annual amount

(a quantity too small to be determined by observation) is

O".20174: in the direction of the ecliptic its quantity is

0".18505 (= .20174 . cos. 23 28').

Now this inequality is under the predicament described in

p. 396 : it equally affects the longitudes of all stars : and, con-

sequently, in determining the precession from the differences of

the longitudes of stars at different epochs, (see p. 186, &c.) we
determine not the luni-solar precession, but the luni-solar pre-
cession diminished by this quantity 0". 18505. If, therefore,

50".l be the precession determined by observation, the preces-
sion due solely to the action of the Sun and Moon is

50".1 -f
//

.18505. = 50".28505.

In like manner the precession in right ascension, determined

by observation, is less than the luni-solar precession in right

ascension, by the quantity 0".20174, and, consequently, the

actual change of right ascension is (see p. 344.)

50
/7
.28505 (cos. I + sin. J . sin.M . cot. S) 0".20174.

*
Physical Astronomy, Chap. XXII.
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This is the expression for the precession in right ascension,

on the supposition that the obliquity of the ecliptic remains the

same : but, if that should be variable, it would be necessary to

add the term

- dl.cos. JR. cot. S

to the preceding : so that, if dL represent the luni-solar pre-

cession, the change in right ascension equals to

dL(cos. I + sm - ! sin. J& cot. 5)

-0".20174 dl.cos. M. cot. $*,

* It may be right to explain the grounds and the method of deducing
this and similar expressions, especially, since the subject, as it is found

in some Authors, is not free from ambiguity.

The equations from which the variations in right ascension, north

polar distance, longitude and latitude may be readily deduced, are the

first four equations of p. 182 : to wit,

(1.) tan. JR = tan. L cos. I tan. \ sec. L . sin. 7.

(2.) sin. (90 S) = sin. \ cos. I -f- sin. L . cos. X . sin. J.

(3.) tan. L = tan.M cos. I + tan. (90
-

S) . sec. .1 . sin. /.

(4.) sin. \ = sin. (90 3) cos. Z sin. M . cos. (90 S) . sin. J.

Which equations, by a slight transformation, are made similar, for a pur-

pose which will be soon explained.

If in the equation (1) we make L and JR to vary, \ and I remaining

constant, we have, as in p. 341,

dM = dL (cos. I -f-cot. S .sin. /.sin. A);

but, if we suppose J to vary, then there will be introduced a term such as

dI . cos. M . cot. S : so that

(a)
dJR = dL (cos. I + cot. S . sin. / sin. M) d I . cos.M . cot. 3.

In like manner, from the equation (2), we have, \ and J being constant,

(see p. 341.)

dS= dL.cos.J&.sin. I;

but if we make I to vary, we have

(b) d$ = dL . cos. M, sin. I - d/.sin. M.

Now
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which is Laplace's expression, (see Mecanique Celeste, torn. II.

p. 350.)

Now the operations of reduction by which these differential expres-

sions have been deduced from the equations (1) and (2), will, when

applied to the equations (3) and (4), (which see p. 399. are similar),

produce similar differential equations ; and accordingly,

(c) dL = dJ& (cos. I tan. A . sin. 7. sin. L) dJ. cos. L tan. \,

(d) d\ =. dJR, . cos. L . sin. / dl . sin. /.

We must now consider the conditions or circumstances under which

these variations take place, and the several values which d J, the change

of obliquity, will, according to those circumstances, possess.

In the first place we may observe, that, the expressions (a), (b) were

obtained by supposing the latitude (\) to be constant. The star, there-

fore, being fixed, the ecliptic must be supposed not to change its position.

But I the obliquity is variable : such variation, therefore, must be sup-

posed to arise from a change in the position of the equator ; and the pre-

ceding expression (a), by means of its last term, will express the change
of right ascension due to that variation, of whatever kind the variation be,

whether it be periodical or secular : provided its quantity be very small.

The expression, therefore, will represent those variations of the right

ascension and declination which arise from the changes in the obliquity

produced by the solar and lunar nutations ; for, these changes are pro-

duced by an oscillation of the equator : but they will not serve (for the

reasons alledged in 1. 13, &c.) to represent the variations produced

by that change of the obliquity which a change in the position of the

plane of the ecliptic gives rise to. The expressions will also serve to

represent any variations of right ascension and north polar distance,

produced by a secular change of the -obliquity, provided such secular

change arise from a change in the plane of the equator.

Now it is such a change which Laplace and other writers must have had

in their minds, when they represented the variation in right ascension, by
the expression (a), of p. 399- For, such expression is used in determining,
from an assigned mean right ascension of a star at a certain epoch, its

mean right ascension at another epoch. In such kind of calculation (used,

for instance, in determining the proper motion of a star) all periodical in-

equalities, such as the nutations of the obliquity, are rescinded or ac-

counted
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The right ascension of a star will be affected, as we have seen,

by that Progression of the first point of Aries which is caused by

counted for ; and, as we have already explained, no secular changes of

obliquity can influence the right ascension, except such as arise, not from

a change in the position of the plane of the ecliptic, but from a change in

the position of the plane of the equator.

But we must, in this case, have recourse to Physical Astronomy.
The secular equation, which we are in search of, is so small that observa-

tions are unable to indicate it. Let I denote the mean obliquity of the

ecliptic at the beginning of the year 1750, which ecliptic, for distinction's

sake, is called the Fixed Ecliptic ; let t denote the number of years reck-

oned from 1750: then, by the results of Physical Astronomy, (see*

Laplace, torn. III. p. 158.)

7 = 23 28' 18" -f- t* x 0".000009842.

Hence, JR, L, /, &c. being supposed functions of the time, or dJR,

dL,dI, in the formula of p. 399. standing for

we have

dJR. dL_ dl .

