Easy-to-Build
Pergola

More Projects
- Handsome Hall Bench p.52
- Drill Press Cabinet p.66
- Playful Kid’s Clock p.72
- How to Cut Air-Tight Miters Every Time p.49

What You Must Know About Treated Lumber p.32

Quick Kitchen-Cabinet Upgrades p.62

Only Common Tools Needed!
10" Cabinet Table Saws with Riving Knife

- Motor: 3 HP, 220V, single-phase
- Table size with extension: G0690 - 27" x 40", G0691 - 27" x 74 3/4"
- Arbor: 3/4”
- Arbor speed: 4300 RPM
- Max. dado width: 1 3/8”
- Max. rip capacity: G0690 - 29 1/2”, G0691 - 50”
- Max. depth of cut: 3/4” @ 90°, 2 1/4” @ 45°
- Approx. shipping weight: G0690-542 lbs. G0691-575 lbs

G0690 $1250.00 SALE $1150.00
G0691 WITH EXTENSION RAILS $1350.00
SALE $1250.00

10" Left Tilting Super Heavy-Duty Table Saw with Riving Knife

- Motor: 3 HP, 220V, single-phase, 3450 RPM
- Precision ground solid cast iron table
- Table size with extension wings: 40” x 27”
- Arbor: 3/4”
- Cutting capacity: 8” L, 28” R
- Max. depth of cut: 3” @ 90°, 2 1/4” @ 45°
- Approx. shipping weight: 514 lbs.

G1023RL INTRODUCTORY PRICE ONLY $1125.00

Sawing Table & Router Attachments

For G0690 & G0691 Table Saws

- Sliding Table Attachment
 - Industrial grade anodized aluminum table size: 47" x 9"
 - Telescopic anodized aluminum fence size: 30”-37”
 - Max. cross cut: 48°

FREE 10” CARBIDE TIPPED BLADE!

T10222 ROUTER TABLE ATTACHMENT $395.00
SALE $375.00
T10223 SLIDING TABLE ATTACHMENT $550.00
SALE $525.00

12" Baby Drum Sander

- Sanding motor: 1/2 HP, 110V, single-phase
- Conveyor motor: 1/4 HP, 110V, single-phase, variable speed 5-36 FPM
- Drum surface speed: 2127 FPM
- Max. stack dimensions: 12” wide x 3 1/4” thick
- Min. stack length: 8”
- Sanding drum: 4”
- Sanding belt: 3” hook & loop
- Dust collection port: 2 1/2”
- Approx. shipping weight: 160 lbs.

G0459 $695.00
SALE $525.00

17" Heavy-Duty Extreme Series® Bandsaw with Cast Iron Wheels & Trunnions

- Motor: 2 HP, 110V/220V, single-phase, TEFC
- Precision ground cast iron table size: 23 1/2” x 11 1/4”
- Table tilt: 5° left, 45° right
- Max. cutting height: 12
- Blade size: 131/2”L (6” - 1”W)
- 2 blade speeds: 1700 & 3500 FPM
- Approx. shipping weight: 416 lbs.

G0513X2 $995.00
SALE $895.00

19" Heavy-Duty Extreme Series® Bandsaw

- Motor: 3 HP, 220V, single-phase, TEFC, 1725 RPM
- Precision ground cast iron table size: 28 1/2” x 18”
- Table tilt: 5° L, 45° R
- Max. cutting height: 12
- Cutting capacity/throat: 16 1/4”
- Blade size: 143” L (6” - 1” W)
- Blade speeds: 1700 & 3500 FPM
- Approx. shipping weight: 480 lbs.

G0514X2 $1395.00
SALE $1295.00

1-800-523-4777

3 GREAT SHOWROOMS! BELLINGHAM, WA • MUNCY, PA • SPRINGFIELD, MO

PURVEYORS OF FINE MACHINERY, SINCE 1983!
• OVER A MILLION SQUARE FEET PACKED TO THE RAFTERS WITH MACHINERY & TOOLS
• 2 OVERSEAS QUALITY CONTROL OFFICES STAFFED WITH QUALIFIED GRIZZLY ENGINEERS
• HUGE PARTS FACILITY WITH OVER 1 MILLION PARTS IN STOCK AT ALL TIMES
• TRAINED SERVICE TECHNICIANS AT ALL 3 LOCATIONS
• MOST ORDERS SHIPPED THE SAME DAY • 24 HOUR ORDERING BY PHONE OR ONLINE

Pricing Code: 10WoodM
MENTION THIS CODE WHEN PLACING YOUR ORDER

12595
TECHNICAL SERVICE: 570-546-9663 FAX: 800-438-5901
HOT SUMMER SALE

PRICES VALID MAY 17th - SEPTEMBER 25th
GO TO GRIZZLY.COM® TO SEE ALL SALE SPECIALS

6" Jointers with Mobile Base
- Motor: 1 HP, 110V or 1 1/2 HP, 110V/220V, single-phase
- Precision ground cast iron table size: 7 1/2" x 46"*
- Max. depth of cut: 4/"*
- Max. thickness: 4/"*
- Feed rate: 11 FPM & 22 FPM
- Cuts per minute: 11,000
- Table size: 15" x 16"
- Approx. shipping weight: 181 lbs.

G0452 1HP MOTOR $425.00
SALE $395.00
SALE $675.00

G0452Z 1 1/2HP WITH SPINDLE CUTTERHEAD
SALE $695.00
SALE $675.00

15" Planer/Moulder
- Motor: 2 1/2 HP, 110V, single-phase
- Max. cutting width: 15"*
- Max. cutting height: 6"*
- Min. stock thickness: 1/4"*
- Max. stock thickness: 3/4"*
- Feed rate: 16 & 30 FPM
- Cuts per minute: 10,000
- Table size: 15" x 16"
- Approx. shipping weight: 241 lbs.

G0477 $795.00
SALE $725.00

12 Speed Heavy-Duty 14" Floor Drill Press
- Motor: 3/4 HP, 110V, single-phase
- Precision ground cast iron table
- Table size: 11 3/4" sq.
- Table swing: 340°
- Table tilt: 90° L & R
- Swing: 14°
- Drill chuck: 1/4" - 1/4"
- Drilling capacity: 3/4" steel
- Spindle taper: MT#2
- Spindle travel: 3/4"
- Collar size: 2.556"*
- Approx. shipping weight: 171 lbs.

G7944 $325.00
SALE $275.00

15" Planer
- Motor: 3 HP, 220V, single-phase
- Max. stock thickness: 8"*
- Min. stock thickness: 3/4"*
- Max. stock length: 8"*
- Max. cutting depth: 1/4"*
- Feed rate: 16 & 30 FPM
- Cuts per minute: 12,000
- Table size: 15" x 20"
- Approx. shipping weight: 675 lbs.

G0453 $995.00
SALE $925.00

16" x 43" Swivel Head Wood Lathe
- Motor: 2 HP, 110V, single-phase
- Precision milled cast iron bed
- Dist. between centers: 43"
- Swing over bed: 16" Spindle bore: 3/4"*
- Spindle & tailstock tapers: MT#2
- 10 speeds: 600 - 2400 RPM
- Approx. shipping weight: 372 lbs.

G0462 $525.00
SALE $475.00

12" HP Dust Collector
- Motor: 2 HP, 220V, single-phase, 3450 RPM
- Air suction draw: 12 Amps
- Air suction capacity: 1560 CFM
- Static pressure: 11"
- Bag capacity: 5.7 cu. ft.
- Impeller: 12 1/4" balanced steel, radial fin
- Height of bag inflates: 12 ft.
- Portable base: 21 1/4" x 33 3/4"
- Approx. shipping weight: 126 lbs.

G102922 $279.00
SALE $269.95

GRIZZLY
OVER 12,000 PRODUCTS ONLINE!
PROJECTS
24 Great Idea: Knockdown Sawhorses
34 On the Cover: Basic-Built Pergola
 Build this beautiful outdoor room with only
 a few common tools.
52 Hall Tree Storage Bench
 Conquer clutter at the door with this
easy-to-make cabinet.
62 3 Efficient Kitchen Organizers
66 Drill-Press Storage Cabinet
72 Kid’s Dancing Desk Clock

SKILL BUILDERS
16 Best Fixes for Loose Dadoes
18 Make Your Own Cove Molding
28 The Easy Way to Sharpen a Card Scraper
42 World’s Fastest Face-Frames
49 Cut Dead-on Miter Every Time
58 Plan an Adaptable Dust-Collection System

TOOLS & MATERIALS
22 Straight vs. Spiral Router Bits
30 Wise Buys: Portable Miter Saw Stands
32 Tips for Working with Treated Lumber
76 Shop Test: Compact Power Drivers
86 Shop-Proven Products
 Riving—knife contractor saw, low-dough
 miter gauge, and more.

DEPARTMENTS
6 Sounding Board
8 Shop Tips
80 Ask WOOD
92 What’s Ahead
STAY SHARP WITH WOOD’S E-NEWSLETTER
Keep up-to-date on the latest tool news, learn from your fellow woodworkers, and get a FREE PLAN in every issue of WOOD magazine’s weekly E-newsletter. And we promise not to fill your e-mailbox with sales pitches. Subscribe today at woodmagazine.com/enews.

25 YEARS ON ONE DVD
Readers told us they wanted the complete WOOD magazine digital archive on a single DVD, and we obliged. Search faster and still enjoy the highest-quality digital back issues in the business. Get it now at woodmagazine.com/DVDlibrary.

WIN POWER TOOLS!
Why spend your money on woodworking tools and supplies when you can get them free? Our tool sweepstakes are legendary on the Web, so get your share by signing up at woodmagazine.com/promotions.

BONUS SCREEN PLAN: GO ONLINE
To complement the Basic-Built Pergola on page 34, you’ll find FREE plans for this matching Privacy Screen/Trellis at woodmagazine.com/screen. It features the same simple construction techniques as the Pergola.

LOOK BEFORE YOU BUY
With more tool reviews online than ever, do your research at woodmagazine.com/reviews to make sure you get the most bang, buzz, and whirr for your tool-buying buck.
12" TABLE SAW
with Riving Knife & Extension Table
- 5 HP, 220V, single-phase motor
- Precision ground cast iron table size: 30¼" x 78¼"
- Arbor size: 1" - Arbor speed: 3600 RPM
- Blade tilt: left - Max. rip capacity: 52"
- Max. depth of cut: 4" @ 90°, 2¾" @ 45°

W1761 5 HP, 12" Table Saw

W1762 8" Jointer

8" JOINTER
with Parallelogram Adjustable Beds
- 3 HP, 220V, single-phase, TECF motor
- Precision ground cast iron parallelogram design table measures 8" x 76½"
- 4 knife, 5350 RPM cutterhead
- Large center mounted cast iron fence
- Rabbeting capacity: ¾"

Built-in Mobile Base

W1741 8" Jointer

SPRAL CUTTERHEAD PLANERS
with Built-in Mobile Base
- 3 HP or 5 HP, 220V, single-phase motor
- Precision ground cast iron table & extension wings
- 2 speed gear box
- 2 adjustable bed rollers
- German-made carbide insert spiral cutterhead
- Pedestal mounted thermal overload magnetic safety switch
- Built-in locking mobile base

W1742S 15" Planer
W1754S 20" Planer

10" SLIDING TABLE SAW
with Scoring Blade & Riving Knife
- 5 HP, 220V, single-phase, TECF motor
- Table size with extension wings: 40” W x 47” L
- Sliding table size: 12¼" W x 63" L
- Scoring blade diameter: 3½"
- Scoring blade arbor speed: 8,000 RPM
- Main blade arbor speed: 4,000 RPM
- Single lever locking fence

W1811 10" Sliding Table Saw

OUTSTANDING SHOPFOX® ACCESSORIES

ADJUSTABLE MOBILE BASES
STRONGER FRAME WITH IMPROVED WHEELS AND GUSSETED SUPPORTS!

D2260A Mini Mobile Base
600 lb. capacity
D2057A Heavy-Duty Mobile Base
700 lb. capacity
D2058A Super Heavy-Duty Mobile Base
1300 lb. capacity
D2259A 13" Extension Kit (fits all models)
D2246A 36" Extension Bars (fits all models)

RIGHT ANGLE JIG

Cut tenons, dovets, rabbets, and finger joints safely & with complete accuracy. The SHOPFOX® Right Angle Jig is constructed using top-quality aluminum castings & plates which are machined to exacting tolerances.

- Solid aluminum
- Extended depth: 13"'
- Closed depth: 7½"
- Height: 8"'
- Max. horiz. opening: 1½" x 8"'

ADJUSTABLE ROLLER STAND

- Stand length is adjustable from 19½" to 54"
- Number of rollers: 9
- Stand height adjusts from 24½" to 38½"
- Roller diameter: 2½"
- Two-way locking swivel casters: 4½" diameter
- 300 lb. capacity

WOODSTOCK® INTERNATIONAL IS ALSO HOME TO THESE OTHER FINE BRANDS:
STEELEX®, PRO-STICK®, PLANER PAL®, JOINTER PAL®, BOARD BUDDIES®, PARROT VISE®, ROMAN CARBIDE® ROUTER BITS AND SHAPER CUTTERS.

VISIT OUR WEBSITE OR CALL TOLL FREE TO FIND AN AUTHORIZED DEALER NEAR YOU.

SHOPFOX.BIZ
sales@shopfox.biz WHOLESALE ONLY

WODSTOCK INTERNATIONAL INC. 1-800-840-8420

Lucas constructed this jewelry chest (issue 191) for his wife.

Kevin built this Greene and Greene reproduction server out of mahogany with ebony plugs and splines.

Bob made 24 lidded keepsake boxes as gifts, using cutoffs of 18 different wood species.
Machinist dad has the “metal” to build an excavator

While looking through issue 194 (November 2009) of WOOD® magazine recently, my 4-year-old son spied the toy excavator on page 62 and asked me to make it for him. I’m a fledgling woodworker with a limited set of tools. But I am a welder and metal fabricator by trade, so I decided to make the excavator from aluminum.

I made a few dimensional changes to accommodate stock I had on hand, and used machine screws for the joinery. After fabricating the parts I buffed each surface to a mirror shine. It took about 50 hours to complete, but it was worth it when I saw my son’s face on Christmas morning upon opening this gift.

—Doug Savery, Middlefield, Mass.

Article inspires reader to tackle cabinets

Thank you for the article “Make Cabinets the Easy Way” in issue 191 (July 2009). Reading it gave me the understanding and confidence to make cabinets for my family room. I made the face-frame cabinets from hard maple and maple-veneered plywood, using overlay doors and drawer fronts, and bottom-mount slides for the drawers. The base-cabinet assembly measures 25" long, 25" deep, and 36" tall, with a bookcase on one end.

Although it took longer than I expected, I’m thrilled with the outcome of my first major woodworking endeavor. Next on my to-do list is learning to make raised-panel doors, so I can make cabinets in that style for my kitchen.

—Len May, Crystal Lake, Ill.

Article update

For the Mortising/Doweling jig on page 55, the screw holes used to mount the aluminum bars to the wood guides must be countersunk into the bars, as shown at right, to sit flush below the surface of the acrylic top.

3/4" holes
Cut out for mortising option.
Length to suit
10"
10-32 nut
3/4" hole 1/4" deep with a 3/8" hole centered inside
1/2" x 1/4" x 4" aluminum bar
3/4" shank hole, centered, countersunk on bottom face
10-32 1/4" machine screw 1/4" long
120-grit adhesive-backed sandpaper

Article update

Issue 197 (May 2010)

In the review of cabinet tablesaws on page 49, the dust hose, support arm, and mounting hardware for SawStop’s Professional saw do not come with the saw. The optional kit sells for $199.

How to reach us

For woodworking advice:
Post your woodworking questions (joinery, finishing, tools, turning, dust collection, etc.) on one of our online forums at woodmagazine.com/forums.

To contact our editors:
Send your comments via e-mail to woodmail@woodmagazine.com; or write to WOOD magazine, 1716 Locust St., LS-221, Des Moines, IA 50309.

Subscription assistance:
To notify us of an address change or to get help with your subscription, visit woodmagazine.com/service. Or write to WOOD magazine, P.O. Box 37439, Boone, IA 50037-0439. Please enclose your address label from a recent magazine issue.

To find past articles:
See our index at woodmagazine.com/index.

To order past issues and articles:
For past issues of WOOD magazine, our special issues, or downloadable articles, visit our online store at woodmagazine.com/store. Some issues are sold out.

Updates to previously published projects:
For an up-to-date listing of changes in dimensions and buying-guide sources from issue 1 through today, go to woodmagazine.com/editorial.
Precision is where we draw the line.

The SKIL 12" Compound Miter Saw with laser cut line ensures the right cut every time.

Your confidence has you ready to take on even the most complex projects around the house. That’s why we engineered the SKIL 12" Compound Miter Saw. Patented laser cut line for perfect cuts. Left/right extension rails for better control. Nine positive stops for pinpoint accuracy. And the highest-rated motor in the industry. It’s not just the best saw for the money, it’s the only saw at this price with so many advanced features. After all, you draw the line on precision, too.

skiltools.com
The less dusty dust-Tee

Bruce Wrenn has made a habit of fixing up used tools for the Apex, N.C., shop that houses his home-maintenance business. When he turned his attention to improving the dust collection on his three 14” bandsaws, “the only word to describe the results is WOW!,” Bruce says. Here’s how you can do the same with your bandsaw.

Using PVC glue, attach a 4” length of PVC pipe to one arm of a PVC Tee, as shown. Cut two strips of ½”x1”x8” flat steel and drill slots to accept the trunnion bolts on the bottom of your bandsaw table, as shown. Then drill holes to attach two blast-gate brackets (Rockler, item no. 26813, $4 each, 800-279-441, rockler.com). Mount the brackets to the strips using the included bolts. Then, after loosening the trunnion bolts, slide the steel brackets in place on them. (You may have to use washers to shim the steel strips flush with the ribs on the bottom of your bandsaw table.)

Attach the Tee to the blast gate brackets with hose clamps, pointing the Tee leg toward the blade. Use a butter tub lid or a PVC slip cap to seal one end of the tee and attach your dust collection hose to the other. With your dust collector on, any dust that falls through the table gets sucked into the tee.

Bruce’s shop-cleansing Top Shop Tip earns him Festool’s T12+3 lithium-ion cordless drill set. Congrats, Bruce!

Your tips earn cash, tools!

Tell us how you’ve solved a workshop stumper. If we print it, you’ll get $100 and a copy of 450+ Best-Ever Shop Tips (woodmagazine.com/450tips). And, if your idea garners Top Shop Tip honors, we’ll also reward you with a tool prize worth at least $300.

Send your best ideas, along with photos or drawings and your daytime phone number, to: Shop Tips, WOOD Magazine, 1716 Locust St., LS-221, Des Moines, IA 50309-3023. Or, by e-mail: shoptips@woodmagazine.com. Include your contact info in the e-mail.

Because we try to publish original tips, please send your tips only to WOOD® magazine. Sorry, submitted materials can’t be returned.
The quickest, easiest way to find the best woodworking ideas and projects

25 Years of WOOD Magazine (195 issues!)

Now on a single high-capacity DVD-ROM disc!

Readers told us they wanted all 195 back issues on one disc, with a single, comprehensive, searchable index. So we did just that, while maintaining the super-high-quality, 300-dpi resolution, ensuring you crystal-clear illustrations and photos.

DVD features:

The user-friendly index of all back issues makes it easy to find any project plan, shop tip, or skill-builder from this huge archive. Click on the indexed article and go to it instantly! Or browse through the issues using the prominent bookmarks, linked covers, and table of contents. There, too, one click takes you to the information you need.

