Build it in a Weekend!
Display Shelves
plus
11 More Projects
- Outdoor Bench or Trellis
- 3 Picture Frames
- Caterpillar Pull Toy
- 4 Workshop Projects
 - Asian-Style Box

39 Must-Have Tips & Skills!

Trick Out Your Tablesaw
22 Great Gadgets
in this issue

PROJECTS

14 Swing-arm lathe-tool holder
28 Super-simple display shelving
40 Eye-pleasing pagoda box
58 Easy-to-make garden bench/trellis
64 Caterpillar pull toy
72 Low-tech, high-appeal picture frames
90 Quick-and-easy bandsaw jig

Resaw boards and blanks from spectacular wood in your backyard, firewood pile, or local forest.

TOOLS & MATERIALS

68 19 items to trick out your tablesaw
Ramp up the performance of your shop's most important tool.

76 The many faces of maple
Discover the amazing grain patterns of maple and how best to purchase it.

78 Wise buys: hold-ins and hold-downs

95 Five shop-proven products
Digital angle gauge; dust collector; four-jaw lathe chuck; right-angle drill; digital depth-display router.

TECHNIQUES

16 Three-way miter joints
Form eye-catching corners on projects using a unique combination of 45° cuts and biscuits.

21 Tips to avoid accidental splits in wood

24 How to install bandsaw riser blocks

34 Four easy oak finishes
Create distinct looks: pearly light, linseed oil and poly, water-base stain and finish, and ebony dark.

38 Make smoothing wood a close shave
A noisy planer can gouge figured wood. Thankfully, there's a better way. It's called a scraping plane.

46 Harvest spectacular local wood and save
See how a Wisconsin craftsman gathers, saws, seals, and stores his treasure of free boards and blanks.

DEPARTMENTS

6 Editor's Angle
8 Sounding Board
10 Ask WOOD®
80 Shop Tips
108 What's Ahead

This seal is your assurance that we build every project, verify every fact, and test every reviewed tool in our workshop to guarantee your success and complete satisfaction.

WOOD magazine May 2007
THE MOTHER LODE OF FREE WOODWORKING KNOWLEDGE

Find the largest collection of free woodworking information on the Internet—from tools to schools, from hardwoods to hardware—at WOODWorkersCenter.com. With links to more than 100 manufacturers and woodworking catalogs, locate exactly what you’re looking for. Discover money-saving articles, too.

SEE THE "LUMBER MAKER" IN ACTION

The Bandsaw Lumber Maker on page 30 turns found—even round—wood into flat, usable stock for projects. WOOD magazine's Marlen Kemmet shows how the jig works in a five-minute video at woodmagazine.com/videos.

MORE FREE VIDEOS

• Add a riser block to your bandsaw to boost its resaw capacity.
• See how to use two simple jigs to saw and sand to shape the graceful lid of the Pagoda Box on page 40.
• Learn how to set up and use a scraping plane to smooth figured wood.

IDENTIFY THAT FOUND WOOD

Intrigued by the idea of finding usable woodworking wood in your firewood pile (see page 46)? Then check out the WOOD Profiles section of our Web site at woodmagazine.com/woodprofiles. There, you'll learn the working characteristics of more than 120 American and exotic hardwoods and softwoods such as the stunning red-streaked boxelder, shown left.

TRY A CLASSIC COUNTRY FINISH ON OAK FURNITURE

You'll find four simple but unique finishes for oak in the article starting on page 34. But if you favor a more colorful country-style look, you can learn how to craft an easy-to-apply aged finish, shown at right, when you visit woodmagazine.com/countryoak.
jens made jewelry boxes (issue 165) and wine boxes (issue 174) as gifts.

Mark built this walnut Arts & Crafts bed as a college graduation gift for his daughter, Carly.

Chuck spent 100+ hours restoring the wooden cab, box, and wheel spokes of his 1923 Model TT truck.
Ultimate bragging rights:
Your workshop in a national magazine!

Do you have the kind of shop other woodworkers like to visit? Is your shop filled with clever ideas that help you work smarter, faster, or safer? If so, submit your workshop for publication in America's Best Home Workshops, Volume 2 (Volume 1, on sale at newsstands on 6/26/07, is shown above).

Size doesn't matter
Your shop doesn't have to be big, or nit-picky clean. The ideas could be storage solutions, task-specific jigs, shop tips, or the special way you designed, built, and outfitted your shop.

To be considered, send us your materials by 5/1/07; the first 100 to respond will receive a FREE Best-Ever Workshops magazine, a $6.99 value.

What to send us:
☐ 3 to 5 photos showing the overall interior layout of your shop and 1 exterior photo, if applicable
☐ 5 to 10 close-ups of your problem-solving ideas, or dedicated machining or storage areas
☐ A rough-sketch floor plan that shows overall shop dimensions and the locations of doors and windows, tools, storage cabinets, workbenches, and wood storage
☐ A quick summary of shop specs, including the type of structure, with details about lighting, heating/air-conditioning, electrical service, and dust collection
☐ A short paragraph about why your shop is great and how it serves your woodworking interests

Mail your submission to:
America's Best Home Workshops, Volume 2
WOOD magazine
1716 Locust St., LS-221
Des Moines, IA 50309-3023
Or e-mail your submission to
homeworkshops@meredith.com

Submissions cannot be returned, but please include your name, address, telephone number, and e-mail address if available.

Editor's Angle
Challenges and Opportunities, Pagoda Style

You've no doubt heard the phrase, "In every challenge lies opportunity." The pagoda box project on page 40 is a testament to the truth of that adage.

I well remember the day Marlen Kemmet, our managing editor, returned from a West Coast trip. He held a small and exquisite box made of exotic woods. "What do you think about doing this as a project in the magazine?" he asked.

"I like it!" was my quick reply. "But what about those upturned, curved lid corners? How will we tell readers to do that?" Turns out that the maker of the box Marlen was holding, master woodworker David Selditz of Bellingham, Washington (see his profile on page 44), shapes the lids freehand. But I wasn't convinced we mere mortals would have much luck trying that on the first go.

At times like these, we call in Kevin Boyle, our senior design editor. It's his job to make projects doable for you, or tell us "no way" (something he rarely says).

As Kevin sat before us, turning the pagoda-roof-shaped lid around in his hands, I watched his eyes for clues. First they opened wide, with eyebrows up. (Interpretation: "You guys have come up with a doozy this time.") Then his focus narrowed, eyebrows scrunch together. (Interpretation: "I just might be able to make this work.")

Then he said, "I think we can do it with a jig or two." Soon we were down the road of transforming pagoda-box challenges into opportunities for you. For example:

Challenge: Shaping that curvaceous lid.
Opportunity 1: Almost anything in woodworking is possible, given the right jig. The lid provided us with two good ones. The first jig helps you accurately and controllably bandsaw and drum-sand the concave lid top; the second lets you disc-sand the convex lid bottom. Just like that, the lid became a simple and fun exercise.

Opportunity 2: Many woodworking processes are a lot easier to understand after you see them demonstrated. So Master Craftsman Chuck Hedlund and Editorial Manager Dave Campbell got to work on a five-minute video showing you how to use the jigs to shape the lid. You can view or download the video for free at woodmagazine.com/videos. (Even if you're not building the pagoda box, you'll enjoy the free videos on the site.)

Trim router review: In the last issue we promised you a test and review of trim routers in this issue. As we were wrapping up that test, we learned of several new models and one that is being discontinued. So to make the article as timely as possible, we've taken the rare step of postponing that review until the next issue, #177. You can expect a stronger, even more-in-depth article as a result.

Bill Krier
Invigorate sapwood for a rich, lustrous look

While finishing a poplar bookcase (shown at right) recently, I discovered that the lighter-colored sapwood soaked up more stain than the darker heartwood. Using your method for dealing with sapwood in issue 171 (September 2006) as a baseline, I tried several different methods to even out the color and found success with one that I'd like to share.

After raising the grain with water and then sanding it smooth to 220 grit, I brushed on glue size (eight parts water to one part Titebond III wood glue. Be careful when doing this to avoid overlapping strokes. But if it happens, just even it out with your brush or rag.) After that dried, I sanded it again with 220. Next, I applied one coat of water-soluble dark mission brown dye, followed by two coats of oil-based dark walnut stain. I topcoated the stain with one coat of clear shellac and three coats of wipe-on oil-based polyurethane. It's hard to tell the sapwood now from the heartwood.

—David Springer, Carmel, Ind.

Picture this: Volunteers help to meet Unmet Needs

Woodworkers from around the U.S. have built and donated more than 350 picture frames as of Feb. 1, 2007, for the Unmet Needs program (issue 169, April/May 2006, page 93). On Oct. 18, 2006, the Kansas City Woodworkers' Guild presented more than 200 handcrafted mahogany frames to the Veterans of Foreign Wars Foundation, which administers the Unmet Needs program. The VFW Foundation uses the frames as gifts for families of military personnel, for awards given to volunteer military family members, family readiness groups, and other special items for the families of deployed service members, according to Crystal Lauver of the VFW Foundation.

If you'd like to build and donate frames, go to woodmagazine.com/unmetneeds for plans and decals.

—WOOD editors

A real shipshape case

Just when my wife was urging me to find a better place to display one of my wooden model ships (an 1812 French frigate), issue 171 (September 2006) of WOOD® magazine arrived with the perfect project. In just a short time, I built a modified version of the tabletop curio case on page 54. Because the ship's size exceeded the dimensions in your plan, I had to expand the case to 14x28x30". I also made it from pine to match the Southwestern style furnishings in my home.

—Bert de Pedro, Silver City, N.M.

HOW TO REACH US

- For woodworking advice:
 Post your woodworking questions (joinery, finishing, tools, turning, general woodworking, etc.) on one of 14 online forums at woodmagazine.com/forum.

- To contact our editors:
 Send your comments via E-mail to woodmail@woodmagazine.com; or call 800/374-9663 and press option 2; or write to WOOD magazine, 1716 Locust St., LS-221, Des Moines, IA 50309.

- Subscription assistance:
 To notify us of an address change, or to get help with your subscription, visit woodmagazine.com/service.
 Or write to WOOD magazine, PO. Box 37439, Boone, IA 50037-0439. Please enclose your address label from a recent magazine issue.

- To find past articles:
 See our index at woodmagazine.com/index.

- To order past issues and articles:
 Order past issues of WOOD magazine, our special issues, or downloadable articles from issue 100 to present: Visit our online store at woodmagazine.com/store, or call 888/636-4478. Some issues are sold out.

- Updates to previously published projects:
 For an up-to-date listing of changes in dimensions and buying-guide sources from issue 1 through today, go to woodmagazine.com/editorial.

8
Choose the best small blade for big jobs

Q: I need a 7¼" blade to cut 4x8' sheets of plywood for cabinets. What style of portable circular saw blade will give me the best performance and the least amount of splintering?

—Charles Brozek, Zion, Ill.

A: Those basic 24-tooth blades that come with many circular saws were meant for rough carpentry, Charles, not chip-free cuts in veneer plywood. For smoother cuts with less tear-out, move up to a 40-tooth blade. They cost only slightly more than those basic blades—we spent $15—but the resulting cut quality is worth the added price, as you can see above.

For even less tear-out, attach a zero-clearance base to the circular saw plate. But handle the saw carefully because the telescoping blade guard will not extend through the zero-clearance base to cover the spinning blade.

Like a zero-clearance insert on a tablesaw, this base keeps wood fibers along the edges of the cut from being pulled upward by the blade teeth. To make a zero-clearance base, cut a scrap piece of ¼" hardboard to match the size of the saw's base plate. Then retract the saw blade above the base, and attach the zero-clearance plate using double-face tape (or screws, if the base has mounting holes). Make certain the edge of the insert on either side is flush with the base plate edge.

Rest the zero-clearance base on the edge of your workbench where the blade won't cut the bench. Start the saw, and plunge the blade through the zero-clearance base to roughly the desired depth. Use the saw as you normally would, alone or with a straightedge.

continued on page 12

Shed light on window finish

Q: I am in the process of refinishing wooden casement window frames. What kind of finish should I use? Is there a difference between spar varnish and marine varnish? Would any products hold up better than these?

—Leon Wallwey, Midland, Mich.

A: Neither spar varnish nor marine varnish will work best on window frames, although for different reasons, Leon. Window glass allows enough UV light through to degrade the UV inhibitors in most oil-based spar varnishes. Once the UV light breaks down the wood fibers, the wood releases the finish and begins to discolor and decay.

Many true marine varnishes use UV-resistant phenolic resins and tung oil, but they leave a flexible, soft finish not meant for interior use. Marine varnishes tend to be much more expensive and harder to find than spar or interior film finishes.

For an interior finish that uses UV-resistant phenolic resins and tung oil, one option is Waterlox Original Sealer and Finish (call 800/321-0377 or visit waterlox.com). At $27 a quart, it's still not cheap. But you also can buy it in 2-oz. containers for $5.70 each for small touch-up jobs. It won't eliminate this chore, but refinishing your window frames won't become an annual ritual.

Whichever replacement finish you choose needs to be applied to sound wood. So sand and restain sun- and water-damaged areas before refinishing.
Here's the catch with collets

Q: When I loosen my router's collet nut, the collet won't release the bit. I have to turn the nut by hand almost two full turns, and then the nut tightens again. Then I have to use the wrenches again to loosen the nut and free the bit. Do I have a problem?

—John Frey, Berryville, Ark.

A: Relax, John. The free travel in the collet nut doesn't signal a problem. It's called a self-releasing collet, and it's a good feature. Inside a self-releasing collet, the collet nut flange pushes the collet into the tapered hole at the end of the router spindle, tightening the collet on the bit. Loosening the nut to remove a bit allows the nut to spin within the collet recess. But the collet and bit remain wedged within the spindle until the nut flange pushes up on the collet, popping the collet loose.

If you don't notice this sort of play in the collet nut, that could be a problem. It could mean you've placed the bit too deep within the collet, preventing the collet jaws from gripping the bit shank. Avoid this problem by always keeping bits about \(\frac{1}{8} \)" from the bottom of the spindle.

Avoid stone storage snafus

Q: I use and store my water stones and grinder wheels in our heated basement. Can I use nontoxic antifreeze instead of water and allow them to soak in my unheated garage?

—David Hayes, Milwaukee

A: You can avoid the threat entirely by storing stones and wheels dry, David. Most stones require only a five-minute soak before use. After soaking a stone, place a small puddle of water on its surface to test for readiness. If water stays on the surface, the stone is ready to use. If it sinks into the stone, soak it longer. Afterward, dry the stones thoroughly, away from direct sun or high heat, and store them in a ventilated container. Store wheels as the grinder instructions recommend.

Some stones deteriorate if stored soaking in chemicals or even just water. Before doing so, read the water stone’s instructions, or ask the supplier how to store specific stones.

Stones are designed to work only with water to create a slurry for honing.
How to place a fair price on walnut

Q: A friend has some rough-sawn walnut that was in his late father-in-law's basement for 30 years. Now, he wants to get rid of it. We think it was from the same tree. What is a fair price for 30-year-old, air-dried 5/4 walnut? I'd like to get a good deal, but I also want to be fair with my friend.

—Dennis Almond, Riedsville, N.C.

A: First assess the quality of the lumber, Dennis, especially if it has been stored in a basement where dampness could have caused warpage and discoloration. Lumber that's been stored outdoors at any time also might suffer insect damage, especially from powder-post beetles. Then use a moisture meter to check several boards throughout the stack. Moisture should be 6 to 10 percent for your area. Compare pieces to see if they come from the same tree. If so, that could allow you opportunities to bookmatch boards in glue-ups. After you check a sample with a metal detector, plane it to uncover any flaws, decay, or undesirable color.

Now that you know what you're buying, begin assessing its value by checking your local newspaper classified ads for comparable lumber, even if it's kiln-dried. Then contact area lumberyards for their rough-sawn walnut prices. For example, we checked Riedsville-area hardwood dealers and learned kiln-dried 5/4 walnut was selling for around $4.75 per board foot for quantities less than 100 board feet. Increase or decrease your offer according to the quality of the wood; then make an offer.

Stuck with clogged nozzles

Q: How do you keep the nozzles of spray adhesive cans from clogging? I have tried tipping the cans upside down and spraying, but it hasn't worked. Now, I have two half-full cans with clogged nozzles.

—Nate Denniston, Charlotte, Mich.

A: To salvage your half-empty cans, Nate, try soaking the nozzles for 5 minutes in lacquer thinner in a small glass or metal container such as a baby food jar. Then wipe the nozzle clean and reinstall it on the can.

Introducing ZAR® ULTRA Max
Waterborne Oil Modified Polyurethane

FOR SALE
WALNUT
(Make Offer)

ULTRA Max is an environmentally safe, revolutionary dual drying polyurethane. It dries by coalescing & oxygen cross-linking for a harder “through cure.”

- Self-leveling, smooth finish
- Ideal for floors, cabinets, furniture and woodworking
- Outstanding wear and durability
- Super fast drying-low odor formula
- Exotic hardwoods approved

For more information and a dealer near you call 1-800-272-3235 or visit us at www.ugl.com.
Swing-Arm Lathe-Tool Holder

Keep your lathe tools and accessories close at hand with this easy-to-make organizer.

Build a holder as shown or customize it to fit your tool needs. Begin by measuring the distance between your ways to create the sliding support shown in the drawings and the inset photo. Make the sliding support about 1/8" narrower than the opening between the ways, and the top edge of the support 1/8" lower than the top edge of the ways.

Our pivoting arm measures 31 1/8" long, but you can shorten it if you need fewer tools at lathe side. To create the holes for the tools, measure the diameter of your lathe-tool ferrules and use Forstner or spade bits to drill holes 1/8" larger than that dimension. For skews, where the blade can be wider than the ferrule, measure the widest diameter of the tool handle and drill the mounting hole 1/4" smaller.

Once assembled and attached to the lathe bed, the holder can stay put on your lathe stocked with turning tools; or remove the tools and slide off the holder, hanging it from a wall hook for later use.

Project design: Bill Adler, West Des Moines, IA

Find more shop organizer plans at: woodmagazine.com/freeplans
Three-Way Miter Joints

This baffling but beautiful union shows no end grain, and goes together easier than you might think.

Three-way-miter-joint parts flow into a delicate point at the corners. Yet hidden splines make these joints strong as well as decorative, letting you add drama to a variety of projects, such as the table shown on page 20.

Although simple to cut and assemble, the joint's miter cuts demand accurate saw and miter gauge setups. First align your table-saw's miter slot dead-on parallel with the blade, and the blade 90° to the table. Next, install a miter gauge extension roughly 4" longer than your longest project part, and set the angle to 45°. For absolute accuracy, perform the frame miter test shown in the Shop Tip at right.

As you plane stock to size, check each piece for squareness at all four corners and, using a caliper, Photo 1, check for equal width and thickness. Machine extra stock for practice cuts and stop blocks. For this demonstration, we ripped pieces 1 1/2" square and 6" over length.

Cut the first pairs of miters

After fine-tuning your miter gauge and cutting a zero-clearance kerf in a miter gauge extension, hold or clamp the workpieces firmly against the extension and cut a 45° miter on one end, Photo 2. Turn the mitered edge up, and align the miter tip with the zero-clearance kerf, Photo 3. Cut the second miter, and check that the two cuts match and that the end comes to a sharp tip,

SHOP TIP

Fine-tune your miters

This frame test will uncover even minor miter gauge misadjustments. Begin with strips of scrap cut at least 2 1/2" wide and 10" long. Set the miter gauge to 45° and cut opposite sides in pairs. Fit three sides of the frame tightly together and check for gaps after inserting the fourth piece.