-dr
d *> 7r

dt
> in

df>

~ = 2* x 0".000009842 = t X 0".000019684,

and accordingly, the formula of p. 399. 1. 27. for expressing that in-

crement of the right ascension, which is to be added to the mean right

ascension of 1750, jn order to obtain the mean right ascension at any
other epoch distant from 1750 by t years, will be

dJR. * 50".239055 (cos. 7+sin. I. sin. JR. . cot. 8)- 0".20l6*33 1

~ /;

.000019684 . cos. JR . cot. S x *,

which is a formula like that which M. Zach has given at p. 12, of his

Supplement aux Nouvelles Tables d'Aberration.

If we substitute the value of dl, just obtained, in the expression for the

variation in north polar distance, we have

d* = - t x 50".239055 sin. I - 0".0000 196844 x t.

In these expressions, it is to be observed, that allowance is made for

all

*
According to Laplace this coefficient equals 50".2875.

3E
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the action of the planets. Hence, if we estimate the precession

from observations, made on the observed differences of right

all the inequalities that affect the precession in right ascension and north

polar distance : for instance, the whole effect of the lum-solar precession

in right ascension is diminished by 0".20l633 (the effect of the planets in

causing the equinoctial point to progress) and by

0".0000196844 cos. J& cot. S,

which is the variation in the right ascension produced by a change

of obliquity : which last correction it is scarcely ever necessary to make

account of.

Having now spoken of the change produced, in the right ascensions and

declinations of stars, by the obliquity varying from- a change in the posi-

tion of the plane of the equator, we will consider what effect on the

positions of stars will be produced by the obliquity varying from a change

in the ecliptic itself.

A mere oscillation of the plane of the ecliptic, round an axis passing

through the two equinoctial points, will affect neither the declinations nor

the right ascensions of stars : but the latter quantities will be affected, if,

as is the case (see Chap. xxii. Vol. II. of Astronomy} the change of

obliquity is accompanied by a progression of the equinoctial points : both

inequalities, indeed, arise from the same cause. The declination, how-

ever, will remain constant ; and, accordingly, in deducing the equations (c),

(d), of p. 399, we supposed 3 to remain constant. Those equations, there-

fore, will represent the variations of the longitudes and latitudes of stars

due to any change of the obliquity, provided such change arise from the

displacement of the ecliptic itself. But there are no periodical changes
of the ecliptic : the sole change to which it is subject is a secular variation

produced by the action of the planets : the annual value of which is

about 0".5 (see Vol. II. Astronomy, 'p. 451.) Accordingly, the expres-

sions (c), (d), become

dL=0".20l633 (cos. I - tan. A sin. I. sin. L) - 0".5t cos. L tan. A,

and d\= *(0".20l633 cos. L sin. 7+ 0".5 . sin. L)

the former of which expressions represents solely the change produced in

the longitude of a star by the action of the planets on the plane of the

Earth's orbit, and makes no account of the effect of precession.

In deducing the above values of dL and d\ we have supposed the

annual variation of the inclination produced by a change of the ecliptic to

be
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Ascensions at different epochs, we determine a quantity with

which the above-mentioned progression is blended. But the

be 0".5 : its value, unlike the other of which we have deduced (see p. 401.

1. 19.) may be obtained from the comparison of observations : but (see As-

tronomy, Vol. II. Chap, xxii.) it may be also derived from theory, which,

besides the term involving t and the coefficient 0".5, furnishes another term

involving t* : thus, according to Laplace, (Mec. Celest. torn. III. p. 153.)

/' representing the true ecliptic,

/'= 23 28' 18"-f x 0".52114 - t
2 x 0".000002723,

consequently,

^- = - //.52114 - t x 0".00000545,
at

and, accordingly, the former expressions of dL and d\, in order to be more

correct, ought to be increased by the term t X 0".00000545 : but the

practical correctness thence ensuing, is, as it is plain, of very little

moment.

In the preceding investigations, account has been made solely of the

variations to which the mean inclination is subject : whether such mean

inclination be the inclination of the plane of the true ecliptic, or of the

Jixed ecliptic of 1750. But the true ecliptic, besides its secular diminu-

tion, is subject to periodical variations ; one the solar, the other the lunar

nutation. In order then to represent the true obliquity at any time of the

year, let /', determined by the above equations of 1. p. be the mean

value of the true ecliptic at the beginning of the year : let n be the number

of days elapsed from the beginning, then the trite value of the true ecliptic

is

I' - rc

x 0".52114 + 0".435 cos. 20 -f 9".6"4 cos. SI.
oOo*xo

We have already quoted from Laplace the values of the obliquity, &c.

we subjoin, from the same Author, the values of some other quantities

connected with this subject of enquiry,

the precession ty) on the fixed ecliptic=50".2876*- 0".00012I7945'%

(x//) on the true ecliptic=50".09915+0".0001 22148**.

Hence making f = 1, ,

^ -
\j,' = 0".18848, nearly,

which was, in the year 1750, the progression of the equinoctial points in

longitude
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declination of a star is not affected by such progression ; conse-

quently, the precession determined from the annual precession in

north polar distance, will be different from that which is deter-

mined from the annual precession in right ascension. The differ-

ence, perhaps, is too minute to be detected by observation
; but,

if the results of Physical Astronomy be relied on, it exists as

really as the precession itself.

Thus, if the precession in north polar distance, of a star

situated in the equinoctial colure, should be 2(/.04, then the pre-

20".04
cession in longitude = :

= 50 .324,
sin. I

and the precession in M would = 20".04 . cot. / = 46". 162.

But the precession in right ascension obtained by computing
the right ascensions of the equinoctial point, at two different

epochs, would be 46". 162 0".202 = 45".Q6.

