
































iv PREFACE.

Astronomy contains more mathematics than a student can be
expected to master thoroughly in that period. Of various
other text-books available none seem to fit the special condi-
tions.

In the wording of the book it is tacitly assumed that the
observer is in the northern hemisphere. To make the word-
ing general would require too many circumlocutions.

It is assumed that the student has a knowledge of least
squares. If, however, he has not such knowledge, it will not
debar him from following nearly every part of the text except
§§ 107-113, dealing with the treatment of transit time obser-
vations by least squares, and §§ 154~157, giving the process
of combining the results for latitude with a zenith telescope
by that method. If he reads carefully §§ 283-285, stating
the technical meaning of the phrase ‘‘ probable error,”’ the
statement of the uncertainty of a given observation in terms
of the probable error, or the statement of the errors to be ex-
pected from certain sources in such terms, should convey to
him a definite meaning.

Considerable space has been devoted in the text to a dis-
cussion of the various sources of error in each kind of obser-
vation treated. Two separate considerations seem to the
author to justify this. One is that the special value of
geodetic astronomy as a part of the course of training of an
engineer depends largely upon the fact that in studying it
he is brought face to face with the idea that instruments are
fallible, and that therefore their indications must be carefully
scrutinized and interpreted; and that if the best results are
to be secured from them, the sources of the various minute
errors which combined constitute the errors of observation
must be carefully studied. The other consideration is that
an observer’s success in securing accurate results with
moderate effort depends to a considerable extent upon his
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power to estimate rightly the 7e/ative importance of the
various errors affecting his final result.

The accuracy of a man’s thoughts, as well as of his speech,
when dealing with a given subject depends largely upon the
precision of his understanding of the special vocabulary of
that subject. With that idea in view the finder list of
definitions given in § 312 has been prepared. The student
who is not sure of the exact meaning of a word may turn to
this list and so find the exact definition quickly. In reading
definitions the context should also be read. When a word is
defined in the text it is printed in italics.

The effort has been made to select the formule which have
been found in practice to lead to accurate and rapid computa-
tions. They have been gathered at the end of the volume
for convenient reference, and adjacent to each formula will be
found references to the corresponding portion of the text, so
that for those who may use the book as a manual the list of
formula with these references may serve as an index or finder
for the text.

In the five principal chapters the instrument has first been
described, and the adjustments given, as well as directions for
observing, and an example of the record. The derivation of
the formule, the computation, etc., follow. If the text-book
work and the practical work of the observatory are carried on
together during the same term one naturally wishes the
students to become familiar with the instruments and their
manipulation as soon as possible. In that case it is recom-
mended that the first portions only of certain chapters be
taken and the later portions omitted temporarily. The fol-
lowing order may then be used: §§ 1-27, 37, 51-63, 83—91,
134-146, 177-187, 201-203, 205 to middle of 210, 273-276,
28-50, 64-82, 92-133, 147-176, 188-272, 277 to the end.

During the preparation of this volume the text-books on
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2 GEODETIC ASTRONOMY. Siz2

by observations upon these heavenly bodies—for that is his
particular purpose in observing them—depends first of all
upon his having a clear and accurate conception of their
apparent motions, and then upon his possession of, and
ability to use efficiently, the instruments with which the
observations are made. Much of the complexity in the
apparent movements of these heavenly bodies is due to the
fact that the observer sees them not from a fixed station in
space, but from a standpoint upon one of the planets,—the
Earth, which is moving rapidly through space with a motion
which is in itself quite complicated. He sees then in the
apparent motion of each heavenly body upon which he gazes
not only the actual motion of that body, but also, reflected
back upon him, so to speak, he sees the actual motion of the
seemingly solid and immovable earth upon which he stands.
He is like a passenger upon a train at night who looks out
upon the many lights of a town. He sees the lights all
apparently in motion. In one case the apparent motion of the
particular light may be entirely due to his own motion with the
train upon which he is riding, the light itself being at rest.
In another case the light may be upon another moving train
and its apparent motion will then be due to the actual motion
of each of the trains. If the darkness is sufficient to conceal
the landscape, he may be at a loss to determine what portions
of the apparent motions of the lights are due to his own
change of position and what to the motions of the lights
themselves. He is then in the position of a man when he
first begins to study the apparent movements of the heavenly
bodies.

Let us first form concrete conceptions as to the actual
motion of each of the bodies under consideration, including
the Earth itself. We will then be in a position to understand
the apparent motions.
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3. Conceive the Sun to be a very large self-luminous mass
of matter. For the present let it be supposed to be fixed in
space. Around this central Sun revolve eight planets,
namely, in order of their distance from the Sun, Mercury,
Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
All these planets move nearly, but not exactly, in the same
plane passing through the Sun. The orbit, or path, of any
one of them in its own orbital plane is very nearly a perfect
ellipse with one focus at the Sun, and the velocity with which
the planet moves varies at different parts of its orbit in such
a way that the line joining the planet and Sun describes equal
areas in equal times. This orbit and law of velocity result
from the fact that each planet is pursuing its path in obedi-
ence to a single force, gravity, continually directed toward a
fixed center, the Sun.

4. The Earth may be taken as a representative planet.
It is the most important of the planets for our present purpose.
It moves about the Sun in an elliptical orbit at a mean dis-
tance from the Sun, in round numbers, of 92 800 000 miles.*
Though the orbit is an ellipse, its major and minor axes are
so nearly equal that if it were plotted to scale the unaided
eye could not distinguish it from a circle. The greatest dis-
tance of the Earth from the Sun exceeds the least distance by
but little more than 34. The Sun is in that focus of the
ellipse to which the Earth is nearest during the winter (of the
northern hemisphere). The eccentricity of the ellipse, and
therefore the difference of the two axes, is very slowly
decreasing. The plane of the Earth’s orbit is not absolutely
fixed in direction in space. It changes with exceeding slow-
ness—so slowly, in fact, that it is used as one of the
astronomical reference planes. Moreover, the position of the

*See ‘‘ The Solar Parallax and its Related Constants,” Harkness, p. 140.



4 GEODETIC ASTRONOMY. § 5.

elliptical orbit in the plane is slowly changing; that is, one
focus necessarily remains at the Sun, but the direction of the
major axis of the ellipse gradually changes.

Roughly speaking, the Earth makes one complete circuit
of its orbit in the period of time which is ordinarily called one
year. At different portions of the orbit its linear velocity
varies according to the law (common to all the planets) that
the line joining it and the Sun describes equal areas in equal
times. Each portion of the nearly circular path being almost
perpendicular to the line joining the Earth and Sun at that
instant, the linear velocity is nearly inversely proportional to
the distance of the Earth from the Sun. Evidently the angular
velocity varies still more largely than the linear, since the
greatest linear velocity comes at the same time as the least
distance from the Sun, and vice versa.

At the same time that the Earth, as a whole, is swinging
along in its orbit it is rotating uniformly about one of its own
diameters as an axis.* This rotation is so nearly uniform in
rate that it is assumed to be exactly uniform and is used to
furnish our standard of time. Roughly speaking, the interval
of time required for one rotation of the Earth on its axis is
what is called one day. The more exact statement will be
made later.

5. The axis of rotation of the Earth points at present
nearly to the star called Polaris, or North Star, and makes an
angle of about 663° with the plane of the Earth’s orbit, or
233° with the perpendicular to that plane. The direction of
this axis of rotation is not fixed in space, but changes just as

* The diameter about which the rotation takes place is, however, not
strictly fixed with respect to the Earth,—is not, in other words, always the
same diameter,—but varies through a range of a few feet only on the sur-
face of the Earth. See §§286-7. For present purposes, however, it will be
considered as fixed.
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the axis of a rapidly spinning top is seen to wabble about.
This change is quite slow, but extends through a large range
of motion. It is compounded of two motions called respec-
tively precession and nutation. By virtue of the motion called
precession the axis of the earth tends to remain at an angle of
about 233° with the perpendicular to the plane of the Earth’s
orbit (usually known as the plane of the ecliptic), and to
revolve completely around it, describing a cone of two nappes
with an angle of about 47° (twice 234°) between opposite
elements., The time required to make one such complete
revolution is, at the present rate, about 26 000 years.* The
motion of the Earth’s axis called nwzation is compounded of
several periodic motions, the principal one of which is such
as to cause the axis to describe a cone of which the right sec-
tion is an ellipse, and of which the greatest angle between
opposite elements is about eighteen seconds of arc and the
least about fourteen.t

* The change of seasons is caused by the inglination of the Earth’s axis
to the plane of its orbit. At present the northern end of the axis is in-
clined directly away from the Sun at about Dec. 21st; the Sun then appears
to be farther south than at any other time, and it is winter in the northern
and summer in the southern hemisphere. At about June 20th the reverse
is true, namely, it is summer in the northern and winter in the southern
hemisphere. On account of the precession the winter of the northern
hemisphere will occur in June, July, and August about 13000 years hence.

t All the various motions of the planets and their satellites—the
peculiar mathematical properties of their orbits, the variability of the
planes of the orbits and of the orbits in the planes, etc.—are by celestial
mechanics shown to be due simply to the action of gravitation. Or, stating
the matter from the converse point of view, given these various bodies in
their actual positions and having their actual motions at a given instant,
and given the law that gravitation acts between each pair of them with an
intensity inversely proportional to the square of their distance apart and
directly proportional to the product of the two masses, the position and
motion of each one of them, their orbits, etc., at any other stated time may
be computed from the principles of celestial mechanics alone. Even the
precession and nutation are caused by gravitation and are thoroughly
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6. The Earth was taken as representative of the planets.
Most or all of the various phenomena which have been indi-
cated in the motion of the Earth are repeated in each of the
other planets. Each has an orbital plane of its own which is
slightly variable and does not in any case at present make an
angle of more than about 7° with the plane of the Earth’s
- orbit. Each moves in that plane in an ellipse of which the
eccentricity and position are slowly changing. Each has a
rotation about its own axis,—with which, however, the en-
gineer is not concerned.

The Moon is a satellite of the Earth, revolving about it
under the action of gravity just as the Earth revolves about
the Sun, and in its orbit are again found the same peculiarities
as in the orbit of the Earth itself. The orbit of the Moon is
an ellipse of variable eccentricity and position, with the Earth
in one focus, and lying in a variable plane making an angle of
about 5° with the plane of the Earth’s orbit. The several
variations mentioned are much greater in the case of the
Moon than of the Earth, and the motion, moreover, is subject
to other perturbations. Its motion is therefore a most diffi-
cult one to compute.

Each one of the other planets, except Mercury and

accounted for by principles of celestial mechanics derived from the above
law of gravitation. The luni-solar precession is due to the fact that the
Earth is not a sphere, but a spheroid, having an excess of matter in the
equatorial regions. One component of the attraction of the Moon and Sun
acting upon this equatorial excess tends continually to shift the position
of the equator in one direction without changing its angle with the eclip-
tic. The action of the planets upon the Earth as a whole tends to draw it
out of the plane of its orbit, or rather to change the orbital plane. This
change is called the planetary precession. The luni-solar and planetary
precessions together constitute what is often called simply the precession.
Nutation is made up of periodic motions which are due to regular periodic
fluctuations in the forces which produce precession. Nutation might be
described as the periodic part of precession
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Venus, has one or more satellites bearing the same relations
to it that the Moon does to the Earth.

The comparatively erratic motions of the numerous
asteroids, or small planets, moving in orbits between that of
Mars and Jupiter, and of the comets and meteors which
occasionally visit the solar system, prevent their use by the
engineer.*

The Sun, the eight planets and their satellites, and the
asteroids together constitute the solar system.

7. The stars are self-luminous bodies at great distances
from the solar system. Their remoteness is to a certain
extent indicated by the fact that with the best telescopes and
with the highest magnifying powers at present available the
image of a star cannot be magnified. It remains with all
powers and telescopes a point of light of which the apparent
size is merely a measure of the imperfection of the telescope
and eye. But the best evidence of the immense distance even
to the nearest of the fixed stars is the fact that even though -
the diameter of the Earth’s orbit, 186 million miles, be taken
as the base of a triangle of which the vertex is at the star, it
is only with the greatest difficulty, if at all, that the angle at
the star can be detected even though the instruments used be
of the highest order of accuracy and a long series of observa-
tions are used. In the few cases in which this angle at the
star has been successfully measured it has been found to be
not greater than one second of arc. For the purposes of the
engineer, then, it may be assumed that each and every star is
at so great a distance from the Earth that the true direction
in space of the straight line from the Earth to the star is the
same at all times of the year notwithstanding the widely
separated positions the Earth may occupy in its orbit.

* For an interesting treatment of comets, meteors, and asteroids, see
Young's General Astronomy, and Chamber’s Astronomy, pp. 104-109,
278-430, 780-816.
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If the stars had no motion relative to each other or to the
solar system as a whole, the true direction of the line from
the Earth to any one star would not vary from year to year.
As a matter of observation, however, it is known that in
general the true direction of such a line does change, although
the change is exceedingly slow in every case. This change
will be treated more in detail in a later chapter.

The apparent motion of any particular heavenly body as
seen by an observer upon the Earth is the compound result
of the motion of the Earth and of that body.

8. In the case of a star, the object observed is for most
purposes at what may be considered an infinite distance.
The line joining the observer and star preserves, therefore, a
sensibly constant direction in spite of the motion through
space of the observer upon the Earth. The apparent motion
of the star is caused by the rotation of the Earth about its
axis and the change in the direction of that axis in space.
The rotation of the Earth causes the line of sight to a star to
seem to describe at a uniform rate a right circular cone, of
which the axis is the line joining the observer with a point in
the sky at an infinite distance in the axis of the Earth pro-
duced. In other words, the axis of the cone is a line from
the observer parallel to the axis of the Earth. Such a line,
for any point in the northern hemisphere, pierces the sky in
a point not far from the North Star, Polaris. The angle
between any element of the cone and its axis is the angle
between the line joining observer to star, and the axis of the
Earth. This angle is called the polar distance of the star,—
north polar distance if measured from the north end of the
Earth’s axis. So long as these two lines are fixed in direction
in space, the line of sight to the star continues to describe
the same right circular cone once for every turn which the
Earth makes on its axis. For example, the line of sight to
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Polaris makes an angle of about 1{° with the axis of the Earth,
and describes a corresponding right circular cone. Or it may
be said that Polaris seems to describe a circle in the sky of
which the radius subtends an angle at the eye of 11°. With
a good telescope Polaris may be followed completely around
the circle, all'of which would be above the horizon for any
point in the United States. With the naked eye only that
portion of the apparent motion which occurs during the
hours of darkness could be observed. For an observer at
Ithaca, in latitude 424°, the cone for a star having a north
polar distance less than 423° is entirely above the horizon.
Given one view of the star and an idea of the position of the
vanishing point of the Earth’s axis in the sky, an observer
is able to trace out the whole apparent path of the star. For
Ithaca, a star of north polar distance of 4234° has its cone
tangent to the horizon; and if greater than that value, a part
of the cone must be below the horizon, and the star is neces-
sarily invisible on that portion. If the north polar distance
is 9o°, the cone becomes a plane. Stars still farther south
describe a right circular cone about the southern portion of
the Earth’s axis produced, the angle of the cone being the
south polar distance of the star.