A gap on the inside of the frame means the miter gauge is cutting less than 45°, while a gap on the outside indicates an angle greater than 45°. When all eight cuts form four miters with no gaps, your miter gauge is dead-on accurate.

Cut the first pairs of miters

After fine-tuning your miter gauge and cutting a zero-clearance kerf in a miter gauge extension, hold or clamp the workpieces firmly against the extension and cut a 45° miter on one end, Photo 2. Turn the mitered edge up, and align the miter tip with the zero-clearance kerf, Photo 3. Cut the second miter, and check that the two cuts match and that the end comes to a sharp tip,
Repeat these pairs of miters on one end of each part.

To cut parts to length, clamp a 45° mitered stop block to the miter gauge. Photo (5). This protects the pointed ends and keeps you from accidentally cutting miters on the wrong edge or face. Repeat the miter cuts on all parts.

Rout the spline slots

To reinforce these end-to-end joints, you’ll add ¼"-thick plywood splines to slots in each miter. To prevent misalignments, precisely center each slot on the miter. Start by installing a ¼" straight bit in a table-mounted router, with the height ¼" less than half the thickness of your workpieces. Then set the router table fence to center the cut on the end of a scrap the same width as the parts.

Make a test cut on the scrap and measure from the cut and both edges of the scrap using a dial caliper, Photo (6). Adjust the fence until the dimensions are equal on both sides of the slot.

Attach a stopblock to the router table fence to keep the cut from intruding onto the face or edge of the workpiece. Then rout slots into each miter, Photo (7).

Cut splines to fit the slots

Measure the slot depth, and cut strips of ¼"-thick plywood ¼" narrower than the slot depth. Then bandsaw the strips into square splines and chamfer all edges of each spine by rubbing them against 100-grit abrasive on a flat surface. Each spline should drop just more than halfway into the slots, Photo (8).

Build the joints

Start by assembling four pieces to create a frame. Working on a dead-flat surface, such as a bench or saw table, insert the splines between each piece and check the fits for snugness. Then apply a white glue to the splines and the miters to be joined. We choose white glue because it dries clear and performs as well as yellow glue. Press the pieces of each joint tightly together and tape them in place on the top and bottom, Photo (9). Avoid dripping glue into the slots for the other two splines. If your project uses an opposing frame, assemble that as well. If your project uses a bound panel, insert it before taping the joints.

To connect two frames, glue and insert the two remaining splines in each joint, Photo (10). Then glue the four connecting pieces in place and tape each joint securely, Photo (11).

continued on page 20
After the glue dries, remove the tape, and sand the joints smooth, as shown in Photo 12. Avoid accidentally sanding over the edges or points. Should you discover tiny gaps, fill them with a paste made from sanding dust of the same wood species mixed with white glue that’s thinned 25 percent with water.

Try different variations

In addition to creating a simple cube or rectangle, you can modify three-way miter joints by adding loose or bound panels or panes of glass. To hold the loose top panel for this table, Photo 13, rabbet the inside top edge of each piece in the top frame before assembly.

For a more dramatic effect, rabbet the inside top edges of the top frame, and then cut grooves on centerlines beneath the rabbet to hold a bound panel so you can display items beneath an acrylic or glass top, as shown on page 16.
Avoiding Workshop Goofs

Split Decisions

Prevent accidental cracks in your workpieces by implementing these proven tips.

A split in a workpiece, especially one that’s been machined to finished dimensions, can force you to make time-consuming changes or repairs when you’d rather be finishing a project. Because they’re easier to avoid than fix, make the following tips full-time habits.

TIP 1: Predrill for screws and nails.

Drill correct-size shank- and pilot-holes for screws, according to the chart at right, or make a good guess by eyeballing, as shown below. This proves especially critical near the ends and edges of a workpiece, which split easier than the field. With some softwoods you can get by without holes by using self-tapping screws (which bore their own pilot holes), shown below right. But these screws will split many hardwoods and even some softwoods such as cedar and redwood. The same goes for medium-density fiberboard (MDF), which splits easily. When in doubt, play it safe: You can’t go wrong with shank- and pilot-holes.

You also should apply the same guidelines when hammering nails. You can get by most times without pilot holes in softwood, but it’s best to not take chances. To avoid a split, drill a pilot hole roughly three-fourths the diameter of the nail shank.

TIP 2: Don’t overdrive screws.

That last little oomph can cause a wood split, as shown at the top of this page, especially in softwoods and softer hardwoods. Instead, find the appropriate clutch setting on your drill/driver to avoid overtightening screws. Do this on test material in your shop, or set your clutch on a lower setting and ramp it up as needed. You also can leave the screw slightly proud of the surface and then finish driving it by hand with a screwdriver.

continued on page 22
Avoiding **Workshop Goofs**

TIP 3: Dry-fit all assemblies.

Assembling pieces without glue allows you to check the fit of joints and avoid potential splits at glue-up. Tenons too tight in their mortises can cause splits, as shown below. A good mortise-and-tenon joint should go together easily by hand, but not be loose enough to fall apart. Avoid too-thin mortise walls, which split easily, by never making them less than 1/4" thick. You also can divide your workpiece thickness into thirds, creating two mortise walls and one tenon of equal thicknesses.

Trim tenons so they slide into mortises snugly. This tenon was too thick, causing the thin mortise wall to split.

TIP 4: Allow for wood movement.

Wood shrinks and swells as it adjusts to seasonal changes in humidity, so design and assemble projects with this in mind. Fasten wide tops to cases with hardware, such as that shown below, designed to hold securely but still allow wood movement. Screwing or gluing tops tight to a case likely will result in a split top when the wood moves.

Tabletop fasteners hold the top tightly but still can slide in the saw-kerf groove to allow for wood expansion across the grain.

Frame-and-panel assemblies, such as the one shown below, also need room for swelling and shrinking. Leave about a 1/8" gap in each groove for unglued panels to expand.

Cut panels short of a tight fit in the frame grooves, such as with this cutaway of a rail-and-stile cabinet door.

Source

Tabletop fasteners: Rockler part #34215, pack of 8, $2.30, call 800/279-4441 or rockler.com.
8 Easy steps to installing a riser block

Boost your bandsaw's resawing capacity by 6" when you add this simple-to-install accessory.

Watch a FREE 4-minute video showing these installation steps in action at: woodmagazine.com/videos

Saw arm
Riser block

Sometimes an extra 6" of resawing capacity on your bandsaw can make a huge difference. Say you want to cut veneer or book-matched panels from a beautifully figured board that's too wide to fit between your bandsaw table and upper blade guides. Wouldn't it be great to solve the problem with an inexpensive kit and half an hour's work?

What you need is a riser block—a simple extension that fits between the base and arm of a typical cast-iron bandsaw frame. Not all saws accept a riser block, but many popular 14" models do. (Check your owner's manual or ask your dealer to find out if you have the option.) Your riser block kit should also include a longer guide post, connector bolt, blade, and blade guards. Expect to pay your dealer between $60 and $90 for the entire works.

Begin by removing the blade, upper blade guides, guide post, and both blade guards. Store the parts in a labeled box or bag. Next, follow the steps shown here to install the riser block kit. Although you can do it alone, you may want to enlist an assistant to help when you reinstall the saw arm.

1. Remove the bolt that holds the saw arm to the base. The arm simply lifts off, but be prepared—it's heavy and awkward.

2. The typical riser block includes indexing holes on the bottom and matching pins on the top, so it's self-aligning. If your riser block has no pins, align the outer edges flush with the base. Reinstall the saw arm, as shown in the photo at the top of the page.

Remaining steps on page 26

WOOD magazine May 2007
Place the connector bolt into the slot on the saw arm, and set the saw arm atop the riser block. Access is tight, but you can reach the connector bolt head and nut with box-end or open-end wrenches. (On our bandsaw, the head and the nut take different-size wrenches.) Tighten the bolt securely.

Now, start to install the other components of the riser-block kit. The longer rear blade guard mounts just like the original one. The guard shown above fits over two attachment posts, and two screws secure it in place.

Install the longer blade, then finish the job by adding the new front blade guard. Again, it's a one-wrench procedure.

Lay a long straightedge across both wheels, and check to make sure it touches the rims at all four possible contact points. If so, the wheels are in the same plane, or "coplanar." To eliminate any gaps, turn the adjustment knob to tilt the top wheel. For more on bandsaw wheel alignment, see WOOD magazine 144 (October 2002), page 80.

Active-duty Military, Fire and Police Admitted FREE!

Call 800-826-8257 or visit www.thewoodworkingshows.com or www.woodmagazine.com for more information.

The Woodworking Shows

Learn to build projects from WOOD Magazine!

WOOD's Master Craftsman Jim Heavey will demonstrate important tips and techniques as he walks you through three projects. Learn about construction, veneers, joinery, finishing and more!

The Woodworking Shows is the premier event for woodworkers! Learn from the experts, find unique woodworking tools, see how to demonstrations, and save on tools and supplies. Free educational attractions provide endless opportunities for you to sharpen your woodworking skills during this 3-day event!

2007 SCHEDULE

<table>
<thead>
<tr>
<th>Date</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 2-4</td>
<td>St. Paul</td>
<td>MN</td>
</tr>
<tr>
<td>Mar 16-18</td>
<td>Chantilly</td>
<td>VA</td>
</tr>
<tr>
<td>Mar 23-25</td>
<td>Tampa</td>
<td>FL</td>
</tr>
<tr>
<td>Mar 30 - Apr 1</td>
<td>Houston</td>
<td>TX</td>
</tr>
<tr>
<td>Apr 13-15</td>
<td>Pleasanton</td>
<td>CA</td>
</tr>
<tr>
<td>Apr 20-22</td>
<td>Sacramento</td>
<td>CA</td>
</tr>
<tr>
<td>Apr 27-29</td>
<td>Seattle</td>
<td>WA</td>
</tr>
<tr>
<td>May 4-6</td>
<td>Pomona</td>
<td>CA</td>
</tr>
</tbody>
</table>

Blade guides come in a variety of styles, but most reattach easily to their new guide post. Simply slide the upper blade guides onto the new post, and then tighten the unit in place. On this model, a single bolt does the job.

The power-switch position varies from one bandsaw to another; ours stays at its original height by attaching to threaded screw holes in the riser block. If your switch moves to a higher position, you might have to increase the cord's available length; sometimes that's as simple as removing a wire tie.
Super-simple

Shelves for Show

BONUS: See a Slide Show of extra project assembly shots at: woodmagazine.com/slides
PROJECT HIGHLIGHTS
- It assembles quickly and easily with biscuits, screws, and a dado joint.
- Overall dimensions are 44" wide x 17 3/4" deep x 29" high.
- Materials needed: Red oak (we used quartersawn) and red oak plywood.

Skill Builders
- Plunge in and learn the ABCs of biscuit joinery.
- Discover how to assemble a large project in stages with a few clamps.

Start with the legs

1. Cut the front/back and side legs (A, B) to the sizes listed (Materials List, page 32). Lay out the angled end at the bottom of a leg [Drawing 1]. Bandsaw and sand to the line. Using this leg as a template, mark the angle on the remaining front/back and side legs. Bandsaw and sand them to shape.

2. Pair together the front/back and side legs (A, B). Noting the orientation of the angled ends for each pair [Drawing 2], identify the location (left front, right rear, etc.) and the inside face on each leg to ensure correct machining and assembly. Then, using a dado blade in your tablesaw, cut a 3/8" dado 1/4" deep on the inside face of each side leg, where dimensioned, to fit the front/back legs [Drawings 1 and 1a].

3. Mark centerpoints on masking tape for 3/16" holes 3/16" deep on the inside face of the side legs (B) [Drawing 1, Photo A] to receive 1/4" shelf supports. Using a Brad-point bit wrapped with a piece of masking tape for a visual depth stop, drill the holes. Sand the legs to 220 grit.

4. For each pair of legs (A/B), glue and clamp the front/back leg (A) into the dado in the side leg (B), keeping the ends flush.

Make the rail assemblies

1. Cut the top/bottom front rails (C), top/bottom back rails (D), top side rails (E), bottom side rails (F), and top cleats (G) to the sizes listed.

2. Mark centerlines for #20 biscuit slots on the front/back legs (A) and parts C through G, where dimensioned [Drawings 1 and 3]. Using your biscuit joiner with the parts clamped to your workbench for safety, plunge a centered slot at each marked location, except the mating locations on the front/back legs and outside face of the top/bottom front and back rails (C, D). You'll plunge these after assembling the top and bottom rail assemblies.

3. To mount the top (O) later, mark centerpoints 3/16" apart for drilling end holes to form a centered 3/16" slot 3/16" long at each end of the top cleats (G) [Drawing 3a]. Drill 3/16" holes at the marked points. Then drill overlapping holes to complete the slots. Now drill a centered countersunk shank hole in the bottom face of each cleat.

4. Mark the centers and ends of the arches on the top/bottom front rails (C) and bottom side rails (F) [Drawing 3]. Draw the arches using a fairing stick. (For a free fairing stick plan, go to woodmagazine.com/fairing.) Bandsaw and drum-sand the arches to the marked lines.

5. Sand parts C through G smooth. Then glue each top side rail (E) to a top cleat (G), keeping the parts square. Next, glue, biscuit, and clamp the side rail/cleat assemblies and remaining center top cleat to the top back rail (D) [Drawing 3]. (Positioning the parts upside down makes this easy.) Now add the top front rail (C) [Photo B].

6. To assemble the bottom rails and shelf, glue, biscuit, and clamp together the bottom front rail (C), back rail (D), and side rails (F). Measure for equal diagonals to verify square. Next, cut the bottom shelf (H) to size to fit the assembly. Sand smooth. Now glue the shelf to the assembly, keeping the edges and ends flush.
To cut the biscuit slots in the front/back legs (A), place a ⅜"-thick spacer under your biscuit joiner and plunge the slots at the marked locations [Photo C]. (This positions the center of the slots ⅛" from the bottom of the spacer.) Again using the spacer, cut the mating slots in the outside face of the top/bottom front and back rails (C, D).

Glue, biscuit, and clamp the back legs (A/B) to the top rail/clean assembly (C/D/E/G) and bottom rail/shelf assembly (C/D/F/H) [Drawings 2 and 3], making sure that the legs and top rail/clean assembly are flush at the top. Then add the front legs to the assemblies [Photo D].
Add the trim and slats

1 Cut the side trim (I) and front/back trim (J) to the sizes listed. (To ensure a snug fit, we measured between the legs for the exact lengths of the trim. Then we identified the locations of the pieces to ensure correct assembly.) Now cut the side slats (K) and back slats (L) to the indicated sizes.

2 Rout 1/4" chamfers along the outside edges and ends of the side trim (I) and front/back trim (J) [Drawings 2 and 4]. Sand the trim and slats (K, L).

3 To assemble the top and bottom back trim (J) and back slats (L), lay out the parts with the outside faces up on a flat worksurface. Place spacers under the slats to position them 1/8" from the inside face of the trim [Drawing 4, Photo E], and locate the slats 9 1/2" from the ends of the trim [Drawing 2]. Clamp the trim and slats to your worksurface. Then drill mounting holes through the trim and centered into the slats, and drive the screws. Again using the spacers, mount the side trim (I), centered end to end, to the side slats (K).

4 To mount the back trim/slat assembly (J/L), apply glue to the inside (nonchamfered) edges of the trim. Then clamp the assembly in position on the shelving unit, keeping the bottom face of the top trim and bottom edge of the top back rail (D) flush [Drawing 4, Photo F]. Note that the top face of the bottom trim (J) is 1/4" proud of the bottom shelf (H). Now mount the side trim/slat assemblies (I/K) to the unit, positioning them in the same way.

5 Glue and clamp the bottom front trim (J) to the bottom shelf (H), flush with the top face. Sand the joint smooth.

6 To form the front/back and side cove trim (M, N), cut a 1 1/2x6x36" blank. Rout a 3/4" cove along each edge of the blank. Then rip a 3/4"-wide strip from each edge. Repeat to make four more strips. Then crosscut the front/back and side trim pieces to length from the strips to fit snugly between the legs. Glue and clamp the trim pieces in place [Drawing 2].

Glue and clamp the back trim/slat assembly (J/L) in place, aligning the bottoms of the top back trim (J) and back rail (D) flush.
On to the top and shelves

1. Edge-join stock to form an 18\times44\frac{1}{2}\text{"} piece for the top (O). Then crosscut and rip the top to the finished size of 17\frac{1}{2}\times44\text{"}. Rout \frac{1}{8}\text{"} chamfers along the top and bottom edges and ends of the top [Drawings 2 and 4]. Sand the top smooth.

2. Clamp the top (O) to the unit, centered front-to-back and side-to-side. Using the mounting holes and slots in the top cleats (G) as guides, drill pilot holes into the top. Drive the brass roundhead screws with flat washers [Drawing 2].

3. Cut the shelves (P) to size. Then cut the shelf end and front edging (Q, R) to the sizes listed to fit the shelves. Using a dado blade, cut a \frac{3}{8}\text{"} rabbet \frac{1}{2}\text{"} deep in the front edging [Drawing 2a]. Now glue and clamp the edging to the shelves, flush with the top faces. Sand the assemblies smooth.

Finish up

1. For ease of finishing, remove the top (O). Finish-sand any areas of the unit that need it to 220 grit, and remove the dust.

2. Finish the project as you wish. For three easy-to-apply and great-looking finish options, see page 34. (For our project, we chose the General Finishes water-based Early American stain and a water-based polyurethane topcoat.)

3. Remount the top (O). Then install the shelves, where you wish, using \frac{1}{4}\text{"} shelf supports. Now place some favorite decorative pieces and other items on the shelves, and step back to admire them and your amazing handiwork.