Having now ascertained the causes which affect the preces-

sion, we will explain, by means of an instance, the method of

detecting the proper motions of stars.

longitude occasioned by the displacement of the ecliptic. The progression,

therefore, of the equinoctial points in right ascension

= 0".18848xsec. 23 28' 18" = //

.20415,

and, for a time t, = 0".20415. The access of the equinoctial point in

the direction of latitude towards the south pole of the ecliptic of 1750

= t x 0".1884S x tan. 23 28' 18'' = 0".081 1, nearly.

The expression of p. 403. is for the mean precession : but, as we have

seen in Chap. XIV. there is an inequality arising from the unequal
actions of the Sun and Moon : if, therefore, \^

'

deduced from p. 403.

1. 31. be the precession from 1750 to the beginning of a year distant

from 1 750 by the time
,
and if n be the number of days elapsed from the

beginning of this latter year, we have, at the end of these number of

days, the true retrogradation of the equinoctial point, or the true preces-

sion equal to

*' + 36^25
X P " 1 "* Sin * 2 ~~ l6"'544 sin ' &>

p being the annual precession in the proposed year,
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It is required to determine, from the observations of 1755,
and 1802, the proper motion of Arcturus *.

The proper motion in right ascension will be the difference

between the mean right ascension in 1755 increased by the pre-
cession in right ascension due to the interval of forty-seven years,

and the mean right ascension of 1802.

Now, as it has been explained in pp. 343, &c. the annual

precession, whether in right ascension or north polar distance,

depending on the star's right ascension and north polar distance,

must be different according to the epoch for which it is com-

puted. Its values, therefore, in 1755 and 1802 will be different,

although in a small degree. Suppose the precession of Arcturus

to be that which would result from the mean value of its right

ascension and north polar distance : then, since

according to Bradley in 1755, its right ascension = 7
s

1 7' 25". 155

and according to Maskelyne in 1802 =7 1 39 27.6

its mean right ascension for the middle time =7 1 23 26 .378

Again,

north polar distance in 1755 =69 3l' 54"

-in 1802. . . 69 46 49.8

its mean north polar distance for middle time. . =69 39 21.9

We must now find the precession in right ascension from the

formula of p. 399- but, previously, we must determine the value

of the luni-solar precession to be used in that formula.

In 1750 its value was 50".239055

t the prop
1

, part of its secular equat
n

. for 28.5 years. .0 .006693

.*. the value for the mean time of 1778.5 ......... .50.245748

* This instance is taken from the Supplement aux Nowcelles Tables

$Aberration et de Nutation. By the Baron de Zach, Marseilles, 1813.

f According to M. Zach (Supplement aux Nouvelles Tables d'Aber-

ration, p. 13.) the year 1750 being the epoch,

the luni-solar precession = 50",239055 0".00023485 1.
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which is the value of dL to be used in the present instance

(see p. 400.)

log. r . . 10

log. 50".245748. 1.7010994

log. cos. obliquity.. 9.9625002

1 .6635996 (
=

log. 46".08924).

Again,

-log. r
3 30

log. 50".245748 1.7010994

log. sin. obliquity 9.6001570

log. sin. M . . . 9.7167296

log. cot. $ 9.5691196

0.5871056 = (log. 3".864l)

42.22463

But this value (42".22463) is (see p. 398.) the value of the

luni-solar precession in right ascension. In order, then, to find

that value, which the observations give, we must diminish it by
the progression of the equinoctial points : consequently, such

value must equal to

42".22463 - 0".20172 = 42".02291 *.

This last quantity, then, is the value of the precession in

right ascension deduced from those values of the luni-solar pre-

cession, and of the right ascension and north polar distance of

Arcturus corresponding to an epoch, which is the mean of 2756
and 1802. Hence, the mean right ascension of Arcturus,

computed from such precession and its mean right ascension in

1755, is equal to

7
s

1 7' 25". 155

( + 47 X 42".02291 =) 32 55 . 07677

7 1 40 20.23177
but the observed right ascen

n
. of * in 1802= 7 1 39 27 . 6

the unaccounted for differ
6

.*. in 47 years is 52.63177.

' The epoch being 1750, the pregression caused by the action of the

planets is 0".20l68 -f- 0".0000012 1.
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This difference, for want of an explanatory theory, or from

ignorance of its cause, is attributed to the star's proper
motion: and its annual proper motion, thence computed, is

=1 //

.1196. Now, by reason of this proper motion,

the computed right ascension (see p. 406^ 1. 36.) is greater than the

observed right ascension. In order to make the two right ascen-

sions agree, therefore, the proper motion must be applied, with

a negative sign, or must be made to diminish the precession, or

must be thus written 1
//

.1196. The annual precession being
then (see p. 406.) 42".02291, the annual variation (which is

the term given in catalogues -and in the Nautical Almanack

to the sum of the precession and of proper motion) is

42".02291 - l".1196 =40//

.90331 = ,in time, 28
.727.

In order to compute the proper motion of the same star in

north polar distance, we have (see pp. 348.)

-
log. r

2 -20

log. 50".245748 1.7010994

log. sin. obliquity 9-6001570

log. cos. right ascension .... 9.9312726

1.2325290 (
=

log. I7".08l62).