In every case the diurnal rotation of the Earth causes the
line of sight to a star to describe a right circular cone. But,
as has already been stated (§ 5), the direction of the Earth’s
.axis is continually changing slowly, and hence the north polar
distance or angle between the Earth’s axis and the line join-
ing the observer and star is continually changing. The cone
of revolution therefore slowly changes from day to day.

If the object observed is not a star at a practically infinite
distance, but a planet, the Moon, or the Sun, at a finite dis-
tance, the line joining observer to object describes a surface
any small portion of which may be considered to be a portion
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of the surface of a right circular cone. But the north polar
distance of the object now continually changes, not only on
account of the change in the direction of the Earth’s axis, but
still more largely on account of the change in the true direc-
tion of the line joining observer and object,—two points
which are at a finite distance from each other and both in
motion. This last cause also makes the rafe at which the
surface is described variable.

9. The two principal reference planes of astronomy are
the plane of the equator and the plane of the Earth’s orbit,
or, as it is generally called, the plane of ecliptic. The plane
of the equator is a plane passing through the center of the
Earth and perpendicular to its axis of rotation. Neither of
these two planes, from what has already been written, are
fixed in space, nor fixed relatively to each other. Their
changes of position are, however, very slow.

10. To avoid the necessity of using cumbersome expres-
sions and circumlocutions, it is convenient to make use of the
celestial sphere as an arbitrary conception. The celestial sphere
is a sphere of infinite radius, the eye of the observer being
supposed to be at its center. Any celestial object is consid-
ered to be projected along the line of sight to the surface of
this sphere and is referred to as occupying that position upon
‘the sphere. Then for convenience one may speak of arcs,
angles, and triangles upon the celestial sphere instead of using
the complicated expressions necessary in speaking always of
the actual lines and planes which are under consideration.
The sphere is assumed to be of infinite radius so that lines
which are parallel and at a finite distance apart will intersect
the sphere in the same point, or at least what is sensibly one
point, since two points at a finite distance apart must appear
as one when seen from an infinite distance. So also parallel
planes which are at a finite distance apart intersect the
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celestial sphere in the same arc. For example, the axis of
the Earth and a line parallel to it through the eye of the
observer both intersect the celestial sphere in the same pair
of points called the poles of the equator, or more briefly the
poles,—north and south respectively. Also the plane of the
equator, and a plane parallel to it through the eye of the
observer, intersect the celestial sphere in the same great circle
which is called the equator of the celestial sphere, or more fre-
quently simply ¢ke equator.

11. The equator, the ecliptic, hour-circles, and the lorizon
are all great circles of the celestial sphere formed by the
intersection of various planes with that sphere.

The ecliptic is the intersection of the plane of the ecliptic,
or, in other words, the plane of the Earth’s orbit, with the
celestial sphere. The Sun, therefore, is always seen pro-
jected on some point of the ecliptic.

An Jwur-circle is the intersection of a plane passing
through the Earth’s axis with the celestial sphere. All hour-
circles are then great circles passing through the poles.

The /orizon is the intersection with the celestial sphere of
a plane passed through the eye of the observer perpendicular
to the plumb-line, or line of action of gravity, at the observer.
All horizontal lines at a given point on the Earth’s surface
pierce the celestial sphere in the horizon of that point.

In each of these cases it is evident that the great circle on
the celestial sphere would not be changed if the intersecting
plane were moved parallel to itself a finite distance,—for
instance, to pass through any other point in or upon the sur-
face of the Earth. For example, the horizon may be consid-
ered to be the intersection with the celestial sphere of a plane
passing through the center of the Eart and perpendicular to
the observer’s gravity line, instead of that given above.

12. The angle between a line joining the center of the
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Earth to a star (or other celestial object) and the plane of the
equator is called the dec/ination of that object. It is meas-
ured upon the celestial sphere by that portion of the hour-
circle passing through the star which is between the star and
the equator. The declination is considered positive when
measured north from the equator. It follows from the
definition of polar distance (given in § 8) that the declination
and polar distance are complements of each other.

The equator and the ecliptic intersect each other at an
angle of about 23° 27’. Their two points of intersection on
the celestial sphere are called the eguinoxes. That one at
which the Sun is found in the spring is called the wvernal
equinox, and that at which it is found in the fall the antumnal
equinox. As both the equator and ecliptic move slowly in
space the equinoctial points slowly shift in position upon the
celestial sphere.

The right ascension of a star, or other celestial object, is
the angle, measured along the equator, between the two
hour-circles which pass through the star and the vernal equi-
nox respectively. In other words, the right ascension is the
angle between two planes, one passing through the Earth’s
axis and the star and the other through the Earth’s axis and
the vernal equinox. It isreckoned in degrees from o to 360,
in the direction that would appear counter-clockwise if one
looked toward the equator from the north pole,—from west
to east. Right ascensions are still more frequently expressed
in time, 24 hours being equivalent to 360 degrees.

The zenit/ is the point in which the action-line of gravity
produced upward intersects the celestial sphere. The oppo-
site point on the celestial sphere is called the zadir.

The intersection with the celestial sphere of a plane passed
through its center, the zenith, and the pole is called the
meridian, and the plane itself is called the wmeridian plane,
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The intersection of the meridian plane with the plane of the
horizon is called the meridian line. 1t connects the north
and south points of the horizon. The intersection with the
celestial sphere of a plane through the zenith perpendicular
to the meridian plane is called the prime vertical. The east
and west points of the horizon are in the prime vertical.

13. The angle, measured along the equator, between the
meridian and the hour-circle passing through a star (or other
celestial object) is the Zour-angle of the star. In other words,
the hour-angle is the angle between the meridian plane and a
plane passing through the Earth’s axis and the star. Hour-
angles are reckoned like right ascensions, either in degrees,
minutes, and seconds of arc or in hours, minutes, and seconds
of time. 1In this book hour-angles will be measured for 180°
each way from the upper branch of the meridian and will
always be considered positive.

The student should distinguish carefully between an hour-
angle and a right ascension. Each is an angle between two
planes. In each case one of the two planes is defined by the
Earth’s axis and the star, and therefore changes direction but
slowly in space. The second plane concerned in the case of
a right ascension is defined by the Earth’s axis and the vernal
equinox. This plane changes its direction very slowly. So
the right ascension of a star is an angle which is slow/y chang-
ing,—at a rate of less than one minute of arc per year for
nearly all the stars. The second plane concerned in the
measurement of an /Zour-angle is the plane of the meridian.
This accompanies the Earth in its diurnal rotation. Hence
the hour-angle of a celestial object varies rapidly,~—360° for
each rotation of the Earth on its axis. The right ascension
and declination are spherical co-ordinates locating a celestial
object with reference to the hour-circle through the vernal
equinox and the equator. The hour-angle and declination
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are two spherical co-ordinates locating a celestial object with
reference to the meridian and equator.

14. It is convenient for some purposes to refer the posi-
- tion of a heavenly body by spherical co-ordinates to the
planes of the meridian and horizon,—the two co-ordinates in
this case being the altitude and azimuth. The altitude of a
heavenly body is its angular distance above the horizon, or
the angle between the line joining the observer to the star,
and the horizontal plane. Any great circle of the celestial
sphere passing through the zenith is called a wvertical circle.
The altitude of a star is measured by that portion of the verti-
cal circle passing through the star which is included between
the star and the horizon. The azimuti of a star, or other
celestial body, is the angle between the plane of the meridian
and the vertical plane passing through the star. The same
definition applies to a line joining two terrestrial points. The
azimuth at station 4 on the Earth’s surface, of the line join-
ing stations 4 and B, is the angle between the vertical plane
at A passing through the line A5 and the meridian plane
of A. The azimuth of a star is measured on the celestial
sphere by that portion of the horizon included between the
star’s vertical circle and the meridian line. In general the
altitude and azimuth of a celestial object are both changing
rapidly because of the Earth’s rotation. The zenit/ distance
of a star is its angular distance from the zenith,—measured,
of course, along a vertical circle. The zenith distance and
altitude are complements of each other.

15. The astronomical latitude of a station on the surface
of the Earth is the angle between the line of action of gravity
at that station and the plane of the equator. It is measured
on the celestial sphere along the meridian from the equator
to the zenith.

The astronomical longitude of a station on the surface of
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the Earth is the angle between the meridian plane of that
station and some arbitrarily chosen initial meridian plane.
Usually the meridian of Greenwich, Eng., is taken as the
initial meridian, but sometimes that of Paris or of Berlin, or
in the case of detached surveys some arbitrary meridian plane
to which all points of the survey may be conveniently referred.
Unless otherwise stated astronomical latitude or astronomical
longitude is meant when the word latitude or longitude is
used in this book.

The student should distinguish astronomzical latitude and
longitude from geodetic latitude and longitude, and should be
careful not to confuse either one of these with celestzal latitude
and longitude. The geodetic latitudes and longitudes differ
from the astronomical in that, instead of being referred to the
actual action-line of gravity at the station, they are referred
to a gravity line which has been corrected for local deflection,
or station error.®* (Celestial latitudes and longitudes form a

* In the operations of geodesy the action-line of gravity has been
found to be nearly perpendicular at all stations to the surface of an
imaginary ellipsoid of revolution generated by the revolution of an ellipse
about its minor axis, the minor axis coinciding with the axis of rotation of
the Earth. This is the form which a rotating liquid mass necessarily
assumes under the action of no other forces than the action of gravitation
between its component parts. Values for the polar and equatorial diam-
eters, respectively, of this ellipsoid having been determined such that its
surface is as nearly as possible perpendicular at all points to the action-
lines of gravity, the outstanding difference of direction between the normal
to the surface of the ellipsoid at any point and the actual action-line of
gravity at that point is called the station error, or local deflection of the
vertical at that point. The station error is supposed to be due to varia-
tions of density in the interior of the Earth near the station, and to the
local irregularities of the surface.

The operation of determining the station error at a given place is as
follows: The astronomical latitude and longitude of each of a number of
stations are determined. The stations are connected by an accurate
geodetic survey. All the latitudes and longitudes are then reduced to one
of the stations by use of the known elements of the ellipsoid. The mean
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system of spherical co-ordinates,—frequently used by the
astronomer but seldom by the engineer. In this the ecliptic
and vernal equinox play the same part as do the equator and
vernal equinox in the case of declinations and right ascen-
sions.

16. In general, when the engineer observes a heavenly
body he has one of four objects in view, namely, to determine
his astronomical latitude, the azimuth of a line joining his
station with some other terrestrial point, the true local time
at the instant of observation, or the longitude of his station.
The determination of longitude always involves a determina-
tion of the true local time together with additional operations
which are in some cases quite complicated. The instrument
used in any case for the determination of time, latitude, or
azimuth indicates the position of the horizon, and conse-
quently of the zenith, by means of attached spirit-levels, or

of the various values of the latitude of this single station as thus obtained
is called its geodetic latitude. The corresponding statement applies to the
longitude. Itis evident that the greater the number of stations and the
more widely scattered they are the nearer will the vertical as given by the
geodetic latitude and longitude coincide with the normal to the ellipsoid.
The difference between the astronomical and geodetic latitude at a given
point is therefore usually called the station error in latitude. A similar
statement defines station error in longitude. For further information on
this subject see Clark’s Geodesy, pp. 287-288, Merriman’s Geodetic Sur-
veying, pp. 70-88, or any extended treatise on geodesy.

Station errors in longitude, or deflections of the vertical at right angles
to the meridian, change the plane of the meridian from the position it would
otherwise occupy and so change all azimuths from the values they would
otherwise bave. Hence there arises the same distinction between the
astronomical azimuth of a line and its geodetic azimuth as is drawn above
between the astronomical and geodetic latitudes and longitudes. On
account of station error the line of gravity at a station and the axis of the
Earth do not, in general, intersect. Hence to be exact the meridian plane
must be said to be defined, not by the line of gravity and the Earth’s axis
of rotation, but-by the line of gravity and the point in which the axis of
rotation produced intersects the celestial sphere.
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by a basin of mercury having a free horizontal surface. The
star, or other celestial object, is usually observed with a tele-
scope. The two points on the celestial sphere always
observed are, therefore, the zenith and the object. The right
ascension and declination of the object observed become
known, independently of the observations, by the methods
indicated in the next chapter. The process most frequently
used is to acquire, by instrumental observation and by the
means indicated in the next chapter, a knowledge of three of
the elements, arcs and angles, of some triangle on the celes-
tial sphere of which one of the unknown elements, now
capable of computation, is the quantity sought, or is one
from which the required quantity can be readily derived.

For example, suppose that the latitude of the station of
observation is known, and that the zenith distance of a certain
star is accurately observed. Let the true local sidereal time
(see § 18) at the instant of observation be required. In the
triangle on the celestial sphere defined by the pole, the zenith,
and the instantaneous position of the star, the arc from the
zenith to the pole is known, being the complement of the
latitude of the station. The arc from the star to the pole
becomes known by the methods indicated in the next chapter,
since it is the complement of the declination of the star at
the instant of observation. The arc from the zenith to the
star, the zenith distance, was directly observed. Hence in the
spherical triangle pole-zenith-star all three arcs are known and
any of the angles may be computed. The angle at the pole
of that triangle is the hour-angle of the star at the instant of
observation. This being computed by the methods of
spherical trigonometry, a mere addition to or subtraction
from the right ascension of the star (which becomes known
by the methods of the following chapter) gives the true local
sidereal time (as will .be shown later).
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17. On account of the rapid apparent motion of most
celestial objects, time enters as an important element into
almost every astronomical problem with which the engineer
has to deal. Three kinds of time are in use in astronomy:
sidereal time, apparent solar time, and mean solar time.

The passage of a star or other celestial object across the
meridian is called its Zransit or culmination.

The meridian (a great circle of the celestial sphere) is
divided into two half-circles by the poles. If the whole of
the meridian be considered, a star has two transits for each
complete rotation of the Earth on its axis: one over that half
of the meridian stretching from pole to pole which includes
the zenith, and the other over that half which passes through
the nadir. The first of these is called the wupper transit or
upper culmination, and the second the lower transit or lower
culmination. The word transit or culmination unmodified
usually means the upper transit. The expression ‘¢ the
passage of a star across the meridian ’’ refers, of course, to the
apparent motion of the star. It would be more accurate to
say that the meridian passes the star. But to refer directly
to the apparent motion as if it were real saves circumlocution,
is more clear in many cases, and is not misleading if one keeps
in mind that this is merely a mode of speech.

