








THE

ELEMENTS OF ASTRONOMY



CAMBRIDGE UNIVERSITY PRESS
C. F. CLAY, MANAGER

LONDON : FETTER LANE, E.G. 4

LONDON : WHELDON & WESLEY, LTD.,
28 Essex Street, Strand, W.C. 2

NEW YORK :THE MACM1LLAN CO.
BOMBAY

]
CALCUTTA fMACMILLAN AND CO., LTD.
MADRAS J

TORONTO : THE MACMILLAN CO. OF
CANADA, LTD.

TOKYO : MARUZEN-KABUSHIKI-KAISHA

ALL RIGHTS RESERVED



THE

ELEMENTS OP ASTRONOMY

If

fr

""*/,il!<

BY

:, B.A., Sc.D., F.R.S.E,

LATE SCHOLAR, PETERHOUSE, CAMBRIDGE,

PROFESSOR, PRESIDENCY COLLEGE, CALCUTTA,

FELLOW OF THE CALCUTTA UNIVERSITY

CAMBRIDGE

AT THE UNIVERSITY PRESS

1921



VWA
.TO

PRINTED BY ATULCHANDRA BHATTACHARyYA,

THE CALCUTTA UNIVERSITY PRESS, SENATE HOUSE, CALCUTTA.



PREFACE

In the following pages, it has been my

object to give a brief and clear account of those

portions of Astronomy which can be dealt with,

with the help of elementary Mathematics. In

the selection of subject-matter and its treatment,

I have been guided by my experience as a

teacher of Astronomy, so that the book will, I

trust, be found to meet the requirements of

students by stimulating thought and ensuring

scientific accuracy.

August, 1921. D. N. M.
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HISTORICAL INTRODUCTION

1. The Science of Astronomy, literally, the Science

which deals with the laws of stars or heavenly bodies, gen-

erally, is the most ancient of the Sciences with its begin-

nings almost at the dawn of human consciousness. This

indeed, would be a priori evident, for from the earliest ages,

the beauty and the grandeur of sun-rise and sun-set

and of the panorama that the night presents, even to the

least observant on-looker must have excited men's wonder

and a spirit of enquiry.
* The hymns of the Rigveda to

the sun, the dawn and the sky, probably represent the

earliest articulate attempt of the human race to recognise
the imperative workings of law in the phenomena of the

heavens, as yet but dimly perceived. But while the

supreme mystery behind these phenomena remained and

still remains unsolved, they presented a regularity, a

rhythm which could not fail to be perceived and carefully

observed even by the earliest man. Moreover, since

Science deals with measurement, Astronomical phe-
nomena came almost automatically within its domain.

One was almost implicitly impelled to follow the path,

traced on the sky, by the sun, the moon and the stars,

from day to day, one was perforce led to note the position

of the horizon, where the earth and the sky appeared to

1 Cf. the Hindu Astronomical work, Suryya Siddhanta, Ch. XII, 2-8,
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meet and the points in it, by a reference to terrestrial

objects, where the heavenly bodies appeared and dis-

appeared and appeared again in their sojourn, according to

almost an immutable law, if supremely, most impressively

inscrutable, as it is even now, in the main. And while, the

striking regularity of these phenomena compelled attention,

they were so radically bound up with the ordinary

experience of man's daily life, that some kind of measure-

ment became almost a necessary part of the very routine

of existence, from the earliest ages. Thus, according to

Baily, accurate Astronomical observations had been made

in India, probably before three thousand B.C., a conclusion

which, as we shall presently see is justified on independent

evidence. It is, moreover, conceivable that the sacrificial

rites described in the Vedas were themselves astronomic

in their origin.
1 In any case, as they were regulated

by the position of the moon with reference to the stars,

they must be held to presuppose accurate Astronomical

observations, which had, thus, come to be a religious

necessity, so that it is reasonable to argue, a priori, that an

extensive Astronomical knowledge obtained in India, even

in the Vedic times.

2. But, even in the most primitive nomadic stage,

Astronomical measurements, especially that of time in

terms of the solar day must have begun, necessarily, afc

first, in a very crude form, though thousands of years

must have elapsed before it came to be recognised that

the year was the natural unit and thousands of years,

longer, before even approximate data were available for

taking it to consist of 365J days; yet it is asserted in

the book called Chuking (2205 B. C.) that the year was

1

According to one writer Indra is essentially the pei Bonification

of the summer solstice and Vritra, that of the constellation of Hydra,

fndra'a conquest of Vritra representing the arrival of solstitial rains.
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known to consist of 365J days in the time of Yao (2857

B. 0.), while the Indian Astronomers, according to some,
1

seem to have arrived at that conclusion at any rate, at

an approximate result even before that date.

3. This was indeed a wonderful achievement. It was

in the first place necessary to become assured that the same

sun and the same moon were being observed from day
to day and then to form an idea, as to the true shape

of the celestial vault. At first, this would be taken to be

a hemisphere, surrounding a flat earth, limited by the

observer's horizon. Gradually, the knowledge that the

celestial vault is a complete sphere would emerge and we

have Chinese records nearly 5000 years old to indicate,

not merely that they had already grasp of these facts

but that 'they had learnt to describe the motion of the

sun, by its change of position among the stars. It is

conceivable, that the ancient Astronomers had learnt to

recognise long before even this remote epoch, the distinc-

tion, between stars (or bodies whose position relative to each

other remained unchanged and which pursued, always,

practically the same steady circular path in the heavens)

and planets or wandering stars (including the sun and

the moon), which moved among these stars. 2 But this had

to be preceded by the knowledge of the fact, so difficult

to realise, that stars were shining even at midday, although

hidden from view on account of the sun's rays. When,

therefore, we read that Yao gave instructions to his

Astronomers to determine the positions of the solstices and

equinoxes and they determined these with reference to

1 There is considerable difference of opinion on this and similar

points. The personal equation of the writers on a subject like this,

which intrinsically lends itself to speculation vitiates many an investi.

gation, otherwise ingenious.
* This is clearly set forth in Suryya Siddhanta.
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the stars which occupied those points of space, we realise

that observational and theoretical Astronomy had reached

a high stage of development in China, already, in 2300

B. C. It is, therefore, by no means improbable that such

knowledge prevailed in India in the Vedic times and

therefore an Astronomic interpretation of the Vedic hymns
which, as we have already noted, has been attempted

by some authors and which postulates a knowledge of

solstitial and equinoctial points on the part of the Vedic

writers would not, to that extent, be altogether fanciful.

4>. Going back to Chinese records, we are told,

further, that in 21.59 B.' C., the Royal Astronomers

Hi and Ho failed to predict an eclipse and were

accordingly executed, so that apparently, an eclipse was

then regarded, as it is sometimes regarded even now, as

an event of serious portent. This, indeed, is, by no

means, strange. For if celestial phenomena, in general,

excited wonder and a spirit of worship, an eclipse could not

fail to be associated with a temporary cataclysm and would

as such, be naturally regarded with a mysterious awe. And

even as the motions of the sun and the moon produced

obvious terrestrial phenomena day and night and changes

in the seasons (although it was long before their intimate

relation was realised), so, there was nothing to indicate

that these motions and the positions of stars as well as

such naturally striking phenomena as the eclipses and

the appearance of comets were not capable of exerting

occult and even baneful influence on man. It was no

wonder, therefore, that those who studied these pheno-

mena were popularly credited with and gradually came to

claim supernatural wisdom. Accordingly, Astronomy and

Astrology came to be inextricably mixed up, in the infancy

of the Astronomical Science.

5. Of more scientific interest is the evidence that
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the above account affords of the knowledge that the

Chinese appear even then to have possessed some

rule for predicting the eclipses. This is hardfly to be

wondered at : Rigveda Sanghita gives a correct explanation

of the phases of the moon or Som (for the Som was

evidently, the moon). According to it, Som is illumined by

rays coming from the sun, during the new-moon-period.

And, of course, an appreciation of the fact that it was the

solar rays that light up the rnoon, was a great step forward,

towards an explanation of an eclipse. [Art. 12.]

6. Further, the Chaldeans who had apparently made

a wonderful progress in Astronomy, long before the days

of Greek civilisation had discovered the saros (lit.

repetition). This consists of 223 lunations in a period

of about 18 years, 11 days constituting a cycle and includes

an exact number of periods of the revolution of the moon's

nodes, relative to the earth ; and the Chaldeans had found

that eclipses during one cycle are repeated during the

following cycles, exactly in the same order and almost

under similar circumstances. In order to understand this,

it is necessary to remember that an eclipse takes place,

when the sun, the earth, the moon and the node of its orbit

are very nearly in a line. And it is easily seen that all

the configurations that satisfy this condition for an

eclipse will continually recur in a fixed eequence, at every

succeeding saros, on account of the virtually unchanging

character of the motions of the earth and the moon.

7. But perhaps the explanation of the remarkable

property of the saros was not known. It was most

probably derived as a generalisation from observation

alone. In order to arrive at this generalisation, however, it

was, obviously, necessary to observe and tabulate the eclipses

for a considerable length of time and with an accuracy,

which presupposes a high standard of Astronomical
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knowledge. In fact, we are told that Chaldeans had

prepared star charts and begun to use the Signs of the

Zodiac for determining the course of the sun, the moon and

the planets and appear to have used these star charts for

navigation, so that the discovery of the saros was really

only one though perhaps the highest of their achieve-

ments, in Scientific generalisation.

8. It is difficult to say, who were the first to use

the Signs of the Zodiac. The Hindu Astronomers used

two systems of reckoning; the lunar mansions or tithis

and the signs or the rashis, the first being obviously the

earlier of the two. For,
1 while the moon's motion among

the stars is a matter of direct observation, the solar

motion, in its relation to the stars could only be observed

by an indirect method, on account of the fact that his light

shuts out of view, all stars in his neighbourhood. On the

other hand, the moon's motion is much more irregular than

that of the sun, while further, it is by the sun's motion,

mainly, that our daily lives are ordered. The observation

of the sun's motion, therefore, came gradually to be

recognised as a matter of practical as well as of scientific

importance and the method of signs or rashis ultimately

superseded the method of the tithis. We may thus be

sure, a priori, that the lunar system gradually led up to

the solar. As to the lunar system of the Hindus, its

high antiquity is testified to by the fact that the primitive

series opened with Krittika (the Pleiades) as the sign of the

vernal equinox. But this arrangement would be correct

only about 2300 B. C. and " nowhere else would be

found a well-authenticated Zodiacal sequence of so early

1 It is noteworthy that most writers on Ancient Astronomy are not

professed Astronomers. They have accordingly failed to take note of

points which would naturally appeal to those who have to do with

practical Astronomy at first hand.
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a date." 1 If this is granted, it seems to be very probable

that the method of signs was built up in India, for the

method of titlds which is admitted to be peculiar to India

(at any rate, not derived from the Greeks [Art. 9])

may be regarded as. the parent of the method of signs,

and we are thus able, almost, to trace a gradual evolution

of this system.

9. Whether this view of the genesis of the Zodiacal

signs cau be substantiated on direct evidence is a matter

which has not been properly investigated, though
there has been much discussion, of little importance,

from a strictly astronomical point of view, as to who

the real originators of the Zodiacal systems were. Biot

regarded the Chinese sieu as indigenous and an a necessary

consequence, the Hindu Naks/iatras and the Arab manazil

borrowed from the Chinese. Professor Weber has, how-

ever, proved that the Chinese sieu as well as the Arab

manazil in respect of order, number, and identity of

limiting stars correspond to a later phase of Hindu

Astronomy, which has a distinct History of its own,

prior to that phase. He adds that the Hindus seemingly

founded their lunar mansions which the Arabs borrowed.

In this, 'Professor Weber is supported by Colebrook.

But Professor Weber has propounded the view that

the Zodiacal system originated in Babylon and this view

has been accepted (with some hesitation) by Professor

Whitney. Such a view, however, can no longer be

maintained, since we have now to admit that Baby-

lonian system is based on the sun's motion. This being

the case, if the view adumbrated above that a lunar system

must be of an older date than that which is based on

the sun's motion is correct, and astronomical arguments

1

Encyclopaedia Brittanica, art.
' zodiac/
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clearly point to its verisimilitude, we must admit that

the Babylonian system itself was derived by a process of

adoption. It is conceivable, of course, that the different

systems Indian, Chinese, Babylonian and Greek may have

grown up side by side, although Astronomical arguments

point to only one process of evolution.

10. Whoever the first inventors of the Zodiacal systems

may have been, this device of the signs and asterisms seems

to be of remote antiquity and speaks volumes for the

ingenuity of the early students of Astronomical Science.

In modern times, with our fixed observatories, our instru-

ments of precision clocks and transit instruments, it is a

comparatively simple matter to determine the position of

the sun or any other celestial body, at any time. We have,

in fact, only to note the moment of the transit of the body

across the meridian of a place, by means of the sidereal

clock. This gives one co-ordinate and the altitude of

the body at its meridian passage gives the other co-ordi-

nate
; and by means of these, it is possible to accurately

represent the position of the body and its motion at any

time. The ancient Astronomers had no such means at

their disposal. They earl y recognised that the various

groups of stars or constellations seemed to be bound

together by an invisible chain and to be apparently

fixed or practically so, to the celestial dome or vault,

which appeared to rotate about a certain definite axis, prac-

tically fixed in space.
l

They must have noted, in the next

place that there is one family of constellations arranged

along the whole of the celestial region, through which the

sun, the moon and the planets (known to them) pursued

their course. This family of constellations might, there-

fore, well be used and came ultimately to be used, like

1

Of. Suryya Siddhanta, Oh. XII, 55.



HISTORICAL INTRODUCTION &

so many sign-posts, for the purpose of indicating

and describing the positions and motions, .of these

bodies.

11. We may state the argument in a different form :

Modern Astronomy teaches us that the sun's path on the

celestial vault is a circle. If this is suitably divided into

twelve parts, each arc will be found to be occupied by a

group of stars, called a sign of the Zodiac-irregularly paced

no doubt, but so, that the group may be taken roughly to

give a distinctive character to the particular sub-division

which it occupies. Starting with any point of time of

reckoning, say from an equinox (that is the moment at

which the sun is at the equator or when we have equal day

and night, throughout the earth), each of these signs will be

passed over, roughly, in one month *

(or one-twelfth part

of a year) and one mode of describing the sun's motion

would, obviously, be to name the particular sign and the

position in that sign that the sun occupies, at any parti-

cular epoch. In the same way, the lunar path in the

celestial vault being also a circle, this path might also be

used in the same way, as the circle of reference. This

latter circle (as well as the former one) was used by

the Hindus who divided its circumference into 28

parts or, as it was done later, 27 parts, and called each

arc a tithi or a lunar mansion, to which reference has

already been made. Now, as the sun's path as well as the

moon's are contained within the same belt of the celestial

vault, the solar as well as the lunar positions might be

described with reference to the tithis as well as to the

signs. The former would provide a more accurate, if a

somewhat less convenient [Art. 8] description. A division

of the circular path of the sun into 365 parts, as in Chinese

1 Suryya Siddhanta, Oh. I, 13.
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Astronomy or 360 parts, which is now generally accepted

and was used in Suryya Siddhanta (Ch. I, 20) would mean

a daily description of nearly one of these divisions in one

day. These latter, together with further sub-divisions

which are being constantly refined would obviously make

for increased accuracy but the advantage of the Zodiacal

system on which the heavens themselves furnished the

dial- plate, and the sun [or the moon] itself served as

indicator of the day and the month; in ages which had not

as yet perfected the geometrical and the instrumental

methods of later times cannot be over-estimated. And

the fact that the motions of the sun, the moon and the

planets are all confined to a narrow belt with the ecliptic

(or the circle defining the path of the sun), as the central

line, enhanced the usefulness of these modes of represen-

tation.

1. When the motion of the sun and the moon

became completely known and their posititions could be

predicted, the calculation of the eclipses was naturally the

next stage in the evolution of accurate Astronomy. For

observations, such as those which were the basis of the

Zodiacal system and on which the saros was ultimately

constructed very early led to the inference that, in the

matter of an eclipse, the positions and motions of the

sun and the moon (as actually observed) were the deter-

mining factors and the problem was attacked and ultimate-

ly solved by the ancient astronomers on the supposition

that the observed motions were also the real motions.

The solution obtained, however, was correct, though

naturally not as accurate as modern methods will yield.

For, it should be noted that for a successful solution of

the problem of an eclipse, it was not necessary to

definitely grasp the fact that it was the earth that was in

motion ; the result would be the same, if the earth were
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at rest and the sun was moving about it, as the pheno-
menon is dependent on the motion of the cone of shadow
cast by the earth, relatively to the moon and this motion

would be the same (except as regards direction), whe-

ther the sun is at rest and the earth, in motion or vice-

versa. l

13. Observation of the sun's motion with reference

to the Signs of the Zodiac must have very early led to the

discovery of the phenomena, not, probably, of course, the

explanation of the precession of the equinoxes the fact,

namely, that at each succeeding equinox, the sun does not

come back to the same star, but that the signs and there-

fore all stars are observed to have a motion relative to the

point, which the sun occupies at either equinox and that the

direction of motion is opposite to the sun's observed

[annual] motion among the stars. Hipparcus (134 B.C.)

was led to this discovery, on observing a star which was

new to him, but the precession was apparently, according

to some, long known to Hindu Astronomers, perhaps before

1192 B. C. and its rate determined by them necessarily,

only roughly.

14. In a history of Astronomy, however brief, the

subject of precession deserves more than a passing

reference, for the discovery of precession was essential to

the progress of accurate observational Astronomy; the

subject has, moreover, an added interest in that by taking

account of precession, we are enabled to ascribe dates to

recorded observations, as well as to past events which can be

associated with the prevalent Astronomical knowledge of

the times, at which they occurred. A few words in ex-

planation, therefore, may not be out of place here.

1
Thus, the Suryya Siddhanta states the geometric aspect of the

phenomena quite accurately.
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15. The path of the sun in the celestial vault being

accurately a circle [Art. 11], it follows that his orbit

(assuming the sun to be in motion) must be a closed plane

curve and observation of stars whioh may be regarded as

fixed on the celestial vault (and in space) leads to the

conclusion that this plane is fixed (or nearly so) in space.

The line perpendicular to this plane, through the centre

of the celestial vault is, therefore, fixed in direction (in

space) and precession consists in the rotation of the earth's

axis about this line in a period of about 26,000 years. The

point at which the polar axis meets the celestial vault thus

describes a small circle in space and, as a necessary con-

sequence,, the stars that occupy the region marked by this

circle become pole stars in succession. While this goes on,

the line of intersection of the equator and the ecliptic

(which passes through the sun at an equinox) points

to different stars at different epochs ; in other words, in

consequence of precession, the sun occupies at an equinox,

different signs at different epochs. The motion of the earth

to which precession is due is in fact simitar to that of

a top, spinning with its axis inclined to the vertical, the

axis of the top, corresponding to the earth's axis, the

vertical, to the axis of the ecliptic and the spiu, to that of

the earth (to which the apparent diurnal motion of heavenly

bodies is due). And it may be added that the dynamics of

the motion of the top is the same as the dynamics of the

earth's motion.