High resolution PDFs make for easy, enjoyable reading. View every photo, drawing, and detail in digitally reproduced, crystal clarity. Zoom in for a closer look, or print articles for use in the shop with the handy “Print this article” button.

Free up shelf space in your home and shop: The disc and protective case fits 195 issues into the space of a slim paperback.

Save hundreds of dollars versus buying back issues. In fact, many of the most sought-after issues on this disc have been out of print for years and are no longer available in any other format.

Compatible with PC and Mac. If you don’t already have it, Adobe Reader is included on the disc for viewing.

Where else will you find more than...

295 Furniture Projects
230 Shop Projects
900 Weekend Projects

525 Tool Reviews and Features
1,515 Shop Tips
765 Skill-building Techniques

Order online at woodmagazine.com/DVDlibrary or by phone at 888-636-4478
Shop Tips

Twice the pushstick, twice the control
I feel safer performing tablesaw rip cuts with this double pushstick that I came up with—two pushsticks connected with a 1 1/4" dowel, 2" long. (See the WOOD Patterns® insert, page 45, for the pushstick pattern.) It allows me to cut narrower pieces without getting my fingers close to either side of the spinning blade. Plus, it straddles my blade guard, giving me one more incentive to leave the guard on the saw.

—Ken Peters, Spring Hill, Fl.

Accessory your glue-ups with a leather belt
To prevent clamp-jaw mars in an otherwise perfect project, crosscut an old leather belt with a utility knife. Use the short, leather strips as wraparound, one-piece clamp pads, as shown.

—Jack Reynolds, Boynton Beach, Fl.
“Dowel-evator” makes even short ones accessible

The tall, narrow box I used to contain my wooden dowels frustrated me because I’d have to dump the entire box to get at the shorter ones. So I came up with the Dowel-evator, shown below.

To make one, cut a 4” piece of PVC 32” long. Bevel the top end, as shown, for easy access. Drill three or four 1/8” holes around the bottom for the #8 x 3/4” panhead screws that will act as stops for the lift block. Next drill a 3/8” hole on the back top of the pipe for wall mounting. Then drill a 1/4” hole on the front of the pipe, near the top, and epoxy a #0 grommet (find it at your hardware store) from the inside.

From a scrap of 2 x 6, cut a disc just under 4” in diameter, sanding if necessary, until it slides easily in the pipe. Then thread a small screw eye into the center of the disc and tie a 40” length of 1/8” polyester cord to the screw eye. Make a knot about 8” above the screw eye and thread a washer onto the draw cord to limit the travel of the lift block.

Finally, slide the lift block down into the pipe and thread the draw cord through the grommet from the inside. Tie a washer to the end of the cord to act as a pull handle. Mount the holder to the wall leaving at least 48” above the top to allow removal of long dowels. Pulling the string lets you access even those short, bottom-dwelling dowels.

—Donald Whitman, Bremen, Ind.

continued on page 12
Shop Tips

Completely capture the blank for DIY dowels

I saw the article about making your own dowels in issue 183 (May 2008) and wanted to share the simple jig I came up with to make 3/4" dowel for Boy Scout tool box kits. (It could be adapted for different sizes of dowel as well.) The jig captures the dowel blank for complete control, while the pusher block keeps fingers out of the block.

To use the jig, choose a round-over bit with a radius half the thickness of your blank, place the fence flush with the bit's bearing, and set the bit height to create a perfect quarter-round. With the dowel blank in place as shown, guide it through the router bit with the jig against the fence. Rotate the blank one quarter turn with each pass and in no time, you'll have a custom dowel.

—Kevin Godshall, Wyalusing, Pa.
Go bit fishing with magnetic bit bait

My large fingers have trouble pulling drill bits out of their metal case; I just can’t seem to pull them straight out without binding. So I epoxied a small rare-earth magnet to the arm of my drill-press chuck key. Now I can just reach right in and snag any bit.

—Sid Jackson, Candle Lake, Sask.

Get a grip for faster scrollsawing

I sell scrollsawn animals and puzzles at craft shows. Such projects require many tight turns that take a lot of time. To speed up your scrollsaw work, simply attach wooden door pulls to the waste corners of the cutting blank using a drywall screw and washer, as shown. Then back the screw out slightly so that the pull turns freely.

Using the handles while cutting gives more leverage and makes cutting tight corners fluid and blade-mark-free. For me, the time-savings was significant enough that I could reduce the price of my puzzles.

Take care when passing the knob under the scrollsaw to avoid bruised knuckles from the saw arm. Also save the cuts near the handles for last, leaving them useful for the maximum number of cuts.

—James Mielke, Center City, Minn.

continued on page 14

An off-the-wall tablesaw safety reminder

We all know that it’s good safety practice to unplug the tablesaw before changing the blade. But sometimes we get in a hurry or forget. To remind myself, I hang the tablesaw’s arbor-nut wrench on a nail next to the outlet that powers the tablesaw. When I need the wrench, I know to unplug the saw as well. The saw cord’s plug hangs on the nails so it’s ready for me when it’s time to plug it back in.

—Oliver Cook, Knoxville, Tenn.

Build a Better Backyard

From planning a deck to putting on the final touches, you’ll learn it all, step-by-step.

$6.99 U.S.
$8.99 Canada

Order online at woodmagazine.com/publications
or call toll free 888-636-4478

Get 25 years of WOOD magazine on DVD-ROM:
woodmagazine.com/dvdlibrary

WOOD magazine July 2010
Tubs take a turn as handy saw horses
After a recent move, I had a collection of cheap plastic storage tubs left over. I was about to toss them when I realized they would make great substitute sawhorses. They're easier to use—and store—than foam sheets on the shop floor for cutting sheet goods, and like the foam, they won't harm the blade. They also work well as finishing stands. Glue, paint, and finish scrape off easily. I haven't dragged out my heavy steel and wood horses since I started using the tubs.

—Greg Pfeiffer, Colorado Springs, Colo.
Fixing Workshop Goofs

Cures for Loose Dadoes

Sloppy slots can be a headache—here are three ways to mend them.

The quick fix: Shim it
Use veneer or rip a shim of matching stock to fill the remaining gap, sanding, if necessary, to create a tight fit. Place the shim on the side where it will least likely be seen. For example, few people will ever look under a low shelf, so put the shim below it. Install a shim on the top side of a high shelf. Glue the shim to the shelf and dado wall, trim or sand it smooth, and you’ll likely be the only one to ever know it’s there.

Close a gap with a wedge
For gaps smaller than ¼", use a wedged spline to spread the ends of the inserted workpiece, tightening the fit. Begin by routing a ¼"-wide, ⅜"- to ⅜"-deep slot centered along the board’s end using a slotting cutter. (You can also cut a ¼" kerf using your tablesaw, but long, unwieldy workpieces will need the support of a tall auxiliary fence.)

Next, cut a wedged spline with 5° bevels along each face, with the narrow edge the same thickness as your slot. Gently tap the spline into the slot. This might require some trial-and-error trimming or sanding to achieve the perfect fit.

Fill the gap and start over
If the gap is too wide for either of the previous fixes, and you don’t want to scrap the part, fill the dado with a strip of similar wood that closely matches in color and grain pattern, as shown below. Next, recut your dado to the correct width, making test cuts in scrap to confirm the fit. If possible, position the new dado so any sliver of the filler strip that will show is on the side that will be seen the least.

Cut or sand a shim to fit snugly; then score it flush with a utility knife. Remove the shim and trim it to size on your workbench.

Cut a filler strip from scrap stock that closely matches in color and grain. Glue it in place; then plane or sand it flush.

Tapping the wedged spline into the slot spreads the workpiece end to tighten up any loose fit.
Turn Shop Tips Into Cash!

WOOD® Magazine will pay you $100 for each of your Shop Tips we print, and if your tip is judged best in the issue you’ll get a tool prize worth at least $300 (like this saw).

THIS COULD BE YOURS

Score FREE tools!

Send your tip or jig idea, along with photos or drawings and your daytime telephone number to:
Shop Tips, WOOD Magazine,
1716 Locust St., LS-221,
Des Moines, IA 50309-3023.

Or e-mail the same to:
shoptips@woodmagazine.com.

Sorry, submissions can’t be returned.

Breathe Easier with a One Stop Dust Collection Solution

With 20 years experience and a superior product line, the experts at Penn State Industries will provide you effective solutions for a cleaner shop.

TEMPEST™ S-series Cyclones
- 2.5HP - 1450CFM - $995
- 3.5HP - 1700CFM - $1125
- 5.0HP - 1800CFM - $1395

Premium Ductwork
- Pipe for maximum airflow
- Fittings and hoods for most applications

Ductwork Planning Service
- An accurate layout of your shop to save you hours of planning

More Collection Solutions
- High performance bag-style collectors, air cleaners and portable collectors ideal for any size home shop

Call Bill for your free consultation at 1-800-377-7297 x16 to help you plan the best solution for your shop or CNC application.

Penn State Industries
1-800-377-7297 • www.pennstateind.com/nodustwm
Make Your Own
Cove Molding
Safely “shape” wide concave cuts using your tablesaw and these techniques.

Off-the-shelf cove molding from the home center is convenient, but it limits your choices in widths, profiles, and wood species. For custom molding that perfectly matches your project, create your own. Best of all, you don’t need fancy machines—just your tablesaw.

The photo above shows the secret to doing this: Feeding stock at an angle across the blade cuts a concave profile. Using this procedure, we created a cove molding as an optional trim for the Entry-hall Bench on page 52 [Photo A]. With some experimentation, you can create a wide variety of cove profiles [Cove creativity, page 21] for your projects or maybe to trim a room.

Choose a blade and prepare your stock
To minimize scoring and reduce sanding, install a 60- or 80-tooth crosscut blade in your tablesaw. You’ll also need two scrapwood fences to place diagonally across the saw table, capturing the blank while you cut it, as shown above. Joint one edge of each fence square to a face.

For the 3¾"-wide molding used on the hall bench, prepare blanks 4½" wide with parallel edges. The extra width allows for bevel-rips made after cutting the cove [Drawing 1].

Quick Tip! Better long than short.
Make more molding than you need. It’s easier to make extra now than to try to duplicate a setup later.

continued on page 20

CREATE A CUSTOM MOLDING
Customize the Entry-hall Bench on page 52 by replacing the store-bought crown molding with shop-made cove molding.

1 COVE PROFILE
TAKE YOUR BEST SHOT

Our new oil-free finish nailers are engineered to help you achieve the level of craftsmanship you were always capable of. They offer precision-driven features such as dry-fire lockout, dial-a-depth technology, swivel fittings, patented profile tips... even an integrated pencil sharpener.

For nearly 40 years, Stanley-Bostitch has designed its products to be the most reliable & durable pneumatic tools available. Maybe that's why more finish carpenters and serious woodworkers rely on Stanley-Bostitch products more than any other major brand.

*Based on third-party survey in U.S. and Canada asking for the brands of finish products used in the previous 12 months.

www.bostitch.com
Challenge Skill

Start by setting the fences

A simple fence-setting jig [Drawing 2] determines the proper angle for the fences on the tablesaw. Build the jig as shown, ensuring that opposing sides are parallel.

Set the distance between the jig’s long arms to the width of the cove and tighten the wing nuts to lock the jig in shape. Raise the tablesaw blade to the final depth of the cove (1/2" for our example), and use painter’s tape to mark where the teeth enter and exit the throat plate [Photo B]. Lower the blade and use the marks to position the jig [Photo C]. After marking one inside edge of the jig onto the tablesaw top using a pencil as shown, remove the painter’s tape and clamp the fences in place [Photos D, E].

Place a molding blank against the first fence to position the second fence. The blank must slide between the fences without binding.

Watch a FREE video showing how to make cove molding at woodmagazine.com/tscove
Cut the cove

Form the cove by making a series of passes over the blade. To start, set the blade height ¼" above the table. Turn the saw on and use push blocks to slowly feed the molding blank over the blade [opening photo, page 18]. Raise the blade ½" and make another pass. Repeat this procedure until you reach the final cove depth.

Quick Tip! Lighten up and be smooth. A slow final pass removing ¼" or less leaves a surface that requires less sanding.

Using the newly cut molding as a template, trace the profile of the cove onto the end of a piece of foam insulation and cut it to rough shape at the bandsaw or with a coping saw. Sand the block to final shape [Photo F]; then sand the cove starting at 100 grit and working up to 220 grit.

Lay out the molding profile on one end of each cove blank [Drawing 1] and bevel-rip the edges to complete the molding [Drawing 3].

Safety Note: Use a zero-clearance insert to prevent the waste from catching between the throat plate and the blade.

Cove creativity

Three variables determine the profile of cove molding shaped on the tablesaw: the feed angle of the stock over the blade; the blade height; and the blade tilt angle. Different combinations of these three elements create a variety of profiles. (See the actual size drawings below.)

Feed angle

A shallow feed angle cuts a compact, elliptical cove [top drawing]. Higher feed angles broaden the curve to a near semi-circular profile.

Blade height

Final blade height determines the depth of the cove. To see the cove depth cut by a ¼"-high blade, for example, cover the top drawing just below the ¼" line (shaded area). The depth of the profile shows above the line (unshaded area).

Blade tilt

A blade set 90° to the table cuts a symmetrical cove [top drawing]. Tilting the blade creates asymmetrical coves that “lean” to one side [bottom drawing].

Safety Note: When tilting the blade, feed the stock from the direction the blade tilts. So if your blade tilts to the left, feed the stock from left to right. If it tilts to the right, feed right-to-left.

Experiment to find profiles you like. Save short lengths of your samples and write the feed and blade tilt angles on them for future reference.
Spiral vs. Straight Bits

Even with more router bit choices than ever, there’s still a place for straight bits.

Spiral bits plow through material the way business jets slice through the sky; but neither of these high-tech tools fit everyone’s budget. Like a coach-class airline ticket, a standard straight bit gets you where you need to be, and for a lot less money.

So why pay for the upgrade? All spiral bits share one advantage over straight bits: Their angled cutting edges slice, instead of chop at, the wood. This leaves a cleaner cut because a portion of the cutting edge constantly touches the wood. And unlike straight bits with carbide cutters brazed to a steel body, spiral bits are all carbide. That lets bit-makers use wear-resistant carbide formulas that stand up better to abrasive glues and resins in plywood, particleboard, and medium-density fiberboard. Most spiral bits use one of three flue patterns:

Up-cut. (Picture the left-to right rise of the spiral.) Like a twist drill bit, these bits quickly evacuate chips from deep cuts. They lift the veneers on sheet goods when making plunge cuts, but push down on veneer when used in a table-mounted router with the “good” side up on the workpiece.

Down-cut. These spiral bits press veneer down as you make plunging cuts for dadoes, rabbets, and grooves. They don’t clear chips as well as the others, so use multiple ¼"-deep passes, or cut relief kerfs with your tablesaw. Be careful: The downward force can lift a handheld router off your workpiece.

Combination. Up- and down-cut flutes meet in the middle of the bit (below) to compress veneer on both faces of a panel tightly against the substrate.

These big three have been joined by such specialty spirals as bearing-guided up-cut and down-cut flush-trim bits for template work and combination bits with short up-cuts and longer down-cuts for chip-free mortises.

When to turn to spirals

Spiral bits, with their shearing action, make sense for hard-to-machine woods with complicated grain patterns, such as curly maple, and for veneered sheet goods. That speed and cut quality doesn’t come cheap, but you can justify their prices a lot more easily when you reduce tear-out waste in an $80 sheet of quartersawn oak-veneer plywood.

For example, one Internet source sells a ½"×1¼" straight bit for $18, but an up-cut spiral bit the same size costs $47. A ½"×1½" bottom-bearing straight flush-trim bit costs $21 versus $111 for a comparable down-cut flush-trim bit.

In addition to their lower price, straight bits work best on wide cuts. While the all-carbide construction of spiral bits limits their width to ½", straight bits can cut a path up to 1½" wide for single-pass cleanup of tablesaw dadoes and rabbets.

So hold onto your wallet, and push your straight bits to their limits. Then use our chart on the next page to choose the best bits for your job.

Sources

The following companies offer a variety of spiral router bits:

- **CMT,** 888-268-2487; cmtusa.com.
- **Eagle America,** 800-872-2511; eagleamerica.com.
- **Freud,** 800-334-4107; freudtools.com.
- **Lee Valley,** 800-871-8158; leevalley.com.
- **MLCS,** 800-533-9298; mlcswoodworking.com.
- **Rockler,** 800-279-4441; rockler.com.
- **Whiteside,** 800-225-3982; whitesideroutertools.com.
- **Woodline USA,** 800-472-6950; woodline.com.
- **Woodcraft,** 800-225-1153; woodcraft.com.
Match the router bit to the material you’re working

To use this chart, start with the type of material you’re routing. Then decide whether you’ll be doing more plunge routing or edge work. From there, trace the colored line to the best straight or spiral bit(s) for your application.

Put the world’s best woodworkers in your pocket

Shop for dozens of downloadable videos from top woodworkers. View them any time on your computer, or take them with you on your iPod or other portable media player.

woodmagazine.com/videos

Better Woodworking

woodmagazine.com

*Handheld routing with non-bearing bits requires a router edge guide. ♦
Great Ideas for Your Shop

Knockdown Sawhorse Mini Bench

Short on space but long on the need for affordable and versatile workshop surfaces? This quick-and-easy project design serves two purposes: Build a pair for use as sawhorses, or add the cleated center panel to create a mini workbench. The splayed legs and wide top make for a sturdy but compact work center.

To keep the construction simple, use ¾"-thick solid stock or plywood for all but the center beam, outside and inside blocks, and center blocks. For those, choose 2x stock.

Cut all parts to size and assemble the end supports in the configuration shown in the End View drawing. Slide the legs into the end supports and drill a ¾" hole through each of the four end blocks and legs. Remove the legs and enlarge the leg holes to 7/8". (Slightly larger holes in the legs make it easier to align the leg block and leg holes and slide the 1/4 x 2 1/2" bolts in place when installing the legs.)

To assemble the pieces, follow the four-step process on page 26. The ¾" bolts are used strictly as pins, so nuts are not required. To stow the horses, simply pull the ¾" bolts that pin the legs to the end blocks, and stack the pieces, as shown in Photo 1 on page 26.

Project design: Keith Schwartztrauber, Las Vegas

Note: Check out Keith's shop, as well as 12 other top shops, by visiting woodmagazine.com/ABHW2009

continued on page 26
The New Standard In General Purpose Saw Blades

Featuring:

- TiCo™ hi-density carbide stays sharper longer for extended blade life
- Perma-SHIELD® permanent non-stick coating for less blade drag and superior performance
- Unique anti-vibration design with special polymer filler dampens vibration for smoother cuts

Woodworkers have been searching for a superior general purpose blade – the one blade that truly does it all. The search is over.

Freud is proud to offer the discriminating woodworker the Premier Fusion Saw Blade - The New Standard in General Purpose Saw Blades. The patent-pending Premier Fusion blade is the most technologically advanced blade on the market with a radical new “Fusion” tooth design that combines a double side grind with a 30 degree Hi-ATB to produce a glass-smooth, chip-free top and bottom surface while ripping and crosscutting. The unique Fusion tooth design, combined with Freud-made TiCo™ Hi-Density General Purpose Blend of Carbide, superior anti-vibration design and patented Perma-SHIELD® non-stick coating make for the ultimate general purpose saw blade.

Choose from four blades in the Premier Fusion series – 8”, 10”, 12” and 14”. Use a Premier Fusion blade once and you'll be convinced that it is the best general purpose saw blade that you have ever used – guaranteed.