18. A sidereal day is the interval between two successive
transits of the vernal equinox across the same meridian. Its
hours are numbered from o to 24. The sidereal time is
ot oo™ 00° at the instant when the vernal equinox transits
across the meridian. The sidereal time at a given station and
instant is the right ascension of the meridian, or is the same
as the hour-angle of the vernal equinox, counted in the direc-
tion of the apparent motion of the stars, at that station and
instant.

Right ascensions being reckoned from west to east,
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opposite to the apparent motion of the stars, it follows from
the above definition that the sidereal time at the instant of
transit of a star is the same as the right ascension of that star.

The sidereal day is substantially the interval of time
required for one rotation of the earth on its axis, and the
uniformity of the rotation of the earth is depended upon to
furnish the ultimate measure of time. Because of the motion
of the vernal equinox on the celestial sphere, about 50" per
year, the sidereal day and the time of one rotation of the
earth on its axis differ by about one one-hundredth of a
second.

19. The interval between two successive transits of the
Sun across the meridian is called an apparent solar day. The
apparent solar time for any instant and station is the hour-
angle of the Sun, at that instant, from that meridian. ‘‘ But
the intervals between successive returns of the Sun to the
same meridian are not exactly equal, owing to the varying
motion of the Earth around the Sun, and to the obliquity of
the ecliptic.”’

Let Fig. 1 represent a section of the universe on the plane
of the Earth’s orbit as seen from some position in space on
the side on which the north pole is situated. The Earth is
seen moving around its orbit in a counter-clockwise direction,
while at the same time its rotation about its own axis appears
to be counter-clockwise. The figure is not to scale, but is
merely a diagram in which certain dimensions are exaggerated
for the sake of clearness. Suppose that A is the position of
the Earth at a certain time, about March 21, when the Sun
is seen projected against the celestial sphere upon the vernal
equinox. Let B be the position of the Earth one sidereal
day later. Then Aa and Ba are parallel lines, the vernal
equinox being at an infinite distance (on the celestial sphere).
The Earth has made one complete rotation on its axis between
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the two positions, and the vernal equinox has returned to the
same meridian. The Earth having moved a distance 4B
along its orbit, the Sun is now seen projected against the
celestial sphere at & instead of a. Before the Sun will return
to the meridian of position 4 again the Earth must rotate
through the additional angle represented by aBé reduced to
the plane of the Earth's equator. (The figure represents a
section in the plane of the ec/iptic.) The apparent solar day
will then be longer than the sidereal day by the time required
for the Earth to rotate through this angle,—on an average a
little less than four minutes.

Let the angle governing the excess of the apparent solar
over the sidereal day be examined further. As the Earth
proceeds forward along its orbit the Sun will apparently move
backward on the celestial sphere along the ecliptic to points
b, ¢, d, etc. One of the laws of gravitation governing the
motion of the Earth in its orbit is that the line joining the
Earth to the Sun sweeps over equal areas in equal times.
The linear velocity then varies nearly inversely as the distance
to the Sun, and the angular velocity varies still more than the
linear. The angular velocity is about 74 greater during the
winter (of the northern hemisphere) than during the summer.
The various arcs ab, bc, cd, etc., along the ecliptic, each
corresponding to one sidereal day, will vary in value through
that range. But the excess of the apparent solar over the
sidereal day depends upon these arcs projected upon the
equator along hour-circles, the rotation of the Earth being
uniform when measured along the equator. When such a
small arc as aé near either equinox is projected upon the
equator, it will be considerably reduced, being at an angle
of 233° to the equator,—the angle between the equator and
ecliptic at the equinoxes.

On the other hand, when a portion of the ecliptic about
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midway between the equinoxes is projected along its limiting
hour-circles upon the equator, the projected length will be
greater than the original. In short, the difference between
the sidereal and apparent solar day varies by a rather compli-
cated law from’about 4™ 26° to 3™ 35% being on an average
3™ 56° 555 (in sidereal time).

20. Apparent solar time is a natural and direct measure of
duration, inasmuch as it is indicated directly by the hour-
angle of the Sun, the most conspicuous of all the heavenly
bodies. But a clock or chronometer cannot be regulated to
keep this kind of time accurately, since the different days are
of unequal length., To avoid the difficulties thus arising from
the direct use of the Sun as a measure of time, a fictitious
mean Sun is used. The mean Sun is supposed to move in the
equator with a uniform angular velocity, and to keep as near
the real Sun as is consistent with perfect uniformity of motion.
This mean Sun makes one complete circuit around the
equator at a uniform rate while the Earth is making a com-
plete circuit around its orbit, at a variable rate. It is some-
times as much as 16 minutes ahead of the real Sun, and
sometimes behind it by that amount. A mean solar day is
the interval between successive transits of the mean Sun over
the same meridian. The mean solar time for any instant and
station is the hour-angle of the mean Sun at that instant from
that meridian. For brevity mean solar time is often called
simply sean time. The mean solar day is about 3™ 56° longer
than the sidereal day,—that being the amount by which the
apparent solar day exceeds the sidereal day on an average.
Stated more exactly, 24 hours of mean solar time is the same
interval as 24" 03™ 56°.555 of sidereal time.

The sidereal and mean solar time coincide for an instant
about March 21 each year. The former gains 24 hours on
the latter in a year.
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The equation of time is the correction to be applied to
apparent time to reduce it to mean time. It is the interval
of time by which the mean Sun precedes or follows, or is fast
or slow of, the real Sun at a given instant. Itslimiting values
are about 4 16™ and — 16™. It is given in the American
Ephemeris and Nautical Almanac for every noon at Washing-
ton (and Greenwich). It can be obtained for any intermediate
instant with an error not greater than o°.1, usually much less,
by a simple straight-line interpolation.

21. The civil day, according to the customs of society,
commences and ends at midnight. The hours from midnight
to noon are counted from O to 12 and are marked A.M.
The remaining hours from noon to midnight are again num-
bered from o to 12 and marked P.M.

The astronomical day commences at noon on the civil day
of the same date. Its hours are numbered from o to 24,
from noon of one day to noon of the next. The astronomical
time as well as the civil time may be either apparent solar or
mean solar. The convenience of the astronomical day for the
astronomer arises from the fact that he does not have to
change the date on his record of observations in the midst of
a night’s work as he would be obliged to if he used civil
dates.

The zeros of sidereal, apparent solar, and mean solar time
are, by definition, the instants of transit, across the meridian,
of the vernal equinox, the Sun, and the mean Sun, respec-
tively. The time, therefore, (of any of the three kinds,) will
be the same for two stations at a given instant only in case
those stations are on the same meridian. If the stations are
not on the same meridian the difference of their times (of
any of the three kinds) is a difference of two hour-angles
measured from the respective meridians to the same object,
and is therefore the angle between the meridians or the differ-
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ence of longitude of the two stations. A difference of longi-
tude is then a difference of time.

22. In the United States, excluding Alaska, for every
mile of distance, east or west along a parallel of latitude, the
longitude changes by about four or five seconds of time. If
each city and town used its own local mean solar time, the
traveller would find himself at considerable inconvenience, on
the modern railroads which transport him from 500 to 1000
miles per day, to keep his watch regulated to the time of his
various stopping points. Even when the railroads and the
general public used one particular time for considerable areas,
—that time being usually that of some large city or important
railroad division terminus,—as was the case a few years ago,
there was still confusion and annoyance arising from the fact
that each kind of time was changed to the next by the addi-
tion or subtraction of some irregular number of minutes,
which was apt to be forgotten when most needed. These,
and other reasons, have led to the general adoption in this
country of what is called standard time. The standard time
for each particular locality is the mean solar time of the
nearest meridian which is an exact whole number of hours,
four, five, six, seven, etc., west of Greenwich. The standard
meridians for this country are thus:

75° or 5® west of Greenwich, running near Utica, N. Y.,
Philadelphia, Pa., and off Cape Hatteras.

90° or 6" west of Greenwich, running near St. Louis,
Memphis, and New Orleans.

105° or 7" west of Greenwich, running near Denver,
Colorado. -

120° or 8 west of Greenwich, running along the east line
of the northern part of California and near Santa Barbara, Cal.

135° or 9" west of Greenwich, running near Sitka, Alaska.

To reduce the local mean solar time to standard time it
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is merely necessary in each case to apply as a correction
the difference of longitude of the station and the standard
meridian. Only the astronomer or engineer, however, is
obliged to use this process. The traveller has occasion
simply to change from one kind of standard time to another
which differs from it by exactly one hour,—an interval which
is easy to remember.

To Convert Mean Solar to Sidereal Time.

23. To convert mean solar to sidereal time or wice
versa, it is necessary to take account logically of two facts,
that the zeros of the two kinds of day differ by a certain
interval, to be derived from the Ephemeris, and that the two
kinds of hours bear a fixed ratio to each other which is nearly,
but not quite, unity.
 The local mean solar time at St. Louis, Mo., 52™ 37°.07
west of Washington, is g" 21™ 23%35 A.M., July 29, 1892.
What is the local sidereal time ?

Local mean solar time......veeeernnieiiinneresaesa = gt 21™ 23%,.35
I O (NEEIHdB658 586 8000 0006506500000 G0 83083 = 12 00 00 .00
Mean solar interval to nearest mean nooON......vaeens = 2 38 36 .65
Reduction to sidereal interval (see §290)......oecuv.n.. =4 o0 oo 26.06
Sidereal interval to nearest mean NOON.ceeeeeeesacnn. 2 39 02.71
Sidereal time of mean noon, July

29, 1892, at Washington......... = 8h 31m 148,23
Correction due to longitude to re-

duce to St. Louis (see below).... = 4+ o0 00 08 .64

Sidereal time of mean noon, July
29, 1892, at St. Louis ... B R TR R TRRR =] 8 31 22.87

Required sidereal time at St. Louis..........c.coeunn, = 5 52 20.16

The first step is to obtain the mean solar interval between
the given time and the nearest mean noon, and to reduce it
to an equivalent sidereal interval by use of the tables in § 290
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(reprinted from the back part of the Ephemeris). The
derivation of these tables from the equation given at the end
of each is sufficiently obvious.

The next step is to derive from the American Ephemeris
and Nautical Almanac the sidereal time of that mean noon,
or, in other words, the difference of the zero points of the two
kinds of time at noon of that day. The Ephemeris, in the
part headed ¢ Solar Ephemeris’’ (pp. 377-384 in the volume
for 1892), gives directly the sidereal time of every Washington
mean noon for the year. What is required is the sidereal
time of St. Louis mean noon. The vernal equinox, marking
the zero of sidereal time, shifts 3™ 56°.555 per mean solar day
with respect to the mean Sun, marking the zero of mean solar
time. The sidereal time of mean noon for a given point then
increases 3™ 56°555 per day. St. Louis being 52™ 37°.07
west of Washington, its mean noon occurs at that interval of
mean solar time later than the mean noon of Washington.
Its sidereal time of mean noon is evidently that of Washing-
ton increased by the motion of the vernal equinox relative to
the mean Sun in 52™ 37%.07, or

[(52™ 37°.07) =+ (24")][3™ 56°.555].

This proportional part is precisely that given by the table,
§ 290, for the reduction of mean solar to sidereal time, and
hence the correction is taken directly from that table.

Having now the sidereal interval to the nearest local mean
noon, and the local sidereal time of that mean noon, the
required sidereal time is obtained by a simple subtraction (or
addition, as the case may call for).

Note that the longitude of the station is used only in
reducing the sidereal time of mean noon at Washington to the
local sidereal time of mean noon. An error of 4°in the longi-
tude produces an error of only 0°.01 in this reduction.
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Example of the Reduction from Sidereal to Mean Time.

24. At a certain instant in the evening of May 21, 1892,
at Harvard Observatory, it was found by an observation upon
a star that the sidereal time was 13" 41™ 27°.34. What was
the mean time at that instant? Harvard Observatory is 23®
41° east of Washington.

Giventsiderealstimes s solcire s ol foioiolats s felom s slelsio ke = 13b41™ 27834
Sidereal time of mean noon,

May 21, 1892, at Washington = 3" 59™ 11%73
Correction, due to longitude, to

reduce to Harvard Obser-

vatory (§290)--ccccvevee oun = —o0 00 03.89
Sidereal time of mean noon, May 21, 1892, at

Harvard ObServatory..ooeeeeeeeeneeneiunennes = 3 59 07.84
Sidereal interval after mean noon................ = 9 42 19.50
Reduction to mean time interval (§291) .......... = — 0 0oI 35.40
Required mean time at Harvard Observatory..... = 9 40 44 .10 P.M.

The Ephemeris.

25. The American Ephemeris and Nautical Almanac
referred to in the above computation is an annual publication
of the United States Government. It can be obtained at any
time by sending one dollar to the Nautical Almanac Office,
Washington, D. C. It, or its equivalent, is a necessity to an
engineer making astronomical determinations, as will be seen
by the many references to it in the following chapters. As it
forms a part of the outfit of the astronomical observer and
computer, the student should become familiar with its general
arrangement, should acquire a general understanding of all
parts of it, and should obtain a thorough grasp of those par-
ticular portions to which he finds especial reference in the
text of this book. To gain familiarity with the most
frequently used portions of the Ephemeris, it is especially
desirable that the following pages of the text at the back of
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the Ephemeris headed ‘‘ On the Arrangement and Use of the
American Ephemeris’’ be read; viz., the first four pages of
the explanation of Part I (pp. 493—496 in the volume for
1892), and the first three pages of the explanation of Part II
(pp. 501-503 of the volume for 1892). The Governments
of Germany, France, and England, and some others, issue
similar publications.

QUESTIONS AND EXAMPLES.

26. 1. The position of the Sun projected upon the celes-
tial sphere is always at some point of the ecliptic. Explain
why this statement is not true in regard to a planet.

2. What is the relation between the latitude of a station
and the altitude of the pole at that station ?

3. Given the latitude of a station and the declination of
a star, how may the zenith distance of the star at the instant
of upper culmination be determined ?

4. 'In the case of a circumpolar star how may the zenith
distance at lower culmination be determined, the declination
and latitude being given ?

A circumpolar star is one comparatively near the pole, say
within ten degrees.

5. How would you determine the zenith distance at upper
culmination, and also at lower, for a circumpolar star of which
the polar distance is given ? The latitude of the station is
supposed to be known.

6. The hour-angle of the star Vega, east of the meridian,
at a certain instant on the evening of June 30, 1892, at the
Cornell Observatory was 2t 11™ 14°. The right ascension of
Vega at that instant was 18" 33™ 19°. What was the local
sidereal time? Also, what was the Washington sidereal time,
—Cornell being 2™ 16° east of Washington ?
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7. At a certain instant the hour-angle and zenith distance
of a star are observed. The declination of the star is known.
In the spherical triangle star-zenith-pole what parts are known
and how may the latitude of the station be computed ?