16. It is this precession, among other causes whioh led

to a great confusion in the matter of the calendar. Defining

the year, in general terms, as the period in which the pun

completes its cycle, it is easily seen that the cycle may be

said to be completed, either when the sun returns to the

same point of space the same point of a tit-hi or a rashi

or to the same solstice or same equinox, as the one from
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which the year is reckoned. The first is called the sidereal

year, the second, the tropical year. Or, again, the year may
be determined by moon's motion 1 or that of any other

celestial body. Add to this, the difficulty in arriving at

the length of any of these periods, both on account of the

difficulty of observation, as well as to the fact that none

of these contain an exact number of days and that the day

(the solar day) is not a constant interval of time and our

wonder is not that the problem of the calendar could not

be completely solved till quite modern times, but that so

much was accomplished in this direction in India, China,

Chaldea, Egypt and Greece in ancient times. 2

17. Ancient Astronomy and much of modern Astro-

nomy is necessarily observational, dealing with Astronomi-

cal phenomena mainly, motions of celestial bodies as

they appear to the observer. It is on accurate observations

alone that any scientific generalisation could be based but

these were not easy, before the days of the clock and the

telescope. Yet, we have seen how most remarkable results

were obtained even in distant ages. The high-water-mark,

however, of observational Astronomy, so far as it could be

perfected without the help of the telescope or the clock was

reached by Tycho Brahe (born 1546 A.D.) who built a

splendid observatory in the island of Roskild under King
Frederick of Denmark, fitted with the armillarv sphere,

1 Of. Suryya Siddhanta, Ch. I, 35.

2 To consider the manner in which this and other Astronomical

discoveries were made as well as the question of priority among
different nations would be a task, difficult of accomplishment. It

would, however, be an interesting and fascinating inquiry which can only

be successfully carried out by a professed student of Astronomy. The

difficulty of the task is enhanced by the fact that it will be necessary

to eschew all personal bias [Art. 2], to remember that science is

neither of the East nor of the West and to rigidly adhere to it, as

a cult.
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sextants, mural quadrants, celestial globes, etc. Inspite of

the inherent imperfections of these instruments, he pre-

pared a remarkably accurate catalogue of 1000 stars and

an accurate table of refractions. He also proved that the

stars and comets had no annual parallax; that is, the

angle subtended at any even the most brilliant star by the

diameter of the sun's apparent orbit was infinitely small

and, that, accordingly, all the stars must be very far off.

He also obtained more accurate results regarding the

moon's motion, than were known before his time and a con-

siderable body of most accurate data, regarding the motions

of the planets, specially that of Mars.

18. It was these accurate observations which, in the

hands of Kepler led to a complete solution of the problem

of the real motion of the planetary system. Primd facie,

it was natural to attempt an explanation of the observed

motions of the planets, on the postulate of a stationary

earth. But to explain that is, to give a coherent account

of the motions of the planets on such a postulate seemed

to be well-nigh impossible. Among the first attempts at

analysis were those made on the dictum of Plato (427 B.C.)

that the circular motion was the perfect motion, and for

2000 years, astronomers who accepted the Platonic dictum

attempted to represent planetary motions by means of

circular and epicyclic motions. A point on a circle, the

centre of which moves on another circle, their concavities

being turned in opposite ways describes an epicycle, the

actual nature of the curve depending on the relative

lengths of the radii of these circles. If the second circle

also moves, we have an epicycle of a higher order and so

on. A further complexity in the motion can be intro-

duced, if the moving point does not lie on the circumference.

The object of Mathematical astronomy from the time of

Ptolemy was to imagine suitable combinations of circles
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which would adequately represent the observed plane-

tary motions but such attempts proved to be obviously

futile, for the attempted explanations were as -complex
as the motions themselves, which they could never fully

represent.

19. Johan Kepler was an assistant of Tycho Brahe

and came into the possession of the latter's splendid results

after his death. It was after vainly attempting to fit in

these results, the accuracy of which was undoubted with

a hypothesis of epicycles of increasing degree of com-

plexity, that he gave up the postulate of the stationary

earth and adopted the hypothesis of a moving earth

moving about the sun. The conception was not absolutely

new. It would, however be difficult to say when it was first

propounded. The Hindus knew that the motion of the

planets could not be explained by circular motion round the

earth. 1

Pythagoras (569-470 B.C.), who according to

some, came to India to study Mathematics also pro-

pounded a system, somewhat similar to that finally

adopted by Kepler but he had offered no grounds for such

a theory. The idea was revived by Copernicus in the 16th

century but, as he also attempted to explain all motions

as made up of circular motions, his theory failed to

justify itself. Kepler's work therefore stands alone, in as

much as he not only postulated a helio-centric system
but from a detailed analysis of the results of Tycho's

observations, specially on the motion of Mars showed that

the orbits of the planets are ellipses, variously inclined to

each other and to the ecliptic (that is, the plane of the

earth's orbit), with the sun at one of the focii. He went

further, for he deduced from these observations his three

1 It has been noted by Bapudev Sastri that the planetary motions

given in Suryya Siddhanto were those round the sun. But this might

have been used along with the hypothesis of a fixed earth [Art. 26].
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celebrated laws which embodied a remarkably complete
aud coherent scheme.

20. These laws may be described as

(1) The law of equable description of area ;

(2) The law of elliptic orbits
;

(3) The law of periodic times.

Stated in the form in which they were given by Kepler,

they appeared in spite of their generality to be extremely

artificial, like many an empirical law of modern science,

the rationale of which is unknown. Specially is this the

case with the third law that the squares of the periodic

times vary as the cubes of the major axes of the ellipses

described by the planets. For it seems to recall the law

enunciated by Newton in his optics that the "
length of a

fit varies as the secant of the angle of incidence." Thus,

the very statement of these laws seemed to demand an

inquiry into the nature of the simpler law, from which they

are deducible.

1. Kepler himself was alive to this point of view.

He not merely laid down these laws as deductions from

observed results ;
he saw that everything pointed to the

sun as the centre of the planetary system, in a dynamical

sense. He was, in fact, clear in* his views, regarding the

principle of universal gravitation which he saw, was oper-

ative in this case. The principle itself, however, was

known long before Kepler. It is conceivable that the

germs of the principle are traceable to early thinkers! just

as the atomic theory can certainly be traced to Lucretius ;

1 Such attempts were necessarily mere speculations, before a

coherence was established in the midst of the somewhat chaotic data

that were alone available.

There is one noted passage in Suryya Siddhanta (Oh. II, 9)

which may be given a dynamical interpretation.
" The attraction on the sun is very small by reason of the bulkinesf
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but, in any case, the principle is given by Varahamihir, in

the 6th century. He wrote :

(i The earth attracts that

which is upon her." It is, also, given by Brakmagupta,
in the following more complete form :

" All heavy

things fall down to the earth by a law of nature,

for it is the nature of the earth to attract and to keep

things, as it is the nature of the water to flow, that

of the fire to burn and that of the wind to set

in motion." But if the principle was not new, it remained

barren of results, though 'Kepler fully appreciated its

importance. It was, thus, left to Newton to develop its

remarkable significance, even if he did not rediscover it.
1

Starting from first principles from the laws of motion,

which had been previously discovered by Galileo and others,

he showed how the laws of Kepler, regarding planetary

motions were the consequences of the sun's attraction,

directed to its centre, on bodies projected with initial

velocities of suitable magnitude. He explained how the

somewhat complicated motions of the moon are to be

accounted for as the resultant of the action of the sun and

the earth and the neighbouring planets, that precession and

nutation (i.e., the periodic variation in the inclination of the

ecliptic to the equator) is also similarly due to the action of

the sun and the moon on the bulging portions of the earth,

that tides are caused by the same action and that the

figure of the earth itself is due to the mutual gravitation

of its parts and the effect of its rotation about an axis.

of its body but that on the moon is greater than that of the sun. on

account of the smallness of the moon's body."

This may be interpreted as the gravitational law regarding masses

of bodies, if we read '

acceleration
'

for attraction.

1 The story of the apple is not well-authenticated. Still it

illustrates a truth, which is now being gradually recognised that all

great discoveries in Science, as in everything else are, in reality,

inspirations of genius.

a



18 ASTRONOMY

ZZt Newtou applied the law to the comparison of the

masses of the heavenly bodies and, altogethe ,
his investi-

gation completely demonstrated the principle that the sun

is the ruler of a dynamical system, obeying one simple law,

and later investigations have, in every case, only confirmed

this principle.

23. The mathematical method of Newton enabled

Halley to deduce from recorded observations that the comet,

he had observed in 1682 moved in an elongated ellipse,

differing little from a parabola and he was thus able to

predict its re-appearance. When account was taken by

Clairaut of planetary perturbations, he was able to predict

its perihelion passage (i.e., the nearest approach to the

sun), on the 13th of April 1759. The comet actually

reached perihelion on March 13th, 1759. The calculations

of Cowell and Crommelin have supplied a still more accu-

rate knowledge of its orbit, which its last appearance has

abundantly confirmed.

24. After the discovery of Uranus, it was observed to

deviate from its calculated path, in a manner which sug-

gested that the deviation was caused by the disturbing

action of an unknown planet. From known perturbations,

it was possible on the mathematical method of Newton,

to determine the nature and position of the unknown

planet, assumed to produce the disturbance. The problem

was solved, simultaneously by Adams and Leverrier and

subsequent observation confirmed completely the deduction

of theory, by the discovery of Neptune. This was a most

signal triumph of Newtonian theory which now justly

ranks as an indisputable scientific truth.

25. An account of the application of dynamics to

astronomy cannot be complete, without a reference to the

remarkable method by which Foucault supplied an ocular

demonstration of the fact that the earth rotates about
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an axis, completing a cycle in 24 sidereal hours. It is

difficult to say when it first dawned on astronomers that

the steady rotation of the celestial vault with the stars

apparently fixed on it could be simply explained on the

supposition of the earth's rotation. A clear statement

of this principle is to be found, however, in Aryyavatta.
He says that "the stars are fixed; it is the rotation

of the earth that causes the daily rising and setting of the

stars." It must be admitted, however, that a demonstrably
exact knowledge of this point belongs only to the last

century, based on Foucault's researches. He showed that

the axis of a gyrostat which is set spinning always

points to the star to which it is initially directed and that

a long pendulum which continues to swing for a long time,

appears to change its plain of oscillation at a known rate.

These lead to the conclusion, as Foucault proved, on simple

dynamical reasoning, that stars occupy fixed positions in

space and that the earth rotates about an axis, round which

the stars appear to move, while pursuing their apparent paths.

26. In the same way, anything like a direct proof of

Kepler's hypothesis of the earth's motion round the sun

belongs also to the last century, when the discovery of

aberration by Bradley led to a simple demonstration of its

truth. Bradley discovered, that, when star-places were

accurately observed, they appeared to describe small ellipses

about their mean position, parallel to the ecliptic and to

complete a cycle in a year. This can only be due to the

motion of the observer, that is, of the earth carrying the

observer with it and we have a practically ocular demon-

stration of the earth's orbital motion.

27. Until, however the genesis of the solar system

has been investigated and gravitation itself explained,

Science cannot be said to have done more than take the

first step towards the elucidation of the mystery of
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the laws, in obedience to which, the heavenly bodies

pursue their appointed course.

28. Accordingly, scientific men now-a-days are not

content with the advance, already made. The next step

in scientific generalisation remains to be made, viz.,

to explain the law or principle of gravitation itself.

The law, as we now know it, is obviously artificial ; it

states that every body or every particle attracts every

other body or particle according to the law of inverse

square of the distance. There is no reason, obviously,

a priori why the distance law or the index law should

hold. It has accordingly been suggested that there must

be some more fundamental principle underlying that law,

and science is making a bold effort at getting at that

fundamental principle. A simple illustration will suffice.

It is well-known that if two spheres are made to move

along the line joining their centres with constant velocity

in a fluid medium, they appear to repel each other. This

repulsion is an apparent repulsion due to the peculiar

property of motion in a fluid medium, and it is conceiv-

able that something of a fundamental nature connected

with the property of the medium in which the so-called

gravitational law operates is at the bottom of the peculi-

arity of the law of attraction according to the inverse square

of the distance. Again, it has been found possible to

suggest an explanation of the energy of the mutual

action between bodies as due to some subtle motion of the

medium in which these bodies are placed and it is not

unlikely that this subtle motion of the medium may also

operate in producing the effect which we describe pro-

visionally as being due to gravitation.
1

1 It is on a conception of this kind that the theory of relativity

has supplied a complete explanation of gravitation including a modi-

fication of the Newtonian theory required to explain many ou tstauding

phenomena.



HISTORICAL INTRODUCTION 21

29. Then, there is the question of the genesis of the

solar system. Newton has shown that the nature of the

orbit, elliptic, hyperbolic or parabolic depends on the initial

velocity of projection of the moving body. And the

question is pertinent as to the nature of the explosion

which generated the initial velocity the '

velocity of

projection
'

of the requisite amount. It is, moreover,

worthy of note that nearly all the planets and satellites are

coursing the same way round, as well as rotating about

their axes in the same direction. To one line of specula-

tion, to explain all these, we shall confine ourselves.

30. Matter, as a nebulous mass, diffused through

infinite space, would on account of mutual gravitation

of its parts tend to be gathered together into a body like

the sun, whose potential energy of shrinkage may account

for the energy which the sun is known to lose through

radiation. If we further suppose that the nebulous mass

had originally a motion of rotation about an axis or, for

some want of symmetry to acquire such a motion, it

would tend to have increased angular momentum (on the

principle of conservation of angular momentum) and as

a result may give up rings and each ring may gather up

into one or more planets, themselves rotating about their

own axes. 1

1 This hypothesis seems to have received some confirmation,

since the photograph has revealed the remarkable behaviour of spiral

nebulae in Andromeda, which almost presents to the eye the process

indicated in the above hypothesis. Mathematical calculation has shown,

however, that a rotating liquid or matter of high density will break

up into binaries and triplets, while a rotating mass of gas of extreme

tenuity will assume gradually a lenticular shape and give up, not

rings but filaments at the two extreme points of the lense, which will

break up into nucleii, regularly spaced out.

The hypothesis seems, thus, capable of explaining the formation

of binary and triple stars as well as spiral nebulae giving up star

clusters. Whether it is capable of explaining the solar system, also,
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31. For the materials of each ring would continue to

cool and contract from the gaseous to the liquid condition.

If the contraction were uniform, the ring would break up

into a large number of small planets. On the other hand,

if it is not, and this will be the case generally, on account

of some want of symmetry that we must postulate in the

medium, some parts will condense more rapidly than

others. The effect of this will be to form a single mass a

single planet, In the same way, satellites will be formed

from the nascent planets.

32. Again, we know that the moon causes tides on the

earth on the oceans as well as on the solid earth. It has

been shown that tides caused by a satellite on its planet or

vice versa gradually cause changes in the relative motions

of the pair and in their distance apart. From this, it has

been concluded that the moon separated from the earth

about 57 million years ago assuming that this cause alone

has been operative and that in course of time, the earth's

period of rotation will become a month, as it is already the

period of rotation of the moon.

33. But quite apart from these speculations, the planet-

ary system, as we know it now, presents a simplicity,

which is indeed remarkable, in view of the complexity

which it presented to ancient astronomers. Side by side

with this simplification, we have to place the achievements

of the telescope, the spectroscope and photography which

have brought a new world within our purview. Whoever the

actual inventor of the telescope may have been, it was Gali-

leo who constructed the first instrument used in Astronomy.

The telescope helps in two ways. It enables the Astrono-

mer to observe along a mathematically defined line the

cannot, as yet, be stated for certain, for a gas under its mutual

gravitation cannot be homogeneous, but the corresponding mathematical

problem still awaits solution.
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optic axis of the telescope,
1 while the magnification pro-

duced by it has revealed the wonders of the heavens

previously unknown and unsuspected. Thus, the physical

features of the moon and the details of the surfaces of the

planets, can now be examined in detail, while it has added

considerably to the list of planets not merely Uranus

and Neptune, but also a large number of very small

planets between Mars and Jupiter, called the Asteroids.

We also owe to it the discovery of a considerable

number of satellites of the various planets. It has

also in some cases resolved stars (e.g. capella) into

binaries. But the telescope has also revealed the immen-

sity of the heavens. We now know, that, however much

our powers of observation are sharpened, the stars must

ever remain to us mere points so immensely distant are

they and that the solar system is separated from other

starry systems by distances, which can only be described

as immense, as compared with the magnitude and the

dimensions of the solar system, itself.

34. There is a limit however, to. the power of the

telescope imposed by its own mechanism as well as man's

power of vision. Accordingly, for further informa-

tion on the celestial bodies, we must resort to

less direct methods. The spectroscope has enabled

us to obtain definite information, regarding the

constitution of the sun and the stars, of nebulae and of

double and variable stars. And this, together with photo-

graphy has led to the discovery that the so-called fixed

stars are in reality in motion. Photography has also

enabled the astronomer to map out the heavens and study

its contents at leisure.

1 At the Man Mandir at Benares there is a hollow tube of small

bore capable of being pointed in different directions which was

evidently used to fix the direction of observation.
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35. The stars and nebulae which are too faint for the

telescope, as well as the details of celestial bodies that

would have remained undeciphered through its means

reveal their existence on the photographic plate which

has thus become indispensable to a more thorough survey

of the heavens than what the telescope could alone

have attempted.

36. Again, the evidence of the spectroscope conclusively

proves that stars are self-luminous bodies like the sun.

They are, in fact, so many distant suns with, therefore, it

may be presumed, systems of their own which it would

be quite impossible for us to become cognisant of, with

the means, at present at our disposal, If, therefore, each

star with its system is separated from its neighbour by a

void as great as ours is, we have some slight glimpse of

the vastness of the starry heavens and of the incompetence

of man to survey its infinite magnitude.

37. Thus, our most recent discoveries have but led to

the conclusion that we can, by the most refined means at

our disposal, learn but extremely few of the secrets of the

starry heavens, so that we, in the twentieth century, are,

after all, but little removed from those, who, in the infancy

of the human race, looked with wonder on the enchanted

if sublimely mysterious universe around them and if

they prostrated themselves before a Supreme Being who

to them seemed to be the solution of the mystery,
1 let it not

be said that we have less imperative reason for doing the

same, although we have been permitted to see a little

but very little, behind the veil.

1 Of. Suryya Siddhanta, Oh. I, 1.



CHAPTER I

THE SPHERE

1. Def. If a semicircle (ADC) (fig. 1) is made
to rotate about the bounding diameter, the solid generated
is called a sphere.

Fig. 1.

2 . From the mode of its generation, it is evident that :

(1) If O be the centre of the circle, the distance from O
of every point on the surface is the same and is equal

to OC, the radius of the circle.

This distance is called also the radius of the sphere.

And all lines passing through the centre and terminated

both ways by the sphere are its diameters.

(2) The semi-chords, such as ED, as well as the radius

OC sweep out circles which are all perpendicular to the

bounding diameter and are, therefore, parallel to one another.

3. Now, it is evident that the radii of all such circles

except that described by the radius OC are smaller than

the radius of the sphere. These circles (having the semi-

chords ED, etc., for radii) are called SMALL CIRCLES. w

4
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Per contra, the circle having OO for its radius is called

a GREAT CIRCLE. And, generally, any circle that can be

drawn on the sphere whose radius is equal to the radius of

the sphere, is a great circle.

Thus, the circle ADC, and all the circles with which

it coincides during its rotation are great circles.

It is evident that all great circles on a sphere have for

their common centre, the centre of the sphere.

4. We have, thus, two sets of circles. Viz., (I) the

great circles of the type ADC, and (*) the set of circles

(parallel to one another) perpendicular to the diameter

about which the semi-circle ADC is rotated.

Def. The line, about which a figure is rotated is called

the axis of rotation.

These two sets are evidently perpendicular to one

another. Their relative positions may also be described

by saying that the first set contain the axis, while the

second sire perpendicular to it.

5. With reference^ to this axis,

the first set are called MERIDIANS or SECONDARIES to the

second set, while of the second set, the one (a great circle),

passing through the centre is called the EQUATOR, and the

rest, PARALLELS.

6. jf)ff. The either extremity of the axis is called a

pole of the equator (e.g. A, fig. 1) and it is clear that all

meridians pass through the poles.

7. Prom the symmetry of a spherical surface, it

follows that any other diameter may be regarded as the

axis and we shall get with reference to this axis, again,

two systems of circles, ?/*>., (1) meridians, (2) equator and

parallels. Hence, all meridians are perpendicular to the

corresponding equator.

8. If a plane is drawn through the centre of a sphere,

it will intersect the sphere along a great cirqle. For
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the curve of intersection is necessarily a plane curve, every

point of which is at the same distance from the centre.

In other words, a central plane section of a sphere is a

great circle. Any such great circle being regarded as the

equator, it follows from art. :i, that all parallel plane sections

must be (parallel) circular sections or it* parallel*.

This can also be proved directly.

For, let the plane CDE (fig. 2) intersect the diameter

OC which is perpendicular to the equator OBA at C. Then,

CD is perpendicular to OO, where D is any point on the

curve of intersection of the plane and the sphere. Let O
be the centre of the sphere ;

then OC 2 + CD* =OD 2 =coustaut.

But OC is const.

Fig. 2,

Therefore, CD is constant, or the locus of D is a circle

having its centre at C.