Written by Owen Duvall with Chuck Hedlund
Project design: Jeff Mertz
Illustrations: Roxanne LeMoine; Lorna Johnson

Materials List

<table>
<thead>
<tr>
<th>Part</th>
<th>FINISHED SIZE</th>
<th>T</th>
<th>W</th>
<th>L</th>
<th>Mat.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>front/back legs</td>
<td>1\frac{1}{4}\text{"}</td>
<td>2\frac{1}{2}\text{"}</td>
<td>7\frac{1}{2}\text{"}</td>
<td>QO</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>side legs</td>
<td>1\frac{1}{4}\text{"}</td>
<td>2\frac{1}{2}\text{"}</td>
<td>7\frac{1}{2}\text{"}</td>
<td>QO</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>top/bottom front rails</td>
<td>1\frac{1}{4}\text{"}</td>
<td>4\frac{1}{4}\text{"}</td>
<td>3\frac{1}{2}\text{"}</td>
<td>QO</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>top/bottom back rails</td>
<td>1\frac{1}{4}\text{"}</td>
<td>4\frac{1}{4}\text{"}</td>
<td>3\frac{1}{2}\text{"}</td>
<td>QO</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>top side rails</td>
<td>1\frac{1}{4}\text{"}</td>
<td>4\frac{1}{4}\text{"}</td>
<td>12\text{"}</td>
<td>QO</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>bottom side rails</td>
<td>1\frac{1}{4}\text{"}</td>
<td>4\frac{1}{4}\text{"}</td>
<td>12\text{"}</td>
<td>QO</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>top cleats</td>
<td>1\frac{1}{4}\text{"}</td>
<td>3\text{"}</td>
<td>12\text{"}</td>
<td>QO</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>bottom shelf</td>
<td>1\frac{1}{4}\text{"}</td>
<td>13\frac{1}{2}\text{"}</td>
<td>12\frac{1}{2}\text{"}</td>
<td>OP</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>side trim</td>
<td>1\frac{1}{4}\text{"}</td>
<td>1\text{"}</td>
<td>10\frac{1}{2}\text{"}</td>
<td>QO</td>
<td>4</td>
</tr>
<tr>
<td>J</td>
<td>front/back trim</td>
<td>1\frac{1}{4}\text{"}</td>
<td>1\text{"}</td>
<td>3\frac{1}{2}\text{"}</td>
<td>QO</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>side slats</td>
<td>1\frac{1}{4}\text{"}</td>
<td>4\frac{1}{2}\text{"}</td>
<td>6\frac{1}{4}\text{"}</td>
<td>QO</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>back slats</td>
<td>1\frac{1}{4}\text{"}</td>
<td>3\text{"}</td>
<td>6\frac{1}{4}\text{"}</td>
<td>QO</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>front/back cover trim</td>
<td>1\frac{1}{4}\text{"}</td>
<td>3\frac{1}{4}\text{"}</td>
<td>3\frac{1}{4}\text{"}</td>
<td>QQ</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>side cover trim</td>
<td>1\frac{1}{4}\text{"}</td>
<td>2\frac{1}{4}\text{"}</td>
<td>10\frac{1}{2}\text{"}</td>
<td>QQ</td>
<td>4</td>
</tr>
<tr>
<td>O</td>
<td>top</td>
<td>1\frac{1}{4}\text{"}</td>
<td>17\frac{1}{2}\text{"}</td>
<td>44\text{"}</td>
<td>EQO</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>shelves</td>
<td>1\frac{1}{4}\text{"}</td>
<td>1\frac{1}{2}\text{"}</td>
<td>36\frac{1}{2}\text{"}</td>
<td>OP</td>
<td>4</td>
</tr>
<tr>
<td>Q</td>
<td>shelf end edging</td>
<td>1\frac{1}{4}\text{"}</td>
<td>1\frac{1}{4}\text{"}</td>
<td>12\text{"}</td>
<td>QQ</td>
<td>8</td>
</tr>
<tr>
<td>R</td>
<td>shelf front edging</td>
<td>1\frac{1}{4}\text{"}</td>
<td>1\frac{1}{4}\text{"}</td>
<td>3\frac{1}{4}\text{"}</td>
<td>QQ</td>
<td>4</td>
</tr>
</tbody>
</table>

*Parts initially cut oversized. See the instructions.

Materials key: QO—quartersawn red oak, OP—red oak plywood, EQO—edge-joined quartersawn red oak.

Supplies: 20 biscuits, #8\times1\frac{1}{2}\text{"} flathead wood screws (20), #8\times1\frac{1}{4}\text{"} brass roundhead screws (9), #8 brass flat washers (9), 1\frac{1}{4}\text{"} shelf supports (16).

Blades and bits: Dado-blade set, 45\text{°} Brad-point bit, 45\text{°} cove and 45\text{°} chamfer router bits.

WOOD magazine May 2007
Attractive finishes don’t always have to be difficult. Sometimes, you can get the look you want in a couple of simple steps. To demonstrate these four easy finishes, we tried them on four small, red-oak tables (see Sources on page 36 for plans). Except where noted, we followed these basic finishing rules:

- We sanded all parts to 120 grit prior to finishing, then vacuumed and wiped them free of dust.
- Dyes and water-based stains dried for four hours, and oil-based stains dried overnight before we applied any topcoats.
- We waited two hours between coats of water-based finishes, and overnight for oil-based finishes before recoating.
- Between each topcoat, we scuff-sanded with 320 grit.

Now, let’s start with the easiest finish:

1 Pure simplicity

Have we got a no-flaw finish for you: boiled linseed oil followed by wipe-on polyurethane. This combo gives wood pores subtle emphasis, and the surface a natural look that protects the wood against moisture and abrasion. What’s more, you’ll have no problem finding or applying both of these inexpensive finishes.

Ingredients and application. First, flood the surface with generous amounts of boiled linseed oil. Reapply oil anywhere it’s absorbed by the wood, then wipe the surfaces dry. As oil dries, it may bleed from the wood pores and harden on the surface. Wipe away these deposits every hour until you no longer notice them. Allow the project to sit four to seven days while the oil dries.

- **Topcoat**: Mix two parts polyurethane with one part low-odor mineral spirits, and stir. With experience, you can increase the percentage to three parts polyurethane to one part mineral spirits for thicker coats with each application.
- **Topcoat application method**: Use a clean cloth to wipe on this finish. Remove any excess before it runs or puddles.
- **Number of topcoats**: Apply at least three coats.

Speaking from experience. Compared with brushing on straight or lightly thinned poly, this technique avoids a host of problems with dust nibs and brush strokes.

- Take your time. If you rush the first coat of poly before the boiled linseed oil dries, the added mineral spirits will reactivate the oil and cloud the finish.
- Project parts, such as the vertical panels in the table, can be finished before assembly for consistent color.
- This film finish builds slowly, partly because you’ll scuff-sand (and wipe clean) the already-thin coats between applications. Then, consider adding two additional coats where needed to protect the project: the top, the outside of the legs, and any surfaces likely to be marred or scratched.
- Cover up minor scratches by lightly scuff-sanding the damaged area and wiping a coat of poly over it.
- As always with boiled linseed oil, lay oil-soaked rags flat on a non-flammable surface to dry before discarding them.
2 A one-step finish with a golden glow

Here's a novel look for accent furnishings, small projects, or part of a larger project. Pearlessence (see Sources), a translucent finish shown below, adds a subtle gold sheen that also reduces the contrast between oak’s pores and the surrounding wood.

Ingredients and application.
- Surface preparation: Sand bare wood to 180 grit for a smooth surface. Wipe the surface with mineral spirits to check for flaws that will be exposed by stains or reflected on a Pearlessence surface.
- Stain/dye: Although none was applied here, any shade can be used.
- Topcoat: Pearlessence.
- Topcoat application method: Brush or spray on both the Pearlessence and any optional clear topcoats.

Number of topcoats: One coat of Pearlessence for color and shimmer. An optional two coats of semi-gloss water-based finish add wear protection.

Speaking from experience. Although it dries as quickly as other water-based film finishes, Pearlessence left few brush marks.
- Stain colors beneath this finish make a big impact on the final color and amount of surface shimmer. Golden oak stain plays up the metallic sheen, as shown below, while red oak stain mutes it.
- Stir the coating well before and during application for a consistent sheen.

Golden oak stain
Red oak stain

Pearlessence applied over golden oak stain yields a slightly greenish tint; red oak stain turns a coral shade.

3 Deep and dark, but not difficult

Going just one step beyond a basic stain and topcoat produces an elegant ebony finish. The secret? Start with an application of water-soluble ebony dye followed by a dark oil-based stain. Unlike black paint, this finish still reveals red oak’s grain lines as a matte color that contrasts against the smooth surrounding wood.

Ingredients and application. Because missed spots stand out against a dark finish, dye, stain, and finish parts before assembly.
- Surface preparation: Sand to 150 grit, then raise the grain with a damp towel, and lightly scuff-sand to remove raised nibs. Tape off joint areas before finishing each part for a solid glue bond.
- Dye: Mix ebony dye (see Sources, next page) at 2 tablespoons of black dye to 6 oz. of water. Generously apply dye using a cloth or sponge brush. Allow the dye to dry, then remove surface dye residue with a clean, dry cloth.
- Stain: With a cloth, apply a dark walnut stain in a circular motion to fill the pores. Wipe away excess stain with the grain.
- Topcoat: Brush on semi-gloss water-based poly to seal the wood, followed by two topcoats.

Speaking from experience. Vary the dye concentration and choice of stain to customize the color from all black to a medium chocolate color. The dye and stain should be roughly the same degree of darkness for best results.
- The color may seem bland after applying stain over dye. But the film finish will bring it to life and give it depth.

Ebony dye lays the groundwork for a dark finish, but it doesn’t fill oak’s deep pores. For that, you need a stain with pigment particles.
A low-odor choice for indoor finishing

An indoor workshop gives you a welcome retreat from winter—that is until it’s time to apply a finish. Your only choices seem to be either wait for warm weather to use solvent-based finishes outside or spread finish fumes throughout your house. You have a third choice, though: water-based stains and film finishes.

Ingredients and application. We used the same materials and technique to finish the display shelf on page 28 and the table shown at left.

- **Stain**: General Finishes Early American water-based stain in semi-gel form.
- **Stain application method**: Wipe stain on with a soft paper towel; then remove it immediately with a clean towel, as shown below.
- **Topcoat**: ZAR Ultra Max water-based satin finish.
- **Topcoat application method**: Brush on or spray on with a touch-up sprayer for less overspray than a full-size spray gun.
- **Number of topcoats**: One coat to seal, followed by two topcoats.

Speaking from experience. Water-based stain can be a challenge to apply. Leave it on a few seconds too long, even under ideal conditions, and it quickly dries. Dry air only exacerbates the problem.

- Sanding up to 220 grit reduces blotching. But the smooth surface traps fewer stain pigment particles for a lighter color.
- Work quickly in small areas, but keep overlaps to a minimum to avoid lap marks. Stain long project pieces, like the legs on the display shelf, using generous amounts of stain in long strokes.
- To slightly darken light spots, remoisten the towel used to apply the stain, and gently wipe the light section until it matches the surrounding area.
- To remove dried excess stain, make a couple of passes with a moistened coarse cloth, such as burlap, as shown below, until the color evens out.
- Take care when staining projects that mix veneer plywood and solid oak. The plywood may require additional stain applications because it absorbs less stain, producing a lighter color.
- Should the stain raise the grain slightly, make three light passes over the stained areas using 320-grit abrasive. Do not sand through the stain.
- Water-based finish dries quickly, even inside a spray gun. Clean spray equipment between coats to prevent finish from clogging the sprayer.

Sources

Stains: Early American water-based stain, call General Finishes at 800/783-6050, or visit generalfinishes.com.

Dark walnut (No. 269) oil-based stain, call Varathane at 800/635-3286, or visit varathane.com.

TransTint black dye: No. 128490 from Woodcraft, $17 for 2 oz. Call 800/225-1153 or visit woodcraft.com.

ZAR Ultra Max water-based satin finish: United Gilsonite Laboratories, call 800/272-3235 or visit ugl.com.

Olympic Pearlescence: PPG Architectural Finishes, call 888/321-9090 or visit olympic.com. (Available at Lowe’s stores nationwide.)

Table plans: The tables used to demonstrate our finishes are modified versions of the smallest of a set of three mission nesting tables, plan No. DP-00015. To order, go to woodmagazine.com/nesttables.
Before sandpaper, craftsmen turned to a scraper when they needed a silky-smooth surface. Today, scrapers still work wonders for taming wild wood grain, and provide you with a welcome break from the noise and dust of sanding.

Unlike handheld card scrapers, a scraping plane requires less effort, especially on large surfaces, and holds the blade at a consistent angle. (It also costs 10-20 times more than a $10 card scraper.)

First, burnish the blade
As with any bench plane, clean cuts depend on a sharp blade, so sharpen a scraping plane blade as you would a conventional plane blade. (See WOOD magazine issue 160 [December/January 2004/2005], page 54, for a sharpening system using waterstones. Or you can download the article for $3.00 at woodmagazine.com/sharpen.) As you would with a conventional blade, slightly round over the ends of the bevel to keep the blade from leaving marks with each pass.

Next, form a burr on this sharpened edge. To do this, make a burnisher guide block from a 2"-thick scrap about 6" long and 1/4" wider than the plane blade. Bevel-cut one end at 15° or the angle specified for your plane, as shown on page 39, top right. Clamp the guide block and blade in a lever cap knob and blade bow thumbscrew to create a slight concave in thin blades to help eliminate edge marks.

Watch a FREE 4-minute video on sharpening scraping planes at: woodmagazine.com/videos

Before sandpaper, craftsmen turned to a scraper when they needed a silky-smooth surface. Today, scrapers still work wonders for taming wild wood grain, and provide you with a welcome break from the noise and dust of sanding.

Unlike handheld card scrapers, a scraping plane requires less effort, especially on large surfaces, and holds the blade at a consistent angle. (It also costs 10-20 times more than a $10 card scraper.)

First, burnish the blade
As with any bench plane, clean cuts depend on a sharp blade, so sharpen a scraping plane blade as you would a conventional plane blade. (See WOOD magazine issue 160 [December/January 2004/2005], page 54, for a sharpening system using waterstones. Or you can download the article for $3.00 at woodmagazine.com/sharpen.) As you would with a conventional blade, slightly round over the ends of the bevel to keep the blade from leaving marks with each pass.

Next, form a burr on this sharpened edge. To do this, make a burnisher guide block from a 2"-thick scrap about 6" long and 1/4" wider than the plane blade. Bevel-cut one end at 15° or the angle specified for your plane, as shown on page 39, top right. Clamp the guide block and blade in a lever cap knob and blade bow thumbscrew to create a slight concave in thin blades to help eliminate edge marks.

Watch a FREE 4-minute video on sharpening scraping planes at: woodmagazine.com/videos
vise—the blade can be on either side of the block—with the bevels facing the same way and the blade about 1/4" proud of the block.

With the block as your angle guide, use a burnisher (see Sources) or the hardened shaft of a screwdriver or chisel to roll the burr. Press firmly as you push or pull the burnisher from the center to one edge while simultaneously sliding it diagonally, as shown at right, top. Then slide the burnisher from the center to the opposite edge. Repeat until you feel an even burr form as the sharp edge rolls over.

Install and adjust the blade

A properly burred and installed scraping blade should remove a paper-thin shaving. To install the blade, first place two pieces of typing paper about 2" apart on a flat wooden surface such as your workbench. Then rest the sole of the plane on the papers with the opening in the sole (called the “throat”) between them, as shown at right, center. Adjust the frog angle until it’s about 80° to the sole. Open the lever cap knob far enough to insert the blade with the burr facing forward (avoid ding the burr against the plane body) and resting on the benchtop. Then tighten the lever cap knob.

For a shallower cut, use just one piece of paper beneath half the plane sole. For the shallowest cut, place the sole directly on the benchtop and press down on the blade while tightening the lever cap knob.

Now test your scraping plane on a piece of scrap clamped firmly in place, but don’t be surprised if nothing happens. To peel off an even curl of wood, the frog must be adjusted to an angle where the burr snaggs the wood as you begin to work the plane.

The blade changes depth as you change the frog angle, so first loosen the lever cap knob just enough to free the blade. Then back away the two frog adjustment wheels by about 1/4". After you secure the frog, retighten the lever cap knob to reset the blade depth. Repeat this process until you feel the blade bite into the wood and shave thin curls of wood from your scrap. (See “Shavings tell how you’re scraping by.”)

Using a scraping plane

Scraping planes work slowly by taking thin curls, so start with a surface flattened with a power planer or hand plane. As when using a smoothing plane, grip the scraping plane firmly by the front knob and rear handle, as shown at lower right.

Working in the direction of the grain, hold the plane with the blade off the work surface and the toe firmly pressed against it. Push firmly against the rear handle hard enough to begin cutting and build momentum to complete the stroke. For hard or difficult woods, such as quilted maple, start the cut while holding the plane at roughly a 25° angle to the grain for a shearing motion.

Equalize your hand pressure on the toe and heel by midcut. At the opposite end of the workpiece, shift pressure to the heel as the blade nears the edge. That reduces the chance of rounding over the work surface.

Plan the next stroke to slightly overlap the previous one. Test your work periodically by wiping the surface with mineral spirits to reveal any plane marks. If you notice any, reduce the depth of cut, round over the blade edges, or use the blade bow thumbscrew to eliminate the problem.

Sources

Triangular burnisher. Two Cherries triangular burnisher (520-5085), $18. Di Legno Workshop Supply, 877/1208-4298 or dlws.com

Examine the wood and your plane shavings to diagnose problems. If the blade cuts too deeply, as shown above left, loosen the lever cap knob and reduce the blade depth. If a freshly sharpened blade still leaves just tiny curls and sawdust, as shown above center, adjust the pitch of the frog until the burr bites into the wood surface. If a worn blade goes from making curls to making sawdust, resharpen the blade and restore the burr. Aim for long, wide, and thin shavings, like the one shown above right.
in contrasting woods

Pagoda Box

AT A GLANCE

- Box dimensions are 5 1/4" wide x 6 1/2" long x 5 3/4" high.
- The small size and simple form make this the perfect project for hoarded cutoffs of highly figured and exotic woods.
- Two simple jigs ease the task of forming the graceful lid curves.
- For the items needed to build this project, see page 44.
- The box is bird's-eye maple with a cherry lid and walnut handle. For more options, see page 44.

Watch a FREE 5-minute video on Forming the Pagoda Box Lid at: woodmagazine.com/videos

With a design rooted in Asian architectural style and form, Bellingham, Washington, woodworker David Selditz pays homage to beauty through simplicity. To find out more about David and his work, see page 44.

Build the container

1. For the sides (A) and ends (B), plane stock to 3/8" thick, and cut a 4x20" blank. Then set up your tablesaw [Drawing 1], and bevel the top half of the blank [Photo A]. Now cut a rabbet and a groove on the inside face [Drawing 2, Side View]. Sand the bevel smooth, and then finish-sand the inside face of the blank and the rabbet.

2. To make the wood grain wrap continuously around the container, cut the sides (A) and ends (B) 1/4" longer than listed [Materials List on page 44], and cut them from the blank in the sequence A-B-A-B. Mark the order on each part. Then miter the parts to finished length. Now lay out the arches [Drawing 2], and bandsaw and sand them to shape.

3. Cut the bottom and lid base (C) to size. Then set the lid base aside, and dry-assemble the container to check the fit of the
3 EXPLoded VIEW

To keep the top of the container square during glue-up, cut a temporary lid from 1/8" hardboard to fit snugly into the top rabbet. Chamfer the corners to prevent excess glue from bonding it in place. For easy removal after glue-up, drive a wood screw into the center. To make clamping the container during glue-up easier, cut three 3/4x3/4x7" pieces of scrap. Then notch two of the pieces for caul blocks, and make corner blocks with the remaining piece. Now glue and clamp the container. Do not glue the bottom (C) into the side (A) and end (B) grooves. With the glue dry, finish-sand the outside of the container.
Form the lid

1. Plane stock to ¾” thick, and cut the lid (D) to size. Then photocopy the Lid Pattern on the WOOD Pattern insert, and adhere it to the lid with spray adhesive. Now chuck a ¾” brad-point bit into your drill press, use the fence to position the lid, and drill the holes indicated on the pattern.

 Note: Cut an extra lid from scrap and adhere a pattern to it. Then use this scrap lid to test the following lid-forming setups and practice making and sanding the cuts.

2. To form the lid (D) bottom profile, first cut four ¾x4x6” pieces of plywood, and make the Lid Bottom Profile Jig [Step 1 of Drawing 5]. Then adhere an 80-grit self-adhesive sandpaper disc to a 5” sanding disc, and chuck it into your drill press. Next post-
Position the lid (D) snug against the jig stop and the bandsaw table and screw it in place. Then bandsaw the scallop to the dashed pattern line [Photo E]. Now with the lid still attached to the jig, drum-sand the scallop to the solid pattern line [Photo F].

Assemble the Jig Top Profile Jig [Drawing 6]. Then screw the lid to the jig, and rough-cut the first scallop to the dashed pattern line [Photo E]. Switch to a spindle sander, and sand to the solid line [Photo F]. Repeat for the other three scallops. Finish-sand the top profile.