The mean north polar distance of Arcturus then, computed
from such precession and its north polar distance in 1755, is

equal to

69 31' 54"

-f 17".08l62 X 47 13 22.83614

69 45 16.83614

but the observed north polar dist. in 1802. . 69 46 49 .3

the accounted for diff. .*. in 47 years is. . . .0 1 32.96386

The proper annual motion, therefore, in north polar distance

l' 32".96386
is equal to = 1.97795. And as this proper motion

makes the computed north polar distance .less than the observed,
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it must be added to the precession in north polar distance, and

written l".97795. The precession therefore, being 17".08l62

and the proper motion 1 -97795

the annual variation in north polar distance 19.05957 *

In like manner the proper motions of other stars are to be

determined : and Dr. Maskelyne computed, in the first Volume

of the Greenwich Observations, the proper motions of Sirius,

Castor, Procyon, Pollux, Regulus and a Aquilae. The list has

subsequently been much increased (see Greenwich Observations

Vol. I. tab. 9.)

It is plain, from what has been said, and from the preceding

computation, that the proper motions of the stars are determi-

nable by no formula. They are ascertained solely by obser-

vation. We are ignorant of their causes and laws. We cannot

even presume that the proper motions, determined by the com-

parison of observations made at different epochs, were the

same in the preceding, or will be the same in future periods.

All that can be said is, that, if such a presumption were made,

the error consequent on it will be very small, inasmuch as the

proper motions themselves, as far as they have been hitherto

ascertained, are very small. But, notwithstanding our ignorance
of the causes of these proper motions, still it is essential to know
their quantities, since they affect observations precisely, as any
other inequality does, and lessen or augment the right ascensions

and declinations of stars. Their effects, therefore, are now, as

we have said, regularly combined with the results from precession,

and then inserted in catalogues.

It is the excellence of modern instruments and observations

that causes the proper motions of stars to be known. They were

formerly blended with the effects of other inequalities, and not dis-

tinguishable ; principally for this reason, that their quantities were

far less than the probable errors of observations. They are not

even now easily made out : for, as it appears by the instance of

p. 405, &c. they are not determined by single observstions, or by

R0jf Dr. Maskelyne's explanation and Use of the Tables, p. 4. makes the

proper motion of Arcturus in right ascension = l".395, and in north

polar distance = + 2".01.
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the comparison of observations made during short intervals, but

by the comparison of observations made in former times with

present observations. Now, as Dr. Maskelyne remarks (p. 9.

Explanation and Use of the Greenwich Tables) ;

' we are in want

of good antient observations/ But, even if we did possess ober-

vations of the latter character, the question concerning prbper

motions, would be one of considerable difficulty ; or, rather, the

nature of these motions is, as it must always be, ambiguous.
The great Astronomer, whose words we have just quoted, says a

little farther on '
the other stars of the Table do not appear to

have any proper motions/ It should rather have been said that

they do not appear to have proper motions according to the

method used for determining them. For it is easy to feign a

case in which a star should have a proper motion, which should

not be indicated by the method used in detecting it. For

instance, since the precession, as determined by the differences

of the longitudes of stars at different epochs, or of their right as-

censions, is the m^an of the precessions due to the^ several stars

diminished or augmented by the proper motions of those stars,

such mean may be exactly equal to the precession plus or minus

the star's proper motion : in which case, the star would appear to

have no proper motion. If we would state the case symbolically,

let P be the precession, a, /3, 7, 5, &c. (either positive or nega-

tive) the proper motions in longitude, of the stars which are used

in determining the precession, then the precession, determined

according to the method we have described, is

P + -f P + /3-f P + 7 + &c.

m

m being the number of stars ; let p be the proper motion of the

star the proper motion of which is sought, then it equals

mP + a + )3 + 7 + &c -

m

_a -f ft +7 +_&c.

which may become equal to by a variety of ways, th

variously adjusting the proportional values of a, /3, 7, ^
.'3 F

that is, by
&c.
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There will be an error or uncertainty of a like nature what-

ever the star be, the proper motion of which should be required :

that is, the result of its proper motion will be an ambiguous

result, whether the star be or be not one of those stars that are

used in determining the precession. If the former be its predi-

cament, we then, in deducing the star's proper motion, are

arguing (which is a common case in Astronomy) in a vicious

circle: since the quantity to be determined is already implicated
in the quantities from which it is to be determined.

Dr. Maskelyne mentions only a few stars as having proper
motions. But M. Bessel, by examining 2959 stars of Piazzi's

Catalogue, finds 425 that have an annual motion not less than

0".2. As there is no law dependent on the places of these stars

regulating their proper motions, so there is no connexion sub-

sisting between the magnitudes of stars and the quantities of such

motions. The only circumstance worthy of note seems to be

that, amongst the stars apparently endowed with considerable

proper motions, there are many double stars, a Cassiopeae and

a Geminorum are two instances, the proper motion

of the first being, in JR = l
//

.85, in N. P. D. = 0".47,

of the latter being, inM = .58, in N. P. D. = . 64.

But the stars with the largest proper motions are 40 D of

Eridanus and 6l * of Cygnus : that of the former, in north polar

distance, being 4", of the latter 3". 3. So that, according to

M. Zach's method of illustrating the subject, if we were to

determine the latitude of Greenwich by means both of one star

and the other, and the two determinations should exactly agree

in 1821, then, in 1822, they would differ by ?", if in the process

of correcting the observations, we made no account of, or were

ignorant of, these proper motions.

The preceding discussions relate to very minute changes in

the positions of stars : of which minute changes there are two

kinds : one of the points or planes from which a star's place is

measured : (as for instance, the changes of intersection of the

equator and ecliptic and the plane of the ecliptic from the action

of the planets :) the other of the position of the star from some

*
6*1 Cygni in Flamstead's Catalogue.
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unexplained motion of the star itself. The former change, like

the other ciianges from precession and nutation, leaves to the star

unimpaired its character of being fixed : the latter takes away
from the propriety of that denomination.

