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w3l PREFACE.

Of all the problems in bridge designing the analysis of the
elastic arch is by far the most difficult. The works which have
heretofore appeared on this subject are either so mathematically
abstruse, or leave so much to the reader to demonstrate for him-
self, that they are of little value to the practical engineer or to the
technical student whose mathematical training has not been of
exceptional order. The entire absence in technical literature of a
work obviating these unfortunate features has been brought so
forcibly to the attention of the author that he has felt justified in
undertaking the present work.

It was felt that the graphical method of analysis would be
preferred by both engineers and technical students to the !'onger
and more involved mathematical method of analysis.

Every principle involved in the graphical treatment is ex-
plained thoroughly and in detail in the theoretical portion of the
work. There are no missing steps in the necessary mathematical
analysis of the theory as set forth in the present treatise.

The author has in preparation a companion volume to the
present one, which will treat of hinged arches and unsymmetrical
«rches. .

The author wishes to express his indebtedness to the classic
work of Professor Henry T. Eddy, and to the works of Professor
William Cain. He also desires to express his sincere appreciation
to Mr. Roy Malony, B. S. in C. E., for making the drawings for
the plates; to Mr. Avery F. Crounse, B. S. E., for checking the
stress calculations: to Mr. Charles F. Smith, bridge engineer
(graduate of Engineering Department, U. S. Military Academy,
West Point), for the final reading of the manuscript; and to Mr.
A. D. Butler, B. S. in C. E,, for critical reading of proofs.

. The author is especially grateful to the publishers for the
splendid aid they have extended him and for the exceptional care
they have taken in the production of this work.

Through the courtesy of the Concrete Steel Engineering Com-
pany of New York the author is able to include in the present
work the specifications of that company for reinforced concrete
bridges.

Although the “specifications for reinforced concrete structures,
as embodied in the building ordinance in the city of St. Louis.
which is a report of the special committee on reinforced concrete
of the Engineers’ Club of St. Louis,” would seem to have no place
in a work on the theory and design of reinfarced concrete arches,
yet the fact that many purchasers of the book will doubtless have
concrete building work to do would seem to make it advisable to
include them.

A R

Spokane, Washington, September, 1908,

nt.
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CHAPTER I
THEORY OF THE ELASTIC ARCH.

1. Force Factors.—Let Fig. 1 represent a small section of
an elastic arch subjected to direct and bending stresses and let

Fig. 1.

the line ¢ R be a portion of the entire pressure curve which it
is assumed has been found. We may regard the pressure
curve as a system of force lines acting at the vertical load
lines as ¢ F in the figure. Let the magnitude and the direction
cf the force line acting at this particular section be given by
¢ R, which is a portion of the pressure curve. For brevity we
will term this force'R. Let A S equal the length # #’ along the
neutral axis and included between the two normal planes A D
and B C, that make an angle a before deformation and an
angle a’ after deformation. The point @ on # #’ is taken as
the mid-point, i. e., na =#n"a =4 A S.

: >R  ——
i 7]
R é, — A< 5: %
Fig. 2. Fig. 3.

.Referring now to Fig. 2, it is clear that the two equal and
parallel forces R and R, constitute a couple whose only tend-
ency is toward rotation. A couple can have no resultant.
The moment m of this couple is m =d R =d R, for R =R,.

"It is evident that we can substitute for the force R (Fig. 3)
an equal and parallel force R; and a couple d R, =m, if R =R,
I



2 REINFORCED CONCRETE ARCHES.

= R;, for the two equal and opposite forces Ri and R: acting
at a point a, neutralize each other and hence have no actual
effect on the entire system of forces.

Let us now substitute for the force R acting at point ¢
(Fig. 1), a force or thrust R, acting at point a on the neutral
axis and equal to R, and a couple m =d R, where R =R, = R,.
This substitution will in no manner affect the condition of
equilibrium of the system. - We have, therefore, substituted
for the single force R (Fig. 1), a thrust R; and a couple m =d R,
acting at a point a of the neutral axis along the infinitesimal
radial slice XYV through point a. The distance d is the per-
pendicular distance from the pressure curve to point a of the
neutral axis.

The thrust R, (Fig. 1) may be resolved into two compo-
nents, one N, normal to the neutral axis at point a, and the
other T, tangential to the neutral axis at point a. The normal
component N is effective in producing shear only. It is similar
to the shearing stress in a simple beam. It is generally small
and may be disregarded. Professor Howe, in his ‘“Treatise on
Arches,” gives this matter some consideration and the reader
is refeired to his work for discussion of this subject.

The so-called direct thrust is given by the tangential com-
ponent T. The tangential component T tends to shorten the
length of the section, and therefore the length of the entire
arch. ‘

The forces R and R, constituting the couple m produce a
bending momient. They may be resolved, as in Fig. 1, into
horizontal and vertical components. It is seen from Fig. 1
that the vertical components V' act in opposite directions and
are of equal magnitude; hence they neutralize each other.
There remains, therefore, a couple M made up of the two
equal horizontal forces H and H, whose lever arm is ac, the
vertical distance from the pressure curve to the neutral axis.

The force H is known as the horizontal thrust. It is a
constant for all sections of the arch.

The moment of the couple M which is made up of the two
equal horizontal components or thrusts H and H, is equal to
the product of the lever arm a ¢ by either of the two equal
forces H or H,.
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Hence the bending moment M is given by the equation:

M=H.ac........cvoiiiiiiiin... 1)

The moment M is the factor which is ,most effective in
‘producing deformation of the arch.

If, however, we had resolved the forces R and R, of the
couple into components normal and tangential to the neutral
axis, we would have a case absolutely analogous to the method
of resolution explained above with this difference, that it
would now be the two normal components of magnitude N
which would neutralize each other. These components would
act along the radial line XY, Also instead of a couple made
up of the two forces H and H, we would have a couple con-
stituted from the two equal tangential forces T, having a lever
arm a ¢’ measured along the radial line from point a on the
neutral axis, to point ¢’ on the pressure curve, and since the
forces T are tangential components the lever arm a ¢’ would
satisfy the condition of being perpendicular to the forces.
This tangential couple would produce a moment M’ which is
equal to T.ac¢’. It is evident that the moment M’ must
equal the moment M, because both are ultimately derived
from the same original forces R and R,.

Hence,

M =T.ac’=M=H.ac.
It follows that

i‘;_i: P @

where a ¢/ is the radial distance from the pressure curve to the
neutral axis.

2—The Deformation of an Elastic Arch due to Bending
Momeuts.—Let A B C D, Fig. 4, be an exceedingly small por-
tion of an elastic arch subjected to the action of a bending
moment M. The action of the direct thrust T (the tangential
component of Fig. 1) is not considered, for. as previously
stated, T produces no change in curvature of the arch.

Suppose that the force R, located by the pressure curve,
acts below the neutral axis, then the intrados will experience
the greatest compression. In order to emphasize this fact, in
passing, we may state it as follows:
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When pressure curve (K) is below neutral axis then greatest »

compression is at intrados, and central angle a is
increased.

When pressure curve (R) is above neutral axis then greatest
compression is at extrados and central angle a is de-
creased.

Then under the above supposition of R being below the
neutral axis the central angle a may be regarded to increase to
some value a’.. Let the angle O’ # O (Fig. 4) be designated as
angle A a. ‘It then follows that,

@ =a+da’

Hence Aa=a"—a............coouu... 3)

Fig. 4.

Let N ¢, Fig. 5, be the tangent before change of curvature,
and let Ni ¢ be parallel to it. Also let N, #; be the direction of
the tangent after deformation, then the change of inclination
of the tangent due to deformation is given by the angle # N\ #.
That angle #, N1 t, = A a is at once evident from Fig. 5.

Regard .

Angle A g as + when M is +, i. e.,, when R (pressure curve)
- acts above neutral axis.

~ Angle Aa as — when M is —, i. e., when R acts below
neutral axis.

The actlon is again supposed to take place at the mid-point
of nn'

Let the distance n’ A = x (Fig. 4) be the distance from the
neutral axis of any fiber whose area is A. For fibers above
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the neutral axis, x is regarded as positive (+); for fibers below
the neutral axis x is regarded as negative (—).
2=
AB= 363
2=
Ve &% 0 YW

AB 360 ¢ O n' +x)

As thé factor g—eg is constant it can have no effect upon
the realtive change in length of A B due to deformation of the
arch; consequently it will be neglected and the above equations
become:

AB =a (On +x)=a Ow)+ax .............. 4)

AB =a'" (O'w +x)=a (O'W) +a’%...............(5)

As the angle a decreases the corresponding radius in-
- creases and the converse is also true; hence, since the change
of the angle @ must be slight because the section considered is
assumed very small, it follows that for practical purposes
a (0On') =a' (0" n).

Let A S =a (O '), then equations (4) and (5) become,

AB=AS +ax before deformation °
A B'=AS +.a’x after deformation

aOn +x)

Subtracting the first of the above equations from the
second we get, _
AB —AB=dax—ax=x (a' - a),
which is then the change in length due to deformation.
From equation (3) x A a = x (a’ — a) hence,
AB' —AB=xAa=change in length ......... (6)
.Since, ) : o : : .
the unit stress on any fiber =. -~ . . . . . ...
elongation of fiber : : Ca et
original length of fiber x modulus of elasticity
then if
‘ a = area of any fiber
¢ = unit stress on the concrete
s = unit stress on the steel
E.= modulus of elasticity of concrete
E = modulus of elasticity of steel

E,

c.
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we find the unit stress on the fiber of concrete > be given by

the equation, .
xAda

AS +xa E.

Since the above equation represehts the stress on one unit
of the fiber, if the total number of units of area is represented
by a, we must multiply both sides of the above equation by a
to get the total stress on the fiber of concrete.

C ==

Hence,
Total stress on the fiber of concrete =c a — & aE, ... (D
AS +xa
Similarly,
. xAa
Total stress on the fiber of steel = s g = 5723 ¢ E,..(8

Since the value x ¢ in the denominators ts small compared
with the value A S, it may be neglected, therefore, :

xAa
oa—-AS AE e . 9)
sa= xAASa aEg e i Ceeereas (10)

The combined stress on concrete and steel on the entire
section due to the bending moment only is the sum Z of the
separate stresses on the individual fibers constituting the
section, hence,

xAa xAa
2(ca)+2(su)—2.— aE°+2AS

Since A a and A S are constants for any particular section,
and since E, and E, ate constants which depend upon the kind
of the material it follows that they can be placed out51de of the
summation sign, therefore,

a FE,

La)+2Z (sa) =

Z(xa

AaE., AAag:'E(xa)(ll)

It is clear that the moment of any fiber about the neutral
axis is equal to the total force or stress on the fiber multiplied
by its distance from the neutral axis, hence, since the total
force or stress on a fiber of concrete is given by ¢ a and similarly
for the total force on the steel we have the expression s a,
then since the distance from the neutral axis to the fiber is x,
we obtain for the moment on a fiber of concrete, the value
(c @) x, and for the moment on a fiber of steel, the value (sa) %.
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This gives for the total bending moment M of concrete and
steel
Y (x.ca) + Z (x. s a) which also equals the total resisting
moment.
Comparing this expression with equation (11) we find that
M=X(x.ca) + Z(x.s50a)
A A“ g",z (x*a) + :\K‘%E S(2a) .. (12)
The moment of inertia I of any cross section whose radius
of gyration is x, is equal to the sum X of all the particles com-
posing the cross-section multiplied by the square of the radius
of gyration.
Hence ¥ (x?a) is the moment of inertia- of either the con-
crete or the steel, depending upon which may be referred to.
If I, = moment of inertia of concrete
I, = moment of inertia of steel
then substituting these values for X (x?a) in equation (12) we
obtain

AakE, AaE,
M=—7x5I+33
and therefore,

M=——(EcIc + Eqly)

Hence since Es=n E.,

MAS T
Aa= B +nly = change of inclination of the ta.pgent. (13)

Certain assumptions and requirements must now be made
concerning equation (13) if it is tc be apphcable to graphical
analysis:—

1st.—That the value of A a given by equation (13) holds
for appreciable lengths A S of the neutral axis.

2d.—That the value of M is regarded as a constant quantity
for each particular section considered.

3d.—That the value of M is taken at mid-point of A S.

4th.—That the values of both I. and I, are taken at the

d—pomt of AS.

In equation (13) A a represents the change of inclination
of the tangent for a minute section A S (infinitesimal).

To find the total change of inclination 6 for a finite dength
of section S we must take the sum of all the infinitesimal
changes of A a, hence

I.
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' . MAS

S AT A 5
but (A S) =S, then if Mn is the moment at the middle of
S and I, and I, are respectively the moments of inertia of
concrete and steel both taken'at the mid-point of 5 it follows
that:
am—MnS
=Ty

3. Three Conditions to be Fulfilled for an Arch Fixed

at the Ends and Having no Hinges.—Let A B C, Fig. 6, repre-
sent the neutral axis of an arch before deformation. -Let point
a be the mid-point of a sectlon of length S along the neutral
axis A B C.

S

.
~o”

Fig. 6. ¢

Upon loading the arch either with its own weight or with
a live load or both, deformation of the neutral axis takes place.
The end tangents to the portion S of the neutral axis change
their inclination (see Fig. 5). The total amount of this change
8 is given by Equation 14, Art. 2, and is equal to

6 — MnS
“E. (Ie + nlg)

If the end point C of the neutral axis of the arch be tem-
porarily regarded as free to move under the application of a
deforming load applied to section S at point a, then, since the
change of inclination of the end tangent at section S due to
the action of the deforming load is 6, point C must move
about point @ as an axis through an infinitesimal arc C ¢ com-
mensurate with the angle of deformation. Since C ¢ and 6 are
both very small it follows that C ¢ may be regarded as per-
pendicular to a C. If point C is taken as the origin of coordi-
nates with C A as the axis of X then we may designate the co-
ordinates of point @ as x and y. Let e d be drawn perpendicular
to C A.
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The triangles ¢ Cd and a g C are similar for angle C ed =

angle a Cg.
Hence
Cd:eC=y.:aC or
eC

But ‘:——C.(':—tan 6. Since 6 is very small we can replace the
tan 0 by the angle 0-or arc 0 itself. Hence o
Horizontal displacement Cd= 06y .......... (15)

Similarly
ed:eC=x:aC and
vertical displacement ed = :’;—é x="0x........ ...... (16)

To obtain an absolutely correct result it would be neces-
sary to subdivide section S into infinitesimal portions A S.
The angle of deformation A a at the end of each elementary
portion A S must then be obtained. The coordinates x and y
for these infinitesimal portions A S would then have values
greater and less than the coordinates for the mid-point a of
section S.

In order to make the analysis possible, therefore, we must
assume that the quantities Mu, I, I, x and y,.are all taken
at the mid-point a of the section S which is under consideration.
As a consequence of this assumption it follows that the hori-
zontal and vertical displacements of the end-point C of the
neutral axis are, for practical pyrposes, represented by equa-
tions (15) and (16).

If a summation of the horizontal and vertical displace-
ments contributed by the individual sections S which con-
stitute the neutral axis of the arch due to their deformation
" be made we obtain respectively the total horizontal and vertical
displacement which must equal £ (0y), Z (0x). '

Suppose that the ‘tangent T A at point A move through
some small angle 8 then the vertical displacement ed will in
a manner analogous to equation (16) be equal to x. For point
A, the value of xis C A; hence 3 x = 3. C A. The horizontal
displacement C d will similarly equal . y, but since y for point
A =0, it follows that the horizontal displacement {.y must
equal 0. ' :
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Now since by equation (14), Art. 2, 0 is given by the ex-
pression
’ ___MxS
Ec(lc + nl)

_MnSy -\,
E°(Ic+n1.)”""‘: ...........

6
it follows that
Z2(0y)=2

and .
MuSx

Ec(Ie +nly)
where @.C A is the additional vertical displacement due to a
motion of the tangent T A through an angle .

At points A and C it is seen also that the total change of
inclination of the tangents is:— '

MnS
2(0)=2E—:'m \\\/ .......... ... (19

If an arch is properly designed there should be no deflec-
tions or deformations due to the action of the dead load and live
load. Hence it follows that the three equations (equations 17,
18 and 19) which represent all the possible deformations of an
arch without hinges must equal zero. Hence the following
three conditions:— ’

2(0x) =2 +BCA ... ..... (18)

1. 2 (0), the angle of deformation or the change of in-

clination of the tangents must =0.

2. 2 (69), the horizontal displacement, being the change

in length of the span must = 0.
3. X (9x), the vertical displacement, being the vertical
deflection of one springing line with respect to the
other must =0. .

When the arch is of reinforced concrete the materials
involved are concrete whose modulus of elasticity is E,, and
stzel whose modulue of elasticity is E, then the above con-
ditions are represented by equations (19), (17) and (18) respec-
tively. Hence the conditions become:—

. MuS

1. 2(01)=E—E—m=0 .......... (20)
e g —MmSy
2 B(0y)= T gt —0. @1
Mme

3. 2(6x)= X + 9. CA=0.. (22

Ec(Ic + % i)
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All the dimensions in the above equations are in feet, and
M is expressed in foot pounds.

Furthermore, x and y are the ordinates of the mid-point
of section S with the origin at the springing line.

Let H = horizontal thrust; constant for every section of
the arch ring for any given loading.

a ¢ = vertical distance of the mid-point of section S from
the neutral axis to the pressure curve.

Then we have equation (1), Art. 1,

Mw=H.ac

Substituting this value of Mu in the previous equations

we obtain:

H.ac.S
zm) ....................... (23)
H.ac.S
D ey T =0 (24)
gHacS.z 4 ca_g . . T (25)

Ee(lc + nly)
Now for any given arch E, must be regarded as constant.
Furthermore E, must be regarded as constant and hence,
n = %—e 1s a constant.
Therefore, if we so proportion an arch that
i+l +Sn T. is a constant,
then since H is a constant, and E, is a constant, it follows that
the value
H.S
Ec(I. +nly)
- In equations (23), (24) and (25) the above valuc being a
constant, can be placed outside the summation sign, reducing
the equations to the form:

is a constant.

(Condition 1.) Z (@¢) =0.......... ... ... (26)
(Condition 2.) T (ac.y)=0.. ..... ..., 27
(Condition 3.) X (ac.x) =0..... ... ............. (28)

In equation (25) the term 3. C A must = 0 for if there is
to be no deformation of the arch, there must be no vertical
displacement of the end tangent T A. Hence the angle § must
"=() which reduces the entire expression $. C A to0. Conse-
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\

quently the second term f.C A of equation (25) vanishes and
we obtain its simplified form, under the above assumptioné, i
equation (28). ‘

It will generally be suﬁic1ently exact to suppose that E, is
a constant for the entire arch, and that # I, is constant, for
the value I, cannot be determined until the size and dxsposmon
of the reinforcement is known. Hence the expression

—S- becomes ——S--—
Ie +nlg I. + constant

Therefore if the arch ring is so designed that —'—S- in the above
c

expression is also constant we will be sufficiently close for prac-

tical purposes.

bD?
But I, = 5 where :
b =thickness of slice of nng considered, generally
1 foot.

D = radial depth of section S at mid-point a.

b .
Hence — is a constant; therefore to make '—S constant it is

12 I,
only necessary to make Ifj constant.
Referring again to equations (20),(21)and(22), if E_(If-—nl)
8

is constant these equations can be réstated so that the three
conditions become:

(Ist) S(0)=2(Mn )=0 «.oovrererrrnn... .. (29)

2d) Z(09) =2(Mup) =0 .......covn.... vesne (30)
and since 8.C A is again =0 _ o

Bd) Z(0x) =3 (Mmx) =0 .............. e (31)

4. Theory of the Equilibrium Polygon.—Assume that
the parallel forces (Fig. 7) R,, P,, P,, P,, and R, are in equili-
brium and that they are applied at the points »,, X, Y, Z, and
r,, respectively. Let their intensities be represented in Fig. 8
to some arbitrary scale of a certain number of pounds to the
inch, so that the lengths R,, P,, P,, P, and R,, along the line
A C are proportionate to the intensities in pounds. To the ex-
tremities of these lengths along A C draw rays from some
point O not on the line A C. Then in Fig. 7 begin at some
point r, and draw
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* 'r,-X parallel to ray R, P,

X Y parallell to ray P, P,
'Y-Z . parallel to ray P, P,

Zr, parallel to ray Py R,

- We will now demonstrate that line 7, 7, (Fig. 7) will be
parallel to the ray R, R, of Fig. 8.

.
F= R, +Fy=Resvltant
Equilitrant acls i1 onpos/re
direction ’

R

“ ¢y S PR
Equitibramt 7. - .
Figs. 7, 9, 10, 11, 12, 13, 14 and 15.

Suppose in Fig. 7, we apply along the lines7, X, XY, Y Z
and Z'r,, two equal forces, opposite in direction, and each equal
to a force measured by the magnitude of the ray (Fig. 8) to
which the respective lines are parallel. Thus in Fig. 7

Apply along r, X, forces + R, P, and — R, P, each = force .

represented by ray R, P, (Fig. 8).
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Apply along X Y, forces + P, P, and — P, P, each = force
represented by ray P, P, (Fig. 8).
Apply along Y Z, forces + P, P, and — P, P, each = force
represented by ray P, P, (Fig. 8). '
Apply along Z r,, forces + Py R, and — P, R, each = force
represented by ray P, R, (Fig. 8).
This does not in any way affect the equilibrium of the
system. There is added, however,
at point X (Fig. 7) the two forces — R, P, and + P, P,
at point V (Fig. 7) the two forces — P, P,and + P, P,
at point Z (Fig. 7) the two forces — P, Pyand + P, R,
We shall now prove that by this mathematical device com-
plete equilibrium is established at points X, Y and Z.

Fig. 8.

Observe that at point X (Figs. 7 and 11) we now have three
forces acting,

force P, parallel and proportionate to P, (Fig. 8)

force — R, P, parallel and proportionate to R, P, (Fig 8)

force + P, P, parallel and proportionate to P, P, (Fig. 8)

In the above the — sign signifies that the force acts to the
left, and the + sign signifies that the force acts to the right.

Beginning at point X (Fig. 9) we can construct to the same
scale used in Fig. 7, a triangle X B’ 0’ similar to the triangle
A B O of Fig. 8, for the respective sides are proportional and
parallel. It is a well known mathematico-physical law that if
a system of coplanar forces progress rotationally in their direc-
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tion, (like the hands of a clock or vice versa) and form a closed
polygon then the system of forces must be in equiblibrium.

That this is true for the triangle in question is evident
from the graphical construction in Fig. 10, where the resultant
+ R, P, of the two given forces P, and + P, P, is exactly bal-
anced by the anti-resultant or equilibrant — R, P, which was
the third given force assumed to act at point X.

It is therefore evident that the above mentioned condi-
tion for equilibrium is :satisfied in Fig. 9. Hence equilibrium
exists at point X (Fig.7) provided that force + P, P, acts
toward the right and force — R, P, acts toward the left whick
was originally assumed. . A

A similar demonstration holds good for points Y «nd Z.
‘Hence the primary forces P,, P, and P, (Fig. 7) must be in
equilibrium. Consequently the complete system must be in
equilibrium. This necessitates that equilibrium must exist at.
points 7, and 7,.