8. What was the hour-angle of the Sun on September 29,
1892, at a station 4" 19™ 46°.3 west of Washington, when a
clock which was 31°.9 fast of local mean time indicated
2% 41™ 18%.9 P.M.?

The equation of time for apparent noon at Washington
on September 29 was — g™ 57°%71 and for the 3oth, — 10™
17°.05. Ans. 2" 50® 50° 5 west of the meridian.

9. The mean time was 5" 16™ 21°%34 P.M., August IO,
1892, at a station 2" 19™ 31° west of Washington. What was
the sidereal time? The sidereal time of mean noon at Wash-
ington on that day was g" 18™ 32%.91I.

Ans. 14® 36™ 09 14.

10. The sidereal time was 23" 49™ 59°.92, the astronomical
date August 21, 1892, and the station 1" 29™ 21* west of
Washington. What was the mean time and the civil date ?
The sidereal time of mean noon at Washington on the 21st
(civil date) was 10" O1™ 55°.02,-and on the 22d, 10" 05™ 51%57.
Ans. Mean time = 1" 45™ 34%.60 A.M. Civil date, August 22.

11. The apparent solar time at a station 1* 46™ 18°.2 west
of Washington was at a certain instant on April 17, 1892,
10" 33™ 14°%3 A.M. What was the mean time? The equation
of time at Washington apparent noon on that date was
— 38%.95, and on the 18th was — 52°.49.

‘ Ans. 10" 32™ 35°%2 A.M.

12. The hour-angle of the Sun as observed at a certain
instant, at a station 2" 14™ 34° east of Washington, on the
forenoon of May 21, 1892, was found to be 2" 48 193.
What was the sidereal time? The equation of time for
apparent noon at Washington was —3™ 37°.96 on May 20,
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CHAPTER 1II.

COMPUTATION OF RIGHT ASCENSION AND
DECLINATION.

27. In the astronomical practice of the engineer the right
ascension and declination of the object observed are usually
known quantities determined from sources external to his own
observations. The object of this chapter is to show how the
right ascension and declination for the instant of observation
are obtained from the available sources of information.

The various heavenly bodies which the engineer is called
upon to observe have all been observed frequently at the
various fixed observatories with large instruments and at
many different times extending over a long period of years.
From these observations the positions, that is, right ascen-
sions and declinations, at various stated times are determined,
and the motions are carefully computed. This makes it pos-
sible to compute the position of each of these bodies at any
stated future time with an accuracy depending on the pre-
cision of the observations and the remoteness of the future
time. The results of such computations of positions made
in advance, and also the data for such computations, are
given in the ephemerides issued by various governments: the
American Ephemeris, Berliner Jahrbuch, Connaissance du
Temps (Paris), British Nautical Almanac, etc. Various other
occasional publications also give the data for such computa-
tions. The engineer uses these computations of position
made in advance, and the published data for such computa-
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tions, to obtain the right ascension and declination at the
instant of his observation.

When references are given in the following text to data in
the American Ephemeris, it should be understood that sub-
stantially the same data may also be obtained from the other
national ephemerides.

Position of the Sun and Planets.

28. The right ascension and declination of the Sun are
given for Washington mean and apparent noon in the
American Ephemeris (pp. 377-384 of the volume for 1892)
for every day of the year, together with some other data that
are frequently needed for computation purposes. The corre-
sponding data are also given for Greenwich in first part of
the Ephemeris. The right ascension and declination are also
given in the American Ephemeris for each planet for every
day of the year when its transit is visible at Washington (on
PP- 393—411 of volume for 1892). The corresponding data
are given in more complete form for Greenwich in the first
part of the Ephemeris (pp. 218-249 of the volume for 1892).
For the methods by which the right ascension and declination
of the Sun, or a planet, at any given intermediate time, are
to be derived from the values stated in the Ephemeris, see
the following sections, Nos. 29-34.

Interpolation.

29. By interpolation is meant the process by which, hav-
ing given a series of numerical values of a function corre-
sponding each to a stated value of the independent variable,
the value of the function for any other intermediate value of
the variable is found independently of a knowledge of the
analytical form of the function. The independent variable is
often called the azgument. For example, the right ascension
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of the Sun is a known function of time as the independent
variable. It is given in the Ephemeris for certain stated
times. When it is required for any other time, instead of
computing it directly from the known function, it is much
more convenient and rapid to deduce it by interpolation from
the stated numerical values.

Interpolation always leads to approximate results which
may be made more exact as the process of interpolation is
made more complicated and laborious. The error of inter-
polation is the difference between an interpolated value and
the value which would be found if one resorted to direct
computation from the known function. Of the multitude of
methods of interpolation, with widely varying degrees of con-
venience, rapidity, and accuracy, three methods will be found
sufficient for the ground covered by this book. These three
may be described briefly as znterpolation along a chord, inter-
polation along a tangent, and interpolation along a parabola.

Interpolation along a Chord.

30. In suterpolation along a chord the rate of change of the
function, between the two stated values of the variable which
are adjacent to the value for which the interpolation is to be
made, is assumed to be constant and equal to the total change
of the function between those points divided by the interval
between the stated values of the variable. If the actual
values of the function were represented graphically, all inter-
polated values would lie along chords of the function curve,
connecting points on the curve corresponding to stated values
of the variable. For example, the right ascension of Jupiter
at 12" 35™.5 mean time at Washington, on Oct. 1, 1892, was
1® 21™ 07°.81 and at 12" 31™.1 on Oct. 2, was 1 20™ 3880
(Ephemeris, p. 405). Required its right ascension at 15"
14™.2 Washington mean time, on Oct. 12 The interval
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for which the interpolation is to be made, is assumed to be
constant and equal to the given rate of change at the stated
value of the variable.

The interpolated points represented graphically would lie
on a tangent, at the nearest stated value of the variable, to
the curve representing the function. TFor example, let it be
required to find the declination of the Sun on Sept. 5, 1892,
at g 30™ A.M., Washington mean time. On page 382 of the
Ephemeris for that year, the nearest time for which the
declination is given, is Washington mean noon of that day.
For that instant the declination is 4 6° 28’ 18”7.6. Its rate
of change for that instant is stated to be — 55”.92 per hour.
The interval over which the interpolation is to extend is 2".5
backward from noon. Then by interpolation along the tan-
gent to the curve (representing declinations) at noon of Sept.
sth, there is obtained as the declination at g" 30™ A.M.,
6° 28" 18”.6 4 (2.5)(55”.92) = 6° 30" 38”.4. In this method
of interpolation the shorter the tangent the smaller the error
of interpolation, and therefore care should be taken to inter-
polate from the nearest stated value of the variable. The
formula for this interpolation is

Hep@im=vy G

F, and V; are the required interpolated value and the corre-
sponding given argument, V, and 7, are the nearest tabular
value of the argument and the corresponding value of the

_ (dF )
function, and v,
corresponding to V.

is the given first differential coefficient
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Interpolation along a Parabola.

32. In interpolation along a parabola it is assumed that the
second differential coefficient of the function is constant
between adjacent stated values of the independent variable,
or, in other words, that the rate of change of slope of the
function curve is constant between those points. This
assumption places the interpolated points along a parabola,
with axis vertical, passing through two points of the function
curve,—the uniform rate of change of slope being a property
of such a parabola. There are two cases arising under this
method, depending upon whether the first differential is, or
is not, given for the stated values of the variable.

33. For an example of the first case take the problem
proposed in the preceding section, in which it is required to
find the declination of the Sun at g" 30™ A.M., Washington
mean time, Sept. 5, 1892. The data given in the Ephemeris
for 1892 for Washington mean noon Sept. 4 are declination
= 4 6° 50’ 37”.5, and the first differential coefficient = —
55”7.66; and for Sept. 5, declination = 6° 28" 18”.6, and first
differential coefficient = — 55”.92. It is proposed to place
the interpolated value on a parabola (with axis vertical) coin-
ciding with the curve of declinations at the two given points,
and also having a common tangent at each of these points.
To make the interpolation, the principle will be used that a
chord of such a parabola is parallel to the tangent at a point
of which the abscissa is the mean of the abscissz of the two
ends of the chord. The slope of the chord (of the parabola)
corresponding to the interval g" 30™ to 12", on Sept. 5, is
then the same as the slope of the tangent at the middle of
that interval, 10" 45™. The slope of the tangent changes
by (— 55”7.92) — (— 55”.66) = — 0”.26 in 24 hours, or
— 0”.0108 per hour. The slope at 10" 45" = — 55".92
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4 (0".0108)(1.25) = — 55”.91. The interpolated value at
o" 30™ is 6° 28’ 18”.6 4 (55".91)(2.5) = 6° 30" 38" .4.

This method of interpolation, though most easily remem-
bered, perhaps, in the geometrical form, may be put in con-
venient algebraic form as follows:

e i ri(2) + () - ) HEE2) ) 0

or

Fi=Ft [Vi— Va][(j—,i)ﬁ {({f—’;)— [ ;{’(,Z’_ ,f)}] (34)

according to whether the interpolation is made forward from
V, or backward from V,. The notation is the same as in the
preceding paragraphs. The two results are identical, but the
arithmetical work will be shorter if the interpolation is made
from whichever of the given points happens to be the nearer.
34. The second case of interpolation along a parabola

occurs when the first differential coefficients are not given,
The assumptions involved are just as before. As an example,
take the problem proposed a few paragraphs back, of finding
the right ascension of Jupiter, at 15® 14™.2, Washington mean
time, on Oct. 1, 1892. The Ephemeris gives the right
ascension

= 1" 21™ 36%59 at 12" 30™.9 on Sept. 30;

= IE2Ro7: 8 at 2 B eRitto nW@ L

= 1" 20™ 38580 at 12" 31™.1 on Oct. 2.

It is proposed to interpolate the required point on a pa-
rabola, with axis vertical, passing through these three given

. dF dF
* If the second derivative is constant, then l:(—-—) —(—) :I-—:—( Vi— Vi)

dV/a V]
2
is really g—l—/{: Call V71—V, 4dV. Then (3) put in the calculus notation
BFIV? ar A
becomes Fr = £, +dV AV+JV’ = in which ;,-I;and 773 are values

corresponding to the point 7, V..
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points. Again, using the principle that in such a parabola, a
chord, and the tangent at a point of which the abscissa is the
mean between the abscisse of the two ends of the chord, are
parallel, the slope of the parabola at any point may be com-
puted. The slope of the parabola at the middle of the first
interval, at o 37™.7 = 0".63 on Oct. 1, is (07°81 — 36°59)
<+ 23.93 = 1%.203 per hour. At the middle of the second
interval, at o* 33™.3 = 0".56 on Oct. 2, itis (38°.80 — 67°.81)
-~ 23.93 = —1°%212 per hour. The interval over which the
interpolation is made, from the nearest given value, is 12t
35™.5 to 15 14™.2 on Oct. 1, or 2! 38™ 7 = 2%.64. The
slope of the chord for this interval is that of the tangent
at its middle, 13* 54™.8 = 13"91. This slope is, assum-

ing the rate of change of the slope constant, — 1°203 4
13891 — 63 (e L
24".56 — 0“.63[( 1°.212) — (— 1%.203)] = — 1%.208 per

hour. The right ascension at 15t 14™.2 is 1* 21™ 07°.81 —
(1°.208)(2.64) = 1" 21™ 04°.62. This sample interpolation is
made in the present form simply for the purpose of illustrat-
ing the principles involved. The numerical work of inter-
polation should ordinarily be done as indicated in formula (4)
of the following section.

Putting this method in the algebraic language it takes the
following form: Let F,, F,, and F, be three successive given
values of the function corresponding to the values I, 7. and
V, of the independent variable; and let V, be the stated value
of the variable nearest to which lies the value for which the
interpolation is to be made. ILet 7, be the required value of
the function corresponding to V;. Then

V[+ VQ_VR"’"V]
F—F Fi—F, F-F 2 ’ 2
Fr=F, = L 7
1 ’+| o7t e V-‘—V.%Vs-i-Vz_VH-Vx I[V‘ Pl

2 2
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or, in simplified form,

N = ==

If, as is usually the case, the successive differences
between V,, V,, and V are all the same and equal to D, this
may be further simplified to the form

}ﬁnw]w

B N | O N O AR A Y [V A A TR

in which 4, is the second difference, or (¥, — F,) — (¥, — F).
The second term in the square bracket will usually be com-
paratively small, and therefore easy to compute.

For a more complete discussion of interpolation, giving
other more complex and accurate formulz, see Chauvenet’s
Spherical and Practical Astronomy, vol. I. pp. 79-9i;
Doolittle's Practical Astronomy, pp. 69-98; and Loomis”
Practical Astronomy, pp. 202-212.

Accuracy of Interpolation of Position of Sun and Planets.

35. An interpolation along a tangent,—the first differen-
tial coefficients or hourly changes being given,—from the
values given for noon of each day in the Ephemeris (pp.
377-384 of the volume for 1892), will give the right ascension of
the Sun at any time with an error of interpolation not exceed-
ing 0°.6, and the declination with an error of interpolation not
exceeding 1.8, For nearly all cases the error of interpola-
tion will be much less than these extreme limits. Approxi-
mately, the extreme error of interpolation along a tangent is
one-eighth of the second difference at that point,¥—meaning

* The interpolation along a tangent will evidently give the greatest
error when the interpolated point is mjdway between the tabulated values,
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by a second difference the difference between successive first
differences. If greater accuracy is desirable,—which will
often be true of declinations, but seldom of the right ascen-
sions,—an interpolation along a parabola will always give all
needful accuracy. In dealing with the planets an interpola-
tion along a tangent, or along a chord in those cases in which
the first differential coefficients are not given, will in many
cases give a sufficient degree of accuracy, and interpolation
along a parabola will give all needful precision in every case.

Position of the Moon.

36. In the first part of the Ephemeris, in which the
standard meridian is that of Greenwich (pp. 2—217 of the
volume for 1892), the Moon’s right acension and declination
are given for every hour during the year, together with the
corresponding first differential coefficients. An interpolation
along a tangent, from the nearest hour, will give the Moon’s
right ascension at any time with an error of interpolation not
exceeding 0%05. The corresponding limit for declination
interpolated along a tangent is 1”7. This will usually be a
sufficient degree of accuracy. But if for some special reason
a greater precision is required, an interpolation along a parab-
ola will give the results far within the limits of error of the
tabular values themselves.

Positions of Stars.