9. It follows, therefore, that all plane sections of a

sphere are circles, the central ones being great circles, and

those that are non-central, small circles.

10. Def. The angular distance between any two

points on a sphere is the angle subtended at the centre of

the sphere by the line joining these points.

This is, evidently, also the angle subtended at the centre

of the sphere by the arc of the great circle passing through

these points.
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For, the section of the sphere by the plane containing

the radii to these points determines the great circle through

them.

11. Since the angle subtended by an arc of a great

circle at the centre is proportional to the arc, the

angular distance between any two points may also be

expressed by means of the length of the arc of the great

circle passing through these points.

12. The poles of the equator are at an angular dis-

tance of 90, from every point on the equator. Hence, all

its secondaries pass through the poles. Per contra, the

poles of the secondaries, all, lie on the equator. Thus, any

two great circles at right angles to each other have this

reciprocal relation, viz., the pole of either is on the other.

13. Remembering that a point on a sphere may be

defined as the intersection of two great circles, the position

of a point S on a sphere (centre O), may be represented as

follows : [Fig. 3.]

P
^

II

Fig. 3.

Take two fixed great circles (I and II), called the great

circles of reference, at right angles to each other (e.g,, the

equator and one of the meridian circles, [Art. 4.]

Then, P, the pole of I will be on II and if AB be

the intersection of I and II, the angular distance of P

from A and B will be 90.
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Now, describe a great circle through P and S. This

will be perpendicular to I, i.e., a secondary to I, [Art. 4,]

Let it meet I at L. ,'

;Vt

Then, the position of S will be evidently determined, if

the arcs AL and SL or the angles (AOL and SOL) sub-

tended by them at the centre of this sphere are known.

For given AL, we know which of the secondaries to I

contains S and when this is known, LS determines its

actual position on that secondary.

Def. The figure bounded by portions of three great

circles on a sphere is called a spherical triangle.

Obs. Any two points on a sphere may be joined by

a great circle. [Art. 10.]

14. To determine the position of a place (a point)

on the surface of the earth (supposed spherical) :

Now, it is known that the earth rotates about an axis,

the position of which, can be determined with absolute

accuracy. [Ch. Ill, art. 15.]

Hence, although any two great circles drawn on the

surface of the earth might have served for determining the

position of a point on its surface, it is naturally convenient

to take the great circle perpendicular to the axis of rota-

tion as the circle of reference I. This is called the

terrestrial equator. The secondaries to the equator are

called terrestrial meridians or, simply, meridians.

The advantage of this is that this circle of reference

can be determined with ease and, therefore, measurement

with reference to it can be carried out in practice by direct

observations.

For II, we may take any meridian that it is convenient

to take. In other words, we may take any great circle

passing through the poles (Ch. Ill, art. 12) and a suitably

chosen point on the surface of the earth. This is called the

prime meridian.
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In English Astronomical works, tbe meridiau through

Greenwich is taken as this second great circle of reference,

or prime meridian. The French use the meridian through

Paris, for the same purpose.

In the Hindu Astronomical work Suryya Siddhanta, the

meridian through Ujjain> as well as that through Lanka

is used.

15, The equator AB and a suitable meridian BPA

being taken as the great circles of reference (fig. 3), the

arc AL (or the angle AOL) is called the Longitude of

the place 8, east or west and LS (or the angle LOS)
the Latitude, north or south; that is

the Latitude of a place is the angular distance of

the place from the equator, measured north or south, and

the Longitude of a place is the angular distance of

the meridian through the place from a fixed meridian,

(measured east or west). [Ch. Ill, art. *27.]

16. Note* The angular distance of a point from a

great circle is the angle subtended at the centre of the

sphere by the intercept of the secondary of the great

circle through the point, between it and the great circle.

The angular distance of one great circle from another is

the angle between the two great circles. This is the same

as the angle subtended at the centre of the sphere by the

intercept, lying between them, of their common secondary.^

Def. The angles of a spherical triangle are the angles

between the respective great circles which form its

sides.

EXERCISE.

1. Define a sphere, a great circle, a small circle, equator, a

meridian and parallels.

Two great circles intersect at P and Q. Prove that the straight Hue

PQ passes through the centre.

2. Define terrestrial latitude and longitude.
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Two places on the equator have longitudes of 10 and 60 respectivelv.

Find the length of the equator intercepted between them, (The
radius of the earth = 4000 miles.) \

3. Prove that all plane sections of a sphere are circles. Two planes

passing through the centre are inclined to each other at 46. Find

the length of the secondary to their circles of intersection with the

sphere, intercepted between them.

Prove that the line of intersection of these two planes is perpendi-

cular to the secondary.

4. A, B are two places on the surface of the earth, whose latitudes

and longitudes are given ;
show by means of a diagram, the direction

of B as seen from A.

Fig. 4.

Let PG be the meridian through Greenwich,
PBB' the E. meridian through B and PA A' that through A, P being

the north terrestrial pole and G'B'A', the terrestrial equator.

Then G'B' represents the B. longitude of B, B'B, the N. latitude of B.

Also G'A' is the E. longitude of A, AA', the N. latitude of A.

Hence A, B are determined. Now, describe a great circle through A, B.

Then, the angle PAB or the angle between the meridian PAA'
and the great circle BA is the inclination of the required direction

to the Geographical north. [Ch. II, art. 15.]

5. Two places on the same latitude differ in longitude by 30. If

the common latitude is 60, find the distance between the two places,

(measured along the common parallel.)

The radius of the small circle or parallel of latitude on which the

places lie is r sin 30.

Therefore, the circumference of the circle is 2ir/' sin 30.

Hence the arc of the small circle intercepted between the places

= J^L ftrr sin 30= ~l_r.
360 12
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CELESTIAL BODIES

1. Astronomy, as its name implies deals with the laws

of stars or of heavenly bodies generally. These include

the sun, the moon, certain bright tracts of light in the

sky, and a large (seemingly infinite) number of small

bright objects, apparently embedded on the celestial vault.

2. Watching the heavens on a clear night, we easily

recognise that the numerous bright objects with which

the sky is bespangled fall into two main groups: (I)

Those (and these form the majority) that appear to move

together, as if connected with each other by absolutely

invariable bonds and (2) those (very few in number) that

appear to have more or less irregular motions among the

first group and are thus easily distinguished from them

3. The celestial bodies of the first group are the

stars (proper) ;
of the celestial bodies of the second group,

some shoot down to view from the upper regions of

the sky and then disappear but ultimately fall on the

earth. These are called meteors. At certain times, they

appear in swarms for a few hours, apparently radiating

from one point in the sky. The most noticeable of these

showers are those occurring in November and August.

These evidently belong to trains of meteoric stones (coursing

round the sun), which the earth encounters periodically.

These stones being attracted into the earth's atmosphere

become incandescent and appear as radiant points.

4. Of the rest, some grow bigger in size, as we watch

them, night after night, having ultimately the appearance
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of bright nuclei surrounded-by heavy clouds .and a^com-

panied by trails of light.
'

These are the comets (or hairy stars). They ai:e rare

visitants to the regions of the sky which are within our

.purview and remain within view for a comparatively short

time, when they do appear.

5. There remain now only a few star-like bodies ; which

seem to possess highly irregular motions among the stars,

appearing sometimes to go in one direction/ sometimes %
the opposite direction, while sometimes to- 'stand 'still

with reference to tbe sun altogether. These irregularities

are due> as we shall presently see, to the fact that they are

going round the sun, like the earth. These afe the

planets. Some of these are easily distinguishable bright

objects on the sky. Others are visible only through a

telescope.

This name was given by the Greeks to these

bodies, as well as to the sun and the moon on account of

their seemingly irregular motion among tbe stars. (The

word "planet" literally means a wanderer.)

6. If we are limited to naked-eye observations alone,

there is no difficulty in recognising the sun, the moon,

the comets 2 and the meteors among heavenly bodies and

distinguishing them from the rest by their marked

characteristics. Of the remainder, some (of those which

are visible at all to the naked eye) are observed to change

their positions relatively to the rest, when the observation

is carried on for several days together. The,se are. the

planets.
The rest appear to move together (art. 2). No

further differentiation is possible .
without instrumental

appliances.

1 When they are actually visible to the naked eye.

- Tn the case of a few, even without the help of 'a telescope.
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For this purpose, we have to have resort to the

telescope in the first instance. With its help, we are

enabled to distinguish between the different classes of

heavenly bodies, further. On looking through a telescope,

however, even the most powerful that has yet been invent-

ed, we find a star appearing still to be a mere point, while

a planet appears to be a body of finite size. Remembering
that a telescope magnifies objects viewed through it, we

conclude that a star is situated so far off that the best

magnification produced leaves its angular diameter still

inappreciable, while a planet must^ be a celestial object

only moderately distant.

8. The telescope also reveals the planets surrounded

by a few smaller objects which, as we shall see later, are

observed to move round them. These are called satellites.

Viewed through a telescope, a comet is found to reveal

to the observer characteristics of a hairy star, long before

it can be recognised as such by the naked eye.

9. When the telescope is pointed to the tracts of light

somewhat irregularly interspersed between the stars, they

are found in some cases, to be clusters of faint stars

obviously more remote than tlieir more brilliant neigh-

bours. In most cases, however, they appear to be patches

of light still. When viewed through a spectroscope, they

yield spectra, characteristic of incandescent gases, con-

sisting of bright lines only. We are thus led to conclude

that they are masses of incandescent gases. They are

called nebulae.

10. We shall presently see that the sun is a star, that

the earth is a planet and the moon, a satellite of the earth.

Astronomy, accordingly, deals with heavenly bodies

which group themselves under the following heads :

1. Stars.

, Nebul.
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3. Planets and Satellites.

I. Comets.

5. Meteors.

(1) and (2) are bodies, occupying practically fixed posi-

tions in space. The others have motions among these.

11. In dealing with them, we may (1) consider their

motions, ('I) try to explain these motions on Dynamical

principles, (3) discuss their constitution.

The first is the subject-matter of Spherical Astronomy,
the second that of Dynamical Astronomy, while the third,

that of Astrophysics.

EXERCISE.

1. The angular distance between two given celestial objects is ob-

served to vary, night after night. What conclusion would you draw

from this as to their true nature ? One of these is seen to be always at

the same angular distance from a third celestial object. What would

you conclude from this fact ?

2. Seen through a telescope, two objects appear to change their

relative positions. How would you proceed to find out what they are ?

3. A celestial object appears to change in size as seen through a

telescope from day to day. What would you conclude as to its nature" ?
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,-T4* Rotation of the Earth.
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*

On looking at the skyi on a clear night, one gets

the impression of myriads o brilliant points all lying oil

7 ;.spherical surface. In fact, for a long time, the

starry heavens (or
<( the universe ")

!
, was regarded ag

spherical, so that "the spherical vault of the s.ky
"
has

been the accepted mode of expression by astronomers from

the earliest ages. We have, just seen, however, that tele-

scopic pbse.rvatio.ii. leads to the conclusion that stars are

infinitely more remote than the planets. It is, moreover,,

reasonable to suppose that the fainter stars are more

remote than the more brilliant ones. The impression

produced by the celestial vault, therefore, namely that of

a. spherical surface, must be purely subjective due to the

fact that, our eyes are not competent to apprise us of the

relative distances of heavenly bodies, on account of the

vastness of these distances, so that we fail to distinguish

them from one another.

2. This explains why the vault of the sky appears

to be spherical. If, therefore, with the observer's eye as

centre, a sphere is described, it will be similar to the

celestial vault, as it appears to him. Such a sphere is

called the celestial sphere of the observer.

1
Cf. Aristotle's argument,

" The universe is spherical, because the

sphere is among bodies, as the circle among plane figures, the most

perfect, owing to its unique form limited by a single surface and is the

only body which during its revolution continually occupies the same

space." The last property, it should be noted, belongs to nil surfaces

of revolution.



3.
r If we obse'rve the motion of heavenly bodies, on

the celestial vault, we easily recognise. that they all appear

to move; in.; small circles, about a common axis which is
v

fixed in space, ad that the vast majority of these complete'

tile cycle in the same time. This interval is called a,' side-

real day and is nearly equal to an ordinary day of 4 hours.

This axis, moreover, is .directed to a point in ihe vsky/

practically indistinguishable from the ,position of an easily

recognisable bright star called the Polaris or Pole star I-

[Fig. 5.]

Fig, 5.

'' A portion of the celestial vault in the neighbourhood of polaris

(flattened out)'^ to shovrthe relative positions of two easily distihguikhatile

g;roupiP of star
;

8, nrea minor . to which' poTaris belongs and ufsa'majbr^

vfliil'ti iftbln'cTe-twd stars'
, )8'wnich aTy very ne'nrly in a line witii
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4?. If the observed diurnal motion * of these bodies

were also their actual motion, it would be necessary to

postulate an invisible and rigid bond between millions of

bodies which alone can keep them always moving together.

On the other hand, if the motion is only apparent and is

due to the motion of the observer, we have only to admit

that the earth is rotating about an axis (very nearly direct-

ed to the Pole star) completing its rotation in one sidereal

day. The latter hypothesis, therefore, offers a simpler

explanation of observed phenomena and, as such, should

prove more acceptable, even if no direct proof were

available that this is actually the case. If this explana*

tion is accepted, we should conclude that the observed

motion of stars is only apparent motion.

'

It is difficult to say when the idea of a rotating earth

was first suggested to astronomers. Both Plato and Aristotle,

believed in the daily rotation of the heavens from east to west.

Among Greek astronomers, however, Herakleidas of Pontus,

a contemporary of Aristotle, clearly and distinctly taught that

it was the earth which turned on its axis from west to east in twenty-

four hours. 3ut evidently, this idea did not gain much credence, for

we find Ptolemy (2nd century A.D.), the greatest of ancient Greek

astronomers, describing as a fundamental axiom of astronomy

the view that "the heavens is a sphere turning round a fixed axis* as

may be proved (according to him) by the circular motion of circum-

polar stars and by the fact that other stars always rise and set at the

same points of the horizon." At the revival of learning long after-

wards, Ptolemaic idea was the generally accepted creed in Europe

till the time of Copernicus (1473 A. D.) who formulated the view that

the earth rotates in a day and night. He points out that any change

observed may be caused either by a motion of the object observed or

by that of the observer or of both. Hence, a turning of the earth from

west and east would account for the rising and setting of the sun,

the moon and the stars. He, then, argues that it is very unreasonable

to suppose that the immense sphere (of the celestial vault) should

revolve in. 24 hours and further that bodies describing smaller circles

always move more rapidly than those whioix move in larger,once and
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5. The Diurnal motion was regarded in ancient times

as due to the revolution of the celestial vault the starry

sphere of the Suryt/a Siddfianta "
to the left of the Gods,

1

as seen by observers in the northern hemisphere, look-

ing towards the north, and to the right of the Attira*"

and this is quite sufficient to explain the diurnal motion,

if we mike the further supposition that the various stars

are rigidly attached to the starry sphere, regarded as a

rigid dome. 2

6. At the present day, we are not dependent on mere

hypothesis for a complete explanation of the diurnal

motion of celestial bodies. For this, we are indebted to a

remarkables series of researches of the French Physicist

Foucault, which supply an ocular demonstration of the

earth's rotation.

7. It is known from Dynamics that the axis of a

gyrostat which is set spinning remains fixed in space. Now,

it is found that if we cet a spinning gyrostat with its axis

pointing to a particular star, this axis remains continually

therefore the earth must be moving an argument, the cogency of

which is not apparent. Long before Copernicus, Aryyabhatta

(A.D. 476) had taught that
" The stars are fixed

;
it is the rotation of

the earth that causes the daily rising and setting of the stars
" and

his ap >ears to have been the generally received doctrine in India, for

many centuries before Copernicus. It would be of interest to enquire

what line of argument led the Indian astronomers to this conclusion,

for those of Copernicus were evidently very incomplete. But on this

point, it is hardly likely that any information will be available, on

account of the method of oral transmission of knowledge pursued in

India in ancient times.

1 The motion of the heavens is towards the right, because this is the

more honourable direction says Aristotle.

8 It is unreasonable to think (says Aristotle) that each star should

travel along, with precisely the same velocity as its sphere, if both

were detached from each other. Therefore, the stars are at rest in

their sphere, Only the latter is in motion.



directed to the same star, it follows, therefore, that the

staw occupy fixed positions in. space.

i '8; Another series of experiments
l of Foucauli's were

those with a long pendulum provided with a heavy bob.

If, such a pendulum is set oscillating-, the plane of its

oscillation should remain fixed 2 in space. Observations

made by Foucault and since repeated by others -have

shown, ;however, that the plane o
'

oscillation appears

to rotate about the vertical with reference to surrounding

objects at a determinate rate. This, also, easily lends to

the conclusion that the earth rotates about an axis, point-

ing very nearly to the pole-star.

-,'o Since the plane of the pendulum is actually

pbserved .to .rotate ^about the vertical, although it is in

reality fixed in space, the observed motion of the plane

,, .^Foucault took a heavy iron ball (fig. 6). about a foot. in diamoter

and suspended it from the dome in the lllllllHIll

Pantheon in Paris by means of a string
^

about 200 ft. in length. By means of

this device, the pendulum was made to

eontinue to swing, for a long. time. A
circular-rail having a little ridge of sand

built upon it was placed under the

pendulnm. And a pin attached to the

ball just scraped the sand, leaving a

.mark at each swing.

The ball was drawn aside by a cotton

thread and when it had come to rest

completely, it was let go by burning the

cord, so that -the pendulum might begin

to swing in a true plane.

Inspite of all these precautions, it was found to swing in different

planes at different times, according to the 1 yv, given in Art. 9.

,.- For the only forces acting on the bob of the pendulum lie in

the original -(vertical) plane of swing and therefore no deviation from

ifc should result from the action .of the forces that are alone known

to a,ct.

Fig. 6.
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must be only apparent motion due not to the actual

motion of the plane of swing but to the motion of the

horizontal plane at the place of observation.

9. Admitting, then, that the earth does rotate about

an axis OP (fig. 7), let us enquire how the plane of swing
of a pendulum will behave at a place Q.

Now, if O is the centre of the earth, OQ. will be the

direction of the vertical. [Art. 16.]

Fig. 7.

Again the angular velocity w about the axis OP can

be resolved l into angular velocity
> cos POQ about OQ and

another equal to w sin POQ, about an axis perpendicular

to OQ.

1 Let P ( 6g. 8) be a particle rotating about an axis AD with an

angular velocity w, represented by the length

AD and AB, AC auy two lines at right

angles to each other, meeting |at A. Com-

plete the parallelogram AB DC.

Then, we have to show that w( = D)

about the axis AD is equivalent to

<a
l (
= AB) and &> 2 (

= AC) about the axs

AB, AC respectively.
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The former alone will produce an angular displace-

ment of the horizontal plane at Q, about the vertical,

of magnitude, equal to to eo's POQ.

The plane of swing of the pendulum will, therefore,

appear to rotate relatively to the horizontal plane at the

same rate (viz., w cos POQ) in the opposite direction.

Observations made by Foucault and since repeated

by other observers, at different places verify this result. l

We conclude, therefore, that the earth rotates about

an axis (fixed in direction in space) with a constant

angular velocity.

10. Since the earth has this motion of rotation, a

celestial body must on account of this motion appear 'to

move in the opposite direction to that of the earth to an

observer necessarily partaking of the earth's motion. This

completely explains the common diurnal motion of all

celestial bodies. It is, moreover, found that most of these

bodies appear to complete their diurnal motion in the same

Now evidently, the rectangle PM. AB = PL.AD + PN. AC.

But PM.AB = velocity (due to angular velocity w), perp.to the plane

ABDC and similarly for the others,

since velocity= displacement in unit time

= product of angular velocity about A and pcrp.

from A on the direction of motion.

Observing, now; that if the rotation is clockwise, this displacement is

towards the observer, we conclude that the joined effect of n w 2 is the

same as that of w, oil the same convention as to direction, throughout,

1 Let T be -the period of the earth's rotation ;
then =T and the

period in which the" -plane of swing f- the pendulum completes its

cycle at any place Q will be . ? =T sec POQ = T cosec lat. (if
o> cos POQ

the' pendulum can go- on swinging, during the whole of that time).