Retrieve the lid base (C) and finish-sand the bottom, ends, and edges. Glue and clamp the lid base, centered, to the bottom of the lid (D).
Leopard wood body with a bubinga lid and wenge handle

You can mix or match wood species for the box, lid, and handle in almost endless combinations. Here are a few examples.

PAGODA BOX GALLERY

Make the handle

Make the handle for the handle base (E) and handle (F). Rip a 3/4"-wide strip from the edge of a 3/4"-thick, 12"-long piece of stock. Then cut the parts to size. Mark hole centers on the bottom of the handle base (Handle Base Pattern). Now chuck a 1/8" brad-point bit into your drill press, and stack-drill holes for brass rods in both parts (Drawing 3 and Photo G). Mark the orientation of the two parts for reassembly, and separate them.

Finish and add the handle

Examine all the parts, and finish-sand where needed. Then apply a clear finish. (The figured woods we used needed no stain. We simply applied several coats of aerosol lacquer, sanding with 320-grit sandpaper between coats.)

With the finish dry, cut two pieces of 1/4" brass rod to length, and polish them with 000 steel wool. Then place a small drop of epoxy into the handle base (E) and handle (F) holes, insert the brass rods into the base holes, and press the handle onto the protruding rods. (There should be a V1/4" gap between the handle base and handle.) Make sure the handle is level relative to the lid.

Now stow your small treasures in the box, and place it where all can admire.

Written by Jan Svec with Chuck Hedlund
Project design: David Selditz
Illustrations: Roxanne LeMoine

Materials List

<table>
<thead>
<tr>
<th>Part</th>
<th>T</th>
<th>W</th>
<th>L</th>
<th>Mat. Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A* sides</td>
<td>3/4"</td>
<td>4"</td>
<td>4"</td>
<td>BM 2</td>
</tr>
<tr>
<td>B* ends</td>
<td>3/4"</td>
<td>4"</td>
<td>3 1/2"</td>
<td>BM 2</td>
</tr>
<tr>
<td>C bottom and lid base</td>
<td>3/4"</td>
<td>2 1/4"</td>
<td>3 3/8"</td>
<td>C 2</td>
</tr>
<tr>
<td>D lid</td>
<td>3/4"</td>
<td>5 1/4"</td>
<td>5 1/4"</td>
<td>C 1</td>
</tr>
<tr>
<td>E* handle base</td>
<td>3/4"</td>
<td>3/16"</td>
<td>1 1/2"</td>
<td>W 1</td>
</tr>
<tr>
<td>F* handle</td>
<td>3/4"</td>
<td>1/4"</td>
<td>6 1/2"</td>
<td>W 1</td>
</tr>
</tbody>
</table>

*Parts initially cut oversize. See the instructions.

Materials key:
BM-bird’s-eye maple, C-cherry, W-walnut.
Supplies: Spray adhesive; double-faced tape; 1/8" brass rod; epoxy; #8x1", #8x1 1/2", #6x1" flathead wood screws.
Blades and bits: Stack dado set, 1/8" and 1/4" brad-point drill bits.

ABOUT DAVID SELDITZ

Introduced to woodworking while stationed at Ft. Bragg, North Carolina, David continued the craft after leaving the military. In 1994 he assembled a small, one-man shop where he creates gifts and functional furniture accessories. Though primarily self-taught, he has studied the methods of some of the finest woodworkers in the Northwest. David’s style is recognizable by his artful blend of exotic and native hardwoods. In 1999, he won the People’s Choice Award in Northwest Fine Woodworking’s Box Competition. To view more of David’s work, go to davidselditz.com.
Find Your Own Wood,
Save a Bundle

Your backyard may be your best source for FREE stock.

Using his simple resaw jig, Brian Hahn slices into a small walnut crotch, exposing the highly figured wood within.
According to the U.S. Department of Agriculture, some 3-4 billion board feet of lumber end up in landfills each year. While money may not grow on trees, knowing how to salvage a fraction of that “green waste” is as good as putting some green into your pocket. To show you how you can start “shopping” for logs right in your own backyard or local forests, we asked longtime woodworker and small-shop sawyer Brian Hahn, from Avoca, Wisconsin, to share his favorite jigs and techniques for converting firewood into valuable stock. Here, you’ll learn how to select, saw, and store boards, turning blanks, and small logs. We even came up with a great small project for you to build (see page 40 for the box above) as you experiment with your newfound wood.

Granted, you may want to stick with your favorite mill when you need long boards for a big project. But once you experience the thrill of finding a new species, or sawing open a spectacularly figured log, odds are good that you will never look at your firewood pile the same way again.

HARVESTING OPTIONS

Before firing up your chainsaw, take a minute to compare the advantages of sawing your own versus buying stock from your local mill or home center. Transforming logs into lumber can be slow work, but the results can be more than worth a little extra effort.

Reasons to saw your own:

■ Savings. Odds are you already have most of the tools you need to harvest free wood. (See “Sawyer Starter Set,” above right.) Realize that a logger’s credentials are not required to find plenty of savable stock. New construction, old age, disease, and storms claim thousands of trees each year; sawing makes the best use of this (often free) available material... yielding spectacular stock that’s impossible to buy at any price.

■ Selection. Because of their small trunk size or limited quantities, many outstanding local woods are considered “noncommercial” by big mills. (To view a small sample of what you might find depending on your area, check out the samples on page 50.)

■ Surprise and satisfaction. Cutting into a newfound log is like opening a treasure chest, with no two logs alike. Using wood from a special tree on your property to make a gift or keepsake is a wonderful way to hold on to and share a bit of family history.

■ Waste. At a commercial mill, about a third of a “good” log is waste. As you experiment with burl, crotch, and root stock (See “Where to Find Good Wood,” next page, you may uncover some fabulous figure, but your percentage of waste is likely to be even higher. (However, if you use a fireplace or woodstove, bark, chips, and unusable stock easily can be converted into free heat.) If you’re more interested in woodworking than wood-finding, you might be better off sticking with prepared boards and blanks.

■ Weight. If you’ve stacked firewood, you already know that a freshly sawn 2’ long by 10” diameter log can weigh in at 40-80 pounds. To save your back, set a length limit, and use your chainsaw to split large logs into more manageable chunks. This also makes for a safer operation.

■ Wait. Freshly sawn stock needs time to dry; otherwise it will warp and crack. Without a kiln, it takes approximately 60-90 days to air-dry stock to 20 percent moisture content (MC). At that point, you’ll need to move your wood indoors so it can continue losing moisture. To achieve 8-10 percent MC—the level where indoor projects won’t split or crack—the “year per inch of thickness” rule is a safe bet.

On the other hand, blanks are suitable for turning right away. To cut drying time in half, some turners partially turn green blanks (for a 10” bowl, leave the sides about 1” thick), and then store the unfinished projects in paper bags. As the rough-turned bowls dry they may warp, but are less likely to crack. When a rough-turned bowl reaches 12 percent MC, it’s dry enough for final turning.

■ Warehousing. Extra wood needs extra space. Ideally, green wood should be left in an unheated, but protected space (a tarp can work in a pinch, but a shed is best) so that it slowly release stored moisture. (Outside storage also keeps bugs, excess humidity, and dirt away from the rest of your shop.) If you have a small workshop, you may not be able to afford space for stickered piles, shelves of drying blanks, or sealed-but-yet-unsawn logs.

SAWYER STARTER SET

If you own a 14” bandsaw, you’re set to start sawing. Invest in some of the tools shown here to make the job easier and safer.

1. Electric chainsaw Perfect for making quick cuts, without gas or fumes.
2. Metal detector Nails happen. A detector defends your blade from all sorts of metal debris.
3. Plastic wedges Use to hold open chainsaw kerfs. Won’t damage blade if nicked.
4. Moisture meter Digital display tells you when home-sawn stock is dry enough to start working.
5. Ear muffs Sawing is loud and dusty work. Protect yourself.
6. Sledgehammer and wedges The traditional approach to splitting large logs.
7. Handheld power planer Simple flattening solution, especially for logs that might be too wide for your jointer.
8. Pallet An ideal saw bench. The slats hold round logs and keep the chainsaw’s blade safely above the floor. Watch out for nails in the pallet, though!
FROM PROMISING LOGS TO IMPRESSIVE BOARDS

Over the years, Brian has developed a simple four-step sequence for sawing stock. By combining your bandsaw and a fresh 2-3 tpi, 3A' blade (see Sources on page 52) with his techniques and ripping jig, you'll be able to start turning logs into usable stock right away.

Step 1: Start with fresh logs.
Like most sawyers, Brian prefers starting with fresh-cut logs rather than old firewood or dead standing trees. "Unless they're protected, logs degrade rapidly, sometimes within a week," he says. Brian seals the ends immediately after using his chainsaw to protect the boards and blanks within the log. The sealer not only prevents checks and cracks that occur when a log loses moisture too quickly it also keeps out bugs and other wood-eating organisms that can stain or otherwise damage the wood. At this point, logs can be safely stored, although they dry much more slowly than sawn stock.

Sometimes, a sealed log will start to crack. Before brushing on a second coat of sealer. Brian saws about 6' off the offending end and continues cutting until he reaches solid wood before sealing. "Considering all the work that's involved, there's no point in trying to save split wood," he says.

Leave tree felling to the pros!
Without proper training or experience, the chance that you might get hurt or damage nearby property isn't worth the risk. Similarly, if you're intent on sawing long logs, call for help. Woodmizer (800/553-0182) or Timbarking (800/942-4406) can provide you with names of sawyers in your area who operate stationary and portable sawmills.

Step 2: Split to save stock and make massive logs manageable.
Whether you're sawing boards or blanks, in most cases you'll want to remove the pith, or core, of the log. "Since cracks start from the pith, cutting it out saves a lot of stock," says Brian. As an important side benefit, splitting reduces the weight of big logs and shrinks the diameter. This will enable you to maneuver bigger logs on your bandsaw.

Brian uses a chainsaw to cut large-diameter logs down to size before bringing them into this shop. To do this, he first positions the log on a pallet and crosscuts it to length. Next, he lifts the log onto his saw bench, as shown [Photo A, opposite]. For large logs, Brian makes a chalk line on one side of the pith and saves the log along its length, as shown. (Alternatively, you can split larger logs using the wedge-and-mallet approach.) After sawing, Brian uses a handheld power planer to smooth out the rough cut left by the chainsaw.

Step 3: Resaw on your bandsaw.
After establishing a flat face, Brian disassembles the base from his resawing jig. As shown [Photo B], he uses the base as a sliding table. To do this, he drives screws through the underside of the base into his log so that one edge hangs over the blade side of the base. Then he fits the runner into the bandsaw's miter slot and makes the cut.

After Brian established two adjoining square faces, start standard resawing. To do this, Brian clamps the jig's fence to his bandsaw, as shown [Photo C]. The tall fence provides extra support for wide boards.

When resawing, always allow extra wood (up to 1/4") for warping. To minimize warping or cracking, the Forest Products Laboratory recommends slicing green stock into rough-cut boards no thinner than 3/4" and no thicker than 2". Wood within that range is thick enough to resist warping, but thin enough to lose moisture without cracking.

Step 4: Stack, seal, and wait.
Green lumber begins to move immediately after sawing. To prevent this, Brian carefully stacks sawn boards in layers, uses 1/4' x 1" stickers at 12-18" intervals to provide support and encourage circulation, and weighs down the stack with sandbags, as shown [Photo D]. At this point, all that's left to do is watch and wait. You can use a moisture meter to track your stock's progress, or follow Brian's simple SHOP TIP

Some bandsaw blades may drift, or cut in a line that's not perpendicular to the front edge of your saw's table. If your saw doesn't want to cut straight, the easiest way to compensate for this is to find the angle, and adjust your fence accordingly.
rule of thumb: "Cracking means it's drying out too quickly; mold growth means that it's drying too slowly. After six months or so in the storage shed, I bring it into my shop to equilibrate with the inside moisture levels." Brian uses a small electric fan and a tarp to adjust drying times.

Log-to-Lumber Resaw Jig

Brian's bandsaw resawing jig is actually three jigs in one, and can be built from scrap sheet goods found around the shop. Depending on his resawing needs, the jig can serve as a sliding table, an adjustable sawing support for safely slicing round or uneven stock, or a rock-solid resaw fence.

Brian built his jig with materials he had on hand, but he suggests using plywood instead of particleboard, "to add extra rigidity and to make the jig tough enough to survive a few accidental falls and jolts."

Brian designed his jig to work with a 14" bandsaw equipped with a 6" riser block. If you have a smaller saw, adjust the height of the jig's fence to fit, but keep the width and length of the base to ensure stability.

When you're resawing long logs, make sure to set up roller stands, or another type of support system, on the infeed and outfeed sides of your bandsaw. Otherwise, your jig and log may come crashing down as you finish making your cut.

After screwing the log to the arm so that it can't shift in mid-cut, Brian saws through the log about 1" away from the center so that one half is already pith-free. Holding the saw at a 30° angle, as shown, seems to produce smaller, less clog-causing chips.

The sliding table helps guide and slide the log past the blade, even if your first cut isn't perfect. Use screws and small wedges to secure the stock to the sliding base.

Disassemble your jig and clamp the fence to the table, as shown. Note that you may need to angle it to allow for blade drift.

Sealing sawn porous ends (and the faces of turning blanks) limits splitting and cracking by promoting even drying. Aligning the stickers vertically transfers the weight of the wood evenly through the pile and encourages stock to dry straight.
Wood You Might Find in Your Own Backyard

When it comes to selection, most backyards and surrounding woodlands beat the average lumberyard hands down. Some of these "noncommercial" woods can be challenging to work with, but the color and figure make them worth the effort. Here are a few samples of what you might encounter:

Softer hardwoods and harder softwoods

| **Aromatic cedar** | *Juniperus virginiana*
Found: Eastern/Central U.S.
Somewhat brittle, this stable, aromatic wood is good for box bottoms and drawer liners. |
| **Riverbirch** | *Betula nigra*
Found: East/Pacific N.W.
Once used for toys, this lightweight wood is easy to work with power and hand tools. |
| **Butternut** | *Juglans cinera*
Found: All over
Softer, lighter, faster-drying cousin to walnut. Perfect for turnings, carvings, small projects. |
| **Catalpa** | *Catalpa speciosa*
Found: All over
Wood from this "urban shade tree" works like pine, but without the resin. |
| **Red Pine** | *Pinus resinosa*
Found: Eastern U.S.
Used for trim, flooring, and windows, this hard, striped softwood adds color to simple projects. |
| **Willow** | *Salix nigra*
Found: All over
The lightweight wood is a favorite of turners, carvers, and box makers. |

Medium-hard hardwoods

| **Mountain Ash** | *Sorbus aucuparia*
Found: Eastern/Central U.S.
The cream-colored wood from this ornamental works for turning, carving, and small projects. |
| **Mulberry** | *Morus rubra*
Found: All over
Close-grained wood gradually shifts from yellow to purple-brown. Takes a high polish. |
| **Mistletoe** | *Viscum album*
Found: All over
The lightweight wood is a favorite of turners, carvers, and box makers. |

Hard-to-work hardwoods (but worth it)

| **Apple** | *Malus pumila*
Found: Orchards all over the U.S.
Wide boards tend to crack and warp, but this hard, heavy wood turns and carves well. |
| **Bitternut Hickory** | *Carya glabra*
Found: Eastern/Central U.S.
The white wood is super hard. Toughen softer spalted spots with Minwax's Wood Hardener. |
| **Bur Oak** | *Quercus macrocarpa*
Found: All over
A dead ringer for white oak; you'll want to sand or scrape the wild grain to avoid tear-out. This sample shows curly figure. |
| **Dogwood** | *Cornus florida*
Found: All over
This hard wood gets smoother with use, making it perfect for mallets and handles. |
BUILD A BANK OF TURNING BLANKS

Transforming a log into turning stock requires less work (and less wait) than turning it into lumber. In fact, starting with a chunk of wood, you can fire up your chainsaw, shift over to your bandsaw, and then start turning at your lathe, all in the same day. “Why wait around for wood you don’t want? Rough-turning, or at least bandsawing out blanks, speeds up the drying process,” says Brian.

To ready wood for the lathe, Brian first uses his chainsaw or bandsaw to make his first big slices; then he sizes the blanks with a homemade layout template, shown near right. The clear acrylic makes it easy to find the best potential blank and still see the color and grain of the wood. Using holes in the template, Brian establishes the radius and centerpoint, and transfers the radius to the blank with a compass.

Once drawn, it’s time to bring the blank back to the bandsaw. Brian points out that his 3/8”-wide blade is great for resawing, but cannot make the tight turns necessary to saw out his blanks. Instead of switching to a narrower blade, Brian makes several straight cuts, “nibbling” up to his line (photo far right). “This method isn’t perfect, but it saves time by keeping the saw set up for resawing,” he says. “Besides, it’s easy enough to true-up a blank at the lathe.”

Realize that the orientation of your blank within the log plays an equally big part in the appearance of your finished project, right. However, when it comes to burls, roots, and multi-pithed crotches, Brian warns that all bets are off. “Letting the blank tell you how it’s supposed to be turned is part of what makes turning so exciting,” he says.

Once sawn, the blank is ready to turn. If you haven’t tried turning green wood, you’re in for a pleasant surprise. Many turners prefer local wood for fresh blanks, instead of buying kiln-dried, for reasons other than price. Green blanks are softer and easier to turn than dry stock; this means that chisels and gouges go longer between sharpenings. Plus, “I really like the way they make long, stringy curls, not just chips and dust,” Brian says. For difficult-grained blanks, such as this walnut crotch, extra moisture also seems to help support the wood fibers, which limits tear-out.

Despite these benefits, Brian points out that it’s possible to have too much of a good thing. “By weight, some fresh-from-the-tree blanks contain more water than wood. This can make turning green a very wet event,” he says. To minimize potential spray-back, Brian prefers cutting the blanks, and then waiting until they air-dry down to about 20 percent MC. Although still too wet for other types of woodworking, the thick boards and blanks are terrific turning stock.

Go with the Grain

Orientation in log

Pattern of bowl and plate grain
Top view
Side view

When it comes to looks, how you cut the blank log is as important as how you turn it at the lathe. Changing the orientation of a bowl blank within a log will give you very different grain patterns.

Although some turners have found ways of using the pith in their design, removing that 1” square from the center of the log not only will save stock but also make things safer. Big cracks are easy to see, but smaller splits, such as the one shown in the lower log section, can open up and cause a blank to fly apart when you flick the switch. For that reason, inspect your stock before turning.
Turning feels more like peeling while the wood's still wet. You'll get nice, long shavings, even when working wildly figured stock.

Since this sample (photo above) was still very wet, Brian rough-turned it to about an inch thick, or half of its finished thickness. Once turned, it's important to prepare rough-turned blanks so that they don't dry out too quickly. Some turners bag rough-turned bowls in brown paper along with a pile of wet shavings to slow down the drying rate, but Brian prefers bagging just the bowl. “As long as the bags are kept out of direct sun, the paper seems to work well by itself,” he says. When in doubt, he coats end grain and other wildly figured patches with Anchorseal or shellac to slow down the drying process.

A final word: before you start sawing—your biggest problem may be knowing when to stop. “Sawing into logs is addictive,” says Brian. He points to his barn-size collection of dried and drying stock (photo above right). “Whether it’s boards or turning blanks, once you cut into your first log, you’re always thinking about the next.”