Perfect for:

- Thick Stock Lumber
- Melamine & Laminates
- Veneered Plywoods
- Softwoods
- Hardwoods
- Crosscutting
- Ripping

To sign up for Freud's e-mail newsletter or to find a dealer near you visit: www.freudtools.com. Red sawblades are a registered trademark of Freud America, Inc.
Assemble the sawhorse/mini bench in no time.

1. Center panel
 Bolts for leg pins
 Pieces nest together for compact storage.

2. End support
 Center beam
 Pin in place
 Pin the legs to the end blocks, and insert the center beam between the two end assemblies.

3. Position the center panel on the center beam for a worksurface.

4. End block location
 3/8" hole in end block
 Countersunk Shank hole in outside block
 Slide the end supports together to finalize the assembly.
Forrest Blades

Experienced woodworkers know that Forrest blades are ideal for remodeling high-end kitchens and baths.

Forrest blades deliver smooth, quiet cuts without splintering, scratching, or tearout. Our proprietary manufacturing process, hand straightening, and unique grade of C-4 microgran carbide are perfect for cabinets, countertops, and flooring. In fact, independent tests rate us #1 for rip cuts and crosscuts.

"Your blades are without question the best by miles, and I have tried them all."
Bob Jensen, Fridley, MN

Forrest Quality Shows

Duramine Hi-AT—Great for cutting two-sided veneers and low pressure laminates.

Woodworker II—Best rated, all-purpose blade for rips and crosscuts.

Order from any Forrest dealer or retailer, online, or by calling directly.

Our blades are manufactured in the U.S.A. and backed by our 30-day money-back guarantee.

Forrest Blades

The First Choice of Serious Woodworkers Since 1946

www.ForrestBlades.com
1-800-733-7111
(In NJ, call 973-473-6236)

NEW! SHAPE 3 SIDES IN 1 PASS!
Tunes your Woodmaster into a POWERFUL 3-SIDE MOLDER that efficiently cuts T&G flooring, paneling, & more!

Call TOLL FREE 1-800-821-6651 Ext. 350
Woodmaster Tools, Inc. Dept. P350,
1431 N. Topping Ave., Kansas City, MO 64120 www.woodmaster.com

Own a 4-in-1 MOLDING FACTORY!
How to Sharpen a Card Scraper

Card scrapers clean up a workpiece like no other tool, leaving a scratch-free, glassy-smooth surface ready for finishing. To achieve this kind of performance, you must maintain a sharp cutting burr on the scraper’s edge. Fortunately, doing that requires only a pair of common tools. Here’s how.

1. Select a mill file that’s at least 3” longer than your scraper, and clamp it horizontally in a bench vise. With the scraper lying flat on the bench, slide it back and forth against the file until you’ve made the scraper’s edge perfectly straight. Straighten the opposite edge, too.

2. Remove the rough burrs resulting from Step 1 by standing the scraper on edge and rubbing it back and forth a few strokes along the file. Do this for both faces on both edges; then remove the file from the vise.

Watch a FREE video on sharpening and using a scraper at woodmagazine.com/cardscraper.

3. Now clamp the scraper in the vise with about one-third of its width above the top of the jaws. Using a screwdriver with a hard, steel shaft, press down firmly while holding it perpendicular to the scraper face—parallel to the benchtop. Stroke back and forth until you can feel a burr forming on each side of the edge.

4. Next, tilt the screwdriver about 5° to one face. Repeat the process from Step 3 to further roll the burr, as shown in the illustration above, to give it a more aggressive cutting edge. Now tilt the screwdriver 5° to the opposite face, and repeat the process. Stop when you can feel a burr that’s about equal to the other side.

5. To use the scraper, hold it with two fingers hooked around each end, and press into the back with your thumbs, bending the scraper slightly, as shown at top. Angle it forward and, when you feel the burr grab the wood, begin pushing forward while holding at that angle to produce light shavings.
How Do You Create Endless Cabinet Door Making Possibilities?

With Freud’s New Premier Adjustable Rail & Stile System

Now with Freud’s new, patented Premier Adjustable Rail and Stile router bit system, you are able to build any style of cabinet door in a wide range of door thicknesses and sizes! This extremely easy-to-use solution gives you unlimited creative freedom, and solves the long-standing limitations of existing frame and panel door construction.

This one of a kind solution allows you to create extended tenons for extra door joint strength, adjust groove width for different panel thicknesses and choose from a variety of material thicknesses for your stiles and rails (5/8” to 1-1/4”). Optional add-on cutters increase your bits’ capabilities even more, allowing you to create glass panel and double sided profile doors.

Four profiles are available; Round Over (#99-760), Ogee (#99-761), Round Over Bead (#99-763), and Bevel (#99-764).

To find more information, please go to: www.freudtools.com/PremierRailandStile
Why buy?
Miter saws work hard in the shop and on a job site. Mounting the saw to a portable stand makes moving between the two locations easier. We tested stands for stability, portability, ease of setup and breakdown, and durability. Features we like include quick-release saw mounts that accept any model of saw and make it easy to position the saw anywhere along the rails; stops for cutting stock to identical length; and work supports that don’t sag.

Editor test-drive:
I gave this sturdy stand a workout during the cabinet shop makeover in issue 196 (March 2010). I like the way the stand folds up with the saw attached to store on end, out of the way. That saved space for the homeowner when I finished for the day, and frees up usable square footage in a home shop. When it was time to work, the gas-strut-assisted lift helped raise the 94-lb. stand to working height. Quick-release mounts let me position the saw anywhere along the rail, but the 9944 still comes up a bit short in cut capacity: Maximum distance to a stop is 5’6”. To use a stop, you must raise the roller support, then lower it if the stop is no longer needed; not as handy as a flip-up stop. Those are my only gripe. The wide rail proved useful for corralling small parts or hand tools, the roller work supports don’t sag, and the 12” wheels rolled over everything I put in their way, indoors and out.

To learn more:
866-539-1710; ridgid.com
—Tested by Kevin Boyle, Senior Design Editor

Editor test-drive:
Instead of wheels for portability, the DW723 weighs just 40 lbs; light enough to carry—if you remove the saw first. Fortunately, quick-release mounts make that easy to do. Flip the stand upside-down, press the spring-loaded catches, fold the legs neatly under the rail, and grab the handle to carry the stand to your next job.

The saw can be mounted anywhere along the rail, providing up to 8’ of cut capacity to the flip-up stop on either of the work supports. And talk about reliable: I set the work supports level with my saw’s table and they stayed at that height no matter how far I extended the arms. Cam locks make quick work of locking an arm in position.

Although light in weight, this stand works like a heavy weight. It doesn’t flinch when throwing 8’ x 4’ onto it and provides a stable platform during cuts.

To learn more:
800-433-9258; dewalt.com
—Tested by Craig Ruegsegger, Multimedia Editor

Editor test-drive:
Although the most expensive of the tested models, the PM7000 adds several nice features. Up front is a built-in power strip—handy for plugging in multiple tools and the included worklight. Also standard is a vise I’d rate as medium-duty. (In addition, Portamate sells an accessory router tabletop with fence for about $125, and extra quick-release mounts for $25 per pair for mounting benchtop tools.)

The legs brace the stand well, and the front legs sport a pair of fold-up brackets that hold a workpiece while you set up the saw or cut another piece. A small storage compartment in the brace under the rail holds pencils, but not much more.

I found the plastic 8”-diameter wheels adequate, but too small and narrow for easy rolling over a rough job site. I also wish the handle was easier to grab when the stand is collapsed. 🙁

To learn more:
800-624-2027; portamate.com
—Tested by Jeff Mertz, Design Editor
Effortless Property Cleanup!

Hitch a Cyclone Rake to your mower and relax! Powerful engine-driven vacuum mulcher gives ten times the lifting power of mowers and many times the hauling capacity—up to 44 bushels in a single load. Lifts and pulverizes tons of debris and mows lawns clean as a fairway. Plus, it vacuums up the weed seed that mowers just scatter around. Best of all, it folds up flat for easy storage. Many models to fit every budget and property size.

CALL FOR FREE INFORMATION KIT 1-800-925-4617
or visit www.CycloneRake.com

Mention the Discount Code WMG10 when you call,
or enter it on our web site for a special discount on any Cyclone Rake unit.

Woodland Power Products, Inc., 72 Acton St., West Haven, CT 06516

A Deck you can be PROUD of.

Using the same “Drill. Drive. Done!” technology built into every Kreg Jig®, the new Kreg Deck Jig™ can help you build a beautiful deck—free of exposed fasteners and painful splinters—in less time and with less frustration than you thought possible. Visit us online to get the whole story!

Watch the video and learn more at www.kregtool.com!

How it Works

The Kreg Deck Jig™ guides your drill bit and self-tapping screw at a precise angle.

www.kregtool.com | 800.447.8638
Tricks for Treated

It's been seven years since the Environmental Protection Agency announced the phase-out of chromated-copper-arsenate (CCA) treated lumber over concerns that arsenic in the treatment was contaminating soil and children. CCA's replacements, although safer, bring different challenges to your outdoor projects. Here's what you need to know.

CA, ACQ, MCQ, Who?
Alkaline copper quaternary (ACQ) and copper azole (CA) accepted CCA's abdication of the outdoor-lumber throne with a fairly smooth transfer of power. Both treatments provide similar, high levels of preservative power with arsenic-free chemicals.

In order to achieve the preservative power of CCA, ACQ and CA ramp up the amount of copper used. But because copper speeds corrosion in ferrous metals, steel fasteners must be chosen with care. (See photo, below.)

The newest kid on the block, micronized copper quat (often marked MCQ) substitutes dissolved copper with a finely ground copper particulate. While it doesn't yet have the long, proven track record of ACQ and CA, proponents claim MCQ achieves the same level of wood preservation and rot-resistance with a lowered level of fastener corrosion.

Wet and warped
The new breeds of PT (pressure-treated) lumber still start out as stacks of Southern yellow pine placed into large, sealed vats where air is evacuated and the preservative chemicals are introduced. The low-pressure draws the chemicals into the sapwood. Because there is little chance for it to dry between its chemical bath and the time it hits the home-center shelves, PT lumber can have a moisture content percentage into the low-to-mid 20s. (Compare to kiln-dried hardwoods that average 6–8 percent.) Once left in

Are PT projects safe?
There's no need to run out and demolish that weathered pressure-treated (PT) deck for fear of arsenic leaching from older CCA-treated lumber. The majority of the leaching seems to happen in the first year.

But if it's time to replace the deck anyway, do take some precautions as you're working with both old and new PT lumber.

- Clean up and dispose of all debris through your municipality's trash collection. Never burn PT lumber. The smoke and ashes can contain toxic chemicals.
- Along with gloves and safety glasses, wear a mask when working with pressure-treated lumber to avoid inhalation of dust.
- Wash your hands or any exposed skin thoroughly after working with PT lumber.

FASTENERS FOR TODAY'S PRESSURE-TREATED WOODS

- Hot-dipped galvanized fasteners have a thicker zinc coating and therefore provide more rust resistance than fasteners galvanized by other means.
- Stainless steel fasteners are nearly impervious to corrosion, but can cost twice as much as hot-dip galvanized.
- Some manufacturers use proprietary anti-corrosion layers. They are often color-matched to blend with the wood. Many offer a lifetime guarantee against corrosion.
your shop or a sunny spot, the drying—and the warping—begins.

The best approach to counter this: Let the wood acclimate outdoors in the shade for several weeks; then fasten it firmly in place with screws. One common mistake for beginning deck-builders is to leave a gap for drainage between the decking boards. This strategy isn’t necessary for PT lumber; the shrinkage during drying will provide all the gap necessary.

But can I finish it?

PT lumbers’ transformation to a weathered gray color is almost as inevitable as the sun and rain, primarily because it is caused by the sun and rain. Because there’s no perfect finishing solution, you must choose either a durable finish that hides the wood grain or a lightweight finish that requires frequent reapplication.

Any outdoor finish heavy on pigments, such as paint or solid-color stains, provides the best protection against damaging UV light. Without those sun-screening pigments, clear, film-forming finishes, such as varnish and polyurethane, quickly slough off as the wood’s surface degrades, above. Skip these clear or low-pigment finishes unless you enjoy refinishing every 6–12 months after a thorough sanding.

For a good compromise between the two, choose a penetrating-oil finish with finely ground, UV-inhibiting pigments, such as Penofin 550 (Performance Coatings, 800/736-6346, penofin.com); Ready Seal (Ready Products, 888/782-4648, readyseal.com); or Total Wood Preservative (Gemini Coatings, 800/262-5710, geminicoatings.com). The near-microscopic trans-oxide pigments effectively block most UV rays. You’ll have to re-coat about every two years, but because you don’t have to remove the previous finish, application is easy compared to other options.

EASY FINISHING OPTIONS

Oil-based, penetrating finishes combine a natural wood look with UV-protection and ease of application.

These outdoor alternatives put the pressure on PT lumber:

Strong pressure-treated wood resists decay and insect damage at a cost of about $1 per lineal foot. But these alternative outdoor materials bring their own advantages to the backyard table.

Cedar

Pros: Lightweight, naturally decay-resistant

Cons: Requires replacement about every 10 years

Cost per lineal foot: $1–2

White Oak

Pros: Dense and strong, moisture- and decay-resistant, accepts stains readily

Cons: Unavailable as dimensional deck lumber, pricey

Cost per lineal foot: $2–3

Ipe

Pros: Super-dense, strong, and stable; resists warping, cracking, decay, and denting, life-expectancy of 40–50 years with proper care

Cons: Heavy, pricey, and sometimes hard-to-find

Cost per lineal foot: $3–4

Wood/plastic composites

Pros: Rotproof, defect-free, and dimensionally stable; widely available in home centers

Cons: Not for structural applications, becomes hot to the touch in sunlight

Cost per lineal foot: $2–3

Thermally-modified wood

Pros: Lightweight, stable, rot- and insect-resistant, chemical-free

Cons: Limited availability, splits prone

Cost per lineal foot: $2
Made-in-the-shade
Pergola

WHAT YOU’LL NEED

Materials: Dimensional pressure-treated lumber. (See “Working with Pressure-Treated Lumber” on page 32.)

PROJECT HIGHLIGHTS

- Overall dimensions: 11'11¼" x 11'11¾" x 8′ high.
- Build subassemblies at ground level, then raise them into position.
- Stain beautifies pressure-treated lumber.
- Lattice screen provides privacy and serves as a trellis for climbing plants.
Simple subassemblies with butt-together-and-screw joinery make this structure a breeze to build. After you set the posts in the ground, build subassemblies on-site or in your shop. Then just call a buddy to help lift them into place. (Be sure to promise some cool drinks in the pergola’s shade when the job is done.)

Set the posts

Note: Call to have utility lines located before digging postholes. The post (A) length in the Materials List on page 41 allows for 36” below grade, the minimum for proper support of the pergola. Some areas may require longer posts to reach below the frost line. Check your local codes and adjust the hole depth and post length accordingly.

1. **Start with posts (A) at least 6” longer than finished length. They will be cut to length after all four posts are set.** **Note:** If your site has a slope to it, remember to account for it by making the downhill posts longer. Rout ¾” round-overs on the edges of each post [Drawing 1]. (The chamfers will be routed after the pergola is completed.)

2. **Lay out the positions of the postholes on your site [Drawing 4]. (You can download an article to help with this at woodstore.net/bepost sometime for a small fee.) Dig the first 12”-diameter hole, add a 6” bed of gravel [Drawing 1], carefully set the post (A) plumb in both directions, and brace it [Photo A].** **Note:** The remaining posts will be set based on the first one, so take your time and get it perfectly plumb with the faces square to the site. Mix concrete and add it to the hole.

3. **Dig the three remaining holes and add the gravel base. Cut an 8’-long spacer from scrap. But the spacer against the first post (A) to locate the two adjacent posts. After bracing these posts, use the spacer to locate the fourth post, measuring from the second and third posts. Double-check each post for plumb and the layout for square, then add concrete to the holes and allow it to set.**

SHOP TIP

Working accurately with dimensional lumber

The thickness and width of dimensional or “2-by” lumber vary. For example, the posts on our pergola were ¾” thicker and wider than their specified 5½×5½”, and some 2×8s that should have been 7¼” wide were 7¾”. These little variations add up and may prevent internal parts from fitting properly between other parts. To get accurate measurements, use cutoffs from workpieces to mock up small assemblies. Clamp the mock-ups in place and measure between them to find the exact length of internal parts, right.
A 2x4 SCRAP KEEPS THINGS IN LINE

Place a 2x4 between two assemblies of a short beam (D) and two grid rails (E). The notch in the crossbeam (C) fits over the 2x4.

ALIGN AND CONQUER

A 2x4 in the notches aligns the crossbeams (C) and outside beam (H). Mark the locations of parts B–E on the four outside beams.

Make the inside frames

1. Measure to the outside faces of the posts (A) to determine the lengths of the inside beams (B) [Drawing 2]. Measure as shown in Photo C to determine the length of the crossbeams (C). Quick Tip! Stay grounded. Take these measurements close to the ground to prevent errors caused by an out-of-plumb or bowed post. Cut the inside beams and crossbeams to length. Set the crossbeams aside for now.

2. Cut a centered notch on one edge of each inside beam (B) to accept the cross tie (N) [Drawings 2, 4]. (Watch a free video on circular-saw joinery at woodmagazine.com/circsawjoinery.) Retrieve the crossbeams (C) and cut a centered notch on one edge of them to accept the short cross ties (O).

3. Clamp cutoffs to an inside beam (B) [Shop Tip, page 35], and mark the length of the short beams (D) and grid rails (E) [Drawing 2]. Cut them to length.

4. Cut centered notches in the grid rails (E) to create a half-lap joint [Drawing 2]. Screw pairs of grid rails together to form crosses.

5. Assemble the inside frames by positioning a short beam (D) and a grid rail (E) upside down on a large flat surface [Photo D]. Center the grid rail on the short beam's length and screw the beam to the rail. Do this for the remaining short beams and grid rails. Then screw two crossbeams (C) to two beam/rail assemblies (D/E) [Drawing 2]. Repeat this process to make two inside frames.

Now, the outside frames

1. Cut the beam extensions (F) and grid extensions (G) to length [Drawing 3]. Add 17½" to the distance from outside to outside of the posts and then cut the outside beams (H) to this length. Lay out and cut the arch on one beam extension [Drawing 3a], then use this piece to lay out the arch on the remaining beam extensions and outside beams. Using your jigsaw, cut out all of the arches.

2. As shown in Photo E, arrange two cutoffs from a post (A), an inside beam (B), one inside frame (C–E), an outside beam (H), five beam extensions (F), and two grid extensions (G). Transfer the locations of the grid rails (E), inside beams, and outside face of the post to the outside beam. Repeat this process for the remaining three outside beams, marking the crossbeam (C) locations as well. Transfer these layout lines down the outside faces of the outside beams.
and screw the beam extensions and grid extensions in place along these marks.

3 Cut the bands (I) 36½" longer than the distance from outside to outside of the posts (A). Align one end of each band flush with the cutout end of an outside beam (H) and screw the band to the extensions (F, G).

4 Cut the center filler sides (J), center filler (K), beam filler sides (L), and beam fillers (M) to size [Drawings 4a, 4b]. Assemble the center filler and four beam fillers as shown, then set them aside. The four leftover beam filler sides will be used later along one side of each post (A) [Drawing 4].

Installing the frames

1 Retrieve four of the collars you made earlier and, using a scrap of 2 × 8 as a gauge, attach one to each post (A) [Photo F]. Attach the inside beams (B) with ¾ × 5″ washer-head lag screws.

