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PREFACE

To the beginner, navigation seems a maze of formulas,
a mass of tables and a long list of funny names. In fact,
the extremely confused and complicated way of presenting
the subject reminds the author of the examinations a
licensed electrician has to pass, which are apparently gotten
up to reduce the number of licensed electricians. Many
who navigate ships are poor mathematicians, and though
they may be fine men, good sailors and efficient officers
they are so in spite of their poor mathematics, not because
of it. Navigation is a mathematical subject and should be
so taught. No one can understand navigation unless he
knows some mathematics—arithmetic, geometry, algebra,
analytical geometry and plane trigonometry. The author
does not consider spherical geometry and trigonometry
necessary, and thinks they should be avoided, as will be
seen, but it is absolutely necessary that the general astro-
nomical situation be comprehended. Any one who knows
astronomy can skip the chapter headed “Right Ascension,”
as it was written only to cover this point.

Nearly all books on navigation have a chapter headed
“Practice at Sea,” “A Navigator’s Day at Sea,” “A Day’s
Run,” etc. According to these the navigator is on deck
by dawn, spends his day, without eating, in a maze of
observations, entries, calculations, precalculations, correc-
tions and chart work; takes morning, noon, afternoon, sun-
set and moon readings, star readings and pole star readings,
and if he gets any time for sleep it does not show on the
log. He has the author’s sympathy, and if this little book
really helps him the author will feel fully repaid for his
time and trouble.

The kindly encouragement of his friend, Lt. Comndr.
George Cole Scott, U. 8. N. R. F., and Mr. G. W. Littlehales,
of the U. S. Hydrographic Office, is gratefully acknowledged
by the author.
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RIGHT ASCENSION

The name 18 unfortunate; the words do not comvey the
meaning of the term. In the first place, looking down on
our solar system from the North Star, as it is usually
shown, right ascension is measured to the left, counter-
clockwise, and in the second place, it never measures ascen-
sion in the ordinary sense, i. e, how high the object is in
the heavens. In practice it has only a very special and
technical meaning, which must be understood to be used
with confidence and accuracy.

In order to make it easier, we will assume the North Star
(Polaris o Ursy Minor) is at the North Pole. It is
not by about 1°, but it simplifies matters to have a definite
object at this point. At the exact vernal equinox (about
March 22nd) pass a plane through the earth’s center, sun’s
center and Polaris. This plane will contain the earth’s
axis of rotation, and will not be perpendicular to the plane
of the earth’s orbit around the sun, but will cut it at an
angle to the left 23° 26.9’ out of the perpendicular. This
plane will almost pass through Alpheratz (« Androm)
which is then on the other side of the sun from the earth
(i. e, sun is in Aries). This plane is the prime zero plane
of Right Ascension, and any object having this dirction
from the earth has zero Right Ascension. It is to be noted
that the zero direction is toward Aries and any object
in the opposite direction has 180° or 12 hours Right
Ascension.

Right Ascension is measured to the left all around
the circle from Aries and is given sometimes in degrees,
minutes and seconds—but much more frequently in hours,
minutes and seconds, 24 hours making 360°. These hours,
minutes and seconds are siderial hours, minutes and
seconds, because they are the only hours, minutes and
seconds in which 24 hours, 0 minutes and 0 seconds mean
exactly 360°. 24 hours, 0 minutes and 0 seconds of solar
time is more than 360°, in fact 360°, 59’, 10”, so that if
one uses solar time for Right Ascension the angles and
figures are about 27/100 of 19, too great. As before stated,
this zero plane of Right Ascension does not strike any
prominent stars in either direction from the earth, Toward
Aries it comes near < Andromeda (Alpheratz) and 3 Cas-




8 RIGHT ASCENSION

siopeia (Calph). In the other direction, 180°, 12 hrs, Right
Ascension toward the dipper (Ursa Major) it now comes,
almost through the one where the handle joins the bowl
(A Ursa Major) and A Centauri (in the Southern Hemis-
phere). : ,

Let us consider the earth at any point in its orbit. That
is to say, take any day and hour in the year you choose.
Pass a plane through the earth’s axis parallel to the zero
plane. This plane will cut the earth on two meridians.
The meridian toward Aries is the meridian of zero Right
Ascension and is called the meridian of siderial noon. The
meridian the other way (toward the dipper) is the meridian
of 180° or 12 hrs. Right Ascension, and is called the
meridian of siderial midnight. Strange as it may seem, on
the autumnal equinox, siderial midnight is exactly solar
midday or noon by the sun (called local apparent noon).
It is well to imagine the earth spinning on its axis, trav-
eling slowly in its orbit around the sun, and carrying
with it its parallel plane of siderial noon and midnight.
Figure 1 shows a birdseye view of this in which the earth
with its plane of zero Right Ascension is shown at point
“p” in its orbit, also at its four cardinal points, vernal
equinox, midsummer, autumnal equinox and midwinter.

If we look down on this from Polaris the view is much
simpler, as shown in Figure 2, Unless this view (No. 2)
is comprehended, Right Ascension will always be more or
less of a puzzle. If, however, it is comprehended, Right
Ascension has a physical meaning and can be laid off with
a protractor with considerable accuracy, so much so that
most problems can easily be worked out graphically within
two or three minutes (siderial time minutes) and the fear-
ful mistakes of a parrot-like working of book instructions,
formulas and almanac figures entirely prevented.

The orbit of the earth is so small, compared with the
distance of the stars, that their Right Ascension does not
change with the earth’s movement, but such is not the case
with the sun, moon and planets. The Right Ascension of
the sun increases on an average 3 minutes and 56.555
seconds each day, due to the earth’s movement in its orbit
around the sun. The moom’s Right Ascension increases
about one hour each day owing to its movement in its orbit
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RIGHT ASCENSION 9

and the earth in its orbit. The increase is variable,
from about 27 minutes to about 65 minutes. The Right
Ascensions of the planets vary greatly from day to day,
sometimes increasing, at others decreasing, due to their
movements in their orbits relative to the earth in its orbit.
Indeed they get their name planet (wanderer) from the fact
that they apparently move so erratically amongst the fixed
stars. The rotation of the earth on its own axis has no
effect on the Right Ascension of a celestial object (nor does
it affect its declination), and owing to the fact that the
earth’s diameter is negligible in regard to the distance of
all celestial objects, except the moon, the place on the earth
from which the view is taken does not affect matters. Itis
to the fact that a given Right Ascension and declination
is applicable all over the world and is not affected by the
earth’s rotation that these two locative angles are of such
value and in such universal use. To show that in actual
practice the plane through the earth’s center, the sun and
Polaris at the exact equinox is absolutely the plane of zero
ascension, the following example is given:

On March 21, 1919, the sun had zero declination (i. e,
crossed the line) at 4.18 P.M., Greenwich mean time. On
March 21, 1919, the Nautical Almanac gives the Right
Ascension of the mean sun at Greenwich mean noon as
23 hrs. 51 mins. 48.9 secs. Adding for 4 hrs. and 18 mins.
past noon 42.4 secs., gives mean suns right ascension 23 hrs.
52 mins, 31.3 secs. This is the mean sun, i. e. an imaginary
sun keeping clock time. The actual sun was at this date
and hour 7 mins. and 28.6 secs. behind this, i. e. to the left
(the direction in which Right Ascension is measured) and
therefore has to be added 23 hrs. 52 mins. 31.3 secs. plus
this is 23 hrs. 59 mins, 59.9 secs. Since 24 hrs. is zero
ascension and tables only go to 1/10 seconds, this is con-
sidered an accurate check.