Written by Joe Hurst-Wajszczuk
with Jim Harrold
Illustrations: Tom Rossborough
Special thanks to Bud Loeffelholz

Sources
Moisture meter: #mmeter, $39.95, Metal/Voltage/Stud Sensor #JDT-03, $12.50, Penn State Industries, 800-377-7297; pennstateind.com
Low-tension bandsaw blade: #SKU715, $26.05; other lengths available; PS Wood Machines, 800-939-4414; pswood.com
Anchorseal: $28/gallon U.C. Coatings, 888-363-2628; ucc-Coatings.com

WITH THE MONEY HE SAVED, HE BOUGHT THE BARN
Organized not only by species, but also by when the wood was cut, Brian keeps a few seasons’ worth of boards and blanks neatly stacked in his shed.

Diamonds Inside the Rough
These samples prove that real beauty is more than skin-deep. Look for small branches, ripples, or bulges that offer clues of the interesting figure that may hide within. Generally, rot is generally bad, but a little can produce spalting. Cut back the soft exterior wood until you find harder stock.

Brian’s Found-Wood Creations
Here are just a few of the items Brian has made from backyard logs and scrap materials he has come across locally.
Dear Reader: As a service to you, we've included full-size patterns on this insert for irregular shaped and intricate project parts. You can machine all other project parts using the Materials List and the drawings accompanying the project you're building.

© Copyright Meredith Corporation, 2007. All rights reserved. Printed in the U.S.A. Meredith Corp., the publisher of WOOD Patterns, allows the purchaser of this pattern insert to photocopy these patterns solely for personal use. Any other reproduction of these patterns is strictly prohibited.

Pagoda Box, Page 40
Garden Bench/Trellis, Page 58
Caterpillar Pull Toy, Page 64
Picture Frames, Page 72

FACE LAYOUT
FULL-SIZE PATTERN
GARDEN BENCH/TRELLIS TEMPLATE
FULL-SIZE PATTERN

Location of part 1

HANDLE BASE FULL-SIZE PATTERN

 Pagoda Box,
Page 40

HANDLE FULL-SIZE PATTERNS

Front view

Bottom view
Picture Frames,
Page 72

BASE FULL-SIZE PATTERN

- 1 1/2" round-over
- 9/64" shank hole, countersunk on bottom face

FRAME FULL-SIZE PATTERN

- 5 1/8"
- 1/4" cove
- 9/64" shank holes, countersunk, on back

SUPPORT FULL-SIZE PATTERN

- 1 1/4"
- 9/32" pilot holes 5/6" deep
- 9/32" pilot hole 1/2" deep

BACK and ACRYLIC FULL-SIZE PATTERN

- 5 1/8"
- 9/6" rabbet 3/8" deep

Location of support on back

56
Simple-to-Make

Garden Bench/Trellis

Using just a portable circular saw, jigsaw, and drill, you can build and “plant” this eye-catching masterpiece in a weekend.
Start with the structure

1 From the straightest pressure-treated 4x4s (3½x3½ actual) you can find, crosscut the posts (A) to the needed length to reach the frost line for your area. (Check with your local building department for the frost-line depth.) The minimum length is 111", which consists of 87" above grade and 24" below grade for safe support of the structure [Drawing 1].

2 At the crosscut end of each post (A), lay out opposing 6" rabbets 3/4" deep to receive the crossarms (B). Using your portable circular saw, form the rabbets, as explained in the Shop Tip, next page. If you plan to build the structure with the seat (not the optional lattice), lay out and form a 5/4" dado 3/4" deep in the inside face of each post, where dimensioned.

3 For the best appearance, rout a 3/4" round-over along the edges of the posts (A) to remove any unevenness. Then sand the posts to 120 grit.

4 From 2x6 (1½x5½ actual) cedar, rip and crosscut the crossarms (B) to size. Then, from 5/4x6 cedar deck boards, rip and crosscut the joists (C) to size.

Note: We based the spacing of the structure joists (C), battens (D), and seat center rails (G) on 5/4 cedar deck boards that measure 1" thick. If your boards do not measure the same thickness, you'll need to adjust the spacing of these parts as needed during assembly.

5 Lay out a pair of 1½" dadoes 1" deep at each end of a joist (C), where dimensioned [Drawing 1], to fit the crossarms (B). Clamp the four joists together on edge with the marked joist outside. Now kerf and clean out the dadoes, using a speed square to guide your saw across the parts.

6 To make a template for drawing the curves on the crossarms (B), joists (C),

As an option, install lattice instead of the seat for a privacy screen plant trellis.

PROJECT HIGHLIGHTS

- Overall dimensions are 80½" wide x 41½" deep x 92½" high (in ground).
- Materials needed: Pressure-treated 4x4 posts, dimensional cedar lumber and decking, and 1¼" PVC lattice (optional), all found at your local home center.
- A full-size pattern for creating a hardboard template makes laying out the curved parts a snap.
- The structure assembles easily using wood screws, lag screws, and nails.
A safe way to form rabbets and dadoes in large parts

Using your table saw to cut rabbets and dadoes in large parts, such as the posts (A) and joists (C), can be awkward and unsafe without proper workpiece support and guidance. Here's a simple and safe method for forming the joints using your circular saw. Keeping the saw tight against a guide, such as a speed square, cut a series of kerfs to the needed depth and approximately 1/16" apart across the part along the length of the rabbet or dado, as shown. Break away the remaining thin pieces with a hammer. Then pare away the remaining material with a chisel to smooth the joint.

Make the seat

1. Cut the crossarms (E), front/back rails (F), and center rails (G) to the sizes listed. Align the template at each end of the crossarms (E) [Drawing 2] and draw the curve. Jigsaw and sand the curves to the lines. Then rout 1/4" round-overs on the crossarms and front/back rails, where shown [Drawing 3].

2. Assemble and clamp together the crossarms (E), front/back rails (F), and center rails (G), positioning the front/back and center rails where dimensioned [Drawing 3]. Drill the mounting holes, and drive the screws.

3. Cut the center and outer slats (H, I) to the sizes listed. Rout a 1/8" round-over along the edges of the slats, where shown. (You’ll hand-sand round-overs on the ends after shaping the slats.)

4. To mount the center slat (H) to the seat frame, mark centerlines on the top edges of the crossarms (E) and ends of the slat. Position the slat on the frame, centered end to end with the centerlines aligned. Drill the 10 mounting holes, where shown, but drive only five screws along the length to temporarily secure the slat. Now position and seat parts later, photocopy the garden bench/trellis template full-size pattern from the WOOD Patterns insert. Spray-adhere the pattern to a piece of 1/4" hardboard. Jigsaw or scrollsaw the hardboard to shape, and sand the edges smooth.

5. Align the template at each end of the crossarms (B) and joists (C), where shown [Drawing 2], and draw the curve [Drawing 1]. (After marking one end of each part, flip the part over to mark the other end.) Then jigsaw and sand the parts to the marked lines.

6. From 5/4 x 6 cedar deck boards, cut the battens (D) to size. Mark a 1" radius at each end of a batten [Drawing 1]. Jigsaw and sand to shape. Using this part as a template, mark the remaining battens. Now jigsaw and sand them.

Make the seat

1. Cut the crossarms (E), front/back rails (F), and center rails (G) to the sizes listed. Align the template at each end of the crossarms (E) [Drawing 2] and draw the curve. Jigsaw and sand the curves to the lines. Then rout 1/4" round-overs on the crossarms and front/back rails, where shown [Drawing 3].

2. Assemble and clamp together the crossarms (E), front/back rails (F), and center rails (G), positioning the front/back and center rails where dimensioned [Drawing 3]. Drill the mounting holes, and drive the screws.

3. Cut the center and outer slats (H, I) to the sizes listed. Rout a 1/8" round-over along the edges of the slats, where shown. (You’ll hand-sand round-overs on the ends after shaping the slats.)

4. To mount the center slat (H) to the seat frame, mark centerlines on the top edges of the crossarms (E) and ends of the slat. Position the slat on the frame, centered end to end with the centerlines aligned. Drill the 10 mounting holes, where shown, but drive only five screws along the length to temporarily secure the slat. Now position and seat parts later, photocopy the garden bench/trellis template full-size pattern from the WOOD Patterns insert. Spray-adhere the pattern to a piece of 1/4" hardboard. Jigsaw or scrollsaw the hardboard to shape, and sand the edges smooth.

7. Align the template at each end of the crossarms (B) and joists (C), where shown [Drawing 2], and draw the curve [Drawing 1]. (After marking one end of each part, flip the part over to mark the other end.) Then jigsaw and sand the parts to the marked lines.

8. From 5/4 x 6 cedar deck boards, cut the battens (D) to size. Mark a 1" radius at each end of a batten [Drawing 1]. Jigsaw and sand to shape. Using this part as a template, mark the remaining battens. Now jigsaw and sand them.

Make the seat

1. Cut the crossarms (E), front/back rails (F), and center rails (G) to the sizes listed. Align the template at each end of the crossarms (E) [Drawing 2] and draw the curve. Jigsaw and sand the curves to the lines. Then rout 1/4" round-overs on the crossarms and front/back rails, where shown [Drawing 3].

2. Assemble and clamp together the crossarms (E), front/back rails (F), and center rails (G), positioning the front/back and center rails where dimensioned [Drawing 3]. Drill the mounting holes, and drive the screws.

3. Cut the center and outer slats (H, I) to the sizes listed. Rout a 1/8" round-over along the edges of the slats, where shown. (You’ll hand-sand round-overs on the ends after shaping the slats.)

4. To mount the center slat (H) to the seat frame, mark centerlines on the top edges of the crossarms (E) and ends of the slat. Position the slat on the frame, centered end to end with the centerlines aligned. Drill the 10 mounting holes, where shown, but drive only five screws along the length to temporarily secure the slat. Now position and seat parts later, photocopy the garden bench/trellis template full-size pattern from the WOOD Patterns insert. Spray-adhere the pattern to a piece of 1/4" hardboard. Jigsaw or scrollsaw the hardboard to shape, and sand the edges smooth.

7. Align the template at each end of the crossarms (B) and joists (C), where shown [Drawing 2], and draw the curve [Drawing 1]. (After marking one end of each part, flip the part over to mark the other end.) Then jigsaw and sand the parts to the marked lines.

8. From 5/4 x 6 cedar deck boards, cut the battens (D) to size. Mark a 1" radius at each end of a batten [Drawing 1]. Jigsaw and sand to shape. Using this part as a template, mark the remaining battens. Now jigsaw and sand them.
and mount the outer slats (I) to the frame, overhanging the crossarms 2¼" at each end [Drawing 3a] and spaced ¾" apart [Drawing 3, Photo A]. Again, secure each slat with only five screws.

5 To round the ends of the outer slats (I) [Drawing 3], align the template where shown [Drawing 2] and draw the curves. Remove the outer slats and center slat (H). Jigsaw and sand the outer slats to the marked lines. Then, using a 150-grit sanding block, round over the ends and corners to blend with the ¼" round-overs along the edges. Set the seat frame and slats aside.

Build the lattice frame

1 If you prefer a lattice screen instead of a seat, cut the stiles (J), top rails (K), bottom rails (L), and bottom cap (M) to the sizes listed. Mark the center and ends of the arch on a top rail (K) [Drawing 4]. Draw the shape using a fairing stick. (For a free fairing stick plan, go to woodmagazine.com/fairing.) Bandsaw and sand the arch to shape. Using this rail as a template, mark the arch on the remaining rail, and bandsaw and sand it. Sand all of the parts smooth.

2 To form the frames that sandwich the lattice (O) in place, lay out two stiles (J),

4 LATTICE (OPTIONAL)

8d galvanized finish nail angled at 10°

47°½" 12° bevels

½" 2½° overhang

1/2° pilot hole 1½" deep

8d galvanized finish nail angled at 10°

#8 x 2" stainless steel F.H. wood screw

1/2° shank hole, countersunk and angled at 10°

#8 x 2" stainless steel F.H. wood screw

#8 x 2" stainless steel F.H. wood screw

#8 x 2" stainless steel F.H. wood screw

1/2° shank hole, countersunk

1/4° pilot hole 1½" deep
With an outer joist (C) in place, use 9½"-long spacers to position the remaining joists for toenailing.

From the outer batten (D), position and screw-mount the remaining battens 7½" apart with spacers.

Cut the top cap (N) to size. Using your tablesaw and a pushstick for safety, bevel-rip opposing 12° bevels on one face. Sand the cap smooth.

Using your tablesaw or jigsaw, cut the 7½"-thick PVC lattice (O) to size. (We used cedar-color lattice to go with our selected stain.) Because the lattice flexes easily, use a support stand or a helper to keep it flat while you cut it.

Apply a stain or primer and paint to the parts. We applied two coats of Behr Deck Plus Solid-Color Deck, Fence and Siding Stain, color California Rustic DP-351 on the posts (A), crossarms (B), seat frame (E/F/G), and lattice frames (J/K/L), and color Cedar Naturaltone DP-533 on all other wood parts.

Assemble the structure
1. Center the crossarms (B) end to end in the rabbets in the posts (A). Drill mounting holes through the crossarms and into the posts, alternating the diagonal hole locations in the opposing crossarms to prevent lag-screw interference. Drive the lag screws with flat washers, leaving the screws slightly loose to allow for easier assembly of the joists (C).
2. To mount the joists (C), position the post/crossarm assemblies (A/B), spaced 47½" apart, across two level sawhorses. (We placed a 60"-long 2x4 facedown on top of each of our sawhorses to support the assemblies.) Starting at the bottom, clamp a joist to the crossarms (B) 1½" from the ends. Toenail the joist to the crossarms with 8d galvanized finish nails, sinking the nailheads. Then mount the remaining joists in place, using 9½"-long spacers to position them. Now reposition and clamp the spacers between the joists at the center to keep them aligned for installation of the battens (D).
3. Position a batten (D) across the joists (C) 1½" from the ends and centered end to end with a 4½" overhang. Drill mounting holes through the batten and centered into the joists. Drive the screws. Then position and mount the remaining battens 7½" apart with spacers. Remove all of the spacers. Leave the structure on the sawhorses.

Stain or paint the parts
With the frame assembly (J/K/L/M/N) clamped in position, screw-mount the stiles (J) to the posts (A).

Mount the seat
Attach the center and outer slats (H, I) to the frame (E/F/G), driving the screws into all of the mounting holes. Position the seat in the dadoes in the posts (A) and clamp the seat tightly between the posts. Then drill mounting holes through the crossarms (E) and centered into the posts. Drive the lag screws with flat washers.

Add the optional lattice
Screw-mount the bottom cap (M) to a frame assembly (J/K/L) with an edge of the cap overhanging the stiles (J) ¼". Keeping the same overhang, attach the top cap (N) to the frame using 8d galvanized finish nails angled at 10°.
Cutting Diagram

Structure with seat

A	3½ x 3½ x 120" Pressure treated (4x4) (2 needed)
B	1½ x 5½ x 96" Cedar (2x6) (2 needed)
C	1¼ x 5½ x 96" Cedar (2x6)
D	1 x 5½ x 96" Cedar (5/4x6) (4 needed)
E	1 x 5½ x 96" Cedar (5/4x6)
F	1 x 5½ x 120" Cedar (5/4x6)
G	¾ x 7¼ x 120" Cedar (1x8)
H	¾ x 7¼ x 120" Cedar (1x8)

Cutting Diagram

Optional Lattice

I	¾ x 5½ x 96" Cedar (1x6)
J	¾ x 5½ x 96" Cedar (1x6)
K	¾ x 7½ x 96" Cedar (1x8)
L	¾ x 7½ x 96" Cedar (1x8)
M	1 x 5½ x 48" Cedar (5/4x4)
N	1 x 5½ x 48" Diagonal-pattern PVC lattice

Materials List

```
Structure   T      W      L      Mat.   Qty.
A  posts   3/4"   3/8"   Post   2
B  crosstars   1½"   5/8"   341/4"   C   4
C  joints   1"   43/4"   801/2"   C   4
D  battens   1½"   1/2"   413/4"   C   10
E  crosstars   1½"   5/8"   24"   C   2
F  front/back rails   1½"   21/2"   46"   C   2
G  center rails   1"   21/2"   19"   C   3
H  center slab   ¾"   31/2"   471/4"   C   7
I  outer slats   ¾"   31/2"   541/4"   C   6
Lattice (optional)
J  posts   3/4"   1"   7"   C   4
K  top rails   ¾"   4"   48"   C   2
L  bottom rails   ¾"   4"   48"   C   2
M  bottom cap   ¾"   21/2"   471/2"   C   1
N  top cap   1½"   21/2"   471/2"   C   1
O  lattice   ¾"   471/2"   701/4"   L   1
```

Installs the structure

1. Clamp the frame assembly (I/K/L/M/N) between the posts (A), positioning the stiles (J) 1½" from the face of the posts and the bottom face of the top cap (N) 4" from the bottom of the crossarms (B) [Drawings 4 and 4a, Photo E]. Drill the mounting holes through the stiles and into the posts, and drive the screws.

2. Place the lattice (O) on the frame. Then position the remaining frame assembly (I/K/L) on the lattice. As before, screw the bottom cap (M) and nail the top cap (N) to the frame, and angle the mounting holes at 10° [Drawings 4 and 4b]. Now tighten the lag screws in the crossarms (B) to secure them to the posts (A).

Install the structure

Caution: Before you dig the postholes, dial the "One Call" phone number for your state or province, and ask to have the buried pipes and wires on your property located and marked. If you can't find the number, call the North American One Call Referral System at 888/258-0808.

1. On flat ground, mark the centers for two holes for the posts (A) spaced 51" apart [Drawing 1].
2. Using a posthole digger or an auger, dig/drill 10"-diameter holes, centered on the marked locations, to the needed depth to reach your frost line plus another 6" for a gravel base [Drawing 5]. Pour 6" of gravel into each hole.
3. With a helper, set the structure in place. Plumb the posts (A) and level the unit, adding or removing gravel as needed. Then brace the posts [Photo F]. Now fill the holes with concrete.
4. After the concrete cures, remove the 1x3 bracing. Fill the screw and nail holes with acrylic caulk, and touch up with stain or paint. Now put in some plants and flowers, step back, and admire your amazing handiwork! ⚔

Written by Owen Duvall with Dave Greve
Project design: Jeff Mertz
Illustrations: Roxanne LeMolne, Lorna Johnson

woodmagazine.com
Tug-along Caterpillar

This funny friend wiggles over bumps and around corners to the delight of children and parents.

PROJECT HIGHLIGHTS

- Overall dimensions: 4¼" wide x 3¾" high x 27½" long.
- Buying stock wood parts speeds the construction, and makes it easy to build more than one.
- We used poplar for the painted version above and Baltic birch plywood for the clear-finished version on page 66.
- For the items needed to build this project, see page 67.

Skill Builder

- Learn simple production methods for making and finishing multiple parts.

Cut the round segments

To eliminate tear-out, cut the circles ¾" deep from one side, flip the blank, and complete the cuts from the other side.

1. With an adjustable circle cutter, cut seven 2½"-diameter round segments from a ¾x7¾x14" blank. See the Shop Tip at left.

2. To finish-sand the round segment edges, use a ¼-20×2" roundhead bolt and nut as a mandrel, and spin the segments on your drill press.

SHOP TIP

To eliminate tear-out, cut the circles ¾" deep from one side, flip the blank, and complete the cuts from the other side.
Form the wheel segments

1. For the wheel segments, cut a 3/4" x 2 1/2" x 24" blank. Using a round segment as a template, trace a radius on each end of the blank. Bandsaw and disc-sand the blank ends.

2. Using a fence-mounted stopblock, crosscut a wheel segment from each end of the blank. Now trace, bandsaw, sand, and crosscut until you have eight segments.

3. Position the fence and stop on your drill press to center a 3/4" brad-point bit on a wheel segment. Drill holes in the segments.