2 Cut the cross tie (N) to length to equal the distance between the outside faces of the posts (A) plus 35″ [Drawing 4]. Center the cross tie over the inside beams (B) and secure one end with a 3″ deck screw into an inside beam.

3 Reposition the collars, securing a scrap 2 × 4 support block between the collar and inside beam (B); this helps support the inside frames (C–E) as they are installed [Photo G]. Center scrap 2 × 4s

Drill pilot holes, then drive lag screws into the ends of the crossbeams (C) and 3″ deck screws into the grid rails (E).

Secure the loose end of the cross tie (N) with 3″ deck screws. Then screw the short cross ties (O) to the crossbeams (C).
on the bottom of each inside beam and clamp them in place. Position both inside frames, drill pilot holes for the lag screws, and secure the inside frames [Photo H]. Screw the crossbeams (C) to the cross tie (N), then cut the short cross ties (O) and screw them in place [Photo I, Drawing 4].

4 From below, position the center filler (J/K) and screw it in place [Drawing 2]. Place each beam filler (L/M) in position and strike it with a mallet to mark the locations of the lag-screw heads [Photo J]. Drill counterbores at these marks [Photo K], then screw through the beam filler sides (L) into the cross ties (N, O). Use the same procedure to mark and drill counterbores on the four remaining beam filler sides (L). Screw them to the posts (A) [Drawing 4].

5 Reposition the support blocks above the collars on the outside faces of the posts (A). With help from a friend, clamp an outside frame (F–I) to the posts so it rests on the support blocks [Photo L]. Lag-screw the outside beam (H) to the posts, then work around the structure attaching the remaining outside frames [Drawing 5]. Use clamps to help align the bands (I); drive 3" deck screws at each corner [Photo M].

6 Cut the trim (P) to length from treated 1×4s and screw it to the bands (I) [Drawing 5].

7 Reposition the collars against the bottom edges of the inside beams (B) and crossbeams (C). Retrieve the remaining 2×4 collar and secure it to a post, with its top edge 10" above grade. Rout a ½" chamfer between the collars [Photo N]. Repeat this process to chamfer all four corners of each post [Drawing 1], then remove the collars.
Add a screen

1. Measure between two posts (A) and subtract the width of the screen post (X) [Drawing 7]. Cut two tops and two bottoms (Q) to one-half of this dimension [Drawing 6]. Rip them to width, and set them aside. Cut the uprights (R) and long rails (S) to size and set four uprights aside. Screw the remaining uprights and long rails together to make two frames.

2. From 1×4 stock, rip the vertical slats (T) and horizontal slats (U) to width, then crosscut them to fit inside the frames (R/S). Cut spacers from scrap to help position the slats [Photo O]. Secure the slats with screws driven through the uprights, rails, and every other slat intersection [Drawing 6].

3. Retrieve the tops and bottoms (Q), center two of them on the width of the outside frame (H), and mark centers.

5. **EXPLODED VIEW**

Starting with the base of your router against the lower collar, rout a ½” chamfer until the router base contacts the upper collar.
Rest the vertical slats (T) on ¾"-thick scrap to center them in the frame, then place spacers to position the slats (T, U).

Clamp the screen post (X) to the upright (R). Screw the upright to the post, then screw the remaining screen (Q–V) in place.

Each screen assembly (R–U), and screw them to the uprights (R) [Drawing 6]. Screw the remaining uprights between the tops and bottoms, flush with their ends. Near the top of the assembly, measure between two uprights to find the length of the short rails (V). Cut them to size and screw them in place.

Prepare a posthole centered between two posts (A). Crosscut the cap (W) to fit between the posts [Drawing 7], rip it to width, and rout ¾" chamfers along the top two long edges [Drawing 7a]. Screw the cap to the posts 7½" above grade, making sure it is level. Screw a screen (Q–V) to a post and the cap. Cut the screen post (X) to length, rout ¾" round-overs on the long edges, and clamp it to the screen [Photo P]. Check the fit of the remaining screen, then screw it to the post and cap. Pour concrete in the hole.

Treated lumber is very wet, so we allowed our pergola to dry for 30 days before applying a finish. (We brushed and rolled on Thompson’s WaterSeal Barkwood and Natural Almond oil-based deck and house stains.)

Produced by Craig Ruegsegger with Jeff Mertz
Project design: Jeff Mertz
Illustrations: Roxanne LeMoine; Lorna Johnson
Cutting Diagram

A
5 1/2” x 5 1/2” x 144” Pine (6x6) (4 needed)

B
1 1/2” x 3 1/4” x 96” Pine (2x8) (2 needed)

C
1 1/2” x 3 1/4” x 120” Pine (2x8) (4 needed)

D
1 1/2” x 3 1/4” x 120” Pine (2x8)

E
1 1/2” x 3 1/4” x 120” Pine (2x4) (2 needed)

F
1 1/2” x 3 1/4” x 120” Pine (2x4)

G
1 1/2” x 7/8” x 144” Pine (2x4)

H
1 1/2” x 7/8” x 120” Pine (2x8)

I
1 1/2” x 7/8” x 120” Pine (2x8) (2 needed)

J
1 1/2” x 7/8” x 120” Pine (2x8)

K
1 1/2” x 7/8” x 120” Pine (2x8)

L
1 1/2” x 7/8” x 120” Pine (2x8)

M
1 1/2” x 7/8” x 120” Pine (2x8)

N
1 1/2” x 7/8” x 120” Pine (2x8) (4 needed)

O
1 1/2” x 7/8” x 120” Pine (2x8) (6 needed)

P
1 1/2” x 3 1/4” x 144” Pine (2x4)

Q
1 1/2” x 3 1/4” x 120” Pine (2x4) (2 needed)

R
1 1/2” x 3 1/4” x 144” Pine (2x4) (4 needed)

S
1 1/2” x 3 1/4” x 120” Pine (2x4)

T
1 1/2” x 3 1/4” x 96” Pine (2x4)

U
1 1/2” x 3 1/4” x 120” Pine (1x4) (2 needed)

V
1 1/2” x 3 1/4” x 120” Pine (1x4)

W
1 1/2” x 3 1/4” x 48” Pine (1x4)

X
1 1/2” x 3 1/4” x 96” Pine (2x6)

Y
3 1/2” x 3 1/2” x 120” Pine (4x4)

Materials List

<table>
<thead>
<tr>
<th>Part</th>
<th>FINISHED SIZE</th>
<th>Material Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>A* posts</td>
<td>5 1/2” x 5 1/2” x 132”</td>
<td>T 4</td>
</tr>
</tbody>
</table>

Inner frames

- B inside beams: 1 1/2” x 7 1/4” x 96”
- C crossbeams: 1 1/2” x 7 1/4” x 82”
- D short beams: 1 1/2” x 7 1/4” x 37 1/4”
- E grid rails: 1 1/2” x 3 1/2” x 37 1/4”

Outer frames

- F beam extensions: 1 1/2” x 7 1/4” x 16”
- G grid extensions: 1 1/2” x 3 1/2” x 16”
- H outside beams: 1 1/2” x 7 1/4” x 113 1/4”
- I bands: 1 1/2” x 5/8” x 132 1/2”

Fillers

- J center filler sides: 1 1/2” x 3 1/2” x 5 1/4”
- K center filler: 1 1/2” x 3 1/2” x 3 1/2”
- L beam filler sides: 1 1/2” x 7 1/4” x 5 1/2”
- M beam fillers: 1 1/2” x 3 1/2” x 5 1/2”

Cross ties and trim

- N cross ties: 1 1/2” x 3 1/2” x 131 1/4”
- O short cross ties: 1 1/2” x 3 1/2” x 63 1/4”
- P trim: 3 1/2” x 3 1/2” x 131 1/4”

Screen

- Q tops/bottoms: 1 1/2” x 3” x 40 1/4”
- R uprights: 1 1/2” x 3” x 57”
- S long rails: 1 1/2” x 3” x 22 1/2”
- T vertical slats: 3/4” x 1 1/2” x 42”
- U horizontal slats: 3/4” x 1 1/2” x 22 1/4”
- V short rails: 1 1/2” x 3” x 6”
- W cap: 1 1/2” x 4 1/4” x 85”
- X* screen post: 3 1/2” x 3 1/2” x 108”

*Length depends on local codes. See the instructions.

Material key: T—Pressure-treated lumber.

Supplies: 1 1/2” x 5” washer-head lag screws (32), 1 1/2” x 3 1/2” deck screws (64), 1 1/2” x 3 1/2” deck screws (312), gravel, concrete mix.

Bits: 4" spade drill bit; 3/4" round-over, 45° chamfer router bits.
Five-Minute Face Frames

Pocket-hole joints provide the perfect combination of speed and strength for this job.

When it comes to assembling face-frames for cabinets, there's nothing faster than pocket-hole joints—each joint takes about 90 seconds apiece using a store-bought jig. Attaching the frame to the case hides the holes.

Pocket-hole screws give the frame all the strength it needs and then some. The angled screws cut across grain rings instead of only passing straight through the weaker end grain, making the joint tougher to pull apart.

The mechanical advantage of the screws makes these joints so strong, you can skip gluing the joints for face-frames. That's a big plus if you plan to stain the frame and don't want to bother sanding away glue smears.

Here's how to make pocket-hole joints as easy as 1-2-3.
1 Mark an “X” on the inside faces of each frame part to avoid drilling into the appearance face of your frame. Center the pocket-hole jig on the end of a part to be drilled and clamp both firmly to your workbench.

2 Set the drill bit stop collar according to workpiece thickness and the type of jig you’re using. Then drill two pocket holes [Photo A]. Repeat the first two steps for the ends of each rail and center stile on your frame.

3 At each joint, butt the mating parts together and clamp them solidly against your workbench [Photo B]. Then drive pocket-hole screws suited to the wood. Use fine-thread screws for joining hardwoods and coarse-thread screws for softwoods and composites, such as MDF or particleboard. Both types have split tips that eliminate the need to drill pilot holes in the part being joined.

Avoiding mistakes is easy, too

Pocket-hole joints come close to being foolproof, but a few simple tips ensure perfect joints every time.

- Driving screws can push parts away from each other, as shown below, if both aren’t clamped firmly in place.
- To avoid drilling through your workpiece, double-check the stop-collar setting using scrap stock identical in thickness to your workpieces.
- Too much drill torque can break loose the material between the bottom of the pocket-hole and the workpiece end.
- Dial down the torque setting on your drill-driver before you begin; then dial it up until it just seals the screw.
- Use specially designed screws designed for pocket-hole joints. The bugle-shaped head of a flathead or drywall screw can split the wood at the bottom of the pocket-hole.
- Does your bit look new but work like it’s old and dull? Check that the chuck turns clockwise, not counterclockwise. (Yes, it happens.)

DRILL STEPPED HOLES

Visually center the jig on the end of your workpiece. Then drill pilot holes in pairs to keep parts from twisting.

CLAMP AND SCREW PARTS

Position the face clamp to span both joint parts. Self-tapping screws keep the mating part from splitting.

PRE-CUT PLUGS NEED A TRIM

Wooden pocket-hole plugs still need to be sanded flush with the surface. For a similar look, use ⅛ dowels.

Plug or no plug?

Your case edges should hide the pocket holes after you attach the face frame, but you may want to further conceal the holes from view on some projects. In wood, fill the holes with pre-cut plugs or ⅛ dowels of the same species. With either one, trim off the excess after the glue dries and hand-sand them flush with the workpiece [Photo C] using a rigid-backed sanding block. Or turn plugs into accents using contrasting species, such as a walnut plug in maple.

For melamine-coated particleboard projects, use angled plugs molded to snap into the pocket hole [Photo D].
Don’t Spray Your Money Away!

With 80–90% Transfer Efficiency - Apollo Saves You 50–60% on Coatings

Order Yours Today 888-900-4857 (HVLP) www.hvip.com

* For a free info DVD Call 888-900-4857 (HVLP) – View it at www.hvip.com/live.php

Dept. W610

Carefully Crafted Fine Quality

Wood turnings and components from Osborne Wood Products, Inc. are the perfect complement for your woodworking projects.

WWW.BUN-FEET.COM 866.963.5580
Dear Reader: As a service to you, we’ve included full-size patterns on this insert for irregular-shaped and intricate project parts. You can machine all other project parts using the Materials List and the drawings accompanying the project you’re building.

© Copyright Meredith Corporation, 2010. All rights reserved. Printed in the U.S.A. Meredith Corp., the publisher of WOOD Patterns®, allows the purchaser of this pattern insert to photocopy these patterns solely for personal use. Any other reproduction of these patterns is strictly prohibited.

Double Pushstick
Page 10

PUSHSTICK FULL-SIZE PATTERN
(2 needed)
Dancing Clock
Page 72
CLOCK BOTTOM
FULL-SIZE PATTERN
(4 needed)

Cut here for [I].

1/4" chamfers on [A] only

1/4" rabbet 1/4" deep on back face of [B]

1/8" chamfer

1/8" V-groove
Cut Dead-On Miters Every Time

Build this sled in one evening and enjoy making perfect mitered frames for years to come.

You'll turn to this miter sled like a trusted friend whenever you need gap-free corners. To make mitering a cinch, even on long pieces, T-tracks hold a stopblock anywhere along the 25°-long fences. A hardwood block behind the fences shrouds the blade while channeling sawdust downward into the saw.

Before you build this sled, consult the owner's manual to tune up your saw. (See More Resources on page 51 for more articles and a video on saw setup.)

Build your super sled

Begin by cutting the sled base to size from ¾" Baltic birch plywood [Exploded View, right]. Cut two 18°-long hardwood runners to fit your tablesaw miter slots and two 1x3x25° hardwood miter fences. Using a dado blade that matches the width of your T-track (see Sources), center a groove in each miter fence deep enough to recess the T-tracks flush with the fence faces. Cut T-tracks about 1" shorter than the fences and screw them in place with one end flush with the outside end of each fence.

Install a saw blade, lower it completely, and adjust the rip fence to center the sled base above the blade.

Quick Tip: Make your “runner” buddies proud. Drop two dimes in each miter slot and lay the miter-slot runners on top of them so the runners stand just proud of the saw table.
Next, attach the sled base to the runners [Photo A] by pressing it against the tape and slide the base off the saw. Flip the base over to countersink, drill, and screw the runners to the sled base.

Now drill two ¼" holes 2" from the back edge of the sled base, without drilling the miter-slot runners. Counterbore holes on the underside of the base to accept a ¼×1½" carriage bolt head.

From ⅛" MDF or an MDF-core sheet, cut a 17" square and use a reliable square to check for a precise 90° corner. Using a bandsaw or jigsaw, cut the square in half diagonally. Center and clamp one triangle onto the sled base while keeping the long edge flush with the back edge of the sled base. Turn the base and triangle upside down and transfer the ¼" hole locations to the triangle. Remove the triangle and lay out two ¾"-long slots perpendicular to the long edge and centered on the hole locations. Drill pairs of ¼" holes to define the slot ends and cut away the waste between the holes.

Now loosely bolt the alignment triangle onto the sled base with its point centered. Using the 45° angle on a combination square, align the triangle on the sled base [Photo B].

Next, use the triangle and sled to miter one end of a test scrap until it fits the 45° angle on your square with no gaps. Then make test cuts in four pieces of scrap and check that they go together without gaps, as shown in "How to tell if you're winning the frame game" on page 51.

After your sled cuts airtight miters using the alignment triangle, you're ready to attach the two miter fences. Use the sled to miter the fence ends where the T-track stops short, and apply double-faced tape to the bottom edges [Photo C]. Press one fence against the edge of the alignment triangle with the mitered tip just over the kerf in the sled base. Then press it in place. Repeat for the other miter fence. Your first cut will trim the fence miters just enough to create a zero-clearance backer.

To test the accuracy of the miter fences, again miter the four test scraps and assemble them into a frame. Once you achieve gap-free miters, drill and screw the miter fences to the sled base.

To make the blade guard, laminate two pieces of ¾×3×6" hardwood and allow to dry. Use your tablesaw with the blade tilted 45° to bevel both faces at one end, forming a point at the center. Then glue and clamp this blade-guard block to the sled base behind the fences.

A sled helps you cut tighter miters

A dedicated tablesaw miter sled gives you two big advantages over miter gauges and miter saws. First is price. You can build this sled from a quarter-sheet of Baltic birch plywood, scrap hardwood and MDF, and $25 in hardware—far less than a miter saw or an aftermarket miter gauge. Second, after the initial alignment, you'll get consistent results with a miter sled without spending additional time on setups and test cuts.
How to tell if you’re winning the frame game

To test the position of the alignment triangle, cut a test frame with four equal sides of 3/4 x 3 x 12’ MDF. Those eight miters cut multiply the slightest misalignments enough to find and fix them.

Here’s how to go about it: Although you’ll normally cut from both sides of your miter sled when it’s finished, make these test cuts only from the left side. First miter one end of each piece. Use double-faced tape to adhere a stopblock to the sled base against the alignment triangle and a hair less than 9” from the center kerf. Flip each test piece end for end and cut the second miters.

Tape three mitered corners tightly together and examine the fourth joint. If it looks like the one far left, rotate the alignment triangle counterclockwise. If the fourth joint resembles the corner middle left, gently rotate the alignment triangle clockwise.

If you end up with an even gap on all four corners, like the one near left, blame the saw-blade tilt. Check the blade with a reliable square or drafting triangle to make sure it stands 90° to the saw table.

[Exploded View]. Finally, cut a stopblock to size as shown opposite and drill it for a 1/4” hexhead bolt.

Let’s go sledding

To make a frame, first cut blanks for both pairs of frame sides. Using the right fence of your jig, miter one end of each frame part, as shown on page 49.

For four sides of equal length, set your stopblock on the left miter fence and cut the opposite end of all four parts. For sides of unequal length, cut the longest sides first so you’ll still have a usable blank for the short sides in case you make a mistake. Then reset your stopblock and cut the short sides.

To miter extra-long parts, first glue a beveled block to a strip of plywood or MDF cut to the length you need to accommodate your frame parts. Then clamp the extension to a sled fence [Photo D] and miter the opposite ends of your frame parts.

Double-faced tape holds the miter fences in position while you check their alignment by cutting test pieces to make a frame. The tip of the fence overlaps slightly less than half of the saw kerf in the sled base, with the T-track recessed 1” from the end.

For workpieces longer than your miter fences, cut them to identical lengths using a stopblock extension. Make the stopblock 2” thick so that the mitered end of your workpiece can touch the mitered end of the stopblock.

MORE RESOURCES

FREE VIDEO
- “Tune Up Your Tablesaw” at woodmagazine.com/tstuneup

RELATED ARTICLES
- “Tune Up Your Tablesaw” Issue 152 (November 2003) $
- “Miter Gauges & Sleds” Issue 179 (October 2007) $

(=Download this article from woodmagazine.com/plans for a small fee. Type “tune up” or “miter gauge” in the Search box.)

Sources
- Kneb: Four-arm knob with a 1/4” 18-thread insert (2) no. 27714, $2.50, Woodcraft, 800-225-1153, woodcraft.com.

woodmagazine.com
Hall tree storage bench

An attractive and convenient place for a busy family’s outdoor gear

AT A GLANCE

- Overall dimensions: 35 1/4” wide x 25 1/4” deep x 78 1/2” high.
- The lower cabinet provides a handy seat to tie or take off shoes.
- Store baskets of seasonal gloves, hats, and scarves in the bottom cubbies.
- Add a coat hook for each family member.
Keep this combination coatrack and bench near your entry door, then say goodbye to soggy shoes on the carpet and jackets tossed over the backs of chairs.