At points X, Y .and Z we have taken care of forces P,, —
R, P, + PP, P, —P, P, + P,Py; and Py, — P, Py, + Py R,
réspectively; consequently there remains,

at point r,, forces R, and + R, P,
at point 7,, forces R, and — Py R,.

The resultant of the two forces R, and + R, P, acting at r,
must act toward the right, and from Fig. 8 we see that it'must
be equal in magnitude to ray-R, R, for this ray completes the
triangle .A O D. This resultant, therefore, 'is + R, R, acting
toward the right. For equilibrium at point r, (Fig. 7) we must
apply an equilibrating force — R, R, equal to + R, R, in magni-
tude and opposite in direction. We then obtain the closed
triangle of Fig 12, which satisfies the condition for equilibrium.
» Similarly the resultant at r, must act toward the left, and
- again we see from Fig. 8 that it must be equal in magnitude
‘to ray R, R, for this'ray also completes the triangle DO C.
The equilibrating force at r, will therefore be + R, R, and the
condition of equilibrium will be satisfied for point r, as seen by
Fig. 13.

It is evident that + R, R, and — R, R, must act along the
same straight line r,r, (Fig. 7) otherwise the condition of
equilibrium for the entire polygon r, 7 r, (Fig. 7) will not hold
good.
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Hence, since the equilibrants at r, and 7, must be in the
same straight line and also parallel to the ray R, R, of Fig. 8,
it follows the system represented by Fig.7 cannot be in a
condition of ‘equilibrium unless the closing line 7,7, of the
-equilibrium polygon r, XY Z r, is parallel to ray R, R, of
Fig. 8.

In the previous discussion we have assumed that the two
reactions R, and R, were known. .In the actual problem cf
graphical analysis the loads P,, P,, P,etc., are ascertainable
directly and the reactions R, and R must be found by graph-
.ical analysis. :

It has been proved that the closmg line r, 7, of an equili-
brium polygon must be parallel to the ray R, R, which divides
the sum of the loads P,, P, and Py, etc., into the two reactions
R, and R,. The converse of this must also be true, hence,

If a ray diagram be constructed (Fig. 8) and a ray R, R, be
drawn parallel to the closing line r, r, (Fig. 7) of the equilibrium
-polygon, then the ray R, R, will divide the force or load line A C
into two parts, AD and C D which will respectively constitute
the reactions R, and R,.

" The resultant R of the forces R, P, and P, R, is seen from
Fig. 8 to be represented in magnitude and direction by line
AC :
If the equilibrium triangle r, 77, be constructed (Figs. 7
and 14) the resultant R will act from point 7, the point of
intersection of R, P, and Py R,, and it must be parallel to- the
. various loads.

If the reactions R, and R, acting at 7, and 7, respectlvely
be considered as acting upwards then the resultant R will act
upwards. Hence the equilibrant R must act downwards. .« .

By supplying in the equilibrium triangle 7, r.r, (Fig..15)
the opposed forces similarly to the above procedure-the fact
that equilibrium exists can still further.be demonstrated.

It is seen from Fig. 8 that

R, +R; + (—P,—P,—P;) =0 or
R, +Ry=P; +Py+Pg ................ ..(32)

5. Properties of the Equilibrium Polygon.—In Figs. 16
and 17 we have exaggerated the case of Figs. 7 and 8 in order
to more clearly show the geometrical constructions and proper-
ties of the polygon. Assume for Figs. 16 and 17 the action of
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the same forces and in the same position as in Figs. 7 and 8.
Suppose that a vertical plane gh is passed through point g,
any point on the equilibrium polygon r, X Y Z r,, and that the
portion to the right of this plane, i. e., portion gh r,, is removed.
This in no way affects the conditions existing at points 7, X
and Y, hence equilibrium must exist at these points for we

Fig. 16. Fig. 17.

still imagine the opposed forces of Fig. 7 to be acting. If ¥ (M)
represents the sum of the moments of a given number of forces
acting about any point in their plane, then if cquilibrium is to

exist,

' T (M)=0 _
Since the opposed equal forces along r, X (i.e. + R, P,, and —
R, P,) and along XY (i.e. +.P, P, and — P, P,) neutralize

Fig. 18.

each other; then there remains only the forces R,, P,, P,, and
+ P,Pyalong Y Z, and + R, R, along r,7,. This is evident
from Fig. 7. :

Let us designate the sum of the moment of R,, P,, and P,
about point g by M,. From Fig. 19 it is clear that M, =R, d,
— (P,d, + P,d,). The moment of force + P, P, about point g
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is == 0 for the force passes through point g, therefore the lever
arm of force + P; P, is =0.
The moment of force + R, R, along r, r, about point g is =
+ R, R, (g 1) where g ¢ is the perpendicular from point g (Fig. 16)
to the line of direction of the force R, R,.
The moment of force R, R, about point g acts in a clock-
- wise direction, while M, acts counter-clock-wise. Consequently,
IM)=M,+P,P,(0)—R,R,(g3) =0
=M, —R, R, (g?)=0................. (33)
Erect a perpendicular O F from the pole O (Fig. 17) to the
force line A C. Let the length O F thus drawn be designated
by H which we will hereafter term the pole-distance = H.
From the triangle g k ¢ (Fig. 16), we see that

cos a =§—; therefore g i =-=gh .€os a

If we substltute in the term — R, R, (g ©) of equation (33)

the value of gz =g h cos a, we obtam
- ZM)y=M —R/R,.ghcosa........... ... (84)

In triangle O F D (Fig. 17) it is seen that angle DOF is
~ equal to angle a of triangle g k 7 (Fig. 16).
- Line g ¢ is perpendicular to 7, 7, (Fig. 16) which is parallel
to line O D (Fig. 17); hence g ¢ is perpendicular to O D. Also
g h (Fig. 16) being drawn vertical must be perpendicular to O F
(Fig. 17) which is drawn horizontal. Therefore angle hgi =
angle D O F = angle a. The triangles being right triangles are
similar.

From triangle O F D (Fig. 17) we obtain the relation:
' OF H
OD™RR;
for O F is the pole-distance H, and O D is the ray R, R, equal in
magnitude and direction to R, R, along line 7, 7, of Fig.-16.

Hence :

COSs g =

H=R,R,.cosa
Substituting this value of R, R, . cos a = H in equation (34) we
obtain
XM=M—-H.gh=0

=H.gh..................... ... (35)
We can state these~facts in the form of the following

theorems:

Hence
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1. In any equilibrium polygon, the moment of all the vertical
forces on one side of a vertical section through any point
g is equal to the pole-distance H multiplied by the vertical
ordinate g h through the poirt. (The value H must be
measured to the force scale while the length g 2 must
be measured to the distance scale.)

I1. In any equilibrium polygon, the moment of all the vertical
forces on one side of a vertical section through any point
g is equal to the pole distance H wmultiplied by the
vertical ordinate g h through the point even if the mo-
ments of the vertical forces are taken about any other
oint besides g along the line gh. (This is at once
evident since the length of the lever arm from the
forces to any point whatever on the line of g h must be
the same for the direction of the action of the forces
is assumed vertical, hence they are parallel to the
vertical line g k.)

II1. For any number of equilibrium polygons having the same
system of forces and consequently having the same force
lwme and closing line the product H . g h 1s a constant
quantity. Therefore if H is increased, gh must be
decreased in the same ratio and vice versa. (This can be
demonstrated by assuming a new pole O’ (Fig. 17)
on the ray R, R, since this ray must be parallel to
the closing line and counstructing the polygon 7,
X,Y,Z,r, Itis evident that g, h has increased and
H decreased. That the ratio is the same can be
proved geometrically.)

If the pole O’ could not readily have been located on ray
R, R, (Fig. 17) but was instead located at O” along the per-
pendicular m »n through O’, then on constructing the equili-
brium polygon r, x y zr, we find r, located above r, when O0”
is above O’ and the reverse is also true. But the vertical ordi-
nates through points 1, 2 and 3 for polygons r,x y 27, and
r, X, Y, Z, r, will be respectively equal. Hence by successively
taking the lengths x 1, ¥ 2, 23 and laying them off from the
original closing line r, r, we can determine the location of the
points X,, Y, and Z, or the polygon corresponding to the pole O'.

Let d,, d,, d,, respectively (Fig. 19) be the perpendicular
distances from the line of action of forces R,, P, and P, to the
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vertical line gh extended. Then from equation (35) it follows
that, g

M,=R,d,— (P,d, + P,d,))=H .gh ...(36)
Extend 7, X until it intersects gk extended to point r. Tri-
angle r, & r (Fig. 19) is similar to triangle O D A (Fig. 20) for
the corresponding sides are parallel. Draw line 7, k (Fig. 19)
perpendicular to gh extended. Triangle 7, kh will then b
similar to triangle O F D for homologous sides are parallel.
Now regard 7, k as the altitude of triangle 7, A 7 and O F (or H)
as the altitude of triangle O D A. Since these two triangles
are similar it follows that their altitudes and bases are in pro-
portion, hence sinve 7, k =d,,

c
Fig. 19. Fig. 20,

H : R, =d, : hr, therefore
H .hr=R,d, Substituting this value of R, d, in
equation (36) we obtain,
H.hr— (P,d, + P,d,) =H . g h, therefore
H . hr—H.gh=DP,d, + P,d, which gives
HMhr—gh)=(P,d, + P,d,)
but by Fig. 19(k r —g h) =g r whence we obtain
H@ry=P,dy+P,dy ...................... @37
If then we desire to find the sum of a series of products of .
the type Pd in an equilibrium polygon we simply construct the
small polygon r, X Y g (Fig. 19) with r, g as closing line. What-
ever may be the number of forces to one side of g h that enter
into the consideration (in this case P, and P,) they are drawn
to some force scale along the line A C (Fig. 20) and then the
polygon 7, X Y g can easily be constructed. The length gr is
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then found by continuing 7, X and gk to point 7, their inter-
section. Then the value of P,d, + P,d,will be H (gr) if P,,
P, and H are measured to the same scale of force, and d,, d,
and g r to the same scale of distance.

6. Theory of the Pressure Curve.—Suppose that there
exists in the force system of Fig. 21, equilibrium between the

——<—a

Fig. 21.

force P and the forces V, and Q at point u,; and V, and Q at u,.
Forces Q at #, and u, are assumed parallel.

By reference to Figs. 14 and 15 it is seen that the resultant
of V, and Q at u, and the resultant of V, and Q at %, must
intersect the line of action of force P in the
point #,. Along the force line A C (Fig. 22) Tj
take a distance 4 C on the scale of force A
equal to force P. Draw A O (R,) parallel f

|
Y
i

to u, uy and O C (R,) parallel to u;u,. The
resultant of V, and Q atu, then = R;and P
the resultant of V, and Q at u, =R,. If the
line O D (Fig. 22) is drawn parallel to the
parallel forces Q of Fig. 21, then the magni-

tudes of the forces acting at #, and #, will |
be given by the parts of the diagram of Fig. Ll_ A
22.. ’ " Fig. 22.

Let the line &, k, be drawn in Fig. 21 parallel to O D (Q).
Lines u, k, and «, k, are parallel to P. Equilibrium will not be
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disturbed by the addition of two equal and opposite forces
% Q at each of the points k, and k,. The forces + Q and —Q
between points k, and k, however, neutralize each other and
leave the couple — Q, + Q at #, and similarly the couple + Q,
-Q at u;. In the triangle F, b, D, let the angle F, k, D, be
designated by a when k, F, is drawn perpendicular to P. Then
if k, m is drawn perpendicular to Q we have the angle u, k, m
of triangle u, k, m equal to angle a for the sides of these angles
are perpendicular each to each.

The magnitude of the moment of the couple at u, is clearly

Q. kym but b, m =k, u, . cos a, hence ‘
Moment of couple at u, =Q (B, u,) .cosa ..... (38)
- Now triangle u, k, m (Fig. 21) is clearly similar to triangle

D O F (Fig. 22) and angle D O F = angle a.

OF H,
Cos a =0D = 1) hence Q.cosa=H
Substituting this value of Q . cos a in equation (38) we obtain,
Moment of coupte at u, =H (b, %) ........... (39)

similarly Moment of couple at #, = H (k, u,) where H is the
pole-distance of the force polygon.

If we imagine the opposed forces — R, and + R, acting
along u, uy and the opposed forces — R, and + R, acting along
u, u, then we find that equilibrium exists at points k,, u,, u,,u,
and k,. This is evident without further discussion from Art. 4.

Let us assume that the forces to the right of the vertical
line k¢ are removed. This will not disturb equilibrium at
points u,, by and u,. By Art. 5 the sum of the moments T M

“about any point #; must then be = 0.

If we remove the opposed forces — R, and + R, acting
along u, u, there remain forces P, V,, couple —Q + Q; force +
Q at’k,; and force — R, along u, c.

Let the lever arms of V, and P about point ¢ be d, and d,
respectively and observing that the lever arm for force — R, = 0
we obtain

Moment V, about point¢c = + V,d,.

Moment couple at u, about point ¢ = — H (k, u,)(see
equation 39)

Moment P about point ¢ =— P d,

Moment — R, about point ¢ = — R, (0) =0

Moment + Q about point ¢ = —[+ Q (¢ %) ]
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Hence by Art. 5
Z(M)=V,dy—H (kyu;) —Pdy—Q (ci) =0
In Figs. 21 and 22 the triangles c k4 and O D F are similar
(Line k ¢ is parallel to P and c ¢ is perpendicular to &, k).
In triangle c k1,
ci=(kc).cosu.
Substituting this value of ¢ ¢ in the ‘expression — Q (¢ #) we
obtain — Q (k ¢) cos a.
But O D of triangle O D F is equal to Q.
Hence Q cos a (triangle O D F) is equal to H.
The expression, therefore, reduces to — H (kc). Hence,
since—Q.ci=—H . (ko),
Z2(M)=V,d,—H (kyuy) —Pdy—H (kc) =0
or V,d,—H (k,%) ~Pdy=H (k)
Let V,d,—H (k,u,) — Pdy =M.
where M, means the sum of the moments about point ¢ of the
forces acting to the left of kc. Then
Me=H EC) ..., (40)
If line k¢ is located to the left of force P, equation (40) still
holds with this exception that the term P d, vanishes if we still
assume that all the forces to the right of line k ¢ are removed.
If point ¢ is above the line &, k, the moment of force + Q at
k, is counter-clocz-wise; while if point ¢ is below line k, k, the
moment of force + Q at k, is clock-wise. Hence in the latter
case M. is opposite in sign to what it is in the former case,
for Mc=Q (c?i) =H (kc¢). The equilibrium polgyon for the
forces discussed is, evidently, k, u, uy u, k,, We can now state
the following theorem:

IV. If ¢ be any point on the equilibrium polygon whose closing
line is k, k,, then M. the moment at the point ¢ is 2qual
to H, the pole-distance multiplied by the vertical ordi-
nate k ¢ from point c to the closing line k, k,.

Since k¢ =-%°, any change in the moment M. (or in the

end moment) will cause a change in value k¢, hence in the
location of the closing line k, k,. Clearly the magnitude of this
change in location of k, k, is measured by the change in k¢

and hence by %‘ Now if the moments of the two couples in

the same plane are equal then the couples may be equal even
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if the forces constituting the couple are unequal and their
direction not parallel. Hence if it so happened that the forces
of the end couple at u, are not coincident with + Q and — Q,
we .can replace this couple by another one having an equal
moment but whose forces are coincident with + Q and — Q.
Although, for simplicity, but a single force P has been used in
the above demonstration yet the reasoning, evidéntly, holds for
any number of forces. . _
Suppose that a,,a q, (Fig. 21) is the neutral line of an
arch rib acted upon by a single load or force P and that each
arch rib is fixed at the ends. -Let the actual reactions be repre-
sented by R, which then must act at point %, in the direction
u, 4y, and R, which similarly acts at u, in the direction u, u,.
Resolve reaction R, along u, u, into two components u,x
=H, xy=1V,, where H acts horizontally and V, vertically.
Similarly resolve reaction R, at #, into the horizontal com-
ponent H and the vertical component V,. As V, acts through
a,, the moment of V, about a,, must =0. The moment of H,
however, about a,, = H (a,u,). Similarly the moment of V,
about a, = 0, while the moment of H at @, about a, = H(au,).
If an arch is hinged at the points a,, and a, then there can
be no bending moment. The reactions must then pass through
the center lines of the hinges, hence through points a,, and a,.
Again, we will apply the two opposed forces —Q and + Q
at k, parallel to + Q at u,, and also — Q and + Q at k, parallel
to — Q at u,, these groups of opposed forces thus acting along
the line k, k,. As seen before, equilibrium is not disturbed by
this but we do cause a transfer of force + Q from u, to k, and
the addition of a couple —Q, + Q =—H (k, u,). Similarly at
the right we transfer force — Q from u, to k, and add the couple
+ Q- Q = —H (kyu,). |
From Art.5 and Theorem II. of the same "article, if we
take moments about point a along the line k¢ for the forces
acting to the left of k¢ we obtain just as before,

SM)=V,d)—H (kyu,) —Pdy—H (ka) =0
For the moment of + Q about._point a=—[+Q(a4,)]
where a1, is the perpendicular distance from a to k, k,. This
makes triangle a k¢, ck+ and O D F similar, and angle ka1,
=angle a. Hence
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a1, =ka (cos a), therefore,
~[+ Q(az)]=~+Q (ka)cos a], but from’ ‘triangle OD F,
Q cos a = H, whence .
—[+Q(ka)cosa}=—H (ka)

But since M¢ = V, d, — H (k, u,) — P d,, the previous equa-
tion becomes ' '

I (M)=M.—H(ka) =H(kc) — H(ka) =H(kc—ka) .(41)

But (k¢ —ka) =ac; hence this may be stated as fol-
lows:

_ SM)y=H@c)....0covviiiiiiiiiiiin, 42)

Given an arch rib acting as a girder and subjected to the
action of the force P and having end moments at a,, and a, re-
spectively equal to H (k,u,) and H (k,u,) where H is the hori-
zontal thrust of the arch equal to the pole-distance; then if the
equilibrium polygon k, u, uyu, k, satisfies the condition that the
moment about point ¢, M. = H (k ¢) it follows that M the bending
moment about point a is = H (a c).

Since the displacement of the pressure curve from the
neutral axis of the arch is commensurate with the deforming
powers of the loads acting, it follows that the bending moment
at any point whatever of the arch must be equal to the alge-
braic difference of the bending moments at points ¢ and a on
the pressure curve and neutral axis respectively and also located
on the same vertical ordinate which passes through the point
in question. Hence the following theorem:

V. At any point whatever of an arch the bending moment M

is equal to the horizontal thrust H wmultiplied by the
distance from the pressure curve ¢ to the neutral axis a
of the arch. The values of k ¢ and k a are regarded as
positive when measured above the closing line k k
and negative when below. The bending moment M is
positive when a c is positive, and negative when acis
negative. -

Still further, to emphasize the truth of the above, let
point a (Fig. 23) be the mid-point of the portion # »’ of the neu-
tral axis included in a section S. Let a ¢ be a vertical vrdinate
from point a to the pressure curve b¢. Draw ae perpendicular to
b ¢ and draw a b as a horizontal component of b¢. If R be the
magnitude of the resultant force acting along the pressure
curve b ¢ and H be the magnitude of its horizontal component,
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i. e., the horizontal thrust, then from Fig. 23, we have M the

moment of R about point a = R(ae). But IS-‘—;—E hence

H
R(ae) =H (ac), therefore M = H (a¢).

The neutral axis itself may be regarded as an equilibrium
polygon, having a pole-distance H equal to the horizontal
thrust, a closing line &, k, determined by some well defined
system of loading. For this polygon it is clear that M = M.
— M, and that H (ka) is the amount of the external forces
acting at a. This is true under the condition that the result-
ants at the abutments act at points %, and #,.

For an arch fixed at the ends we must impose the further
restrictions of the three conditions given by equations (29),
(30) and (31).

Fig. 23. )
Birst XM )=0..............cciio... (43)
Second. T (My)=0............ ... ....... (44) -
Third. X Mx)=0........................ (45)

where M is assumed to act at the mid-point of section S.

If the end of moments H (k, #,) and H (k, u,) are of suffi-
cient magnitude to fix the direction of the tangents to the
neutral axis of an arch acting as a girder and subjected to the
same loading as the arch; then if the difference of vertical
displacement of the two ends is =0 we obtain for the summa-
tion of the moments of such an arch girder

ZM)=0and X (Mex)=0 ............... (46)

From X (M) take equation (43), this gives

Z M) —2Z (M) =0.
But since M = M, — M. we obtain
TM)—ZM)=2Z (M) — 3 (Me—M,) =0
=2 (Mc) — X (Me) -2 (Ma.) =0,
hence
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Subtracting ¥ (M x) equation (45) from ¥ (Mex) =0, we
obtain,
E(Mex) —2(Mx) =2 (Mox) —2 (Me—Ma)x=0
=X (Mex) —Z (Mcx) — 2 (Max) = 0
or
EMax)=0.......0 (48)

That the above demonstration for a single load P can be
extended to any number of loads ought to be clear.

To Prof. Henry T. Eddy belongs the credit of having first
enunciated the principle underlying the graphical theory of
the elastic arch. It is, therefore, fitting to bring this article
to a close by a quotation from his classic ‘‘Researches in Graph-
ical Statics’’ published in 1878:

“Ifin any arch that equilibrium polygon (due to the weights)
be constructed which has the same horizontal thrust as the
arch actually exerts; and if its closing line be drawn from
consideration of the conditions imposed by the supports, etc.,
and if furthermore the curve of the arch itself be regarded as
another equilibrium polygon due to some system-of loading
not given, and its closing line be also found from the same
considerations respecting supports, etc., then, when these two
polygons are placed so that these closing lines coincide and
their areas partially cover each other, the ordinates inter-
cepted between these two polygons are proportional to the
real bending moments acting in the arch.”—(‘‘Researches in
Graphical Statics,” page 12.)

7. Development of Fiber Stress Equations.——-The funda-
mental equation connecting stress and deformation is

. d
FmfE ... (49)

where
[ = unit stress on any fiber
d = deformation of fiber due to tension or compiession
(may be either elongation or compression of fiber)
! = original length of fiber
stress per unit section
amount of deformation
When we state that the modulus of elasticity E; of steel is
30,000,000 we mean, if a unit stress (a pound per square inch)
is applied, either in tension or compression, the section will be

E = modulus of elasticity =
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veren Tend or comresserd an amoust equal to its iength /1 divided

v 300009, Sizmafly i the modulas of elasticty E. of

ascrete 33 gives as 1.5300.000 this means that a unit stress

“a yrri=? per scuare inck) appied either in tension or compres-

wor ®Il simetch o7 compress the section an amount equal to
i wmgnt 1 Eided by 1,500.000.

Wisr +rese particular values for E, and E.,
- E. _30.000.000
E. 1.500.000

If
Ae = area section of concrete
Ag=area section of steel
E. = rwoduius of elasticity of concrete
E. = modulus of elasticity of steel
F. = vstal stress in the concrete
F, = total stress in the steei
je -= unit stress in concrete (pounds per square inch)
fs = unit stress in steel (pounds per square inch)
Then
Fe —jeAe; Fs=]. s, dividing F, by F.
B e e o

If £, =30.000,000 and E.=1,500,000, then under the
actiom of a unit stress of one pound to the square inch applied
t» both the steel and the concrete of same fiber length /.
t: amount of deformation of the steel is yy3s%.59s and for
comerete 454l 5495 1. €., the steel is deformed ;%5 of the amount
of the deformation of the concrete, that is

de:de=E¢:Eq ... ... .. .. .. .. .. .. ... .. ... BGh
wiere dg and d. are the deformation of the same length / of
stse] and cermerete respectively, due to the application of a unit
of stress (ome pound per square inch).