37. The American Ephemeris gives the right ascension
and declination of four close circumpolar stars for every upper

the tangent then used, corresponding to one-half of a tabular interval,
being longer than is necessary in any other case. If for this case the
interpolation along a parabola be used, the interpolated value will differ
from that found by using the tangent by one-eighth the second difference,
—as may be seen by inspection of the formula (2), §371, and (3), §33. If,
then, the second interpolation be assumed to be exact, this value is the
error of the first interpolation.
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transit at Washington (pp. 302-313 of 1892); of every tenth
transit for about 200 stars; and the right ascension only for
every tenth transit visible at Washington of about 200 more.
Other national Ephemerides contain similar lists, which often
comprise about the same stars. This list is made up of stars
whose positions are well determined by many observations at
various observatories. They are also chosen with especial
reference to the needs of the engineer and navigator as
regards brightness and distribution on the celestial sphere.
An idea of the care with which their positions have been
determined may be gained from the mere statement of the
fact that in computing many of these declinations fifty cata-
logues of recorded observations, at many different observa-
tories, made at various times during a total interval of a
century and a quarter, were consulted, and the various
observations upon any one star combined in each case in a
single least-square computation.®

The positions of the close circumpolars at any time may
be obtained with all needful accuracy by interpolation along
a chord from the values given in the Ephemeris. For the
other stars given in the Ephemeris (at 10-day intervals) an
interpolation along a parabola will usually be necessary.

When other stars must be observed than these Ephemeris
stars of which the places are given at frequent intervals, a
complicated procedure is necessary to obtain the position of
the star at the time of the observation. This process forms
the subject of the remainder of this chapter.

The position or place of a star is usually given in one of

* See ‘‘Survey of the Northern Boundary from the Lake of the Woods
to the Rocky Mountains ”” (Washington, 1878), pp. 409-615, for a complete
report on the computation of star places for that survey by Lewis Boss (pp.
421-424 give catalogues consulted). Many of the star places given in the
Ephemeris are from this computation.
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three ways, which should be carefully distinguished. Either
its apparent place, true place, or mean place is given. The
right ascension and declination, as defined in § 12, indicate
the frue place of a star or other celestial object. But the
apparent direction of a star, even aside from the refraction of
the line of sight by the terrestrial atmosphere, is affected by
aberration. The apparent place of a star is its true place
modified by the aberration of light. An observer sees a star
in a position which differs from what is technically called its
apparent place by the effect of refraction only.* It should be
carefully noted that the word ‘‘ apparent’’ is not here used
in the ordinary sense, but in the special technical sense which
it must be understood to have hereafter throughout this book.

Aberration.

38. Aberration is an apparent displacement of a star
resulting from the fact that the velocity of light is not infinite
as compared with the velocity of motion through space of the
observer, stationed at a point on the Earth’s surface.

If one is standing in a rain which is falling in vertical
lines, the umbrella must be held directly overhead. If, how-
ever, one is riding rapidly through such a rain-storm, the
umbrella must be inclined forward. In the first case a drop
of rain entering at the centre of one end of a straight open
tube held with its axis vertical would pass along the axis of
the tube to the other end without touching the tube. In the
second case, however, if it is desired that drops which enter
the tube at the upper end shall continue down the tube
without touching the sides, it will be necessary to incline the
tube forward from the vertical to a certain angle which is
dependent on the relative velocity of the horizontal motion
of the tube and the vertical motion of the rain. So when a

* For a detailed consideration of refraction see §§ 67-69.
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telescope is to receive along its axis the light undulations from
a star, it must be inclined forward in the direction of the
actual motion of the telescope in space so as to make a slight
angle—the aberration—with the actual line joining telescope
to star. This small angle, the aberration, amounting at
most to about 20", is evidently dependent upon the relative
velocity of light and of the telescope, and the angle between
those two velocities. (The student may easily draw a
diagram for himself showing the geometrical relations con-
cerned.) The motion of the telescope is compounded of that
due to the diurnal rotation of the Earth on its axis and the
annual revolution of the Earth about the Sun. These give
rise to the diurnal aberration and annual aberration, respec-
tively. The diurnal aberration evidently affects right ascen-
sions directly, but has no effect upon declinations. The
annual aberration in general affects both. For an example
of the way in which diurnal aberration is taken into account
in computations, see § 96. The effect of annual aberration
is included in the apparent place computation treated later in
this chapter.

The velocity of light is, according to the best determi-
nations, about 186300 miles per mean solar second.* It
requires about eight minutes for light to travel from the Sun
to the Earth. An observer, then, does not see a celestial
object in its true position at the instant when the light enters
the eye, but in the position which it occupied when that light
left the object—an appreciable interval earlier, for all celestial
objects. This phenomenon is called planetary aberration.
With this form of aberration the engineer is not concerned.

39. The mean place of a star is its position referred to the
mean equator and mean ecliptic, as distinguished from its

* See ‘“ The Solar Parallax and its Related Constants,” Wm. Harkness,
Washington, 1891, pp. 142 and 29-32.
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position as referred to the actual or true equator and ecliptic.
The equator and ecliptic as they would be if unaffected by
periodic variations, in other words by nutation, are called the
mean equator and mean ecliptic.

The mean place of a star, then, at a given instant, differs
from the true place by the effect of nutation at that instant,
and from the apparent place by the effects of both nutation
and aberration.

To avoid inconveniences arising in the course of computa-
tions of star places, if any other form of year is employed in
reckoning time, the astronomer uses what is called the
Besselian fictitious year. The beginning of the jfictitious year
is the instant at which the celestial longitude of the mean
Sun is 280° or, in other words, when the mean Sun is 280°
from the vernal equinox measured along the ecliptic.* The
beginning of the fictitious year differs from the beginning of
the ordinary year by a fraction of .a day, which varies for
different years.

The places given in the Ephemeris, referred to in § 37,
for every day or every ten days, are apparent places, and are
so marked. When the engineer is obliged to have recourse
to stars which are not so given in the Ephemeris, he consults
one or more of the various available star catalogues or star
lists.+ These catalogues and lists give the mean places of the
stars at the beginning of some stated fictitious year, together
with other data relative to each star. The problem which
then confronts the engineer is to derive, from that given
mean place, the apparent place at the time at which his
observation was made. This is done in two steps. Firstly,
the mean place of the star is reduced from the epoch of the
catalogue to the beginning of the fictitious year at some

* See definition of celestial longitude, §15.
t For references to a few of such catalogues and lists see § 141.
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part of which its apparent place is desired. Secondly, the
apparent place of the star at the time of observation is
deduced from the mean place at the beginning »f the ficti-
tious year. f

Reduction of Mean Places from Year to Year.

40. To serve as a concrete example, let it be supposed
that the star u Hercules was observed at its transit across the
meridian at St. Louis, Mo., on July 16, 1892; and the
authority depended upon for its position is Boss’s Catalogue
of 500 Stars for 1875.0.% This star is No. 312 in that cata-
logue and its mean place as there given for the beginning of
the fictitious year 1875 is

Qg0 = 17" 41™ 345.0 = mean right ascension;
00 = -+ 27° 47" 42".17 = mean declination.

(Throughout this book a and & will be used to indicate
the apparent right ascension and declination, respectively, at
the time of the observation under consideration. The same
letters with the subscript ,,, thus, a,,, 6,,, will be used to indi-
cate the mean place. With a year as a subscript as above,
they will be understood to indicate the mean place at the
beginning of that fictitious year.)

41. The reduction from the mean place at 1875.0 to that
at 1892.0 involves simply the change in the mean equator
and mean ecliptic during that time. The determination of
the laws of change of these two fundamental reference circles,
and the method of computing the effect of those changes upon
right ascensions and declinations, belong rather to the prov-
ince of the astronomer than to that of the engineer. It

* Survey of the Northern Boundary from the Lake of the Woods to the
Rocky Mountains (Washington, 1878), pp. 592-615.
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suffices for the engineer to accept the results of the investi-
gations of the astronomer in the following form:

a

%=1n+n.sinamtan6m+y;. Rl )
ae,,

7=n.cosam—}ll;. . . . . . . (6)
ds, _dn : da

T =g COS @ —mesina,. et &

in which 7 = 46".0623 -4 0”.0002849(¢ — 1800) (¢ being ex-
pressed in years), and z = 20".0607 — 0”.0000863(¢ — 1800).
The numerical values for # and » as here given are those
most extensively used, and are the result of exhaustive
investigations by the astronomers Peters and Struve. u and
' are proper motions per year in right ascension and declina-
tion respectively, for an account of which see §§ 44, 45. For
the present these proper motions may be considered simply
as changes at a uniform rate in each of the two co-ordinates,
without any reference to their meaning or method of deriva-
da,, (.

7 and —; are rates of change per year.

The formule given above are neither complete nor exact,
many terms of the exact formule having been dropped, and
those which are retained having been somewhat modified.
But they furnish the complete basis for a reduction, with
sufficient accuracy for the purposes of the engineer, from the
mean place given in a catalogue to the mean place at the
beginning of any other fictitious year within thirty or perhaps
fifty years. For the formule in complete form adapted to
the use of the astronomer to bridge over long intervals of
time,—sometimes more than a century,—see ‘‘ Survey of
the Northern Boundary from the Lake of the Woods to the

tion.
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Rocky Mountains,”’ pp. 416-420; and for a detailed discus-
sion of them see Doolittle’s Practical Astronomy, pp. 560—
578 and 583-580.

42. The engineer is, however, relieved of the necessity for
performing the numerical operations indicated by formule
(5), (6), and (7). For star catalogues and lists give in addi-
da,, 4o, 46
7d7, —“Z;;", and,the term -—d}-,—'
is tabulated,® in § 292 of this book, for the arguments

m

tion to a,, and &, the values of

am
dt

Students will find slight differences between different
authorities in regard to the nomenclature of this part of the

a,, and , of which it is evidently a function.

* This table is, so far as the author knows, a new one. It was com-
puted from formula (7) above, for the date 1900, to six places of decimals
and afterward reduced to five. Itis hoped that all the tabular values are,
in so far as the computation is concerned, within 0.6 of a unit in the fifth

430 , ]
place. The formula used for dﬂm is, however, approximate in itself in

having omitted the effect of proper motion. Theory indicates that this
omission should produce an error so small as to be negligible for our
present purpose. To test that conclusion, as well as the accuracy of com-

2
putation of the table, —W’f for fifty stars (every tenth) of Boss’ List,
Northern Boundary Report, was derived from the table and compared
with that given by Boss in the list. Boss’ values were computed from the
exact formule. The greatest difference found was 0”.00003. This would
cause an error of only o”.01 in a reduction extending over 30 years, and
only 0”.04 in 50 years. It is believed, therefore, that the table is abundantly
accurate within the limits over which its arguments extend. It should

not, however, be assumed to hold good beyond those limits. The table
D . L da, ‘
does not cover the comparatively rare cases in which 7 Is negative (for

stars near the pole). For these cases the formula (7) must be used. The
table is computed for the year 19go0o. The same computation made for any
date between 1700 and 2100 would give values differing from those of the
table by not more than one unit in the last decimal place given in the
table. '
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4’6, : ; ; .
If 7F had not been given in the star list, as frequently it

is not, it could have been obtained by entering the table § 292
d
with the arguments a, = 17® 41™.6 and —Z= = -} 2%345.

The value as then found from the table would have been
= 0".00341, and the final value for &,,, would have been
identical with that given above.

Proper Motion.

44. When the co-ordinates of a star, as observed directly
at widely separated times, are reduced to the same epoch, it
is usually found that, aside from discrepancies arising from
accidental errors of observation, there are systematic differ-
ences in the various values indicating a steady movement of
the star in some one direction with the lapse of time.
Observations on another star indicate usually that it has also
such a motion peculiar to itself, which is without any apparent
relation to the motion of the first star. So each star is, in
general, found to have an unexplained motion peculiar to
itself, called its proper motion. This proper motion is always
exceedingly small, and is assumed to take place along an arc
of a great circle of the celestial sphere, and at a uniform rate
in each case. Probably neither of these assumptions are
strictly true; but the accumulated proper motion for several
centuries even would be so small that observations of the
highest degree of accuracy now obtainable would not be
sufficient to prove the path of star to be curved, or its motion
to be other than uniform.

When the mean position of a star for a given date is to be
derived from the results of many observations at various
times in the past by the process indicated briefly in § 37, an
unknown annual proper motion in declination, and another in
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right ascension, are introduced into the least square adjust-
ment. The annual proper motions in declination and in
right ascension as thus derived are then used in deducing the
place of the star at any future date in the manner indicated
in formule (8), (9), (5), and (6), §§ 41, 42. For a full discus-
sion of the treatment of proper motion, from the astronomer’s
point of view, with the refinements necessary when reductions
are to be made covering very long periods of time, see
Doolittle’s Practical Astronomy, pp. 578-583, and Chauve-
net’s Astronomy, vol. I. pp. 620-623.

A concrete idea of the magnitude of the proper motion
usually found may be gained from the fact that in the Boss
Catalogue of 500 Stars for the epoch 1875.0 there are only
8 stars out of the 500 for which the annual proper motion in
declination exceeds 0”.50. In 367 cases it is less than 0”.10.
Proper motions in right ascension are of the same order of
magnitude,—keeping in mind, of course, that 1® of right
ascension represents, for a star near either pole, a much
smaller displacement upon the celestial sphere than 1® for a
star near the equator.

45. That the so-called proper motion is not really due to
an erroneous determination of the precession, is put in evi-
dence by the fact that the various proper motions for different
stars do not show the systematic relation which they must
necessarily have if due to a shifting of the reference circles.
Precession does not change the relative positions of the stars.
Proper motions do. To what are the proper motions due ?
ist. If they are due to a motion of the solar system as a
whole through space, the stars which are ahead in the direc-
tion of motion must seem to be separating in all directions
from the point toward which we are moving, must seem to be
going backward at the sides, and apparently closing together
behind us,—just as points of the landscape seem to a traveller
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to move. 2d. If the proper motions are due to actual motions
of the stars themselves, acting as entirely independent
bodies, the proper motions should seem to be without any
relation to each other. 3d. If, on the other hand, they are
due to actual motions of the stars, which are not, however,
independent, one would expect to find laws connecting the
proper motions,—laws, however, which would differ from
those called for by the last supposition above. A close study
of the proper motions seems to indicate that there is some
truth in each of the three suppositions.

Computations based upon hundreds of observed proper
motions, made by different astronomers at various times, have
all agreed, in a general way, in indicating that there is a slow
motion of the solar system as a whole through space toward
a point in the neighborhood of a@ = 17% 6 = 4 35°. For
details in regard to the computations, see Chauvenet’s As-
tronomy, vol. I. pp. 703—708. In regard to the third sup-
position, it may be noted that in a few rare cases of double
stars, two stars apparently very near to each other, the
observed proper motions indicate that the two revolve about
some common centre—are linked together by gravitation.
But though some laws connecting the various proper motions
have been thus discovered, the salient fact to keep in mind is
that the second supposition is very largely true,—that the
discovered laws only account for an extremely small fraction
of the actually observed proper motions.