To show that Right Ascension, in practice, is measured
from the plane passing through sun center, polaris and
earth’s center at the exact vernal equinox, we will con-
sider the earth to have made a quarter turn around the sun,
i. e., for it to be midsummer. In making this quarter circle
around the sun, the sun will apparently have swung around
to the left 90°, i, e., its Right Ascension will have increased
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from O to 6 hrs. At midsummer the sun’s declination is
highest. The Nautical Almanac for 1919 shows the sun
reached its highest declination June 21st, 23 hrs. 54 mins.
Greenwich time, and gives its Right Ascension at this time as
5 hrs. 58 mins. 27.5 secs. On this date the equation of time
shows the sun behind by 1 min. 32.5 secs., which therefore
should be added and gives us 6 hrs. 0 mins. 0 secs. Right
Ascension. '

Knowing our longitude and the right ascension of any
celestial object, we can get the correct time by observing
its transit across our meridian. Thus on August 1, 1919,
the star Enif (3 Pegasi) crossed the observer’s meridian
at 6 hrs. 21 mins. 58 secs. by his chronometer, which was
supposed to carry Greenwich mean solar time, the observer
being on 100° East Longitude in the island of Sumatra and
wished to check his chronometer. In order to show its
application and advantages, we will first solve this graphi-
cally. In Figure 3, we first lay off the elipse of the earth’s
orbit as projected on the equitorial plane with its two axts,
and the sun in the middle. The mean sun had at time of
observation, by the Nautical Almanac, 8 hrs. 37 mins. 13.4
secs. Right Ascension. We lay off angle Aries, Sun, “R.”
8 hrs. 37 mins. and carry it back until it strikes the earth’s
orbit. This gives the position of the earth on August 1st,
because it is the only position in the orbit from which the
sun has this Right Ascension. According to the Almanac
the Right Ascension of 3 Pegasi is 21 hrs. 40 mins. 16.4
secs. We lay off the angle Aries, earth, 3 Pegasi, 21 hrs.

40 mins. Greenwich is 100° west of the point of observa-
tion, so we lay off the angle = Pegasi, earth, Greenwich
100°. The angle sun, earth, Greenwich, should give Green-
wich time at instant of observation. This angle measured
by our protractor is 6 hrs. 24 mins, siderial time, equal 6 hrs,
23 mins. mean solar time approximately. As the chrono-
meter reads 6 hrs. 22 mins. approximately, we know our

graphical solution is within the error of laying off. We
therefore only have to determine this angle, Sun, Earth,
Greenwich, accurately. This angle by Fig. No. 3 is angle
Aries, Earth, S Pegasi, less the sum of the two angles Aries,
Earth, Sun and 3 Pegasi, Earth, Greenwich.
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RIGHT ASCENSION 11

It is figured thus: .
Right Ascension of 3 Pegasi_______ 21 hrs. 40 mins. 16.4 secs.
Sun’s Right Ascension—
. 8 hrs. 27 mins. 13.4 secs.
100° Siderial time—

6 hrs. 40 mins: 0.0 secs.

15 hrs. 17 mins. 13.4 secs.

Angle Sun, Earth, Greenwich in

giderial time._ - 6 hrs. 23 mins. 3.0 secs.
Deduction to change to mean solar

time 1min. 2.7 secs.

Greenwich mean solar ﬁme' of
observation____ 6 hrs. 22 mins. .3 secs.

The observer’s chronometer was therefore 2.3 secs. slow.

The preceding example has been given to show how hour
angle is obtained. - It is the first step in a large part of
astronomical work and nearly always the preliminary step
in navigation. It is essential, it should be understood, and
one should be able to determine with understanding, ease,
accuracy and certainty the hour angle which exists at any
given instant of time between any given spot on the earth
and any given heavenly body. To do this he must have
available a nautical or astronomical almanac which covers
the instant at which the angle occurs and which gives the
right ascension at any time of the heavenly bodies and
their declination, also the equation of time, and in addition,
times of transit and a few convenient tables such as siderial
time into mean solar time and vise-versa, etc. The Super-
intendent of Documents, Washington, D. C., sells it each
year for 35 cts., so there is no excuse for being without it.

In navigation, longitude comes out the sum or difference
of two hour angles, one the hour angle between the object
sighted and Greemwich, which is determined from the
almanac and chronometer time of observation, and the
other the hour angle between the object sighted and the
observer, which is determined by proper calculation from
the angle read on the sextant. This last hour angle ex-
pressed in degrees, minutes and seconds is “f” in the equa-
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tions given later. The other hour angle (the first men-
tioned, i. e.,, the one between the object and Greenwich)
does not appear in the general equation, and to get longitude
the two are added or subtracted as their positions in a ﬁgure
like Fig. 3 call for.

In Fig. 3 we have an example as difficult as any that will
be encountered, indeed those usually encountered are a bit
simpler. It is well to remember that when the sun itself
is not sighted on we can use the mean sun, but when we
sight on the sun itself we use the actual sun and we must
employ the equation of time and move the mean sun to
where the actual sun is, or we will be out an angle equal
to the equation of time when the sight is taken.

The ellipse of Figs. 2 and 3 has approximately a major
diameter of 180 million miles and a minor diameter of
approximately 165 million miles. On the paper it is well
to draw 5” major diameter and 414’/ minor diameter, and
if there are any planets in our figuring we must draw this
ellipse if we wish to show their location correctly. If, how-
ever, we, as is more frequent, have only the sun and a fixed
star, we can use a circle instead, for by construction we
have the sun’s right ascension correct, and since the fixed
stars are at infinity even if we put the earth 8 or 10
million miles out of place on our diagram it will not affect
their Right Ascension, and therefore the result of our
work. It is well, however, to always remember that it is
an ellipse, for otherwise we have a very incorrect concep-
tion of the situation.
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LATITUDE"

From diagram 4 it will be seen that the altitude of
Polaris is the same as the latitude of the observer, and it
would at first seem that all one would have to do to get
one’s latitude would be to go out after dark and take the
altitude of Polaris. There are troubles. In the first place,
Polaris is not at the pole, but makes a small circle around
it, which will throw us out, and to figure a small circle is
about as hard as figuring a large one. In the second, in
order to take an altitude at sea, one must see both star and
horizon, and -since this in general only occurs about dawn
and dusk, our opportunities for observation are limited.
Furthermore, the North Star cannot be seen in the South-
ern Hemisphere, and even for the first five or ten degrees
of latitude in the Northern is so low to the horizon as not
to permit an accurate observation. It is frequently used
in the North Atlantic and Pacific, but it cannot be said to
be a general solution.

By referring to Figure 5 it will be seen that if we take
the altitude of any heavenly body on the meridian,
ALTITUDE + LATITUDE 4 DECLINATION = 90°
when the object “S” is on one side of the equator and the
observer on the other. When, however, the object and
observer are both on the same side of the equator the signs
of A, L and D depend on conditions of which there are
three. First, upper transit L > D when A + L — D =
90°; second, upper transit L < D when A — L + D = 90°,
and third, lower transit L > DorL < Dwhen — A + L |
D — 90°. The form A 4+ L + D = 90° is better than
one complicated by such things as zenith distance, polar
distance and calculating constant, which are entirely un-
necessary for either proper understanding or actual work-
ing, and the movement of the minus sign to left make the

signs easy to remember. (See Fig. 6.)

The ex-meridian determination of latitude involves the
use of the fundamental equation connecting altitude, lati-
tude, longitude and declination, which will be established _

under the head of longitude and is therefore left for men- :

tion under that heading.

|||A|
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LONGITUDE

Longitude is the pons-asinorum of the navigation just
as wattless currents are the poms-asinorum of electricity.
If we could always have some known body visible in the
heavens just in the line we wanted, it would be nearly as
easy to determine longitude as latitude, but the trouble is
the sun, the only thing visible in the day, seldom gets in
the line we wish, and even with the large number of stars
listed in the almanac, it is rarely possible to find one just
in the line we want. The ideal position is one having the
same declination as we have latitude, and of course on the
same side of the equator. The result is that in order to
get our longitude we are forced to a very general solution,
that is, we have, at least theoretically, to take the altitude
of any known heavenly body whenever and wherever we
can see it, and from this meager data calculate our longi-
tude. The following is a perfectly general solution of this
proposition, but it is to be remembered that there are prac-
tical limitations such as that “S” must be visible from
“p,” that an accurate altitude cannot be had with “S” too
close to the horizon, and that if either OS and Op come
too near coinciding with any of the axes, certain angles
cannot be accurately determined, etc..