This'is actually found to Ire the case.
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period. This period must, then, be equal to the period
of rotation of the earth. This period, as we have seen, is

called one sidereal day.

11. We have thus another mode of classifying celes-

tial bodies, viz., bodies which complete their apparent
motion in one sidereal day and those which do not.

This leads to the following conclusions, viz., that

(1) the first set of bodies are fixed in space: These

are the stars, proper (and nebulae),

(2) while the other bodies (i.e., those which do not

complete their cycle in one sidereal day) have independent

motion in space, real or apparent (viz., planets, etc.).

[Chap. II, 5.]

12. It follows that we can determine this period

(viz. one sidereal day) by observing the (apparent) diurnal

motion of stars ; for, evidently the interval between

the successive transits of a star across the meridian of a

place is equal to the period of the earth's rotation about

its axis.

13. Now, on account of the earth's rotation, the top

of a tower has a greater velocity eastwards than the bot-

tom, as it is at a greater distance from the earth's axis.

If then a particle is dropped from the top of a tower, it

should not fall exactly to the bottom but deviate slightly

to the east.

Thus, since the particle has initially the same velocity as

the top of the tower, in the time that the particle moves

to the bottom, it will undergo two displacements simul-

taneously. It will, therefore, reach the extremity of the

diagonal of the parallelogram, having these displacements

for sides. Accordingly, the particle will fall away from the

bottom. The deviation will, however, of necessity, be very
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slight, so slight,
1 that the effect may well be veiled

by that of the wind or other extraneous causes.

U . The diurnal rotation of the earth serves adequately

to explain many natural phenomena, e.g., the direction of

the trade winds and monsoons.

As the equatorial regions of the earth are hotter than

places in high latitudes, wind would be set up continually

blowing towards the equatorial regions, both from the

north and south. For the air in contact with the hotter

regions about the equator will get warmer and rise up and

the colder air from the colder regions in the higher lati-

tudes will tend to take its place.

There are actually such winds but their directions are

not north and south but north-west and south-west.

This is easily explained, as being due to the rotation of the

earth. For a particle of air at a point Q at a northern latitude

has lesser easterly velocity (fig. 9) than a point in the same

meridian on' the equator. When, therefore, such a part-

icle reaches the equator, its easterly deviation is less than

that of Q,; it will, therefore, reach a point to the west of

Q at Q' (say) (fig. 10). It will result therefore that to an

observer at Q', an air particle will appear to come from the

north-west. Exactly the same thing will happen to a

particle of air coming from the south : It will appear to

come from the south-west. Hence the trade winds are

north-westerly and south-wT

esterly.

15. The axis of the earth. The rotation of the

earth is thus a matter of exact demonstration. Careful

1 Let the observation be made at a place at the equator. Then
= h yt~ = fr> if h is the height of the tower= the distance fallen

through in time /, under accl. g. Also deviation= ho>t, where w

is the angular velocity of the earth.

Thus the deviation = tch \/ ~^
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Fig. 9. Fig. 10. Fig. 11.

measurements are, however, required in order to determine

the direction of this axis with accuracy. But a rough

approximation can be obtained with comparative ease.

This is to follow the motion of a star with a telescope

and, thus, determine the cone which its optic axis sweeps

out. The axis of this cone is also the axis of rotation of

the earth. It is, thus, found, as we have already stated

that this axis very nearly points to the pole star. The

points on the earth 's surface which are situated on the

axis ate called terrestrial poles.
l

The direction of the telescope in the above series of

observations may be easily represented by strings or rods

suitably directed. If this is done (and this was evidently

the device used by ancient astronomers), the cone swept

out by the telescope or line of sight can be easily material-

ised and the axis of rotation of the earth, roughly

determined.

Modern instrumental and observational methods obviate

all this labour and yield, necessarily, much more accurate

result.

1 Recent investigations have shown that these are not fixed on the

earth but slightly change their position.
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16. The shape of the earth. We have already stated

that the earth is or is very nearly a sphere. That it is not

flat but globular in shape, is known from various well-

known facts, viz.,

(1) that the earth has been circumnavigated;

() that the appearance of ships receding from or

coming towards ports (viz., funnels appearing first and

disappearing last) are such as can only be accounted for by

supposing that there is always a bulging portion between

the observer and the ship.

That it is not merely globular but practically spherical

is deducible from the observed fact that the shadow of the

earth, cast on the moon at a lunar eclipse has always a

circular outline.

This is also proved from direct measurement, based on

astronomical observations.

Obs. The horizontal plane at any place is evidently

the tangent plane to the surface of the earth at the place.

Hence, if we assume the earth to be spherical, the

vertical direction at any place will be that of the diameter

of the earth passing through it.

17. This being premised, we are in a position Jo find

the shape of the earth.

For this, take two stations in the same meridian. This

can easily be done, for two places are in the same meridian,

if it is apparent noon at both places at the same time

(Ch. XIII).

Now, observe at these two places (say A, B) the

inclinations (fig. 11) of the direction of any, the same star

to the vertical at these places, when the star (S) is on the

meridian.

As S is very far off, AS and BS being in the same

plane are parallel to each other.
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Then, the difference between these two observed inclina-

tions is evidently equal to the angle ACB where C is the centre

of the earth. This quantity can, therefore, be observed.

It is also possible to obtain by measurement, the distance

A 13, i.e., the distance between the two places A, B measured

along the meridian through A, B.

And it is found from actual (geodetic) measurements,
that the circular measure of the angle ACB varies as the

distance AB along the meridian AB (very nearly), wherever

the two stations are taken. This shows that the curvature 1

of every meridian is, very nearly, the same at every place.

Hence, we conclude that the earth is,aproximately,a sphere.

18. The earth is an oblate spheroid.

Elaborate'.and very careful measurements have shown,

that a meridian is an ellipse of small eccentricity, with its

minor axis coinciding with the axis of rotation of the earth

and that all meridians are practically equal. The shape of

the earth is, thus, an oblate spheroid. [Fig
2

12.]

\ Fig. 12.

Major Axis= 3963-3 miles.

Minor Axis == 3949*8 nearly.

19. It is also known that a spherical body which is

a viscous -or a senri--fluid mass, if made to rotate about a

diameter will assume the shape of an oblate spheroid, with

the axis of rotation as the minor axis of its elliptic section.

1 Curvature, .is ..obtained by dividing the circular measure of the

angle between conBeoutive normals at the extremities of an elementary

.arc, by the length of that arc.

2
Enormously exaggerated, of course.
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The observed shape of the earth is, therefore, consistent

with the hypothesis (which has been verified on independent

evidence) that the earth was originally a semi-fluid mass.

20. If we take account of the eccentricity of a meri-

dian of the earth, the vertical line at any place will be the

direction of the normal to the meridian through the place.

It is slightly inclined to the central radius to the place.

This inclination is called the angle of the vertical [e.ff.,

L CPN, where C is the centre,

PN being the normal or the

vertical line at P (fig. 13) ].

Obs. For most purposes, we

shall regard the earth to be a

sphere.

21. We have seen that to the observer, the celestial

vault appears spherical in shape and that, therefore, if

with the observer's eye, as centre, we describe a sphere,

it will be similar to the celestial vault. Such a sphere

is called the celestial sphere of the observer.

It is easily seen (fig. 14) that if lines drawn from the

centre O of this sphere

to the stars 1, 2, 8,

meet the sphere at

points s l} $
2 ,

5 3 , then

the directions of the

stars will be given by

O#j, OtV 9 ,
O* 3 ,

aud

the relative, angular

positions of the stars

will be the same as

those of the points s i9

.14.

When the positions of all stars are thus marked on the

celestial sphere, the whole of the celestial Vault, a$ it
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appears to us at any time, will have been completely

mapped out.

Again, as all celestial distances, on account of their

enormous magnitude appear to us to be equal (Ch. II, 2),

any changes in the linear distances of celestial bodies from

the observer are inappreciable also. Hence, the motions of

celestial bodie?, which we are cognisant of, ordinarilv, are

really changes in their angular positions only. Accordingly,

these motions also can be adequately represented on the

celestial sphere, as changes in the positions of s l9 *
,
s 3t

etc., alone.

22. From what we have already stated, it will be

evident that in the case of the vast majority of celestial

bodies (i.e. stars and nebulae), we have to be content

mainly with a study of these angular changes only. Even

in the cise of the remaining few, the changes in their

distances cannot be directly observed but have to be

deduced by very careful observations and calculations.

Accordingly, these changes will not concern us at present.

23. Now on a map of a portion of the earth's surface,

it is necessary to fix the positions of certain cardinal lines

and points before we can mark the positions of places

on it. In the same way, in order that the celestial sphere

may serve as a map of the celestial vault, at any time,

we must begin by fixing the positions of certain cardinal

points and lines on it.

24. Let ABP (fig. 15) represent the earth, Cp, the

axis, p, the north pole, AB, the equatorial diameter, pQB,
a meridian through a given place, O.

Then, OP, parallel to Cp will be the direction of the axis

of the earth, as seen by the observer at O. In other words,

if a star marked the direction of Cp, that star, as seen

by the observer at O would be in the direction OP, on

account of the enormous distance of the star.

7
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Also, if C is the centre of the earth, then CO will be

the direction of the vertical (on the assumption that the

earth is a sphere).

Fig. 15.

25. If now, a sphere is described with O as centre,

this will be the celestial sphere of the place O.

The point at which CO, produced intersects the sphere

will be the position of the zenith (Z) on the celestial

sphere.

Or, the point vertically overhead on the celestial

vault is called the zenith and the point on the celestial

sphere which marks this point is the Zenith point (Z).

Celestial pole. Def. The point at which the line OP
drawn parallel to the earth's axis meets the celestial sphere

is called the celestial pole (P).

It thus marks the direction of the terrestrial pole.

It is called the North pole, if the observer is in the

Northern hemisphere.
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Horizontal plane. Remembering that the horizontal

plane at O (ouches the earth at O, it is ea-y to describe

it, for it is perpendicular to the line OZ.

Celestial horizon. The intersection of this plane with

the celestial sphere is necessarily a great circle. It is

called the celestial horizon (NWS).
26. Again, the great circle in which the terrestrial

meridian juOB intersects the celestial sphere contains Z

and V and the line NOS, the tangent to the meridian at O.

Celestial meridian. This great circle NPZS is called

the celestial meridian. It is a vertical circle, since all great

circles (on the celestial sphere) containing OZ are vertical.

27. The North and South points. If P is directed to

the North pole of the earth, the points N and S, or the

points of intersection of the celestial horizon and the celestial

meridian are the North and South points (the former

being directed towards the north pole).

To find these, we have, first, to determine the direction

of OP (that is, that of the polar axis of the earth).

When this has been determined, let a telescope or rod be

pointed along OP and then sweep out the vertical plane

through it, till the telescope or rod is horizontal ; in this

position it will point along NS.

The East and West points. The points of the celestial

horizon at the angular distance of 90 from N and S are

the East and West points.

These are the cardinal points.

28. Celestial equator. The plane through O parallel

to the terrestrial equator or perpendicular to OP intersects

the celestial sphere along a great circle (QWR) called the

celestial equator.

Since the angle BCO (fig. 15) is the latitude of O, the

angle NOP is equal to the latitude arid the angle ZOP is

equal to the co-latitude, (or the complement of latitude).
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It can be easilv shown 1 that the points of intersection

of the celestial horizon and celestial equator are, t-ach, 90

from N and S. Thc.se points W and E are, therefore, the

West and East points, on the usual convention. 2
[Fig-. 16].

29. We are, now, in a position to describe the celestial

sphere of a place, whose latitude is known. Take a

sphere, with its centre at O. Draw the radius OZ in

the direction of the vertical or to represent the vertical line,

and describe the great circle, perpendicular to it to repre-

sent the celestial horizon.

Describe also a great circle through Z (fig. 16) per-

pendicular to the celestial horizon

to represent the celestial meri-

dian. Draw OP in the plane

of this meridian, such that the

angle ZOP is equal to the co-

latitude of the place. Then, P
will be the celestial pole and

the great circle perpendicular to

OP, will be the celestial equator. Fi<?. 1C.

The intersections of the celestial meridian and the celes-

tial horizon are the North and South points and the

intersections of the horizon and the equator are the East

and West points.

SO. When these cardinal points and lines have

been marked on the celestial sphere, the position and the

motions of celestial bodies can be represented on it with

comparative ease.

1 Since P is the pole of QWR and Z that of NWP, W is the pole of

NPZ or W is at an angular distance of 90 from N or S.

1 If we imagine an observer to stand at O and look towards E, his

left hand will point towards the North.
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Thus, the (apparent) diurnal motion can be represented

by means of small circles, parallel to the equator

(with arrow heads to indicate motions from East to

West).

31. When this has been done, we can classify celestial

bodies into various groups, according to their paths on

the celestial sphere.

(t) Bodies which move in fixed small circles with con-

stant speed. These must be bodies fixed in space relatively

to the earth, vtz.
9
stars (and nebulas).

1

(') Bodies which move in small circles, the positions

of which vary continuously.

32. In order to explain the motion of the second

group, consider a point, moving along any path whatever

on the celestial vault Superpose on this motion, the

diurnal motion of the celestial vault itself (which, as we

know, is due to the motion of the earth, and therefore also

of the observer, being opposite to this rriotion). The effect

will be to give the point a motion in a spiral. The suc-

cessive threads of this spiral will, however, be nearly circular,

if the displacement of the point along its own path on the

celestial vault, in one day, is inconsiderable and is, on

that account, neglected. Thus, we conclude that the

bodies belonging to the second group have motion on

the spherical vault, in addition to the apparent diurnal

motion, i.e., a motion among the stars. The mode of

representing this motion will be considered later.

33. It should be remembered, in this connection, that

this motion (on the celestial vault) among the stars, itself

may be real or apparent.

1 The nebulso being extended patches of light need hardly be

considered in this connection.
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34-. Returning to the first group of art. 31, we observe

that those can be classified into various sub-groups,

viz.

(a) Bodies that never set [as seen from the place of

observation (fig. 17)]. These

are stars whose diurnal paths

lie entirely alove the horizon.

(b] Those that never rise,

their diurnal paths lying entire-

ly below the horizon (fig. 18).

These two groups are called

circumpolar stars.

(c) Those that both rise

and set : Rise at points such
Fig. 17.

as R, attain their maximum heights above the horizon,

at their meridian passage (e. g> M) and then set (at T).

[-Fig. 18.]

Def, Such a star is said ^ r- M

to culminate, when it is at

the meridian.

35. We, next, proceed to

consider the mode of represent-

ing the position of a heavenly

body on the celestial sphere.

Referring to the general mode

of representing a point on a

sphere, we observe that we need only specify the two

great circles to which the position must be referred. We
have, accordingly, different modes of representation and

corresponding systems of co-ordinates, by means of which

the position may be defined.

Def. Co-ordinates are quantities, by means of which,

the position of a point may be defined.

Fig. 18.
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Fig. 19

36. Let the great circles of reference be (1) the

celestial horizon (I) and (2) celestial meridian (II) [Fig. 19].

If we describe the great circle ZSL (Ch. 1, 13), then the

position of a point S is defined

by SL or the angle SOL, called

the altitude and NOL 1 called

the azimuth.

Df-fs. Great circles per-

pendicular to the horizon are

called VERTICAL CIRCLES. The

vertical circle through a celes-

tial body is called the VERTICAL

of that body (e.g., ZSL).

Defs. The ALTITUDE of a star is its angular height

above the horizon or the angular distance of the star from

the horizon (measured along the vertical of the star).

Its complement is called the ZENITH DISTANCE.

THK AZIMUTH of a star is

its angular distance from the

North point measured along the

horizon, in the direction of

the apparent diurnal motion

of celestial bodies.

37. Next, let the great circles

of reference be (l)the celestial

equator (I) and the celestial

meridian (II) (fig. 20).

If we describe the great circle PSL to intersect I at

rt. angles, the position of the star S is defined by SL or

the angle SOL called the declination and the angle ACL
or AL called the hour angle.

. 20.

The letter S on the great circle 1 should be N.
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Defs. The great circle perpendicular to the celestial

equator through any star is called the DECLINATION CIRCLE

of the star (e.g. PSL, fig. 20).

The declination of a star is the angular height

of the star above the celestial equator, i.e., its angular dis-

tance from the celestial equator (measured along the

declination circle of the star).

The hour angle of a star is its angular distance

from the celestial meridian (measured along the celestial

equator) towards the west point and expressed in hours,

minutes, etc,, calculated at the rate of i j to the hour.

88. Obs. The zenith distance or the altitude of a star

evidently depends on the place of observation, as it is

measured from the horizon of the place, as well as on the

time of observation, since it constantly changes, on account of

the diurnal motion. In the same way, azimuth also depends

on the place of observation, as it is measured with reference

to the celestial meridian of the place as well as on the

time, for it follows the diurnal motion of celestial

bodies.

On the other hand, declination does not depend on the

place of observation, as it is measured from the celestial

equator, the direction of which is independent of the position

of the observer. It is also independent of the diurnal motion

and, therefore, also of the time of observ <tion, in the case of

bodies which are fixed in space and have, as such, only

apparent diurnal motion.

But the hour an^le depends on the place of observation,

since it is measuied from the meridian of the place and, of

course, necessarily, also on the time of observation.

If, therefore, instead of this meridian, we take the

declination circle through a fixed star or through a fixed 1

1 Fixed in the sense oi' being independent of tbe observer's position.
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point in space, as the second circle of reference, the angular
distance of a star from this latter circle will be indepen-

dent of both the position of the

observer and of diurnal motion.

The fixed point chosen is the

point of space which the suu

occupies when he is on the

equator. It is called the first

point of aries. (Or, 7) [Fig. 21].

We have accordingly, the

third system of co-ordinates in

which the planes of reference

are (i) the celestial equator, (it) the declination circle

through the first point of aries.

The co-ordinates in this case are JS, the declination and

7, the Eight Ascension (written, for brevity, K. A.).

39. Defs. The right ascension of a star is the arc of

the equator intercepted between the declination circle of the

star and the first point of aries, expressed in hours, minutes

and seconds, 15 of this arc being equivalent to one hour

and measured in the opposite direction to that of the

apparent diurnal motion qf celestial bodies, i. e.
}

in

the opposite direction to that, in which hour angle is

measured.

40. Now, on account of the diurnal motion of the earth,

the celestial vault appears to revolve about OP, with stars

fixed on it. Hence, the R.As. of all stars must be

constant. They change slightly, however, as the stars are

not absolutely fixed in space.

Since the apparent diurnal motion of stars is entirely

due to the rotation of the earth about its axis, the period

of this rotation is equal to the interval between the

successive passages of a star across the meridian of a place.

8
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This period is called a sidereal day. Since 7 describes

uniformly a whole circumference in one sidereal day, the

sidereal interval (art, 39) that elapses since the meri-

dian passage of a star is equal to the hour angle of 7. If,

now, time is reckoned from the moment that 7 is on the

meridian, and is called sidereal time, then the sidereal time

at any moment is equal to the hour angle of 7.

41. If a star is at the meridian at anytime, then the

R.A. of the star is equal to the sidereal time of its meridian

passage. For, evidently, the hour angle of 7= R.A. of

the star, which is on the meridian at the moment.

This, as we shall see, enables us to determine the R.A.

of a star. [Ch. IV, 13.]

42. Referring to the classification of celestial bodies

that we had in art. 11, we observe that we may also

classify them as follows.

(1) Nodies whose R.A. and decimation are constant :

These are the 'fixed
'

stars.

(2) Bodies whose R.A. and declination are continuous-

ly varying.

43. Celestial globe. An astronomical or celestial

globe is a chart of the entire celestial vault or a reproduc-

tion of a celestial sphere, on- which the relative angular

positions of celestial bodies are represented.

The globe is provided with an axis of rotation, made

of brass which, passing through its centre, is fixed to a

vertical circle of brass, surrounding it. This brass circle,

in its turn, is capable of rotation in a groove cut in a horizon-

tal circle of wood, also surrounding the globe and fixed to

the stand on which it rests. When the globe is so placed,

that it represents the celestial sphere of a given place,

the operation is called, rectifying the globe. For this, the

brass axis is made to point in the direction of the polar

axis of the place of observation (roughly, in the direction



CELESTIAL VAULT 59

of the pole star). This ensures that the brass circle shall be

roughly in the plane of the meridian and the points where

it passes through the horizontal circle are the North and

South points.