Reduction from Mean to Apparent Place.

46. To reduce from the mean place at the beginning of
the year to the apparent place at a given date, it is necessary
to reduce the mean place up to date, and then apply to that
result the effect of nutation and aberration at that date.



§47. MEAN TO APPARENT PLACE. 51

This computation, if made directly from the known laws of
nutation and aberration, is very laborious.¥

But such a direct computation is not necessary. This is
again one of the cases in which it is advisable for the engineer
simply to accept the results of the astronomer’s investigations
in the convenient form in which they are given in the
Ephemeris, without going through all the details of the
derivation of those results.

47. Suffice it to say that this reduction has been put in
the following convenient form:

&= a, 4 f+ i+ g5 sin (G + ) tan o,
+ %/ sin (4 + «,) sec 6, . . . (in time); (10)

8 =6, 1 + g cos (G + a)
~+ 7 cos (H + a,) sin 6, 4 7 cos &, . (in arc); (1)

in which « and ¢ are the required apparent right ascension
and declination at some stated time; «, and &, are the mean
right ascension and declination at the beginning of that
fictitious year; z is the elapsed portion of the fictitious year
expressed in units of one year; u and p’ are the annual
proper motions in right ascension and declination; and £, G,
H, g, %, and 7 are quantities called 7ndependent star-numébers,
which are functions of the time only, and are given in the
Ephemeris for every Washington mean midnight during the
year (pp. 285-292 of the volume for 1892). 7 expressed in
units of a year is also given in the Ephemeris on the same
pages. The values of these constants may be derived for the
exact instant at which they are required, with sufficient
accuracy, by interpolations along chords.

* For an exhibit of the formulz for the computation if made thus, see
Doolittle’s Practical Astronomy, p. 610.
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48. The computation of the apparent place of u Hercules
at its transit at St. Louis, Mo., July 16, 1892, as proposed
in § 40 and partially carried out in § 43, may now be con-
tinued, as follows. From § 43:

ao = 17" 42™ 13%.9 = 265° 31’ (to nearest minute).

8o = 27° 47 02"”.37.

St. Louis is west of Washington................oovviae, 50006a00 53m
St. Louis sidereal time of transit (same as «).............. ceeees 17042
Washington sidereal time (to nearest minute)........... 5510009600 18 35

Sidereal time of mean midnight (at end of the civil day, July 16)

by interpolation between sidereal times of mean noon as given

in Ephemeris, p. 381, for July 16 and 17 (to nearest minute).... 19 42
Hence the sidereal interval before Washington midnight for the

Spea) G #8500 06aB 0008 0/ 06000 0 9,000006 509300 0000.0690 0060400 00 1 07
This interval is, with sufficient accuracy for the purpose of interpolation
ihlo73
of the star-numbers, 7{"7_ = 0.05 day.

The Ephemeris, p. 289, gives directly the following values:

July 15, Washingtor. mean midnight:

T v G H log & log % log ¢
0.54 -+ 1%00 315° 26’ 157° 43" - 0.9607 -+ 1.3048 -+ 0.5212

July 16, Washington mean midnight:

0.54 - 1*.00 315° 41 156° 49’ -+ 0.9620 - 1.3043 -+ 0.5317

The signs attached to log g, log %, log 7 in the Ephemeris
are the signs of g, 4, and 7, and not signs applying to their
logarithms, as might naturally be supposed from the way in
which they are printed.

For the stated time, 0.05 day before Washington mean
midnight of July 16th, following the order indicated by

formula (10),

Qo= I 42™ 13%.86

f= + 1.00

(& not being given) zu = 0.00
log % = 8.8239

log ¢ = 0.9619
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Especially convenient forms of that nature are in use in the
Coast and Geodetic Survey.

49. In computing a number of stars on a single night—
which will usually be the case in dealing with latitudes
observed with a zenith telescope—considerable time will be
saved at an exceedingly small sacrifice of accuracy by the
following procedure. First interpolate the values of the
independent star-numbers for every whole hour from Wash-
ington mean midnight for the period over which the oberva-
tion extends. Then for each star use the interpolated value
of each star-number for the nearest hour as interpolated,
instead of making a special interpolation for each.

For an account of the method of computation of the
independent star-numbers, and the method of computing star
places by the use of the Besselian star-numbers, see Doolittle’s
Practical Astronomy, pp. 609-617; Chauvenet’s Astronomy,
vol. I. pp. 645-651; and the Ephemeris, pp. 280-284 (of the
volume for 1892). The Besselian star-numbers are not ordi-
narily so convenient for the engineer as the independent star-
numbers.

If one has a great number of star places to compute,
under certain conditions, the work may be abridged somewhat
by using differential and graphic methods. For the details
of a differential method which reduces the labor of computa-
tion about one-half in case the place of each star is to be
computed on three or more nights, see Coast and Geodetic
Survey Report, 1888, pp. 465—470. A somewhat similar
method to be used when the places are to be computed for a
few stars on many nights will be found in the Coast and
Geodetic Survey Report for 1892, Part II, pp. 73-75. For
a graphic method of reducing from the mean to the apparent
place in declination, see Coast and Geodetic Survey Report,

1895, pp- 371-380.
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What was the latitude of the station? The apparent
declination of Jupiter at its meridian transit at Washington is
given in the Ephemeris (p. 404) as follows: July 15th 4 7°
56" 117.8, July 16th + 7° 57" 53”.8, and July 17th 4 7° 59’
B24e! Ars I3 e A2 B S
5. What was the right ascension and declination of the
Moon at 8" 30™ 0g* P.M. local mean time at Cornell April 8,
1892 ? Cornell is 5" 5™ 56° west of Greenwich. In the
Ephemeris (p. 62) the position of the Moon is given for
2" A.M. Greenwich mean time April gth, a = 11* 33™ 43%01,
6 = 7° 34’ 02”.2; ‘ difference for 1 minute’’ in right
ascension = - 1°.7980; ‘‘ difference for 1 minute ’’ in decli-
nation = — 13”.192. The differences for 1 minute in right
ascension and declination respectively at 1* A.M. are 4 1%.8003
and — 13".167. ~
Ans. By interpolation along a tangent & = 11" 33™ 00%.91,
6 =7°39 17".7.
By interpolation along a parabola a = 11" 33™ 00%.90,
8§ =7°39 17".6.
6. What was the apparent right ascension of the star A
Aquarii at transit at Mount Hamilton, Cal., Sept. 1, 1892 ?
For upper transit at Washington (Ephemeris, p. 362) on

d
August 27th a = 22" 46™ 61%.51, and 7;—1 = - 0*.10 per ten

d
days. Also for Sept. 6th a = 22" 46™ 61°.66, and 7; =

0%.05 per ten days. The longitude of Mount Hamilton is
2" 8™ 22* west of Washington.

Ans. By interpolation along a chord & = 22" 47™ 01°.63.

By interpolation along a tangent from Sept. 6th o = 22"
47™ 01%.64.

By interpolation along a parabola a = 22" 47™ 01°.63.

7. For star BAC 5706 a g, = 16" 50™ 43%9Q, O = 46°



§ so. QUESTIONS AND EXAMPLES. 57

44’ 31”.22. Its annual variation in right ascension for that
date = - 1%.721, and in declination (including proper motion)
= — 6”.0105. What was its mean declination for 1895.0?
Ans. 8, = 46° 42’ 31" .49.
8. For the star # Geminorum a,, = 6" 07™ 20%.0,

— = - 3%.622 per year, &,, = 22° 32’ 27”.18, annual pre-

cession in declination = — 0”.6415, annual proper motion in
declination = — 0”.0161. What is its mean declination for
1892.0? Ans. Oy, = 22° 327 15”.24.
9. For the star BAC 7440, ay, = 21" 19™ 30%, 6,4, = —
4° o1’ 11”7.30, and annual proper motion in declination = —
0".068. For the star BAC 7482 gy, = 21" 25™ 41%, G, =
66° 20’ 16”.00, and annual proper motion = — 0”.042. What
was the apparent declination of each of these stars at transit
on August gth and 16th at San Bernardino Ranch, Arizona,
2" 0g™ west of Washington ? The Ephemeris (pp. 289, 290)
gives the following data for Washington mean midnight:

Aug. 9. Aug. 10, Aug. 16. Aug. 17.
20000000000 0.61 0.61 0.63 0.63
@oo00000000 319° 35’ 319° 29 320° 38’ 320° 54’
/&fo 000000000 134° 38’ 133° 30 127° 38’ 126° 39
logg....... 1.0309 1.0328 1.0418 1.0449
logZeeun.. 1.2907 1.2900 1.2863 1.2857
logi....... 0.7815 0.7879 0.8226 0.8276

The sidereal time of mean midnight at Washington on
Aug. gth was 21* 17, and on Aug. 16th, 21® 44™.
Ans. BAC 7440, Aug. oth, § = — 4° o1’ 03".43.
Aug. 16th, 6§ = — 4° o1’ 02”.75.
BAC 7482, Aug. gth, § = 66° 20" 18”.63.
Aug. 16th, 6 = 66° 20’ 21”.26.
10. Justify the half square in the last term of formula (g),

3

AL
§ 42. That is, show that (9) is exact if d_t’m- =o0
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absorb some of the light when observing the Sun (or the
Moon with a star), so that the images seen in the telescope
may not be too bright for comfort. /V is the handle by which
the sextant is held in the observer’s right hand. The arc
DE is graduated to five-minute spaces, but has the gradua-
tion marked upon it as if eack space were TEN minutes. The
arm GF carries a vernier at &, which reads against the arc
DE to five seconds (real). It is marked, however, as if it
read to Zen seconds. Any reading on the arc DE made by
means of the vernier indicates, therefore, twice the angle
between that position of the arm G/ and the position corre-
sponding to the zero reading. A/ is a small glass used in
reading the vernier.

The arm GF also carries at 7 a plane mirror, called the
tndex-glass, which is perpendicular to the plane of the frame
for any position of the arm. The horizon-glass / has only
that half of its surface which is nearest the sextant frame
silvered. The other half is merely a plane clear glass, or is
cut away entirely. The telescope ./ may be adjusted to
such a distance from the sextant frame that the edge of the
silvering of mirror / is in the axis of the telescope produced.
The observer thus sees at the same time both the images
reflected from the silvered surface and whatever may be in
the line of sight of the telescope beyond the mirror.

The Principle of the Sextant.

53. The principle underlying sextant observations is indi-
cated by Figs. 4 and 5. Suppose the sextant to be in perfect
adjustment. Let OP, Fig. 4, be a ray of light, from a dis-
tant object, which passes through the unsilvered portion of
mirror /, without change of direction, into the telescope 7,
parallel to its axis. Let QR be a ray of light, parallel to OF,
which strikes the index-glass . The positions of # relative to
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the arm /G, and of / relative to the telescope, are such that
if the reading of the arc taken from vernier G is zero the ray
OR will be reflected from # along the line £/, and reflected
again from the silvered portion of / along a line parallel to
OP into the telescope. The image of the object from which
OR came will therefore be seen in the telescope in coincidence
with the image of the object from which OF came. To
secure the above result mirrors /& and / must, for this zero
position of the arm, be parallel, and the perpendiculars to the
mirrors, /S and /7, must bisect the angles QF/ and F/P.
Note that the arc reading is the same as the angle (zero in
this case) between the two rays of light QR and OF which
eventually enter the telescope as parallel rays.

In Fig. 5 let OP be as before; but let Q’R’ be a ray of
light at an angle 8 with the ray OPF (or with the ray QR of
the preceding paragraph) and striking the index-glass. Evi-
dently Q’'R’ will not be reflected to / from / unless 7 is first

rotated through the angle g by moving the arm /G to the

position #G’. In this position of the mirror 7 the perpen-
dicular /S’ will bisect the angle Q'F/. The angle GFG will

be g, but on account of the peculiar graduation of the arc as

indicated in § 52 the reading of the arc will be 8. The ray
FJ/ will evidently be reflected into the telescope, as before,
along a line parallel to OF, and the object from which Q'&’
came will be seen in the telescope apparently in coincidence
with the object from which OP came. Note that here, as
before, the reading of the arc is the angle between the two
rays of light Q'R and OP.

So for any case, if the sextant is in perfect adjustment,
the reading of the arc is the angle between two rays of light,
one coming to the index-glass and the other through the un-
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silvered portion of the horizon-glass, which finally reach the
telescope as parallel rays and produce coincident images:.
When the images of two celestial objects, or any two objects
at a great distance from the observer, are made to apparently
coincide in the telescope the arc reading is the angle at the
eye between the two objects, measured in the plane defined
by the two objects and the eye. This plane may happen to
be in a horizontal, a vertical, or an oblique position. If the
two objects observed are at a comparatively short distance it
may be necessary to take account of the fact that the angle
indicated by the arc is the angle between the two objects
Srom the point U in which Q'R produced intersects OP, and
not the angle at the eye. The difference between these two
angles is called the sextant parallax.

Adjustments of the Sextant.

54. 70 make the index-glass perpendicular to the plane of
the sextant.*—Place the vernier near the middle of the arc.
Hold the instrument with the arc away from you, and look
obliquely into the index-glass in such a way as to see a por-
tion of the arc both directly and by reflection at the same
time. If the direct and reflected portions appear to form one
continuous arc the adjustment is perfect. If not, the inclina-
tion of the glass to the plane of the sextant must be changed
by whatever means have been provided on that particular
instrument. This adjustment once carefully made will not
require frequent attention; for this reason some makers do
not provide a convenient means of making it.

55, 7o make the horizon-glass perpendicular to the plane of
the sextant.—Having first adjusted the index-glass, point the

* By ‘“ plane of the sextant” is meant the plane of the graduated arc,
to which the axis about which the arm rotates is necessarily perpendic-
ular.
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telescope to any well-defined object and move the vernier
slowly back and forth past the zero. The reflected image
will be seen moving back and forth past the direct image.
If in passing it coincides with the direct image,- the adjust-
ment is perfect. If not, the correction must be made by use
of the screws provided for that purpose at the back of the
horizon-glass. With most sextants this adjustment must be
inspected frequently.

A star is the best object for this purpose. The Sun may
also be employed. The accuracy will be increased by making
the two images of the Sun appear of different colors by use
of the colored glass shades. The sea horizon may be used by
holding the plane of the sextant horizontal and keepmg the
arc reading nearly zero.