Suppose from any point “p” on the earth the altitude of
a heavenly body “S” be taken. Pass a plane through “S”
and the axis of the earth and draw a line OS from the
earth’s center to the object. This plane gives us Fig. 7
Now draw a line through “p” to the earth’s center. It will
appear as Op and assuming the axis of the earth for our
X and the other two (Y and Z), as marked in Figs. 7, 8,
and 9, we have in Fig. 7 the angle ZOS, equal to the decli-
nation of the object sighted, and in Fig. 8 the angle ZOp,
equal to longitude of the observer from the meridian of
the object “S,” commonly called the hour angle of the
observer and is “{” in formulae. The line Op is in a cone
whose axis is X and whose generatrix makes with X an
angle equal to 90° minus the latitude of the observer. We
also have the angle SOp (in space between OS and Op) equal
to 90° minus the observed altitude.
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LONGITUDE 15

Taking the symmetrical equation to a line in space, i. e.
as given by its direction cosines, we have for line OS,
cos. « = 8in D, cos 8 = O, and cos y = cos D, and the
equation of the line OS is

x y z

Sin D 0 Cos D

For line Op we have:
p=—2xcosec L, 224 y> = x?cot? L,
y—ztangt and z=ycott
Substituting, we have:
y cot L

b4 cosec t

ot L
ec t

[]

Il

and

z
X

and its direction cosines are:

cos o' — X — sin L, cos B! — 3 — sin t cos L, and
[ P

z
cos y' =—— = cos t cos L
P

and the equation of line Op is:
S y oz
sin L ~ sintcos I  cost cos L

The angle ® between any two lines in space is given by
the equation:

€08 ® — cos o« cos «' - cos B cos B - cos y cos y!

and substituting, we have:

cos (90-Alt) — Sin Alt — Sin D sin L - cos D cos L cos t
which is the usual sine cosine formula.
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The signs of the sines and cosines vary with the quadrants
in which “S” and “p” occur, and if these sines and cosines
are properly inserted the signs in the equation will take care
of themselves. This is, however, not easy to do, and it is
better to put them in according to the conditions of the case
in hand. In the first place, since the earth is opaque, we have
to measure altitude upward, and therefore sin A is always
positive, though in its usual princely manner mathematics
ignore such trivial details, and if the earth were trans-
parent and non-refractive and we could get downward
sights the equation would handle them as well as the up-
ward ones, Either of the other two quantities in the equa-
tion may be positive or negative. The main question is
whether they shall be added or subtracted—that is whether
they have the same sign. If both “S” and “p” are on oppo-
site sides of the equator subtract the smaller from the
larger. If “S” and “p” are on the same side of the equator
add them for upper transit and subtract the smaller from
the larger for lower transit.

A very large part of navigation concentrates about this
formula or some form of it. In the early days it was
chiefly used to determine “{” by inserting in it the latitude
from noon observation, dechnauon from almanac and alti-
tude from observation. The later method is to assume
your chart position correct and figure what altitude you
should get. Go on deck and get it if you can. If you can’t,
correct your chart position to agree with what you get.
Either way, in fact, any way you do it, the equation has
to be solved to proceed along the generally accepted line.
The question here is how to solve it the best way. We will
go over the various ways of solving it and see which is best.

The equation is easily solved graphically by methods set
forth in any good book on Descriptive Geometry, but even
on a large sheet and with careful work 20 or 30 minutes
is as close as you can be sure of your result.

The next solution would seem the slide rule, but a
moment’s consideration will show that this won’t do. Even
the 24” rule hardly gives three places down the line. To
be sure of minutes we should have five places, i. e., a slide
rule 200 ft. long. So it is pretty safe to say no ordinary
guessing stick will do the job,
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Of course we can solve by going at it straight, i e,
inserting natural functions to five places and multiplying
out. This was found very laborious and many arithmetical
mistakes occurred. So Logarithims were adopted, which
is now the standard method.

In order to “simplify” (?) they usually make use of the
fact that haversine X — half versed sine X = 5 (1 —

cos x) = sin? —2x— and write the equation as follows:

HavZ —hav (Co.L—P.D.) 4 [ (havCo.L 4 P.D.) —
hav (Co. L — P. D.) ] hav t in which Z — 90 — Alt, and
P.D.—9—D

How anyone can call the above simplification the author
cannot understand. It almost hopelessly confuses the
student, and in fact many who are far beyond this stage.
Of course anyone who works like a Chinaman can fill out
the printed forms from the tables and get the result, but
this is not conducive to any mental grasp of the subject,
nor is it any saving of time. In the author’s opinion the
sooner it is cast aside as obsolete the better.

If one has to use logs, the author would heartily recom-
mend the use of Martell’s Tables (W. McGregor & Co.,
Glasgow). To solve for “{” to seconds (time seconds =
15 angular) only the addition of three four-place logs are
required and the subtraction and addition of two angles.
The chances of error are slight and the results are accurate.
In fact where “¢” in hours, minutes and seconds is sought
it is about as good a way as any. It does not, however,
lend itself well to the determination of Altitude, which is
what is wanted in the new methods of navigation.

Decidedly the easiest and most accurate way to solve the
equation
sin Alt = sin D sin L 4 cos D cos L cos t

for altitude is to use Creele’s Tables (Vereiningung Wissen-
chaftlicher Verleger—Berlin). Be not alarmed, it is only the
multiplication table up to 999x999, but for ordinary multi-
plication it is as much ahead of logs as daylight is of
darkness.
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Take the example given in the U. S. 1919 Bowditch, page
157, in which we have:

D= 19° 31’ 18” N — sin—! .33416 — cos—! .94251
L= 41°30' 0” N — sin—! 66262 — cos—! .74896
t—=2793° 00 0” = cos—1,39073

Using Creele, we get:

221108 704616 274950
207 382 . 514
“a” 105 “b” 904 ‘(c” 351
221420 705902 275815
275815

497235 — sin 29° 49’ 01”

Bowditch gets Alt — sin—! 49723 — 29° 49’ 00”, but
he only works to five places, and we have used six and in
the sixth have found a missing second. “a” is the product
of the two sines just as it comes from Crelle. “b,” that of
the first two cosines, and “c” this product multiplied by
the last cosine. If the reader should try Crelle do not

follow his instructions for the use of his tables. If you
do you will get the product to probably 12 or 18 places
when you really need it but to five surely, and use six to
make safe. Consider 33416 as 334'¢ and 66262 as 662°,
etc. Do not trouble to multiply 16 by 62. It can never
amount to as much as one in the sixth place which you
dont’ need.

" It is a good plan first to work out the result to three
places on a 20 inch slide rule and find of what angle it is
the sine and note if this angle is reasonable or not. By this
means a gross error in taking out any of the sines or
cosines is detected, a check is obtained on the first three
figures and arithmetic is wholly relied on for only the last
three places of the result (i. e, for say minutes and
seconds).






> (I
s"(r«”

<Y .
B S O Coex
. < 2
e %
&
Q .
‘ ‘:"Aﬁ s"“l <
= Ssglee”
S,
g™ DaTA ey 5
Ee lo SUMMER toakina souTH
Fe 11

H

NOON L.AT.