When the globe *is thus placed, the upper portion of the

globe is a chart of the celestial vault, as seen by an observer

supposed to be at its centre. And the entire globe, represents

the celestial sphere of the place of observation. If, now,

the globe is rotated, we have a fair representation of the

heavens, as seen by such an observer.

EXERCISE.

1. Describe the appearances presented by the sky, when you

stand on a broad flat plane, on a clear night. Briefly explain these.

2. Explain or justify the expression, celestial vault.

3. Define " the axis of the earth." You are provided with a large

number of strings fixed to a point on the earth's surface, explain how

with the help of "these you will,

(1) determine the axis of the earth,

(2) describe the celestial sphere,

(3) determine the cardinal points,

(4) trace the diurnal path of a star,

(5) measure the duration of a sidereal hour [with the help of

(say, a sand glass), in addition].

4. Discuss Foucault's experimental method for proving the earth's

rotation.

An observation is made with Foucanlt's pendulum, at a place in

latitude 45. Find the angle that would be turned through by the plane

of oscillation in 20 sidereal hours. How long will it take to complete

a revolution ?

5. Calculate the deviation of a particle dropped from the top of a

tower (500 ft. high), at the equator (0
= 32).

6. Find the deviation of a particle dropped from the top of a tower

of given height, at a given latitude. When is the deviation zero ?

7. Assuming the earth to be a sphere, find the distance travelled over

by an observer from a place A to a place B, in the same meridian, if

the zenith distance of a star changes by 10, during the transit.
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8. How are the cardinal points on the horizontal plane determined ?

Show that at all places, the celestial equator passes through the East

and West points.

9. The decimation of a star is zero. Prove that it always rises at

the east point.

Show, by a diagram, the difference in tli time of rising of two

stars, whose declinations are given.

10. The R.A. of a star is 30. Represent on a diagram, the position

of the star at sidereal time 4 hours, if its declination is 60, the latitude

of the place of observation being 15.

11. Explain by drawing a suitable spherical triangle, how the

declination of a stai can be determined, if the zenith distance and hour

angle are 30 and 1 h. respectively.

Point out the difference that will arise in the nature of the problem,

if the R.A. of the star is given as well as the sidereal time at the

moment of observation.

12. If a star transits across the meridian to-day at a certain hour,

when will it do so, a year hence ?

13. What is the hour angle of the zenith ?

An equatorial star is just rising at
)> Om O'. What is its right

ascension, hour angle, zenith distance ? Which of these quantities will

change with time ? Illustrate your meaning by means of a diagram,

the place of observation being in latitude 70.



CHAPTER IV

ASTRONOM 1CA L IXST11UM ENTS

1. We have seen that in order to define the (angular)

position of a celestial body, it is only necessary to define

the direction OS, in which the star 1 is seen (iig. J4) and

that this direction is completely determined by two

angular co-ordinates.

2. For rough observations, if we look at the star

through a tube of small bore and, then, rotate the tube

about a horizontal axis (perpendicular to it) till it is horizon-

tal, the angle it describes will measure the altiliide of the

star. While it remains horizontal, let it be rotated further

about the vertical, till it points to the North
; then the

required angle of rotation gives the azimuth of the star.

Such a tube was used at the Manmandir at Benares.

3. For accurate observations, however, we have to

ensure (1) that the star is seen along a mathematically

defined line and (>) that there are suitable mechanical

contrivances by which the various rotations may be

accurately effected, abou; proper axes and (3) that suit-

able means are provided for reading accurately the angles

of rotation.

4. Now, when we look at a star through a telescope,

we see it along a mathematically defined direction namely,

the optic axis of the telescope. With a telescope, therefore,

capable of rotation about suitable axes and provided with

fixed graduated circles, perpendicular to these axes, we

can determine the various co-ordinates, described in

Chapter III.
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5. Thus :

(1) A Telescope capable of rotation about

(1) the Vertical and

(2) about different horizontal axes,

determines (Azimuth
and

(. Altitude.

Such a telescope is called an altazimuth :

Let the telescope be pointed to a star. Then, if we

rotate the telescope in the vertical plane in which the star

is, till it is horizontal, we get the altitude. If, now, we

further rotate the telescope till it points towards the North,

we get the azimuth, the direction of rotation being

opposite to the diurnal motion of celestial bodies.

(2) A telescope capable of rotation about the polar axis

and about axes in the equatorial plane, similarly, determines

Declination and

Hour angle.

Such an instrument is called an equatorial. [Fig. 22.]

7. In practice, these angles

are read off on graduated circles,

whose planes are perpendicular

to the axes of rotation.. Thus,

in the ca^e of the Altazimuth,

when the telescope points to the

star, its inclination to the

horizon is read off on a vertical

graduated circle, carried with

the telescope, while the inclina-

tion of the vertical of the star

(Ch. Ill, 66), to the meridian

is read off on a fixed horizontal

circle.

8. The mode of observation with the equatorial is

similar, The telescope is pointed to the star ancl the

Fig. 22.
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graduated circle which is carried with the instrument 1 is

read off. Since the zero of graduation corresponds to the

celestial equator (which is a plane perpendicular to the polar

axis), the reading at once gives the declination.

At the same time, the inclination of the plane contain-

ing the optic axis of the telescope, and the polar axis, to

the meridian plane is read off on a fixed graduated circle,

perpendicular to the polar axis. This gives the hour

angle (read in the direction of diurnal motion of celestial

bodies from the north point).

9. It is clear, that in order to use a telescope as an

equatorial, it has to be set, so that the fixed axis of rota-

tion may point along the polar axis. This, as we have

seen can be done, roughly by observing the pole star.

Having set the axis in the direction of the pole star, we

have to move it slightly, so that it may be in the meridian

plane. For this, observe a circumpolar star and move the

axis till the north polar distances of the star, at the upper

and lower culmination are equal.

This will ensure that the axis does really point along

the polar axis.

In practical working, the true direction can only be

obtained by successive adjustments.

10. The larger instruments are provided with a clock-

work arrangement, by means of which the telescope is made

to rotate about the polar axis and describes a cone, with an

angular velocity, equal to that of the earth. Thus, if the

telescope is pointed to a star, it continues to be in the

field of view, as long as it is above the horizon. In some

instruments, there is a photographic attachment, by means

of which photographs of stars may be taken.

11. In both these cases, the instruments have two modes

of motion. If the telescope is heavy and it is necessary
1 With its plane parallel to the optic axis of the telescope.
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that it should be so, if it is to have considerable magnify-

ing power, it is liable to get out of adjustment, on account

of these various motions. In the case of the equatorial,

moreover, since it has to be kept in an inclined position,

this liability is all the greater. It results, accordingly,

that observations with the aid of these instruments cannot

give very accurate results. Nor is this necessary : The

quantities that define the position of a star, independently

of time and place of obser-

vation being (Ch. Ill, 38)

its R. A., and declination, it

is necessary to determine

these and these alone with

extreme accuracy. And

from what we have just

said, it will readily appear

that the instrument which

will determine these should

have as few degrees of

freedom as possible.

12, The instrument which determines these quantities

with the greatest possible accuracy is called the transit ins-

trument or, more properly, a transit circle. [Fig. 23.]

The transit instrument is a telescope capable of rotation

about a horizontal axis coinciding with the East and West

line. It thus sweeps out the celestial meridian. When it is

provided with a graduated circle (art, 4) for the determina-

tion of declination, it is called a transit circle.

13. If the instrument is in ideal adjustment, when a

star is seen through it, it must then be crossing the

meridian. If, at the same time, we note the sidereal time,

we at once get the R.A. of the star, for the R.A. of a star

is the sidereal time of its meridine passage. [Ch. Ill, 41]

Fig. 23.
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14. As to declination, we have already seen that it

can be determined by means of the equatorial, but in

view of the intrinsic defect of the instrument, the' observed

declination will not be sufficiently accurate. The deter-

mination of declination with the help of the transit instru-

ment does not labour under this objection.

Let o- be a star crossing the meridian and the figure

24 represent the celestial sphere of the observer. Also, let

P, Z, A represent the same points as in figure 20

(Ch. Ill, 37), NS being the north-south line.

Then, since AS = PZ= colatitude,

ACT= the declination of the star (north),

So-= meridian altitude,

we get easily Ao-= Sor AS.

= Meridian altitude colatitude. l

Fig. 24.

15. For the determination of declination, a transit

instrument is provided with a graduated circle, fixed in

the meridian plane, with its axis coincident with the axis

of rotation of the instrument.

1 For this, the zenith point should be accurately known. In order

to determine the zenith point and the meridian altitude at the same

time, the star may be observed directly, one night and its image after

reflection at a trough of mercury, the following night Half the difference

of the two readings gives the altitude end half the sum + 90 gives

the zenith point.

9
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For accurate determination of H. A. and declination,

it is necessary that the transit instrument with its graduated

circle should be in ideal adjustment and time, accurately

known
(?'. e., the sidereal clock give correct time).

If this is not the case (and this can never be the case

with absolute accuracy), the observed quantities will be

affected with errors, which we now proceed to consider, in

detail, in view of the importance, in Astronomy, of an

accurate determination of R.A. and declination of celestial

bodies.

16. In order that the transit instrument should be

in ideal adjustment for the determination of It. A., it

should satisfy the following conditions :

(1) The axis of rotation of the telescope should be

horizontal ;

() it should point due East and West,

(3) the optic axis of the telescope should be

accurately perpendicular to the axis of rotation.

17. When (1) and (2) are satisfied, a line perpendi-

cular to the axis of rotation sweeps out the meridian.

When, therefore, (3) is also satisfied, the optic axis, i. e.
9

the line of sight through the telescope sweeps out the

meridian plane. It is, therefore, only when all these condi-

tions are satisfied that we can be certain, that a celestial

body, when seen through the transit instrument (or the

transit Circle) is accurately on the meridian.

18. If (1) is not secured, but both the other condi-

tions are satisfied, the telescope will sweep out a plane

intersecting the celestial meridian along the North and

South line.

19. The apparent meridian in this case will be NZ'S

(fig. 25), i. (., a great circle slightly inclined (at Z ZNZ')
to the true meridian. Accordingly, the apparent meridian

passage of the star will occur, when the star is on NZ'S at
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o-' say, whereas the true meridian passage occurs when the

star is at o- (oo-' being the diurnal circle of the star).

CT Z

Fig. 25.

The difference in the hour angle corresponding to the

two positions, o- and o-' measures the interval in sidereal

units (Ch. Ill, 40) between the apparent and real meridian

transits of the star and this is the error in the observed

time of transit (positive or negative). The angle between

the true and apparent meridian is called the error of level.

[Art. 21.]

20. The adjustment of the level is made by means

of a spirit level and levelling screws. It may, however,

be that the adjustment cannot be completely secured l>y

this means. It is necessary, in this case, to allow for

outstanding error called residual error.

21. This can be detected by observing the upper and

lower transits, acr'oss the meridian, of a circumpolar star.

This interval ought to be equal to 12 sidereal hours. If

the observed interval is less than this, the instrument

must be in error and observation will give the actual error

in time. For, from the figure 25, it is possible to

calculate the relation between the level error and the error

in the observed time of upper or lower culmination,

(by means of the spherical triangle o-'PZ). Hence, when



68 AST&ONOMV

the former is known from observation (art. 36), the latter

can be d eterm in eci .

'22. If (2) is not satisfied, the telescope will sweep
out a vertical plane (N'Z), intersecting the celestial

meridian along the vertical (CZ). [Fig. 26.]

The apparent meridian will then be inclined to the

real meridian at the angle NCN'. This is called
" Devia-

tion error."

A star will appear to transit

across the meridian at o-', whereas

the real transit occurs when it

is at o-.

23. Accordingly, the interval

o-Po-' is the error in the observed

time of transit, due to deviation

error. Fig. 26.

As before, it is possible to calculate the relation

between the error in the time of transit and the angle

between the apparent and the real meridian (by

means of the spherical triangle o-'PZ) and thus, knowing

from observation,
1 the instrumental error of deviation,

the resulting error in time can be calculated.

24. If the error (3) alone

subsists, the apparent meridian

will be a small circle, parallel

to the actual meridian.

For let OD be the optic axis

of the telescope and OC the

mean line of the instrument, i.e.,

the line perpendicular to the axis

27 - of rotation. [Fig. 27.]

The discussion of the method is beyond our scope.

O
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Then, in any position of the instrument, CO, OD, may
be regarded as two lines rigidly connected .together.

Moreover, if O is the centre of the celestial sphere of the

observer, having for its radius OD, D will be the position

of a star, on the celestial sphere, when on the apparent

meridian, [Fig. 27.]

As the telescope is rotated, therefore, D will describe

a small circle, if OC describes the meridian on the supposi-

tion of the correct adjustment of the telescope as regards

(l)and (2).

25. If we represent the effect of this error on the

celestial sphere, we find that

the apparent meridian will in

this case be the small circle

N'Z'S', while the real meridian

is NZS. [Fig. 28.]

Thus, a star will appear to

culminate at o-', while it really

does so at o- and the error

in the time of transit due Fi - 28 -

to this defect in the instrument is the sidereal time

corresponding to the path cro-'. The inclination of the optic

axis to the line OC (Kg. 27) drawn perpendicular to the

axis of rotation is called the error of coltittiatiou and, as

before, it is easy to calculate the resulting error in the

time of transit of the given star, when the error of

collimation is known.

26. Now, when a telescope is turned towards the

sky, it is found that a certain finite region, though some-

what limited in extent comes within view; this region is

called the field of view of the telescope. And it is clear

that a star will he visible through a telescope, as it enters

the field of view.
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27. Again, the rays from a source of light, say a star

on passing through the object-glass of a telescope are

brought to a focus, at a point which is called the image
of the star. This image, moreover, lies in a plane called

the focal plane of the object glass. And it is clear that

when the image of the star coincides with the point of

intersection of this plane with the line OC (fig. 27),

it is accurately in the meridian (assuming that the errors

have all been eliminated).

28. In order to fix this position, the telescope carries

a reticle of five or seven vertical

wires and (usually) two horizontal

wires (fig. 29), so placed as to coincide

with the focal plane of the object glass,

while the point of the middle vertical

wire, lying midway between thehorizontal

wires coincides (when the instrument is

Fig. 29. in ideal adjustment) with the image of

the star at its meridian passage.

29. As the observer follows the motion of the star,

after it enters the field of view, he notes the moments at

which it passes across the various vertical wires and the

mean of these times, taken according to a law, which can

be determined (mathematically) gives the time of its

meridian passage, with an accuracy, which could not

have been attained, if there were only a single

vertical wire.

30. Def. The line joining the optical centre of the

object glass with the centre of the reticle (or the point of

the middle vertical wire, lying midway between the two

horizontal wires) is called the line of collimation.

31. In order to detect the collimation error, the

telescope has to be pointed to a distant object, so situated
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that it can be brought into coincidence with the centre

of the reticle and then taken off the stand and reversed

(without disturbing the stand). Then, the collimation

error is nil, if the object still remains in coincidence with

tha centre. But if there is an apparent displacement, then

the reticle has to be moved through half this displacement

in the proper direction, in order to rectify the error. The

transit is provided with adjusting screws for this purpose.

32. In order that the above method should be appli-

cable, the telescope should be capable of being reversed.

Provision is made in many instruments for this purpose:

The axis of the telescope turns on accurately round,

strictly similar pivots at its extremities, in Y-bearings, set

on two fixed pillars and is so placed, that the whole

instrument may be bodily removed and replaced.

83. Instead of a distant object, a collimator may be

used. This is a horizontal telescope to the north or south

of the transit, in the focus of the object glass of which a

cross is placed, so that the cross can be viewed through the

transit telescope.

As the rays from the cross issue parallel, after refraction

through the object glass of the collimator, the cross serves

the purpose of a distant object for all optical purposes.

34. Instead of one collimator, two similar oollimators

may be used, so placed, north and south of the transit,

that the image of the cross of one of those coincides with

the cross of the other. (In order to permit the light from

one of the collimators to pass to the other, a cylindrical

hole is left iu the body of the transit, the axis of which

coincides with the common axis of the collimators, when

the transit is in the vertical position). When this is the

case, the centres of the two crosses occupy diametrically

opposite points, north and south.
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35. When two such collimators are used, it is un-

necessary to take the transit off its bearings. All that is

necessaiy is to first look at the first cross, and then the

other, and move the reticle so that the middle wire bisects

the two images. The middle wire of the transit is then in

the meridian plane.

36. A similar (optical) method may be employed for

detecting the error of level :

For this, the telescope is pointed to a trough of

mercury at the base of the instrument. If there is no

error of level, the image of the middle vertical wire

should, after reflection at the trough of mercury, coincide

with the wire itself. If there is, this will not be

the case. The displacement observed will be equal to

twice the error.

37. In the working of the transit instrument, the

cross wires are illuminated by light issuing from a lamp

(suitably placed) which passes through an opening

in one (or both) of the pivots and is then reflected on to

the reticle by a mirror placed inside the body of the

transit, inclined at 45 to the axis. The illuminated reticle

is then focussed by means of the eye-piece. Thu?, the

object is focussed by means of the sliding tube which

carries the reticle and the eye-piece, without disturbing

their relative positions. Accordingly, the observer is able

to note the position of the image in relation to the reticle,

during the progress of the object across the field of view.

It should be noted finally, that the vertical wires

should be tested for vertically, before an observation is

begun. For this, while an object is in focus, the telescope

is moved up and down slightly ;
and if the other adjust-

ments have already been secured, such a movement will

not produce any apparent displacement of the object,

sideways. If there is such a displacement, the wires have
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to be moved into accurately vertical positions by means

of screws provided for the purpose.

38. ERROR AND RATE OF THE CLOCK. In determining
the R.A. of a star or the sidereal time of its meridian

passage, we must be able not only to assure ourselves as to

the exact instant at which the star is in the meridian but

also to tell correctly, what this time is. In other words, for

a correct determination of the R.A. of a star, it is necessary

that the clock time should be correct. But as no clock

can be relied upon to give correct time always, it is

necessary to know the en or of the clock at any
observation. For this, it is necessary to know the R.A.

cf a star, called a standard star independently of the

clock. We shall see (Ch. VIII, 1) how this is done.

Assuming, however, that such a standard star is available,

we have only to note the time of its meridian passage. This

ought to be equal to the knoivn R.A. of the star. If this is'

not the case, the clock is in error and the known difference

is the error of the clock.

39. If the clock time is noted at the next observation,

and the corresponding error, then, if the clock is gaining or

losing time, there will be a difference between the two

errors and the average rate of the clock is known, for it is

equal to this difference, divided by the interval between the

two observations.

4-0. Assuming, now, that the rate is constant, we can

find the error of the clock at any other time. But for

accuracy, the error should be determined, as frequently as

possible.

41. If the transit instrument is free from the errors

enumerated above, it will sweep out the meridian plane and

if, moreover, the clock is keeping correct time, the R.A. of

a star can be determined with accuracy, provided we are

able to note the exact instant, at which the image of the

10
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star coincides with the middle wire. Any inaccuracy or

uncertainty in this respect is almost wholly got rid of, by

making observations with respect to the several wires.

42. For determination of declination, the reading

circle should also be in ideal adjustment, in addition to

the telescope. For this, the axis of the reading circle

should accurately pass through its centre (the plain of

the circle being vertical and parallel to the meridian),

and, moreover, the graduation should be correct.

43. If the axis of the circle does not pass accurately

through the centre, there will be an error, called the error

of centering, which can be eliminated hy taking two

readings at opposite ends of the telescope.

B'

Fig. 31.

Let O (fig. 31) be the centre of the circle (with

reference to which, the graduations are usually made).

Let OCA be the direction of the telescope at the initial

position and B'CB, after rotation. Then, the amount

of rotation is given by the angle ACB, while the apparent

rotation, as given by the graduation is L AOB, if the

reading is taken at B alone.

But if, BB' being the position of the telescope, readings

are taken at both B and B', viz., the angles AOB and A'OB'

(where AA' is a diameter) are read, then the mean of the

two readings will give the required rotation.