But the estimation of these minute changes, whether they be

those of the observer, or of the star itself, is, as it must have

appeared, a matter of considerable nicety. We must compare
present observations made with large instruments with tolerably

good catalogues. It is needless to say that, the better the cata-

logue the more exact will be our operations : but, it is to be

noted that, beyond Bradley's time, there are no catalogues of

sufficient exactness for determining quantities so small as those

of the proper motions of stars. We are thus deprived of the

means of remedying, the almost inevitable errors of particular

observations, by the comparison of observations distant from each

other by very large intervals of time : and, in truth, the fixing of

the laws and quantities of those minute variations, which have just
been the subjects of discussion, is a point reserved for times to

come. It is a matter not to be questioned that our present in-

struments, and our present means of forming catalogues of stars

(which at the epochs of their construction are the most faithful

registers of the mean places of stars) are better now than they

were seventy years ago.

We speak of the catalogues made, for particular epochs, by

Flamstead, Bradley, Mayer, &c. : but, in fact, in a modern

Observatory the business of making, or of improving, the cata-

logue of stars is an operation continually going on. We will,

for a short time, turn our attention to that point, and first notice

the practice of the Greenwich Observatory.

Observations of north polar distances are now made at

Greenwich by means of a Mural Circle, of which a short

description has been given in pages 10Q., &c- The accuracy of

the divisions of the instrument is examined by other means than

Astronomical. It is, in fact, presumed to be a perfect instru-

ment : an imperfect instrument, used with a perfect catalogue,

(admitting, for an instant, the possibility of the latter circum-

stance) would necessarily tend to make the catalogue erroneous.
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The first operation with the mural circle is, (the telescope

occupying that position in which the star was seen bisected by
the centre of the cross-wires) to read off the six microscopes,

and, see pp. 112, 113, to take the mean of these as the instru-

mental polar distance of the star. This distance is next to be

corrected for refraction, precession, aberration, and nutation, and

reduced to the first day of the year on which the observation was

made (see Chapters IX, to XV.) Such reduced distance is the

mean distance, and it ought, supposing the observation to be

truly made, to agree, allowing for the index error, with the

tabulated mean polar distance : or, the mean polar distance of

the catalogue. If it does not agree, the error is held to be in the

catalogue.

Thus, suppose Polaris to have been observed on June II,

1812, both above and below the pole, and the reduced north

polar distance above the pole to be 1 4l' 55".98

, . . . below , 358 18 31 . 79

then, were it not for the index error, the sum of these ought to

equal 360 : if the sum differs, it differs by twice the index error.

In the present instance, then, since the sum is

360 0' 27".77,

the index error is 13".885 : consequently, in order to obtain the

true north polar distance above and below the pole, we must

diminish the former by 13".885, and increase the latter by the

same quantity. Reversely, the observed distance minus or plus

the true distance must give the index error. Now, if the north

polar distance of the catalogue were the true north polar distance,

the observed instrumental north polar distance, minus or plus

the north polar distance of the catalogue, ought, if the latter were

correct, to give the same index error. If it does not, the error is

the error of the catalogue. Thus, in the instance before us,

the north polar distance being . , . 1 4l' 55".98

and the index error 13 .885

the true north polar distance . . . c ... 1 41 42 .095

but, if the north polar distance of the catalogue were 1 4l' 4l'
/

.30

the difference between it and 1 4-1
'

55".98, would be equal
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to 14".68, instead of 13".885 : the difference, therefore, of these

two differences,, that is, 14".68 13".885 = .795, must be the

error of the catalogued north polar distance. The principle of

illustration used in this instance extends to all other like instances.

Consider, therefore, the mean north polar distances of the

catalogue to be the true mean distances, subtract them from the

observed,, and the results are the index errors : their mean is the

mean index error. Subtract this index error from the observed

north polar distance of a circumpolar star above the pole, and

add it to the north polar distance of the same star below the

pole : the sum, as it has been shewn, ought to equal 360, if the

catalogued be the correct distances : if not, the error is that of

the catalogue, which, from the defect from 360, become known.

The thing will be made more clear by examples.

Observations made with the mural circle from June II, to

June 18, 1812, the position of the telescope being O, (seep. 115.)
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In the above process, that operation is made with eleven stars

which was (see p. 412.) illustrated by means of one. The

result is now a mean result. If we went no farther than we
are allowed to go by these observations made, during seven

days, and on eleven stars, we should have a quantity 12".57 re-

presenting the index error, and which it is necessary to subtract

from the observed distances, in order to obtain distances which

would be the true distances, were the catalogues correct. The

test of that correctness is to be found, as we have already shewn,

in the sum of the two polar distances of a circumpolar star.

Taking Polaris, then, as such a star, we have

Observed N. P. D. Equation to N. P. D. Corrected N. P. D.

above pole 1 4l' 55".Q8. ... - 12".57. ... 1 4l' 43".41

below pole 358 18 SI .79. ... - 12 . 57. .. .358 18 19 . 22

360 2 . 63

The catalogue, therefore, (see p. 413.) cannot be right;

the mean subtractive equation of north polar distance ought
to be greater than 12".57 by f (2".63), or l".315 : but, in

order to obtain a greater index error, or subtractive equation of

north polar distance, we must lessen the mean north polar dis-

tances of the catalogue : consequently, the correction of the

catalogue would be l".315: and, that being made, the sum of

the two north polar distances would be, as it ought to be,

exactly 360.