Race through the case

1. Cut the upper case sides (A); top, shelf, and bottom (B); divider (C); lower case sides (D); top and bottom (E); and divider (F) to size from \(\frac{3}{4} \)" oak plywood [Drawing 1 and 2, Materials List, page 57].

2. Install a dado set to match the plywood thickness and an auxiliary fence to your tablesaw rip fence. Rabbet the ends of the upper case sides (A) and lower case sides (D) where shown [Drawings 1 and 2]. Adjust the fence to cut centered dadoes on the upper case bottom and shelf (B) to accept the divider (C). Then cut centered dadoes on the lower case top and bottom (E) to accept the lower divider (F). Move your rip fence again to dado the upper sides \(\frac{3}{8} \)" from the bottom end and the lower sides \(\frac{1}{8} \)" from the bottom end. Finally, rabbet the inside back edges of the upper sides and lower sides [Shop Tip, right].

3. Finish-sand the inside faces of the upper case sides (A), bottom (B), and lower case sides (D) to 220 grit. Sand the top face of the upper case shelf (B) and lower bottom (E); both sides of the upper case divider (C) and lower case divider.

SHOP TIP

Read twice, rabbet once

More than one woodworker has confused drawing dimensions calling for a "\(\frac{3}{4} \)" rabbet \(\frac{1}{4} \)" deep" when setting up a tablesaw or router. To keep dimensions straight, picture the finished joint. The dimension to rabbet refers to the **width** of the rabbet necessary to accept a mating piece, in this case the \(\frac{3}{4} \)-thick backs (O, P, Q). The rabbet depth is typically measured from a face, not an edge.
Now trim the cases

1. Cut the upper case stiles (G) to size and top rail (H) 1" longer than listed [Drawing 1]. Temporarily clamp the stiles to the sides (A) [Photo C]. Then mark and crosscut the top rail to length.

2. Use a fairing stick to lay out the arc on the top rail (H) [Drawing Ta]. (See More Resources, page 57, for plans to make a fairing stick.) Then cut on the waste side and sand to the arc line.

3. Drill and drive pocket-hole screws to join the top rail (H) to the upper case stiles (G). (For tips on how to make pocket-hole joints, see “Five-Minute Face Frames” on page 42.) Glue and clamp the rail-and-stile assembly (G/H) to the upper case (A/B/C). See the Shop Tip below for help managing the long stiles during the glue-up.

4. Cut the drawer rails (I) and drawer divider trim (J) 1" longer than listed. Measure between the upper case stiles (G). Trim drawer rails to that length and glue and clamp them in place. Cut the divider trim to fit between the drawer rails; then glue and clamp it in place.

5. Repeat steps 3 and 4 to cut and attach the lower case stiles (K), rails (L, M), and center stile (N).

Add the crowning touches

1. Edge-glue material to make a blank for the seat (T). Cut the blank to size and create a bullnose by routing 3/8" round-overs on the ends and then the front edges [Drawing 3].

2. Rip two 5/8×2×48" blanks to make the cove moldings (U, V, W). Rout 5/8" coves on two edges of each blank; then rip cove strips from the blanks [Photos D and E].

3. From scrap, cut two 1"-wide spacers about 12" long. Double-faced tape them to the top rail (H) with the long edges flush with the top of the upper case. Miter one end of a cove strip, temporarily clamp it against the spacer, and mark the upper front cove (U) length [Photo F]. Then miter-cut it to length. Repeat (without a spacer) to cut the lower front cove [Drawing 4].

4. Clamp the upper front cove (U) in place. Miter opposite ends of each remaining cove molding strip and butt the miters against the front cove. Mark and cut the top side coves (V) to length. Then glue and clamp them in place against the spacers. Repeat (without spacers) for the lower side coves (W).

5. Following steps 3 and 4 (without the spacers) to cut the front crown (X) and side crown (Y) moldings to size from 3¼"-wide, store-bought crown molding. (Or make your own molding, as shown on page 18.) Then glue and clamp the front and side coves to the top rail (H) and upper stiles (A) [Photo G].

6. Cut blanks for the base front (Z) and base sides (AA) about 3" longer than listed. Rout 5/8" coves on one edge of each blank. Then cut six 5"-long spacers from a 5/8×21/2" scrap blank. Attach them to the back faces of the base front blank and

Shop Tip

Avoid glue snares

To keep glue snares off the inside faces of the face frame (G/H), rest it on scrap blocks as you apply glue to the upper case (A/B/C) edges. First remove scrap blocks to position and clamp the top rail (H). Working from the top down, clamp the upper stiles (G) to the case on both sides, aligning the stile edges with the case as you go. As you add clamps, remove scrap blocks until you reach the bottom of the case.
To make uniform moldings, place a piece of tape 3/4" from the edge of the blade. Adjust the fence so the blank rests against the tape and rip the first molding (left). Move the fence to again place the blank edge against the tape and rip the second molding (right).

Clamp the top front cove molding (U) to the upper case. Marking and mitering it to length eliminates gaps at the corners.

Base side blanks with double-faced tape. Miter one base side and clamp it to the lower end of the bottom case. Then mark and cut the base side to length. Miter one end of the base front blank to make it with the mitered base side and clamp it to the lower base rail (L) [Photo H]. Mark and miter-cut the base front to length. Then miter and cut the other base side to length.

Lay out cutouts on the base front (Z) and base sides (AA). Bandsaw on the waste sides and sand to the layout lines. Then glue and clamp the base front and sides to the lower case using 21/8"-wide spacers to help position the parts.

Screw slot detail.
Bring the cases to a close

1. Measure between rabbets on the back edge of the upper case sides (A) and the lower case sides (D). Rip a sheet of \(1/4 \)" plywood to that width. Then cut the middle back (O) and lower back (P) to length. Set aside the rest of the strip for the upper back (Q).

2. Cut the back rail (R) length equal to the middle back (O) width. Cut rabbets to accept the middle back and upper back (Q) [Drawing 1b]. Rabbet the ends on the front face to fit rabbets on the upper case sides (A).

3. Retrieve the middle back (O) and screw it to the upper case sides (A), shelf, and bottom (B). Glue and clamp the back rail (R) to the sides and against the middle back. Measure for the length of the upper back (Q) and cut to size. Screw the upper back to the sides (A) and top (B) and screw the lower back to the lower case. You’ll finish the upper, middle, and lower backs separately from the cases, so remove them for now.

4. Cut drawer spacers (S) so that one edge rests flush with the upper case stile (G) edge. Glue and clamp spacers to the upper sides (A) and bottom (B).

5. Clamp a scrap backer to the underside of the lower case top (E) to avoid tear-out. Drill mounting holes and slots to attach the seat (T) and upper case [Drawings 4 and 5, Photo 1].

6. Clamp the seat (T) to the lower case, centered left to right and with the back edges flush. Then transfer the locations of the shank and slot holes in the lower top (E) to the seat. Drill and cut the holes and slots in the seat. Then clamp the seat to the lower top (E) centered from side to side with the back edges flush, and screw through the lower case and seat into the upper case.

Drawers and more

1. Double-check the drawer-opening dimensions. Then cut the drawer fronts and backs (BB), sides (CC), and bottoms (DD) to size. Mount a \(1/4 \)" dado blade in your tablesaw and follow the...
three steps in Drawing 6 to create joints for the drawer fronts and backs (BB) and sides (CC) [Drawing 6a].

2 Sand the inside faces of the drawer front/backings (BB), drawer sides (CC), and drawer bottoms (DD) to 220 grit. Then glue and clamp the assembled drawers [Drawing 7].

3 After the glue dries, cut a 1/8” rabbet on the lower edge of the drawer front to create a shadow line equal to the reveal around the other three edges.

4 Drill and screw the coat hooks to the back rail (R) [Drawing 1] and the pull to the drawers.

5 Finish-sand the assembly and drawers to 220 grit where needed. Then remove the hardware and separate the cases. Apply stain (we used Varathane Summer Oak no. 211756) and three coats of satin polyurethane, sanding with 320-grit sandpaper between coats.

6 After the finish dries, reassemble the boxes and attach low-friction tape to the upper case bottom (B) and drawer spacers (S) [Drawing 1]. Then gather up those jackets and gloves scattered around the house and organize them in their new home.

Written by Bob Wilson with Jeff Mertz
Project design: Kevin Boyle
Illustrations: Roxanne LeMoine; Lorna Johnson

Materials List

<table>
<thead>
<tr>
<th>Part</th>
<th>FINISHED SIZE</th>
<th>T</th>
<th>W</th>
<th>L</th>
<th>Matl. Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>upper case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>upper sides</td>
<td>3/4”</td>
<td>11/4”</td>
<td>57/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>B</td>
<td>upper tophalf/bottom</td>
<td>3/4”</td>
<td>11/4”</td>
<td>32/”</td>
<td>OP 3</td>
</tr>
<tr>
<td>C</td>
<td>upper divider</td>
<td>3/4”</td>
<td>11/4”</td>
<td>64/”</td>
<td>OP 1</td>
</tr>
<tr>
<td>D</td>
<td>lower sides</td>
<td>3/4”</td>
<td>23/4”</td>
<td>16/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>E</td>
<td>lower tophalf/bottom</td>
<td>3/4”</td>
<td>22/4”</td>
<td>32/”</td>
<td>OP 2</td>
</tr>
<tr>
<td>F</td>
<td>lower divider</td>
<td>3/4”</td>
<td>22/4”</td>
<td>14/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>G</td>
<td>upper stiles</td>
<td>3/4”</td>
<td>2”</td>
<td>57/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>H</td>
<td>top rail</td>
<td>3/4”</td>
<td>4/”</td>
<td>28/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>I</td>
<td>drawer rails</td>
<td>3/4”</td>
<td>3/4”</td>
<td>28/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>J</td>
<td>drawer divider trim</td>
<td>3/4”</td>
<td>3/4”</td>
<td>6/”</td>
<td>OP 1</td>
</tr>
<tr>
<td>lower case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>lower stiles</td>
<td>3/4”</td>
<td>2”</td>
<td>16/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>L</td>
<td>lower base rail</td>
<td>3/4”</td>
<td>2/4”</td>
<td>28/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>M</td>
<td>upper base rail</td>
<td>3/4”</td>
<td>11/4”</td>
<td>28/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>N</td>
<td>base center stile</td>
<td>3/4”</td>
<td>3/4”</td>
<td>12/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>O</td>
<td>middle back</td>
<td>3/4”</td>
<td>32/”</td>
<td>45/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>P</td>
<td>lower back</td>
<td>3/4”</td>
<td>32/”</td>
<td>14/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>Q</td>
<td>upper back</td>
<td>3/4”</td>
<td>32/”</td>
<td>9/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>R</td>
<td>back rail</td>
<td>3/4”</td>
<td>4/”</td>
<td>32/”</td>
<td>OP 1</td>
</tr>
<tr>
<td>S</td>
<td>drawer spacers</td>
<td>3/4”</td>
<td>1”</td>
<td>11/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>top and trim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>seat</td>
<td>3/4”</td>
<td>25/4”</td>
<td>38/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>U</td>
<td>front covets</td>
<td>3/4”</td>
<td>3/4”</td>
<td>34/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>V</td>
<td>top side covets</td>
<td>3/4”</td>
<td>3/4”</td>
<td>13/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>W</td>
<td>lower side covets</td>
<td>3/4”</td>
<td>3/4”</td>
<td>24/4”</td>
<td>OP 2</td>
</tr>
<tr>
<td>X</td>
<td>front crown</td>
<td>3/4”</td>
<td>34/4”</td>
<td>36/”</td>
<td>OC 1</td>
</tr>
<tr>
<td>Y</td>
<td>side crowns</td>
<td>3/4”</td>
<td>34/4”</td>
<td>14/4”</td>
<td>OC 1</td>
</tr>
<tr>
<td>Z</td>
<td>base front</td>
<td>3/4”</td>
<td>4”</td>
<td>34/4”</td>
<td>OP 1</td>
</tr>
<tr>
<td>AA</td>
<td>base sides</td>
<td>3/4”</td>
<td>4”</td>
<td>24/4”</td>
<td>OP 2</td>
</tr>
</tbody>
</table>

*Parts initially cut oversize. See the instructions.

Materials key: O: red oak, OP: red oak plywood, OC: red oak crown molding, EO: edge-glued red oak.

Supplies: 1 1/4” pocket-hole screw, 1 1/8” panhead screws (2), #8x2” panhead screws (4), #8 washers (6), bronze bin pulls (2), bronze coat hooks (5), available from home centers.

Blade and bits: Dado set, 1/4” Cove router bit, 3/8” round-over bit.

Source

Low-friction tape: 1” wide slippery tape no. 25U0401, $1.50 for an 18’ roll, Lee Valley Tools, 800-871-8158 or leevalley.com.
Dust Collection that Evolves with Your Shop

As your workshop grows, so do your dust-collection needs. Make today’s system handle tomorrow’s tools.

You know you need to upgrade your workshop dust-collection system when:

1. Your workspace looks like a shop-vacuum showroom, with a different one attached to each machine.
2. You postpone buying a jointer or planer because it would overwhelm your old vacuum or bury your shop in chips and dust.
3. If the dust in your lungs doesn’t choke you, the people sharing your dust-filled house will.
4. All of the above.

Of course, a basic dust collector or cyclone plus ductwork can be installed for less than $1,000 while high-capacity systems cost several thousand—not exactly chump change. So, if you’re about to make that kind of investment, install a system that will serve you for years to come, even as your dust-collection needs change (and they surely will). You’ll find the extra money will be well spent if you value:

Healthier lungs. Few shop-vacuum filters and single-bag collectors trap 0.3- to 5-micron dust particles—the stuff that can lead to respiratory problems. (For the definition of “micron” and other dust-collection lingo, see the top of the next page.)

The option to add step-up tools, such as a 15” planer or 8” jointer, that need the power of a dust collector.

Less setup time and clutter. A ducted system eliminates tripping over extension cords and corrugated hoses, and repositioning a portable collector.

Convinced? Then start designing a system for both the shop you have today and the one you’ll have tomorrow.
Learn the language of dust collection

Before shopping for a dust-collection system, familiarize yourself with a few of the common terms you’ll encounter during your search.

Static pressure resistance. Before a system can carry away debris, air already filling the duct needs to be moved out of the way. That produces static pressure resistance measured in inches. Unnecessarily narrow ducts, sharp duct bends, and corrugated hose increase static pressure resistance by restricting airflow or adding friction between ductwork and the air.

Cubic feet per minute (cfm). Be careful how a manufacturer measures air-volume movement. Measurements taken on a “free air” basis—without any attachments that add static pressure or hinder airflow—help you compare one collector with another. But they’re not a real-world measure of how a unit will actually perform when hooked up to a system that creates static pressure resistance. Measurements figuring in static pressure resistance better mimic collector performance when hooked up to ductwork and tools.

Drop. A duct descending from an overhead main duct or branch to connect to a tool; drops typically include a 45° wye for the main duct, a 45° elbow, vertical pipe, blast gate, and corrugated hose to attach to the tool. Some use a wye splitter to serve two tools.

FPM/air velocity. This is the speed of air, in feet per minute, moving through the ducts while the system is on. Aim for air velocities of 4,000 fpm in the drops, and 3,500 fpm in the main ducts.

Micron. In this unit of measure for dust particles, 397 microns equals \(\frac{1}{44}\).

Plan a system for your changing workshop

First, estimate the dust-collection needs of your future, expanded shop. Make a list of your existing machinery, and what you plan to buy within five years. In a typical home shop, you’ll likely be working alone on one machine at a time with the others closed off by blast gates. If you plan to share your shop, you’ll need a collector large enough to serve machines working simultaneously.

Next decide how much your shop space might grow. Added space requires a more powerful collector to pull debris through longer ducts.

Then map your shop layout with the existing equipment as well as machinery you’ll add. To lay out your shop, use graph paper and paper cutouts to represent the size and shape of stationary tools; a computer modeling program such as Google SketchUp; or an online tool such as Grizzly Industrial’s planner at grizzly.com, as shown below.

Dust-collector suppliers will often help you position the collector in the shop and lay out the ductwork efficiently. The service is free for purchasers of larger cyclones.

We worked with Penn State Industries (800-377-7297) to lay out a 16×24’ sample shop, at left, that starts with a 10’ tablesaw, a bandsaw, a 12’ planer, a drill press, and a router table. Future tools include a 6’ jointer, 10’ miter saw, 16’ drum sander, and a belt/disc sander. Oneida Air Systems also offers a dustwork design service (800-732-4065, or oneida-air.com).

This system designed by Penn State Industries uses a 2.5-hp cyclone and 6’ ducts leading to 4’ drops that connect to the tools using short, flexible hoses. (Existing tools are shown in green, future tools in blue.) Economy ductwork and connectors, instead of spiral ductwork and premium connectors, cut the estimated price from $2,403 to $2,044. Features include:

1. The planer and jointer both generate large amounts of dust and chips, so both are positioned as close as possible to the collector, where static pressure resistance is least.
2. The drop to the tablesaw splits into two hoses—one for the saw’s dust port, and another for an aftermarket dust-collecting blade guard.
3. Diagonal runs cover a large portion of the shop for adding still more tools while minimizing the number of 90° connections.
4. Even the drill press connects to the system by way of a rigid adjustable hose that can be repositioned at the drill-press table as needed.
Ductwork dos and don’ts

To avoid common duct-design flaws:
DO use the largest ductwork that fits your collector. Just because a tool comes with a 4” duct port doesn’t mean you should use 4” main ducts or drops. Instead, look at the intake port sizes for the collectors you’re considering. Most cyclones have intake ports of 6” to 8”, and some two-bag collectors have 5”- or 6”-diameter intakes, so consider at least a 5” main duct. Tapered reducers, like the one below, change duct diameters with minimal static-pressure loss.

DO smooth out sharp curves. Think of air molecules as fast-moving cars on a freeway. Both change direction faster on a sweeping curve than a 90° turn. The PVC tee shown at near right adds more airflow resistance than the metal dust-collection pipe’s gradual bend.

DON’T overuse flex hose. Corrugated tubing creates three times more static-pressure resistance than the same length of smooth pipe. Use just enough to link a tool to its drop pipe.

DO eliminate bottlenecks near the collector. (See “Give dust a straight shot to the collector” below.) Instead of two 90° bends, use two 45° bends. Better still, raise the collector until the main duct leads straight into the inlet.

DON’T create long duct runs. A single duct of 30’ or more that wraps around more than two walls of a shop reduces air velocity and increases the risk of dust buildup. Instead, hang one shorter main duct, with diagonal branches leading to the tool drops.

DANGER: CURVES AHEAD

POOR

- Airflow

This PVC tee’s sharp bend raises static-pressure loss by slowing airflow.

BETTER

- Airflow

A more gentle arc creates less resistance, but you can do better.

BEST

- Airflow

A shallow bend reduces static pressure resistance and improves airflow.

GIVE DUST A STRAIGHT SHOT TO THE COLLECTOR

POOR

- Two 90° bends

The 90° elbows in the dust-collector setup (left) add turbulence and resistance. Two 45° bends (center) reduce resistance, but a straight run into the inlet port (right) works best.

BETTER

- Two 45° bends

BEST

- Straight pipe

Buy enough suction power

To choose a dust collector that will handle your shop’s future requirements, you first need to know which tool in your shop (or on your shopping list) needs the greatest airflow to pull away dust and chips. Because every foot of pipe and each fitting adds resistance to that airflow, you also need to know the amount of static-pressure loss between the collector and that tool. With your workshop layout and dust-collection system map in hand, use the charts on the next page to guide you from your floor plan to the collector you need.

Once you have both numbers, you’re ready to shop. Skip references to “free air” or “maximum” cfm, and check manufacturers’ literature and Web sites for performance curves like the example at right. (For head-to-head comparisons of several manufacturers’ products, go to woodmagazine.com/cyclones.)