4. Positioning the wheel segments with the drill-press fence and stopblock, drill 3/16"-deep axle-peg holes in both edges. Note: The axle pegs and Shaker-peg tenons are nominally 13/32". Ours fit better in a 7/32" hole. Drill test holes in scrap to determine the appropriate size for your parts.

5. To drill the Shaker-peg holes in the wheel segments, build the jig shown above. Then clamp the jig to the drill-press fence, with the bit centered over the bottom of the jig “V” and on the thickness of a wheel segment. Now drill a 3/4"-deep hole in each wheel segment, flip them, and repeat.

6. On the front and rear wheel segments, use a 1" Forstner bit to drill a 3/4"-deep counterbore, centered on the 1/4" hole. Then drill the countersunk shank holes as shown in the drawing at right.

7. To make a cord slot in the rear wheel segment, cut a 3/4" x 2 1/4" x 2 1/2" scrap block, and mark a centerline on one edge. Then clamp the block and the rear wheel segment to the drill-press fence, aligning the centerline and the joint between the two pieces with the tip of a 3/4" brad-point bit. Now drill a hole that intersects the wheel-segment counterbore.
Make a happy face

1. Chuck a 3/8" brad-point bit into your drill press, center the face half-round ball on the bit, and drill a 3/8"-deep nose hole.

2. To lay out eye-hole centers on the face, place a compass point in the center of the nose hole, and draw a 3/8"-radius circle.

3. Place the face on the Face Layout pattern on the WOOD Patterns insert. Transfer two points where the horizontal centerline intersects the circle onto the edge of the face. Then place the compass point at the two intersection points, and draw 1/4" arcs to intersect the previously drawn circle.

4. To drill the face eye holes, cut a 3/4" carrier board, and cut a 43° angle at one end. Then chuck a 3/4" Forstner bit into your drill press. Next adhere the face to the carrier board angled end with double-faced tape, aligning the edge of the face flush with the bottom of the carrier and one eye-hole center with the bit. Clamp the carrier to the drill-press table, and drill a 1/8"-deep counterbore. Now switch to a 1/8" brad-point bit, and drill a 1/8"-deep hole, centered in the counterbore. Reposition the face and drill the other counterbored eye hole.

5. To form the mouth, cut a 3/4"x2 1/2"x18" carrier board, and draw a 6"-long horizontal centerline at one end. Then adhere the face to the carrier with double-faced tape, aligning the face horizontal centerline marks with the carrier centerline. Drill a screw hole through the carrier and into the face, and drive the screw in the drawing above. Note: Use cloth-backed double-faced tape to adhere the face to the carrier board, and squeeze the parts firmly together in a vise.

Now set up your tablesaw as shown, and cut the mouth. Remove the face from the carrier.

WOOD magazine May 2007
Apply finish and assemble

EXPLODED VIEW

1 Finish-sand the parts. Then clear-finish or paint the parts as desired. (We sprayed an aerosol satin polyurethane on the clear-finished caterpillar, and used Rust-Oleum Painter’s Touch spray paint in the following colors for the painted version: no. 1934 Meadow Green for the wheel segments, face, and tail; no. 1945 Sun Yellow for the round segments and axle pegs; no. 1966 Apple Red for the Shaker pegs and button plug nose; and no. 1979 Gloss Black for the wheels and balls.) To hold the parts for finishing, see the sidebar below.

2 With the paint dry, epoxy the Shaker pegs into the wheel-segment upper holes in the drawing above. Then slip wheels onto axle pegs, and epoxy the pegs into the wheel-segment lower holes. Make sure the wheels turn freely.

3 Epoxy the button plug nose into the face center hole. Then drill a centered \(\frac{3}{16} \) hole for the cord through the nose and face. Now epoxy the eyes in place.

4 Adhere the face and tail to the front and rear wheel segments with double-faced tape. Using the segment shank holes as guides, drill pilot holes into the face and tail. Separate the parts and remove the tape.

5 Tie a knot at one end of the cord, slip on a ball, and tie a second knot as close to the ball as possible. Then thread the cord through the face, and tie a third knot 24" from the second one. Screw the face to the front wheel segment, capturing the knot in the counterbore. Now thread a ball onto the cord, followed by a round segment, and then a wheel segment. Repeat until the last wheel segment is in place.

6 Pull the cord to take the slack out of the caterpillar body. Then lay the cord into the round-bottom slot in the rear wheel segment, and screw the tail in place, loosely pinching the cord between the wheel segment and tail.

7 Clamp the end of the cord in your bench vise, draw the parts snugly together, and tighten the tail screws, as shown above. Take the caterpillar for a test crawl to make sure it is not too stiff or too loose. Make any necessary adjustment to the cord tension, and trim it flush with the bottom of the wheel segment. Now present this cheerful follow-around fellow to your favorite toddler.

HOW TO SPRAY SMALL PARTS THE EASY WAY

For this project, you’ll spray-finish a total of 81 small parts. Clearly, you’ll need a simple way to hold them. The photo at right shows how.

For the body segments and wheels, drill \(\frac{1}{4} \) holes in pieces of scrap, insert 2\(\frac{1}{2} \)-long dowels, and place the parts onto the dowels. Slip the balls onto a piece of \(\frac{3}{16} \) dowel, and slip the dowel into holes drilled in scrap blocks. To hold the axle and Shaker pegs and protect the glue surfaces, drill holes into scrap strips, and insert the pegs.

400/441-9870, or go to meiselwoodhobby.com.

Supplies: Cloth-backed double-faced tape, \#8 x 1\(\frac{1}{4} \) brass flathead wood screw, \#8 x 1\(\frac{7}{8} \) flathead wood screws, epoxy, \(\frac{1}{4} \)-20 x 2\(\frac{1}{2} \) roundhead bolt and nut (for the drill-press sanding mandrel).

Bits: Adjustable circle cutter; \(\frac{5}{64} \), \(\frac{1}{4} \), and \(\frac{3}{16} \) brad-point bits; \(\frac{1}{4} \) and \(\frac{3}{8} \) Forstner bits.

Source

Parts kit. 2" wheels (16), \(\frac{3}{8} \)-x-\(\frac{1}{4} \) axle pegs (16), Shaker pegs (16), 1" balls with a \(\frac{1}{4} \) hole (15), \(\frac{5}{8} \)-diam. half-round balls (2), \(\frac{3}{8} \)-diam. button plug (1), plastic eyes (2), \(\frac{3}{8} \) cord 60" long. Order no. 3026, 519.99 plus shipping and handling. Meisel Hardware Specialties.
For most woodworkers, the shop revolves around the tablesaw. So it makes sense to pump up that machine to be the best it can be. Sometimes, achieving peak performance with this vital tool requires upgrading factory parts with aftermarket add-ons. But with hundreds—if not thousands—of catalog and Web pages devoted to tablesaw accessories, finding the right ones can be a crapshoot. To help you out, we shop-tested dozens of today's greatest tablesaw add-ons and winnowed the list down to these 19 items most deserving a spot in your shop. (Prices shown do not include shipping, where applicable.)

Keep control of your work

Moving a workpiece smoothly through the blade markedly improves cut quality. Good workpiece control also helps you start and finish your project with all ten fingers. These eight products excel on both counts.

Biesemeyer Home Shop Fence, $335
Biesemeyer (52" rails, BH552W)
800/782-1831, biesemeyer.com

In recent years, tablesaw manufacturers have really stepped up their games when it comes to rip fences. Many factory fences now equal or exceed aftermarket models. But we've never found a fence we like better than a Biesemeyer. Simple and solid, with super-flat faces, it doesn't provide fancy micreadjusters or T-slots for mounting jigs or feather boards. But it does its job supremely well and never has let us down in many years of use.

Aftermarket miter gauge, $100-$240
Shown: JessEm MiterExcel (#7100), $240
866/272-7492, jesse.com

Factory-supplied tablesaw miter gauges have a reputation for being inadequate and inaccurate. That's why replacement miter gauges—some souped-up with length stops, adjustable-width miter bars, and positive stops every degree (or even down to .1°)—are all the rage among woodworkers. We heartily recommend an upgrade here, but we're not going to tell you which one to buy...yet. Why? Because we're testing about a dozen such miter gauges right now, and we'll share our findings in issue 179 (October 2007).
Most serious tablesaw accidents result from kickback (when the rising teeth at the rear of the spinning blade lift and launch the workpiece back at the operator). Splitters prevent kickback, but if you put your factory guard on the shelf, you're robbing yourself of the protection provided by its splitter. MJ Splitters mount on a zero-clearance throat-plate insert you buy or make yourself. (Learn how at woodmagazine.com/zeroclearance.) The slightly off-center mounting pins allowed us to rotate the splitter 180° to actually press the workpiece against the fence. It's like having a tiny feather board for the "keeper" behind the cut. Use the green splitters with your full-kerf blades; use yellow splitters with thin-kerf blades.

We balked, too, when we saw the price tag. $70...for a pushblock? But we had to use the GRR-Ripper system only once to realize its value far exceeds its price tag. The "tunnels" created by the fixed outside legs and repositionable middle leg allow the GRR-Ripper to pass over the blade without damage, while keeping your hand well away. Just as important, those grippy legs provide equal pressure on both pieces as you feed, further reducing the likelihood of kickback. For ripping stock less than 3" wide, we lowered the black outrigger to tabletop level, as shown, and handled narrow workpieces—even as narrow as ¼"—with safety and confidence.

Every tablesaw (and router table, for that matter) needs a good set of hold-downs and hold-ins, such as feather boards, to keep the workpiece flat on the table and tight against the fence. On page 78, you'll find our review of four work-holders that would make a good addition to your shop. Check it out before you buy.

Traditional clamps always seem to get in the way of the workpiece when you use them to temporarily mount an auxiliary fence face. (And we just hate driving screws into a perfectly good fence if we can avoid it.) Sub-Fence Hole Clamps fit into holes you drill into the top edge of your auxiliary fence face. Use just one Hole Clamp to add a stopblock to your rip fence to gauge repeated crosscuts.

Outfeed Rollers, $300
HTC (model HOR-1038U) 800/624-2027, htcproductsinc.com
We've had HTC's 37"-wide Outfeed Rollers on the cabinetsaw in our shop forever. They provide at least 48" of stone-solid workpiece support behind the blade, making it safer and easier to rip long and wide pieces, such as sheet goods. Yet, they add only about 10" to the back of the saw when folded down—no tools needed—when we need to open up more floor space.

Flip-Top Portable Work Support, $30
Ridgid (available at The Home Depot) 800/474-3443; ridgid.com
If you don't have a cabinet saw, Ridgid's Flip-Top stand makes a great extra hand in the shop. We found that its tilting top gently guides a sagging workpiece up to tabletop level, so we could set it up a few feet behind the saw for outfeed support without fear of knocking it over. We tried. Repeatedly. (The large 21"x25" footprint helps, too.) This inexpensive support is stingy on storage space, folding to only 3½" flat.
Under-the-table add-ons that boost performance

“Out of sight, out of mind” may work with the boss, but it’s just plain bad policy when you’re talking tablesaws. Those inner workings need periodic attention to keep your saw running true and accurately. These accessories make the job easier.

PALS (Precision Alignment and Locking System), $26
Inline Industries
800/533-6709, in-lineindustries.com

Own a contractor-style tablesaw? PALS may be the best 20 bucks you’ll ever spend. After a quick 10-minute installation (PALS replaces your saw’s rear trunnion bolts), you simply turn a screw to align the blade parallel to your saw’s miter slots. The process is much more civilized—not to mention accurate and cleaner—than lying on the floor whacking your trunnions with a mallet.

Universal Mobile Base, $65
HTC (model HTC-3000)
800/624-2027; htcproductsinc.com

HTC has made smooth-rolling mobile bases for many years, and now they’ve added foot-operated wheel locks on the fixed casters, making it unnecessary to stoop over to tighten knobs. What we found really handy, though, is the foot-pedal locks that lift the swivel-caster end to keep the machine from shimmying while we worked. (That lock also retrofits some older HTC bases, if you want to upgrade.) We’ve listed just one base for pricing purposes, but you’ll find these orange pedals on HTC’s full line of universal and custom-fit bases.

Power Twist Link Belt, $7 per foot
Rockler (item no. 52233)
800/279-4441; rockler.com

If your contractor-style saw sits idle much of the time, its drive belt will stiffen into an oblong shape. That can make your saw as jittery as a chihuahua chugging espresso. A Power Twist Link Belt tames the vibrating beast because it conforms to the drive pulleys like a bike chain to a sprocket, so it never sets into that oblong shape. Also, like a bike chain, you can loosen or tighten the belt by adding or removing links.

Retracting Casters for Contractor-Style Saws, $40 (set of four)
Woodcraft (item no. 141550)
800/225-1153, woodcraft.com

For less money than a full-blown mobile base, you can add wheels and stoop-free locking to a contractor-style saw (or virtually any other machine with splayed steel legs). Stepping on the spring-loaded lock lever on each Retracting Caster lifts the saw’s leg about ¼” off the ground: step on it again, and the saw rests on its own feet for a rock-solid foundation. Our favorite part: The ball casters swivel 360°, so we could move the saw any direction without having to jockey it into its parking space.

PG2000 Penetrating Lubricant, $8
ProGold Lubricants
800/421-5823, progoldmfr.com

We used to recommend white lithium grease for lubricating the gears that control the blade tilt and elevation mechanisms. For the past couple of years, though, we’ve been lubing the saws in the WOODs magazine shop with PG2000. Unlike heavy-bodied grease that turns sawdust into a gummy paste, PG2000 sprays on like water and bonds with the metal to create a low-friction barrier between parts. Dust doesn’t stick to it, so it won’t cling to bevel stops, where it can render them inaccurate.
Dial up your dust collection with these helpers

A good dust-collection system starts at the tool making the dust. These accessories make dust collection easier or more efficient.

MultiGate, $50
Penn State Industries (#L1RSET110)
800/377-7297, pennstateind.com

You'll be more likely to use your dust collector for every cut if you don't have to walk across the room to turn it on and off. Opening any blast gate on the MultiGate system sends a signal to the collector via low-voltage wiring and turns it on. Closing the gate turns it off. Once you buy the start-up kit (including one gate, the controller, and 100' of wire), you can add as many gates as you like for other machines. Each additional 4" blast gate costs less than $11, and you'll never hunt for the remote control again.

Tablesaw Dust-Collection Guard, $185
Penn State Industries
800/377-7297, pennstateind.com

As the blade cuts, gravity and momentum carry much of the sawdust down inside the saw; the debris either drops to the floor or gets sucked away by your dust collector. But invariably, some of the chips escape and are flung back at you. An overarm blade guard/dust-collection port, like this one from Penn State Industries, grabs those errant particles and sucks them away through the hollow arm. Meanwhile, the clear acrylic guard adds safety without restricting visibility.

Fazlok Quick Disconnect Fittings, $26
Woodworker's Supply (starter kit #960085)
800/645-9292, woodworkersupply.com

Many of us don't own a central dust collection system, so we drag a DC hose around from one tool to the next. To make the job faster and easier, Fazlok Quick Disconnect Fittings were made. To connect, we just inserted the hose fitting into a mating fitting on the collector or tool and twisted it about 1/4 turn. The hose locked and was ready for action. Because the parts are transparent, we could see when a clog developed at either end of the hose. Fazlok fittings come in both 4" and 2 1/2" versions to fit standard-size dust-collection or vacuum hoses. Additional tool fittings cost $8 (2 1/2") or $9 (4").

These three accessories add dead-on accuracy

The best-outfitted tablesaw in the world needs to be well-tuned or it means nothing. Check out some of our favorite measuring and setup tools.

TS-Aligner Jr., $135
Edward I. Bennett Co.
800/333-4994, ts-aligner.com

You get a lot of alignment for your buck with this setup tool that rides in your tablesaw's miter-gauge slot. In fact, TS-Aligner Jr. performs the five major tablesaw tune-up tasks (blade parallel to miter slot; fence parallel to miter slot; blade 90° to table; miter gauge 90° to blade; and fence face 90° to table top) with dial-indicator precision. Extend its value even more by using it to dial in alignments on other shop machines, such as your mitersaw, jointer, and planer.

Digital Angle Gauge, $40
Wixey
wixey.com

To check or set your blade's bevel angle, first set the Digital Angle Gauge on your tablesaw top and "zero" it. Now stick it onto the side of your blade, and tilt the blade. The LCD digital display shows the precise tilt of the blade, accurate to .1°. Your tablesaw doesn't even have to be level for it to work: The gauge simply shows how the angle differs from the surface you zeroed it to. We're not sure how Wixey can offer this handy and remarkably accurate accessory at this price, but we're not complaining. Read a full report of our test results on page 95.

Digital Fractional Caliper, $38
The Craftsman Gallery
866/966-3728, chipi.com

For measurements such as workpiece thickness or dado depth or width, we formerly relied on a dial caliper. It was accurate to .001", but hard to read. Then came digital decimal calipers that were easier to read, but still unintuitive. (Quick! Is .630" more or less than .5"?) Now comes this digital caliper that reads in fractional inches, such as 21/64" or 15/64", so we don't have to get out a calculator. Our favorite feature: It shows dimensions to the nearest 1/64", but it also can convert to decimal inches or millimeters by simply switching display modes.

Written by Dave Campbell
Picture Frames

If you can turn on a router, you can turn heads with these eye-catching displays for your photos.

Picture frames show off life’s most memorable moments. And when you create those frames yourself, well, that just puts icing on the cake. Rather than settle for basic rectangular frames, use your router table and a few common bits to surround your photographs with attention-getting craftsmanship.

Before adding the router details, you’ll turn to your tablesaw, miter saw, or bandsaw for a few basic dimensional cuts. After that you’ll be ready to move to your router table. Don’t have one? Make a simple one from a 2x3’ sheet of 3/4” plywood with a router mounted underneath and a plywood fence, clamping it along your workbench edge.

The rectangular frames we’ll build here hold 5x7” photos (3x5” for the oval), but the techniques in making the frames work for any size. Fit smaller photos to these frames with mat board; for larger prints simply extend the frame dimensions to fit your photo. Check out the tips above right, and then let’s get cranking.

Follow these tips for best results on all three frames

- To avoid workpiece tear-out and burning, rout in 1/8”-deep increments. Leave 1/2” for the final pass to ensure a smooth, clean finished cut.
- Leave the protective covering on acrylic until it’s ready for installation.
- Finish each frame with three coats of spray lacquer, sanding with 320-grit sandpaper after each coat.
- Sand individual parts, including all routed profiles, before assembly.

Add pizzazz with laminated wood and splined miters

Contrasting woods—in both the laminated stock and the miter splines—give this frame spectacular depth and flair.

1. Begin by machining a 41” length of cherry to 1/2” thick x 1 1/2” wide. Also, machine a 41” length of maple to 1/4” thick x 1 1/2” wide. Laminate the two together, and then crosscut that piece into two 20”-long blanks. Mill an extra piece of 1/4”-thick maple 1” wide and 13” long for the splines.
2. When the glue has dried, joint one edge on each blank, rip them to 1/2” greater than the 1 1/2” final width, and then joint away that 1/2” to remove the saw blade marks. If you don’t own a jointer, you can do this at your router table using a straight bit. Shim the outfeed side of the fence to offset the amount of material removed. Or, use a handheld router and a straightedge.
3. Rout a 1/4” cove 3/8” deep with a round nose bit along one edge of the maple face of each blank [Drawing 1a].
4. Use the same round nose bit to rout a 1/2” flute 3/16” deep on the maple face [Photo A].
1 EXPLODED VIEW FRAME #1

5 Rout a 3/8" rabbet 3/16" deep on the back of each blank on the same edge as the cove. Cut the frame sides to length with 45° miter at each end. Glue and clamp the frame using a band clamp.