But, in a matter of such astronomical importance as the

correction of a catalogue, it would be unsafe to trust to the

observations of a few stars, made during a short period. If the

instrument were, with regard to its divisions, a perfect one, it

would still not be exempt from the effects of partial expansion.
To annul these effects and those of the inequalities of graduation,

(for in degree, at least, such must be supposed to exist) it is

necessary to multiply observations and (we are speaking of the

Greenwich mural circle) to change the position of the telescope,

and to observe the same stars (see p. 413.) when it shall

occupy the positions 0, 30, &c. Thus, as a specimen of the

operations when the two former positions are employed :
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1812.
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index error so to be found, depends on the reductions of all the

stars being operations of like certainty. One of these reduc-

tions is the correction for refraction : which, as Dr. Brinkley has

observed in his Memoir (Irish Transactions, 1815.) on the paral-

laxes of stars, is a correction of considerable uncertainty (see

pp. 233, &c.) If the correction used for refraction should be

wrong, the index error cannot be right. The like may be said

of the other corrections. In short the index error, and the con-

sequent correction of the catalogue must, in degree at least,

partake of that uncertainty to which the reductions of any of the

stars used in finding the index error are liable.

This method, then, of correcting the mean declination of

stars requires, as Dr. Brinkley notes, great attention in all

enquiries concerning (what indeed modern Astronomy is now
conversant about) minute changes in the places of stars.

But the excellent Astronomer, whom we have just quoted,
uses a different instrument and method for determining the mean

places of stars. The method may indeed be said to be essen-

tially different, since it has no .concern with the index error,

which, as we have seen, plays so great a part in the uses of the

mural circle. We will now speak briefly of the description of

the Circle of the Observatory of Trinity College, Dublin, and

more fully of its uses and application.

The Circle planned and partly executed by Ramsden, is

eight feet in diameter. What is peculiar to it, being so large

an instrument, is its capability of being turned round a vertical

axis : so that the same face of the instrument may be turned

both to the east and west. In this principle of its construction

it resembles a zenith sector, and those small quadrants and

declination circles that are furnished with azimuthal motions

(see pp. 65, &c. also Phil. Trans. 1806, pp. 406, See.): and its

maker intended that it should derive from that principle, the

same advantage which the smaller instruments possess, namely,
that of determining the true zenith distance of a star, inde-

pendently of the line of collimation (see pp. 67, &c.)

A plumb-line is used in the present instrument, not for

determining the zenith point on the instrument, but for adjusting
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the vertical axis. The divisions of the limb are read off by
means of three microscopes : one at the bottom, opposite to the

lowest part of the circle : the other two respectively opposite
the left and right extremities of the horizontal diameter. This

short description is sufficient for our purpose : a fuller descrip-

tion has been given by Dr. Brinkley in the Irish Transactions

for 1815.

It was the original intention of the maker of the instrument

that meridional observations should be made with it. And the

instrument can readily be placed in the plane of the meridian :

but, in that case, only one observation of the same star can be

made with it on the same day. Such (see pp. 67, &c.) is to be

reckoned only half an observation : we must wait twenty-four
hours at least before we reverse the instrument and complete the

observation. If the weather should be unfavourable we may be

obliged to wait several days. But, even in the interval of one day,

the temperature may have altered and affected the instrument.

To prevent this evil, or to obviate the objection that may be

founded on its supposed existence, Dr. Brinkley observes the

star with the face of the instrument to the east, once or twice

before it reaches the meridian, and then, as-often, with-the face

of the instrument to the west, after the star has passed the

meridian. Thus the two essential parts of an observation are

made within the space of ten or twelve minutes. But the ob-

servations thus made are, in a certain sense, imperfect ones,

since they are not observations of meridional zenith distances.

They- may, however, by the aid of calculation, be made to

become, or be reduced to, such observations. The main con-

dition necessary to be known is the time of the observation, or,

rather, the interval of time between the observation of the zenith

distance and the star's transit over the meridian. This is easily

had in an Observatory. What else remains is a matter altogether

of calculation, which, as on like occasions, will furnish us with

a formula and rule of solution.

We will now direct our attention to the formula, which is

to express the difference of the meridional zenith distance of

a star, and of its zenith distance observed very near to the

3 G
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meridian, in terms of the interval between the times of obser-

vation and the star's transit, and of certain given quantities.

Let L denote the latitude of the place of observation,

D the star's polar distance,

z, z'f two zenith distances,

h, h
1

, the corresponding hour-angles ;

then, if we form two spherical triangles ZP s, ZP s
1

, Z being the

zenith, P the pole, and 5, s' two positions of the star, we have

(see Trigonometry, Chap. IX.)

cos. z sin. L . cos. D
cos. h = -

:
~

,

cos. Li . sin. JJ

f
cos. z' sin. L . cos. D

cos. L . sin. D
., cos. J cos. z

consequently, cos. h cos. h = :

-
.

cos. L . sin. JD

or (see Trigonometry, p. 33.)

h'+h ti h z' + z z'z 1
sin. . sin. = sin. . sin.22 22 cos. L . sin. D '

Let one observation (that to which h} z belong) be made on

the meridian, then, since h = 0,

U . z'+z . z'-z
sin. = sin. . sin. x

2 2 2 cos L . sin. D.
'

Now z'. z are nearly equal : let $ denote their difference, then

z' + z a

2 2*

z'-z 3

2 2'

.'. sin. fi
. d k

'^
Q
= COS * ^ * S^n< ^ ' Sm** """

but, S being very small,
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sin. - =s -. sin. l", nearly,

/ 5 \ 3
sin. f 2 + j

1 = sin. 2 4- - sin. 1 .cos. 2;

f ^ 1 A'

.'. -sin. \" x < sin. 2+ - sin. l".
cos.sj

= cos. L. sin. D.sin.
2 -

,

. o h' cos. L . sin. D
and - as sin. . -5O o

sin. l"
(sin.