WwnTer Loo kMgSoth . D=zg:;1g350~. X



LONGITUDE 19

Crelle lends itself as well to solving the equation in the
form:

cos t — sin Alt sec D sec L o~ tan D tan L

so that with Crelle available Martelli’s tables are not needed.
Furthermore Crelle comes in for all sorts of work, and if
one once acquires facility in its use logarithims will be
seldom employed except for division, powers, roots, inte-
gration and laying off curves. The book is much used by
actuaries, but strange to say is seldom to be found in an
engineer’s library.

Logarithims, haversines, zenith distances, polar distances,

ete., have for several generations so concealed the real opera-

tion of the sine-cosine formula that many good navigators
have gone to their graves, or to Davy Jones’ locker, without
seeing how it really works. It is very much like the equa-
tion for the electric circuit. Indeed it is this resemblance
that led the writer to take up the subject, particularly the
application of calculus. Fig. 10 shows how the general
equation operates with time (L. A. T.) with both the posi-
tion and object on the same side of the equator and upper
transit, and Fig. 11 when one is on one side of the equator
and one on the other. The small circle with radius sin D X
sin L gives a constant value at all hours. The radius of this
circle is zero if either position or object is on the equator
and increases as either or both recede from the equator.
The larger circle setting on the horizon is the value of
cos D X cos L X cos t The length of the radius from 0
to it gives its value at the hour to which the radius points.
It is maximum at noon and zero at 6 A. M. and 6 P. M.
(L. A. T.). If both position and object are on the equator,
the diameter of this circle is unity. As either position or
object or both recede from the equator its diameter de-
creases till when either reach the pole it is zero. When
both position and object are on the same side of the equator
sin A is the sum of these two quantities, as in Fig. 10. When
they are on opposite sides sin A is the difference, as in Fig. 11.



LATITUDE AGAIN

The general equation is hard to solve for L, so for ex-
meridian determinations of latitude we consider the general
vectorially thus:

(sin D) sin L + (cos D cos t) cos L — Sin A, and the
resultant vector is \/ sin> D |- cos® D cost Sin (L + tan—!
sin D = cos D cos t) — Sin A, from which we can write

L — tan—1 tan D sec t = cos—! sin A cosec D sin tan—!

tan D sec t which is the usual ®-®' formula. The general
equation also offers an excellent method of checking dead-
reckoning latitude, for in a meridian observation { — o
orcost — 1 and Sin A — Sin D sin L =+ cos D cos L, and
at exmeridian Sin A = sin D sin L =+ cos D cos L cos t,
and the difference or change in Sin A is cos D cos L (1 —
cos ¢) which is additive for upper transit and deductive -
for lower transit. Thus take the example given in U. S.
1919 Bowditch, page 136, in which observed A = 23°,
56’, 01" sin A = .40567, D = 57°, 39/, 12”7, Lat by D. R
= 52°,59’ and ¢ = 33°, 24’, 30””—(2 hrs. 13 mins. 38 secs.).
The change in Sin A is .535 x .602 x (1 — .8349) = .0532.
Deducting this (since observation was at lower transit) we
get at meridian sin A = .35247 or meridian Alt = 20°,
38’, 16”7, and therefore latitude — 52°, 59 , 04", Bowditch
gets by ¢-¢’ method latitude 52°, 59, 03””. In cases where
the observation is nearer noon the correction is smaller,
easier calculated and more accurate, for if the observation
is taken within a half hour of noon the amount by which
the sign is changed won’t run over three figures and can
be worked out accurately on a 20” slide rule. If D. R. lati-
tude is out much a second figuring using the obtained lati-
tude as a start will probably give so little change in L as
to make one feel safe. Indeed if D. R. latitude is any-
where near right it is easier to feel for L with A (sin A)
== ¢o8 L cos D (1 — cos ) than to go through the ¢-¢’
‘method or to use the a 4 a {* method on a star.

* The right way, however, to deal with an ex-meridian

‘aight for latitude is to use calculus as explained in chapter
" headed “The Author’s Method.” It is far superior to any

mentioned above.



THE APPLICATION OF
DIFFERENTIAL CALCULUS

The rest of the equations used in navigation cannot well
be established without the use of either spherical trigo-
nometry or calculus, and the latter is so much the easier
method that it surprises the writer to find it is not the one
usually employed. In navigation our differentials are
minutes, which, in the case of altitude and latitude, are
nautical miles on the chart, but in the case of longitude,
minutes are not as a rule nautical miles on the chart. At
the equator a minute of longitude is a nautical mile on the
chart, and at either pole it is nothing on the chart. In
between or rather all over the world a minute in longitude
on the chart is a nautical mile x cos latitude. Since charts
are flat and all directions measured with the same scale
we can lay off our dA’s and our dL’s in nautical miles, but
out d#’s all have to be laid off in 1 x cos L nautical miles,
and in the solution for angles on the chart d¢ alone is not
used but is always accompanied with its cos L. Thus
dt;% on the chart is the sine of the angle of azimuth Eut
‘}iit broadly speaking has no physical meaning on the chart.

Its physical meaning is the rate of change of Altitude with
time, and since time minutes are 15 times as great as
angular minutes, we would have to take altitude readings

dA
every four seconds to get 7 in keeping with our other
differentials.

When one gets a clear conception of the physical mean-
ings of these differentials, calculus opens up a field of short
cuts and an insight into the equations of navigation which
cannot be acquired as easily any other way. Thus on dif-
ferentiating the general equation Sin A = sin D sin L 4
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cos D cos L cos . Supposing L constant, we get

+ Sec A cos D cos L sin ¢ or 92— — Sin Z —

y; _—
dt dt cos L

=+ Sec A cos D sin t
the usual equation for azimuth. We also have (fig 1%)

dtcosL =————£—A—.— dA. Since this equation
cos D x sin t

is readily solved with a 20" slide rule with all the degree
of accuracy used in chart work, and since there are no con-
fusing signs, it seems to the writer it should be used in
chart work in place of azimuth when the altitude is known,
for if we draw a circle about our chart position with a
radius equal our altitude difference, we know our line of
position must be a tangent to this circle, and since it must °
also pass through the point determined by the first equa-
tion, we can draw the line readily on the chart without
determining azimuth or laying off any angle whatsoever.
To make this clear by application, take the example given
in U. S. 1919 Bowditch, page 159, in which A = 70°, 25/,
30”7, D = 10°, 03,00’ N. L. — 6°, 00", 00” S., t — 11°, 15" 00",
and Altitude by observation = 70°, 11’, 03", and altitude dif-
ference therefore 14.45 nautical miles. We have df cos L
= 14.45 X .335 — JB47 X .1951 = 14.45 X 1.74 — 25.2
nautical miles. Marking this off on our parallel of latitude
(Fig. 12), we get point “¢” which is in our line of position,
and drawing a circle around our chart position “p” with a
radius of 14.45 nautical miles, we get our line of position
by drawing a line through “{” tangent to this circle. Bow-
ditch gives aximuth 35°. Since 14.45 = 252 = .574 =
sin 35, 2’, we can see that even with so large an altitude
difference as 14/, 277 the differential equation can be relied
on for accurate results. Indeed this example was selected
for the purpose of showing this. A small dA on a small
scale chart gives a circle too small to give direction accu-
rately. Under these conditions move the decimal point of
both dA and d¢ cos L one place to the right, and on this -
scale get the direction of the line of position. Then with

parallel ruler bring it up tangent to the actual dA circle,
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If we differentiate the general equation regarding ¢ as
constant, we get:

dL = dA X cos A — (sin D cos L 4= cos D sin L cos )
and we also have: (Fig. 12).

oosZ=(-1£[T=secA(sinDcosI._—,_-costinI.cost)

and since on the horizon A — 0,sec A — 1, and sin A — sin D
sin L 4 cos D cos L cos ¢ — 0, we get:

sin amplitude — sec L sin D
which is the usual formula. It should also be noted that

if we differentiate the above equation fof azimuth, we get
dZ — dA cot Z tan A, the usual statement.