For ZAOB+ ZOBC=ZBCA.
Also ZA'OB'-ZOB'C=ZA'CB'=ZBCA.
Therefore Z AOB'+ Z A'OB'= 2 Z BCA.
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44. In practice, there are six reading microscopes,

symmetrically distributed round the circumference and

keeping fixed positions. The mean of the results

obtained with the three pairs of microscopes gives

a result which eliminates not only the error of centering

completely but also the error of readings of the microscopes,

to a great extent, as well as the error of graduation

partially at any rate, if it is only slight.

45. A Sextant is a portable instrument for observing

the angular distance between two bodies.

It consists of two mirrors, one of which is fixed and is

called horizon glass, H (half of which is alone silvered, the

other half being plain) and the other (moveable on an

arm, called the index glass or index mirror) I. [Fig. 33.]

When H and I are parallel, a ray of light, after reflec-

tion at both mirrors will be received by the eye, in a

direction parallel to its original direction. If now I is

made to rotate through an angle 0, the inclination of the

final direction of a ray to the original direction 1 will be 20.

Hence, if an object O is seen by means of a ray which has

suffered reflection at both mirrors and if another object

O' is seen at the same time directlly through H, the

angle between 0,0' is equal to twice the angle between

the two mirrors.

46. The mirrors are carried in a brass framework

in the form of a sector of a circle, the arc of which

is 60 and is graduated. One of the fixed arms carries

the fixed mirror and the other, a small telescope (T).

There is also a movable arm which carries the index

glass. It should be further noted that the plane of the

framework is perpendicular to the mirrors.

1 It is easy to see that < (fig. 33) = the angular distance between

the objects O, O' = 20, where = angle between H and I, i.e., the angle
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47. The instrument is principally used for measuring

the altitude o the sun. For this purpose, the direction

O'H is taken horizontal. At sea, this is easily secured by

directing the telescope to a point on the visible horizon,

directly below the sun. In this case, a correction has to

be applied for the dip.
1 On land, a shallow trough of

by which I is turned (H, being fixed), and HB is normal to mirror

II and IB to I, while O'H is parallel to IB and to the optic axis

of the telescope.

Fig. 33.

1 If O is the observer, OT the tangent to the earth, supposed to be a

sphere, then the inclination of OT to the horizon is called the dip (fig. 34)

O

Fig. 34.
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mercury represents the horizon (unaffected by dip), fairly

accurately and the angle measured by the instrument is the

angle between the sun and its image, reflected by the trough
of mercury. The angle measured is, thus, twice the altitude.

48. It should be noted finally, that besides the

instrumental errors, observations of celestial bodies are

subject to other errors, due to the observer's position and

motion, viz., parallax, refraction, aberration, precession

and nutation. In additidn to these, observations are subject

also to errors arising from defective power of observa-

tion and judgment of the observer himself. This is called

personal error or personal equation.

EXERCISE.

1. Describe an altazimuth. Explain how by means of a spirit

level or otherwise, you could determine the zenith point.

A star is viewed directly through an altazimuth and again in the

same vertical plane (say the meridian plane) after reflection at a

trough of mercury. If the readings are 57 13' 15" and 68 26'

45", find the zenith point and the declination of the star.

2. The zenith distances of a circumpolar star at its upper and

lower culminations are found to be 12 7' 15" and 37 16' 25" respec-

tively. Find the latitude of the place and the declination of the star.

What instrument would you use, in making these determi-

nations and why ?

3. Find the declination of a star whose meridian zenith distance

in a place whose latitude is 50
6
22' i 70 10' 10".

4. The meridian passage of two stars differs by 10* 15"' (sidereal).

If the R.A. of one of them is 2'' 19'", find the R.A. of the other.

5. The zenith distances of a star, at upper and lower culmina-

tions are found to be 70 10' N. and 2 15' S. Find the latitude of

the place and the declination of the star.

6. Two stars culminate at the same time and the angular distance

between them is 10. If the declination of one of them is twice that

of the other, find these declinations.

7. Describe the transit instrument and explain how it is corrected

for the various errors to which its readings are subject.



CHAPTER V
THE SUN

1. Of all the celestial bodies, with which we have to

deal, the sun presents fealures, which easily distinguish it

from the rest. Yet it is remarkable, though by no means

strange, that only in comparatively recent times, have

we deciphered the motion attributed to the sun, as due to

the observer's own motion.

2. In order to trace the path of the sun, on the

celestial vault, let us imagine ourselves as standing

at the centre of a broad flat place, from which

the entire horizon could be seen. If we do so, we should

see the- sun rise strictly at the East point on the

21st of March and set, strictly at the West point on that

day. If, however, we watched the sunrise and sunset the

next day, or, more conveniently, a few days later, we thould

find the sunrise taking place at a point to the north of the

East point and sunset at a point to the north of the West

point so that the line joining each of these two points

would be nearly parallel to the East and West line.

The line joining the points of sunrise and sunset moreover

would move further and further north, till 21st June.

After that, the line would go back towards the East and

West line, till, on 23rd September, the sunrise would again

take place at the East point and the sunset, at the West

point. Thence, the line would move away to the South, till

December 2 1st, after which it would move back to the

East and West line again,
1

1 As a result of the above series of observations (which must have

been continued by ancient observers for hundreds of years), it follows

that ths sun does not rise in the East always but only on two days in

the year. (It should be noted that the dates vary slightly.)
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3. If we represent this on the celestial sphere of an

observer in the northern latitude?, of which Z is the zenith,

P, the north pole, NS, the horizon, and NWSE the

celestial equator, then the positions of sunset on the

21st of March and 23rd of September will be indicated

by W and those of sunrise at these epochs, by E.

Similarly, on the 21st of June and 21st of December, the

positions of sunset will be represented by Sj and S and

those of sunrise by S 2 ,
S 4 ,

where the angular distances

of the parallels through S
,
and S n are 23 i. [Fig. 35.]

4. If the path of the sun on

observed, the most important con-

clusion to which we are led is that

the path detcribed through a year

is a limited spiral (fig. 36') or if we

neglect the tortuosity of the path

during one day, a series of parallel

circles, perpendicular to a certain

line, fixed in direction in space

which, as we now know, is the

axis of rotation of the earth.

the celestial vault is

Fig. 36.
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If, on the other hand, the path of a star is observed,

it is found to be unchanged from day to day, being a

fixed circle, in a plane perpendicular to the same axis.

We conclude; accordingly, that the motion of the sun,

as observed, is a diurnal motion, common to all celestial

bodies and an annual motion which belongs to it alone, a

motion relative to the stars, or motion among the stars.

5. In order to determine this motion, it is necessary

(i) to determine the path relative to the stars, () the rate

at which the path is described and (3) the time in which

the entire path is passed over.

6. In order to find the path by observation, all that

is necessary is to determine the position of the sun relative

to that of a star at its meridian passage. But this direct

method was not available in ancient times, on account of

the fact that solar light necessarily shuts out of view all

neighbouring stars. It was, accordingly, necessary to resort

to indirect methods. One of these would be to observe, first,

the motion of the moon, directly. When this has been

done, it should be possible to trace the path of the sun,

since the relative positions of the sun and the moon are

known, especially at a solar and a lunar eclipse. It seems

likely that a method of this kind was adopted by ancient

astronomers, who discovered that the path of the sun passes

through twelve groups of stars, distributed with some regu-

larity, over an entire belt of the sky. These groups of stars

are the so-called signs
1 of the Zodiac, the discovery of which

1 The following are the names of the signs of the Zodiac (probably,
from Ceoo?, a living creature).

Aries Libra,

Taurus, Scorpio,
Gemini Sagittarius,

Cancer, Capricornus,
Leo, Aquarius,
Virgo, Pisces.

The symbols used by the ancients are for the most part conven-

tionalized pictures of the objects, named. The symbol for Aquarius is the
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was undoubtedly the most remarkable achievement of

ancient astronomy.

7. Before proceeding to discuss the methods adopted

at the present day for determining the path of the sun,

let us consider how this device was availed of, in ancient

astronomy.

8. If we start with any point of time of reckoning, say

from an equinox (or the date on which there is equal

day and night throughout the earth), we h'nd that each

group of stars or a sign is passed over by the sun

roughly in one-twelfth of a year : Hence, one method of

describing the sun's (or the moon's) motion would be to name

the sign and the position in that sign that the sun (or the

moon) occupies, at any time. A division of the belt into

365 parts as in Chinese Astronomy or into 360 parts as is

now generally accepted and was used in Suryya Siddhanta

was meant to mark out the sun's daily motion and evident-

ly made for increased accuracy. But in any case, the

usefulness of the zodiacal system, under which the sun or the

moon itself served to indicate the day or the month, in

ages unprovided with accurate instruments of measure-

ment cannot be overestimated.

9. When the paths (amony the stars) of the planets

Mercury, Venus. Mars, Jupiter and Saturn which were

alone known to ancient astronomers wore observed, they

were found to be also contained within this same circular

belt of the sky (art, 13) having an angular width

of about 18.

From the point of view of the solar system, therefore,

this belt of the sky presents a unique importance, to these

Egyptian character for water. The origin of mauy of the sign* is

not quite clear.

11
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who had not as yet learnt to use the geometric and the

instrumental methods of modern times. And it is note-

worthy that in spite of this drawback, the observations

embodied in ancient treatises seemed to have been

conducted with considerable amount of accuracy.

10. On the modern method, the solar light is no

drawback to observation, as the intermediary is the

astronomical clock. This clock keeps sidereal time and is

set, so that it indicates h., m., s., when the first point

of Aries is on the meridian. The angular distance of the

first point of Aries from the meridian, when the sun is

crossing it, is, therefore, indicated by it, for this distance

is equal to the sidereal time of the sun's meridian passage,

expressed in degrees at the rate of 15 to the hour. This

is the right ascension of the sun or its distance from

the first point of Aries, measured along the equator,

while the position of the sun in the meridian circle, as it

transits across the meridian determines its declination or

angular distance from the equator.

11. In this way, the sun's position is known at each

meridian passage and these various positions give its

annual path aitio'tiy the sfans. As observation is made

always at the same meridian, the diurnal motion is com-

pletely eliminated.

1*2. It is evident that this method is alone suitable for

accuracy, although it is possible to observe stars even in

day time with the help of a telescope of suitable magnifying

power. For with such, the diffused light of the sun may be

weakened sufficiently to provide a dark background for the

image of a star, while the brightness of the star remains

unchanged. This, it should be noted, is due to the fact that

even when viewed through the most powerful telescope,

a star remains merely a point of light.
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13. Thus, let Ay (fig. 37) be the equator, P the pole,

PSA, the declination circle of the

sun at its meridian passage at any

place and y, the first point of Aries

on the celestial sphere of an

observer, supposed to be placed at

the centre of the earth. Then yA
is the R.A. of the sun and SA the

declination as measured by the

transit circle, y being the position

of the sun when its declination is

zero. [Fig. 38.]

Fig. 37.

Ffc. 38.

When the different positions of S have been thus

marked, through a whole year,

it is found that they lie on a

great circle, inclined to the

equator at :23J and intersecting

it at two points which are named

the first point of Aries (marked,

y) and the first point of Libra

(O), the path being completed
in a year (fig. 38). This path is

called the ecliptic. It should be

remembered that the point S not only moves along this path

but is carried round, as seen by an observer on the earth,

on account of the diurnal motion of the earth about the

earth's axis. Thus, we get a limited spiral, which represents

the sun's path on the celestial vault. [Ch. V, 4.]

14. Having traced the path of the sun on the celestial

vault, we have next to find its path in space. Here, it

should be premised, that the (apparent) path of the sun on

the celestial vault, ap thus traced out need not be its path in

space, For, on account of the magnitudes involved, as we
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have seen (Ch. II), all celestial bodies appear to be at the

same distance. Direct observation, therefore, is not com-

petent to enable us to measure the variation in the distance

of the sun from the observer. But since the angular diameter

of the sun varies inversely as its distance, if we measure

the angular diameter of the sun from day to day, and

represent its reciprocal on a suitable scale, as the radius

vector corresponding to any given celestial longitude (art.

16 ,
we get the path of the sun in space.

15. Thus, let E (fig. 39) represent the centre of the

earth, S the position of the sun, at any time, and S', the

point of intersection of ES, the line of sight with the

celestial sphere of an observer at E :

Fig. 39.

Then, the locus of S' is the path of the sun on the

celestial sphere or the celestial vault, but the locus of S is

the path of the sun in space The two, therefore, will not

necessarily be similar. From the observed fact, however,

that the locus of S' (i. e., the path of the sun on the

celestial sphere) is a circle, we conclude that the actual

path of the sun is & plane curve.

16. It is, moreover, clear that the locus of S' is the

ecliptic. If, then Ey is the direction of the line of equi-

noxes, the angle yES' is called the celestial longitude of

S and can be determined.

17. To determine the orbit (i.e ,
the locus of S), we

proceed as follows :
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Observe the angular diameter of the sun at its meridian

passage.
1 Then determine the corresponding .celestial

longitude, at the same time.

Since the diameter of the sun must be a constant

length, the angular diameter must vary inversely as the

distance from the earth. Now, take a length ES, inversely

proportional to the observed angular diameter, and draw

ES, inclined to Ey, at an angle, equal to the celestial

longitude. The locus of S represents the path of the sun

in space. [Fig. 39.]

18. Let yS' be the plane of the ecliptic on the plane of

the paper and E the earth's centre. Then if S' is the

position of the sun on the ecliptic, it is, as we have seen,

the intersection of the celestial sphere with the line joining

the earth and the sun at any time. 2 Now, if S
t
i

represents its actual position at the time, the path traced

out by Sj will be known, if we know the relation between

KS
t
and the angle S'E-y, since Ey is a fixed direction

in space.

19. Again, if a is the circular measure of the angular

diameter, corresponding to longitude yES', then, we have,

if R is the radius of the sun, and SjE, the actual distance

of the sun,
T> T>

sin a=
g-g

or a=
g-jjj-

'
ver7 nearly

i.e., a. S 1
E= const.

;

but a. ES-const. [Art, 17]

. SE

1
ftougbly, by means of the sextant.

2 Since the ecliptic is the curve of intersection of the plane of the

sun's annual orbit with the celestial sphere of the obserrer, supposed

to be at the eentre of the earth. [Art. 13.]

3 In S'S produced, not shown in the diagram.
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Hence, the loons of S is similar and similarly situated

to the actual path of the sun in space.

20. Assume that the path is an ellipse with E, as

one of the focii. Then, if the angle yES = 0, and the

position of the major axis is known (art. 23), we should have

- =1+ e cos (0 /?), where ft is the longitude of the major
T

axie or the apse-line, I, the latus-rectum of the ellipse and

SE= r, e being the eccentricity.

21. By taking two observations, we shall get two

equations, from which / and e can be determined, When
this has been done, any other pair of observations ought
to give the same values of I and e.

Since this is found to be the case, the original assump-

tion that the path is an ellipse is justified.

In practice, the procedure to be adopted is much

more complicated than this, owing to the fact, that our

observations can never be made with absolute accuracy.

22. Although, theoretically, the above is the general

method of determining / and e, in practice, the method

can be simplified.

From the property of the ellipse, if AA' (fig. 40) is the

major axis and C the centre, E being the focus, we have if a

is the length of the semi-major axis

EA=<l-*>), EA'=a(l + e).

where EA' is inversely proportional to the minimum

angular diameter (-i.e., on the 1st of July), and EA, to

the maximum angular diameter (on the 3 1st December).

Now these quantities are respectively, 31' 31'0" and

32' 35-6".

We have accordingly ==- Hence e=
Q

nearly.
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Hence, = EA'
Thus, a varies inversely as the

minimum (or maximum) angular semi-diameter.

In order to find the actual orbit, we must find the

actual distance corresponding to any one observed angular

semi-diameter, since the actual path is similar to the locus

of S. [Art. 19.]

This is determined by the observation of solar parallax.

23. It has been found that both e and a undergo a

slight variation. In order to obtain the orbit completely, it is

not only necessary to find e and a but also the direction of

the major axis or the apse-line. (This is assumed to be

known in art. 20.) For when E, the focus, is known, we

are able to describe the path completely, only if the

direction and magnitude of the major axis and the

eccentricity are known. l

21. In order to determine the direction of the apse-

line, we proceed as follows :

Measure the angular diameter of the sun, when the

sun is at some point (S) of its orbit. Then, note the

1 To show how to describe an ellipse, a, e, being known and the

direction of major axis, as well g
as the focus.

Let E be the focus, EA, the

direction of the major axis.

Cutoff EA, EA' (lig. 40)

equal to .(! e), (1 + e). Then

A A' will be the extremities

of the major axis. Bisect AA'

atC. Then C will be the centre Fig. 40.

of the ellipse. Cut off CE'= CE. Then E' will be the other focus.

If, now, we attach the extremities of a thread of length 2a, to two

pins at E and E' and keep the string stretched by means of a moving

pencil, the pencil will trace out an ellipse. For, let P be the position

of the pencil-head at any time, then EP + E' P = 2a. That is, the locus

of P is an ellipse, having E and E' for focii (maj. axis = 2)-
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direction of ES' where S' is another point in its path,

when ES' is equal to ES, i.e., when the sun's angular

diameter is again equal to that at S. Now, since the

apse-line bisects the angle SES', by the property of the

ellipse, the direction of the apse-line is determined. [Draw
a diagram.]

25. It is,
of course, difficult to note the exact position

of the sun, when the radius vector drawn to it from E is

exactly equal to ES. This difficulty is obviated, if we

observe two positions S/ and S
2

'

of the sun, where ES/
is a little greater and ES 2 ', a little less than ES'. Then,

the position of S' can be accurately determined, on

the assumption, that during the displacement of the sun

from S/ to S
2 ', the radius vector changes uniformly.

This assumption will be justified, if the points are in-

definitely near together.

Note. The direction of the apse-line is not fixed. It is found to

have a progressive motion (i.e., motion in the direction of the sun's

motion) of 1T25", a year.

SEASONS.

26. The annual motion of the sun on the celestial sphere

, may be described as follows : (The dates are approximate).

On the 21st March, his declination as well as R.A. are

both zero. From 21st March to 21st June, his northerly

declination increases from to 2U and' the R.A. also

increases from to 90.

From 21st June to 23rd September, the northerly

declination decreases from 2'H to 0, while the R.A. in-

creases from 90 to 180.

From 23rd September to 21st December, the southerly

declination increases from to 23 1, while the R.A.

increases from 180 to 270. From 21st December to

21st March, the southerly declination decreases from 23i

to and R.A. increases from 270 to 360,
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March 21

June 21

Dec 31 July I

Near the epochs at which the declination is maximum,

it change? very slowly. These are called solstices' (lit. the

epochs at which the sun is standing still).

:27. It should also be noted that the sun is nearest to

the earth on the 31st of

December. He is, then,

said to be in perigee (i. e.,

nearest to the earth), while

he is furthest from the

Earth or is in apogee, on

the 1st of July. The

path of the sun, as it ap- Fig. 41.

pears to the observer may,

therefore, be represented, as in the annexed diagram (fig. 41),

which shows (roughly) the relative positions of the line of

equinoxes (art. 28), the line of solstices and the apse-line.

28. Now since on the 21st of March, the declination

of the sun is zero, his diurnal

path will coincide with the

equator (WA) (fig. 42), assum-

ing (Ch. Ill, 32) that during

that day there is no change of

declination. Accordingly, the

period, during which the sun is

above the horizon will be equal

to the period during which he

is below the horizon on that

Thus, there will be equal day
1 and night, throughout

The same will be the case on the 23rd of

These are called eqinoxes. The line joining

ch 23

Fig. 42.

day.

the earth.

September.

the positions of the sun at these epochs is the line of

eqinoxoes. [Art. 27.]

1 Here '

day
' means the duration of day-light.

12
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29. From 21st of March to 21st of June, the sun's diur-

nal circles recede from the

equator towards the North pole

(P) [fig. 43]. Hence, for northern

latitudes, between Lat. and

66 4, the sun remains longer

above the horizon than he is

below it, during one solar day.