2 -^ sin. l". cos. zj

. e h' cos. Z/.sin. Z) f $ ; )= sin. -
.
-

Tl : . < 1 sin. 1 . cot. Z(, nearly.
2 sin. l" . sin. z I 2

If no great accuracy be required we may reject the second

term, in which case, we have

5 . 9
h' cos. L . sin. D

2
"

2
*

sin. l". sin. z

Substitute this value in the preceding expression, and we
i

shall have a second approximate value of -
, in the expression

Sill
~

^

5 . A7
cos. I/ . sin. D '

2 /cos.L . sin. Z>v- = sin . .
ff

: : TT/ I : I - cot.*;
2 2 sin. 1 . sin. z sin. 1 V sin. z s

which, since z = L 90 D, is Delambre's expression,

and from which the correction ^ or the reduction to the meridian,

may be computed.

Dr. Brinkley, however, very rightly prefers another formula

(or rather a transformation of the above formula) in which the arc

and its powers, should be involved instead of the powers of

its sine. Thus, since

if z/ ., slJ^ 3
tl /* . If

1 /K\ . M
sin. =s - sin. 1 - I - 1 . sin. 1 , nearly,
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writing, therefore, in the above formula, cosec, z instead of

, and \5h' instead of ti, in order to convert h', expressed
sin. z

in parts of space, into time,

J = !!5lj!
. 15 . cos. L . sin. D . cosec. z X (h'f

2

. 154 . cos. L . sin. D . cosec. z X (h'}
4

24
, nj

. 15
4

. (cos. L . sin. D . cosec, zf. cot. z x (h')
4
,

8

from which $ may be computed. We may, however, for the

purposes of computation, express $ more commodiously.

Let the first term (C), the first correction, = A sin. D . cosec. z . (h'f

then the 2d term, orcor.(C') = . \&.A sin. D. cosec. z.(A'y
12

and the third term, or correction (C") = - C2
. . cot. z.

Hence, since A = . 1 5
2

. cos. L, we have

log. A= log. sin. l"-f 2 log. 15 -f- log. cos. L + ar. com. 2 20,

log. C = log. -4 4- log. sin. D + log. cosec. z 20 -f- 2 log. A',

log. C'= log. -^ -f 2 log. sin. l"-f 2 log. 15 + ar. com. 12

+ log. sin. D -H log. cosec. 2 30 -h 4 log. hf,

log. C" =: 2 log. C -f log. sin. l" -H ar. com. 2+ log. cot. z 20.

When the observations are made at the same place, the

log. cos. L, which is a given quantity, may be added to the other

constant quantities : for instance, the latitude of the Dublin

Observatory being 53 23' 13".5, its log. cos. = 9-77552, which

being combined with the logarithms of the three first terms of

the expression for log. C, the result is 16,51225. Hence
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*
log. C = 6.51225 + log. sin. D + log. cosec. z 20 + 2 log. ti,

log. C' = 7.15638 + log. sin. D + log. cosec. z 20+ 4log.#,

log.C"= 4.38454 + 2 log. C + log. cot. z - 10.

These are the formulae of computation for any star, the lati-

tude of the place being equal to that of the Observatory of Trinity

College, Dublin. But, as it is necessary to make a great number
of observations of the same star, it is convenient to possess

peculiar formulae of computation adapted to the several stars.

For instance, if the star should be Arcturus, the sum of the

second and third terms of log. C is a constant quantity (=20.23344);
the third term of log. C" is also a constant quantity (= 10.1831) :

and accordingly, the three formulae for Arcturus, observed at the

Observatory of Trinity College, Dublin, become

tlog. C = 6.74569 + 2 log. ti,

log. C
1

=3.7.3898 + 4 log. ti,

log. C" = 8.05902 + 4 log. ti.

Above the pole z' > z, and z' z = &
;

.*. z = z
1

3. Hence

Constant Number in log. C computed. Constant Number in log. O computed.
*
Log.cos.lat 9.77554 log. A 6.51225

log. sin. 1" 4.68557 2 log. sin. 1" 9.37114
2 log. 15 2.35218 2 log. 15 2.35218

Arith. comp.2 9.69896 ar.comp. 12 8.92081

(log. A) 26.51225 7-15638

ViuniurmLu-^-.. I.

Constant Number in log. C" computed.

log. sin. 1" = 4.68557

log. 2 = .30103

4.38454

t Log. sin. N. P. D. (=69 52' 46") 9.97265

log. cosec. z (=33 16) ., 10.26079

20.23344 .23344

6.51225 7.15638

6.7456"9 7-38982
2

3.49138
4.38454
1831

8.05902



(see p. 418,) in order to reduce the observations, we have this

formula,

meridional zen. dist. sr observed zen. dist. (C C' C"),

and below the pole

meridional zen. dist. = observed zen. dist. + C C + C".

The following instance of the star Arcturus observed,

May 12, 1820, at the Dublin Observatory, contains the appli-

cation of the preceding formulae,

Latitude of the Observatory 53 23' 13".46

mean N. P. D. of Arcturus for 1820 69 52 31 . 89

meanM 21
%
1 5151. 6

place of Moon's node 1 1
s

29 26

Time by
Clock.
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sage by clock)

time of obsern . 135628
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The above is the whole of the process necessary for reducing

each of the four observed zenith distances to the meridional zenith

distance. In the left hand column, since the interval (h'} between

the time of observation and the transit was 10m 35s
, all the three

corrections C, C', C", were computed : but in the second and

third columns, when the values of h' are only 6m 35% 2m 47
s

, the

* The value of h' is made the difference between the times of obser-

vation by the clock and of the star's transit by the clock. The most

ready way of determining it, is to observe the star's transit by the transit

instrument, and to note its time by the clock. The difference of that time

and of the time of observation by the same clock is the value of A'. If it

be not convenient to observe the star's passage, we must compute its

JR and thence, and from the error and rate of the clock, compute h'.