Captain Sumner’s idea of his line was a series of points
at which the same altitude applied, at the same instant of
time—so that if in the general equation we consider alti-
tude constant we specify a line of position. Differentiating
on this basis, we get: (Fig. 12).

dt tanD _ tan L . _dtcosL
aL" snt * 1;mand also cot azimuth =—ar =
(::;1111_"])$::1; i’ cos L — (tan L cos t - tan D) cos L cosec t

As it is not easy to put the signs of the various trigo-
nometrical functions correctly in this equation, it is best,
as in the general equation, to be guided by conditions. In
this equation add the two quantities when “S” is on one
side of the equator and “P” on the other, but when both
“S” and “P” are on the same side of the equator, subtract
the smaller from the larger for upper transit and add them
for lower transit. With a 20” slide rule it can easily be
solved to within 20 minutes, and in the form cot Z = cot ¢
sin L - tan D cosec t cos L it is readily solved by Crelles
tables to seconds. Since the result is the tangent of the angle
the line of position makes with the meridian it is also the
longitude factor of the line of position and its reciprocal the
latitude factor, and we get ca one figuring a good deal that is
desirable. The author has not seen this equation in any book
he has read, and, as it may be new, a few examples to show
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its correctness will be given. Thus referring to U. S. 1919
Bowditch, page 146, in which L — 30°, 256’ N., D — 22°,
07’ 8., and t — 39°, 52', we get cot Z — (.587 X .768
.406) .862 X 1.56 — .857 XX 1.345 — 1.151 — cot 139°, 01’
(Bowditch gives 139°, 03’) and page 157, in which L —
41°,30’, N., D. = 19°, 31’, 18” N., and t — 293°, 00", cot Z—
(.885 X .391 — .355) .749 X 1.086 — .009 X .814 —
0073 — cot 89°, 35’ (Bowditch gives 89°, 37’). This equa-
tion facilitates an accurate direct precalculation of Z when
the D. R. location and time of sight is prearranged and per-
mits prewriting the right side of the equation for a line of
position. It is usual practice to precalculate A. The sine
cosine formula trahsformed to
Sin A = (tan D tan L + cos t) cos D cos L

offers a convenient way to precalculate A. Thus take the
example given on page 18 in which D — 19°, 31’, 18” N —
tan .35454, L — 41°, 30, 00” N — tan-! .88472, { — 293°,
00’, 00 = cos .39073.

.354°4 354 , 884
.88472 72 54
1416 T 708 3536
2832 2478 4420
2832 254.88 477.36
255
477

313668 — tan D X tan L
.390730 add cos. t
704398 whose log. is ............ 9.84782
log. cos. 19°, 31’, 18”.... 9.97428
log. cos. 41°, 30’, 00”.... 9.87446
log. sin A ...... 9.69656
or A =29°,49’, 01” (Bodwitch gives 29°, 49’). This method
at least presents the advantages of being clear and of re-
quiring only the usual trigonometrical tables and is still
shorter if Crelle be at hand and the product of the two tan-
gents be taken therefrom instead of figured in pencil as
above. When both A and Z are preclculated and the equation
of the line of position prewritten, the only work left to be
done after the second sight is tken is to insert the altitude
correction dA, and solve for the chart corrections, as shown
in the next chapter.
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Designating the latitude correction as dL and the longitude
correction as dt we note, as previously mentioned, that, on the
chart, the North or South correction is dL nautical miles and
the East or West correction is dt cos L nautical miles, These
two chart corrections, dL and dt cos L, are due to different
causes and are not in any way co-connected. Either may be
zero or any reasonable value and either positive or negative
without in any way affecting the other. When, however, we
take an observation, ascertain dA (the altitude intercept) caleu-
late Z and draw a line of position, we then tie dL and dt cos L
together by the condition that the position must be on this line,
or, in the language of calculus, dA, dL and dt cos L must comply
with the general equation Sin A — sin D sin L + cos D cos L
cos t in the broadest sense, i. e., when A, t and L are all three
variable. Differentiating on this basis we get

dA =— dA,, 4 dA,;; — Sec A cos D cos L sin t dt -
sec A (sinDcos L — cos Dsin Lcost) dL  or
dA =— Sin Z dt cos L 4 cos Z dL

or, in words, the altitude intercept equals Sin Z times the chart
East or West correction plus cos Z times the chart North or
South correction, all three measured in nautical miles. For those
who do not appreciate calculus it is well to remove the differen-
tials, call the E. & W. correction “x,” the N. & 8. correction
“y,” and write the equation “Altitude intercept —=xsinZ 4 y
cos 2” in which as before the altitude intercept, the correction
“x” and the correction “y” are all three given in nautical miles.
‘While this destroys all trace of the equation’s ancestry this form
is more easily comnrehended and works as well if it be borne
in mind that the longitude correction is x —— cos L.

The equation “dA — Sin Z dt cos L -} cos Z dL” sets forth the
sum total of all that can be learned from an observation,
which is generally expressed by the statement that it takes
two observations to get a location. While this, in a sense, is true,
all that is really required besides one observation is some other
observed physical fact of sufficient moment and magnitude to
be measured accurately by chronometer or sextant or both with
which to tie together dL and dt cos L from an independent
source. Any condition which will either give us an equation
containing both dL and dt or will give either dL or dt alone,
will fill our needs. If another sight on the same object is used,
time must be allowed for Z to change sufficiently for Sin Z
and cos Z not to have values too close to the former ones.
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. Some have an idea that if an observation gives dA — 0
the position must be correct. Such is not the case. It -
only shows :

co8 Z dL = 8in Z cos L dt or that

_
dt cos L

which, while true at the D. R. position, is also true at an
infinite number of other places on the line of position.
Having dA =0 does not make the D.R. position correct,
nor in general when dA is not zero can a really proba-
‘ble position be obtained by drawing a line of position
and moving to the nearest point on this line as is frequently
done, There is really no more reason to move to one point
on the line of position than to move to any other point on
the line of position, unless some outside considerations, such
as that the error is more likely to be in t than in L or visa
versa, have weight and induce the almost arbitrary selection
-of a special location on the line of position.

In an ex-meridian sight for latitude if M equals the
number of G. M. T. minutes the observation is taken before
“or after L. A. Noon we have t — .25M° and can write

dA

A cos Z
‘which is easily filled out. If M is accurately known dt —
0 and we have dL — dA sec Z. What can therefore be done
with an ex-meridian sight for latitude depends entirely upon
how accurately M is known.

From Fig. 13 it can be seen that

dA — 8in Z dt cos L 4 cos Z dL

"is & line of position and

dtdo;sla_ cot Z = (tan L cos t = tan D) cos L cosec t

= tan Z

==

— tan Z dt cos L

is a line parallel to it through the D, R. position. The
expression :
Sin Z dt cos L 4 Cos Z dL = dA
is the equation for a line of position in terms of its direction
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cosines and perpendicular from the origin. Either of the
rectilinear forms

dt cos L =—.d—A—— cotZdLor dL— i—,tan Z dtcos L
sin Z , Cos Z

is the easier to use when solving for dL and dteos L. In
all it is vital to get the signs right. The altitude correction
is positive when the observed altitude is higher than the
calculated altitude and visa versa and dA should be so en-
tered into the equation. The signs of Sin Z and Cos Z are
not easy to get right chiefly due to the fact that longitude
does not, as it should, run all the way around to the East
to 360°. The following table, if used, will prevent mistakes
in these signs:

E.Longitude W. Longitude

North Latitude SinZ CosZ SinZ CosZ
First Quadrant (N. E)..... + 4+ @ - @ 4
Second Quadrant (S. E)).... 4 : — : — : —
Third Quadrant (8. W.).... — : — : 4+ : —
Fourth Quadrant (N. W.).. — : 4+ : 4 : +