6 While the glue dries, build the spline-cutting sled from 1/4" hardboard and 3/4" plywood or medium-density fiberboard (MDF) [Drawing 2].

7 Now install a 1/4" slotting cutter in your router table centered on the cherry portion of each frame side. Adjust the fence so it's flush with the bit's bearing. Then, holding the frame in the sled and tight against both stops, rout the slots in all four corners [Photo B].

8 Cut the maple spline blank into 3" lengths. Glue and insert the splines into the frame slots. After the glue dries, trim the excess [Photo C]. Then sand the splines flush to the frame.

9 Cut the back and acrylic to fit inside the frame's rabbet.

10 Cut the support to dimension with a 10° bevel on one edge. Glue that beveled edge flush to the frame bottom and centered side-to-side.

11 Finish the frame, then install turn-buttons to the back of the frame to hold the acrylic, photo, and back in place.

woodmagazine.com
Avoid pesky miters with this half-lap frame

Do you struggle trying to cut dead-on miters? Then bypass them and do all your joinery at the router table.

1. Start by machining the rails and stiles to dimension [Drawing 3].

2. Attach an extension to your miter gauge to prevent tear-out when routing the rails and stiles. With a straight bit, cut 1/4” dadoes 3/8” deep on the back face of both rails [Photo D].

3. Rout 1/4” rabbets 3/8” deep in 3/8”-thick test pieces, and check the fit into the rails dadoes. (The back faces of the rails and stiles should be flush; adjust the bit depth as needed.) Rout rabbets on the front faces of the stiles [Photo E].

4. Rout a 1/4” cove on the inside corners of the rail ends [Photo F]. Next, rout (or sand) 1/4” round-overs on the front edges and ends of the rails.

5. Rout 3/8” coves on the front edges of the stiles where shown in Drawing 3a. Sand each piece smooth, then glue and clamp the frame parts.

6. Once the glue dries, rout a 3/8” rabbet 3/16” deep on the back of the frame using a rabbeting bit [Photo G]. It’s not necessary to square up the corners with a chisel. Cut the back and acrylic to fit the rabbet using rounded corners.

7. Cut the support to size, with an edge beveled at 10°. Glue it flush with the bottom of the bottom rail, centered side-to-side.

8. Finish the frame, and then install turn-buttons to the back of the frame.

[Diagram of EXPLODED VIEW FRAME #2]

[Diagram of STILE SECTION VIEW]
Good-bye rectangles; hello elegant ovals

Even if you have trouble cutting a straight line, you can easily make this oval picture frame to well-formed templates. Start by making two copies of the frame pattern from the WOOD Patterns insert on page 53. Mount one pattern to 1/4" hardboard with spray adhesive; then cut and sand the template to size following the outer- and innermost lines. Double-face tape this template to a 3/8x5/8x6½" frame blank (we used mahogany). To help prevent warping, position your board's grain parallel to the longer dimension.

1. Using a #6 flat washer and pencil, mark lines along the outer and inner edges for rough cutting. Drill a blade-start hole near the inner line and cut along that line with a jigsaw and a fine-tooth blade. Cut along the outer line with a jigsaw or bandsaw.

2. Install a 1/4" or larger flush-trim bit in your table-mounted router with the bearing set to ride on the template. Rest the workpiece against a starter pin, then slowly ease the frame into the bit, beginning at the points indicated. Hold the frame securely with rubber-faced pushblocks so the spinning bit doesn't jerk it from your grip. Rout both edges flush to the template, following the recommended feed directions. Remove the hardboard template.

3. Rout a 1/4" cove on the front inside edge [Drawing 4a].

4. Rout a 3/8" round-over on the front outside edge.

5. Rout a 3/8" rabbet along the frame's back inside edge [Photo J].

6. Rout a 3/8" rabbet along the frame's back inside edge [Photo J]. Adhere a frame pattern to a 1/4" plywood back blank, and cut it to fit the rabbet by cutting and sanding to the oval dotted line. Trace the back onto a piece of 1/4"-thick acrylic, and then cut and sand it to match. Drill and countersink the mounting holes on the back where marked.

7. Using the support and base patterns, cut those pieces to rough size, and sand the edges to the outermost lines. Rout a 1/4" round-over on the base's top. Drill countersunk holes where indicated on the pattern. (Glue the support to the back, let dry, then drill the two pilot holes.) Assemble the base, support, and back with glue and screws.

8. Finish the frame, then attach turnbuttons to the back where shown.

Source: Turnbuttons: #27912, $2.00 per pack of 8. Call or click Rockler, 800/279-4441, rockler.com.

Written by Bob Hunter
Project design by Kevin Boyle
Illustrations by Roxanne LeMoine; Lorna Johnson

woodmagazine.com
The many faces of Maple

Figure—in its many variations of grain fluctuations and color—ranks as one of the more desirable and eye-appealing characteristics of wood. With otherwise modest maple, it may be foremost. Yet to many woodworkers, maple's figure remains clouded by mystery.

The term "figure" describes certain well-defined patterns in wood resulting from variations in texture, grain, and color. But talk about maple with other woodworkers and you'll spark as many names for its different types of figure as there are theories about how and why it occurs. To shed light on this confusing subject, we did heaps of research, then spoke with some knowledgeable figured-wood suppliers.

What causes figure in the first place?
A tree's location, nutrition, natural threats (fire, wind, disease, etc.), and rate of growth are all probable contributors to figure. Few, however, have been scientifically proven as directly responsible. Here, though, is what we do know with a fair amount of certainty.

- When figure does occur, it's usually located in the trunk of the tree below the first limb or fork, although a rare maple log can be entirely figured, especially with a curly pattern.
- Bird's-eye figure appears as clusters of indentations in a tree's outer tissues and is formed as a result of local suppression of growth caused by some form of injury to the tree.
- Burls yield swirls of eyike markings surrounded by distorted wood fiber (buds), and usually occur near ground level in the greatest proportion on maple. But you'll also find them in species such as elm, boxelder, redwood, and walnut. Similar to bird's-eye, the cause is associated with the tree's spontaneous growth in reaction to an external stimulus of its wood cells.
- The dark lines that create zones in spalted maple come from fungi in the wood's beginning stages of decay, and can occur in combination with figure. For it to hold up to machining, wood with spalting must be sawn before decomposition advances to the spongy stage. There's also a rare type of staining called "ambrosia" or "ghost" caused by infestation of the Ambrosia beetle.

(Note: Working with wet spalted wood has been associated with a few cases of serious respiratory infection, so as a precaution, machine only kiln-dried spalted wood and always wear a mask.)
- Crotch figure is obtained when sawyers cut through the fork just below where the trunk first branches. Maple crotch, because of unsightly ingrown bark in the fork, is not generally sawn for the marketplace.

The image below provides detailed information about figured maple:

Is figured maple uncommon?
Figured maple is hard to come by, according to Rick Hearne, owner of Hearne Hardwoods in Oxford, Pennsylvania. “In my state, if you were to cut 200 sugar maple trees, you’d be lucky to get one with good figure. In fact, I’ve visited a mill in Oregon that had maybe half a million board feet of bigleaf maple, yet only 1,200 board feet of it was quilted.”

“Demand plays an important part, too,” says Jim MacDermot, an associate at Gilmer Wood Company in Portland, Oregon. “Most of the really great figured maple goes for veneer and custom items, leaving little for the average woodworker.”

How is figured wood graded and sold?
Sellers of figured wood follow the National Hardwood Lumber Association’s (NHLA) grading rules for boards (FAS, Select, Common, etc.), but on top of that, add their own grades for figure, based on appearance. One seller, for example, might use grades that describe the amount of visible figure: low, medium, heavy, and musical-instrument grade. Another could grade this way: A (for minimal figure on one face) through AAAA (for outstanding figure on both faces and/or unusual figure). Pricing is a combination of NHLA hardwood grade and the supplier’s figure grade.

Figured-maple prices start at about $6 per board foot for a 4/4 board with modest figure and rise to $45 or more per board foot for highly figured, musical-instrument-grade stock.

It’s about the same with burls, without the NHLA hardwood grading. For instance, a seller may grade burls (whole, slabbed, or as turning blocks) by category: From Mill Run (30%+ burl figure) to Museum (90%+ burl figure)—with several levels between—and sell them at a per-pound price. For example, a small, one-pound 2x4x4” slab of bigleaf maple burl with 50%+ figure can cost you about $10.

Written by Peter J. Stephano
Photographs: Courtesy of Brian Hearne/Hearne Hardwoods

Buying Tips
Due to the relative scarcity of figured wood, including burls, in the lumber industry as a whole, keep the following suggestions in mind when you shop:

- Find a long-established, reputable seller who specializes in figured wood. “And if you’re serious about working strictly with such specialty stock, visit the seller in person if you can,” adds Rick Hearne. “The travel cost would be worth it to get you on the same page.”

- If you must buy by mail order or the Internet, understand all the terms the seller uses. “Know how the grade of figure is determined, the appearance of the figure [name, as explained at right], what defects there may be, and how the wood was dried,” Jim MacDermot advises.

- Order enough the first time. “A reorder may result in wood from a different tree, which could mean a slightly different color or figure pattern,” MacDermot notes. “And understand the waste factor,” Hearne says. “With bird’s-eye maple, for example, you’ll seldom see a board that has more than one-third outstanding figure, because veneer manufacturers buy the most highly figured logs. With curly and tiger, though, the whole board may have figure.” For a list of suppliers of figured maple, visit woodmagazine.com/figuredmaple.

Figured-maple reference guide
Names describing figure often vary with the person giving the description, especially with veneer, because how the wood is cut determines the resulting figure pattern (and mostly enhances it). In lumber, naming is more straightforward. Below you see the most common types of figure found in maple boards, along with their accepted trade names and any necessary explanation.

Burl. Called bark by some, but otherwise no other name applies. Large and most impressive in bigleaf (Oregon) maple. Usually cold whole or slabbed, but sometimes available in board form.

Curly. The undulating “waves” have a lustrous appearance when occurring in hard maple.

Tiger. Compared with curly, the waves or stripes are more numerous and closer together, and mostly in soft maple. “True fiddleback has even closer stripes in hard maple,” says Rick Hearne, “and it’s traditionally quartersawn.”

Flame. Distinguished from tiger in that the stripes appear wavy and/or branched, resembling flickering flames.

Quilted. Exhibits a rectangular pattern of elongated, closely crowded patches. When the pattern of patches seems to bubble, it’s called blister.

Spalted. No other names, although “spalted” is a spelling sometimes seen.
Editor test-drive:
The simplicity of these feather boards doesn't diminish their versatility and value. The first finger on the infeed side, 1½" shorter than the rest, helps you set the correct pressure by simply resting that finger on your workpiece. Tighten the knobs (you have to hold the Feather-Locs parallel or the back end can move), and the other feathers automatically hold with the ideal pressure. I found this very helpful rather than guessing at it. The Feather-Locs also work great inverted as stops on the router table fence for stopped dadoes or grooves.

You need to mount a sub-fence with T-track onto your tablesaw rip fence or router table fence if yours doesn't have T-track built in. To test the Feather-Locs, I ripped hickory and hard maple and intentionally paused in midcut. There were no burn marks or kickback because the boards were pinned tightly against the fence. On the router table, I used a tall profile bit to make crown molding in white oak, and they held the 3½"-wide stock tightly to the fence, even at the top.

Tested by Bob Hunter, Techniques Editor

To learn more:
800/786-8902; benchdog.com

Editor test-drive:
This pair features high-density plastic "fingers"—guaranteed not to break—that are molded at a 4° angle away from the plate. The fingers then compress as you feed stock between them and a table or fence, creating just the right amount of holding pressure. Setting that tension is simple: Press the tool's fingers against your workpiece with pressure until they are touching parallel to the board edge, then tighten the knobs. The pair are interchangeable between the mounting attachments to accommodate different-size stock. Mount them to the fence-face T-slots, or on top with the included bracket. You also can remove the bolts and simply clamp them to your table or fence.

I ripped hard maple on the tablesaw, and the pair held the workpieces safely against the fence and table and away from the back side of the spinning blade. On the router table, I machined 3½" roundovers and coves in pine and hard maple, and again the stock did not waver from its fixed path.

Tested by Dave Campbell, Editorial Manager

To learn more:
800/344-6657; woodhaven.com

Editor test-drive:
I couldn't believe the holding power of the magnetic Grip-Tites. Not just for pinning workpieces against the fence and tabletop with canted abrasive wheels and super-tough plastic fins, but also the powerful grip of the magnets themselves. Nevertheless, they're quick to pick up and move by flipping a cam lever that pries the unit away from the metal surface. No matter the amount of red oak, cherry, or pine I pushed through my tablesaw, the Grip-Tites didn't shift. And there were no burn marks when I deliberately slowed the feed rate, because they prevented the workpieces from creeping toward the blade.

To use one as a hold-down, I flush-mounted Grip-Tite's optional steel fenceplate on MDF and attached it to my rip fence. On my steel-top router table, the Grip-Tites could be placed anywhere because they don't need a miter slot. This kit includes two hold-downs and a 42"-long steel fenceplate; a similar step-up kit features stronger magnets and choice of fence lengths and sells for $160.

Tested by Bob Wilson, Techniques Editor

To learn more:
800/475-0293; grip-tite.com

Apparently, someone was listening when a woodworker said, "I wish I had an extra set of hands." Those helping hands come from stock hold-ins and hold-downs, which secure workpieces on tablesaws, router tables, and other machines. We tested several and found that nearly all worked well at holding stock for accurate, consistent positioning—and preventing kickback—while cutters slice away. You can make your own hardwood feather boards, but they could break easier than the rigid plastic kind. Some of the higher-priced models apply side pressure and downforce simultaneously.
Editor test-drive:
Although it will not work on a tablesaw, this proved to be a very nice unit and worth the price tag for its advantages on a router table. The spring-loaded rollers have a 5° cant to pull workpieces toward the fence while also holding them flat to the table. This was especially beneficial when I used a large panel-raising bit on white oak door panels. Little or no hand pressure was needed to hold the workpiece against the cutter, making for incredibly smooth profiles.

I machined 3/4"-wide poplar to form base shoe for my house trim. The curved UHMW hold-down and bit-guard fixture proved adequate for this, so you really don't need the rollers until you are using larger workpieces and larger bits. Loosen a setscrew, and they slide off the attachment rod.

I mounted the fence to my table with the easy-to-follow directions (you have to bore two 7/8" holes for this), but I did make one change: Instead of just tightening the carriage bolts so their heads seated into the substrate, I used threaded inserts to attach the bolts from underneath. Without them, the bolts could slip from their seated position when loosening the fence, allowing them to spin.

This fence offers other great extras besides the holding attachments: a molded port for a vacuum hose, a protective bit cover, and fence panels with side-to-side adjustments. 🌟

—Tested by Kevin Boyle, Senior Design Editor

To learn more:
800/635-3416; rousseauco.com

woodmagazine.com 79
Change drill-press tables quickly with a vise

I use my drill press for both metal- and woodworking, but found that I wasted lots of time switching from my old metalworking table to one more suitable for woodworking. But now I change auxiliary tables as easily as a drill bit since I added a cross-sliding vise to my drill press table, as shown at right.

To install my auxiliary woodworking table, I mount a 2x4 cleat onto its bottom, and then clamp the cleat into the vise. Not only does this make changing tables lightning-quick, but I also can use the cross-sliding action of the vise to perform microadjustments for precise drilling every time.

Keith Stadler, Pisa, Italy

Cross-sliding vises are available in this country, too, from retailers such as Grizzly Industrial (G1064, $46, 800/523-4777, or grizzly.com).

Reduce HVLP noise and clogged filters

Some time ago I built a small finishing booth in my basement shop, where I shoot with an HVLP turbine sprayer. But the turbine was loud in that small space, and the air filter would load up with overspray. I solved both problems by moving the turbine outside the spray booth. Here’s how.

I mounted a low platform just large enough to hold the turbine unit on the wall outside the spray booth, as shown. Taking a cue from a kitchen garbage disposal, I then wired a switched outlet outside the booth, controlled from inside the booth. With the turbine’s power switch “on,” I plugged it into the switched outlet. Finally, I bored a hole through the wall for the sprayer’s air hose.

Wayne Johnson, Grand Ledge, Mich.
Right-size sandpaper with this "cutting" board

Tearing sandpaper sheets to size is a tedious task made easier with this simple jig. First, cut some scrap hardwood to the length of a hacksaw blade. Rip three pieces to the widths shown below and plane them to slightly different thicknesses to create the "steps," as shown. Make a shallow rabbet for the blade in the 2 1/4"-wide piece and then edge-glue the pieces together. Epoxy the blade in the rabbet and you’re ready to make piles of properly sized sheets in no time. By butting the edge of the abrasive against the correct step, you can tear-off half-, third-, and quarter-sheets for your power sanders or for hand-sanding blocks.

—Lynn Lowrenz, Algona, Wis.

You have to know the limit to heed it

Every drill bit has its optimal speed where it cuts quickly without burning. You can keep a drill-press speed chart handy, but here’s a no-fuss way to get the right speed for bit sets that come in cases. Write the recommended speed next to the bit inside the case, as shown below. Here’s the method I use: On the top line, I jot down the softwood speed; below that, the hardwood speed. To save space, I drop the last two zeros from the number. For instance, 600 rpm would be expressed as a 6. A 23 indicates 2,300 rpm.

Shop Tips

Tame heavy hoses with a strategically placed elbow

Every time I had to fight the large dust-collection hose on my planer—keeping
it away from boards exiting the planer—
I felt a little like Jim on Wild Kingdom
wrestling a huge anaconda in the
Amazon jungle. Growing tired of the
struggle, I found a solution that gets the
hose permanently out of the way.

By attaching a 4" 90° PVC elbow
(thin-wall sewer pipe fits well) to the
planer's dust port with self-tapping
screws, as shown, you create a rigid
platform that holds the hose out to one
side of the planer. Next, connect the
hose to a 4" male coupler (I used a Jet
JW1047 quick-connect coupler, $5 at
amazon.com), and fit the coupler into
the elbow when you use the planer.

—Kelly Churchill, Medford, Ore.

Award Winners.

Refinish Your Future.

Own your own business

Let your passion for furniture lead you into a new business with a
Furniture Medic Franchise. We're a complete on-site repair and restoration-
refinishing business servicing homes and companies as well as handling
moving and insurance claims. We offer extensive training and support
with a low initial investment and manageable overhead. Financing is
available to qualified candidates and franchises are offered nationwide.
Call today to brush up on the details.

1-800-RUN YOURS

FURNITURE MEDIC
FRANCHISE OPPORTUNITY

www.furnituremedicfranchise.com

Circle No. 1679

RIKON

877-884-5167
www.rikontools.com

Circle No. 190
Piggyback your lathes to save space, be sturdy

As I was trying to find a home for my new mini lathe on my already crowded bench, I realized that with a little creativity, it would fit on my full-size lathe. Here’s how you, too, can save shop space and give your mini lathe extra stability.

Create a ¾”-plywood base for your mini lathe. Rip a cleat from 2x material to snugly fit the gap between the ways of the big lathe’s bed. Attach the cleat to the center of the plywood base and mount the mini lathe to the base. (Be sure to countersink the mounting-screw heads so the base rests firmly on the rail bed.)

To install the mini lathe on its big brother’s back, move the tool rest and tailstock out of the way and slide your mini lathe into place. Secure the base with clamps, as shown.