If the steel and the concrete are in contact there would
t#: sliding of the one over the other. Furthermore if the steel
in a steel-concrete member had been properly proportioned as
v permissible fiber stress the concrete might, nevertheiess. be
strained beyond its ultimate resistance. Consequently it is a
matter of ultimate importance in the designing of steel-concrete
members that the fiber stresses assumed for the steel and
eoncrete shall be in the same ratio as their moduli of elasticity
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for then the deformation in both the steel and the concrete
will be the same.
We will therefore assume that

—;—'——-Ef =n. Substituting this value in equation (50)
we Vobtaln,

Fl E! 18 9

]:\— Eo A LT (5_ )

In Art.1 we have seen that in any section S of an arch
(Figs. 1 and 4) the forces acting may ultimately be resolved
into a couple m and a thrust R, acting at the point a. We
have also seen that the thrust R, may be resolved into the
components N normal to the neutral axis at a and T, tangential
to the neutral axis at ¢. The normal component N produces
shear and is generally so small it will be neglected in the
following calculations. The tangential component T known as
the direct thrust is effective in shortening the length of sec-
" tion S and consequently of the entire arch. -

The direct thrust T can produce but one type of effect,
i. e., a shortening of the section S while the couple m can be
effective in two distinct and opposite ways depending upon
whether the rotation is clock-wise or counter-clock-wise.
Hence the total effect of the fiber stresses in a section S can be
represented by the cquation,

Total effect of fiber stress = Effect of thrust * Effect of couple. (53)

Now

Fc=f04'1c; Fn=fs As; andj——

Hence

fs =nfe.

E—=n

Let :
f =stress on concrete in pounds per square foot,
then f =144 f. and
nf =stress on steel in pounds per square foot,
and let the areas A: of concrete and A, of steel be given in
square feet, then the combined total stress on concrete and
steel will be
fAe+nfAs=f(Aec+nds)........... w2 (GO0
In the above we have virtually substituted for the area of
the steel bars A, their equivalent # A, in concrete thus obtain-



30 REINFORCED CONCRETE ARCHES.

ing a homogeneous mass composed only of the one substance
concrete. We shall now prove that the neutral axis of such a
substituted homogeneous section passes through the center of
gravity of the section.

Let the forces a D, a C and a B acting at point a of the
neutral axis # #’ (Fig. 24) have such magnitudes and directions
that the equilibrium triangle a B C can be constructed. This
would mean that equilibrium exists at point @ on n n’ due to
the action of the forces. .

Continue a B to H making a H=a B. Construct the
parallelogram a D H C. Let it be required to find the effect
of the components of the forces along any cectional plane,
preferably radial, as vv,.

Fig. 24.

Draw BG, CE, DF and H I perpendicular to vv,. The
triangles a C E, and H D F, are equal, hence ¢ E, =H F,. In
the triangle a HI if a E,=H F, then a E=1IF.

aF +]I F=ul=u4G and since,a E=IF
aF +aE=uaG, but

Since v v, is a radial section, components along v v, will be
normal components of section S of arch. Hence

a E is the normal component of force a C in section S of arch

a F is the normal component of force a I in section S of arch

a G is the normal component of force a B in section S of arch
But @ E and a F act in directions opposite to a G, hence

aF +aE—aG=0. ,
Therefore the sum of the normal components at point a = 0.

Now draw H H, parallel to v v, and perpendicular to D F.
Triangles a C E and H D H, are then equal and EC =H, D.
Also HI — B (G = H, F, therefore

EC+BG=HD+HI=DF
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Hence the sum of the perpendicular components in section
S at point a =0. ’
From Art. 2, equation 12 and referring to Fig. 4, we see
that the total bending moment M for concrete and steel is
M=ZXZ(x.ca) + £ (x.5a)
where
¢ = unit stress on the concrete
s ==unit stress on the steel
x = distance of fiber from neutral axis
a =area of fiber
Now if for our unit stresses we adopt pounds per square
foot, then ¢ becomes f for concrete, and if we are to have no
sliding between steel and concrete, the stress for the steel
becomes # f. In terms of these units we obtain
M=2X2@x.fa) + Z(x.nfa) or
M=2(xa.f) + Z(xa.njf
Since the direct thrust T at point a is neutralized by the
stresses which cause uniform shortening of the fibers consti-
tuting the section, it follows that the stresses due to M and
(as has been shown) the normal components of these stresses
must neutralize each other, hence
Txa.f) + Z(xa.nf)=0
therefore
2(xa)=0
This means that if x is measured above or below the
the neutral axis from a to all the little differential areas, a
constituting the total area along the sectional plane considered,
then X (x) = 0. This cannot be true unless point a itself is the
center of gravity of the sectional plane considered. Hence it
. foltows that the meutral axis must pass through the center of
gravity of the revised homogeneous section.
In Fig. 25 let
D = depth of arch in feet
D’ = depth of steel rib in fect, center to center
x¢ = distance in feet from lowest outside fiber of
section to neutral axis
% == distance in feet from lowest outside fiber of
section to center of gravity of steel rib
x == distance in feet from lowest outside fiber to
center of gravity of revised homogeneous sec-
tion.
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We have from equation (54) the total stress on concrete
and steel given by _
fAc +nfAs
Taking moments about the lowest outside fiber A B of
section we obtain,
XefAe+nxsf As=F (x0 Ac + # x4 As), but since
the neutral axis must pass through the center of gravity of the

D .
system x. must = 3 hence the above expression becomes

f (Ac—IE)- 1 ARXE) e (55)

Hence equation (55) must be equivalent to the moment
obtained for the revised homogeneous section having x for a
lever arm, therefore

2f (Ae + n Ay) =f(A.,—g-+ # As Xs)

o I | l
x>
LG Conrtlt -

. W

k—pr—d

|

But since equation (55) represents the moment of the result-
ant of those stresses which produce a shortening of the section
it must be exactly equal to and opposed by the direct thrust
T acting at point a. Consequently the moment of T about
A B (Fig. 25) must be given by x f (Ac + n As) where x is the
length of the lever arm of T about A B. Therefore, it is evi-
dent that
T=fFf(A¢ +n Ax or

where f is the stress on the concrete in pounds per square
foot due to the action of the direct thrust 7. Hence

which gives us the stress on the steel in pounds per square foot
due to the action of the direct thrust 7.
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Referring to equations (9) and (10), Art. 2, we find

%, Aa
ca NS a E,
% Aa
sa= AS aE,

- where x, = distance from neutral axis to extreme fiber of con-
crete and x, = distance from neutral axis to center of gravity
of steel bar.

Let the units adopted be the pound and the square foot
then for ¢, the unit stress on the concrete we substitute f.
(pounds per square foot), and for s, the unit stress on the steel
we substitute fs (pounds per square foot).

3
Q
*_
8
L)
Q®
|
g
&
L.

Fig. 26.

These equations, after eliminating @ from both, become

_x Aa
fom A o S (58)
fo= "z_A_sA“ N S (59)

for it has been assumed that Es =#u E..
Multiplying each member of equations (58) and (59) by
the corresponding member of equation (13), Art. 2, i. e., by
Ag— MAS
Ec(Ie + nly)
o= % Aa.EcMAS hence
ASEc(Io +nly)

we obtain,

fo. A
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Similarly

These values given by equations (60) and (61) are re-
‘spectively the fiber stresses in the concrete and steel due to
the action of the couple m.

The total fiber stress in concrete S, is therefore from equa-
tion (53) equal to eq. (56) + eq. (60). Similarly the total fiber
stress in steel S, is equal to eq. (67) + eq. (61). Therefore,

T M x,
Se= A°+nA.: Ie+nl,’

_ T M x,
S (A.,+nA. x I') B, (63)

= b=/2%/ P n

T. Mo :% s
D'=p-45’'
“D-2G

_—@gﬁ-ij

L)
Fig. 28.

In Figs. 28 and 29 let
D =radial depth in feet of arch ring at point a measured from
outside to outside of concrete.
(; =distance in feet from center of gravity of steel bar to
extreme fiber of concrete.
D’= distance in feet between centers of gravity of two steel
bars constituting a rib.

.D/
D

Then,
4

%y = g- and x, = I—)- (From Fig. 28)

Ie= 11)9, Is=1% A, (D’)* (This from the principles of
mechanics.)

7\ 3
Hence, Is=A, <-§-) = A4 x,}
Ie+nls=¢ds DP +ndAex? oo, (64)

Substituting this valve 'in equations (62) and (63) we
obtain, .
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T M x,

Sq o

Y Ac + n A, b iy 1)3_'_'“4'x33 ........... (65)
T + M =z,

Se == <A° +n Ay "y D® + ﬂA.x,’) n...... (66)

8. Effects Due to Changes in Temperaturc. —It is
customary to assume as the mean temperature for an arch
that temperature at which it is completed, the supposition
being that then no stresses exist due to temperature. With
a rise or fall in temperature from this mean temperature,
stresses tending to change the length of the span will develop.
This tendency to change the length of the span of an arch
fixed at the ends will be resisted by the abutments, thus devel-
oping there either a horizontal thrust or a horizontal tension.

Suppose in diagram of Fig. 41, page 84, that a horizon-
tal force H. acts at point k at the left of the arch. Again re-
sort to the device of the two opposed forces acting at point O
at the left of springing line of the neutral axis, each equal to H,
and acting in opposite horizontal directions. Equilibrium is not
disturbed by the addition of these two equal but opposed
forces at point O. But a transfer of the horizontal force H
from k to O has thereby been brought about and furthermore
there has been added to the system a couple + H., — H, hav-
ing a lever arm k2 O and therefore = H;. k O.

That the stresses brought into play by a change in the
length of the span (due to variation in temperature in this
case) create a couple is evident from considering the nature
of the effects produced along a radial section at the abutments.
That the fibers at the  extrados and intrados are differently
affected and in precisely such a way as when under the action
of rotational forces, should be apparent.

If the neutral axis of the arch be regarded as a force
polygon then the stresses due to variation in temperature
will always act along the closing line k k of the force polygon
0a0,.

This is clear from the previous decisions conccrning the
equilibrium polygon and force polygon.

Since we are assuming a change in the length of the span
there will be a horizontal displacement, hence only the 1st
and the 3rd conditions given in Article 3 can be fulfilled.
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These three conditions, as already given by equations (20) (21)
and (22), are
) Ist. £ (6 ) =0 (Change of inclination of tangents,
2d. 2 (6y) =0 (Change in length of span) ‘
. 8d. Z (6x) =0 (Deflection one springing line with
respect to the other)
Referring also to equations (40), (41) and (42) of Art. 6)
we find that
ZM)y=ZH((c)=0
ZM,) =ZH(ka)=0
ZM) =ZH(@ac)=0
and since H is constant

Z (k ¢) =0, and therefore (k c.x) =0 ........ 67)

X (ka) =0, and therefore (ka.x) =0 ........ (68)

X (ac) =0, and therefore (@ac.x) =0 ........ (69)
Also from Art. 3, equation (27)

Z(@c.y)=0

tince conditions (1) and (3) stated above are fulfilled
there remains merely the evaluation of the term X (6y).
Now by Art. 3, equation (21), the change in the length of
the span is given by v
Moy
o IO =R Ty
Let
L =-length of span of neutral axis in feet
X t° = number of degrees of change in temperature
e = coefficient of expansion of section
H, = horizontal thrust due to change in temperature
Then since the change in length of the span is equal to
L e it follows that MS
o . y
Lete =3 m ....................

If the horizontal force is due to changes in the tempera-
ture it must be represented by H: and from the preceding
M = H t (k a)
Substituting this value for M in equation (70) we obtain

S
Let° = HngI(ka.y)

for H, E is constant and can therefore be placed
(] .

(e + nl,)
outside of the summation sign. If the arch is symmetrical




+

THEORY OF THE ELASTIC ARCH. 37.

the summation may be extended over one-half of the span
only which necessitates that the result be multiplied by 2.

Assuming that the summation is over one-half of the span

only, we have for the total span
. _ S
Ler = 2H°E—__—-° T+ nly

If £ (ka) is to= 0 the algebraic sum of the ordinates
from points a of the neutral axis to the line &k must = 0,
assuming that the ordinates which are above line k k are posi-
tive; and below, negative.

Line k£ k must therefore be placed at such a distance above
'00,, Figs. 31, 32 and 40, that its ordinate e, is equal to the
mean length of the ordinates from line O O, to points a on the
neutral axis. These latter ordinates to points a will hereafter
be designated as of the type y.

If

Skay) .. ....... (71)

.V =number of ordinates of type y.
y =length of individual ordinates from line O O, to
points a of neutral axis.
e, =length of mean ordinate.
then
21

_ZW
N

Since ka=y —e¢, . .
Z(kay)=2@-—e)y=20)—¢ 2@ ....(72
Substituting this value of ¥ (ka.y) in equation (71) we find
o _op S[Z () e X (y)]
Let=2H, Ec(1c+nls)
Solving this expression for H: we have
H. — E.. Let° e+ nl,
t 3 [2 (J’z) e, ) (y)] S e
After having obtained the value of H, as above we con-
struct, at point a of the section considered, a tangent T to
the neutral axis (hence perpendicular to the radial line of the
neutral axis drawn to point a) making this one side of a right
triangle a D E as shown in Fig. 30. The hypotenuse a E of
this right triangle a D E is then made equal and parallel to
the horizontal temperature thrust H,. Completing the right tri-
angle we then get D E, the normal component for the section.
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In triangle a D E,

H. = horizontal temperature thrust (constant for
the entire arch)

T. = tangential temperature component for section
considered.

N, =normal temperature component for section
considered.

In Fig. 30, line a E extended is perpendicular to R C the
center line of the arch. Also a D is perpendicular to the radial
line a R. Hence angle E a D = central anglea R C = ¢.

The tangential temperature thrust T can therefore be
found (s¢e Table IX) from the following relation:

c_
8

Fig. 30
cos ¢ =9£=E hence
a E Hg *
To=HtCOS ¢ .oiiini i (74)
Similarly .
4"Vt, = H; sin @ e e e e s st (75)

The bending moment M. due to changes in temperature is
from preceding developments given by
Mi=Hy(ka) ........c0 i (76)
Substituting the values Ty and M for T and M respec-
tively in equations (65) and (66), we obtain,
'Fiber Stress in Concrete S¢: Due to Change in Temperature

. Tt Mt 2
Set _-Ae T n A, + &D nA.x,‘ ........... 77)
Fiber Stress in Steel Sg¢ Due to Change in Temperature
. ' T', + M: X, :
See = (Ac A D ) (78)

A rise of ° in temperature increases the length of the
span of a free arch by L e # feet if L is in feet. Similarly a
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fall of #°'decreases the length of the span by the same amount.

If the abutments are stable, allowance should be made for this °
variation in length.

Fig. 31.

| -Oridlinartes of Tipera
_ s Tinrat |

Fig. 32.

In order to bring out the nature of the fiber stresses due
to variations in temperature we show in Fig. 31 the effects
produced at two typical points a, and a,, due to a fall in tem-
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perature, and similarly in Fig. 32 the effects produced by a
rise in temperature. The table which accompanies these two
figures explains itself. For both figures we have imagined that
the portion of the arch extending to the left has been removed."
We substitute for the action of this removed portion the single
- force H. acting along the closing line k k. For a fall of tem-
~perature, Fig. 31, the force H¢ acts toward the left, its effect
being of the nature of a rotation of each arch filament through
its corresponding point a on the neutral axis as a center. For
a rise in temperature, Fig. 32, H, acts toward the right pro-
ducing a complete reversal of effects.



~ CHAPTER IL.~
DESIGN OF A REINFORCED CONCRETE ARCH.

9. Loading.—Dead Load. Actual weight of material in
the structure. Computed on a basis of 150 lbs. per cu. ft. for
concrete and 120 lbs. per cu. ft. for backing above arch (ballast
or filling). Pavement, 150 lbs. per sq. ft. on a basis of 12 in.
in depth. Rails, 60 lbs. per lin. ft. of track. The ratio {1$§ =
%, consequently, for convenience in estimating the quantity
of material in the structure, we can draw a line of reduced
backing, Fig. 39, at a distance above the extrados at the.
crown equal to { of crown distance between surface of road-
way and extrados curve.” Then we: can multiply every cubic
foot of material below the line of reduced backing by the single
“constant 150 to find the total dead load. This gives somewhat
more than the actual load, for the actual line of reduced back-
ing is not a straight line but a curve approaching the extrados
curve at the springing line more than the straight line.

To find graphically the point of application of the load,
that is the center of gravity of a section included between two
vertical lines, E M and D B, Fig. 39, and the portion of the
reduced backing E D and the intrados curve M B; proceed as
follows:

On E M extended take E F =B D.

On D B extended take BA =E M.
Connect A and F. Bisect E M at X. Bisect BD at Y. Con-
nect X and Y. The point of intersection of X Y and*A F is
the center of gravity of the section which has been assumed,
without appreciable error, to.be a trapezoid.

Live Load. The assumptions for live load will depend

entirely upon the service for which the structure is intended.

Type A.—For bridges and subways carrying railroad or elec-
tric car traffic, the company for which the structure
is designed will specify the loads that- must be as-
sumed. The load on each track shall be assumed
to be distributed over a width equal to the distance

41
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from center to center of tracks. In the calculations
the greatest equivalent load per lineal foot that will
ever be sustained by the arch span with all tracks
loaded must be employed.

Type B.—For bridges and subways carrying highway traffic
the uniformly distributed live load shall be from
125 1bs. to 200.1bs. per sq. ft. of the roadway and
sidewalks, depending upon the conditions which must
be provided for in the particular design. A live load
of 200 1bs. per sq. ft. provides for a 15-ton steam
roller.

The following concentrated loads may be used:

(1) For city and suburban bridges, 15-ton steam roller
11 ft. between axles, 6 tons on forward wheel 4 ft. wide, and
4.5 tons on each of the two rear wheels 5 ft. between centers
and 20 ins. wide. )

(2) For country bridges 5 tons on four wheels 8 ft. be-
tween axles, and 6 ft. gage.

To elucidate the scheme for loading for Type A, suppose
that the loading adopted for a particular railroad bridge is
5,000 1bs. per lin. ft. of track distributed over 16% ft., together
with an excess at the head of the train of 50,000 lbs.

Since all the calculations consider merely the portion of
an arch and backing included between two vertical longitudinal
planes 1 ft. apart, we must find the number of pounds per
lineal foot for a width of 1 ft,i.e., 5000 + 168 = 300 1bs. per
lin. ft. for longitudinal arch rib, 1 ft. wide. For maximum or
nearly maximum bending moments this live load of 300 Ibs.
per lin. ft. is placed over one-half of the span, say the left half.
To obtain the live load concentration at the center of gravity
at any particular section we multiply its horizontal length by

- 300. The 50,000 1bs. excess at the head of the train mayv then
be assumed to be concentrated at points 10, 9 and 8. For a
rib 1 ft. wide the total amount of this excess load will be
50,000 + 16% = 3,000 lbs. If this be distributed equally at
points 10, 9 and 8, we have at each of these points an excess
loading of 1,000 Ibs. '

For more detailed information concerning methods of
loading, the reader is referred to ‘‘De Pontibus” by J. A. L.
Waddell.
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10. Proportioning of an Arch.—For proportioning arches
the following formulas are prescribed:
(a) Crown Thickness:

(F. F. Weld’s Formula.)
Let d =depth of arch at crown in inches.
L = the clear span in feet.
w =live load in pounds per square foot uniformly
. distributed.
p = weight of dead load above the crown of the arch
per square foot in pounds.

then, d= L +0.1L +0.005w + 0.0025p ......(79)
(D. B. Luten’s Formula.)
Let t = thickness of crown in inches.
S =span in feet.
" r =rise from springing to crown in feet.
F =fill over crown of extrados in feet.
L, =live load (uniform) in pounds per square foot.
L =moving load that will be concentrated on single
track or single roadway, over entire span in tons
of 2,000 lbs. n :
35 (r + 3F) LS Lu(S+57)
30007 — 5 '|30,0007 1507 ]" 4.(30)
Vse Greater of 74#cese.

then, t =

(b) Construction of Trial Arch.

Mr. Daniel B. Luten has devised a method for construct-
ing the extrados and intrados curves of an arch which is quite
satisfactory in many cases. It has the disadvantage, however,
that if the neutral axis is to be an arc of a circle, which is
very desirable, it may often happen that the distance from a
point on the neutral axis to the extrados curve may not equal
the distance fromi the same point to the intrados curve, the
distance being measured radially. The author suggests the
following miethod which he believes obviates this difficulty:

Having calculated the crown thickness by either or both
of the above formulas and having decided upon the thickness
b ¢ in some integral number of inches, lay off the distance on
F ¢ continued (see Fig. 33) where F ¢ is the rise of the intrados
curve,
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Construct the semi-ellipse S EecS, passing through
points S and ¢. For method of constructing an ellipse see,
Fig. 18, page 17.

On S S,, the line joining the springings, take

SV=4L
where L = length of span.

Erect a perpendicular at V to S S, until it intersects the
ellipse in point E. .

Draw line Sc¢. Bisect angle S ¢ F by line K ¢. Through
point E erect a perpendicular BK to line K¢. Through

\ﬁ,
Fig. 33.

points S and ¢ pass an arc of a circle, center at R, on line ¢ F
extended. (Line ¢ F is perpendicular to S S,). Along the line
B K there is int2rcepted the distance E D between the ellipse
and the arc just drawn. Bisect E D in point C’. Take on line
B K, the length C’A = A B =c¢ b the crown thickness. Bisect
cbata. Draw A P perpendicular to F c.
Let
P a=rmrand
2AP =] then
R — (ra)? + (12 + 4)
n — 2rn .......................
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where Rn = radius of neutral axis, and r. == rise of neutral axis.

From equation (81) it is seen that

2Rn V4R — B
2

With length R. as a radius and point R, as a center
describe an arc of a circle passing through points a and A.
Line A a is then the neutral axis.

Through points B and b pass an arc of a circle whose
radius R, may be found from equation (81) by substituting
the corresponding rise and span. Continue arc B b to point T
on line S F extended. From T draw a tangent T T’ which is
therefore perpendicular to T R.. This determines the extra-
dos curve.

Divide the distance A a along the neutral axis into four
equal parts finding points v, » and ». Through these points
draw radial lines to point R.. From the points v, # and r
take vv, =vv,;; wu,=uun;; and rr,=rr,, Measure all these
distances radially.

Find one or more arcs of mrcles passing through points
C, 73, %y, v, and C’. Proceed from line F b toward the springing.
In order that the.multi-centered curve shall not be distorted,
when an arc of different curvature is joined to another and
preceding arc their tangents must coincide at the point of
juncture. Consequently the radius of any succeeding arc, in
passing from crown to springing, must have its center on the
last and bounding radius of the preceding arc. Thus in Fig. 33,
point G, the center of arc S Z is on radial line G R, of. preced-
ing arc.

n =

When the springing is approached, continue the last arc’
indefinitely to X. On SF find a point G which will, with
point R,, locate line G R,, so that GS=GZ. With G as a
center draw arc of circle S Z becoming tangent to SW at S.
This determines the intrados curve.