Manufacturers’ curves may show how the system performs under ideal, carefully controlled conditions with a new, clean filter. Time and real-world use may lower a unit’s actual performance, so opt for the next collector size up from what you’ve calculated you’ll need. That way, no matter how far woodworking takes you, it won’t leave a trail of sawdust along the path.

GRADE COLLECTORS ON A CURVE

Trace a horizontal line from your system’s static-pressure total (9” in this example) and a vertical line up from your most-demanding tool’s CFM requirement (575 cfm). If they meet on or under the curve, that collector has the power you need.
Estimate your dust-collection needs

Begin here

Estimate airflow needs

Find the tool you own (or will add) with the highest cfm requirement. Write the cfm on line 1 below. Your system needs to meet this peak cfm. If you’ll use more than one tool at once, add the two numbers.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Duct</th>
<th>cfm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandsaw</td>
<td>4"</td>
<td>350</td>
</tr>
<tr>
<td>Belt/disc sander</td>
<td>4"</td>
<td>550</td>
</tr>
<tr>
<td>Drum sander (12–24" drum)</td>
<td>5"</td>
<td>550–650</td>
</tr>
<tr>
<td>Jointer, 6–8"</td>
<td>4"–5"</td>
<td>350–550</td>
</tr>
<tr>
<td>Planer, 10–15"</td>
<td>3"–5"</td>
<td>500–600</td>
</tr>
<tr>
<td>Planer, >15"</td>
<td>6"</td>
<td>700–800</td>
</tr>
<tr>
<td>Radial-arm saw/mitesaw</td>
<td>5"</td>
<td>550</td>
</tr>
<tr>
<td>Router table/shaper</td>
<td>4"–5"</td>
<td>350–550</td>
</tr>
<tr>
<td>Tablesaw</td>
<td>5"</td>
<td>550</td>
</tr>
</tbody>
</table>

1. **Maximum cfm:**

Add up duct static pressure losses

Now translate the main and branch duct length into static pressure (SP) losses. Multiply the number of feet of duct by that size's SP loss per foot. Add up the numbers in the right column, and transfer the total to the next box.

<table>
<thead>
<tr>
<th>Duct Size</th>
<th>No. of Feet</th>
<th>Static Pressure Loss per Foot</th>
<th>Total Static Pressure Loss ("')</th>
</tr>
</thead>
<tbody>
<tr>
<td>3"</td>
<td>x</td>
<td>0.1</td>
<td>= "</td>
</tr>
<tr>
<td>4"</td>
<td>x</td>
<td>0.07</td>
<td>= "</td>
</tr>
<tr>
<td>5"</td>
<td>x</td>
<td>0.055</td>
<td>= "</td>
</tr>
<tr>
<td>6"</td>
<td>x</td>
<td>0.045</td>
<td>= "</td>
</tr>
<tr>
<td>7"</td>
<td>x</td>
<td>0.038</td>
<td>= "</td>
</tr>
<tr>
<td>8"</td>
<td>x</td>
<td>0.032</td>
<td>= "</td>
</tr>
</tbody>
</table>

Total Ductwork Static Pressure Resistance: "

Add resistance from system parts

You’re almost finished. For each duct diameter between the collector and the most-demanding tool, record the number of 45° elbows, 90° corners, and feet of flex hose. Next, add up the totals for each row, and multiply those by the SP values in the far right boxes. Add the subtotals down, and add the total SP loss from the box on the left, and write the total maximum static pressure resistance on line 2. This, along with the maximum cfm from line 1, are the two numbers you’ll need to shop for a collector that meets your tool and system needs.

<table>
<thead>
<tr>
<th>Fitting Diameter</th>
<th>45° Elbows</th>
<th>90° Corners</th>
<th>Flex Hose</th>
<th>Totals x SP (")</th>
</tr>
</thead>
<tbody>
<tr>
<td>3"</td>
<td>_______×2.5=</td>
<td>_______×5=</td>
<td>_______×3=</td>
<td>_______×1"=</td>
</tr>
<tr>
<td>4"</td>
<td>_______×3=</td>
<td>_______×6=</td>
<td>_______×3=</td>
<td>_______×0.7"=</td>
</tr>
<tr>
<td>5"</td>
<td>_______×4.5=</td>
<td>_______×9=</td>
<td>_______×3=</td>
<td>_______×0.55"=</td>
</tr>
<tr>
<td>6"</td>
<td>_______×6=</td>
<td>_______×12=</td>
<td>_______×3=</td>
<td>_______×0.45"=</td>
</tr>
<tr>
<td>7"</td>
<td>_______×6.5=</td>
<td>_______×13=</td>
<td>_______×3=</td>
<td>_______×0.38"=</td>
</tr>
<tr>
<td>8"</td>
<td>_______×7.5=</td>
<td>_______×15=</td>
<td>_______×3=</td>
<td>_______×0.32"=</td>
</tr>
</tbody>
</table>

Non-Duct Static Pressure:

Total Ductwork Static Pressure Resistance:

Total Static Pressure:

Sources

woodmagazine.com
3 Kitchen Clutter Busters

Make the cook’s life easier with a trio of projects you can build in a weekend.

These small projects solve big storage problems in your kitchen—jumbled silverware drawers, inaccessible base cabinets, and clattering stacks of bakeware. We built each one to fit the drawers and cabinets in the kitchen remodel featured in issue 196 (see More Resources). But you can quickly resize them or customize them to fit your kitchen and your storage needs using the instructions in this article. Basic tools and a few scraps of stock will get the job done.

1 Bring drawer disorder to a close

Store-bought kitchen drawer organizers separate silverware—most of the time. But the organizer you design and build works all of the time because you customize it for the size and number of knives, forks, spoons, and accessories you use.

Organizer sizer. Measure the drawer interior and design your organizer’s outside dimensions ¼” smaller to allow for easy removal of the tray for cleaning. Make it just tall enough to hold the utensils. Then decide how many types of forks, spoons, knives, and accessories you’ll store. Make silverware dividers about ½” longer than the longest piece of silverware.

Build to your dimensions. Prepare enough ½”-thick stock to make the front, back, sides, and partitions. Cut all parts to width; then the sides to length. Now cut the front, back, and
two left-to-right partitions 1" shorter than the outside width of the organizer. Cut to length the front-to-back partitions separating the silverware. To make items easy to reach, mark a centered, curved cutout on each partition using a compass or fairing stick. (See More Resources for how to make and use your own fairing stick.) Bandsaw on the waste side and sand to the line.

Quick Tip: Combine your cuts. Instead of cutting each curve separately, tape together a stack of identical blanks and lay out the curve on the top blank. Then bandsaw and sand the stack to create parts with identical curves.

Dry-assemble the organizer with the silverware partitions and left-to-right partitions in place, and measure for optional partitions at the front or back. Cut these to size and double-check the fit. Then finish-sand the partition parts to 180 grit.

Working on a dead-flat surface, glue and clamp the silverware partitions to two left-to-right partitions, as shown above right. (To shorten clamp times, use a nailer with 1" brads.) To this assembly, glue, clamp, and nail the sides, front, back, and remaining partitions. After the glue dries, measure the assembly length and width, and cut a bottom to size from ¼" plywood. Glue, clamp, and nail the bottom to the assembly. Then apply three coats of clear finish, such as polyurethane.

2 Base-cabinet contents come to you

When half of a cabinet’s contents prove so hard to reach that they might as well be in the garage, it’s time to take back control. Sliding drawerlike trays that extend the depth of a cabinet bring even the stuff at the back out where you can see and reach it.

Organizer sizer. First measure the width of each base cabinet face-frame opening and subtract 1". Then measure from the inside of the face frame to the cabinet back (usually about 23”). Size the overall tray length ½–1” shorter than the cabinet depth. We designed our trays with 2½”-wide sides, fronts, and backs [Drawing 2].

Build to your dimensions. Cut the tray sides to length and the fronts and backs 1½” shorter than the tray width you calculated. Cut the front faces ¼” shorter than the width of the opening in the cabinet frame.

Next dado the inside faces at both ends of the tray sides, as shown in Step 1 of Drawing 3a. Then cut mating rabbets on the ends of the fronts and backs, as shown in Step 2. Cut grooves in the front, back, and sides for the tray bottom. Measure between the bottoms of the grooves and cut the tray bottom to fit within the grooves. Assemble the tray and finish-sand to 180 grit. Stain the front face to match your cabinets and apply three coats of clear finish. (We used satin aerosol lacquer, sanding with a 320-grit sponge between coats.)

Pull-out cabinet tray

Now put it to work. Choose the longest slides that fit the depth of your cabinet. To use 22” side-mounted, full-extension slides (see Source), first install mounting strips running from the front to the back of the cabinet sides. See “How to make organizers ride on slides” on page 65 for installation tips. Install both tray-mounted slide parts flush with the bottom edge of the tray sides. Mount the tray in the cabinet and check that it slides smoothly.

Next apply double-faced tape to the tray front face. Center the front face in the opening with ¼” reveals on both sides and above the rail or shelf edge. Then drill and screw through the tray front to mount the front face.
Tame the cookie-sheet monster

If pulling out a pan from your bakeware stack sounds like a five-car pileup, restore calm to the kitchen with a sliding cookie-sheet organizer built for your needs. Then hide it by attaching a new or existing cabinet door to its front.

Organizer sizer. Make the total width 1" narrower than the face-frame opening to allow clearance for the slides. This organizer’s height can be anything up to the height of the face-frame opening, although we made ours about 4" shorter to save material. Make the overall organizer length about 1" less than the cabinet depth.

Build to your dimensions. Attach solid-wood or iron-on edging to ¾" plywood for front and back panels the width of your finished organizer. Then subtract the combined thickness of the panels from the length of the organizer. Cut the six rails that length from ¾×2"-wide stock for the upper rails and ¾×3"-wide stock for the bottom rails. Now cut the plywood bottom to the same length as the rails and the width of the front and back panels, as shown below.

Dry-assemble the organizer with the rails and bottom butt-joined to the front and back, and drill countersunk pilot holes in the front and back. Glue and screw the front and back to the rails. Now glue the bottom to the bottom-rail edges. Finally, cut slide-mounting rails the length of the organizer and glue and screw them to the bottom.

Now put it to work. Attach slide-mounting strips to the sides of the cabinet as explained in “How to make organizers ride on slides,” opposite. Then screw slides to the slide-mounting strips and the slide-mounting rails on the organizer.

We made a new door for the cabinet shown right as part of the kitchen remodeling, but you can mount an existing door...
on the organizer just as easily after removing its hinges. With the organizer in place, tape a scrap spacer to the back to bump the front just proud of the cabinet face frame. Then place double-faced tape on the organizer front, center the door on the face-frame opening, and press it against the tape. Drill and screw through the organizer and into the door. Then stand your bakeware on edge in the organizer with the shortest pieces to the outside for easy reach.

Use Step 1 to dado both ends of each tray side. For Step 2, tape a ¼"-thick shim to the rip fence and rabbet both ends of each tray front and back.

How to make organizers ride on slides

Both the slide-out trays and the cookie-sheet organizer require full-extension, side-mounted slides (see Source) that attach to your cabinets. The cabinet-mounted part of each slide first requires slide-mounting strips.

- For a single-door base cabinet, cut two strips 2½" wide and plane them to fit flush with the face-frame stiles, as shown far right. Screw the strips to the cabinet sides with their bottom edges on the cabinet bottom.
- For a double-door cabinet with a center stile, as shown on page 63, first mount strips inside the cabinet as in a single-door cabinet. From ¼"×2½" hardwood, cut two slide-mounting strips that reach from the inside face of the center stile to the cabinet back. From ¾"-thick hardwood, cut two spacer blocks to a width equal to the width of the cabinet's center stile minus 1½". Then cut both blocks 2½" long.

Center, drill, and screw a spacer block to the center stile at the bottom. Measure from the cabinet side to the center-stile spacer block and screw another spacer block to the cabinet back that distance from the side. Drill and screw slide-mounting strips to the front and back spacer blocks, as shown below left. 🌟

More Resources

Free Video
- "Making Super-Simple Drawers"
 woodmagazine.com/simplesdrawer

Free Plans
- "Right-Angle Clamping Jig"
 woodmagazine.com/anglejig
- Instructions for making a fairing stick
 woodmagazine.com/fairing
- "Portable Drum Sander"
 woodmagazine.com/drillsand

Related Articles
- "Cook Up a Kitchen Makeover in Your Shop" Issue 196 (March 2010) or at woodmagazine.com/kitchenredo $5 (1—Download this article for a small fee.)

Written by Bob Wilson with Kevin Boyle
Project designs: Kevin Boyle
Illustrations: Roxanne LeMone, Lorna Johnson
Source
Drawer slides: 22" 100-lb., full-extension drawer slides no. 02K30.22, $14.50 per pair, Lee Valley Tools, 800-871-8158 or leevalley.com.
One-Stop Storage

Drill- and Router-Bit Case

Organize and protect your bits with a cabinet that adapts to your needs.

PROJECT HIGHLIGHTS

- Overall dimensions: 24¼" wide x 9¾" deep x 36" high.
- Customize the interior by varying the number of shelves and bit holders to suit your collection.

Skill Builders

- Learn how to make a simple and sturdy face frame and case door frame using half-laps cut with a dado blade.
- Discover how to pack the most bits into the smallest space.

A few hours spent building this wall-hung unit saves a lifetime of hunting for bits. Quickly find what you need with a glance through a clear acrylic door that keeps out dust.

Build the case

1. From ¾" plywood, cut the sides (A) and top/bottom (B) to size [Materials List, page 70].

2. With a dado blade the width of the plywood thickness, cut a ¾"-deep dado on the inside face of a side (A) at the top and bottom [Drawing 1, Photo A]. Repeat for the other side.

3. Set your tablesaw fence to ¾" from the blade and cut a groove in the sides (A) and top and bottom (B) [Drawing 1] to the thickness of the back (C). (Ours was 3/8" thick.) Adjust the fence.

CUT DADOES IN THE CASE SIDES

To prevent tear-out, back up dadoes cut in the sides (A) with a miter-gauge extension.
and make two or more passes as needed. Finish-sand the parts to 180 grit.

4 Cut the back (C) to size. Glue and clamp the sides (A), top and bottom (B), and back [Photo B].

5 Cut a shelf-pin hole template to size (Drawing 1a) from perforated hardboard. Apply masking tape to identify where to drill shelf-pin holes, and label the front and bottom edges. Add ⅛" to the template thickness; then wrap tape on a ¼" bit that distance from the end as a visual depth gauge. (See a free video of this at woodmagazine.com/shelfholes.)

6 With the case on its side, place the template bottom against the case bottom (B) and the front flush with the case front edge. Drill shelf-pin holes [Photo C], then repeat on the other side.

Dado the half-laps

1 Cut the face-frame rails (D) and stiles (E) to size. Then, cut the door rails (F) and stiles (G) to size, and put them aside.

2 Install a ¼" dado-blade set to cut half the thickness of the face-frame parts [Photo D] and door-frame parts.

3 Set the rip fence to the width of the face-frame parts [Photo E]. Cut half-laps on the inside faces at both ends of the rails (D), and the outside faces at both ends of the stiles (E) [Drawing 2].

4 Now retrieve the door rails (F). Set the tablesaw fence to the width of the stiles and rails, as for the face frame. Cut 2½"-wide half-laps on the inside faces at both ends of each rail, but not on the stiles (G).

5 Attach an auxiliary rip fence [Photo F], and cut a ¼" rabbet ¼" deep on the inside edges of the door rails (F) and stiles (G).
Use a rabbeted rail (F) to set the distance from the fence to the blade for the stile (G) half-lap width (about 1 ¼") [Photo G]. Cut half-laps at the ends of both stiles.

Assemble the face frame and the door

1. To attach the face frame, first glue and clamp a rail (D) centered on the width of the case and flush with the ends of the sides (A) [Photo H]. Then, glue and clamp both stiles (E) and the other rail (D) to the case, checking for even overhangs [Photo I]. Finish-sand the face frame to 220 grit.

2. To assemble the door, glue and clamp the rails (F) and stiles (G) [Drawing 3], checking for square. Cut a piece of ¼" clear acrylic to fit the rabbeted opening and set it aside.
Use a 1½" Forstner bit to drill a ¾"-deep hole in the door stile (G) to accept the cup on a European-style hinge.

Starting with ¼"-thick stock at least 1½" wide and 52" long, rip two ¾"-wide blanks (H). From each blank, cut one side glass stop and one top/bottom glass stop to fit the door opening. Sand the door frame and stops to 220 grit; and then mark the hinge centerlines on one door stile (G).

Using a 1½" Forstner bit [Photo J], center ¾"-deep hinge-cup holes [Drawing 3a]. Position the door on the face frame, centering it vertically but edge-over-edge with the face-frame stile (E) where you’ll attach the hinge [Photo K]. Transfer the hinge centerlines to the face-frame stile.

Place the hinge cups in the door holes, with the cup flange parallel to the door edge. Use the flange holes as guides to drill pilot holes for the mounting screws. Then, center the other half of the hinge on the face-frame stile (E) edge where marked, and mark and drill pilot holes. Drill mounting holes for the 3" wire pull [Drawing 3].

Make the shelf and cleats

1. Cut the shelf (I) and shelf trim (J) to size. (Make more shelves, if you like.) Glue and clamp the edging to the shelf. Round over the top and bottom edges of the trim, then finish-sand to 220 grit.

2. Cut the bottom support (K) to size. Then drill ¾" pilot holes and screw it to the back (C) [Drawing 2], guided by the holes in the perforated hardboard.

3. Cut the hanging cleats (L) to size, and bevel one edge on both [Drawing 2a]. Then, screw one cleat to the back (C), with the square edge up and against the top (B).

Let’s wrap up this case

1. Inspect all the parts and finish-sand where needed. Apply stain, if desired, and a clear finish. (We applied two coats of satin polyurethane.)

2. After the finish cures, insert the acrylic in the door frame. Drill pilot holes in the four glass stops and attach them using #17×¾" brads.

3. Install the wire pull and hinges. Drill pilot holes in the holders (M), and screw them to the back (C) where desired, using holes in the perforated hardboard. Insert shelf supports in the case sides (A), and add the shelf.

4. At the location where you’ll mount the case, drill and mount a hanging cleat (L) with the wide face out and beveled edge up. Hang the case on the cleat, round up your drill and router bits, and show them their new home.

33 HINGE DETAIL
Try these space-saving storage strategies for bits and accessories

Router bits. Space most bits with ¼”-diameter shanks ⅛” apart (on center). Straight and dovetail bits can be spaced as tight as ⅛” apart, but allow up to 4” between holes for panel-raising bits. Space ⅛”-shank bits from ¼” to ½” apart. If you’re unsure whether you’ll collect more ¼”- or ½”-shank bits, space the ¼” holes ⅛” apart. That way, you can later drill out the ⅛” holes for ½”-shank bits.

Forstner bits. Divide your bit set in half and stagger the bit positions along two rows using Photos L, M, and N as guides.

Drill accessories. To store countersinks, self-centering bits, plug cutters, screw- or nut-driving bits, and other accessories, space one group of holes 1” apart (on center) on your bit holder. Then drill another group of holes spaced 2” apart for larger-diameter items.