South Latitude SinZ CosZ SinZ CosZ
First Quadrant (N. E.).... + - — —
Second Quadrant (S. E.).... + 4+ - +
Third Quadrant (S. W.).... — + : + +
Fourth Quadrant (N. W.).. — — 4+ —

When the object is almost due East, or West, if the ob-
served A is less than sin-! sin D cosec L it has not yet passed
the prime vertical and Z is, therefore, in one of the quadrants
toward the pole. If the observed A is greater than sin-* sin D
cosec L, then Z is in one of the quadrants next the equator.
The best way to tell where Z is on an observation near the
meridian is to note at the time of observation or from the
series of sights whether A is waxing or waning If the signs
of dA, sin Z and cos Z are properly entered in the two equa-
tions, on solving between them the two chart corrections dL
and dt cos L so obtained will come out with their proper
signs and they are each applicable to both D. R. positions,
though, of course, it is only to the D. R. position at which the
last observation was taken to which the navigator would
ordinarily apply them.
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The Author’s suggestion is to note the miss in time of the
rise or set of the object; when or while the object is high
enough to get a good sight, take its altitude, from this
figure dA and Z, and with these data correct to the true
position.

The miss in time of rise or set is due to two causes, one the
miss in longitude (dt), and the other the miss in latitude
(dL). On the rising or setting of an object £ — cos-* tan D
tan L, from which we have

dty, = — tan D cosect sec? L dL
and can, therefore, write the miss in time of rise or set,
t. (observed)—cos-! tan D tan L—dt--tan D cosect sec? L dL

The equation at time of sight is

.dA = Sin Z dt cos L 4 cos Z dL
and solving between them we get both dt cos L and dL,
which are the two corrections necessary for a location. The
numerical values for all the known quantities should be in-
serted in both equations before attempting a solution, and
since corrections are only desired to three places a 20” slide
rule will easily do the figuring. v

To show the application let us assume D. R. position Lat.
34°, 50’ N. and Long. 150°, 15’ W. May 22nd, 1921. Dec. at
sunrise 20°, 21’, 30”, Dec. at time of sight 20°, 22', 20”.
E. T. — 3 min. 33 sec.,, no chronometer error and sight
properly corrected before entry. By observation the sun’s
center rose at 2 hrs. 56 mins, 13 secs. G. M. T. (about § A. M.
L. A. T.) and sight was taken 4 hrs, 50 mins, 02 secs. G. M. T.
(about 7 A. M. L. A. T.) and Altitude 22°, 11’, 04” was ob-
served.

At time of rising t = cos-! tan D tan L — cos-! .37106 X
.69588 — cos-! .25822 — 104°, 57’ 52” — 6 hrs. 59 mins, 51
secs. L. H. A., which from the D. R. longitude 150°, 15’ 00"—
10 hrs. 1 min. O secs., gives 3 hrs. 1 min. 9 secs. @G. A. T.
from which we deduct the E. T. 3 mins. 33 secs. and get the
calculated G. M. T. of the rise of the sun’s center 2 hrs.
57 mins. 36 secs. Observation gave 2 hrs. 56 mins. 13 secs.
@. M. T. The miss was, therefore — 1 min. 23 secs, — — 20.7’
and, therefore — 20.7 — dt — tan D cosec t sec.? L dL —
dt — .371 X 1.037 X 1.218 X 1.218 ¥ dL = dt — .57 dL.
Multiplying both sides by cos L — cos 34°, 50" — .821 we
have .821 X — 20.7 — dt cos L — .821 XX .57 dL, and hence
the sunrise equation, dt cos L —= — 17" 4 .467 dL.
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For t at time of sight we have 4 hrs. 50 mins. 2 secs.
G. M. T. 4 3 mins. 33 secs. — 4 hrs. 53 mins. 35 secs.
G. A. T., which from our D. R. longitude 150°, 15’, 00" =
10 hrs. 1 min. O sec. gives t, = 5 hrs. 7 mins. 25 secs. — 76°,
51, 10”. According to the sine-cosine formula from D. R.
position the observed altitude should have been Sin A —
.34810 x .57119 4 .93744 x .82082 x cos 76°, 51’ 10" —
.19884 |- .76937 x 22745 — .19884 | .17500 — .37384 or
A — 21°, 57’, 10”. As the observed altitude is higher than
the calculated we have dA — 4 13, 564" = + 13.9".

As the sight is nearly East, to calculate Z we utilize the
formula Cos Z — Sec. A (sin D cos L — cos D sin L cos t) —
1.0799 (.34811 x .82082 — .93744 x .57119 x .22745) —
1.0799 (.28574 — .12189) — 1.0799 x .16385 — .17696 or
Z —79°, 48’, and since the sight is first quadrant N. Latitude
West longitude we have Sin Z — — .984 and Cos Z — -}
.17696 and we write the equation for the line of position at
time of sight

13.9' — — 984 dt cos L 4 .177 dL, or
dt cos L — — 14.1' 4 .18 dL
We solve between this equation and the one obtained at

sunrise thus:

at sunrise dt cos L——17.0' 4 47 dL

at sight dtcosL——141"4 .18dL

=— 294 .29 dL
or dL — 4 10’ and dt cos L = — 14.1' 4 1.8’ = — 123
nautical miles and dt — — 12.3' — .820 —= — 15§'. We,

therefore, correct to Latitude 35° N. and Longitude 150”
West, which is right, as sunrise and sight were calculated
from this position as the reader can see by checking the fol-
lowing figures: cos t, — tan D X tan 35° = .37106 X
70021 — 25982 or t, — 105°, 03’, 36” — 7 hrs. 0 min.
14 secs. L. A. T., which from 150°, 00, 00” — 10 hrs. 0 min.
0 sec. gives 2 hrs. 59 mins. 46 secs. G. A. T., which minus
3 mins. 33 secs. — 2 hrs. 56 mins. 13 secs. G. M. T. for rise
of sun’s center and for sight, Sin A — .34811 X .57358 |-
.93744 < .81915 X cos 76°, 36', 10" — .19967 |- .76791 X
23170 — .19967 | .17792 = .37759 or A — 22°, 11’, 04"
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If, by reason of a bad horizon or refraction accurate chrono-
meter record cannot be had of time of rise or set, it can be
accurately obtained by observing the object Just as soon
after rise or as late before set as a clear sight can be obtamed
and correcting the time of observation by

A cos 15 A
Cos D cos L X sin 1% (t, —+ cos! tan D tan L)

As this is an angle it must be changed into M. S. T. to get
the chronometer correction. It will usually give accurate
results up to 10° but it is better to observe at 5° or 6° if
possible—the lower the better, and if the sun be the object
use the upper limb where refraction is less,

Should either the time of rising or the meridian sight, or
both, be unobtainable, a check with another sight on the
same object will do as well, provided Z has changed suffi-
ciently before the second sight be taken. In this case, we
have the equations of two lines of position, viz:

dA, —SinZ, dt cos L + cos Z; dL. and
dA, — 8in Z, dt cos L + cos Z, dL

and solve for their intersection (i. e. for dt cos L and dL). If
conditions are favorable, i. e.,, Z changing rapidly and the
altitude not too high as occurs in winter in the temperate
zone when the sun runs low or at all seasons at night if a
suitable star be selected in the opposite hemisphere, an ac-
curate location by this method can be obtained in astonish-
ingly short order if the work is properly donme. To do so,
however, the crude Altitude Azimuth Tables cannot be used
and Azimuth must be figured out to minutes by the formula
for it best suited to the case. If the object bears North or
South the usual equation Sin Z — Sec. A cos D sin t should
be used. If it bears East or West Z should be gotten from

Cos Z — Sec. A (sin D cos L - cos D cos t sin L)

in which the minus sign applies when D and L have the same
sign. If this be accurately done, dA accurately ascertained
in each case, and the sines and cosines of Z, and Z, prop-
erly entered in the equations for the two lines of posi-
tion a mathematical intersection can be obtained with an
accuracy utterly unattainable by any other method the







dtcosl= -10.6N.M.