11. Proportioning of Backing.—The following give the
amount of backing required:

Bridge of Type A.—In railroad brldges the fill or ballast
between the extrados curve of the arch and the bottom of the
ties should be at least 3 ft., and preferably 5 to 6 ft., depending
upon the nature of the service requirements.
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) Bridge of Type B.—In highway bridges carrying electric
cars and in country bridges the distance between the maxi-
mum surface elevation of roadway and the extrados curve at
‘the crown may be determined as follows:

If
t = thickness of crown

F = distance between maximum elevation of road-
way and extrados curve at crown, then
F=0.9t .. ... i (82)
This gives the amount of backing required.
12. Amount of Steel Reinforcement.—If
A¢ = area of concrete in cross-section of crown,

A, =area of steel in same units (square feet)
then
Ay shall not be less than 0.006 A,

A, shall not generally be greater than 0.02 A,
13. Properties of Concrete.—The coefficient of expan-
sion of concrete per degree Fahrenheit is, according to

Clark.. ..o 0.00000795
W.D.Pence...................... ... 0.00000540
Rae & Dougherty (average)............. 0.00000608

3)0.00001943

Average coefficient of expansion concrete 0.00000648

The modulus of elasticity of burnt clay concrete = 1,500,-
000 1bs.

The modulus of elasticity of all other concrete = 2,000,-
000 Ilbs.

The safe adhesion to iron or steel =60 to 100 lbs. per sq.
in.

14. Properties of Steel.—'he coefficient of expansion of
steel per degree Fahrenheit is, according to

Kent......... 0.00000648 to 0.00000686; average = 0.00000667
U. S. Gov't...0.00000617 to 0.00000676; average = 0.00000646

2)0.00001313
Average coefficient of expansion of steel........ = 0.00000656

Ultimate strength, 58,000 to 66,000 Ibs. per sq. in.

Elastic limit, 55 per cent. of the ultimate strength.

Modulus of elasticity = 30,000,000.

Safe working stress using safety factor of 4 = 15,000 Ibs.
per sq. in.
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Safe working stress using safety factor of 5= 12,000 lbs.
per sq. in. )

Safe working stress using safety factor of 6 = 10,000 lbs.
per sq. in.

15. Conditions of Calculations.—Modulus of elasticity of
concrete, 1,500,000 lbs., and modulus of elasticity of steel,
30,000,000 Ibs. ,

Maximum compression allowed on concrete in arches of
Type A, exclusive of temperature stresses, 400 Ibs. per sq. in.;
including stresses due to 40°F. variation in temperature, 500
Ibs. per sq. in. Slabs, girders, beams, floors, walls and posts
in subways and girder bridges shall have a safety factor of 5
in one month.

Maximum compression allowed on concrete in arches of
Type B, exclusive of temperature stresses, 500 lbs. per sq. in.;
including stresses due to 40°F. variation in temperature, 600
lbs. per sq.in. Slabs, girders, beams, floors, walls and posts
in subways and girder bridges shall have a safety factor of
4 in one month. ' '

Maximum tension allowed on concrete in arches, exclusive
of temperature stresses, 50 'bs. per sq. in. (Best practice is to
allow no tension for concrete.) In arches, including stresses
due to 40°F. variation in temperature, 75 lbs. per sq.in. In
slabs, girders, beams, floors, walls and posts, 0 lbs. per sq. in.

Maximum shear allowed on concrete, 75 lbs. per sq. in.

Maximum stress allowed on steel in arches:

Safe working stress, safety factor 4 = 15,000 Ibs. per sq. in.

Safe working stress, safety factor 5 = 12,000 Ibs. per sq. in.

Safe working stress, safety factor 6 = 10 000 Ibs. per sq. in.

This assumes an average ultimate strength of 60,000 lbs.

In a true combination design of steel and concrete fs + fe
- =20 for values of E4 and E. assumed, hence the stress on the
steel should not exceed 20 f.. Hence if the maximum
stress for concrete (éxclusive of temperature) is 500 lbs. per
sq. in., then the maximum allowable stress on the steel is
10,000 1bs. per sq. in., giving a safety factor of 6.

In slabs, girders, beams, floors, walls, subjected to trans-
verse stress, the steel should be assumed to take the entire
tensile stress without aid from the concrete, and shall have an
area sufficient to equal the compressive strength of concrete
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composed of 1 part Portland cement, 3 parts sand and 6 parts
of broken stone, of the age of six months. ,

In walls and posts subjected to compression only, no
allowance shall be made for the strength of the imbedded
steel, which is to be used merely as a precaution against cracks
due to shrinkage or changes in temperature.

16. Proportioning of Concrete in Bridge Members.
The proportions shall be as follows:

Cement. Sand. Stone.

Arches........... ... ... ... . ... 1 2 4
Spandrel walls. . ................. 1 3 5
Spandrel walls, preferably . ... ..... 1 2 4
Piers and abutments ...... e 1 3 6
Piers and abutments, preferably. ... 1 3 5
Sidewalks and pavement . . ....... o1 3 5
Railings and balustrades . .. ...... | 2 4
Wing and retaining walls....... ... 1 3 6
Wing and retaining walls, preferably 1 3 5

" 17. Design of an Arch Ring for a Highway Bridge.—
Data: Full-barrel arch ring; Clear span of intrados curve = 70 ft.;
rise of intrados curve = 15 ft.; Thickness at crown of arch =
20 ins. = 1.66 ft.; live load = 200 lbs. per sq. ft. on roadway
and sidewalk; dead load =150 Ibs. per cu. ft. for concrete;
dead load = 120 lbs. per cu. ft. for backing.

Order of Procedure.—(a) Construct trial arch. (Method of
Art. 10). Mark lengths of all radii on drawing. Find, by
scaling, rise of neutral axis. These quantities will be
needed later in the work.
(b) Proportion arch so that
S
Io +nl,
(¢) Location of points a and loads P.
(d) Construction of equilibrium polygon. (1) Graphical method.
(2) Mathematical method.
(¢) Determination of position of true closing line of equili-
brium polygon. Method I. Method II. _
(f) Determination of position of true closing line of neutral
axis regarded as an equilibrium polygon. Conditional
equations pertaining to true closing line of neutral axis.

= constant. (See Art. 3.)
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(@) 2 (M) =0 hence 2 (ka) =0
®) 2 (M x)=0 hence X (ka.x) =0
(g) Development of pressure curve of arch by superposition of
equilibrium polygon on arch.
(1) Conditional equation (30), Art. 3, must be satisfied,
Z (M y)=0. (2) Determination of ,true pole-distance H.
(3) Construction of ‘pressure curve.
We will now consider, in detail, the individual steps in
the ‘“Order of Procedure:” :
(a) Construct Trial Arch. (1) Determine first the thick-
ness at the crown by both Weld’s and Luten’s formulas.

35 ‘
Fig. 34. Fig. 35.

Adopt an integral number of inches for crown thickness.
Judgment and experience may often dictate a modification in
thickness obtained by the use of these formulas. (2) Construct
trial arch by method given in Art. 10 and shown by Figs.33,
34 and 38. Place such data as lengths of all radii, rise of in-
trados and neutral axis, value of subtended angles, etc., on the
drawing. Endeavor to get as large a rise for the neutral axis
as the conditions will possibly allow.

(b) Proportion Arch so that —S— = constant. The reason

Io+nl,

ior this step is set forth in Art. 3. Since a trial arch [by step (a)}
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has been adopted, the proportioning of the arch reduces to a
mere subdivision of the neutral axis (Fig. 40) into lengths S,,
Ss Speiiiiinnn S, measured along the neutral axis so that
' S, S, S,
Te+nly Ie+nls Ia+uly " = Constant.
By equation (64), Art. 7
Ie +mls=15D% + n Agx,?

’ s\ 3
but from Fig. 28 x, = 92—; (%,)% = (%)

,
D' =D — 2 G, hence %a‘}(D—zc)_ <§12..G)
D\* (D !
3)"- (-9
Since n = 20, we have

. D 2
Ie+nI|‘ﬁDa+20A| (‘é—— )

Therefore

Hence
S

3 D

To facilitate this work, which is somewhat laborious, the
depth of the arch ring (in feet) for every foot of length of one-
half of the arch from springing line to the crown may be tabu-
lated as in Table II.

As a safeguard against obtaining too many divisions S it
is advisable that the following equation involving divisions S,
and S,, be solved for S,;;

Sa _ S,

D2 2 D 3
Tlg‘ Dwa + 20 Ag (5’ bad G) ']’l' D":' + 20 44. < G)

g==constant .......... (82)

2
Substitute in the above equation
Sy =13 ft. (Trial assumption.)

Find depth D,, of arch at mid-point of S,,, i. e., at a point
6.5 ft. from springing. In Table II. find depth at 6 ft. =3.5
ft. and at 7 ft. = 3.4 ft. By interpolation depth at 6.5 ft. =
3.45 ft. = D,, for S,,.

For S,,, D,; =20 ins. =1.66 ft. This is not strictly true
for D,, is to be measured at mid-point of S,;, but S,, being an
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unknown quantity this will be impossible. Yet the change of
curvature will be so slight for a short division like S,, at the
crown that the error is negligible.

For the solution of the above equation between S,, and
S,1» there remains the evaluation of As.

Suppose it had been decided to use § in. corrugated bars
for reinforcement. Area of one § in. bar = 0.77 sq. in. =
0.00534 sq. ft.

One steel rib is composed of two bars in the same verti-
cal longitudinal plane, one at the extrados and the other at
the intrados. Let :

A = cross sectional area in square feet of two bars
constituting a rib

b = distance in feet between centers of ribs

Ay=area of steel included between two vertical
longitudinal planes 1 ft. apart

Then

4‘{. == :;'
Now A =2 (0.00534) = 0.01068 sq. ft.

Suppose the total width of the arch is 58 ft., then the area
of a cross-section at the crown where the depth is 20 ins. =
1.66 ft. is 96.28 sq. ft.

Let us assume as a trial amount of steel, 1 per cent of the
cross-sectional area at the crown, hence

Total assumed steel area .4+ = 0.01 x 96.28 = 0.9628 sq. ft.
09628 _ oo
0.01068

Distance in feet between centers of ribs = total width of

arch + by number of ribs,

Hence b — g—g ~0.65. = 4 ft.

(Reduce to nearest integral number of inches, i. e., 8 ins.

when dimension is placed on drawing.)

This gives us the disposition of reinforcement shown in
Fig. 29,

Hence

Number of ribs =A, + A =

—— =0.016 (Constant for this arch.)
Since n = 20, then n A, = 20 (0.016) = 0.32 (Constant.)
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The next thing which must be determined is the distance
from the center of gravity of a steel bar to the extreme outer
fiber of the concrete.

From equations (60), (61) and succeeding, it is evident
that the maximum fiber stresses are partially dependent upon
the value of I, and since I, (the moment of inertia of the steel)
appears in the denominator it will be advantageous to have
its value as great as possible consistent with practical require-
ments. ‘

Suppose we adopt a minimum distance of 2 ins. between
outermost fiber of concrete to nearest fiber of steel.

Let us then adopt in this particular problem a distance
G of 3 ins. =0.25 ft. between center of gravity of steel and
outermost fiber of concrete. This gives 2% ins. between outer-
most fibers of concrete and nearest fiber of steel, as shown in
Fig. 29.

The above equations may now be put in the form

S — Su
Dax 2 Du 3

1¢ Dy’ + 0.32 (2— - 0.25) ¢ D%+ 0.32 <§" — 0.25)

In the above all the quantities except S,, are known and
the equation can be solved for S,,. Any value of S,  which
makes S,, less than 0.75 ft. should generally be discarded.

When S,, has been so determined that S,, is not too small,
then trial values for S, S, etc., must be assumed and the
corresponding depths D of the arch at their respective mid-

points must be found and substituted in the general expression
S

3
Je D* + 0.32 (29 - 0.25>

until the values found for all the assumed sections S give the
same constant quantity.

If the arch is symmetrical about the crown the work need
only be carried out for one-half the arch. Ultimately the sum
of the S values for one-half of the arch must equal one-half
of the length of the neutral axis if the arch is symmetrical.
Hence

Sap + S+ S ... +Sy; =4 length of neutral axis..(84)

Method of Finding Length of Neutral Axis.—Find the rise

of the neutral axis by scaling from large diagram, Fig. 39.
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Let 74 = rise neutral axis =9 ft.
| = span neutral axis = 70 ft.
Then in Fig. 35
n 9 B
tan a = 3073 0.2571
From a table of natural tangents we find nearest angle to
this value to be 14° 25’, therefore
angle a = 14° 25’ = 14.42°
The entire angle subtending the neutral axis is equal to
4a=>5740.
Using formula of equation (81) we find the radius of the
neutral axis Rn = 72.55 ft.

Let
N = length neutral axis (length of arc C A E) (Fig. 35)
C =length circumference whose radius is Ra.
then
- N=23 c_23,.R
~ 360 ‘%60 T
Hence
N = f,) B Rn ot (85)

For Run=172.55, a=1442°, N =73.04 ft.

or % N =36.52 ft.

The above method gives the most correct subdivision of
the neutral axis of the arch, but on account of the labor in-
volved it is rarely resorted to; the shorter method of making

~

s constant, as explained in Art. 3, being generally used. This
is sufficiently accurate for most purposes. The work in detail
is shown in Tables I and II. Five trials were necessary before
: proper subdivision of the neutral axis was eﬁected In this
case _D_-" =0.334.

Not less than twenty subdivisions of the neutral axis
should be used. In Table I., by a slight readjustment of the
lengths in the fourth trial, the sum was made = 4 length of the
neutral axis, i. e., = 36.52 ft.

(¢) Location of Points a and Loads P—(l) Location of
Points a. Beginning at one of the springing lines, Fig. 40,
(say at the left) bisect in succession the lengths Sa, Sw, Sis,
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TABLE II.
Distance Along ' .| . Distance Along
Nguiral A From| Depth ot orch Ring | Netral AxiaFrom | Dept o frch Rine
in Peet. i in Feet. )
1 ; 4.5 19 2.3
2 4.1 20 2.25
3 3.9 21 2.2
4 3.7 22 2.15
5 3.6 23 2.1
6 3.5 24 2.05
7 3.4 25 2.00
8 3.3 26 1.95
9 3.2 27 1.90
10 3.1 28 1.85
11 3.0 29 1.82
12 2.9 30 ' 1.79
13 2.8 31 1.76
14 2.7 32 1.74
15 2.6 33 1.72
16 2.5 34 . 1.70
17 2.45 35 | 1.68
18 ‘ 2.4 36 l 1.66
Depth of Arch
-Point, | 8t M?;i‘- dint of S D? S DS—3= c
1 3.43 40.35 13.51 0.334
2 2.49 15.44 5.17 0.334
3 2.23 11.09 3.7 0.334
4 2.06 8.74 2.02 0.334
5 1.93 7.19 2.40 0.334
6 1.82 6.03 2.02 0.334
7 1.77 5.55 1.86 0.334
8 1.73 5.18 1.73 0.334
9 1.70 4.91 1.64 0.334
10 1.67 4.66 1.56 0.334
Su...... S3, S3 and S, along the neutral axis. Label the re-
spective mid-points of the section ax, aw, ais, ai7....... ay, a,,
and a,.
Through points ay....... a, draw vertical lines as in

Figs. 39 and 40. Since the arch is assumed symmetrical, the
center line A B (Fig. 39) bisects the length a, a,,. Using these
two parts as independent s:ctions we have between the vertical
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lines from a, to a,, twenty sections leaving a portion of the
arch from a,, to the left springing and a similar portion from
a, to the right springing. It should be remarked that the
points @y, . . ... ... .. a, are the points at which the depths D,
given in Table II., were measured for the corresponding sec-
tions S. If then we use the vertical lines through the points a
as boundary lines for our load sections, the radial depth d at
the boundary of each section will satisfy the condition that

%—5 =a constant. )
A load section will then consist of the volume inclosed
between two longitudinal vertical planes 1 ft. apart and the
two transverse vertical planes which pass through any two ad-
joining points a; and between the plane'of the reduced back-
ing and the suface of the intrados, i. e., the soffit. This is true
in every case except at the crown where the transverse vertical
plane through the center produces two sections instead of one,
i. e., the section from the center line to a,, and the section
from the center line to a,,. By this means, as will immediately
be apparent, we can locate the load on each side and near the
center line and yet avoid the undesirable location of a load at
the center line. )

(2) Location of Loads P.—We will now concentrate the
weight included in each load section at the center of gravity
of the corresponding section thus obtaining the location of the
load or force lines P.

As an illustration of the mrethod employed, take the load
section M B D E (Fig. 39). Regard this section as a trape-
zoid, i. e., regard line M B as a straight line and proceed
as in Art. 9. )

If in the trapezoid M B D E,

a =FE M (the long side)
b = D B (the short side)
¢ = altitude of the trapezoid (ED in M BDE)

Then.
Area trapezoid =% (a + b) c.

Since the transverse thickness of all the load sections is 1 ft.,
Volume trapezoid =% (a + b) c.

If
W = dead load per load section.

W, =live load per load section.
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then
Wea=} (a+0D)c(150) hence
Weal5@+b)c coove i, (86)

The live load distributed on any load section as at E D,
Fig. 39, must equal the area of a rectangle having E D for one
side and 1 ft. for the other (for the longitudinal vertical planes
are 1 ft. apart) multiplied by the live load (uniform) assumed
per square foot, hence if w, is the live load in pounds per square
foot,

Wi=w,.c ..o (87

For the present case where w, = 200 Ibs. per sq. ft. W, =
200 c.

In Table III the entire work is shown in detail. In column
4 if 75 is used instead of 150 then (@ + b) must be used instead
of 4 (@ + b) in column 1.

To produce maximum moments we concentrate the live
. load on one-half of the arch—the left half in this case.

In the last column of Table III we give the total summa-
tion for live load and dead load.

As we approach the crown the trapezoidal load sections
approach the rectangular form and, therefore, it will be close
enough to locate the loads P for such sections at the mid-points
of ¢, the altitudes of the sections.

The location of the load or force lines P as well as their
magnitudes -having been determined their effects at noints a,
the mid-points of the sections S must be determined.

The development of the entire theory depends upon this
fact that the effects are to v3 ascertained for these mid-points a
(see Art.1 and the preceding chapter on theory) hence the
error must not be made of making calculations for points along
the load and force lines.

To the left of point a,, and to the right of a, we have load
sections whose force lines P E, at the left and right respec-
tively, should be determined as above.

(d) Construction of Equilibrium polygon.—(1) Graphical
method. (2) Mathematical method.

(1) We will first consider the purely graphical method.
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* (@) Assume trial horizontal thrust H,, (Fig. 40) to act
between two loads near the crown, say P,, and P,,. This neces-
sitates that the ray H, in the ray diagram must be a horizontal
line O’D perpendicular to the load line A C at point D where
load P;, ends and load P,, begins. Point D gives us a starting
point on the load line A C from which to lay off the loads P
in succession to some arbitrarily selected scale of a certain
number of pounds to the inch; in this instance, 5,000 lbs. =
1 in.

The loads for the portion of the arch to the right must
be scaled on 1 C toward A (above O’ D) and those to the left,
below O’ D.

Lay off, to scale, load P,, =440 lbs. above O’ D, P, =
300 lbs., also above 0’ D, etc., Py = 10,800 lbs., and P E at the
right = 10,530 1bs.

Similarly, lay off to scale, load P,, =960 lbs. below O’ D
P, =1,120 lbs., etc.; P,, == 12,600 lbs., and P E at the left =
11,730 lbs.

(b) Assume’a trial pole-distance (trial horizontal thrust H,)
equal to about 4 sum total of all the loads, i. e., § of 73,546,
or in round numbers 35,000 Ibs. By using about one-half the
value of the total load for trial H, the angle at O’ becomes
nearly a right angle which is desirable. Lay off on line D O’
a length equal to 35,000 lbs. to the scale of 5,000 Ibs. per inch,
nence make D O’ =7 ins. thus determining the position of the
trial pole O’.

In the equilibrium polygon the line of the polygon which is
drawn between the loads P,, and P,, must be parallel to the ray of
the ray diagram which is drawn to point D where load P,, ends
and P,, begins; therefore the polygon line between P,, and P,
must be ‘parallel to ray O’ D or to the trial horizontal line H,.
Hence it follows that this side of the polygon, i. e., between
forces P,, and P,, must be a horizontal line. Draw therefore
between P;; and P,, the line k& & which we extend to both sides
as in Fig. 40. Where & h intersects load line P,, begin another
side of the polvgon. Make it parallei to the ray drawn from
O’ to the point where P,, ends and P,, begins on the load line
A C of the ray diagram. Where this last found side of the
polygon intersects P,; begin another side and make it parallel
to the ray which passes to the point of junction of P, and
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P,, of the ray diagram. Proceed in this way for all the sides
of the polygon until P E at the left is reached where poly-
gon side B’ C must be parallel to the outside ray ¢/ C. Simi-
larly for the right hand side of the polygon.

The equilibrium polygon may be drawn in the reverse
order. Beginning at point C of the load line A C, let the out-
side ray C (¥ itself be coincident with the side of the polygon
thus obtaining C B’. From B’ draw B’ F parallel to ray B O’
ctc., continuing until the load line P,, is reached when the side
of the polygon between P,, and P,, is drawn horizontallyash h.

(2) Mathematical method.—In Figs. 26 and 27, page 33, we
have an exaggerated case of the equilibrium polygon of Fig.
40. Line h, hy is a portion of the horizontal line & h of Fig.
40, and it is parallel to 0’ D of Fig. 26.

Also :

hy, rgis parallel to ray O' K
7.4 7y, is parallel to ray O' M
7y, rys is parallel to ray O’ N

Triangle h,, I, 7,5 is similar to triangle O’ D K

Triangle ry 2, ry, is similar to triangle 0’ D M

Triangle r,, 2, r,s is similar to triangle O’ D N

Hence since O’ D = H, = 35,000

D K =P, =960
DM=DK +KM=P,, + P, =960 + 1120
== 2080 4
DN=DK+KM+MN =P, + Py + P,
—= 9060 + 1120 + 1215 = 3295
we obtain the following relations:
PyuiHy=hyry hyghy,

Py, (hg hy)
hw Iy = H

1
(Pnz + Pw) Hy=zuru:hy hu;
_ (Pn + Pla) (hu hls)

214 Ty = H
1

(Pu+Pu+Pu) .Hi=zuri 1hus_hu;
(P13+Pis+Py) (his hgg)

Zig s =
Let
Pra=his1ys
Pu="0"s + 24T
15 = Pr + 25 Tas
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then

gy PiaCruali) _ 960 (165) _ ;0
H, 35,000
(P, + P,y (hy, hy) 2080(1.75)

pllnplx + 12 !1_}1 14 —13 =l0.045 + 35,000 =
0.045 + 0.104 = 0.149

Py, + Py + Py (hyg by 3295 (1.90)
p15=P14+ Hl 0.149 +W

0.149 + 0.179 = 0.328
Therefore for any value in general as pn, after the first we

have the following general equation:

Pn=Pn1 + B+ . H + Poi) (hnho) ... (88)
1

The work may conveniently be arranged in the form of a
table, as shown below, for the above calculated points:

Load line. zr 4
13 0.045 0.045
14 0.104 0.149
15 0.179 0.328

Thus p,, is obtained by adding to p,, the 2 r value for the
load line 14; and p,; is similarly obtained by adding to p,, the
z r values for load line 15, etc., indefinitely.