Accordingly, during this period,

Fig. 43. the days are longer than the

nights, the 22nd [or 21st] of June being the longest day

(fig. 43). (CB is the diurnal path on 22nd June, where AC
= 23i.) The opposite is the case in Southern latitudes;

that is, the days are shorter than tho nights, from 21st of

March to 21st of June. For the same reasons, from 21st

June to 23rd September, also, the days are longer than

the nights in Northern and shorter in the Southern

latitudes.

30. From 23rd September

to 21st December, the diurnal

circles recede from the equator

away towards the south pole and

accordingly, the sun remains

longer below the horizon inO

Northern latitudes, than he

is above it. [Fig. 44.]

Hence, in these regions, the days are shorter than the

nights, the 21st of December being the shortest day

(C'B' being the diurnal path on that day, where AC'= 234

and AW, the equator).

31. Finally, from 21st December to 21st of March,

the days continue to be shorter than the nights, in

Northern latitudes, the opposite being the case in Southern

latitudes,

44.
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32. At a place in Lat. 66i N,
latitude is equal to the obliquity

of the ecliptic, there will be one

diurnal circle of the sun (BC,

fig. 45) which will be entirely

above the horizon. For such a

place, therefore, there will be one

day (2 1st of June) of 24 solar

hours, and one night (21st

December) of an equal duration.

e., a place whose co-

23>2 Z.

Fig. 45.

Similarly, at a place in Lat, 66 1 S, there will be one

day and one night, each, 24 hours long (21st December
and 21st June).

33. For a place, whose Lat. is between 66J and 90,
that is for places, within the

arctic circle, it easily follows

that from the moment the

declination of the sun is equal

to the co-latitude of the place,

till it is again equal to this

amount during the whole of

this period the sun is entirely

above the horizon (fig. 46),

WS being the horizon AW, the equator and the angular

distance of A from the north point, less than :23i. Hence,

if BC is the declination circle of the sun on the 21st

June, BC will be entirely above the horizon.

34. Thus, for all such places, the longest day as well

as the longest night is more than 24 hours long.

35. Moreover, since near a solstice, the change of

declination is slow, a small difference of latitude

corresponds to a considerable change in the length of the

longest day, Thus, the longest day increases from 24

Fig. 46.
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hours to six months, as we pas? from 66J of latitude to

the pole.
l

36. It is this variation in the length of the day during

the year that causes a variation in the seasons.

We have seen that in Northern latitudes from 21st of

March to 21st of June, as well as from 21st of June to

23rd of September, the days are longer than the nights.

Admitting that the accumulation of heat during the day

bears some proportion to the duration of day-light and

that the loss of heat during the night, similarly to the

duration of night, we should conclude that there will be

continuous accumulation of heat during this period and

that the period from 21st June to 21st September will be

hotter than the one from 2:2nd March to 21st June, for the

latter is preceded by Winter, as we shall presently see,

while the former is preceded by warm weather. Thus the

1 The following table gives the actual results.

Lat. Length of the longest day

. 0, 1 2 hours.

16 13

30-48 14

41-24 15

492 16

54-31 17

58-27 18

61-19 19

63-23 20

6450 21

65-48 22

66-21 23

66-32 24

67-23 1 month.

69-51 2

73-40 3

78-11 4

84-5 5

90 6
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period from 21st June to 23rd September is Summer and

the previous period, Spring.

37. Again from 23rd September to 21st December as

well as from 21st December to 21st March (in Northern

latitudes), the nights being longer than the days, there will

be continuous loss of heat, so that these two periods will

be colder than the rest of the year. Moreover, the second

period will be colder than the first ; for while the second

period is preceded by one that is already cold, the previous

period is preceded by hot weather. Accordingly, the period

from 21st Decc-mber to 21st March is Winter and that

from 23rd September to 21st December is Autumn.

Accordingly 21st March is called vernal equinox and 23rd

September, autumnal equinox. Exactly opposite is the

case in Southern latitudes. In these regions, for the same

causes, the period from 21st March to 21st June is

Autumn, and is followed by Winter, Spring and Summer.

There is a corresponding variation in the obliquity of the

rays received from the sun which operates in the same way
(art. 38), so that, this subdivision is due to astronomical

causes only. Local causes, however produce considerable

difference in the actual climatic conditions of a place.

ZONES OR BELTS OF THE EARTH.

38. At all places, of which the latitude is not greater

than the maximum declination of the sun, he is overhead

twice a year. This is the case when his declination is

equal to the latitude of the place.

To these regions also, the solar rays never come very

obliquely. Now, the amount of heat received per unit of

surface varies as the cosine of the obliquity of the rays.

Hence, the amount of heat received by all these regions

of the earth included between two parallels whose angular

distance from the equator is 23| N and S comprise the
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hottest regions of the earth and are included in the

Torrid Zones. On the other hand, the regions of the earth

included between Lat. 66i and 90 are the coldest regions,

called the Frigid Zones. For in these regions, the longest

nights are more than 24 hours long, while during the long

days, there is comparatively small accession of heat, on

account of the extreme obliquity of the rays.

39. In the regions of the earth between the Torrid

and the Frigid zones, the extreme conditions of these

regions do not obtain. They are called temperate zones.

40. It will, thus, be seen that in the Frigid zones,

there will be practically one season, namely Winter, while

at the equator itself, only one, rtr., Summer, or at most

Summer and a rainy season.

41. The climatic conditions of the regions of the

earth are also much dependent on various other causes, such

as the distribution of land and water, Gulf streams, etc.

CONSTITUTION OF THE SUN.

42. A complete description of all that the new methods

have revealed and the encient astronomers knew of the

sun will lead us too far. We shall only confine ourselves

to a brief description of the sun and the problems that he

suggests.

43. The disc of the sun, as we generally see it, is the

central and brightest portion. On account of the bright-

ness of this central portion, the outlying portions, which

are less bright, are not visible, except at a total eclipse of

the sun. This central portion of the sun is called the

photosphere. Surrounding the photosphere is a rather

narrow region of coloured gases, chiefly hydrogen. This

is called the chromosphere and surrounding the chromo-

sphere is the corona, the crown or halo of glory. Protrud-

ing from the photosphere, are the so-called prominence*
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containing masses of vapour extending sometimes to

thousands of miles. These can, as a rule, be seen at a

total eclipse. But a method in use in several solar-physics

observatories permits of their observation, daily. For this,

the edge of the photosphere of the sun is focussed through

a spectroscope,
1 so arranged that only light of one colour is

allowed to pass through, that of a prominence. In this way,

the effect of the diffused light of the sun is eliminated. 2

44. When the light of the sun is observed through a

spectroscope, it is found to consist of seven coloured bands

interspersed with dark lines, from which, as is well-known,

the constitution of the atmosphere of the sun can be

deciphered.
3

1 When a ray of white light is passed through a prism of glass

(or any other transparent substance) it is not only deviated but is

dispersed, that is, separated into rays of different colours (red, orange,

yellow, green, blue, indigo, violet). This is called a SPECTRUM. In

order to prevent overlapping of colours and consequent blurring, special

arrangements are necessary :

Light is passed through a narrow slit which is placed at the princi-

pal focus of a lens, so that the rays from the source of light, on

emergence through the lens are parallel. They, then, pass through the

prism and the decomposed light is viewed through a telescope. Such

nn apparatus is called a SPECTROSCOPE.

2 The bright lines of Hydrogen of which the prominences chiefly

consist are separated from each other by the spectroscope into its

different constituents but this act of separation does not weaken the

intrinsic brightness of any of them. On the other hand the light

from the edge of the sun produces a continuous spectrum, which

can be spread over as long a space as one chooses. Hence, by using

sufficient dispersive power, the bright lines of the flames can be

made to stand out on the comparatively dark background of the

Solar-spectrum.
3 The following facts discovered with the help of the spectroscope

are of importance in interpreting the meaning of the solar spectrum :

(1) White light (that of lime light or electric arc, for instance)

produces a continuous spectrum, consisting of bands of all the seven

colours.
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45. When the photosphere of the sun is examined, it

is seen almost daily to be interspersed with black

patches, the so-called sun-spots. A very simple device for

making their existence evident is to let sunlight pass

through the object-glass of a telescope and fall on a white

screen. The image on the screen shows these dark

patches moving across the disc. If the screen is provided

with a chart of the s::n with its axis of rotation (for, as we

shall see presently, the sun rotates about an axis) conectly

directed, it is possible to note the positions and directions

of motion of the various sun-spots observed, with reference

to fixed lines (the equator and the axis) on the sun.

46. Another method which is also in use at several

observatories is to photograph the sun at suitable times,

(2) Light from an incandescent elementary gas produces a spectrum

which consist of bright lines, characteristic of the gas.

(3) When white light is passed through an incandescent elemen-

tary gas at a lower temperature, the continuous spectrum is seen to be

interspersed with dark lines, which occupy the same relative positions,

as the characteristic bright lines which the spectrum of the gas itself

exhibits.

Now, when solar light is passed through a spectroscope, what

really happens is that the white light of the photosphere loses, on

passing through the atmosphere of the sun (which is evidently

at a lower temperature), some of its constituents. This would indicate

that this atmosphere contains vapours of substances which would yield

spectra of bright lines, of which the white light of the sun has been

deprived, in its passage through it.

In this way, it has been concluded that the following substances,

among many others are certainly to be found in the sun :

Hydrogen, Iron, Calcium, Manganese, Nickel, Helium.

From the fact that stars yield spectra, similar to that of the sun, we

conclude that they are self-luminous bodies like the sun. From a study

of the dark lines they exhibit, stars may be grouped into classes,

distinguished by the constituents of their atmospheres.

As Nebula3 give bright-line spectra, we easily conclude that they

are masses of incandescent vapours. They consist mostly of hydrogen.
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(in India, in early morning) when the various spots if any
exist and there are always some are seen as light

patches on a dark background provided by the solar disc.

47. Appearance of sun-spots suggests that these are

cavities in the sun, and that, when we are looking at a spot,

we are really looking into the inner strata of the sun, which

are conceivably at a lower temperature than the surface.

Opinions differ as to the true origin of these spots. Fayer
conceives them to be the effect of solar storms. Secchi

believes them to be dense clouds of eruption products,

settling down into the photosphere, near to but not at the

points where they were ejected. Whatever be their true

nature, they have certain peculiarities which demand

investigation ; such for instance as their occurrence mainly
in equatorial regions ; their periodicity and their connection

with magnetic storms on the earth. With regard to these,

in the present state of science, we can only speculate.

One evidence they afford is of far-reaching importance. The

fact that sun-spots appear and disappear and that the time

during which they are in sight is on an average roughly

equal to the time during which they are out of sight, leads

to the conclusion that they are carried round, while the sun

rotates about its axis. l

48. W"e have already indicated the source from which,

mainly, is derived the energy of the sun which is being
1 The direction of this axis can also be determined from a study

of the motion of these spots. It has been found that they appear to

describe straight lines in June and December, while in September and

March, their paths are most curved with their convexity turned

upwards or downwards, respectively, as seen, from the earth (from the

northern latitudes). From this, we conclude that the solar axis of rota-

tion is inclined towards the point, occupied by the earth in September.

It has been further found that the motions of the sun-spots indicate

that besides being carried round with the sun, they have also proper

motions, depending on their position. There are other movements in

the sun also, whose nature and cause are still under investigation.

13
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dissipated away in radiation. Calculations based on this

theory were made by Lord Kelvin but he did not take

account of the possible nucleii of energy in the sun itself,

such as radium. That such exist, there is now little doubt.

But this means an unknown and practically inexhaustible

source of energy. No sufficient data are, accordingly,

available for estimating the past age of the sun or the

future period of its existence, as a source of energy for the

earth. Everything, however, points to the conclusion that

the history of the sun and his system for the life of the

system is bound np with the sun has had a beginning

and will have an end. To quote Lord Kelvin :

" As

probably there was a time, when the sun existed as matter

diffused through infinite space, (art. 30, Introduction)

the coming together of which has stored up its heat, so

probably there will come a time, when the sun with all

its planets, welded into one mass will roll a cold black ball

through infinite space."
i

EXERCISE.

1. What is the time of sun-rise and sun-set at any place, at the

equinoxes ?

2. Why is the sun never seen in the zenith in latitudes beyond

23i?
3. What is the meridian altitude of the sun at a place, lat. 30. N.

at the solstices and the equinoxes ?

4. Find the latitude of the place, at which the meridian altitude

of the sun at the summer solstice is 75 21'.

5. The latitude of a place is 58 27' N. Find the meridian altitude

of the sun at the place at mid-summer, and mid-winter.

6. Find the average change of R.A. and declination of the sun,

taken throughout the year.

1 The whole course of Nature, in fact, points to a beginning and

an end. And one begins directly to realize the inner meaning of

the passage in the Suryya Siddhanta :

" Then Brahma bearing the form

of consciousness thought of creation."
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If the change in the B.A. of the sun were uniform, find what would

be its R.A., on the 1st of April, 22nd of June, 23rd of September

and 1st of December.

7. Given the R.A. and the declination of the sun at a certain date,

explain what geometrical construction, you would make, in order to

determine the position of the ecliptic at that time.

8. If the inclination of the equator to the ecliptic were 90, 0, 29,

state what will be the effect on the seasons.

9. Comment on the fact that in Northern latitudes, the sun's

distance from the earth on the 1st of July, i.e., about mid-summer

is greatest and is least on the 31st of December.

10. Represent on a diagram, the poles of the equator, the ecliptic

and the horizon (P,Q,Z). Hence, show how the inclination of the

ecliptic to the horizon changes, on the assumption that the horizon

and the equator are fixed.

How would you describe this change as real or apparent ?

11. How would you prove from observations that the (apparent)

path of the sun round the earth is a plane curve ?

Explain how the changes in the angular co-ordinates of the sun,

as seen from the earth are represented on the celestial sphere. Hence

show how its path in space, relative to the earth is determined.

12. The angular diameter of the sun is observed at equinoxjes and

solstices. Would these observations be sufficient to enable you to

determine its path in space ? Are they more than sufficient ?

Assuming the path to be an ellipse, write down equations which

will embody the results of observation and hence deduce how far these

are necessary or redundant.

13. Assuming the sun's orbit round the earth to be an ellipse,

explain how you would determine the eccentricity and the major axis.

Would these be sufficient to trace the path ?

14. What effect will the known motion of the apse-line have on the

seasons, in course of time ?

Assuming that the rate is 1", per year and the present inclination

of the apse-line to the line of equinoxes is 20, find when the summer

and the spring will be of equal length.

15. Describe the constitution of the sun and its atmosphere. How
do you conclude that the sun-spots are cavities in the sun ? What

evidence is there of the sun's rotation ?

How are the constituents of the solar prominences analysed ?



CHAPTER VI

THE MOON

1. The next in importance to the sun is the moon,
our nearest neighbour.

Even to the ordinary observer, the moon is the one

celestial object that naturally enlists his interest and

curiosity. Its constant changes of phase, its remarkable

features and its rapid motion among the stars have made

the moon necessarily the most interesting astronomical

object, both before and after the invention of the telescope.

2. We have already seen that like the sun, the moon

has a motion among the stars. The groups of stars

through which the moon passes on the celestial vault, in

completing its cycle round the earth were carefully

studied and named by ancient Hindu Astronomers. These

are the lunar asterisms or mansions, which enabled the posi-

tion of the moon to be indicated at any time and is of an

older date than the solar Zodiac. As, however, the groups

of stars, through which the lunar path lies are not spaced

out with anything like mathematical precision, the system

could never, at any time, have lent itself to the purposes

of an exact statement. Modern Astronomical methods

alone could completely solve the problem of lunar motion.

3. In order to determine the path of the moon, we

have to resort to the same method, as in the case of the

sun. We determine, in the first place, the R.A. and declina-

tion of the moon's centre at its meridian passage at any

place and thus obtain its path on the celestial sphere
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of the observer (Ch. V, 10). If these quantities are cor-

rected for parallax (Ch. X), the path obtained will be that

with reference to the celestial sphere of the observer,

supposed to be at the centre of the earth.

4. When this is done, it is found that the path of the

moon describes, on the celestial sphere, a great circle in-

clined to the ecliptic at 5 i)'.

5. The path on the celestial vault, however, as seen

by an observer on the surface of the earth, is, on account

of the earth's diurnal motion, a limited spiral (Ch. V, 4),

traced on a sphere.

6. Comparing, therefore, the motion of the sun with

that of the moon among the stars, we observe that both

the sun and the moon appear to have a motion round

the earth.

7. Now, it can be proved that the annual motion

of the sun round the earth is only apparent motion

that it is the earth, that is in motion and that the sun is, in

reality, at rest. This being admitted, it necessarily follows

that the motion of the moon cannot be also apparent

motion. In other words, the moon must be actually

moving round the earth. For, obviously, the earth cannot be

moving, at the same time, about two bodies in two different

orbits in two different planes. Thus, the truth of the

heliocentric view of the solar system (Ch. VII, 10), neces-

sarily involves the geocentric view of the moon's motion.

8. We have, next, to determine the actual path des-

cribed by the moon, the projection of which on the celes-

tial sphere is, as we have just seen, a great circle, slightly

inclined to the ecliptic.

9. For this, we proceed exactly in the same way

(Ch. V, 17), as in the case of the sun. Since the path on

the celestial sphere has been already determined, we know the

direction of the line of sight, i.e., the line joining the inoou
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and the centre of the earth (provided we use the path on the

celestial sphere of the observer, supposed to be at the centre

of the earth), at any position and the corresponding angular

diameter of the moon gives the distance on a suitable scale.

10. This gives the nature of the path. And it is found

to be an ellipse with the earth's centre at one of the focii,

the eccentricity of the ellipse being (on an average) equal

to '055 nearly.

11. If, finally, the actual distance of the moon from

the earth in any one position is determined, the dimensions

of the orbit are completely known, the greatest and least

distances being respectively 252,900 miles and 221,600

miles, nearly, (Mean distance = 23,800.) And it is, more-

over, found that the moon's orbital motion is subject to

the three laws of Kepler (Ch. VII, 7).

12. The motion of the three bodies (the sun, the moon

and the earth) may accordingly be thus described :

The sun is a fixed star, rotating about an axis. The

earth, also, rotates about an axis, and describes, moreover,

an elliptic path, with the sun at one of the focii. Finally,

the moon also rotates about an axis (art. 18), while describ-

ing an elliptic orbit with the earth at one of the focii, in a

plane inclined to the earth's path about the sun, at an angle

of 5 nearly.
1 The directions of rotation and motion are

related in both cases, in the same way as that of a sphere

on a perfectly rough surface, the motion of both presenting

to the sun, the same aspect.

13. It follows therefore, that the period in which the

moon describes its orbit about the earth, as seen by an

observer on the earth is different from what this period

1 The orbital motion of the moon in space, i.e., with reference to the

sun would, therefore, be of a complicated nature and might at first sight

appear to be as complex as that of the planets. It is actually found
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would have been, it' the earth were at rest. The former

period, i.e., the interval from conjunction (Ch. VII, 16) to

conjunction is called the synodic period, while the latter is

called the sidereal period.

Def. Synodic period is the interval between two

successive conjunctions (of the same kind).

Sidereal period is the time of passage of a body
round the sun from one star to the same star again as seen

from the sun as a fixed body.

In other words, the synodic period is the period round

the sun relative to the earth, while the sidereal period is

the absolute period round the sun. In the case of the moon,

the former period is the interval from one new (or full)

moon to the next, or one lunation.

however, to be much more simple, being an oval curve, which is always,

concave towards tke sun.

M,

Fig. 48. Moon's Path with Reference to the Sun.

M
t
and M 5 ,

New Moon; M 2 ,
First quarter.

M 3 ,
Full Moon

;
M 4 ,

Third quarter (Art. 18) ; E, E,, the orbit of the

earth.

Cf. The geocentric orbit of Jupiter as given by Cassini.

Fig. 49.

Geocentric orbit of Jupiter from 1708 to 1720.



104 ASTRONOMY

Now, to find the relation between the two periods,

if (o e
= the angular velocity of the earth round the sun,

<D
P
= the angular velocity of the moon round the sun,

then a)p u e = the relative angular velocity,

Again, if P is the sidereal period of the moon and

E. that of the earth (E, being thus, the sidereal year),

then, by the definition of angular velocity,

a> e E= 27T= <0,, P.