Materials List

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
<th>Finish</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>sides</td>
<td>¾”</td>
<td>8”</td>
<td>BP</td>
</tr>
<tr>
<td>B</td>
<td>top/bottom</td>
<td>¾”</td>
<td>8”</td>
<td>23¼”</td>
</tr>
<tr>
<td>C</td>
<td>back</td>
<td>¾”</td>
<td>2 ¾”</td>
<td>34”</td>
</tr>
<tr>
<td>D</td>
<td>face-frame rails</td>
<td>¾”</td>
<td>1 ½”</td>
<td>24¼”</td>
</tr>
<tr>
<td>E</td>
<td>face-frame stiles</td>
<td>¾”</td>
<td>1 ½”</td>
<td>36”</td>
</tr>
<tr>
<td>F</td>
<td>door rails</td>
<td>¾”</td>
<td>2”</td>
<td>22¼”</td>
</tr>
<tr>
<td>G</td>
<td>door stiles</td>
<td>¾”</td>
<td>2”</td>
<td>33¼”</td>
</tr>
<tr>
<td>H*</td>
<td>glass stop blanks</td>
<td>¾”</td>
<td>½”</td>
<td>52”</td>
</tr>
<tr>
<td>I</td>
<td>shelf</td>
<td>¾”</td>
<td>6”</td>
<td>22¼”</td>
</tr>
<tr>
<td>J</td>
<td>shelf trim</td>
<td>¾”</td>
<td>½”</td>
<td>22¼”</td>
</tr>
<tr>
<td>K</td>
<td>bottom support</td>
<td>¾”</td>
<td>3”</td>
<td>22¼”</td>
</tr>
<tr>
<td>L</td>
<td>hanging cleats</td>
<td>¾”</td>
<td>3”</td>
<td>22¼”</td>
</tr>
<tr>
<td>M</td>
<td>bit holders</td>
<td>1 ¼”</td>
<td>3”</td>
<td>22¼”</td>
</tr>
</tbody>
</table>

* Parts initially cut oversized. See the instructions.
† One shelf is shown; more may be added as desired.

Materials key: BP—birch plywood, M—maple, PHB—perforated hardboard.

Supplies: ⅛”x⅛”, ⅛”x⅜” flathead wood screws, shelf pins, European-style hinges (2), ⅛”x⅛”x30¼” clear acrylic.

Blade and bits: Stack dado set, 1½” Forstner bit, ¼” Brad-point bit.

Written by Bob Wilson with Jeff Mertz
Project design: Kevin Boyle
Illustrations: Roxanne LeMoine; Lorna Johnson
Do Your Tools Cut It?

Your Long-Term Solution for Carving, Shaping, Cutting & Sanding.

- Custom Woodworking
- Furniture & Railings
- DIY Projects
- Carvings Large or Small

Shop Kutzall Direct
www.KutzallDirect.com

Reduce Your Work by 80% or More!
Easy to control, remarkable durability, and first-class performance.
Let the tools do the work while you take all the credit....in far less time.

info@kutzalldirect.com
Phone: (810) 765-1000

NOVA FORGES A PATH TO A GREENER FUTURE

The DVR motor delivers incredible energy efficiency, up to 80% power savings over conventional motors

Saving you money, Saving the planet.

The ONLY lathe featuring the Green DVR motor is the NOVA DVR XP lathe.
The world's only INTELLIGENT lathe with ONBOARD COMPUTER delivering ENERGY EFFICIENCY, UNIQUE SAFETY SENSING (instantly shutting down the spindle when it senses a chisel dig in) and programmable features.

For more, see our website www.teknatool.com.
NOVA from Teknatool International

Smart Tools, Powerful Solutions
Jiggity-Diggity-Dock

Dancing Clock

Here's a different kind of woodworking “jig.” After you put a smile on the face of this project, it will do the same for that special youngster.

Start with a 6-foot 1×12 on Saturday morning and by Sunday night, this happy character will brighten up a child’s room. The clock movement and dial are part of a convenient kit (Source, page 74).

Swing into action

1. Prepare three ¾×10¾×17¾” pine blanks and one ¾×6¾×8¾” blank [Drawing 1]. You’ll also need a 12×12” piece of ¼” plywood.

2. Make four copies of the Clock Top Pattern and the Clock Bottom Pattern from the WOOD Patterns® insert. Tape the patterns together where indicated and set one copy aside for shaping the backs (H, I) later. From one copy, cut out the patterns for the arms (C, D), head (E), and shoes (F, G). Cut and discard the arms from the remaining patterns. Spray-adhere the patterns to the blanks [Drawing 1]. At the bandsaw, rough-cut the arm (C) and shoe (F) from the body back (B) blank. Glue the remaining body back blank to a piece of ¼”-thick stock to make part B ½” thick [Drawing 2].

3. Highlight the lines to cut on each pattern [Photo A, Drawing 1]. Drill a 2½” hole wherever indicated on the body front (A) and a ¾” hole where indicated at the top of the head (E). Bandsaw to within ½” of the lines on all the pieces [Photo B] and sand them to shape.

4. Remove the pattern from the body back (B) and glue the body front (A)
and body back together [Photo C]. Sand the inside and outside edges flush. We used a spindle sander and shop-made sanding blocks [Shop Tip, right], working from 100 grit up to 220 grit. Sand the arms (C, D), head (E), and shoes (F, G) to the pattern lines.

5 Clamp the shoes (F, G) to your bench and use a utility knife to cut a $\frac{3}{16}$"-wide groove above the soles [Photo D]. Clean up the grooves with the folded edge of a piece of 150-grit sandpaper. Set

SHOP TIP

Wedges make a point

A wedge-shaped sanding block with three different angles makes it easy to shape corners that a spindle sander can’t reach. Rip one from the edge of a wider blank. Cover the wedge with self-adhesive sandpaper or use spray adhesive to glue on regular sandpaper.
up a chamfer bit in your table-mounted router and rout ¼" chamfers on the body front (A), arms (C, D), head (E), and shoes (F, G) where shown on the patterns. Use a splash of paint thinner to remove the patterns from all pieces. Sand these pieces to 220 grit.

6 Glue the head (E) and shoes (F, G) onto the body front (A) and sand the edges flush. Check the fit of the arms (C, D) against the body backs (B) and sand as needed to get a tight fit. Glue the arms in place. [Photo E].

7 Rout a ¼" rabbet ¼" deep around the cavity at the rear of the body (A–G) [Drawing 2]. Retrieve the pattern set aside earlier, spray-adhere it to ¼" plywood, and cut out the backs (H, I), cutting just outside the dashed lines. Sand the edges of the backs to fit in the rabbets. Screw the turnbuttons to the rear of the body.

8 Apply a finish to all parts. (We stained ours with Varathane Pecan No. 218, then brushed on two coats of polyurethane varnish.)

9 Glue the clock face to the body (A), aligning the 12 with the hole in the head (E) [Drawing 2]. Install the clock movement and a battery and attach the hands. Trim the pendulum arm to 6¼", hang it from the clock movement, then start the pendulum swinging. If it taps against the side of the body, rotate the clock movement slightly. Place the backs (H, I) into the rabbets in the body back (B) and tighten the turnbuttons to hold the backs in place.

Supplies
- Spray adhesive.
- **Blade and bits:** ¼" bandsaw blade; 2½", 1¼" drill bits; 45° chamfer, ¼" rabbet router bits.

Source
- Hardware kit contains: 9½" turnbuckles (B), pendulum clock movement, clock hands, clock face. Kit no. 4500, $16.95, Meisel Hardware Specialties, 800-441-9870, meiselwoodhobby.com.
- Lumber: ¾" x 12" x 12" plywood, no. 4501, $3.25, Meisel Hardware Specialties.

Produced by Craig Ruegsegger with Kevin Boyle
Project design: Paul Meisel
Illustrations: Roxanne LeMoine; Lorna Johnson

Cutting Diagram

Cut the Shoe Groove

Arm Your Clock

Drawn View

Exploded View

Time travel at the speed of a 1935 Speedster?

The 1930s brought unprecedented innovation in machine-age technology and materials. Industrial designers from the auto industry translated the principles of aerodynamics and streamlining into everyday objects like radios and toasters. It was also a decade when an unequaled variety of watch cases and movements came into being. In lieu of hands to tell time, one such complication, called a jumping mechanism, utilized numerals on a disc viewed through a window. With its striking resemblance to the dashboard gauges and radio dials of the decade, the jump hour watch was indeed “in tune” with the times!

The Stauer 1930s Dashtronic deftly blends the modern functionality of a 21-jewel automatic movement and 3-ATM water resistance with the distinctive, retro look of a jumping display (not an actual jumping complication). The stainless steel 1 1/2" case is complemented with a black alligator-embossed leather band. The band is 9 1/2" long and will fit a 7-8 1/2" wrist.

Try the Stauer 1930s Dashtronic Watch for 30 days and if you are not receiving compliments, please return the watch for a full refund of the purchase price. If you have an appreciation for classic design with precision accuracy, the 1930s Dashtronic Watch is built for you. This watch is a limited edition, so please act quickly. Our last two limited edition watches are totally sold out!

Not Available in Stores
Stauer 1930s Dashtronic Watch $99 +S&H or 3 easy credit card payments of $33 +S&H
Call now to take advantage of this limited offer.
1-800-859-1602
Promotional Code DRW481-02
Please mention this code when you call.

Stauer
14401 Southcross Drive W.,
Dept. DRW481-02
Burnsville, Minnesota 55337
www.stauer.com
Cordless Micro-Drivers

These compact but capable tools pack surprising punch, making them the go-to drivers in our shop.

As shown in the chart on the next page, all 10 units drove more than 150 1/8" drywall screws into pine on a single charge. That's impressive enough, but five drivers topped the 200 mark, led by the Milwaukee 2401-22 at an average of 259. That's likely more than you'll drive in one day, anyway. (By comparison, the 14.4-volt drill/drivers we tested only a few years ago drove from 217 to 522 screws per charge.)

Next, we wondered how these compact units would perform in a pinch at drilling holes. Using new 3/4" spade bits, all the tools drilled at least 19 1/2"-deep holes in pine on a single charge. The Ryobi HJP002K nearly tripled that with an average of 48 holes per charge. Six models feature dual speed ranges, and we drilled about the same number of holes using both speed ranges. We could, as you'd expect, drill holes faster in the high range.

It's nice to know these micro-drivers drill small holes okay, but most struggle with bits larger than 3/8" in diameter and drill slower than larger drills. Driving screws is what these tools do best, effectively making micro-drivers a bit of a luxury item for most home workshops. So if you can buy only one tool for your drilling and driving needs, get a conventional 14.4-volt or larger model.

Just as the diminutive David slew the ferocious giant, Goliath, to the surprise of everyone, these pint-size lithium-ion powered tools blew our expectations out of the water with their staggering screw-driving abilities. In fact, since we began using them, the larger 14.4- and 18-volt drill/drivers in the WOOD® magazine shop now see primarily drilling duty as we reach for compact 10.8- and 12-volt micro-drivers almost exclusively for driving screws—especially for hinges and small hardware. Their compact size minimizes hand fatigue and provides them better access to tight quarters.

They're lightweights, but only literally
With weights ranging from 1.8 to 2.6 lbs (with battery installed), these cordless tools weigh about half as much as nickel-cadmium powered 14.4-volt drill/drivers, and even less than the bulkier 18-volt drills. They achieve this by using lighter-weight lithium-ion chemistries in their compact battery packs. Although most micro-driver manufacturers claim 12 volts of power compared to 10.8 for others, we saw no distinct advantage that could be traced to rated voltage. (One manufacturer started the trend of claiming 12 volts of power, and for competitive reasons most others followed suit.)
Drivers with a ¾" three-jaw chuck (left) work with hex- and round-shank bits. Models with a hex chuck (right) accept only bits with ⅜" hex shanks.

To really separate the tools from the toys, we tested each driver’s torque by driving 2" lag screws of different diameters into predrilled pine. As shown in the chart at right, only the Makita DF030DW could fully seat a ¾"-diameter lag. The Ridgid R92008 and Ryobi shut down suddenly while driving ¾" lags. Jason Swanson, spokesman for both brands, said the electronic “brains” inside the battery packs stop these models to protect the batteries under extreme conditions.

More to consider before buying

- **Charge time.** Each driver comes with two batteries and a charger. The Craftsman 11812 and both Bosch models charged fastest, needing only 30 minutes. All others required from 35 to 60 minutes. Still, given the run time per charge shown by most of the drivers, you'll likely not exhaust a battery before the second one is recharged.

- **Chucks.** Six models feature ¾" three-jaw chucks, while the others have quick-connect ¾" hex chucks, shown above. Neither style proved a deal-breaker, unless you plan to drill much with the tool; only the three-jaw chucks accept round-shank bits.

- **Clutches.** All the tools sport clutches with at least 10 settings—most had 18 or more—and we found all the clutches helpful to prevent strip-
ping out or shearing off heads of brittle drywall screws, as well as tiny brass hinge screws. However, clutches on the Bosch PS30-2A, Hitachi DB10DL, Milwaukee 2410-22, Ridgid, and Ryobi proved more difficult to grip and turn.

- **Grip comfort and balance.** Most of the drivers felt comfortable and nicely balanced. Those with three-jaw chucks proved slightly more front heavy; Ridgid’s beefy chuck made that driver very out of balance and awkward to hold. Battery packs on some models feature small stems, resulting in slimmer grips, as shown at right. The triangular-shaped packs on the others slide into the handles, requiring thicker grips that could be uncomfortable for small hands.

- **Task lights.** All but the Ryobi come with a trigger-activated LED light to illuminate your work area, but some work better than others. Hitachi’s dual lights work best because they’re mounted within the clutch assembly rather than below it, as with the rest. This low position on the others casts light slightly below the point of contact when working with bits shorter than 4".

Our recommendation
Any of these micro-drivers would likely be a welcome addition to any shop. But for us, three models drove to the head of the class to share our Top Tool award: Bosch PS20-2A, Makita DF030DW, and Milwaukee 2401-22. The Makita displayed the best power, and the Milwaukee demonstrated the longest run time per battery charge. The Bosch was second-best in power and third-best in run time. All are well-balanced, comfortable to grip, and feature easy-to-use clutches and hex chucks. We suggest you choose the one that feels best in your hand.

FIND A GRIP YOU LIKE

Eight of the 10 drivers feature thicker grips, like the Bosch PS20-2A (left). The Hitachi (right) and Ryobi have slim grips.

Written by Bob Hunter with Doug Ley

Illustrations: Tim Cahill

GET POWERFUL PUNCH FROM A PINT-SIZE DRIVER

<table>
<thead>
<tr>
<th>BRAND</th>
<th>MODEL (1)</th>
<th>BATTERY PACKS</th>
<th>DRILL</th>
<th>PERFORMANCE RATINGS (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMP-VOLTS</td>
<td>RPM</td>
<td>PRIMARY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMP-HOURS</td>
<td>NUMBER INCLUDED</td>
<td>CHUCK TYPE (2)</td>
</tr>
<tr>
<td>BOSCH</td>
<td>PS20-2A</td>
<td>12</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PS30-2A</td>
<td>12</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>CRAFTSMAN</td>
<td>11812</td>
<td>12</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>HITACHI</td>
<td>DB10DL</td>
<td>10.8</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>MAKITA</td>
<td>DF030DW</td>
<td>10.8</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DF330DW</td>
<td>10.8</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>MILWAUKEE</td>
<td>2401-22</td>
<td>12</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2410-22</td>
<td>12</td>
<td>1.4</td>
<td>2</td>
</tr>
<tr>
<td>RIDGID</td>
<td>R92008*</td>
<td>12</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>RYOBI</td>
<td>HJP002K</td>
<td>12</td>
<td>1.3</td>
<td>2</td>
</tr>
</tbody>
</table>

1. (•) Comes with an LED flashlight
2. (H) 3/8" hex chuck
 (J) 1/4" three-jaw chuck
3. A Excellent
 B Good
 C Fair
4. Measured from an average of driving screws and drilling holes.
5. (C) Canvas
 (P) Plastic
6. (C) China
 (M) Malaysia
7. (•) 3 years for drill and 2 years for batteries optional
 (H) Two years for batteries
 (L) One year for charger and batteries
 (R) Lifetime service agreement optional
8. Prices current at time of article production and do not include shipping, where applicable.
FREE Product Information from Advertisers in This Issue
Looking for FREE product information? Fill out the coupon in this section to receive FREE product info and catalogs.
Or, for quicker service and instant access to information, visit us online at www.WOODWorkersCenter.com

Adhesives & Finishes
TITEBOND® II ULTIMATE WOOD GLUE Superior bond strength, waterproof, longer open-assembly time. The Best Wood Glue Ever! Circle No. 24.
GORILLA WOOD GLUE High-strength, shorter clamp time, and no dye for a natural finish. Try it today on your next building project. Circle No. 50.

Bits, Blades, Cutting Tools
CMT ORANGE TOOLS Top quality industrial saw blades and router bits at affordable pricing. Circle No. 180.
FINAL CUT SAW BLADE Only blade that cuts and sands at the same time. Circle No. 194.
FORREST MFG. CO., INC. Top quality blades and dadoes for an ultra-smooth finish. Circle No. 206.
FREUD SAW BLADES This 48-page catalog illustrates the features and benefits for all Freud saw blades. Circle No. 219.
FREUD ROUTER BITS All Freud router bits are represented in this 84-page catalog, including more than 1,300 new kits and sets. Circle No. 222.
KUTZALL TOOLS Abrasive carbide coated tools for non-metals. Everything for carving, shaping, cutting and sanding. Circle No. 237.

Books, Plans and Videos

General Woodworking Catalogs
GRIZZLY INDUSTRIAL, INC. 12,000 woodworking and metalworking machines, tools and accessories – unbeatable prices! Circle No. 563.
WOODCRAFT SUPPLY CORP. Over 15,000 top quality woodworking tools, supplies, and accessories. Circle No. 700.

Hand Tools, Jigs & Clamps
AFFINITY TOOL WORKS Manufacturer of quality hand tools and products for cabinetmaking, carpentry, woodworking. Circle No. 734.
KREG TOOL CO. Your one stop shop for everything Pocket-Screw related. Circle No. 802.

Hardwood & Lumber
M.L. CONDON COMPANY Single, convenient source for lumbers, plywood, mouldings, custom millwork, more. Circle No. 844.
LOGOSOL, INC. Portable sawmills, precision woodworking machinery. Circle No. 845.
WOODWORKERS SOURCE Hardwoods from around the world. Circle No. 960.

Income Opportunities & Education
FURNITURE MEDIC Offering franchise licenses to qualified individuals to perform mobile, on-site furniture repair & restoration services. Circle No. 892.
WOODCRAFT RETAIL FRANCHISE Own a Woodcraft Store—franchise offered for stores across the country. Circle No. 924.

Kits
DETAILED PLAY SYSTEMS Wooden swings and playground equipment for the backyard. Free catalog. Circle No. 958.
STEERBAR For over 20 years supplying clock kits, pen making kits, and woodworking plans. Circle No. 1002.
WOODEN-GEAR-CLOCKS.COM Create a wooden gear clock—kits and plans available. Circle No. 1006.

Miscellaneous
APOLLO SPRAYERS TURBINE SYSTEMS Quality control, engineering and durability. Circle No. 1061.
AZTEG STEEL CORP. Quality pre-engineered arch-style steel buildings at the lowest cost anywhere. Circle No. 1064.
CENTRAL BOILER Classic Wood Furnaces – clean, safe, efficient heat for your home. Circle No. 1105.
RADIANT FLOOR COMPANY Radiant Heating Systems—design, manufacture and sale for the DIY. Circle No. 1301.
ROCKAUTO.COM Check out www.RockAuto.com for all the parts your car or truck will ever need. Circle No. 1310.