Since the lengths hy, b3, g h,,, etc., are in feet the values
P D1 €tc., are in feet measured to the same scale. An engi-
neer’s scale is preferable for this work as it reads in tenths.

From the line & & on the proper load line lay off the dis-
tances p,,, p,,, €tc., calculated as above. -

This mathematical method offers a splendid check on the
purely graphical method given above.

(¢) Determination of Position of True Closing Line of
Equilibrium Polygon.—

(1) Conditional Equations Pertaining to True Closing
Line.
(@ Z(M)=0 hence X (vm) =2 (bv)
) = (M x) =0. Resultant of X (bv) must equal
and coincide with resultant of X (vm)
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(2) Determination of Magnitude 6f Resultant R.

(3) Determination of Location of Resultant R.

(4) Location of True Closing Line to Equilibrium Poly-
gon so that the sum of its ordinates to v, v, =R,
acting 7 feet to left of Center Line. (a) Location and
Magnitude of Trial T. (b) Location and Magni-
tude of Trial T,. (c¢) Determination of Position
of True Closing Line. Method I. Method II.

(1) With the equilibrium polygon drawn by the above
methods extend wvertical lines from a,, ay, ..... a, on the
neutral axis of the arch until they intersect the polygon in
points by, by, ..... b, and the line w,, v, (which should be
drawn) in points vy, vy, ... .. v,.

Frcm Art. 6, we have seen that the moment M. about -

any point ¢ of the equilibrium polygon is ‘
M¢=H (kc) where k ¢ is the distance from point ¢
to the closing line k k. Furthermore by equa-
tion (46),
2 (M) =0,and ¥ (Mcx) =0.

Y (M) =0, corresponds to Condition 1, equation (29).
3 (M x) =0, corresponds to Condition 3, equation (31).

Since the expression M. = H .k ¢ is one in which H is con-
stant, it follows that M. must be proportional to k ¢, i. e., to the
distance from the points ¢ on the equilibrium polygon to the
closing line k k. If, then, £ (M.) is to equal 0, the sum of the
ordinates measured above and below the closing line k k& must
equal O for H is constant. ‘

In the equilibrium polygon, Fig. 40, let us assume the
location of a trial closing line # .

If this were the true closing line m m, of the polygon, the alge-
braic sum of the ordinates of type bm, i.e., —v,,m —b,ym,.
..... +bymy +bymy, ... —bym,—v, m must =0. Ordi-
nates measured above m m; to points b of the polygon being
regarded as positive and ordinates measured below m m, being
regarded as negative.

This may be expressed mathematically by

Zl+bm) =X (—bm) + ZT(+bm)=0
or
—Z(+bm) + Z(—=bm =0 ................. (89)
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The ordinates of the equilibrium polygon from line v, v,
to points b are of the type bv. Beginning, then, with the
identity :

YBv)y=X (v
let us add to the left hand member of this ideatity the value
given in equation (89). This*will in no way etfect the value of
the identity for the left hand member of equation (89) = 0.
Hence we obtain
YGv)—Z(+bm) + Z(—bm) =23 (bv).

" But the left hand member in the last result constitutes
the quadrilateral v,, m m, v,, for we have subtracted from the
bv ordinates of the equilibrium polygon the positive values
of b m (those above the line m m,) and we have added the nega-
tive values of b m (those below the line m m,). Therefore

Swm=20bv) ..o (90)

This makes ¥ (M.) =0 and Condition 1, equation (29)
is satisfied.

In other words the ordinates of the quadrilateral v,y m m, v,
= the ordinates of the equilibrium polygon v, by,

Equation (90) may be written

2(bv)—2 (vm)=0.
But since £ (+ bm) =0 this can be given the form
T —Z(wm=Z(+bm) ........... ... 91)

That is, if we subtract from the ordinates b v of the equili-
brium polygon the ordinates v m of the quadrilateral we have
left the ordinates of the type X bm. This follows the fact that

LZ0v)—Z(+bm) + Z(—bm) =3 (vm)
. Subtracting each of these members from the correspond-
ing members of the identity X (bv) = X (b v) we obtain
TGy —[Z@Gv)—Z(+bm) + T (—bm)]=23 (bv)
— 2 (vm)
Reducing this into the form
+Z(+bm) =2 (=bm)=Z (b) — 2 (vm)
it is evident at cnce that .
Z@Ebm=Z (b)) —Z (vm)=C
which is equation (91) above.

Now since £ (M. x) must = 0, if we introduce the value
x throughout every term of the prcceding expression we still
have an equation, hence
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Zbm.x) =T (bv.x) —Z (vm.x)=0

That is,

Thv.x)=2(@Wm.x)............... SN (92)

If the ordinates b v and v m are regarded as forces and the
lengths x as the lever arms meacured from the abutment of
.the arch then the sums of their moments must be equal.

2 (b v) must = the resultant of £ (vm) for
(ko) =2 (vm).
It must therefore follow that the
Resultant of X (b v) = Resultant of T (vm) .. ... (93)

This is evident since X (bv) = X (v m).

Furthermore the resultant of X (bv) must coincide in
position with the resultant of X (vm) because the ordinates
" regarded as forces are located along the same verticals and
consequently must have the same length of lever arms about
the abutment for any particular vertical selected. X (M. x)
will then =0 and Condition 3, equation (31), will be satisfied.

We may state the above as follows:

(a) To satisfy Condition (1) that ¥ (M) =0, it is neces-
sary that X (vm) = Z (b v).

() To satisfy Condition (3) that X (M x) =0, the re-
sultant of ¥ (b v) must coincide with the resultant
of X (yvm).

(2) Determination of Magnitude of Resultant R. Let R be
the resultant of the b v ordinates regarded as forces, then R
must equal their sumy hence

) R=ZGo)=S(@m) ......covovviviuin... 94)

The sum of the bv ordinates may be found by scaling
from the diagram, using the scale of distance adopted for the
drawing. It is conveniently found also by marking off the bv
lengths in succession on a long strip of paper and scaling the
total lengths for them all.

In Table IV, columns 3 and 4, the values of the ordinates
v b are given and their sum X (bv) = R = 137.10.

The resultant R = 137.10 must act to the left of the center
line for the live load is distributed over the left half, hence
inaking the loading for the left side greater than for the right
side. The reverse will be true if the live load acts on the right
half of the arch.
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(3) Determination of Location of Resultant R.—Let us
now take moments about the center line of the ordinates b v
regarded as forces. The lever arm for v, b, will equal the
lever arm for v, b;; let it be designated by z,. The moments
will have opposite signs being on opposite sides of the center
line. We obtain for these two forces:

(v byo) 3, — (v, b,) 3, =0
since v, by =0 =19, b,.

Similarly for the symmetrically located pair, veb,, v,b,

having lever arms each equal to z,” we obtain,
(V39 byo) 2, — (v, b,) 2, = 12.03.

In the same manner the other terms may be obtained, as
shown in detail in Table IV.

Taking the sum of all these terms we obtain the sum
total of all the moments of all the vb ordinates about the
center line. Let this sum total of moments v b be designated
as 2 (vb.z) then

./

’

4 4
4 W

658
Ao B r‘qf ”%1 fetsrapels
14V =2
N
i R

M
Fig. 36
Z@Wb.2)=R.7r...couiiiiiiiiiiiininnn.. (95)
and
_ Z(vb.2) (96)

where r is the distance from the center line that the resultant
R acts.

But since I (v b . 2) =45.18 (by Table IV),
hence S (wh _) 45.18

vb.z . :
=T"RrR  ~mrio- 3%

Therefore the resultant R acts 0.329 ft. to the left of the
center line. See Fig. 36.

(4) Location of True Closing Line to Equilibrium Polygon
so that Sum of Its Ordinates to v,, v, = R, acting 7 feet to Left
of Center Line.
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(@) Location and Magnitude of Trial T.

(b) Location and Magnitude of Trial T,.

(¢) Determination of Position of True Closing Line.

Method I. Method II.

(a) Having drawn the trial closing line n #, for the equili-
brium polygon draw the straight line # v, dividing the quadri-
lateral v,, # n, v, into the two triangles v,, # v, and n v;n,.

The lengths v,, # and v, n, are arbitrarily chosen.

Let,

Resultant of ordinates of triangle v,, # v, = Trial T.
Resultant of ordinates of triangle n v, #, == Trial T,.
Resultant of ordinates of quadrilateral v,y ##n, v, =R,

It is evident from Fig. 40 and also from Fig. 36, that .

Sum of ordinates quadrilateral v, ##,v, =sum of ordi-
nates of triangle v, # v, + sum of ordinates of triangle n v, n,.

Hence

Ri=Trial T +Trial T, .................... 97

The ordinates of the triangle v,, n v, are of the type vd.
The resultant of these ordinates treated as forces == Trial T

Hence

2dy=Trial T .......ccciviiiiiriannnnn. (98)

By Table V,

X (vd) =69.55=Trial T.

We can locate the position of Trial T by the same process
as was used for the location of R.

Hence taking moments about the center line of the ordi-
nates v d of triangle v,, # v, and using the same lever arms z as
for R we obtain,

T (vd.z) = 44414

As the sum of the vd ordinates of triangle v,y # v, to the
left of the center line is greater than the sum to the right,
Trial T must act to the left of the center line,

Let t = distance that Trial T acts to left of center line, then

2@d.2)=Trial T.¢t ..c..coovevveeenon. .. (99)
hence
_ X (vd.z)
Trigl T cccrrrrrrrr e (100)
or
" 444.14

6055 — ?,.%8 See Table V.

@
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(b) The location and magnitude of Trial T, may be obtained
in a similar manner.

The ordinates of triangl= # v, n, are of the type nd.

As above, '

and

, _Z(nd.2)
F o Sl Ty oot (102)

where ¢ is the distance that T, acts from the center line.
We now wish to prove that
t=t.

Suppese in the triangle # v, #n, we move the point #, to any
other point m, along the vertical line v, n,.

We shall then prove:

Ist. That the changing of the position of n, along the verti-
cal through n, in the iriangle n v, n, does not change the distance ¢
that the resubtant acts from the center line; that is, that ' is a
constant.

Let us now consider ‘the triangle # v, n, and the imagin-
ary triangle » v, m, whose side nm, is not shown, having the
common vertex #. The ordinates of the triangle n v, n, are
of the type #d, while the ordinates of the triangle »n v, m,
are of the type m d.

By equation (102)

Egnd.z)=t,

Trial T,
In triangle # v, m, a similar relation holds;
Z(md.z)
Trial To. = B e e (103)

where Trial Trn = the resultant of the forces of triangle n v, m,
and In is the distance that it acts from the center line.
It is evident from the triangle that,
Ordinates of Type md

Ordinates of Type n d

"Hence any m d =S times the corresponding » d
md=S (nd) (105)

Substituting this last expression in equation (103);
Ymd.z) XSmd.z) SXMmd.:z

S(md) ~ ESnd ~ SZI®d

Ymd.2)=Triadl T;.¥ .......ccovvvvean.. (101)

=g constant =S ...... (l()—l)'

A
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for th: constant S can be placed outsxde the summation sign,
and eliminating S, we have

I(md.z) Z(nd.s

T (md) =73 (md) Tttt (106)
from which it follows at once that
A e (107)

Hence for any position of #, as at m, the value # is a con-

stant.
. 2nd. It remains to show that #’ =¢ where 7 is the distance
that the resultant of triangle v,, # v, acts from the center line.
Suppose that #, is moved to a point N making v, N ==
vy n.  This will make triangle #» v, N equal to triangle v, # v,,
The corresponding ordinates become equal; and the sum of
the ordinates of the two triangles consequently become equal.
Therefore the resultant Trial T of v, # v, is equal to the
resultant Trial Ty of n v, N, Hence
X2(@wd.2)=32(Nd.2)=Trial T.t
and X (N d) acts ¢ units from the center line,
But in the 1st proof we have shown that no matter where
N (or »n,) may be located on », v, the resultant acts at a con-
stant distance # from the center line.
By the 2d proof we have shown that in the particular

“triangle # v; N the resultant acts # units from the center line.

Hence ¢t must be the value of the constant distance for any
and all triangles whatever like n v, #,, n v, N and # v, m, hav-
ing a vertex at #. Therefore,
Pomtm=t . 0o iiiiieeiinnnenennnn. (108)
By a similar line of reasoning for triangle v,,n v, if # is
moved to any position whatever, as m, along line v,,# then
although the value of the resultant Trial T is changed in magni-
tude yet its location at a distance ¢ from the center line remains
unchanged and ¢ is a constant.
If we suppose, therefore, that the true position of # is at
m and the true position of #, is at m; we do not in any way
change the location of the new resultants, True T and True T,

thus produced, as compared with the position of the old re-.

sultants Trial T and Ttial T,.

Therefore if m m, is the true closing line of the equilibrium
polygon the resultant True T of the triangle v,, m v, as well as
the resultant True T, of the triangle m v, m, must each act ¢
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units from the center line. Also the resultant R of the quad-
rilateral v,,m m, v, is given by the expression
R=TrueT + True T,.
In our present problem
t=6.38

(¢c) Method I. (Determination of position of True Closing
Line.)

In Fig. 37, let point » of triangle v, # v; be a point on the
trial closing line and let point m of triangle v,y m v, be on the
true closing line, then

Trial T = X (ordinaltes triangle v,, n v,)
True T = X (ordinates triangle v,, m v,)

™

1 % [ v ¥
. Fig. 37.
It is clear that

Un? _Un G Vo dw Y dw _ % _%d_uld
Up # UpDy Dy v Dy " vwDy vwD, v D,
By a theorem in proportion it follows that
Up M _ Uy oy + U Qo+ Vs dig + ... +vdy + v, d, +1, dy
Uy B Uy Dy + Vg Dy + g Dyg + ... + 0y Dy+ v, D, + v, Dy
2 (ordinates triangle v, m v,) (109)
X (ordinates triangle vy n v,) "7
hence T T
Uy M rue
, T B S Trigl T "ttt (110)
therefore
v”m=%—§-.vmn .............. e (111)

If, in a like manner, m, of triangle # v, m, is a point on the
true closing line m m, (Fig. 40) then
True T,
Trial T,
where True T, is the sum of the ordinates of triangle # v, m,,
that is, their resultant.

Uy My =

Y
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We must now determine the value of True T and True T,
In Fig. 36 True T will act along the same ordinate that
Trial T does, and True T, will act along the same ordinate
that Trial T, does. This has been shown above.
~ Tt should be recalled that
‘ R="True T + True T, = E (the equilibrant) . ..(113)
If we take moments about the ordinate of Trial T,, and
remembering that ! + / = 2¢, we obtain
TrueT( +1V)=TrueT (2t) =RJ
4
True T = % ............................ (114)
In the present problem

R =137.1; I’ =6.709 and ¢=—6.38
hence .

- 137.1 (6.709) _
True T 2 (6.38) 72.10

If we now take moments about the ordinate of Trial T
we obtain; .
True T, ({ + V) =True T, (2t) =R

True T, = RI et et tee e et (115)

2t
Since I =6.051 1371 (6
.1(6.051)
True T, = 2838 65.00
"By equation (111)
True T
Trial T
True T =72.10
Trial T =69.55 (By Table V.)
Uy 1 = 6.95
Vgo M = '%;—g (6.95) = 7.2
Similarly by equation (112)
_ True T,
' Trial T,

hence

hence

Uyy M = . Uy 1, since

hence

v m Uy My s

hence since
True T, = 65.00
Trial T, —=61.70 (Table V.)
yyn,=6.15
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Therefore,
65.00

UMy =T (6.15) = 6.47

Knowing v,ym and v, m, we can scale the lengths and
determine the position of the true closing line m m,

Method II. (Determination of Position of True Closing
Line).

If instead of drawing the trial closing line # %, in any
position whatever, suppose we locate it so that v,y n =v, n, = A
Then the quadrilateral v,, hl v, becomes a parallclogram, and
the triangles v,y # v, and n v, n, become equal.

If .

R equals resultant of the ordinates of parallelogram
Ugy 1 1, Uy

N equals number of ordinates of parallelogram
Uy M 1, U,, then

li=-v,,n='u,n, S # 3 1 )]
4

" Hence since R =137.1
. N =20
I% = _132761 =y =10, 1, = 6.85
- Trial T = sum of ordinates triangle v,, # v, .
= 4 sum of ordinates parallelogram Uy B M, Uy,

Hence
Trial T=3%R .....coiiiiiiiiiiiininnnn.. (117 -
Since R =137.1
Trial T = %l — 68.55
Similarly
Tral Ty =3 R coeeeiieeeaneannnnnnnn. (118)
Trial T, — 68.55
Since,
U
True T =52 27210 and True T, =54 = 65.00
and \
oo T4 Ty
1Y Trial T, !
hence .
65.00

vy my = 3= (685)=-64 ‘
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Also _
Uop M === I‘T_W_I‘ Van N
2 Trial T ™
therefore
Yy 1 = %% (6.85) = 7.2

In order to avoid the computation of True T and Tiue T,
we can proceed as follows:
From equation (97), in the quadrilateral v,yn n, v, we

have,
Ry=Trial T + Trial T,
But Rt =Rif vyyn = v, n, = N
Also by equations (117) and (118)
Trial T =Trial T,=4% R
hence .
R =2 (Trial T ) for the parallelogram.

R =2 (Trial T,) for the parallelogram.
Now, from the above
True T (I+ V)=RIl ... ......ccciveiu... (119)
Trie T, +V)=RI1l ..............% ..... (120)
Substituting R =2 (Trial T ) in equation (119) and
R =2 (Trial T,) in equation (120) we obtain
True T (I + V) =2V (Trial T)

or
True T 20
Tral T = T2 - trrcrrrrrerneesnaeseees (121)
Similarly
True T, (I + V') =21 (Trial T})
and
True T, 21
Trial T, "L B torrrerereees cerieneens (122)
But
- frue T .
Yo" = Tl T '®
Ugpp N = Y, E
2 1" =5
e s . . True T
If 11.1 this expression we substitute the value of Trial T
of equation (121) we-get
I’
vy = b+ R (123)

= (l+l,). N .........................
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Also since
o . — True T, v
1" TrialT, U™
hence
2!/ R
v, m‘—l—”-, * ]v ......................... (124)

Prom Fig. 36 and from Tables
1=6.05; ) =6.709; I + I' =12.759
Substituting these values in equations (123) and (124) we

obtain

2 (6.709).137.1 _ 7.9
12.759 20 )
. e = 2.(6.05) ,137.1
1T 12759 20 )
In the above we have showi how the true closing line
may be located so that the resultant of the quadrilateral v,y m
m, v, will exactly equal the resultant R of the equilibrium
polygon v,, b,y b, v, in magnitude and he coincident in location.
The conditional equation X (vm) = X (b v) referred to at
the beginning of the discussion, it is now seen, holds good if
point # is located at m and if », is located at m,; and the con-

dition is satisfied by the expression

3o M ==

=64

Twm)=20v) .ccuiiiiiiiniian. (125)
Let the coordinates of points a,, Gy, . .... a, and a, on
the neutral axis of the arch, be x4, 3; %40 V4gr + - - - %, ¥, and

%,, ¥y, respectively if point O, at the left springing line of the
neutral axis of the arch, (Fig. 40) be takcen as the origin of
coordinates.

The ordinates of the equilibrium polygon v,, b, b. v, and of
the quadrilateral v,, m m, v, will both have the same abscissas
as the respective points a of the arch. Hence if

X (vm) = X (bv) holds, then
Swm.2)=30Bv.2) ...cciviiiiiiinnnn.. (126)
It follows that '
Z(wm)~Z(bv) =0, hence Z (bv—vm) =0
But bv —vm =mbd, therefore
Tmb)=0 ... (127)

Condition (1), equation (29), i. e., Z (M) =0 is thus satis-

fied.

We see by Table VI, column (3) that this condition is satry
fied.
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. Similarly
Tbv.x)—Z (wm.x) =0, hence
Z (bv—vm)x =0, therefore
Z(mb.x)=0

Condition (3), equation (31), i. e., & (M x) =0 is now also
satisfied.

(f) Determination of Position of True Closing Line of Neutral
Axis Regarded as an Equilibrium Polygon.—(1) If we regard the
neutral axis a,, a,, a, of the arch as an equilibrium polygon we -
must find a closing line kk so located that the conditions
which held good for the equilibrium polygon v, b, v, will also
hold good for the neutral axis. Hence the following condi-
tions must be satisfied:

(@ Z(M)=0
) 2 M=x)=0
Let the ordinates of the neutral axis, ¥, .. ... Yio o+ -+ A
from a, .. ... o TP a, to horizontal line OO, be designated

as of the type y.

Let us, in a way analogous to our procedure with the
equilibrium polygon, regard the ordinates y as forces.

The resultant of the ordinates y regarded as forces must
coincide with the center line, for these ordinates are symme-
trically disposed, and respectively equal, at equal distances
from the center line.

The coordinates of the points a about point O as an origin
will be, as above, designated as x and j.

Suppose that the closing line & k is not parallel to the hori-
zontal line O 0,. Then the force ordinates y on one side of the
crown center line will be greater than on the other side and the
resultant will be located on the same side of the center line
with the greater force ordinates. Since for X (M x) =0 the
resultant must pass through the center line, for symmetrically
located force ordinates y are equal, hence k & must be parallel
to O O, and therefore also a horizontal line and figure O k k O,
becomes a rectangle. This becomes clearly evident if we take
moments about the center line itself.

For X (M) =0 the ordinates of rectangle Ok k O, must
equal the ordinates of neutral axis segment O a O,.
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Hence if the ordinates from line O O, to k k be designated
as k O and from line O O, to the neutral axis as ¥ we must have
the following:

L (B0) = Z (), which gives
(@) -2Z(k0O)=0 and

20 -k =S(ka)=0.................. (128
Similarly :

ZkO.x)=2X(y.x) and

Z(y-kO)x=2(ka.x)=0 ............. (129)

In order that equations (128) and (129) shall hold good
the line k B must be placed at such a distance above O O, that
the ordinates k a measured above k&, then regarded as posi-
tive, shall equal the ordinates k a measured below k&, then
regarded as negative.

Let N = number of ordinates

e, = constant length of each ordinate of rectangle
OkkO, : ‘
X y =sum of ordinates of neutral axis segment O a O,
Then by the preceding,
Ne,= 2 (), hence
_Z0)

AR R R T ERR PP

The value e, measured vertically from O and O, determines
the location of what may be termed the temperature norm k k.
The function of k k in temperature stresses has already been
discussed.

From Table IV, we find that X (y) = 153.20; since N = 20

153.20

6 = —5n— = 17.66

1

Now since _
X()=Ne,and Z () =Ne,
it follows that
Z@)-2Z(y)=0

hence , .
S-e)=0 ... iiiuii.. T (131)

therefore, since (y ~ ¢,) =ka .
Sa)=0 ... e (132)

Furthermore on account of the symmetrical disposition of

the y ordinates,
Tta.x) =0 ..., (133)
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Hence for the value of ¢, = EAS;V ) we fulfill the conditions
given above and in equations (67), (68) and (69) of Art. 8, i. e.
X(kc)=0
Z (ka)=0
Z(@c)=0

This is seen to be true from Table VII.