The special object of the example in the text is the illustration of

the method of finding the meridional zenith distance of a star by means

of zenith distances observed before and after the star's transit. But the

example may be made to serve another purpose : it is a kind of practical

proof that the duties of an Observatory, are laborious duties. The com-

putation, as it stands in the text, is a long one ; yet the whole of it is

not given : for instance, the computations of the four refractions and of

the inequalities of aberration, nutation, and precession are omitted.

Again, we have considered only one star: but, if ten or more stars be

observed, they will all require reductions similar to the preceding reduc-

tion. Observations, then, by means of a circle, such as we have been

speaking of, and so used, are considerably more operose than those made

by a mural circle or quadrant.

The above method of deducing zenith distance is peculiar to the

Observatory of Trinity College, Dublin. It renders the duties more
laborious than when the meridional zenith distance is observed by means
of mural quadrants or circles. The other parts of the daily business

in an Observatory, the observations and computations of right ascensions,

occwltations, eclipses of satellites, are nearly the same at Greenwich, Paris,
and Dublin. Bradley's theories, and instruments like Bird's, make one

Observer quite unequal to the proper discharge of the duties of an Ob-

servatory.

We
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values of d, C" (they are to the values first obtained nearly as the

squares of the times) are too small to be taken account of. In

the fourth column C' is too inconsiderable to be computed.

The catalogues of mean right ascensions stand, also, in need
of continual corrections : and such corrections are effected on

grounds not altogether unlike those that have been used in cor-

recting north polar distances.

We have endeavoured to draw the attention of the reader to the

respective constructions and uses of the two instruments of Greenwich

and Dublin for measuring north polar distances and zenith distances.

The former, as we have seen, does not determine the north polar distance

of a star, except by the intervention of several other stars, used for de-

termining the index error. The latter is capable of determining the zenith

distance of a star, if such star should be a solitary one in the heavens.

It is capable of determining, within so short an interval as fifteen

minutes, the zenith distance of a star : and, on that account, is admirably

adapted to note (should there be any such) the peculiar motions of a star.

On the mere footing of theory, no instrument is better adapted for dis-

covering (should it be capable of being discovered) parallax. But

various objections are made to it. Istly, The great mass of metal that

forms the frame of the instrument, and revolves with it, and likely,

from its derangements from heat, &c. to derange the instrument : 2dly,

theunfixednessofits microscropes, and their position : 3dly, the uncertainty

of the permanence of position of the plumb-line, by which, at each ob-

servation, the instrument is adjusted. These objections are certainly

deserving of attention, and ought, (as much as they can be,) to be ex-

amined by the observations which the instrument itself furnishes, in the

same way as the recorded observations by the mural circle are perhaps

sufficient to determine its precision in settling the mean place of any

proposed star.

In the mural circle the derangements from unequal temperature can

arise only from the circle itself being affected. Its six microscopes are

fixed : the position of its telescope may be varied. These are its

great excellencies. The accuracy of its division (of which, however, the

Astronomer Royal has given the fullest testimony) is without the present

question, which regards not an individual instrument, but a class of

instruments and the principles of their construction.

With

3 H
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The method of finding the right ascensions of stars has been

explained in Chap. VII. of this Treatise. It depends on the

finding the time of the Sun's entering the equator. The same

process determines the right ascensions of the Sun and of the

stars employed in that process. If by that, and like processes,

we obtain, for a certain epoch, a correct catalogue of the mean

right ascensions of stars, we are able, by a knowledge of the

several inequalities to which the places of stars are subject, to

determine their right ascensions for any other epoch, and thence

to regulate the Astronomical Clock. We could thence determine

the right ascension of the Sun. If, therefore, by any means,

other than those of the right ascensions of stars, we are able to

determine, at the latter epoch, the Sun's right ascension, such

determination, compared with the former, would be a test of its

accuracy ; and, consequently, of the computed right ascensions

of stars. Now we possess such means of determining the Sun's

right ascension in a knowledge of his declination, which can be

observed, and of the obliquity of the ecliptic which can be com-

puted. An instance has been given of this method in pages 151,

&c. The Sun's right ascension, then, is when he is near to the

equinoxes, to be computed from the clock
;
in other words, from

the right ascensions of starsj and from his observed north polar

distances. The differences of the two results, then, would (sup-

posing the latter computations to be exact) be the errors of the

catalogue. The following Table will exemplify the method.

With regard to the mural circle, it ought farther to be noted, that,

although it uses no plumb-line, and cannot be reversed as the Dublin

circle can, it is not destitute of the- means of determining the zenith

point. Such means are found in an artificial horizon (a basin of oil or of

quicksilver) ; and then certain stars are observed both by reflection and

by immediate vision. This operation is now practised at the Greenwich

Observatory.
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Observations of the SUN about the EQUINOXES.
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fixed stars are used in determining those of the planets. They
have many things in common. Both are subject to the inequa-

lities of refraction, aberration, precession and nutation. But,

without going far into the circumstances of distinction between

the fixed stars and the planets, it is obvious that there must be

peculiarities belonging to the latter from their relative proximity

to the observer, and their continual change of place. The former

circumstance renders them subject to parallax, and the latter (to

mention one instance) modifies the quantity of aberration : for, in

the time of the transmission of light from the planet to the Earth,

the former has changed its place.

But these are only slight circumstances of distinction. The

planets' distances, velocities, the forms of their orbits must be

investigated : subjects of enquiry to which there is nothing like in

the preceding discussions, and depending on principles not yet

laid down. Our attention will be directed to these points in the

succeeding part of this Volume : and as, amongst the planets,

the Earth claims the chief consideration, its theory shall be

first discussed.

END OF THE FIRST PART OF THE FIRST VOLUME.
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