—John Stacy, Conwood, Texas

continued on page 86
Shop Tips

To sand circles, strap on this gritty “bow tie”

If you need to sand the inside of a large hole for finishing, you can use your fingers and a good deal of patience, but usually, the results will be uneven. A better and faster solution is to use the technique shown below. Cut a piece of \(\frac{3}{8} \)" dowel rod 4–6" long and use a bandsaw to cut a slot into the end of the rod. Next, take a strip of cloth sandpaper and loop it into the slot so that the loop is slightly larger than the hole you want to sand. Install your hole sander in a variable-speed drill and let the sanding loop smooth the inside of the hole.

—Daniel Kingsberry, Gatineau, Que.

Correction pen ends the old shell game

Many portable power tools come with clamshell carrying cases that protect the tools and keep their accessories organized. But after you’ve collected quite a few of these cases (and many of them are dark, with few identifying features), confusion starts to gain a foothold. For easy identification of the hidden treasures, I mark the name of the case’s contents with a correction pen. The white ink is durable and contrasts nicely with the case for easy identification.

—Jack Ipson, Highlands Ranch, Colo.

continued on page 88
Dial in blade height for ultimate accuracy

Unsatisfied with the "almost" accurate results I would get from setting the blade and bit height on my tablesaw and router, I created this simple dial-indicator stand that brings surgical precision to establishing cutting depth.

To create the stand, cut it as shown from ¾"- or 1"-thick acrylic (my first choice) or hardwood. In the top of the stand, drill a hole large enough for a 0–1" dial indicator's mounting sleeve and install a setscrew to hold it firmly in place. Next, add a ⅛"-diameter flat tip to the indicator's stylus. The tip is necessary because of the alternating bevels of the saw blade's teeth.

To use the indicator, first zero it out against the tablesaw table or router base, then position it over the blade or bit and measure the depth of cut. These inexpensive indicators—$13 to $20—provide accuracy to within .001" and the satisfaction of getting the most out of your tools.

—John Lorbiecki, Hubertus, Wis.
Wet/dry vac rack reins in wandering attachments

One of the most valuable tools in my shop is the wet/dry vacuum. However, like lost socks in a dryer, I had a serious problem keeping track of the various attachments. My solution was to build the wooden rack shown below to provide a stable home for the wandering attachments.

I cut the curved rack parts for my 1¼"-diameter vacuum accessories from scraps of 2x4; for 2½" accessories, you may need to go with 2x6 stock. (The arc of your vac canister also figures in here, too.) Your best bet is to create a cardboard template to fit the contours of your canister. After assembly, secure the rack to the vac with stretch cords attached to the dowel rods.

—Charles Beach, Morganton, N.C.

CORBELS

Osborne Wood Products, Inc. introduces an exciting new line of corbels!

Acanthus Leaves

Grape Clusters

ORDER ONLINE:
www.ordercorbels9.com
ORDER LINE: 1.800.849.8876
CALL FOR A CATALOG: 1.800.746.3233

4620 GA Highway 123 • Toccoa, GA 30577 • Email: info@osbornewood.com
Bandsaw Lumber Maker

Turn firewood into free stock for small projects

The more we worked with this jig the more we liked it for turning found wood into valuable stock. Here, we'll cover the basics of using this jig for ripping small logs and other odd-shaped blocks of wood into short boards.

Cut the jig pieces to shape

Cut the subbase, base, fence, bolt-support block and braces to size from 3/8" plywood [Drawings 1 and 1a]. The height of the fence will be determined by the clearance of your bandsaw blade guard to the bandsaw table. Bandsaws with riser blocks and 16" bandsaws will rip wider stock and allow for a taller fence than the clearance of a standard 14" bandsaw.

Cut the dado, drill the holes, and form the slots in the pieces where marked. See diagrams for dimensions.

Fence (Blade side shown)

All stock 3/4" thick except where noted

[Details about dimensions and measurements are provided in the text, including diagrams for 1a Fence (Blade side shown).]

continued on page 92
Quick & Easy Jig

[Drawing 1a] for slot locations in the fence. We've intentionally offset the middle slot in the fence to the knob slot in the base to better access the middle fence slot. Cut the runners to size from solid stock. Rout 1/4" round-overs on the handle openings in the braces. Assemble the jig in the configuration shown using glue and screws. Add finish to the different pieces. Do not glue the runner to the base as you have to remove it later for certain operations.

Caution: Resawing exposes large portions of the bandsaw blade as the blade guard has to be raised just above the workpiece to allow the stock to move through the blade. When making cuts, the blade is often hidden in the wood being cut. Always know exactly where the blade will exit the wood and never push the workpiece at the blade exit point when finishing a cut. Use a block of wood as a pushstick if needed.

Using the subbase as a sliding table

For log half sections and other workpieces too large to fit between the assembled jig subbase and blade guard, secure the log section or workpiece to the subbase with wood screws, making sure that the screw heads are countersunk so they don't scratch the bandsaw table surface. For a stable fit against the subbase, machine the bottom surface of the workpiece as flat as possible. A hand plane, power plane, or wide jointer work well.

Draw a cutline on the bottom surface of the workpiece of where you want to make the first bandsaw cut. Position the subbase upside down on the workpiece and line up the edge of the subbase with the marked cutline. For stability, the subbase should cover at least half of the workpiece to keep the workpiece from tilting when bandsawn. Screw the workpiece to the subbase.

Position the jig on the bandsaw table with the miter-gauge slot runner in the miter-gauge groove and make the first cut [Photo A]. Do not use this process for a round piece of wood (log or branch). For round stock use the subbase with the fence for maximum stability. For a free article on chainsawing log stock to size, visit woodmagazine.com/chainsawblanks

Combine the subbase and base/fence for max support

Secure the base/fence assembly onto the subbase with the carriage bolt and knob, and screw the workpiece to the fence in at least two places. Some workpieces [Photo B], might need to be shimmed to keep them perfectly stable when cutting. With the workpiece screwed to the fence, position the workpiece so it overhangs the subbase by about 1" to allow for drying and planing. Tighten the knob to secure the base to the subbase. For long stock (over about 18") we recommend using a helper or an infeed and outfeed table to keep the jig flat on the bandsaw table when starting and finishing the cut.

Make the first ripping cut [Photo C]. The handle openings in the braces allow you to push the stock through the blade while keeping your hands clear of the cutting blade. Turn the saw off, and back the jig and stock past the blade once it has stopped moving. Using a combination square, mark an increment line on the masking tape [Photo D]. Allow about 1/4" extra for the kerf and any possible machining (sanding or planning) you want to do to the resawn stock later. For example, if you need 1/4" finished stock, mark 3/8" increments.

Loosen the knob and reposition the fence/base assembly on the subbase, aligning the outside edge of the fence with the next increment mark on the masking tape. The runner on the bottom of the base allows you to move the base/fence parallel with the subbase and bandsaw blade, allowing for consistent width from the front to the back of the piece being cut.

Tighten the knob and make the next cut. Determine exactly how far the screws through the fence enter the workpiece to avoid hitting the screws with the blade. Our 1/2" screws protrude into the workpiece 3/8", so we never cut closer than 1/2" from the fence allowing us 1/2" of clearance between the blade and ends of the screws.

Using the fence for standard resawing operations

Remove the base/fence from the subbase. Place the base/fence assembly between the bandsaw column and blade [Photo E]. Adjust the position of the fence to the blade for the desired thickness to be cut, and clamp the base/fence to the bandsaw table keeping the fence parallel to the miter-gauge slot. It's important that the workpiece have a flat bottom to ride on the bandsaw table.

Written by Marlen Kemmet with Chuck Hedlund Illustrations: Roxanne LeMoine; Lorna Johnson Project Design: Brian Hahn, Avoca, WI
As a woodworker for more than 30 years, there aren't many tools and accessories that make me say, "Wow!" Wixey's Digital Angle Gauge definitely is one of them. This compact setup tool measures the angle between two surfaces, such as a tablesaw top and blade, and displays that angle (+ or - 180° to the nearest 0.1°) on an easy-to-read LCD.

Inside the Digital Angle Gauge is a sort of electronic "plumb bob" that lies against an electronic protractor. When you rest the gauge on a reference surface (tableswa top, for example) and press "zero," all angles it shows will be relative to that tablesaw top until you zero it again. Built-in magnets stick the gauge to vertical surfaces, such as a bandsaw blade, or the tablesaw blade shown at right, so you can measure the angle between the blade and the tabletop.

I was skeptical that a $40 gadget could be that accurate, so I compared it with my machinist square. With my tablesaw blade raised, I saw no light between my square and the blade body, so I declared the angle 90°. As the Digital Angle Gauge rested on my tablesaw, I zeroed its display, as shown at top. When I rotated the gauge to stick it to the blade, it disagreed with my square, saying the angle between the tabletop and blade was 90.1°.

I needed a tie-breaker, and a couple of quick test-cuts in some 2"-thick maple scraps proved the machinist square wrong. I reset the blade bevel to 90° using the Digital Angle Gauge, and the test-cut revealed perfection. I repeated my tests at 45° and once again found the electronic digital readings to be more reliable than my machinist square.

Before I knew it, I had gone through most of the machines in my shop, dialing in everything—jointer fence, bandsaw table, and miter saw bevel stops, to name a few—with the Digital Angle Gauge. Keep in mind that because it relies on gravity to make its measurements you can't use the Digital Angle Gauge to measure horizontal angles, such as the miter stops on your miter saw.

Digital Angle Gauge

- **Performance**: *****
- **Price**: $40
- **Wixey**: digital@wixey.com, wixey.com

Wixey gadget more reliable than my machinist square.

10-060 M1 Dust Collector

- **Performance**: ****
- **Price**: $350
- **General International**: 888/949-1161; general.ca

Wall-mounted collector proves quiet and capable

When floor space in the shop gets tight, the only place to go is up, whether on the wall or hanging from the ceiling. General International's 10-060 M1 wall-mounted dust collector saves on floor space and does a good job of gathering workshop debris. That, despite its 2½" inlet that makes it seem more like a shop vacuum than a serious dust collector. It's nowhere nearly as noisy as a vacuum, though, thanks to its ¾-hp induction motor that makes it sound more like a tablesaw than a router.

I used the 10-060 M1 on every dust-making power tool in my shop, from my drill press to my tablesaw. It sucked away the refuse as well as a larger floor-standing collector, perhaps because the smaller-diameter hose increases the air velocity. My shop vacuum could never keep up with the volume of chips generated by my planer because its tub filled too quickly. Not a problem with this unit's 30-gallon bag. It mounts on the bottom of the 1-micron rated fabric filter that mounts to the bottom of the machine. I did find it a bit difficult to install the collection bag on that filter by myself, because it's not rigid like the bag rim of a traditional collector.

Make no mistake, though: The performance of this collector falls somewhere between a full-size dust collector and a shop vacuum. Its chief selling point is the floor space (and your aching eardrums) that it saves.

—Tested by Steve Feeney

Wood magazine tests hundreds of tools and accessories, but only those that earn at least three stars for performance make the final cut and appear in this section. Our testers this issue include: Pat Lowry, Steve Feeney, and Wood magazine Projects Editor Jan Svec. All are avid woodworkers.
Over 22 years ago the founder of Woodline USA had a vision. He founded a company selling outstanding quality carbide router bits at reasonable prices and backed by exceptional warranty and unwavering customer service. Today that tradition continues with our broad line of router bits and shaper cutters. Log onto www.woodline.com or call 800-472-6950 today to browse our catalog of over 1000 carbide router bits and shaper cutters.

Woodline USA continues to innovate with new designs but one thing will never change. Great bits at great prices with the best warranty and customer service in any wood working industry.

66 Pc Master Wood Working Router Bit Set

Woodline USA’s most comprehensive carbide tipped bit collection features 66 carefully chosen profiles in a fully labeled wooden case. The perfect set to start or complete every woodworker's collection of bits.

Route-R-Joint

As seen on DIY Network! This simple system uses interchangeable guide templates to produce an ever growing number of beautiful decorative dovetails for drawers, boxes and furniture in no time at all. Amateurs, children and professional woodworkers will enjoy the ease of use, safety and simplicity of this system while making magnificent joints!

6pc Cabinet Set

- 3-1/4" ogee raised panel
- 2-piece ogee rail & stile
- reversible glue joint
- drawer lock
- door lip

I-Driver offers a new twist on right-angle drills

At first glance, Bosch’s I-Driver looks like an ordinary cordless right-angle drill driver, and it does play that role very well. But this versatile driver’s head also pivots and locks into any of five angles, ranging from right angle to inline driver (like the old powered screwdrivers).

With the I-Driver’s head set at 90°, I easily readjusted some false drawer fronts and reinstalled the pulls on a cabinet in my shop without having to empty its contents. Rotated and locked in at the 157.5° detent, I used it to install some plumbing brackets that I couldn’t possibly reach with any other drill or driver.

Powered by a lightweight 10.8-volt lithium-ion battery pack, the I-Driver feels comfortable and well-balanced in my hand, with enough power to easily drive 1/4x2-1/4" lag screws into the edge of a 2×4. Run time is great, too: In my tests, the tool consistently drove more than one hundred 3" production screws into pine on a single charge. (Recharging the lone battery pack that comes with the I-Driver takes about 30 minutes.)

The quick-release chuck accepts only 1/4" hex-shank bits. Because that style of chuck allows a drill bit to wiggle some, precise hole placement can be hit-or-miss. But for driving screws, it works fine. I used the seven-position sliding clutch when driving brass screws, and the screws pulled snugly without damage. I also like the soft-start feature here, where even a robust pull of the I-Driver’s trigger results in a slow but steady ramp-up to full speed.

I-Driver (PS10-2)

Performance

Price

$150

Bosch
877/267-2499, boschtools.com

continued on page 98
Digital depth display is router's best quality

With more power tools sporting lasers, a digital display, or both, I knew it wouldn't be long until somebody put one or the other on a router. Always innovative, Craftsman is the first company to offer a plunge router (model 17517) factory-equipped with an easy-to-read, lighted digital depth gauge.

Just like setting up a typical plunge router, you first plunge the bit so it touches the workpiece, then lower the 17517's rack-and-pinion-style stop rod to the base. Press the “zero” button on the display and then raise the stop until the display shows the depth of cut to the nearest 1/16" (or .1 mm). Lock the stop in place and make your cut.

To test the accuracy of the gauge, I used the 17517 to rout through-dovetails around a template. Relying only on the digital display, I set the cutting depth to leave an extra 1/16" at the ends of both pins and tails. Without making a test cut, I plowed the dovetails and assembled the joints. Both pins and tails were 1/16" proud—exactly as I wanted them. Three words: Accurate, easy, and impressive.

The 17517 offers plenty of power, its low center of gravity helps it feel well balanced, the plunge mechanism operates smoothly, and dust collection proved effective. But a few things about the tool bugged me. For one, I noticed some play between the plunge posts and their bushings. I didn't have any trouble with bearing-guided bits, but when I routed a progressively deeper dado with a 1/2" spiral bit, the dado also grew wider, starting at .500", and ending up at .515".

Second, the variable-speed dial on the 17517 is recessed into the front of the router body, presumably to prevent accidentally changing it midcut. But that also makes it more difficult to use when you intentionally want to change bit speed.

—Tested by Pat Lowry

Plunge Router #17517

| Performance | ★★★★★ |
| Price | $140 |

Craftsman 800/377-7414, sears.com
Four-jaw lathe chuck with five-star value

The multiple work-holding options provided by a four-jaw lathe chuck (sometimes called a scroll chuck) make many turning operations so much easier than using a faceplate. Once you have one, you'll wonder how you ever got by without it. Four-jaw chucks always have been pricey, though, especially when you add the extra jaws to make it really versatile.

Thumbing through the Penn State Industries catalog a few months ago, however, I stumbled onto a bargain I thought had to be too good to be true: a fully accessorized four-jaw chuck, called "Barracuda2," for only $170. I ordered one to check it out, and the news is good.

Let's start with all the stuff you get:

- A nicely machined chuck body (A) threaded for a 1" x 8tpi (threads per inch) spindle with a 3/4" x 16tpi adapter (B), operated by a very positive and easy-to-use square-drive T-handle wrench (C).
- Four sets of jaws (D, E, F, G) that hold objects from 3/4" to 4 1/4" diameter in external-grip mode, and from 1 1/8" to 4 3/4" diameter in internal-grip mode.
- A substantial screw center (H).
- A T-handle hex wrench for the jaw-mounting screws (I).
- A handy case that keeps it all together.

Getting a lot of parts for a little money doesn't mean much if the chuck doesn't perform well, but that's not the case with the Barracuda2. I used this chuck extensively for more than six months, turning several vessels up to 11" in diameter and three small tapered display pedestals. Every time I used it, the Barracuda2 held the workpiece securely, and I felt both comfortable and confident while turning with it.

For bowl turners, there's an extra bonus. Two different sets of flat jaws for gripping bowls by the rim also are available: one with a capacity up to 5" diameter ($25), and another up to 8" ($30). Comparable jaw sets for other chucks run about $85.

Bottom line: For less than the cost of most other chucks with one set of jaws and a screw center, you get a really great little chuck, including all the accessory jaws you'll likely ever need. If you turn stuff larger than 12" in diameter, you should go with one of the more hi-fi chucks on the market. But for most of us occasional turners, the buck stops here.

—Tested by Ian Svec, Projects Editor

Barracuda2 System (#CSC3000C)

<table>
<thead>
<tr>
<th>Performance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>*****</td>
<td>$170</td>
</tr>
</tbody>
</table>

Penn State Industries
800/377-7297; pennstateind.com

PINNACLE™ PROFESSIONAL QUALITY TOOLS

Every detail of these Pinnacle™ tools was engineered with one thing in mind: provide woodworkers with tools that empower them to craft higher quality, more professional cabinetry and furniture. Pinnacle™ tools are available exclusively at Woodcraft.

Pinnacle 4" Box Clamp

Quickly square up and secure the pieces of any box structure with a thickness between ⅛" to 1"!

147529 (1) $34.99

To learn more about Pinnacle™ tools visit www.woodcraft.com/pinnacle.aspx

For A Free Catalog Or To Find Your Local Woodcraft Store, Visit www.woodcraft.com Or Call 800-542-9115.

KITCHEN ISLAND LEGS

Stock and custom turnings for your project! Island Legs are available in 10 wood types!

WOODCRAFT

Helping You Make Wood Work

Circle No. 1849

Circle No. 700
What's Ahead
A sneak peek inside the July issue (on sale May 15)

FEATURING PROJECT

Bistro table
You can buy everything you need for this project at your home center on Saturday, and (thanks to the simple construction) apply a coat of finish on Sunday.

Stackable bins
With just one sheet of medium-density fiberboard, a half-sheet of hardboard, and a small piece of poplar, you can build and stack three identical units shown above. They're perfect for kids' rooms, entryways, and garages.

Jewelry stand
Gather those highly figured pieces of scrap you've been hanging on to, and transform them into this quick-to-make gift.

Standards for precise woodworking
How accurate is "accurate enough" for quality shop work? We'll tell you when to rest easy and when to ramp up your pursuit of perfection.

TOOL NEWS

Replaceable-cutter router bits
These super-tough bits outlast conventional brazed-carbide bits many times over. Find out if they're right for you.

Software secrets
Want to design projects on your home computer? Now you can! Today's design software is far friendlier and more affordable than you might think.

Don't swear, get square
Woodworking sure is a lot more fun when your tools and techniques yield squarely machined and assembled workpieces. Learn from a pro how it's hip to be square.

WOOD magazine May 2007