(g) Development of Pressure Curve of Arch by Superposition
of Equilibrium Polygon on Arch.—(1) Conditional equation (30),
Art. 3, must now be satisfied. X (M y)=0. (2) Determina-
tion of True Pole-Distance H. (3) Construction of Pressure
Curve.

(1) The quotation from Prof. H. T. Eddy’s ‘'Researches
in Graphical Statics,” given at the close of Art. 6. should now
be recalled.

We must, in compliance with the prccedure there outlined,
regard the neutral axis itself as an equilibrium polygon sub-
jected to some system of loading. The closing line m m, of the
basic equilibrium polygon must then be made coincident with
the closing line k& of the neutral axis polygon. Their areas
will then partially cover each other, and the real bending mo-
ments acting in the arch will be proportional to the ordinates
intercepted between these two polygons.

Both polygons, in reference to their own closing lines,
satisfy the conditions

Z(M)=0and E(Mx)=0.

There remains, of the three conditions given by equations
(29), (30) and (31), but one to be satisfied, i. e., the conditions
expressed by equation (30), or

Z(My) =0
which is expressed by equation (27)
‘ Z(ac.y) =0.

Since the points along the basic polygon have been repre-
sented by the letter b and those along the neutral axis by the
letter @, when the basic polygon is superposed on the arch
the imaginary intercepted ordinates will be of the type b a.

Now the bending moments of the sections S of the arch
must be proportional to the intercepted ordinates of type b a,
hence

ZWa.y) =00 (134)
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TABLE VII.-DETERMINATION OF ORDINATES
OF ARCH PRESSURE LINE.

Col. 5.

Col. 1. Col. 2. Col. 3. Col. 4.

b ' kc ka ac
orat e [B07)-e,S () Orpatsn From Ongintes Brom Ordintes Brom
Equilibrium 2 'mb . Pomtscof Points a on of A,‘Eh

olygon. ( 9) | Pressure Line | Neutral Axis | ac=k:—ka.
=0718 of Arch. of Arch. (Col. 3—Col. 4)
3 (mb) =0 (Col. 1'X Col. 2)
(kc) =0|Z (ka) =O| Z(ac)=0

by=—6.45 0.718 —4.63 « —1.78 +0.15
my b, =—1.80 ¢ t—1.29 —1.53 +0.24
mg by =—0.45 ¢ P —0.32 « —0.39 +0.07
m,b,= + 0.30 ‘ v+ 0.22 1 +0.22 0.00
mg by =+ 0.80 o ‘ + 0.57 : +0.62 —0.05
mgby =+ 1.10 - +0.79 | +0.92 —0.13
m; b, = +1.35 ¢ +0.97 . +1.07 —0.10
mgb, = + 1.50 . - +1.08 ' +1.23 —0.15
my by = + 1.65 “ i +1.18 @ +1.31 —0.13
Mybe= + 1.70 ¢ | +1.22 +1.33 —0.11
my b=+ 1.70 “ Co+1.22 +1.33 —0.11
mypb,= + 1.70 ‘ . +1.22 +1.31 ' —0.09
Mmygb = + 1.70 “ . +1.22 +1.23 , —0.01
myb,—= +1.55 “ o+ 1011 +1.07 © +0.04
myb= + 1.35 © +0.97 +0.92 +0.05
myghe— + 1.05 “ +0.75 + 0.62 +0.13
myb,= + 0.55 . +0.39 +0.22 +0.17
Mygby=—0.25 . —0.17 —0.39 +0.22
Mygbe=— 1.85 —1.33 —1.53 +0.20
Mgpbpy= — T7.20 —-5.17 = —4.78 —0.39
+ 18.00 ~12.91 | +13.40 —1.27
—18.00 +12.91 . —13.40 @ +1.27
—_ \ L —
0.00 | 0.00 0.00 0.00

Ordinates above &k are +

Ordinates below kk are —

2O —eX@) _ 64.8
kc=mb 2(—mb.y) = 9015 =mb (0.718)

Ordinates of closing line k k of neutral axis of arch

—e =

_EO) _
N

153.20
~)0

=7.66
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Ordinates of basic polygon are of the type m b.

Ordinates of neutral axis polygon are of the type ka,
hence

mb—ka=ba

therefore

Zmb.y)—3(ka.y) =2 0Ma.y)=0........... (135)
whence :

Zmb.y)y=3(a.y) .................... (136)

The two members of equation (136) must now be evalu-
ated and if-equality does not exist the ordinates of the type
m b must all be changed in such a constant ratio that equality
will ensue. In order to achieve this result, suppose that,

Z(ka.y U
. Z(mb.y)
then
UZmb.y)=Z (ka.y)
But
ka=y —e, (See equation 131 and following.)
hence
Ska.p)=Z@B—e)y
therefore '
Zka. »=20"—¢Z20G) e (137)
whence
_Z(ka.y) Z0OH —eZ @y
UﬁZ(mb.y)': S mb.y) (138)

It follows that if the ordinates m b be multiplied by the
ratio U we will obtain the ordinates k¢ of the pressure curve
which will satisfy equation (136), and hence make 3 (M 3) = 0.

Let the points so determined, on the pressure curve, be
designated by the letter c. Equation (134) will then become

2 (@ac.y) =0, which is the
2d Condition as given by equation (27).
- Hence
. () —e Z(y)
kc=mb. S mb.y) e .

In order to solve equation (139) we must evaluate the
terms X (3*) —e, Z (y) and X (m b.y). The valuesm b are found
from the basic polygon by scaling, using the scale of distance.

From Table IV, we have

Z (y) =153.20
2 (3% = 1238.30
e, =7.66 (See below equation 130.)
]
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Hence
2 () —e I (y) =1238.30 — 7.66 (153.20) == 64.8.
Since symmetrically disposed ordinates y of the neutral
axis are equal, it follows that there will be two symmetrical
values of m b which will be multiplied by the same value of y;
in the evaluation of £ (mb.y). Thus
(my by + Myy byy) 31 (13 by + My byy) 3, ete.
The evaluation of X (mb.y) is given in detail in Table
VI, from which it is seen that
Z(@mb.y) =+ 90.15.
Care must be taken to observe that m b ordinates above
m m, are regarded as positive, and below as negative.

Fig. 38.

It follows that,
TGN - T0)_ 648
Z(mb.y 90.15
Hence equation (139) becomes
—EW =mb (0.718)

The values of k¢ are found in column (3) of Table VII.

The points ¢,, ¢, ¢5 ... .. Cy90 Cop Of the pressure curve may
now be plotted by scaling the values of k¢ from Table VII,
laying them off from the line k&, along the respective ordi-
nates through points a.

(2) We must now determine the value of the True Pole-
distance H. In Fig. 38, let O’ be the trial pole and H, the
trial pole distance. From O’ draw the ray O’ G parallel to the
true closing line m m, (not shown in this figure). Then the point
of intersection G of the ray O’ G with the load line A B deter-
mines absolutely the value of the two end reactions A G and
B G. But the true closing line of the arch is the horizontal

=0.718

kc=mb,.
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line k k, hence the ray for the true pole-distance must be par-
allel to k k, hence horizontal, and must start from the point of
junction of the two end reactions, that is from point G.

The length of the true pole-distance, GO =H may be
found from the following considerations:

Let A b B, whose ordinates are of the type m b, be the
polygon corresponding to the trial ray diagram 0’ A B; and
let A ¢ B, whose ordinates are of the type k¢, be the polygon
corresponding to the ray diagram O A B; thus assuming that
the true pole O has been found. Hence

Ab is parallel to B0’
b B is parallel to A O’
A ¢ is parallel to BO
¢ B is parallel to AO
A B is parallel to GO and D 0O’

Therefore triangle A b B is similar to triangle O’ A B, and

triangle A ¢ B is similar to triangle O A B.

Hence
li=_n_t£=2(mb.22 (140)
B Ec S,y "
Therefore
_ Z(mb.y
H=H s ey
or .
(mbd.y)
He=H G087 cererereenonennnnn. 141
1T0) — 62 0) (141)
hence
90.15

If the value 48,692 be laid off from G to O along the hori-
zontal line G O (Fig. 40) we locate the true pole O.

(3) We can now proceed to construct the Pressure Curve.
Complete the true ray diagram (Fig. 40) by drawing the rays
from the true pole O.

Referring to Fig. 34 we have an enlarged section of the
arch and a portion of the true ray diagram corresponding to
the section.

Through point ¢, draw line A B between load lines P,,
and P, parallel to ray O B which meets the point of juncture
B of loads P,, and P,, in the ray diagram. Similarly, through
¢y draw B C parallel to O C of the ray diagram. If the calcu-
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lations and graphical constructions have been carefully made
lines A B and B C so drawn will intersect at B on the load line
P, By continuing this process the entire pressure curve can
be drawn as shown in Fig. 40.

. Through point ¢,, a line is drawn between load lines P,,
and P E (left) parallel to ray O B which intersects the load
line in the point of juncture of load P,, and Left End load.

Where the line through c,, intersects the load P E (left)
we draw the final and completing line of the pressure curve
parallel to the/ay O C. The ray O C scales 12.55 ins., hence
since our load is 5,000 lbs. =1 in. the value of O C is 62,750
Ibs. This value may be resolved by the regular method
into thrust and shear components. A similar procedure will
determine the last side of the pressure curve at the right.
Ray O A is found to equal 59,250 lbs.

L4

18. Bending Moments, Thrusts and Shears.— From
equation (42), (Art. 6) we see that the bending moment M at
-any point a of the arch is given by
Z(M)=H (ac)
Hence we scale the ordinates ka and reccrd them in
columrn. 4 (Table VII).
Then since
k ¢ —k a = a ¢ we obtain the values from which the
bending moments can be calculated as shown in detail in
Table VIII.
To obtain the thrusts and shears at the various points a
we construct tangents to the neutral axis. Now as the neutral
axis is an arc of a circle we need only draw radii to the various

points @ and erect at a perpendiculars to the respective radii.

Then from the true pole O (Fig. 40) we draw a line parallel
to this tangent corresponding to the ray which refers to the
point in question. Thus for point a,, the tangential thrust
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(tangential component) is found by drawing from point O of
the ray diagram a line O S parallel to the tangent through a,,
and constituting one side of the right triangle O S B whose
hypotenuse O B is parallel to the pressure line through c,,.
The remaining side B S of the right triangle is the normal
component and is proportionate to the shear for the particular
point considered. By scaling these distances to the scale of
loads we determine the amount of the thrust and shear for
the various points a of the neutral axis. The relation between
these effects and the thrusts due to the temperature is seen
“from Fig. 30. The results for these quantities are found in
Table VIII.

TABLE VIII.—.CALCULATION OF MOMENTS,
THRUSTS AND SHEARS.

|
ac M Thrusts =T Shears
oints Ordinates Bending Moments ’l;‘::ge:;rlg oﬁo"ﬁ:}l s
Foints. ol irgvflog% ounds Pripiey P ety
i of arch. H = 48,692 Scaled from Scaled from
. ' diagram. diagram.
1 +0.15 | + 7,304 53,900 2,050
2 +0.24 +11,686 50,200 1,050
3 +0.07 + 3,408 49,500 1,550
4 0.00 0.00 49,000 1,450
5 —0.05 — 2,434 48,900 1,200
6 —0.13 — 6,330 48,800 900
7 —0.10 — 4,869 48,750 600
8 —0.15 — 7,304 48,700 200
9 —0.13 — 6,330 48,650 300
10 —0.11 — 5,356 48,600 550°
11 —0.11 — 5,356 48,500 750
12 —0.09 — 4,382 48,550 850
13 —0.01 — 4,869 48,600 750
14 +0.04 + 1,947 48,700 700
15 . + 0.05 + 2,435 48,850 550
16 +0.13 + 6,330 49,000 350
17 +0.17 + 8,278 49,300 200
18 +0.22 +10,712 49,900 350
19 +0.20 + 9,738 51,000 1,500
20 —0.39 —18,990 55,850 6,000




, CHAPTER III.
CALCULATIONS OF FIBER STRESSES.

19. Calculation of Fiber Stresses.—We will now give, in
detail, the calculation of the stresses for several typical points.
T . Mx,

Se = AT n A D+ nAcad (Ibs. per square foot)
Let
E, = modulus of elasticity of steel = 30,000,000 lbs. per
sq. in.
E: =modulus of elasticity of concrete = 1,500,000 lbs. per
sq. in.
Than
E, _ 30,000,000 20.

" =E." 1,500,000 —
A, = area section concrete 1n a slice 1 ft. wide and D ft.
deep. (Value of D, Table II) =D x 1 =D sq. ft.

A, = area steel in square ft, in a slice 1 ft. wide = é; where

A = cross-sectional area in square ft. of two bars
constituting a rib.
and b = distance (in feet) c. to c. of ribs.
Area  in. corr. bar = 0.77 sq. in. = 0.00534 sq. ft.
A =2 (0.00534) = 0.01068.

= 8 ins. = % ft.
As =-% = % = 0.016 (a constant)
n As =20 (0.016) = 0.32 (a constant)
(See Fig. 2.)

D =radial depth in feet of arch ring at point a.
G =distance in feet from c.g. of stcel bar to extreme
fiber of concrete :
= 3 ins. (assumed) = 0.25 ft.
D’ = distance in feet between centers of gravity of two
steel bars constituting a rib.

=D —2G; 2G =2 (0.25) =0.50 (an assumed constant)
86
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=D —0.50 (in ft.)

D

xl==-é— -
D' D—-0.50

S

T =Thrust in lbs. (Tangential component at point a.)
For value see Table VIII.
M = Bending moment in foot pounds at point a.
=H (ac). For value see Table VIII.
Fiber Stress in Concrete.—

Se = T + M x,
Ao+ nAs "3 D + n Agx,?
Fiber Stress in Steel.
S =< T + M x, ) n
* Ac+mAs— 73 D? + n Agx,?

When a ¢ is + then bending moment M is +
When a ¢ is - then bending moment M is -
When M is + then + of * refers to upper fiber of concrete
and steel.
When M is + then — of * refers to lower fiber of concrete
and steel.
When M is — then + of * refers to upper fiber of concrete
and steel. 4
" When M is — then — of * refers to lower fiber of concrete
and steel.
Calculation of Fiber Stresses Due to Variation in Temperature.
H, =horizontal thrust due to change in temperature.
° = number of degrees change of temperature
= *40°F.
L =span in feet.
E’¢ = modulus of elasticity of concrete in Ibs. per sq. ft.
= 144 E, = 144 (1,500,000)
(E. = modulus per sq. in.)
e = coefficient of expansion of concrete for 1° F. = 0.000006
I.=moment of inertia of concrete of area A,
I, =moment of inertia of steel of area A,
S

——— = t.
T + n I, a constan
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If the subdivisions S of the arch have been obtained under

the assumpt1on that I")S is a constant, then find the value of the

To + 5 nls at, say the three points, Gar Gag and a,,. for

true ratio

the arch scheme which makes i constant.

D3
T, +
Use the average of these values as the value of ‘c—sn—”
This will be accurate enough for all practical purposes.
I, + 201, D

2
5 =1y D%+ 20 A.s <7 —G) = 0.31 -approximately.

E'cler Ie+nls
2[T () —e, 2 )] S
2B -e X (y) =648
1,500,000 (144) 70 (0.000006) +0

Hy=

H,= 2 (64.8) (0.51) = 8680
Location of temperature norm k k

Ordinate ¢, of temperature norm k k = Z'T(,y)

e 4————2 $) _ 7,66

Ordlnates of type ka above k k regarded as +
Ordinates of type kd below kk regarded as —
M = Bending moment due to change in temperature
= Hy (k a).
T = Tangential thrust due to change in temperature.
T,=H,cos ® = 8680 cos ¢ (See Fig. 30)
See Table IX.
Fiber Stress in Concrete Due to Change in Temperature.
cht_: Ty, i Mtxl_?
Ac+nAs T D? +ndex?
Fiber Stress in Steel Due to Change in Temperature.

_ T', + ngz
5“~<Ac +nAy D+ nA.;'xf) "

Fiber Stresses Calculated—For Point 1.
Concrete.
T + M x,
Ac +nAs ™ Yy D2 +nAex?

Sc=
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. TABLE IX:—CALCULATION OF TANGENTIAL
- THRUST, T., DUE TO TEMPERATURE.

A:3N=p:}a
A:36.52=¢:28.84 N = length of neutral axis = 73.04ft
¢=0.789 A a = subtended central angle=57.68°
Distanz; from ¢ cose | . . ¢
Point | Center Line A B =078 A\ = Hg cos
N eutra A = 8680 cos ¢
1 29.77 23°-29 0.91718 7,961
2 | 20.42 16°— 7 0.96070 8,339
3 15.98 12°—36' 0.97592 8,471
4 12.67 10°— O’ 0.98481 8,548
5 10.01 7°—54' 0.99051 8,597
6 7.80 6°— 9’ 0.99424 8,630
7 5.86 4°-37 0.99676 8,652
8 4.06 3°—12 0.99844 8,666
9 2.38 1°—53’ 0.99946 8,675
10 0.78 0°—-37 0.99994 | 8,679
11 0.78 0°-37' 0.99994 8,679
12 2.38 1°—-53’ 0.99946 8,675
13 4.06 3°—12' 0.99844 8.666
14 5.86 4°-37 0.99676 8,652
15 7.80 6°— 9’ 0.99424 8,630
16 10.01 7°—54' 0.99051 8,597
17 12.67 10°— (/ 0.98481 - 8,548
18 15.98 12°—36' 0.97592 8,471
19 20.42 16°— 7’ 0.96070 8,339
20 29.77 23°-29/ 0.91718 7,961

T =33,900 ' (See Table VIII, point 1.)
Ac=3.43 (Table X.)

n As =20 (0.016) = 0.32
M = + 7304 (Table VIII, point 1.)

x, = g = 3'—;3’ =171 (Table X.)

D' =D —2G =3.43 — 2 (0.25) — 2.93
, .

rm=2 29 _ 4

2 2
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CALCULATIONS OF FIBER STRESSES.

(%)) =2.13
D? =40.35

53,900 + 7304 (1.71)
343 + 0.32 — 1, (40.35) + 0.32 (2.13)

= (14,373 % 3,092)
M is +

Se=

9I

+ of + gives + 17,465 Ibs. per sq. ft. = + 121 Ibs. per sq. in.

compression in upper fiber of concrete.

—of £ gives + 11,281 Ibs. per sq. ft. = + 78 lbs. per sq. in.

compression in lower fiber of concrete.
" Steel.

T M x,
S'“<A., + nA.iT‘, D,3+nA.x,’) "

( 53,900 + 7,304 (1.46) ) 20

3.43 + 0.327 ' (40.35) + 0.32 (2.13)

~ (14,373 * 2,640) 20
Mis +

+ of £ gives + 340,260 Ibs. per sq. ft. = + 2,363 Ibs. per sq.

in. compression in upper fiber of steel.

—of * gives + 234,660 Ibs. per sq. ft. = + 1,629 1bs. per sq.

in. compression in lower fiber of steel.
Temperature Concrete.

Tt, + M;xl
Ac + " As - IJ' D13 +n,A.x,2

Sot =

My=H.(ka); ka = —4.78 (See Table VII.)

M, = 8,680 (—4.78) = — 41,490
T.=Hycos & =7,961. (See Table IX.)

7,961 — 41,490 (1.71)
343 + 032~ 7, (40.35) + 0.32 (2.13)

+ of * gives — 107 lbs. per sq. in.

Sct =

— of * gives + 137 lbs. per sq. in.

Ordinate k a is —at point 1, (See Table XVL.)
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CALCULATIONS OF FIBER STRESSES.

ka is—
!
Upper fiber , Lower fiber
Compression Tension
Rise 40°F.
: + 137 — 107
Tension " Compression
Fall 40° F.
— 107 + 137

Temperature Steel.

7,961 — 41,490 (1.

T (3-43 + 0.32 7 ¢ (40.35) + 0.32 (2.13)

+ of * gives — 1,788 lbs. per sq. in.
— of X gives + 2,377 lbs. per sq. in.

46) ) 20

!
!

ka is —
Upper fiber Lower fiber
Compression Tension
Rise 40°F.
+ 2,377 — 1,788
Tension Compression
Fall 40° F.
— 1,788 + 2,377

Fiber Stresses Calculated.—For Point 4.

Concrete.
M regarded as + [M =0 here]

Se =+143£0

93

+ of * gives + 143 lbs. per sq. in. compression in upper

fiber of concrete.

—of * gives + 143 lbs. per sq. in. compression in lower

fiber of concrete.
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CALCULATIONS OF FIBER STRESSES. 05

Se=+2,859+0
+ of X gives + 2,859 lbs. per sq. in. compression in upper
fiber of steel.

— of * gives + 2,859 lbs. per sq. in. compression in lower
fiber of steel.

Temperature Concrete.

Sev =[3592 £ (+ 2115)] + 144 (See Table XIV).

+ of X gives + 40 lbs. per sq. in. (This value is to be used
as it is the maximum.)

— of = gives + 10 lbs. per sq. in.
No tension.
Ordinate ka is + here. (See Table XVI)

kais +
Upper fiber Lower fiber
Tension Compression
Rise 40° F. 0 + 40
Compression Tension
Fall 40° F.
+40 0

Temperature Steel.

+ gives + 721 Ibs. per sq. in. This value to be used as it
is the maximum.
— gives + 276 lbs. per sq. in.

kais +

Upper fiber Lower fiber

Tension Compression

Rise 40° F. 0 + 721
Compression Tension
Fall 40° F.
+ 721 0
|
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CALCULATIONS OF FIBER STRESSES. 97

Fiber Stresses Calculated.—For Point 5.
Concrete.
M =—
Se =[21733 £ (— 3075)]+144. (See Table XII).
+ of X gives + 129 lbs. per sq. in. compression in upper

fiber. .
—of gives + 172 lbs. per sq. in. compression in lower
fiber.

Ss =[21733 £ (—2274)] 20 + 144. (See Table XIII).

+ of * gives + 2703 lbs. per sq.in. compression in upper
fiber.

—of X gives + 3334 lbs. per sq. in. compression in lower
fiber. )

Temperature.

Sev =[3821 + (+ 6798)] + 144.

+ of * gives + 74 Ibs. per sq. in.

— of X gives — 21 lbs. per sq. in.
Ordinate k a is + here. (See Table XVI).

ka is +
Upper fiber Lower fiber
Tension Compression
Rise 40°F. —21 + 74
Compression Tension
Fall 40° F.
+ 74 — 21

Steel.
Ss =[3821 * (+ 5028)] 20 + 144. (See Table XV).
+ gives + 1,229
—gives — 168
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kais +
Upper fiber - Lower fiber
Tension Compression
Rise 40° F. — 168 o +1,229
Compression Tension
Fall 40° F. 1
+ 1,229 — 168

Since the liability of making errors in conducting these cal-
culations is great it will be found imperative that the work be
executed by means of a system of tables identical in form with
those set forth in this text.