56. 7o make the axis of the telescope parallel to the plane
of the sextant.—Rotate the eye end of the telescope until
two of the four dark lines seen in the telescope are parallel to
the plane of the sextant.* Point the telescope to one of two
objects at an angle of go° or more apart. Bring the reflected
image of the second object into contact with the image of the
first at that one of the parallel lines which is apparently
nearest the sextant Yframe. This may be done by rotating
the sextant about the telescope as an axis until it is in the
plane of the two objects and the eye, and then bringing the
vernier to the proper reading by trial. Now move the instru-
ment, without changing the vernier reading, so that the two
images are upon the other of the two parallel lines. If the .
contact is still perfect no adjustment is required. Otherwise
the ring into which the telescope is screwed must be adjusted
to change the inclination of the telescope to the sextant plane
until the above test fails to detect any error.

* These lines are placed by the instrument-maker in symmetrical posi-
tions on each side of the middle of the field of the telescope. All observa-
tions are to be made at about the middle of the space defined by them.
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This adjustment may also be made as follows: Place the
sextant face upward on a table or other firm horizontal sup-
port. Sight across in the plane of the graduation, or a
parallel plane, and mark a point at that height and in line
with the telescope, upon a wall distant fifteen feet or more.
Measure upward from this point a distance equal to the
measured distance at the sextant from the sight plane just
used to the axis of the telescope, and mark this second point,
The ring carrying the telescope must now be moved, if neces-
sary, in such a way as to change the inclination of the tele-
scope until this second point is exactly in the centre of the
field of the telescope.

It should be noted that when this adjustment has been
accurately made a contact made upon one of the side lines
will not necessarily be perfect when shifted to the middle of
the field. The reading of the arc is s/ig/tly less for a contact
made at the middle of the field than for one made on eiz/er
side when all adjustments are perfect.®

This adjustment will usually remain sensibly perfect for a
long period.

57. 7o make the index error zero.—The reading of the
arc when the direct and reflected images of the same pointt
are made to coincide is called the 7ndex error of the sextant.
The negative of the index error is the index correction, which
evidently must be applied to every reading. To make the
index error zero the horizon-glass may be rotated about a line
perpendicular to the plane of the sextant. Screws for pro-
ducing this rotation are often, though, not always, provided

* For a detailed statement of the theory of the errors arising from non-
parallelism of telescope to the plane of the sextant, see Chauvenet's
Astronomy, vol. 11, pp. I12-114.

t Provided, of course, that the point is so distant that the sextant
parallax (§53) may be neglected.
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by the sextant-maker. Since this adjustment cannot ordi-
narily be depended upon to remain perfect even for a day, it
is advisable to determine the index error at the time of each
series of observations, and apply the derived correction,
instead of trying to keep the value of the error down to zero
by adjustment. When this procedure is adopted it is only
necessary to make the adjustment at rare intervals when the
index error has become inconveniently large. The method
of determining the index error will be found in § 62.

Directions for Observing the Sun’s Altitude with a Sextant to
Determine the Local Time.

58. The altitude of the Sun is a known function of the
latitude of the station of observation, of the declination of the
Sun, and of the local apparent solar time. Hence if the lati-
tude and declination are known, and the altitude is measured,
at a given instant, the local apparent solar time may be com-
puted. From this the mean solar time may be derived.

In determining the altitude of the Sun at a station on land
the artificial horizon must be used. The artificial korizon is
a shallow rectangular basin filled with mercury, molasses, or
oil, protected from the wind by a roof consisting of two pieces
of plate glass held in a suitable mounting. These glass plates
each have faces which are as nearly as possible plane and
parallel, so that rays of light may pass through them without
unequal change of direction.

Let MN, Fig. 6, represent the surface of the mercury in
the artificial horizon. A7V is necessarily a horizontal surface,
that is, a surface which is perpendicular at every point to the
action line of gravity at that point. A ray of light SB from
the Sun will be reflected along a line B4 in the same vertical
plane with SB, and such that the angle VB4 is equal to the
angle MBS. An observer at 4 will see the reflected image



66 GEODETIC ASTRONOMY. § 58.

along the line 4S5”. He may also see the Sun directly along
the line 4S’. The distance 4B being very small as compared
with the distance to the Sun, S’4 and SB are sensibly parallel,
and the angle S’A4S”, which is to be measured with the
sextant, is evidently the double altitude of the Sun.

Before commencing the observations, the adjustments
should be examined and corrected if necessary, the telescope
should be carefully focused to give well-defined images of the
Sun, and such colored glasses interposed in the path of the
light that the two images of the Sun will be of about the
same brightness, and dim enough so that continued gazing at
them will not fatigue the eye.

To begin observations, place the eye in such a position
that an image of the Sun can be seen reflected from the arti-
ficial horizon. Without moving the eye, bring the telescope
of the sextant up to it, and point upon this image. Being
careful to hold the plane of the sextant vertical, swing the
vernier slowly back and forth along the arc. If this is done
with sufficient care, a second image of the Sun, formed by
light coming to the telescope by way of the index-glass, will
be seen in the telescope when the vernier is near the reading
of the arc corresponding to the double altitude of the Sun.

For convenience let the two images of the Sun be called
the horizon image and the index-glass image, respectively.

If the observer has not had sufficient experience to handle
the sextant with facility, it will be well for him at this point
to familiarize himself with the following motions and their
effects. Rotate the sextant about the telescope as an axis:
the horizon image will appear to remain fixed while the index-
glass image will appear to move sidewise horizontally. Move
the vernier slowly along the arc, keeping the sextant frame
and telescope fixed: the index-glass image will appear to
move vertically, while the horizon image apparently remains
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fixed. Rotate the sextant about a line in its plane perpen-
dicular to the telescope at the eye end: the images will
appear to move sidewise without change of relative position.
Rotate the sextant about a line perpendicular to its plane at
the eye: and the images will appear to move vertically with-
out change of relative position. Move the eye horizontally
in the vertical plane passing through the artificial horizon:
and the horizon image will appear to be cut off by a straight
line on the upper edge, or lower, as the eye is moved forward
or backward. Similarly, if the eye.is moved sidewise, the
horizon image will be seen partially cut off by the side of the
artificial horizon on one side or the other, as the case may be.
The effects of these various movements of the sextant have
been commented upon because the ease and rapidity with
which one can use the sextant depends largely upon having
accurate conceptions of these effects, as well as upon manual
skill. To secure steadiness of the sextant, it is well, in addi-
tion to holding it by the handle in the right hand, to rest the
lower edge of the arc upon the fingers and thumb of the left
hand. Care must be taken, however, not to touch the
graduations at any time; nor to touch any part of the vernier
arm, or of the clamp and screws attached to it, at the instant
when an observation is made.

59. The observer having secured control of the images,
let them be placed so as to be near together, one above the
other, and approaching each other, let us say. For the
images will, in general, be moving relatively to each other,
since the altitude of the Sun is continually changing. Clamp
the vernier in this position. Pick up the beat of the chro-
nometer.* Then watch the approaching images, keeping
their adjacent portions about in the middle of the field of the

* See § 60.
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telescope, and carefully keeping one image vertically above
the other. Note the exact time by the chronometer when
the two images are first tangent to each other. Observe and
record the corresponding reading of the vernier. Unclamp
the vernier and place the images in about the same relative
position as before, and repeat the process until six readings
(say) of time and the corresponding angle have been made.
Then repeat the whole process, with the difference that now
the images are slightly overlapped at first and allowed to
separate, the instant when the tangency of the images takes
place being noted. To complete the observation of the Sun'’s
altitude it now remains to determine the index error (see
§ 62).

When a tangency is observed with images approaching,
the noted time is too late unless the observer has accurately
kept the images in the same vertical plane. The reverse is
true of an observation made upon separating images. To
guard against an error in locating the vertical plane, it is well
to continually rotate the sextant very slightly back and forth
around the telescope as an axis so-as to be certain to secure
the first, or last, tangency, as the case may be.

60. To pick up the beat of the chronometer, first look at
some second-mark two seconds or more ahead of the seconds
hand. Fix the name of that second in mind as the seconds
hand approaches it. Name it exactly with the tick at which
the seconds hand reaches it, keeping the rhythm of the
chronometer beat. Count it either aloud, in a whisper, or
mentally. In counting it will be found easier to keep the
rhythm if the names of the numerals are elided in such a way
as to leave but a single staccato syllable in each. The half-
second beat should be marked by the word ‘¢ half’’ thus:
one, half; two, half; three . . .; zwenty, half; twenty-one,
half; twenty-fwo, . . .; and so on. With practice, an observer
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can carry the count of the beat for an indefinite period with-
out looking at the chronometer face, provided he can hear
the tick. If he becomes expert, he will even be able to carry
the count for a half-minute or more during which he has not
even heard the tick. When an observation is made of the
time of tangency of two images, or of any other visual event,
the eye observes the event and the chronometer is read by
ear at the same instant. It is conducive to accuracy for the
observer to acquire the habit of deciding definitely, at once,
without hesitation, upon the second and fraction as soon as
he has seen the event. He who hesitates is inaccurate.

The observation of time may be made by the observer at
the sextant calling ‘‘ tip,’’ at the instant of tangency, to an
assistant who reads the face of the chronometer by eye.
This is an easier process, but is also a much less accurate
process than the one described above. The nerve times (or
intervals of time required for the nerves concerned to perform
their functions), and errors of judgment, of zzvo men instead
of one, enter into the result. Moreover, the assistant at the
chronometer is observing an event which comes upon him
suddenly instead of one of which he sees the gradual approach.
If, however, an ordinary watch is used instead of a chronom-
eter, it is necessary to let an assistant read the time, both on
account of the faintness of the tick, and because it is difficult
to carry by ear a beat of five ticks per second.

61. The image of the Sun seen in the surface of the mer-
cury is reversed by the reflection in such a way that the
apparent upper edge, or /Zimb,* of the image is really the
image of the lower limb of the Sun. The image of the Sun
received by way of the index-glass and horizon-glass is
reversed at each of the two reflecting surfaces, and is finally

* The word /Zimb is here used in the technical sense, in which it means
the edge of the visible disk—of the Sun, Moon, or other heavenly body.
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seen as if no reversal had taken place. If, then, one makes
the lower limb of the index-glass image tangent to the upper
limb of the mercury image, there are really at the point of
tangency two coincident images of the same point of the Sun,
namely, the lower limb. If an inverting telescope is used
both images are reversed again in addition to the reversals
stated above. The record of observations must be made to
show which limb of the Sun is used in each case. The object
of making each complete set of observations include pointings
upon each of the two limbs is the elimination of certain errors,
which will be commented upon later (§ 74).

62. To determine the index error, point the telescope at
the Sun, with the vernier set near zero, and with the sextant
in such a position that a line in the plane of the sextant per-
pendicular to the telescope is horizontal. Make the direct
and reflected images of the Sun tangent to each other, with
the zero of the vernier on the positive part of the graduated
arc, and read the vernier. Make the two images tangent to
each other in the reverse position, with the zero of the vernier
on the negative portion of the graduated arc, and read the
vernier again. Repeat the process two or three times for
greater accuracy. Any reading on the positive portion of the
arc evidently gives a measure of the Sun’s apparent diameter.
So also does any reading on the negative arc. But these two
measures are affected equally and in opposite directions by
the index error. Hence both the index error and the Sun’s
diameter become known.

The Sun’s Zorizontal diameter is measured in order that
the results may not be affected by the refraction * in the ver-
tical plane. In making readings on the negative arc care
must be taken to mentally reverse the numbering of the
graduations on the vernier.

* See §§ 67-69.
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Altitude = 4 ={gornoria
Zenith distance =& = 57 32 28
Latitude = ¢ = 3I 19 35 log cos @=9.9315695
Declination = 6 =—8 29 33 log cos §=9.9952117
(¢ —9) = 39 49 o8 9.9267812
3E+ (@ —9)] = 48 40 48 log sin 3[¢ + (¢ — 6)]=09.8756596
HE— (9 —9)] = 8 51 40  log sin }[§ — (¢ — 8)]=09.1876329
9.0632925
log sin® 3z =09.1365113
b = 21° 43’ 06  log sin 3¢ =0.5682556
¢t =hour-angle = 43 26 12
74 —apparent solartime=q® 06™ 152
£ =Equationof time = —14 08.6
7'y =Mean solar time = 8 52 06.6
s Time by chronom-
eter
=Mean of six given
readings = II 04 00.3
AT.=Chronometer cor-
rection =—2 II 53.7

Explanation of Record and Computation.

65. The above observations were made at uniform inter-
vals of 20’ on the sextant arc by setting the vernier defore
each observation to that exact reading, instead of taking the
readings on the arc after each random pointing. A rough
method of detecting any single wild observation was furnished
by the fact that the time intervals between successive read-
ings must be nearly the same throughout.

The mean of the arc readings is assumed to correspond to
the mean of the observed chronometer times. This would
be strictly true if the rate of change of the Sun’s altitude, as
affected by refraction, were constant during the period
covered by each half set of observations. The rate of change
varies so little during this short interval that the error intro-
duced is negligible.
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The method of computing the index error has already
been indicated (§ 62).

The eccentricity of this sextant had not been determined,
but was known to be small. For the method of determining
eccentricity, see § 76.

Half the corrected reading of the sextant is the approxi-
mate altitude of the Sun, to which must be applied the cor-
rections for the Sun’s semi-diameter, for parallax, and for
refraction, as indicated in the following sections.

The pointings were made upon the Sun’s upper limb.
But the position of the Sun as given in the Ephemeris is for
the Sun’s center. Hence the angle subtended at the observer
by the Sun’s semi-diameter must be subtracted to reduce the
altitude to the value which would have been obtained had
the observations been made upon the center. This angular
semi-diameter of the Sun is given in the Ephemeris (pp.
377-384 of the volume for 1892) for every day at Washington
apparent noon. It can be obtained for any other time with
all needful accuracy by an interpolation along a chord.

Parallax.

66. Moreover, since the right ascension and declination of
the Sun define its position on the celestial sphere as seen
from the Earth’s center, it is necessary to reduce the observed
altitude to what it would have been had the observer placed -
himself at the center of the Earth and had used the same
horizon as before.

In Fig. 7, let S represent the position of the Sun’s center,
and let the circle BFG represent a section of the Earth made
by a plane passing through the observer, at 5, and the centers
of the Sun and Earth at S and C, respectively. Let BD
represent the plane of the observer’s horizon. Let CE be
parallel to BD. Then DABS is the altitude of the Sun as seen
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by an observer at B. ECS is the altitude that would be
observed by him if he were at the Earth’s center and used a
horizon plane parallel to the one he used at B. The differ-
ence between these two angles, which is evidently equal to
the angle BSC, is the reduction required.