Power Tools
FREUD POWER TOOLS 15-page catalog illustrates dependable power tools with traditional Freud quality. Circle No. 1532.
RADARCARVE Manufacturer of specialized wood carving duplicators. Circle No. 1673.
STANLEY-BOSTITCH FINISH NAILERS & STAPLERS The preferred brand among professionals when it comes to finish nailers and staplers. Circle No. 1768.
TOOLMART INC. Woodworking tools and accessories by top brands: Delta, DeWalt, Porter Cable, Jet, Powermatic. Circle No. 1770.

WOODMASTER TOOLS Multi-duty planers that mold, sand and save. Circle No. 1820.

Project Parts & Materials
OSBORNE WOOD PRODUCTS, INC. A free catalog of table legs, corbels, and island legs. Circle No. 1848.
OSBORNE WOOD PRODUCTS, INC. WOOD CORBELS offer classic corbels in a broad range of styles. Circle No. 1851.

Shop Accessories
AMERICAN FABRIC FILTER CO., INC. Manufacturers of custom-made filter bags for the wood industry. Circle No. 1868.
PENNS STATE INDUSTRIES Award-winning dust collection. Collectors, Cyclones, Dustwork and more. Circle No. 2045.

Woodturning Supplies
BEREA HARDWOODS Quality pen kits and other turning kits. Circle No. 2127.
HUT PRODUCTS Woods, acrylics and supplies for pen and game call turning. Circle No. 2133.
NOVA, SMART TOOLS, POWERFUL SOLUTIONS NOVA lathes, chucks and accessories consistently lead the way in innovative design with their unique mix of powerful features and great value. Circle No. 2134.
PACKARD WOODWORKS Free Catalog for WOODTURNERS – Quality Lathes, Tools and Supplies. Circle No. 2143.
PENNS STATE INDUSTRIES Leading supplier of Turning Products. Pen kits, project, finishes and more. Circle No. 2151.

Log on to www.WOODWorkersCenter.com
Rainbow Eucalyptus: Look, but don’t cut

Q: On a vacation in Hawaii, I ran across the Rainbow Eucalyptus—an incredible tree with multi-colored bark. Does the coloration carry through to the wood inside and, if so, is it suitable for woodworking projects?

—Paul Tanenbaum, Columbus, Ohio

A: The Rainbow Eucalyptus (Eucalyptus deglupta) is indeed a striking tree, Paul. According to LariAnn Garner, plant physiologist with Aroidia Research in Florida City, Fla., the variegated coloring of this tropical species is limited to the smooth, layered, and constantly exfoliating bark. Newly exposed, the bark starts as bright green, and as it ages, it turns to dark green, blue, purple, pink-orange, and finally red-brown before peeling off in strips to reveal fresh green underneath. This gives the trunk a colorful, ever-changing look, shown at right.

But beneath the Technicolor bark, the wood looks and works like most members of the Eucalyptus family: hard, with an even, close grain; light in color, aging to a reddish-brown. But no rainbow tone. Given its limited growing range, the Rainbow Eucalyptus is too rare to be considered as a source of woodworking wood. If you’re interested in working with eucalyptus, consider Jarrah, a versatile Australian eucalyptus that resembles mahogany or teak. Or ask your hardwood dealer about Lyptus, a low-cost eucalyptus hybrid that imitates cherry and mahogany. Marketed by Weyerhauser, Lyptus grows in sustainable plantations and has increased in availability.

The ever-changing color of the Rainbow Eucalyptus’ layered, shedding bark is best enjoyed in its living tree form.

continued on page 84
A BIG ASS FAN FOR MY SHOP?

ABSOLUTELY!

You’ve got this great shop with high ceilings. It’s too hot in the summer and too cold in the winter. The solution is the all new ShopFan™ from Big Ass Fans®, engineered with our patented airfoil technology to improve conditions in workshops up to 5000 square feet.

The monthly operating cost of a ShopFan is less than a dollar per month...yet it does the work of more than twenty standard ceiling fans. It’s an investment that will pay dividends for a lifetime.

QUIRKY NAME. SERIOUS FANS.

For over a decade, Big Ass Fans has been engineering large, high-performance ceiling fans for tens of thousands of satisfied industrial customers worldwide. Like all of our fans, ShopFan is engineered, precision balanced and hand built with aircraft-grade aluminum and industrial components right here in Lexington, Kentucky. You can have this fan up and running in a couple of hours. And best of all, it’s a genuine Big Ass Fan.

TRULY A BIG ASS FAN
- High Volume/Low Speed air movement technology
- Industrial ceiling fan quality

EASY INSTALLATION
- Weighs less than 140 lbs
- Pre-wired for 115V 20A operation
- Includes 50-ft motor cord

KEEPS THINGS COOL
- Improves employee comfort
- Increases productivity and accuracy

SIZED FOR SMALL SHOPS
- Air circulation for spaces up to 40 ft x 40 ft
- Fits ceilings as low as 14 ft
- 12-ft diameter fan

FULL-FEATURED CONTROLS
- Fully adjustable speed settings
- Compact control unit is pre-wired

YEAR-ROUND ENERGY SAVINGS
- Low energy air circulation
- Provides cooling breezes in summer
- Gently pushes warm air down in winter

TRY A SHOPFAN IN YOUR SHOP FOR 30 DAYS
CONTACT US FOR DETAILS
877-326-0599
WWW.BIGASSFANS.COM

©2010 Delta T Corporation dba The Big Ass Fans Company. All rights reserved.
Ask WOOD

Sprung joint: Your last layer of moisture defense

Q: One of the glued-up shelves that I built split along the glue-line at the shelf’s ends. The shelf is floating, so there’s nothing restraining seasonal movement. What should I do to prevent this?

—Lanny Cunningham, Dallas

A: Sounds like the boards of the shelf are pulling against themselves, Lanny. This sometimes happens because the ends of the shelf absorb and shed moisture more easily than the interior, thus swelling or—as in your case—shrinking at a disproportionate rate.

One preventative solution that the old-timers used was a “sprung” joint. Both boards of a sprung joint have slightly concave mating edges.

To create a sprung joint, first joint the mating edges as you normally would. Pair the boards in your bench vise with their ends and top edges flush. With a hand plane, make a light pass over the center two-thirds of the boards’ edges. Then make two full passes to smooth the edge into an arc about 1/8" deep.

Dry assemble the boards. Only the ends should be touching with a gap in the center where you formed the arcs. When you glue the boards together, clamp from the center outward, ensuring that the joint pulls tight and leaves no trace of the gap. Now the ends can shrink without forcing the glue line to separate.

First pass removes material here.
Second pass removes material from most of board edges.
Mating edges
Adjoining boards paired back-to-back, or face-to-face
1/8-1/4" gap at center (exaggerated for clarity)

Ends fit together tightly with no gaps.
LIMITED-TIME BONUS - $50 SAVINGS CARD

Relieve Back Pain

Our owners say it. Science proves it.
Over 6 million people own a SLEEP NUMBER® bed. Not surprisingly, many of them say they would never go back to an ordinary mattress. Recent studies show why.

93% Experienced back-pain relief
In independent clinical studies, nearly all participants with back pain who switched to a Sleep Number bed experienced less pain.

77% Discovered increased energy
Study participants also reported increased vitality after sleeping on a Sleep Number bed compared to their own innerspring mattresses.

Try it for 30 nights, RISK FREE†
We’re so sure you’ll sleep better, you can take up to one month to decide, or your money back!† You’ve got to sleep on it to believe it!

LIMTED-TIME BONUS OFFER
Purchase any Sleep Number bed or accessory items of $100 or more and receive $50 off.‡

CALL TODAY TO LEARN MORE:
1-800-831-1211 ext 39113
sleepnumber50.com

YES! PLEASE RUSH MY FREE
- Limited-Time Bonus Offer $50 Savings Card
- Free Brochure and DVD

Name__________________________
Address__________________________
City_________________State_________Zip_________
Phone #__________________________Email__________________________

Mail to: Select Comfort, 9800 59th Avenue North, Minneapolis, MN 55442-9971 ext 39113

*Restrictions apply. See Savings Card for details and expiration date. †Descriptions of clinical studies on the Sleep Number bed are available by calling 1-800-831-1211. If not satisfied after 30 nights, call within 45 days of delivery to arrange return. We’ll reimburse the purchase price less your initial shipping or Home Delivery and Setup fees. You pay return shipping. No returns or exchanges on Precision Comfort™ Adjustable Base, closeout or demo bed models.

© 2010 Select Comfort
Riving knife adds safety to contractor saw

Grizzly’s G0661 tablesaw breaks the contractor-style-tablesaw mold with a motor that mounts below the blade instead of hanging out the back. Also, the motor moves with the blade arbor up and down on a lead screw. This enables its riving knife to move up and down with the blade while staying just below the arc of the blade, allowing you to cut rabbets or tenons without the blade guard/splitter assembly.

The saw’s 2-hp-rated, 110-volt motor plowed the blade through every tough task I threw at it—such as bevel-ripping 2”-thick white oak—without hesitation. The T-square-style rip fence has smooth and straight aluminum sideboards, red hairline cursors on the left and right sides, and a solid lock. Another nice feature: You can adjust the 0° and 45° blade-bevel stops via two screws recessed into the cast-iron top. No more fumbling inside the guts trying to adjust bolts.

I like the shroud around the blade that corralled most of the dust, but its 2½” port underneath the saw proved difficult to reach and attach a hose.

Low-cost miter gauge delivers 120 dead-on stops

Most stationary tablesaws come with a no-frills, three-stop miter gauge that’s adequate, but leaves me wanting more. Unfortunately, many elaborate, aftermarket upgrades cost $150 or more to gain precision at every angle. Enter Incra’s mid-priced V120 miter gauge that provides 120 spot-on angle settings, with notches for all whole-number degrees between 6½° left and right. (There are no notches for 22½° and 23° on either side to allow for a notch at 22½°.) A protractor confirmed the accuracy of every setting at which I made a cut. That’s worth the price right there.

Adding to its value are nylon adjusters on the bar with top-adjusting screws to quickly snug up the fit in the miter slot, as well as a removable T-slot clip. And with a slippery-smooth plastic plate underneath the head, the V120 glides across cast-iron tops. Slots in the head’s face make it easy to attach an auxiliary fence.

—Tested by Doug Hicks, a former shop teacher and woodworking magazine editor

Contractor-style tablesaw, #G0661

Performance ★★★★★
Price $850

Grizzly Industrial
800-523-4777; grizzly.com

Miter gauge, #V120

Performance ★★★★★
Price $75

Incra Precision Tools
972-242-9975; incra.com

continued on page 88
Indiana. A farmer in America’s heartland recently cashed in his long-forgotten savings, hidden away for decades in a dusty crate in his cellar—a hoard of the last Morgan Silver dollars minted by the U.S. Treasury before they ceased production for good, in 1921.

Originally purchased from a local bank for face value, the farmer had tucked them away for his retirement. Now these glittering chunks of nearly uncirculated silver history, are being released to the public by GovMint.com. While they last, you can acquire these brilliant, lustrous silver coins for as low as $29.50 apiece. Twenty-coin Bankers rolls and 10-coin Half Rolls are available.

Survival Against All Odds
By all rights these silver dollars should have been destroyed decades ago. Government silver melt-downs, including the 1918 Pittman Act, which alone destroyed 270 million Morgans, have decimated supplies. Millions more were called in by the government and melted for their silver content between 1921 and 1965. Today private hoards account for virtually all the surviving coins. And of those, only a fraction survive in the Virtually Uncirculated condition so coveted by collectors.

Prized Last Year Coins
These last year 90% pure silver beauties still dazzle with their Mint luster and heft. Weighing in at 26.73 grams and a diameter of 38.1 mm, they are the largest American silver coins ever to circulate. Struck from silver mined from the western Mother Lode, they are the legendary coins that built the West. Master engraver George T. Morgan fashioned a radiant profile of Lady Liberty and a majestic eagle as symbols of our nation’s strength and prosperity. Today, the long-gone Morgan silver dollars are among the most sought-after coins in America.

Hot Silver Market, Hot Silver Value
Silver prices have jumped over 140% in the last two years fueling the frenzy among avid collectors, investors, and the 130 million new collectors created by the U.S. Mint’s highly successful state quarters program.

Today, the market is hot for Silver coins in any condition. This same 1921 Morgan Silver Dollar currently sells elsewhere in the same grade condition for $55 apiece. But while supplies last you can get this original Virtually Uncirculated 1921 Silver Morgan for as little as $29.50 each, in quantity!

Money-Back Satisfaction Guarantee
You must be 100% satisfied with your order, simply return it within 30 days via insured mail for a prompt refund of the complete purchase price.

Last 1921 Morgan Silver Dollar $39 plus S&H

Buy More and Save
FIVE 1921 Last Morgan Silver Dollars
$170.00 plus S&H Save $25!

TEN 1921 Last Morgan Silver Dollars
$315.00 plus S&H Save $75!

20-COIN ROLL of 1921 Last Morgan Silver Dollars
$590.00 plus S&H Save $190!

Toll-Free 24 hours a day
1-800-973-3039
Promotional Code LMD193
Please mention this code when you call.

We can also accept your check by phone.
To order by mail call for details.

GovMint.com
Your One Best Source for Coins Worldwide
14101 Southcross Drive W., Dept. LMD193
Burnsville, Minnesota 55337
www.govmint.com

Note: GovMint.com is a private distributor of government and private coin and medallion issues and is not affiliated with the United States Government. © GovMint.com, 2010

Prices subject to change without notice.
Past performance is not an indicator of future performance.
Advanced GRR-Ripper® System

The GRR-Ripper is a revolutionary, universal pushing jig for all table saw, router table and jointer users. This is the first tool that grips and holds both sides of a workpiece during a ripping operation. Unlike a pushstick or pushblock, the GRR-Ripper maintains balanced pressure on a workpiece as it passes through and beyond the blade.

- Maintains a parallel, forward direction with the blade while keeping pressure against your rip fence to prevent burning
- Eliminates the need to feed stock with your bare hands providing 100% protection
- You can cut strips as thin as 1/4" without any special setup, so there is no need to throw away those scrap pieces
- The unit can be offset to accommodate small, irregular shaped pieces on the router table
- Includes main body, handle, 1/4" side leg, 1/2" side leg, center leg, adjustable spacer, stabilizing accessory plate, balance support and comprehensive user's manual

One-hand bar clamps, #SL300/XP600

<table>
<thead>
<tr>
<th>Performance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SL300: $20-$40 per clamp</td>
</tr>
<tr>
<td></td>
<td>XP600: $25-$60 per clamp</td>
</tr>
</tbody>
</table>

Irwin Industrial Tools
800-464-7746; irwin.com

Shop-Proven Products

Pivoting Quick-Grips make clamping curves easier

I build a lot of free-form (curving) furniture that proves hard to clamp at times. So I really appreciate Irwin's Quick-Grip bar clamps with pivoting jaws. With these I saved time by not making one-time-use curved cauls to accommodate my regular clamps.

Irwin's clamps couldn't be simpler to use: Just slide the lock and the jaws pivot 3° up and 12° down. Then tighten the clamp and it automatically adjusts to the project shape.

The blue-and-silver XP600 clamps, shown below, have two pivoting jaws. They also come with removable 90° fixed jaw pads that extend to the bar. These brutes are nearly twice as heavy as the blue-and-yellow SL300 clamps (not shown). With ½” less throat depth, the SL300 clamps have only one pivoting jaw and don't come with the long jaw pads. Both models come in 6, 12, 18, 24, and 36” lengths; the XP600s also come 50” long.

—Tested by Matt Sellier, a custom-furniture maker

Woodcraft

For A Free Catalog Or To Find Your Local Woodcraft Store, Visit woodcraft.com Or Call 800-225-1153.
A Lilac that Reblooms!

Here’s the perfect landscaping addition to compliment the Made-in-the-Shade Pergola on page 34—a new reblooming lilac, “Bloomerang.” Selected by the Better Homes and Gardens editors (our sister publication) as a favorite pick for 2010, this powerful lilac is covered in heavy clusters of purple-pink, sweetly scented blooms. The bush continues reblooming from May until the frost! Reaching just 4-5 feet tall, it is an excellent shrub for small spaces. Plant several together and create a fragrant hedge. They’re ideal for cutting, because the blooms are abundant—plenty for inside and outside. Easy to grow, these long-lived shrubs are hardy in Zones 4-7. Shipped in 5” pots through October. One plant sells for $19.95, or 3 plants for $55.95 plus shipping.

To Order: call White Flower Farm, 800-420-2852, or visit WOODstore.net. Please specify MM1767561 and source code WDSA1. Please order early; quantities are limited. Sorry, we are unable to ship to APO/FPO addresses, or outside the contiguous United States.
What’s Ahead

Coming up in the September 2010 issue (on sale July 13)

Mission possible
Unless you tell them, no one will know those aren’t real wedged tenons. Quick, easy, and invisible biscuit joinery holds together this quartersawn-white-oak classic piece. And don’t let the angles throw you: One super-simple setup secret makes easy work of cutting every bevel and assembling the tapered case.

Make your own built-ins
You’ll be surprised how easy it is to design and install window seats and bookcases.

Power your way to a polished finish
Learn how to use readily available modern abrasives and power tools to bring your finish to a classy, glassy sheen.

Full bore ahead
No spin here: We test 9 workhorse floor-model drill presses and deliver the lowdown on which to buy.

Doozy of a ‘dozer
Need to clear a roadway across the living room or knock down a tower of blocks? Then lower the blade and push ahead with the third toy in the Construction-Grade series.

Simple and slim hall table
No-fuss joints and home-center lumber help you add easy elegance to your entry hall.

Dust-catching sanding center
This cart not only helps collect dust, it gathers up the sanding supplies scattered around your shop.
The facts are hard to ignore.
Titebond® III outperforms polyurethane glues.

What woodworkers need to know!

<table>
<thead>
<tr>
<th>Titebond III</th>
<th>Polyurethane Glue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Bond Strength</td>
<td>✔</td>
</tr>
<tr>
<td>Exterior Use – Waterproof</td>
<td>✔</td>
</tr>
<tr>
<td>Easy Water Cleanup</td>
<td>✔</td>
</tr>
<tr>
<td>Much Safer To Use</td>
<td>✔</td>
</tr>
<tr>
<td>Shorter Clamp Time</td>
<td>✔</td>
</tr>
<tr>
<td>No Foam – Less Mess</td>
<td>✔</td>
</tr>
<tr>
<td>Shorter Open Time</td>
<td>✔</td>
</tr>
<tr>
<td>Doesn’t Stain Skin</td>
<td>✔</td>
</tr>
<tr>
<td>Bonds Most Materials</td>
<td>✔</td>
</tr>
<tr>
<td>Bonds Oily / Exotic Woods</td>
<td>✔</td>
</tr>
<tr>
<td>Lower Cost – Better Value</td>
<td>✔</td>
</tr>
<tr>
<td>Longer Usable Shelf Life</td>
<td>✔</td>
</tr>
</tbody>
</table>

As the leader in wood glues, we want you to know the truth about polyurethane glue and woodworking. A straightforward comparison between Titebond® III Ultimate Wood Glue and polyurethane glue tells the story.

Titebond® III is THE ultimate choice for bonding wood to wood. Period.

For more information and a detailed comparison, please visit www.titebond.com/TBIIIvsPolyurethane
THE PERFECT GIFT
FOR THE MAN OF THE HOUSE

STANLEY® STORAGE MAKES THE PERFECT GIFT

What do you give the dad that already has too many tools? That's easy... he needs a place to store them. The Stanley® FatMax® line of Structural Foam Tool Boxes feature a host of rugged features including an air-tight water seal to keep out the elements, rust-proof metal latches for extended life, and thick structural foam walls for added durability.

Visit StanleyGiftCenter.com