In Table XVII we have combined the stresses in order to
obtain the maximum fiber stresses including temperature
stresses. From these results it is seen that the depth of the
arch can be somewhat reduced without exceeding the allow-
able fiber stresses for either steel or concrete. It is seen that
the maximum stresses for the arch as designed occur at point
9 where the stress for concrete is 394 lbs., and for steel 6,724
Ibs. Hence fs + fe = 17.

. fs + fcat point 14 = 5478 + 307 = 17
fo + feat point 1 =4740 + 258 =18

These values are very close and sufficiently near f, + f. =
20 to make a very efficient and satisfactory design.

In revising the arch no change whatever should be made
in the intrados curve, but the extrados curve alone should be
modified. Since the maximum stress occurs at point 9 it
is not advisable to lessen the arch depth at the crown, al-
though even here the depth could probably be cut down to 18
inches without exceeding the allowable stresses. Itis safer, how-
ever, to be well within the allowable limits, hence we will leave
the arch depth at the crown at 20 inches. At point 1, we will
decrease the depth from 41.2 inches to 38 inches and construct
the circular extrados arc accordingly. Furthermore we will
modify the disposition of the steel reinforcement, changing the
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distance between centers of steel ribs from 8 ins. to 12 ins.
For the ribs at 12 in. centers,

Ay = 0'011068 = 0.01068

n As = 20 (0.01068) = 0.212

38 ins. =3.17 = D, hence

D 317
D —0.50 2.66
Xy = 5 =5 = 1.33
Hence recalculating the stresses for point 1;
S 53,900 . + 7,304 (1.58)

T3.17 + 0.212 ~ F (3.17)° + 0.212 (1.33)?
= 15,937 *+ 3,809
Hence for concrete we obtain, °
+ 19,746 Ibs. per sq. ft. = + 137 lbs. per sq. in., up-
per fiber, and
+ 12,128 1bs. per sq. ft. = + 84 1bs. per sq.in., lower
fiber.

B _< 53,900 + + 7,304 (1.33) ) 20
* 7317 + 0.212 7 4 (3.17)% + 0.212 (1.33)?
= (15,937 £ 3,206) 20
Hence for steel we obtain, :
+ 382,860 lbs. per sq. ft. = + 2,659 lbs. per sq. in.,
upper fiber.
+ 254,620 lbs. per sq. ft. = + 1,768 Ibs. per sq. in.,
lower fiber. »
Temperature Stresses. Revised Point 1.
S, — 7,961 + — 41,490 (1.58)
7317 + 0.2127 & (3.17)% + 0.212 (1.33)?
Hence for concrete we have,
— 19,281 1bs. per sq. ft. = — 134 Ibs. per sq. in.
+ 23,989 Ibs. per sq. ft. =+ 167 lbs. per sq. in.

sn=( 7961, —41,490 (1.33) )20

3.17 + 0.212 ™ 44 (3.17)% + 0.212 (1.33)?
Hence for steel we get,
— 317,160 Ibs. per sq. ft. = — 2,203 Ibs. per sq. in.
+ 411,320 Ibs. per sq. ft. = + 2,857 Ibs. per sq. in.
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We then obtain the following maximum stress including
temperature stress:

Concrete. Steel.
Extrados. i Intrados. Extrados. Intrados.
+ 304 — 50 + 5516 — 435
Lo \

For this value fs + fe = 18.

It is often well to recalculate a number of points for the
revised system. This is not necessary in the present case,
except at point 1.

20. Concluding Remarks.—It is well to provide the arch
with steel reinforcing rods running transversely. Shear bars
should also be provided for to take up the normal stresses.
In general the transverse bars need not be of as large cross -
section as the longitudinal bars. The same is true for the
shear bars. It is generally sufficient to space both transversals
and shear bars 2 ft. center to center. The shear bars should be
placed at points of greatest shearing stresses, and preferably
along the entire arch.

Where bars must be spliced the following formula will
give the length that the bars should be overlapped for the
splice:

Let

d = diameter of rod or maximum diagonal of cross-
section.

S =length of splice,
then, for plain bars of medium steel, .

S=40d ... ... .. (142)
For plain bars of high elastic limit steel,
S=70d ... e (143)
—_——
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APPENDIX A.
GENERAL SPECIFICATIONS FOR CONCRETE-STEEL
‘ STRUCTURES.

(Melan, Thacher, and Von Emperger Patents.)
(The Concrete-Steel Engineering Company, New York.)

1. PLANS.—The work will be constructed in accordance with the
drawings, herewith submitted, and these specifications.

The specifications and drawings are intended to describe and provide
for the complete work. They are intended to be co-operative, and what
is called for by either is as binding as if called for by both.

The work herein described is to be completed in every detail, not-
withstanding that every item necessarily involved is not particularly men-
tioned. )

The contract price shall be based upon these specifications and draw-
ings, which are hereby made a part of the contract.

2. LOADS.—DEaAp Loap. In estimating dead loads, concrete shall be
assumed at 150 lbs. per cu. ft., earth fill at 120 lbs, per cu. ft., ballast, in-
cluding ties, at 120 lbs. per cu. ft., rails at 60 lbs. per lin. ft. of track. The
assumed weight of pavements shall depend on the kind of pavement used,
but in the absence of full data the pavement shall be assumed at 150 1bs.
per sq. ft. and to occupy a depth of 12 ins.

Live Loap.. For bridges and subways carrying railroad or electric
car traffic, the live load shall be such as is specified by the company for
which the structure is built, and the load on each track shall be assumed
as distributed over a width equal to the distance from center to center of
tracks. The greatest equivalent load per lineal foot that can come on any
span or half span of arch, or span of girder, with all tracks loaded, being
used in the calculation.

Bridges and subways carrying highway traffic shall be proportioned to
carry a uniformly distributed load of 125 Ibs. upon each square foot of
roadway and sidewalks, or the following concentrated loads:

(a) For city and suburban bridges, 15 ton steam road roller 11 ft.
between axles, 6 tons on forward wheel 4 ft. wide, and 4.5 tons on each of
two rear wheels 5 ft. between centers and 20 ins. wide.

(b) For country bridges 5 tons on four wheels 8 ft. between axles
and 6 ft. gage.

3. CONDITIONS OF CALCULATIONS.—

Modulus of elasticity of concrete................. 1,500,000 lbs.
Modulus of elasticity of steel..................... 30,000,000 “
- 107
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. MaxiMuM SHEAR ALLOWED ON CONCRETE....... 75
MAXIMUM STRESS ALLOWED ON STEEL.
In arches. The steel ribs under a stress not exceeding 18,000 Ibs.

REINFORCED CONCRETE ARCHES.

MaxiMum COMPRESSION ALLOWED ON CONCRETE.
In arches for highway and electric car bridges.

Exclusive of temperature stresses............ 500 lbs. per sq. in.
Including stresses due to 40° variation in tem-
perature ....... R .+ '+ T
In arches for railway bridges.
Exclusive of temperature stresses............ 400 “ 4“0«
Including stresses due to 40° variation in tem-
perature ....... O 500 “ ¢«

Slabs, Girders, Beams, Floors Walls and Posts.

Subways and girder bridges, carrying highway
and electric car traffic, also buildings, roofs,
culverts and sewers, shall have a factor of
safety of 4 in one month.

Subways and girder bridges for railways shall -
have a factor of safety of § in one month.

MaxiMmuMm TENSION ALLOWED ON CONCRETE.

In arches, exclusive of temperature stresses... 50 1bs. per sq. in.

In arches, including stresses due to 40° varia-
tion in temperature............. Chereeanans 75

In slabs, girders, beams, floors, walls and posts o

[T T TR
[ T TR

[T T T B ]

per sq. in. must be capable of taking the entire bending moment

“of the arch without aid from the concrete. and have flange

areas of not less than the one hundred and fiftieth part cf the
total area of the arch at crown. The actual stress when im-
bedded in and acting in combination with concrete shall not ex-
ceed twenty times the allowed stress on the concrete.

In slabs, girders, beams, floors, and walls, subjected to transverse

stress. The steel shall be assumed to take the entire tensile stress
without aid from the concrete, and shall have an area suffi-
cient to equal the compressive strength of concrete composed
of 1 part Portland cement, 3 parts sand, and 6 parts of broken
stone, of the age of six months.

In walls and posts subjected to compression only. No allowance

will be made for the strength of imbedded steel, which will be
used only as a precaution against cracks due to shrinkage or
changes in temperature.

In tanks. The imbedded steel under a stress not exceeding

15,000 lbs. per sq. in. shall be capable of taking the entire water
pressure without aid from the concrete.

4. DISCREPANCIES.—In the event of any discrepancies between

the drawings and the figures written on them, the figures are to be taken
as correct, and in case of any discrepancy between the drawings and the
specifications, the specifications are to be adhered to.
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5. FOUNDATIONS.—AIl foundations shall be as shown on plans,
and conform to the ditnensions marked thereon.

Foundations on rock shall be prepared by removing all sand, mud, or
other soft material, and by excavating the bed rock in such manner as may
be described or shown on drawings.

Foundations on hard pan, gravel, gravel and clay, cemented sand, or
other material intended to carry the load without piles, shall be excavated
to the deptiis shown on plans.

For deep foundations requiring pneumatic caissons, the caissons shall
be of such size and be sunk to such depth as is shown on drawing, and
they shall be built in accordance with the detailed plans and specifications
specially provided.

Foundations on piles will usually be inclosed by permanent water-
tight tongue and grooved sheet piling, or Wakefield piling, and be exca-
vated to the depth shown on plans, and the piles shall be driven after the
excavations are made. They shall be sawed off at least 2 ft. below low
water. The sheet piling will remain in place and be sawed off at least 1 ft.
below low water. The spaces between the piles shall be filled with con-
crete, and in case it is found necéssary to lay the concrete under water,
proper appliances must be used to insure its being deposited with as little
injury as possible. v

If timber cribs with compartments filled with concrete are used on
pile foundations, the bed of stream shall be dredged, removing all mud or
other soft material, after which piles shall be driven and sawed off at the
elevation shown on plans. All piles in the same foundation shall be sawed
off at the same level, giving a solid and uniform bearing for the crib,
which may extend to within 3 ft. of low water.

The piles shall be oak, vellow pine, or other wood that will stand the
blow of the hammer; straight, sound, and cut from live timber; trimmed
close, cut off square at the butt, and have all bark taken off. The piles
shall not be less than 12 ins. nor more than 16 ins.
in diameter at the large end nor less than 8 ins. in diame-
ter at the small end for piles having a length of 30 ft. and
under. For greater lengths the diameter of the small end may be reduced
1 in. for each 10 ft. of additional length down to a minimum of 6 ins. The
piles shall be driven until they do not penetrate more than %% in. under the
blow of a hammer weighing 2,240 lbs. falling 25 ft.

6. CEMENT.—No cement will be allowed to be used except estab-
lished brands of high grade Portland cement which have been in successful
use under similar conditions to the work proposed for at least three years,
and have been seasoned or subjected to aeration for at least 30 days before
leaving the factory. All cement shall be dry and free from lumps, and
immediately upon receipt shall be stored in a dry, well covered and venti-
lated place, thoroughly protected from the weather. (If required the con-
tractor shall furnish a certified statement of the chemical composition of
the cement, and of the raw material from which it is manufactured.)
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The fineness of the cement shall be such that at least go per cent will
pass through a sieve of No. 40 wire, Stubbs gige, having 10,000.0penings
per square inches, and at least-75 per cent will pass through a sieve of No.
45 wire, Stubbs gage, having 40,000 openings per square inch.

Samples for testing may be taken from every bag or barrel, but
usually for tests of 100 barrels a sample will be taken from every tenth
barrel. The samples will be mixed thoroughly together while dry and the
mixture be taken as the sample for test. '

Tensile tests will be made on specimens prepared and maintained un-
til tested at a temperature not less than 60° Fahrenheit. Each specimen
will have an area of I sq. in. at the breaking section, and after being
allowed to harden in moist air for 24 hours will be immersed and main-
tained under water until tested.

The sand used in preparing test specimens shall be clean, sharp,
crushed quartz retained on a sieve of 30 meshes per lineal inch, and pass-
ing through a sieve of 20 meshes per lineal inch. In test specimens of 1
cement and 3 sand, no more than 12 per cent of water by weight shall be
used. Specimens prepared from a mixture of I part cement and 3 parts
sand, parts by weight, shall after seven days develop a tensile strength
of not less than 170 lbs. per sq. in., and not less than 240 lbs. per sq. in.
after 28 days. Cement mixed neat with from 20 per cent to 25 per cent of
water to form a stiff paste shall after 30 minutes be appreciably indented
by the end of a wire 1/12 in. in diameter loaded to weigh 4 1b. Cement
made into thin pats on glass plates shall not crack, scale, nor warp under
the following treatment: Three pats will be made and allowed to harden
in moist air at from 60° to 70° Fahrenheit; one of these will be placed in
fresh water for 28 days, another will be placed in water which will be
raised to the boiling point for six hours and then allowed to cool, and
the third is to be kept in air of the prevailing outdoor temperature,

7. PORTLAND CEMENT CONCRETE.—The concrete shall be
romposed of cement, sand, and broken stone or gravel mixed with clean
water in the proportions hereafter mentioned.

The sand shall be clean, sharp, and coarse, or coarse and fine mixed,
free from sewage, mud, clay, and all foreign matter.

The broken stone shall be clean and hard, broken into approximately
cubical pieces, and free from long, thin scales.

The gravel shall be of assorted sizes screened or washed entirely free
from clay, loam, or foreign matter, and be free from scale, slime, or humus.

Whenever the amount of work to be done is sufficient to justify it,
and for all work exceeding 1,000 cu. yds., approved mixing machines shall
be used. The ingredients shall be placed in the machine in a dry state,
and in the volumes specified, and be thoroughly mixed, after which clean
water shall be added and the mixing continued until the wet mixture is
thorough and the mass uniform. The mixture shall be sufficiently wet for
the water to come to the surface with moderate ramming. As soon as the
batch is mixed it must be deposited in the work without delay. For small
bridges, if the mixing is done by hand, the cement and sand shall first be
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thoroughly mixed dry, in the proportions specified. The stone, previously
drenched with water, shall then be deposited in this mixture. Clean water
shall be added and the mass be thoroughly mixed and turned over until
each stone is covered with mortar, and the batch be deposited without de-
lay.

The concrete shall be deposited in layers of 6 or 8 ins., and be
thoroughly rammed until all voids are filled and the water flushes to the
surface.

The grades of concrete to be used are as follows:

(a) For the arches, slabs, girders, beams, floors, walls subject to
transverse stress, posts and tanks, 1 part Portland cement, 2 parts sand,
and 4 parts broken stone that will pass in any direction through a 114 in.
ring, if not otherwise marked on plans.

(b) For spandrel walls, 1 part Portland cement, 3 parts sand, and 6
parts broken stone or gravel that will pass through a 2-in. ring.

(c) For the piers, abutments, foundations, and retaining walls, 1
part Portland cement, 3% parts sand, and 7 parts broken stone or gravel
that will pass through a 3 in. ring.

8. ARTIFICIAL STONE.—(a) All keystones, brackets, consoles,
dentiles, pedestals, parapets, hand railings, posts and panels, and other
ornamental work when used; also curbs and gutters, shall be of the design
shown on plans, and be molded in smooth and suitable molds. For mold:
ings containing curved surfaces, sharp curves, carvings, or other delicatc
work, the molds shall be plastered with a semi-liquid mortar composed of
I part cement and 2 parts of fine sharp sand. The mortar coating must
be followed up with a.backing of only earth damp concrete composed of
I part cement, 2 parts sand, and 4 parts of fine broken stone, or 1 part
cement and 6 parts of gravel that will pass through a 34 in. ring. The con-
crete backing must be rammed thoroughly in thin layers.

(b) For plain flat surfaces, the concrete may be rammed directly
against the molds, and after the molds have been removed all exposed
surfaces shall be floated to a smooth finish with a mortar the same as
specified in § 8 (a), care being taken that no body of mortar is left on
the face, sufficient only being used to fill the pores and give a smooth
finish.

When pedestal posts carry lamp posts, a 4 in. wrought iron pipe
shall be built into the concrete from top to bottom, and at bottom it shall
be connected with a 3 in. pipe extending under the sidewalk, and connected
with gas pipe or electric wire conduit. The pipes shall have no sharp
bends, all changes in direction being made by gentle curves.

9. PLASTERING.—No plastering will be allowed on the exposed
faces of the work, but the inside faces of the spandrel walls covered by the
fill shall be plastered with mortar composed of 1 part cement and 2%
parts sand, the surface being well dampened before plastering.

10. MIXTURES.—The volumes of cement, sand, broken stone, or
gravel in all mixtures of mortar or concrete shall be measured loose.
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11. CONNECTIONS.—In connecting concrete already set with new
concrete, the surface shall be cleaned and roughened, and mopped with a
mortar composed of 1 part cement and I part sand to cement the parts to-
gether, .

12. EXPANSION JOINTS.—Expansion joints shall be made in the
spandrel walls, cornices, and parapets of each arch above the springing
lines, at points one-sixth span from the springing lines, and at such other
points, if any, as are shown on plan.

13. SPANDRELS.—The spandrel walls shall have a thickness of
not less than 18 ins. at any point, and a thickness at bottom of not less
than four-tenths of the height of the wall measured from the top of cor-
nice.

14. ARCHES.—For square arches the concrete shall be laid in
transverse sections of the full width of the arch, between timber forms
normal to the center line of the arch, the length of sections being such
that the center section, or a pair of intermediate or end segtions, shall
constitute a day’s work. Work shall be started -at the center section and
carried towards the ends, the end sections being laid last.

For skew arches, the concrete shall be started simultaneously from
both ends of the arch, and be built in longitudinal sections at least 5% ft.
in width, and wide enough to constitute a day’s work. The concrete shall
be deposited in layers, each layer being well rammed in place before the
previously deposited layer has had time to partially set. The work shall
proceed continuously day and night if necessary to complete each longi-
tudinal section. These sections while being built shall be held in place by
substantial vertical timber forms, parallel to the face of the arch and to
each other, and these forms shall be removed when the section has set
sufficiently to admit of it. The sections shall be connected as specified in
paragraph 11, and also by steel clamps spaced about 5 ft. apart, connecting
the adjacent steel ribs.

15. DRAINAGE.—Provision for drainage shall be made at each
pier as follows: A wrought iron pipe of sufficient diameter shall be built
into the concrete, extending from the center of each space over piers to
the soffit of the arch near the springing line, and project I in. below the
soffit. The surface of the concrete over piers shall be so formed that any
water that may seep through the fill above will be drained to the pipes.
The line of drainage will be covered with a ldyer of broken stone, and the
top of pipes will be provided with screens to prevent clogging.

16. STEEL.—Steel ribs shall be imbedded in the concrete of the
arches. They shall be spaced at equal distances apart. The design, loca-
tion, dimensions, and connections of the ribs, also the sections of steel of
which they are composed, shall be as shown on plans.

Steel rods shall be imbedded near the tension side of all members
subjected to transverse stress. No reliance will be placed on the adhesion
between the steel and the concrete, but our patented rods, specially de~
signed for this purpose, shall be used in all cases. The distance of the cen-
ter of the rods from the outside of the concrete shall not he less than the
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diameter of the rods. All steel must be free from paint and oil, and all
scale and rust must be removed before imbedding in the concrete.

The tensile strength, limit of elasticity and ductility shall be deter-
mined from a test piece cut from the finished material and turned and
planed parallel. The area of cross section shall not be less than %% sq. in.;
the elongation shall be measured after breaking on an original length of
8 ins. Each melt shall be tested for tension and bending.

Either soft or medium steel may be used in all concrete steel struc-
tures. If soft steel is used it shall have an ultimate strength of from
54,000 to 62,000 lbs. per sq. in., an elastic limit of not less than one-half
the ultimate strength, shall elongate not less than 25 per cent in 8 ins., and
bend cold 180° flat on itself without fracture on outside of bend. If me-
dium steel is used it shall have an ultimate strength of from 60,000 to
68,000 lbs. per sq. in., an elastic limit of not less than one-half the ultimate
strength, shall elongate not less than 22 per cent in 8 ins., and bend cold
180° to a diameter equal to the thickness of the piece tested without frac-
ture on outside of bend. In tension tests the fracture must be entirely
silky. The workmanship must be first class.

17. CASING.—When concrete facing is used, all piers, abutments,
and spandrel walls shall be built in timber forms. These forms shall be
substantial and unyielding, of the proper dimensions for the work intended,
and all parts in contact with exposed faces of concrete shall be finished
to a perfectly smooth surface by plastering or other means, so that no
mark or imperfection shall be left on the work.

18. CONCRETE FACING.—If concrete facing is used, the concrete
shall be deposited in smooth molds as specified in paragraph 17, and after
the molds have been removed the exposed flat surfaces shall be finished in
the same manner as specified in paragraph 8 (b).

If the arch faces, quoins, or-other exposed surfaces dre marked to
represent masonry or other division lines, either straight or curved, are
shown in the faces of the arch or spandrels, such division lines shall be
made by triangular moldings of wood 2 ins. wide and 1 in. deep, fastened
to the casing in true lines as shown on plans. The face of the arch at
intrados shall be beveled to correspond, and all angles or intersections of
the moldings shall be neatly beveled and fitted in a workmanlike manner
to give a smooth finish. Before depositing the concrete the moldings shall
be coated in the same manner as specified in paragraph 8 (a).

The soffits of the arches shall be floated and finished in the same
manner as specified in paragraph 8 (b).

19. OTHER FACING.—If ashlar masonry, boulder, brick, terra
cotta, or other facing is used on the work, it will be shown or noted on
the drawings, and a specification therefor will be attached.

20. CENTERING.—The contractor shall build an unyielding false-
work or centering. The lagging shall be dressed to a uniform thickness so
that whern. laid it shall present a smooth surface, or it shall be made
smooth by plastering or other efficient means.
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In framing the centers allowance shall be made for settlement of cen-
terings, deflection of arch after the removal of centerings and for perma-
nent cambre. The centers shall be framed for a rise of arch greater than
the rise marked on drawings by an amount equal to one-eight hundredth
part of the span, and shall not be struck until at least 28 days after the
completion of the arch, and not until the fill has been put on. Great care
shall be used in lowering the centers evenly and uniformly, preferably by
means of sand boxes, so as not to throw undue strains upon the arches.
The tendency of the centers to rise at the crown as they are loaded at the
haunches must be provided for in the design, or, if not, the centers must
be temporarily loaded at the crown and the ldad so regulated as to pre-
vent distortion of the arch as the work progresses.

21. WATER-PROOFING.—After the completion of the arches and
spandrels, and before any fill is put in, the top surface of the arches, piers
and abutments, and the lower 6 ins. of the inner surface of the spandrel
walls shall be coated with a heavy coat of semi-liquid mortar consisting of
1 part cement, ¥; part thoroughly slaked lime, and 3 parts sand, spread to
leave a smooth finish, and after this has set hard it shall be given a heavy
coat of pure cement grout.

22. FILL.—The space between the spandrel walls shall be filled
with sand, earth, cinders, or other suitable material, thoroughly compacted
by ramming or rolling, and be finished to he proper grade to receive the
curbing and pavement.

The fill over any arch shall not be put in until at least two weeks
after the arch concrete has been completed.