N
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the author is aware of. To permit a direct check on the ob-
tained position the ship’s run between observations was omitted
in the example given on pages 28 and 29. The run does not
enter into the calculation but as it always takes place, let us
consider the case of two observations with ship’s run between
taken December 14, 1821, Sun’s declination, 23°, 13’, 24” and
sights properly corrected before entry. First sight taken D. R.
position L — 44°, 54’ N,, and Long. — 29°, 54’ W. when
from this position and chronometer reading ‘“t” was 40°, i. e.
about 9:20 AM.LA.T. and observed altitude 12°, 42, 07",
Second sight taken 40 mins. later from D. R. position Lat. 44°,
50’ N., and Long. 30°, 15’ W., when “t” figured 30° or about
10 A. M. and observed altitude 16°, 34’, 48",

From the sine-cosine formula calculated sin A, — — .39432 X
70587 - .91898 X .70834 X .76604 — — 27834 | .49865
= -} .22031 or calculated A, — 12°, 43’, 38", therefore dA, —
— 1, 31"—= — 1.52’ and Sin Z,— 1.025 X<.919 <.643 —.606,
and since the position is in N. latitude and West longitude we
have Sin Z, — — .606 and Cos Z, — — .796 and the equation
from the first observation was — 1.52' — — .608 dt cos L —
.796 dL or dt cos L — 2.50' — 1.31 dL.

Similiarly calculated sin A, — — .39432 X .70606 -}
91898 X .70916 X .86603 — — .27802 | .56440 — .28638
or calculated A,—16°, 38’ 29” and dA,——3’.41", also sin Z,—
1.0434 < .919 X .50000 — .480, and we write Sin Z, — — .480
and cos Z, — — .878 and the equation from the second observa-
tion was — 3.7/ — — .480 dt cos L — .878 dL or dt cos L —
7.7/ — 1.83 dL.

From second observation, dtcosL —17.70' — 1.83dL
From first observation, dt cos L—=2.50' — 1.31dL

Therefore, 0=>5.20'— .52 dL

or dL —10" and dt cos L—="7.70’ — 18,3’ —=—10.6 N. M. and
since cos L—.707, dt—=—10.6—-.707——15" and we correct to
Lat. 45° N. and Long. 30° W. This is correct, as can be seen
from Sin A, (observed) — — .39432 X .70793 | .91898 X
70628 X .76884 — — 27915 | .49903 — .21988 — Sin 12°,
42, 07” and Sin A, (observed) — — .39432 X 70711 |
91898 X .70711 X .86820 — — .27883 - .56418 — .28535 —
Sin 16°, 34/, 48",

As far as the author can ascertain this method of writing the
equations for lines of position and solving between them is new.
It is, therefore, in order to mention the conditions under which
this can be done and the assumptions which have to be made to
render it possible. Since, in the equation for a line of position t
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does not appear (only dt does) we are independent of both the
time and the longitude of the observation. On eliminating dt
cos L when solving for dL we become independent of any change
in L between observations. Any change in Z, due to the change
in the ship’s position, is cared for when Z is figured. The only
assumption necessary is that the chart miss in position be as-
sumed to be the same for both sights, i. e., dt, cos L, = dt,
cos L, and dL, — dL,. This must be the case if the run between
observations is properly entered and is an assumption made in
all methods, Sumner’s, St. Hilaire’s and de Aquino’s. Of course
the shorter the run between observations the more likely this is
to be accurately the case. On the other hand Z must change be-
tween observations or no solution for dt cos L or dL can be had
and the less Z changes the more uncertain the figuring for dt
cos L and dL. The ship’s run between observations therefore
does not enter into the calculation. The navigator can take his
first observation, write the equation therefrom, go where he
wishes, wait as long as he pleases, take his second observation,
write its equation and then solve for the two corrections dL and
dt These corrections, however, as in all methods, are accurate
on the basis of the run between observations being correctly
charted, a condition probably strictly complied with only when
there is no run at all. An absolutely undoubted location cannot
therefore be obtained except either from simultaneous observa-
tions on two heavenly bodies or by waiting in one position long
enough to get two sufficiently different observations on one
heavenly body. It should be noted that in moving over to a cor-
rected position the altitude intercept, dA, is thereby consumed
and that when a run is charted from a corrected position the
equation to be carried forward for use with that from the next
observation becomes 0 — Sin Z dt cos L 4 cos Z dL or dt — dL
=tan D — Sint - tan L —= tan t in which neither A nor
Z appears. There are several special or critical conditions under
which the trigonometric functions of Z have definite relations to
D, t,Land A, Thus when t — 90", Sin Z — Sec A cos D, cos Z—
Sec A sin D cos L and Sin A = Sin D sin L. On the prime verti-
cal Sin Z—1and Cos Z—0,8in A—=SinD — Sin L, cos t
=—tan D = tan L and dt cos L — dA. And on the meridian Sin
Z—0,co8 Z—1and dL — dA. If these situations are taken
advantage of the work is easier and more accurate. The simplest
and most accurate combination is that of the prime vertical and
the meridian, i. e., observe when t — cos* tan D X cot L and
write dt cos L — dA and on the meridian write dL = dA.




CONCLUSION

The author advocates the abandonment of Spherical
Geometry and Trigonometry in the theory, instruction and
practice of navigation and advocates the use of plane trigo-
nometry and calculus in their place. He also advises that
in many cases where five figures are needed, Crelles Multipli-
cation Table be used instead of logarithims and where three
only are necessary a 20” slide rule be used. When the
numerical values of the quantities are given, Crelle is better
than logarithims. This is also the case when the quantities
themselves have to be added or subtracted in the middle of
the work as in the sine cosine formula. Crelle does not lend
itself easily to division, so when Crelle is used the equation
should be put in the form of a straight multiplication by
using suitable trigonometrical functions. Logarithims have
for the student the disadvantage of so masking the numerical
values of quantities of all kinds and particularly trigo-
nometrical functions that it would seem advisable at least at
first to make the student use Crelle and later employ
logarithims as a facility only in those cases where logarithims
are advantageous. They are really never necessary.

To the navigator an accurate correction is as good as an
accurate location—in fact practically the same. An ac-
curate position means work to certainly four and prefer-
ably five places. A correction to three places is all that is
desired and one accurate through two places is really all that
is needed and one within 10% will usually answer fairly
well. So it isd t and d L we should seek and not t and L.
The author feels absolutely certain that calculus will even-
tually be the accepted method of handling the mathematical
problems of navigation both in teaching and in practice. In
most instances the application of calculus involves differen-
tials so minute that many minds fail to conceive of the thing
at all. In navigation, however, the differentials are fine,
large, visible, measurable, commonly used quantities. In
bacteriology it would be like having a germ the size of a
cat to work on and study. One who wishes to master naviga-
tion should really do so by means of calculus. Indeed, in the
author’s opinion, navigation can hardly be completely
mastered any other way and calculus has, in addition to this,
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the advantage, like the proper way of doing anything has,
of being decidedly the easiest way. When calculus is used
the only table needed is one of natural trigonometrical
functions. This and the 25¢ American Nautical Almanac
for the year are all that is absolutely necessary, though
Crelle’s tables and a 20” slide rule are advisable to save time
and mistakes.

The sea and the stars had a strange influence on the old
time men of the sea. They hated to change anything from
the halliards of the foretopgallantsail to the copper nails on
the keel, and even now the author does not ask that the
older officers adopt these new methods. It is to younger
men and particularly to the professors, teachers and instruc-
tors of navigation that the author recommends the methods
herein set forth. Those trained and hardened to logarithims,
haversines, polar distances, zenith distances, and & - &'
calculations had best pursue their way till progress and
loving friends attend their funeral.