In general, the parallax of an object is its apparent dis-
placement due to a change in the position of the observer.
The parallax of any celestial object is the difference of direc-
tion of two straight lines drawn to it from two diferent points
- of view. It is, then, the angle az the object between the two
straight lines drawn to it from the two points from which it
is supposed to be viewed. The word parallax, unmodified,
will be used in this book to indicate the difference of direction
of a celestial object as seen from the center of the Earth and
from a station on the surface. The korizontal parallax is the
parallax for an object which is #n the horizon of the observer.
The equatorial horizontal parallax is the parallax of a celestial
object seen in the horizon by an observer at a station on z/e
Earth's equator.

In Fig. 7, if S’ represents a position of the Sun in the
horizon of the observer at B, the angle BS'C is the horizontal
parallax of the Sun. It is the angle subtended at the Sun by
the radius BC of the Earth. If p, is the horizontal parallax
of the Sun in seconds of arc, 7 is the radius of the Earth, and
d, is the distance between the centers of the Earth and Sun,
then

7 rt
p;, = m — about 9 . . 5 0 O0 .0 . (12)
The exact value of the equatorial horizontal parallax of
the Sun is given in the Ephemeris at intervals of ten days
(p. 278 of the volume for 1892). The different radii of the
Earth are so nearly equal that the Sun’s horizontal parallax
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function of the angle between the ray and the normal, and of
the densities of the two media; and that a plane containing
the normal and the original ray also contains the refracted
ray. The refraction is reversed in passing from a denser to
a rarer medium.

Let Fig. 8 represent a portion of a section of the Earth
and its atmosphere made by a plane passing through the
center of the Earth and the straight portion of a ray of light
from the celestial object O to the point of incidence, a, of the
ray with the Earth’s atmosphere. At a the ray is refracted
out of the straight line Oa to a new direction aé, nearer to
the normal eC, and still in the plane OaC. At the point & at
which the ray passes to a denser stratum the ray is again
bent, toward the normal 4C, to the new direction éc. The
ray is thus refracted at the successive points 2, 4, ¢, 4, etc.,
remaining always in the plane OaC until it finally reaches the
observer at 4. In reality the path is a continuous curve,
since the increase of density is continuous. An observer at
A sees the object in the direction 40’ along the tangent at
A to the path of the ray. The angle between the original
direction of the ray, Oa, and its final direction, O'4, is called
the astronomical refraction, or, for convenience, simply the
refraction. It should be noted that the refraction as de-
scribed above affects altitudes directly, always making the
observed altitude too great, but has no effect on azimuth.

In the above treatment it is assumed that the various
strata of air are horizontal at every point. For a statement
of the extent to which the azimuth is affected by refraction
because of the error of the above assumption, see § 219.

Even if the law of variation of density of the air with the
height were a simple one, the computation of the refraction
would be a complicated process. But the laws governing the
variation of density are themselves complicated, and not
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thoroughly known. Hence the theory of refraction is long
and difficult. The treatment of refraction in this book will
therefore be limited to an explanation of the tables given in
§§ 294-297, which contain the results of the astronomer’s
investigations in convenient form for the engineer.

68. § 204 gives the mean refraction,® or refraction under
the mean conditions, at the station of observation, stated at
the head of the table, viz., pressure 760 mm. (= 29.9 in.)
and temperature 10° C. (= 50° F.). The mean refraction is
a function of the altitude, since the refraction of a ray of light
in passing from one medium into another is a function of the
angle between the ray and the normal to the dividing surface.

§ 295 gives the factor, Cp, by which the mean refraction
must be multiplied if the reading of the barometer is not
exactly 760 mm. The argument of this table is the barom-
eter reading uncorrected for temperature, but corrected if
necessary for its index error when its temperature is 10° C.
If a mercurial barometer is used with a brass reading-scale
it is necessary to apply a correction to the reading to take
account of the difference of expansion of the brass scale and
. the mercury. This correction is usually applied directly as a
correction to the barometer reading. But for convenience, in
dealing with refractions, it has been expressed as a correction
to the mean refraction, and is given in § 297 in terms of
the reading of the thermometer which is attached, to the

*This table was obtained by combining the table of mean refractions
given in Doolittle’s Practical Astronomy, p. 628, with that given in the
Connaissances des Temps for 1897, p. 658. The values of Prof. Doolittle’s
table were first reduced to the same basis as those of the French table, and
then the indiscriminate mean of corresponding values taken. Prof. Doo-
little’s table is said to be based upon Bessel’s tables, which in turn were
based upon certain long series of observations as reduced by Bessel, using
the theory of refraction elaborated by him. The French tables, on the
other hand, depend upon other observations and upon a different theory—
that of Laplace.
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barometer. In case the barometer used is not of the kind
referred to above,—if, for example, it is a mercurial barome-
ter with an ivory or steel scale, or if it is an aneroid,—the
proper corrections (including the temperature correction) must
be applied to its readings to reduce to millimeters of mercury
at 10° C., and then the table of § 295 must be used, but that
of § 297 ignored.

§ 296 shows the factor, ', by which the mean refraction
must be multiplied to take into account the temperature of
the open air at the station of observation.

To sum up, the refraction &, as computed from these
tables, is

R=Ry(Ce)(Cp)Cy; . « . . . (19

in which R, is the mean refraction as given in § 294, and (5,
Cp, and C, are the factors given in §§ 295-297.

The density of the air along the line of sight, and there-
fore the refraction, is dependent upon the pressure and
temperature at all points along that line.* But observations
of temperature and pressure can be made at the station of
observation only. The refraction is expressed, as above, in
terms of the pressure and temperature at the station, and the
temperature and pressure are assumed to vary with the height
according to certain laws which depend to a considerable
extent upon theory only.

69. It is in order here to inquire what errors may be
expected in the refractions as thus computed. The values
for R, as derived from a long series of observations, extending
over several years, at one observatory when compared with
the corresponding values derived from a similar series at

*1It is also dependent to a very small extent upon the humidity of the
air,—to so small an extent, however, that no attempt is ordinarily made to
take the humidity into account.
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another observatory are found to differ in an extreme case by
as much as 0.5%,% and differences of half that amount are not
infrequent. No table of refractions can, therefore, be de-
pended upon to gfve even the average refraction for a term
of years at an arbitrarily chosen station within ¢} part of its
true value. The error of the refraction for any one observa-
tion, as derived from any table, must be uncertain to a much
greater extent. It is probable that the refraction corre-.
sponding to any single observation as computed by the use of
any available tables or formula will often be in error by more
than 14.t This amounts to 0”.0 to 0”.5 for altitudes from
90° to 50°, 0".5 to 1.5 for altitudes from 50° to 20°, 1”.5 to
3”7.0 for altitudes from 20° to 10° and increases rapidly for
smaller altitudes. From considerations which may not be
entered into here it seems probable that the refractions above
50° of altitude are subject to greater uncertainty than that
indicated above.

Theories of astronomical refraction all depend upon the
assumption that surfaces of equal density in the atmosphere
are everywhere horizontal, and that the density varies with the
height according to some fixed law. If one reflects upon the
unceasing changes of pressure in the air as indicated by the
winds and by the fluctuating barometer, upon the large and
irregular changes in temperature near the Earth’s surface,
and upon the continual changes in humidity indicated by the

* Astronomical Papers, American Ephemeris and Nautical Almanac,
vol. i1. Part vi.

t+ This is the reason why the more cumbersome and more accurate
method of computing the refraction by Bessel's factors has been omitted
in this book. With thelimited number of observations which the engineer
usually makes in determining any one quantity, the actual accuracy of the
final result attained by the use of the tables given will not differ sensibly
from that which would be obtained with a greater expenditure of time from
other tables or formulz.
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evanescent clouds, the large margin of uncertainty in the
refraction stated above seems not only reasonable, but in-
evitable. If, however, more direct evidence is needed to
convince one, it will usually be found in making any long
series of astronomical observations in our climate. For, on
some nights, in attempting to make an accurate pointing upon
a star with a telescope it may be observed to be apparently
oscillating irregularly through a range of three or four seconds
(say) about its mean position on account of momentary
changes in refraction.

Derivation of Formula.

70. The three corrections for Sun’s semi-diameter, paral-
lax, and refraction being applied to the approximate altitude
A,, the result is the measured altitude, A, of the Sun’s
center. The complement of this altitude, or the zenith dis-
tance, ¢, of the Sun’s center, is a side of the spherical triangle
(Fig. 9) Sun-zenith-pole, upon the celestial sphere. The arc
zenith to pole of that triangle is the complement of the lati-
tude, which is supposed to be known. The declination of
the Sun at the instant of observation may be obtained from
the Ephemeris by interpolation along a tangent as indicated
in § 35. The necessary interpolation extends over the inter-
val from the nearest Washington mean noon. To obtain this
interval one may assume an error for the chronometer (to be
checked later). For this purpose it is only necessary to
know the error within one minute. For example, in the
computation in hand it was known from previous observa-
tions that the error of the chronometer on Washington mean
time was about 0™. The Washington mean time of observa-
tion was then 11* 04™, and the interpolation interval 56™.
The complement of the declination is the third side, Sun to
pole, of the spherical triangle Sun-zenith-pole. The three
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correction to the reading of the chronometer only at the one
instant when the reading of the chronometer is' 7. At any
other instant the chronometer will have a different correction,
depending upon its rate.

If the chronometer used in the sextant observations keeps
mean time, and it is proposed to obtain from it the error of a
sidereal chronometer, the two chronometers should be com-
pared by the method indicated in § 250.

Discussion of Errors.

71. The various errors which affect the final result in any
astrohomical observation may be grouped in three classes:
Ist, external errors, or errors arising from conditions outside
the instrument and observer; 2d, zustrumental errors, or
errors due to the instrument, arising from lack of perfect
adjustment, from imperfect construction, from instability of
the relative positions of different parts, etc.; 3d, observer's
errors, or errors due directly to the inaccuracies of the
observer, arising from his unavoidable errors in judgment as
to what he sees and hears, and from the fact that his nerves
and brain do not act instantaneously. By the phrase errors
of observation is meant the errors arising from all these sources
combined.

External Errors.

72. Following the order indicated above, let us first con-
sider the errors arising from conditions outside the instrument
and observer.

The accuracy of a determination of time from observations
upon the Sun depends largely upon the part of the day at
which the observations are made. Near apparent noon the
altitude of the Sun is changing quite slowly. A few hours
later or earlier the change of altitude is comparatively rapid.
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Evidently, the effect of a given error in the measured altitude
upon the computed time will be less the greater is the rate of
change of the altitude. It may be shown from the differen-
tial formulae * applicable to the spherical triangle used in the
preceding computation (§ 70), that this rate of change is
greatest when the Sun is in the prime vertical, or when it is
nearest the prime vertical in case it does not reach it while
above the horizon. This condition by itself would fix the
most favorable time for observations at sunrise or sunset
during the months when the Sun is south of the equator, and
from three to six hours from the meridian during the
remainder of the year, for nearly all points in the United
States.

Another condition, however, must also be considered in
determining the most favorable time for observing. As indi-
cated in § 69, the uncertainty in the computed refraction
increases rapidly as the altitude diminishes. In so far, then,
as the refraction is concerned, the nearer to apparent noon the
" observations are made the better. Taking both conditions
into account the most favorable time for observing is from
two to four hours from the meridian. Within these limits
and for stations in the United States (excluding Alaska) the
rate of change of altitude is from 5 to 14 seconds of arc per
second of time, and the error in the derived chronometer cor-
rection arising from the uncertainty of the computed refrac-
tion, adopting the estimate of that uncertainty as given in
§ 69, may be from 0,02 under the most favorable conditions
(latitude 24° 30’, midsummer) to 0%.5 for an observation at
two hours from the meridian in latitude 49° in midwinter, or
even 2° if this last observation is made near sunrise or sunset.

* See Chauvenet's Astronomy, vol. I. pp. 213, 214; or Doolittle’s Prac-
tical Astronomy, p. 223.
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The position of the Sun is so well determined that there
is no sensible error in the result from that cause.

Instrumental Errors.

73. If the telescope is not perfectly focused upon the
Sun, or if the colored glasses introduced make the images of
the Sun very dim, or leave them too bright to be gazed at
with comfort, there is a tendency to see the images either
larger or smaller than they really are, and so to misjudge the
position of tangency. This is not eliminated by the determi-
nation of index error, as described in § 62, for the effect
would be to increase (or decrease) both plus and minus read-
ings by the same amount, and so leave the computed index
error unchanged. But it is eliminated by taking half of the
observations on the upper limb of the Sun and half on the
lower limb, as shown in the set of observations given in § 63.

The inclination of the index-glass to the perpendicular to
the sextant plane, and the inclination of the axis of the tele-
scope to that plane, combine to produce an error which varies
as the tangent of one-quarter of the measured angle.* The
error of adjustment of the index-glass and of the telescope
may each be made less than 3’ by the methods given in
§8 54, 56. If each is 5’, the maximum error introduced into
a measured angle of 120° is 4”.0, and for other angles in the
ratio indicated above. This error is therefore small provided
the adjustments are carefully made and frequently verified,
but it is sensibly a constant affecting the mean of a set of
observations made at nearly the same reading of the arc. If
the telescope is parallel to the plane of the sextant, but, in
observing, the contacts are made with the images out of the
center of the field, the sight line is inclined to the plane of the

* Chauvenet's Astronomy, vol. 1I. p. 116.
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sextant, and the effect on the measured angle is the same as
if the telescope were so inclined. It is important, therefore,
that every observation should be made nearly in the middle
of the field of the telescope.

If the horizon-glass is not perpendicular to the plane of
the sextant, the error introduced is greater the smaller the
angle observed, and will ordinarily be appreciable only in the
determination of the index error. In determining the index
error by observing the Sun’s semi-diameter, the error in any
one reading from this cause will be less than 1" even if the
horizon-glass is inclined as much as 30" to its normal position
(which is about the maximum error of this adjustment made
as indicated in § 55). This error is eliminated from the
derived index correction, for both positive and negative read-
ings are numerically too small by the same amount.

If the center about which the index-arm swings does not
coincide with the center about which the graduated arc is
described, an error due to this eccentricity will be introduced
into every reading. The magnitude of this error will evi-
dently depend upon the size of the angle measured as well as
upon other conditions. See § 76 for the method of deter-
mining, and correcting for, eccentricity. ,

The errors treated in the last three paragraphs are func-
tions of the angle measured, but are constant for a given
reading of the sextant so long as the condition of the instru-
ment remains unchanged. Their effect may therefore be
eliminated almost wholly from the final result in determining
time by measured altitudes of the Sun, by making observa-
tions both in the forenoon and afternoon at about the same
altitude. The computed altitude will be too great, or too
small, by the same amount in both cases, if the two altitudes
are equal, and one computed time will be as much too late as
the other is too early. This procedure will alsoeliminate the
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error in the computed time arising from an error in the
assumed latitude.

The errors arising from changes in the relative position of
different parts of the sextant due.to stresses or to changes of
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