23. ROADWAY PAVEMENT.—The pavement shall be of the kind
shown on plans, or mentioned in fhe proposal, and shall be built-according
to the specifications adopted in the locality where used unless otherwise
mentioned.

24. CONCRETE SIDEWALKS.—The ground on which the con-
crete sidewalk is to be laid shall be rammed or rolled to a hard bearing
surface, 10 ins. below the finished grade. After the curbing has been set
true to line and grade, a foundation of gravel or cinders shall be laid and
thoroughly rammed or rolled to a thickness of 6 ins. On this shall be de-
posited a layer of dry concrete, 3 ins. thick after ramming, consisting of 1
part Portland cement, 2 parts sand, and 4 parts broken stone or gravel
that will pass through a 14 in. ring. On the concrete shall then be laid a
wearing surface 1 in. thick, composed of 1 part Portland cement and 1%
parts of coarse sharp sand or of broken granite or other acceptable stone
in size from 34 in. downward. The mortar for the wearing surface shall
not be too wet; it must be spread before the concrete base has had time
to partially set, shall be pressed down hard into the latter, and shall be
troweled to a smooth and even surface. All concrete sidewalks shall be
divided into blocks of not more than 36 sq. ft. All blocks shall be sep-
arated from those adjoining by pieces of heavy tar paper or other effective
means to prevent adhesion of the blocks. The divisions between blocks
shall reach entirely through the concrete and the wearing surface, and
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shall be neatly finished on top with a jointing tool. As soon as the wear-
ing surface has well set a 2 in. layer of sand shall be carefully spread over
it and kept moist for one week by frequent sprinkling.

Concrete curbs shall be divided into blocks corresponding with those
forming the sidewalk, and shall be neatly finished in the same manner.

25. HAND RAILING AND PARAPETS.—The hand railing or
parapets shall be of the material and of the form and dimensions shown
on plans, and shall be brought true to line, and be firmly fastened in the
position shown. If an iron hand railing is used, it shall receive, after erec-
tion, two coats of paint of a color and quality approved by the engineer.
Concrete parapets shall be made as specified in paragraph 8 (a). They
shall be provided with expansion joints at intervals not greater than Io ft.

26, LAMP POSTS AND TROLLEY POLES.—If required, and
furnished by the contractor, they shall be of a design approved by the
engineer. The number of pieces ‘and the minimum cost of each, delivered
on the work, shall be specially mentioned.

27. NAME PLATES.—Two name plates shall be furnished by the
contractor. They shall be of a design approved by the engineer, and built
into the roadway side of the abutment pedestals or such other places as
may be directed by the engineer, one plate being inscribed with the names
of the city or county officials and year of completion, the other being in-
scribed with the names of the designers and contractors, and date of pat-
ents, If the contract price exceeds $20,000, the plates shall be made of
bronze; if it is less than $20,000, the plates may be made of cast iron, in
which case they shall receive two coats of bronze paint and two coats of
best varnish,

28. ERECTION.—The contractor shall employ suitable and compe-
tent labor for every kind of work. The contractor shall furnish all stag-
ing, piling, cribbing, centering, casing, and material of every description
required in the erection of the work; also all plant, including dredges,
engines, pumps, barges, pile drivers, derricks, mixing machines, conveyors,
or other appliances necessary for carrying on all parts of work. The con-
tractor shall make all the provisions necessary to maintain and protect
buildings, fences, trees, conduits, sewers. and other structures, and shall
repair all damage occasioned; shall provide watchmen, red lights, fences,
and other precautionary measures necessary to the protection of persons
and property. The contractor shall assume all risks for loss or damage
incurred by ice, floods. fire, or other causes during the construction of the
work, and until the same is accepted.

20. WORK EMBRACED BY CONTRACT.—The contractor shall
do all the work prescribed in these specifications and as shown on the
plans, for the structure complete from out to out of abutments or retain-
ing walls, including fill, pavement, curbs, sidewalks, and hand railing or
parapets for this length, unless otherwise mentioned.

30. APPROACHES.—The approaches will commence where the
work mentioned in paragraph 29 ends, and they are not included in the
contract, except when specially mentioned. .
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31. CLEANING UP.—After the completion of the work, and: before
final acceptance thereof, the contractor shall remove all temporary struc-
tures and rubbish, and leave the work and surrounding grounds in a neat
and satisfactory condition.

32. MAINTAINING PUBLIC TRAVEL.—If public travel is to be
maintained during the construction of the new bridge, by the construction
of a temporary bridge, or otherwise, it shall be specially mentioned.

33. REMOVAL OF OLD BRIDGE.—If the site of the proposed
structure is occupied by an old bridge, the same shall be removed by the
contractor. The iron work shall be piled on the bank, and the timber and
stone shall become the property of the contractor.

34. ENGINEER.—Whenever the word “Engineer” is used in these
specifications, the same shall mean the Engineer or other public official
who may be properly authorized to act for the party who makes this con-
tract with the contractor.

35. LINES AND GRADES.—Lines and grades will be established
by the Engineer, and no work shall be commenced until these are given.

36. EXTRA WORK.—The contractor must be prepared to do any
extra work that may be ordered in writing by the Engineer, and for this
he shall be paid at current contract rates for work of a similar character,
or if the extra work should be of a class for which no rate is fixed by
current contracts, the actual reasonable cost to the contractor, as deter-
mined by thé Engineer, plus 15 per cent of said cost. The contractor shall
have no claim for compensation for extra work unless the same is ordered
in writing by the Engineer. -

37. INSPECTION.—AIll material furnished by the contractor shall
be subject to the inspection and approval of the Engineer, and the Engi-
neer shall have power to condemn all work which in his opinion is not
done in accordance with this contract and specifications.

38. MODIFICATIONS.—Any modifications of the prescribed lines,
grades, positions, methods, or materials of construction which in the judg-
ment of the Engineer may be expedient, shall be made by the contractor.

39. INTERPRETATION OF PLANS AND SPECIFICATIONS.
—The decision of the Engineer shall control as to the interpretation of
the plans and specifications during the execution of the work thereunder,
but this shall not deprive the contractor of his lawful rights to redress
after the completion of the work for any improper orders or decisions
which may have been received during the execution of the work.

40. ESTIMATES.—Approximate estimates of the work done and
material furnished shall be made on or about the last day of every month,
and a valuation of the same in proportion to contract prices for the com-
pleted work will be made by the Engineer, which sum will be paid to the

- contractor in cash on or about the 10oth day of the following month, less a
deduction of 10 per cent upon said valuation, which shall be retained until
the final completion of the work.
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41. ROYALTY, PLANS, AND SPECIFICATIONS.—These speci-
fications and the accompanying plans contemplate a concrete-steel bridge to
be built under the patents owned by the Concrete-Steel Engineering Com-
pany of New York. As a compensation for royalty, plans, and specifica-
tions the contractor shall include in his bid and pay to the said Concrete-
Steel Engineering Company a sum equal to ten per cent (10%) of the
total contract price, and to insure this payment the party representing the
city, county, or corporation, as the case may be, and who enters into this
contract with the contractor, is authorized, and hereby agrees to deduct,
retain, and pay for the contractor to the said Concrete-Steel Engineering
Company from each monthly estimate, such proportion of the above sum
as the monthly estimate bears to the contract price, until the whole amount
shall have been so deducted, retained, and paid.

42. FINAL PAYMENT.—Upon the completion of the work, the
contractor shall be promptly paid the balance of the contract price which
shall then remain due and unpaid.



APPENDIX B.
SPECIFICATIONS FOR REINFORCED CONCRETE STRUCTURES
EMBODIED IN THE BUILDING ORDINANCES OF THE
CITY OF ST. LOUIS.

(Report of the Special Committee on Reinforced Concrete of the Engi-
neers’ Club of St. Louis.)

DEFINITIONS.

1. Reinforced concrete is a concrete in which steel is embodied in
such manner that the two act in unison in resisting stresses due to exter-
nal loading.

2. Concrete is an artificial stone resulting from a mixture of Port-
land cement, water, and an aggregate.

3. Portland cement shall be as defined in the Standard Specifications,
adopted on June 14, 1904p by the American Society for Testing Materials.

4. An aggregate, as herein used, means one or more of the follow-
ing materials: Sand, broken stone, gravel, hard burned clay. Aggregates
will be divided into two classes, Fine Aggregates and Coarse Aggregates.
A fine aggregate will include all aggregate passing a No. 8 sieve. A
coarse aggregate will include all aggregate passing a I in. ring and re-
tained on a No. 8 sieve.

QUALITY OF MATERIALS.

5. Portland cement shall conform to the requirements of the specifi-
cations of the American Society .for Testing Materials, as adopted June
14, 1904, with all subsequent amendments thereto. '

6. Aggregates.—Fine Aggregates shall be well graded in size from
the finest to at least the size retained on a No. 10 sieve. Coarse Aggre-
gates shall also be well graded in size from the finest to at least the size
retained by a 9/16 in. ring. Fine Aggregates may contain not more than
§ per cent, by weight, of clay, but no other impurities. Coarse Aggregates
shall contain no impurities.

7. Sand shall be equal in quality to the Mississippi River sand.

8. Broken stone shall be either limestone, chatts, or granite, or some
other stone equal to one of these in the opinion of the Commissioner of
Public Buildings.

9. Hard burned clay shall be made from suitable clay free from
sand or silt, burned hard and thoroughly. Absorption of water should
not exceed 15 per cent.

10. Concrete.—The solid ingredients of the concrete shall be mixed
by volume in one of the following proportions:

(a) Not more than three parts Fine Aggregate to one of cement.
(b) Not more than two parts of Fine Aggregate and four parts of
118
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Coarse Aggregate to one of cement; but in all cases the Fine
Aggregate shall be 50 per cent of the Coarse Aggregate.
11. Concrete shall have an ultimate strength in compression in 28
days of not less than the following:
Burned clay concrete—1,000 lbs. per sq. in.
All other concrete—2,000 lbs. per sq. in.
12. Steel shall be Medium Steel or High Elastic Limit Steel. The
physical properties shall conform to the following limits:
Mepium SteEer. HicH Evastic LiMIT STEEL.

Elastic Limit, Not less than 30,000 Not less than 50,000
B n 8 e, £ 1800000 o 1800.000 o
gation, mul. i j—10,000 ~ j=10,c00
Cold bend without fracture 180° flat. ° to radius=

on outer circumference 5 times thickness
Character of fracture, silky silky or fine granular

f=unit stress in steel at rupture.

13. Tests shall be made on specimens taken from the finished bar,
and certified copies of test reports shall be furnished the Commissioner
of Public Buildings at his request.

14. Bending tests shall be made by pressure,

15. Finished material shall be free from seams, flaws, cracks, defec-
tive edges or other defects, and have a smooth, uniform and workmanlike
finish, and shall be free from irregularities of all kinds.

16. The net area of cross-section of finished steel members shall
not be less than ninety-five per cent (95%) of the area shown in the ap-
proved design,

‘ EXECUTION.

17. All reinforced concrete work shall be built in accordance with
approved detailed working drawings. These drawings shall be submitted
to the Commissioner of Public Buildings for approval and no work .shall

L . be commenced until the drawings shall have been approved by him.

18. The steel used for reinforcing concrete shall have no paint upon
it, but shall present only a clean or slightly rusted surface to the concrete.
| All dirt, mud and other foreign matter shall be removed.

19. If the steel has more than a thin film of rust upon its surface it
shall be cleaned before placing in the work.

i 20. In proportioning materials for concrete, one bag containing not
less than 93 pounds of cement shall be considered one cubic foot.

21. The ingredients of the concrete shall be so thoroughly mixed
that the cement shall be uniformly distributed throughout the mass and
that the resulting concrete will be homogeneous.

22. The concrete shall be mixed as wet as possible without causing
a separation of the cement from the mixture, and shall be deposited in the
work in such manner as not to cause the separation of mortar from coarsc
aggregate.

23. Concrete shall be placed in the forms as soon as practicable after
| mixing, and in no case shall concrete be used if more than one hour has
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elapsed since the addition of its water. It shall be deposited in horizontal
layers not exceeding eight inches in thickness and thoroughly tamped
with tampers of such form and material as the circumstances require.

24. The steel shall be accurately placed in the forms and secured
against disturbances while the concrete is being placed and tamped, and
every precaution shall be taken to insure that the steel occupies exactly
the position in the finished work as shown on the drawing.

25. Before the placing of concrete is suspended the joint to be
formed shall be in such place and shall be made in such manner as will not
injure the strength of the completed structure.

26. Whenever fresh concrete joins concrete that has set, the surface
of the old concrete shall be roughened, cleaned and thoroughly slushed
with a grout of neat cement and water.

27. No work shall be done in freezing weather, except when the in-
fluence of frost is entirely excluded.

28 Until sufficient hardening of the concrete has occurred, the
structural parts shall be protected against the effects of freezing, as well
as against vibrations and loads.

29. When the concrete is exposed to a hot or dry atmosphere special
precautions shall be taken to prevent premature drying by keeping it
moist for a period of at least twenty-four hours after it has taken its
initial set. This shall be done by a covering of wet sand, cinders, burlap,
or by continuous sprinkling, or by some other method equally effective‘in
the opinion of the Commissioner of Public Buildings.

30. If during the hardening period the temperature is continually
above 70° F., the side forms of copcrete beams and the forms of floor
slabs up to spans of eight feet shall not be removed before four days.
the remaining forms and supports not before ten days from the comple-
tion of tamping. .

31. If during the hardening period the temperature falls below 70°
F., the side forms of concrete beams and the forms of floor slabs up to
spans of eight feet shall not be removed before seven days; the remaining
forms and the supports not before fourteen days from the completion of
the tamping. But if, during the hardening period. the temperaturc falls
below 35° F., the time for hardening shall be extended hy the time during
which the temperature was helow 35° F.

32. Forms for concrete shall be sufficiently substantial to preserve
their accurate shape until the concrete has set, and shall be sufficiently
tight so as not to permit any part of the concrete to leak out through
cracks or holes.

33. Before placing the concrete, the inside of the forms shall be
thoroughly cleaned of all dirt and rubbish, the forms of all beams, girders
and columns being constructed with a temporary opening in the bottom
for this purpose.

34. If loading tests are considered necessary by the Commissioner
of Public Buildings, they shall be made in accordance with his instructions,
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but the stresses induced in all parts of a structural member by its test
load shall be the same as if the member were subjected to twice the dead
load plus twice the assumed load.

35. All tests of material herein required shall be made by testing
laboratories of recognized standing, and certified copies of such test re-
ports shall be filed with the Commissioner of Public Buildings.

DESIGN.

36. The weight of burned clay concrete, including the steel rein-
forcement, shall be taken at 120 lbs. per cu. ft.

37. The weight of all other concrete, including the reinforcement,
shall be taken at 150 lbs. per cu. ft.

38 Besides the above, in calculating the dead loads, the welghts of
the different materials shall be assumed as given in Table I:

TABLE L.—WEIGHTS OF BUILDING MATERIALS, ETC., IN POUNDS PER CUBIC FOOT.

Material. Weight. Material. Weight.
Paving brick.................. 150 Plaster ............ccvvinuaitn 140
Building brick................. 120 Glass ...l 160
Granite .............000ein.. 170 SNOW . ...iiiiiiii e 40
Marble.............ccooviiinat, 170 SPruce .........oiiiiiiinnnnnn 25
Limestone .................... 160 Hemlock ..................... 25
Sandstone .................... 145 White Piné................... 25
Slag ... 140 Oregon Fir.................... 30
Gravel ............ciiiia.. 120 Yellow Pine................... 40
Slate ........cooiiiiiiiiiian, 175 Oak ..ooiviviniiiiiiiiiien 50
Sand, clay and earth........... 110 Cast iron...........cvvivennnn. 450
Mortar ...........cooooiint. 100  Wrought iron................. 480
Stone concrete................ 150 Steel ...l 490
Cinder . concrete............... 90 Paving asphaltum............. 100

39. The following table gives the uniformly distributed live loads
for which structural members shall be designed when their dead loads are
as given in the first column A:

TABLE II.—ASSUMED CORRESPONDING LIVE LOADS FOR VARIOUS DEAD LOADS

DEAD LOAD. CORRESPONDING LIVE I:OAD.
Pounds per Square Foot. Pounds per Square Foot.

(Column A) () (2) ) W

4o or under. ... ...ttt i e 72 103 155 194
o Z P 63 93 140 175
B0 e 39 84 126 158
70 ..... P 53 76 114 143
B0 48 69 104 130
Q0 e e esecereceieienintan 46 64 96 120
o7 S e, 41 58 87 109
(A 37 53 8o 100
I20 .o e 34 49 74 93
T30 ottt 31 44 66 81
T 29 41 62 78

IS0 OF OVeI. ...ttt ittt enannnnnns 27 30 59 74
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40. The live loads on floors for dwellings, apartment houses, dormi-
tories, hospitals and hotels shall be as given in column (1) of Table II.

41. For school rooms, churches, offices, theatre galleries, use col-
umn (2), Table II.

42. For ground floors of office buildings, corridors and stairs in
public buildings, ordinary stores, light manufacturing establishments,
stables and garages, u.e column (3), Table II.

43. For assembly rooms, main floors of theatres, ball rooms, gym-
nasiums or any room likely to be used for dancing or drilling, use cclumn
(4), Table II.

44 For sidewalks, 300 pounds per square foot.

45. For warehouses, factories, special according to service, but no.
less than column (4) of Table II.

46. For columns the specified uniform live loads per square foot
shall be used with a minimum of 20,000 pounds per column.

47. For columns carrying more than five floors the live loads may
be reduced as follows:

For columns supporting the roof and top floor, no reduction.

For columns supporting each succeeding floor, a reduction of 5
per cent of the total live load may be made until 50 per cent is
reached, which reduced load shall be used for the columns sup-
porting all remaining floors.

48. This reduction is not to apply to live load on columns of ware-
houses and'similar buildings which are likely to be fully loaded on all
floors at the same time,

49. The method used in computing the stresses shall be such that
the resultant unit stresses shall not exceed the prescribed unit stresses as
computed on the following assumptions: .

(1) That a plane section normal to the neutral axis remains
such during flexure, from which it follows that the deforma-
tion in any fibre is directly proportional to the distance of
that fibre from the neutral axis.

(2) That the modulus of elasticity remains constant within the
limits of the working stresses fixed in these regulations and
is as follows:

Steel, 30,000,000 lbs, per square inch.
Burnt clay concrete, 1,500,000 lbs. per square inch.
All other concrete, 2,000,000 lbs. per square inch.

(3) That concrete does not take tension, except that in floor
slabs, secondary tension induced by internal shearing
stresses may be assumed to exist.

UNIT STRESSES.

50. The allowable unit stresses under a working load shall not ex-
ceed the following: .

Burned clay concrete—

Direct compression, 300 1bs. per sq. in,
Cross hending. 400 Ibs. per sq. in.
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Direct shearing, 150 lbs. per sq. in.

Shearing where secondary tension is allowed, 15 lbs, per sq. in.
All other concretes—

Direct compression, 500 lbs. per sq. in.

Cross bending, 800 lbs. per sq. in

Direct shearing, 300 lbs. per sq. in. .

Shearing where secondary tension is allowed, 25 lbs. per sq. in.

STEEL.
MebpruMm StEEL. HicH Evrastic LiMIT STEEL,
Tension, 14,000 20,000

51. The compression in the steel shall be computed from the corre-
sponding compression in the concrete, except for hooped columns.

5z The bonding stress between steel and concrete under working ¢
load shall not exceed the following for plain steel:

For medium steel, 50 lbs. per superficial sq. in. of contact.

For High El Lim. Steel, 30 lbs. per superficial sq. in. of contact.

53. For bars of such shape throughout their length that their .effi-
ciency of bond does not depend upor. the adhesion of concrete to steel, the
allowable bonding stress under working load shall be determined as
follows:

The bars shall be imbedded not less than six inches in concrete as
herein defined and the force required to pull out the bar shall be ascer-
tained. At least five such tests shall be made for each size of bar and an
affidavit report of the test shall be submitted to the Commissioner of
Public Buildings, who shall then fix one-fourth of the average stress thu:
ascertained at failure as the allowable working stress.

54. The unsupported length of a column shall not exceed fiftecen
times its least lateral dimension.

55. In a column subjected to combined direct compression and
flexure, the extreme fiber stress resulting from the combined actions shall
not exceed the unit stress prescribed for direct compression.

56. All columns shall have longitudinal steel members so arranged
as to make the column capable of resisting flexure. These longitudinal
members shall be stayed against buckling at points whose distance apart
does not exceed twenty times the least lateral dimension of the longitudi-
nal member. In no case shall the combined area of cross-section of these
longitudinal members be less than one per cent of the area of the con-
crete used in proportioning the column, and the stays shall have a mini-
mum cross section of three one-hundredths of a square inch (0.03 sq. in.}.

57. If a concrete column is hooped with steel near its outer sur-
face either in the shape of circular hoops or of a helical cylinder, and if
the minimum distance apart of the hoops or the pitch of the helix does
not exceed one-tenth the diameter of the column, then the strength of
such a column may be assumed to be the sum of the following three ele-
ments :
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(1) The compressive resistance of the concrete when stressed not
to exceed five hundred pounds per square inch for the concrete
enclosed by the hooping, the remainder being neglected.

(2) The compressive resistance of the longitudinal steel rein-
forcement when stress does not exceed allowable working
stress for steel in tension.

(3) The compressive resistance which would have been produced
by imaginary longitudinals stressed the same as the actual
longitudinals, the volume of the imaginary longitudinals be-
ing taken at two and four-tenths (2.4) times the volume of
the hooping. In computing the volume of the hooping it
shall be assumed that the section of the hooping throughout
is the same as its least section. If the hooping is spliced the
splice shall develop the full length of the least section of the
hooping.

58. The minimum covering of concrete over any portion of the re-
inforcing steel shall be as follows: "

For flat slabs not less than 1 in.

For beams, girders, ribs, etc., not less than 1 /2 ins.

For columns not less than 2 in. In computing the strength of

columns, other than hooped columns, the outside 1 in. around the

entire column shall be neglected.

59. For flat slabs continuous over two or more supports and uni-

in which w

formly loaded, the bending moment may be taken as v‘g"

equals total load on the span and L the center to center distance between
supports.

60. Beams continuous over supports shall be reinforced to take the
full negative bending moment over the supports, but shall be ccmputed as
non-continuous beams,

61. The minimum distance center to center of reinforcing steel
members shall not be less than the maximum diameter or diagonal dimen-
sions of cross section plus 2 ins.

62. In designing T beams, the width of floor slab, which may be
assumed to act as compression flange of the beam, shall not exceed one-
fourth (14) of the span of the beam, but in no case shall it exceed the
distance, center to center, of beams.

63. If it is necessary to splice steel reinforcing members, either in
compression or tension, the splice shall be either a steel splice that in ten-
sion will develop the full strength of the member, or else the members
shall be lapped in the concrete for a length equal to at least the following:
For plain bars of medium steel, forty times the diameter or maximum
diagonal of cross section. For plain bars of high elastic limit steel, seven-
ty times the diameter or maximum diagonal of cross section. For other
than plain bars, the length of lap shall be in inverse ratio to the ratio of
the allowed bonding stresses as herein required. In no case, however,
shall the steel reinforcement in a beam or girder be lap spliced.
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