THE END
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THE MERCATOR'S CHART

Any straight line drawn om the sarface of the earth is a part of a
great circle which cuts the equator at poist L—0 and longitude t,
and makes, with the meridian at this peint, an angle Z, (the azimuth
of the line at the equator) see Fig. 1. Iis equation on the earth is

L—tan-* [cot Z,xsim (t—t,)], or t=t,+sin* ({an Z,Xtam L)
ia which L is the latitude of any point and t the longitude of any point,
suppesing longitude to run all the way around to the East up to 360°.

i} s
» :
i ;
-30°4" ¢ %y
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Z e
4 Straight Bire LiTani'oit48%sim (t-00°)
F 3 2

The equation to the line is of course the same en the Mercator's
Chart, and in fact on any Chart, but instead of a circle appears as a
wave-like curve shown in Fig. 2. All straight lines, such as lines of
ferrestrial sight, straight courses between two ports (Great Circles)
take this form. The usual data is the latitude and lomgitude of the
two ports or positions, i.e. L, t, and L, t, from_which can write
{am t _tan L, sin t,+tan L;Jsin t,
° tanL; cos t,>tan L, cos t,
sin (t,—t,) sin (t,—t,)
tan L, tan L,
and we also have for the compass course Z (in degrees true)
dt cos L

tan 2= T=tall Z,Xsec Lsec (t—t,).

_ sin L +oim— M}
and the length of the voyage is sin~! co_‘s Zo) sin !(m Z, or

tan—! [‘gﬁr—tﬂl +an-! [h%i_—tﬂl] as best suits, applying

sin Z,
the positive sign when L, and L, bave opposite signs.

and tan Z,=
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Thus for a straight course (Great Circle) from Tokio
(Harbor entrance L, ==34°,49' N. and t,-=139°,38') to Cape Horn
(L :556° 00' S.andt, =292°,44'), we have :
695922148648 _.642— 961 — 3"i=..3;§zﬂ )
.695%.386—1.48 X762 268—1 128 —.m
or 1,=159°,25' ' ,

‘ sin (139°,38'159°25') _sin 19°47 338

¢ tanZ,~ 6% =T ees IS

* fan n t,="

or Z,=25°, 59'

The voyaje equation is, therefore,

L—tan—1 [2.052sin (t—159°,25')] or t =159°,25'--sin-! [.4875)tan L]
The first form giving the latitude of the course at any meridian and

the second form its longitude at any parallel of latitude.  The course

is Z (true)=tan—' [.4875xsec Lxsec (t—159°,25"))]

, o () s (g

39°.25'+112°.37'=152°.02' or 9,122 mautical miles.

This course passes 175 N. M. East of New Zealand, goes within 94 N. M.
of the Ant-Arctic circle at longitude 110°,35' W., which it cwts E. and W.
It cuts the 30th parallel S,

at t=159°;25+sin“‘(.4875><tan 30°)—159°,25' + sin—1.276-=
159°,254-16°,01'=175" 26 with compass course

Z (trqe)::tan"l [4875<sec  30>¢sec 16°,01'| —tan-'.4875x1.1651.04
~—~tan"‘ .586-:149° 2

and distaace sin-' ( )“‘sir' .635+sin-' .923 =

and comes in well irom the South . at Cape I'Iorn Thus it cuts the
70th meridian W. at

L-tan- [2.062%sin (290° ~169°,25')] —tan—(2.062 sin 130°35')

-=tan—,2.062X.769<tan-! 1,556--57°,20' S. with compass course
Z (true)—tan—(.4875)<1.853 1.537) ~tan~ 1.386.=54°,12' and continued
cuts the Equator at 20°,35' W. terminating on the coast of Portuguese
Guinea, North Africa, a straight rua of 13,900 N. M.
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The following tabe of t, and Z, will help the reader to acqmire cosfi-

dence in this accurate method. . t, R
1 Sandy Hook and Gibraltar Straits. ......... L23° 59 .. ..48°34
2 * Sandy Hook and Cape Geod Hope. .......... 338823 ...43°14
3 Sandy Hook and Cape St. Roque............ 321°,01'. .. .34°11
4 Gibraltar Straits and Colon.......... .. .267°,13'. .. .53°,58'
5 Rio de Jameiro (Harbor entrance) and Cape
Good Hope....................... 219°,10'. . . .566°,13'
6 Scilly Isles and Pernambuco, Brazil . . . ... .... 328°,08'. ...19°54'
7 San Fraucisco (entrance) and Tokio (entrance). .281°13'. .. .41° 42
8 San Fraacisco (entrance) and Sydney entrance). .190°,68'. . . .43°,08'
9 Panama (Pt. Mala) and Sydney (entrance). .. .. 270°,07'. ...52°33
m@“’
$
I.—u:t,:f/ -
circh L cos(passecly 56 Thnl)$80°
Fig 4  MERCATORS CHART.

On the earth the equation to a circle (see Fig. 3) described about
a given point L, 1, is
t=cos~! [cos(:—o-)“ sec L-tan L, tan L] 1,

in which R is the radius of the circle in nautical miles t the longitude
and L the latitude of any point on the circle. The equation on the Mer-
cator’s Chart is of course the same, but its form is distorted as can be
seen from Fig. 4, which shows the same circle on the Mercator’s Chart.

Consider the intersection of two circles on the Mercator’s Chart.
Let us assume that in winter an observer on January 17th, 1921,
at noon G. M. T. obtained 30° corrected altitude simultaneously
on both Bellatrix (Gamma Orionis) and Denobla (Beta Leonis). Where
was he? - At the time of observation Bellatrix was at L—6°,16', 36"
and longitudé 143°,52' E and Denobla at L =15°,00',36" and longitude
120°,05' W, and the radius of each summer circle was 90°—30°=60°
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=3,600 weutical miles. The equation to the circle frem Bellatrix
was t—cos~' (.503 sec L—.110 tan L)4143°,52' and to the ome
sbout Denobla t—cos—! (.518 sec L—.268 taa L)+239°,54' assuming
longitude to go all the way arouad to the East. Fig. 5, shows

143°52'E.

e S.M.T. Jisesy. 1751931,

Ft‘g 5

these two circles on the Mercator’s Chart, which appear to intersect
at L=58" N. and long.=177° W. Let us assume this position which
we know is mear both Smmmer circles. From this position by the
gine cosine formula the altitude of Ballatrix should have been 30°,.05'
17" and of Denobla 29°,56',56"; or dA, on Bellatrix=—35.3 and dA,
on Denobla- 3.1'. The Azimuth of Bellatrix was 226°,30', and of
Denobla 110°,45'. The equation to the line of position from Bellatrix
was therefore by the Author's method (dA =sin Z dt cos L+-cos Z dL)
dA,= —5.3' ="4.725 dt cos L—.689 dL, or dt cos L= —17.32'+.95 dL
and the equation of the line of position from Demobla was
dA,=3.1'-=—.934 dt cos L- -.358 dL, or dt cos L= —3.32'—.38 dL
From Bellatrix, dt cos L— —7.32'+ .95 dL
From Demobla, dt ces L— —3.32'- .38 dL
0=—4.00'1+1.33 dL or dL—+3.00'
Tlle latitude correction dL is therefore 3', the East and West Chart
correction dt cos L is—7.32'+-.95x3'= —17.32'4-2.85'= —4.47 mautical
miles and since cos L—=.529 the longitude correction is —4.47+.529—
-—8.45' and the true position at time of sight was Lat. 58°,03' N. and
Long. 176°,51',33" W., as the reader can coafirm by the sime cosine

formula. J. W. FERGUSSON & SONS, PUBLISHERS, RICHMOND, VA.
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