Similarly, if S is the synodic period of the moon

This gives
r = -

^- , which is the relation
S r Jjj

between moon's synodic and sidereal periods. When the

synodic period has been determined by observation, the

sidereal period can be found by calculation-, with the help

of the formula :

1.1 1

P"~S~ E-

Now S = 29-53059

E = 365'25635

d. h. m. s.

:. P = 27 7 43 11

r 29'5 ~l

or, approximately, P= 29'5
|

1- g^ J

= 29'5 - 2-3 = 27-2 days.

14. The points of intersection of the moon's orbit with

the ecliptic are called the moon's nodes. Accordingly, the

line of intersection of the plane of the lunar orbit with that

of the ecliptic is called its line of nodes.

This line is not fixed in space but has a retrograde

motion along the ecliptic of about 1 9, each year. It, thus,

completes a cycle in about 18! years. [Cf. precession.]
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This is the sidereal period of the revolution of the

moon's nodes. The synodic period, that is, "the period

relative to the observer on the earth can be calculated by the

formula, ,

where T is the sidereal period.

And remembering that the motion is retrograde, we get

I--1
+

1

S 184 1
'

1 8^
i.e., the synodic period

*
of a year

19^

07=
365ix|l= 346-62- days.

j>y

(without regard to sign).

Obts. As in the case of the earth's path, the apse-line of

the lunar orbit round the earth has also a progressive

motion which is, however, much more rapid, being nearly

40 in a year.

15. The phases of the moon.

Like the planets (Ch. VII, 18), the moon undergoes

changes in appearance, called its phases, which are, for

obvious reasons, much more striking than those of the

planets. The explanation is simple : The moon being

an opaque body, that half of it which is turned towards

the sun is illuminated. And, of course, the portion of the

illuminated surface, turned towards the earth measures

its phase. And it, evidently, follows that the relative

positions of the sun, the moon and the earth determine

these phases.

Let E, M (fig. 50) be the centres of the earth and

the moon andES, MS, lines from E and M, directed to the

14
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sun. Then, if the plane of the paper represents the plane

containing EM and MS, ACBD is the section of the

moon by this plane, where AB is perpendicular to MS
and CD, to EM.

16. Now, the plane perpendicular to MS (and con-

taining AB) separates the illuminated surface of the moon

from the dark portion, while the plane perpendicular to CD

separates the visible from the invisible portion, as seen from

earth. Hence, the lune, of which BD is the trace is the

only portion of the illuminated surface, presented to the

earth. Moreover, the visible portion of the moon, though,

in reality, spherical, appears as a disc which is the projection

of this spherical surface on the plane perpendicular to EM,
the line of sight. When the lune is a quadrant, the

projection is half-moon and when the lune is greater than a

quadrant, the corresponding phase is said to be gibbous.

Fig. 50.

17. In the Figure 51, the

plane of the paper is the plane,

perpendicular to the line of

sight EM of Fig. 50 and GH,
the perpendicular to the plane

CBD, while GBHD is the

illuminated portion, as presented

to the observer. [The letters

are the same in both figures.]
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Now, since the projection of the lune GBHD on the

disc, presented to the observer is the crescent seen by the

observer, the breadth of the crescent is evidently= r(l

cos 0), where #= L BMD and ; is the radius of the disc.

But<9= 180-angleEMS
= the exterior angle subtended at M by ES. [Fig. 50]

the phase varies as -/ (1 +cos. EMS).

Fig. 52.

Hence, we conclude that

when EMS = 180, i.e., M is between the earth and

the sun, the phase is zero. This is called the New Moon.

When the angle EMS = 90 (i.e., at first and third

quarters), the phase is half (and the breadth of the illumi-

nated portion =/). Finally, when the angle EMS = 0, the

phase is full. This is Full Moon.

In the accompanying diagrams (Figs. 52 and 53), these

various relative positions and the corresponding phases are

represented, MS being always parallel to ES. [Fig. 50.]
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Fig. 53.

Phases of the Moon.

18. Rotation. When the moon is carefully observed,

it is found that certain markings on it occupy nearly

always the same position, relative to the disc, presented

to the observer. This necessarily leads to the following

conclusions :

(1) That the moon rotates about an axis, nearly

perpendicular to the plane of its orbit, round the earth,

and (2) the period of rotation about the axis is nearly

equal to the period of its revolution about the earth,
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Fig. 54.

For let AMB (fig. 54) be the trace on the plane of the

paper of the lunar hemisphere and let OO' be its orbit,

also on the plane of the paper. Let us suppose, also, that

the orbit is circular, and M, the position of a certain

mark on the moonsay in the middle of the arc AMB
(centre O).

Let, now, A'M'B' be the trace of the hemisphere,

presented to the earth, in the second position (centre O'),

M' being the middle of the arc A'B'.

Now, suppose M' is the same mark, which occupied

the position M previously ; then, it necessarily follows that

the hemisphere (AMB) of the moon is the same as A'M'B'

in the second position.

Now, the rotation of the moon in the interval is given

by the inclination of the fixed line A'B' of the body with

a fixed line in space, viz.
t
AB. This rotation is therefore,

evidently, equal to the angular displacement of the moon

in its orbit. If this relation always held, it would follow

that (1) the period of rotation is equal to the period of

revolution and (2) the axis of rotation is perpendicular to

the orbital plane.
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19. It is, however, found that M does not occupy

exactly the position M'.

Let us suppose that it comes to the position M", in the

are A'M'B' just a little to either side of M'. In this case,

the angular displacement of the moon from O to O' in its

orbit will not be equal to the corresponding angular rotation.

In fact, since the rate of the angular displacement of

the moon in its orbit obeys Kepler's first law and is,

therefore, not constant, the amount of rotation in any

given interval would not necessarily be equal to its angular

displacement, especially, if the angular velocity about its

axis is constant, as is found to be the case. This is also

verified by observation, for it is, in fact, found that these

quantities are not always equal. It will follow, therefore,

that the plane perpendicular to the line of sight is not

absolutely fixed with reference to the moon. In other

words, sometimes, a small portion around the Western

and sometimes a small portion around the Eastern edge,

beyond the hemisphere limited by AB will be visible.

This is called Libration in Longitude,
20. Let us next suppose M to come to a position

M
2 , lying on a line perpendicular to the arc A'M'B'

very near M'. This will be the case, if the axis of rotation

is not exactly perpendicular to the orbital plane. It is

known to be actually inclined at a constant angle of nearly

88i to the ecliptic. It results, accordingly, that the plane

perpendicular to the line of sight does not always contain

this axis ; whence, it follows that sometimes, a little more

of the Northern and at other times, a little more of the

Southern region will be visible, than is, ordinarily, the case.

This is called Libration in Longitude. Both these libra-

tions evidenced by the displacements of marks, say M, in the

neighbourhood of M (which may be considered to be made

up of displacements MM" and MM 2 ) have been observed,
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2). Again, the portion of the moon presented to the

observer is included within the tangent cone, drawn from

the observer to the moon. The lunar disc presented to

the observer does not, therefore, accurately pass through

the centre of the moou (tho.ugh it very nearly does so,

on account of the smallness of the angle of the cone),

as we have assumed, in our discussions, so far. It is also

clear that, as the observer is carried with the earth, in its

diurnal motion, this cone will slightly vary its position

in relation to the moon, so that the portion presented to

the observer varies slightly during the day. This is called

diurnal libration.

22. When all these librations are taken together, we

find that, as a matter of fact, we have on the whole, brought

within our purview, more than half of the moon, about

41 p. c. being never invisible and about 41 p. c. never

visible.

23. Since the average change of R.A. of the sun

is about 1 per day and that of the moon, about

13 per day (Art. 3), the moon gains upon the sun on

an average 12 per day (actually 12 11' 4"). Hence,

remembering that the R.A. is measured in a direction,

opposite to the direction of apparent diurnal motion of

celestial bodies, we conclude, that the moon's change of

hour angle by 360 bears the same ratio to the sun's

change of hour angle by 347 48' 56" (360- 12 IT 4")

as the average interval between successive transits of the

moon bears to 24 hours. Thus, the average interval between

the successive transits of the moon is equal to 24 h.

50 m. 36 s.

24. There is, thus, an average daily retardation of

the moon, of about 51 minutes in its time of meridian

passage (and that of rising and setting). That is, the moon

rises nearly 5 1 minutes later, on an average, every day.
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The Diagram 53 clearly brings this out also, which, indeed,

is a familiar experience. For, while the full moon rises

practically at sunset, the moon-rise lags behind, the next

day and the lag continues to increase.

On account, however, of the irregularity in the moon's

motion in R.A., the retardation in the meridian passage is

subject to considerable variations. Both on account of this

and also on account of the fact that the moon changes its

declination, considerably (from to -28 36'), the daily

retardation in the time of rising and setting varies consi-

derably throughout the year.

The greatest interest attaches to the epochs at which

the retardation is greatest and least.

HARVEST MOON.

25. In order to simplify the problem, we shall assume

the moon to move along the ecliptic.

Let SN (fig. 55) be the horizon, EQ, the celestial

equator, yM, the position of the ecliptic, at any time and

M, the position of the moon at the horizon, i.e., when rising

on a certain day. Also in order to fix our ideas let us

suppose that the sun is setting at the same time.

Let MM' be the average relative displacement of

the moon in one solar day. Then,

M' is the position of the moon

at the next sunset,' and the

moon-rise occurs, only when

it is carried to the horizon on

account of its diurnal motion -to

R, where M'R is a portion of

its diurnal path.

Fig. 55.

Hence, the. time corresponding to the hour angle

M'PR measures the retardation in the time of moon-rise,
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i.e., the interval between sunset and moon-rise, the

next day.

Now, since, MM'R is a small spherical triangle, we

may take it to be a plane triangle.

A.nd, further, since MM'= relative displacement of the

moon along the ecliptic in a solar day, this may be taken

to be constant.

Hence, it is easy to see that the hour angle RPM
X

will

be least if (1) the moon's declination is least (i.e., zero)
1

and (2) the length RM' is least. Now RM' will be least, if

the angle M'MR (that is, the inclination of the ecliptic to

the horizon) is least, since the declination being zero, the

angle MRM' may be regarded as constant.

In order to find when this inclination (M'MR) is least,

we proceed as follows. Let K be the pole of the ecliptic,

and P, the North celestial pole; then, KP represents the

obliquity of the ecliptic. Therefore, as the ecliptic moves on

the celestial sphere (relatively to an observer on the earth),

K will describe a small circle about P. Now the length of

the arc of the great circle passing through the zenith,

Z and K measures the inclination of the ecliptic to the

horizon. And this is evidently least, when K is on the

celestial meridian of the observer and lies between P and Z

that is, when the ecliptic passes through the intersection

of and lies between the horizon and the equator. For this,

it is necessary that y should be at the East point, for

northern latitudes, since the ecliptic passes to the North of

the equator at y. Now, since at that moment, the moon

has to be at the horizon, the moon must also be at y. Then,

also, its declination is least.

1 A simple inspection of a diagram will show that an element of a

parallel will subtend the least angle at the pole when the parallel

coincides with the equator.

15
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We conclude, accordingly, that (assuming the moon to

move along the ecliptic) its retardation is least (as seen by
an observer in northern latitudes), whenever the moon is

passing through y at the East point.

If now the sun is at Libra, at the same time, i.e., at

autumnal equinox, the moon is full. In other words, the full

moon at the autumnal equinox undergoes least retardation

or rises directly after sunset, for several nights in succession.

As this is helpful to harvest in Northern Europe, full

moon at autumnal equinox is, in these parts, called

" harvest moon." Similarly full moon at the vernal

equinox is Harvest moon for the Southern Hemisphere.

PHYSICAL FEATURES OF THE MOON.

26. The moon's surface presents features which are

altogether different from what the earth would present to

an observer, outside the earth. The surface is extremely

variegated, being thickly interspersed with huge craters

with but few long mountain-ranges such as are to be met

with on the surface of the earth. Moreover, the mountains

are comparatively high, 10000 to 20000 ft. being very

common having regard to the small size of the moon, in

comparison with that of the earth.

The lunar craters, as a class, are nearly circular and are

surrounded by a ring of mountains. In most cases, they

resemble terrestrial volcanic structures, whence, it has been

concluded that they have had a similar origin. Opinions

however differ as to whether the lunar surface does not or

does show any sign of volcanic or other activity. But,

on the whole, recent consensus of opinion is in favour of

the latter view. If this be so, these craters are very

probably associated with such activities.

Objects on the moon's surface differ so much in

appearance on account of the varying illumination
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due to the sun, that it is difficult to be certain of

these changes.

Besides mountains and craters, there are on the surface

of the moon, many deep narrow crooked valleys called

"
rills

" and "
clefts," of the nature of fissures, in the lunar

crust. Finally, we have probable evidence of radiation

from certain of the craters, the so-called
"
rays," which

appear like light-coloured streaks but the nature of which

has not as yet been satisfactorily made out.

It will appear from even this brief account that our

knowledge of the moon's surface of the portion, which

alone is turned towards us is much fuller and much more

accurate than in many portions of the earth, say in Asia

and Africa, which have not been surveyed at all, so far.

MEASUREMENT OF THE HEIGHTS OF LUNAR MOUNTAINS.

27. One of the simplest methods consists in measuring

by means of a micrometer, the angular distance between the

projection of a mountain top on the dark background of

the non-illuminated portion of the disc from tae " termina-

tor
"

(i.e., the line of demarcation between the light and

dark portions) of the moon.

Let B (fig. 56) be the top of a mountain. It will

appear as a star on the lunar

disc, as the first rays of light

from the sun (S) are caught

by it, touching the moon

at A.

And if AE is the direc-

tion of the observer and the

projection of B on AE
is C, then the angular dis-

tance measured is the angle

subtended at E by BC.

Thus, we have AB sin 0=BO,

Pig. 56.
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where 0=angle EAB=the elongation of the moon,

and AB i
=(2r+^ = 2rA nearly,

1

if ?*=the radius of the moon and li the height of the

mountain. .'. BC= VZrh sin 0, nearly.

Hence, since BC, as an angular measure is known, h, as

an angular measure is determined, since r and 6 are known.

In order to convert these to actual distances, we have to

multiply throughout, all the angular measures (expressed in

circular measure) by the distance of the moon from the earth.

:Z8. From careful observations, it has been concluded

that the moon's atmosphere is either non-existent or is of

extreme tenuity. For, looked at through the telescope, the

edge of the moon is seen without any distortion or haze.

There is, in fact, no evidence of any atmospheric pheno-

mena. Further, when the moon comes between the observer

and a more distant object, at an occultation of a star for

instance, the phenomenon observed is instantaneous and

not gradual, as would have been the case, if the moon had

any atmosphere.
2

9. It follows, also : that there cannot be any water

on its surface, except in the form of ice, at sufficiently low

temperature, to allow of its existence in that form, without

evaporation into a practical vacuum. The surface of the

moon, in fact, must be at an extremely low temperature,

a conclusion which follows from the simple consideration

that the lunar night extends over fourteen days, during

which the temperature of the surface must fall very low

indeed, while the long day of fourteen days cannot provide

adequate compensation, as, on account of a practical

absence of an atmosphere, the heat received from the sun

must radiate away almost as quickly as received,

1 In order to see this more clearly, draw the diameter through B.

In fact, OB = r + 7i.

2 Prof. Pickering is, however, of opinion that the moon has an

atmosphere.
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1. Explain why the moon is regarded as a satellite of the earth.

2. Determine the position of the moon at which its phase will be

| (assuming the orbit to be circular).

3. Show, by means of a diagram, how the phase is modified, if we
take account of the eccentricity of its orbit.

4. Is the phase independent of the position of the observer ? Show

how it depends on his position by means of a diagram.

5. Assuming the motion of the moon to be uniform in its orbit,

find its daily retardation. What is its amount (1) in a lunar day,

(2) in a solar day ?

6. Show by means of a diagram, how the inclination of the horizon

to the ecliptic changes throughout the year, at any place.

Hence explain the phenomenon of
" Harvest moon."

7. How has it been concluded that the same face of the moon is

always turned towards the earth P

Is it absolutely correct ? What information is deducible from this ?

8. If the axis of the moon were perpendicular to the lunar orbit,

find the region that will come within the earth's view, if the angular

distances and the angular rotations of the moon during a certain

interval are 90 and 91.

9. Find the height of a lunar mountain, given, Angular distance

of a bright speck from the edge 2", The elongation of the moon 30.

The mean distance of the moon from the earth= 23800 miles.

10. Prove that at the end of every 19 years, the phases of the

moon recur in the same order, as regards dates. (Metonic cycle.)

[29 53059 x 235= 19 years.]

11. If the sidereal period of the moon were 30 days, find what

would be the length of one lunation.

12. The sidereal period of the moon is 27^ days. The synodic

period of regression of the lunar nodes is 346'62 days. Hence show

that a period of 6585 days constitutes a cycle during which the relative

positions of the sun, the moon and the earth as well as the lunar nodes

recur in the same order.

13. Find the eccentricity of the lunar orbit, given that the greatest

and least angular diameters of the moon are as 253 : 221 '5.

14. Given that the mean distance of the moon is 239000 miles,

find its diameter, if the mean angular diameters is 31'.

15. T..e apparent diameter of the moon ranges between 33' 30"

and 29'21". Assuming that the orbit, is an ellipse, find its major axis

and show how to trace t he orbit (round the earth).



CHAPTER VII

THE PLANETS

1. While the circular paths of the sun and the moon

among the stars, as traced on the celestial vault presented

a comparative simplicity, which made a geocentric

explanation of their motions by no means incredible,

those of the planets were so complex that they baffled,

for ages, the most ingenious attempts to decipher them.

When the paths of planets, such as Mars is traced on the

celestial sphere by means of their observed R.A. smd decli-

nation, as in the case of the sun and the moon, it is found

that, although they never lie very faraway from the ecliptic,

they do deviate North and South (as much as 8 in some

cases) and shew, moreover, loops and kinks as in Figure 5".

2. Comparing these motions with that of the sun,

we find, that a planet

appears sometimes to

move in the same direc-

tion as the sun
;
the motion

~"7\ V^5<n> ^ then said to be direct.

p. 57
At otner times, it appears

to move in the opposite direction, when the motion is called

retrograde, while there are occasions, when they seem to

stand still (relatively to the sun) or to be stationary

[Art. 14.]

3. The most important problem of ancient astronomy
was naturally to explain these complicated motions, which

appeared well nigh to defy analysis.
1

1 The first step in analysis was made in remote ages. This was to

classify the complicated motions they appeared to possess. The
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4. AmoLg the iirst attempts at analysis were those

made on the dictum of Plato (425 B.C.) that the circular

motion was the perfect motion, and on this basis, a theory

of celestial appearances was devised by Eudoxus (408-355

B.C.). The problem he attempted to solve was, so to

combine uniform circular movements, as to produce the

resultant effects, actually observed. The sun, the moon

and the [five] planets were, with this end in view, accommo-

dated, each with a set of variously revolving spheres, to the

total number of twenty-seven. This was modified by

Appollonius of Perga by means of the hypothesis of

epicycles (Intro. 18), which held the field for 1800

years, as the one generally accepted theory of planetary

motions. i

5. In order to realize in what manner, this highly

artificial theory of epicycles failed, it is necessary to under-

stand the nature of the problem which it attempted to

solve :

following classification of these motions in the Suryya Siddhanta is

remarkable, as being based on an exhaustive survey of the entire motion.

1. Vakra decreasing retrograde motion.

2. Ativakra increasing retrograde motion.

3. Kutila stationary position.

4. Manda increasing direct motion, less than the mean motion.

5. Manddtara decreasing direct motion, less than the mean motion.

6. Sama mean motion.

7. Sighra decreasing direct motion, greater than the mean motion.

8. Sighratara increasing direct motion greater than the mean

motion.

1 Another worker in the same field was Hipparcus, who fixed the

length of the tropical and siddereal years, of the various months and

of the synodic periods of the various planets, determined the obliquity

of the ecliptic and of the moon's path, the position of the sun's apogee

and the eccentricity of his orbit and the moon's horizontal parallax.

He made use of eccentrics which accounted for changes in the orbital
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In the infancy of the astronomical science, the

observer, naturally regarding the earth to be fixed, looked

on the Sun, the Moon and the planets as occupying domes,

arranged, one above the other, the " Heaven of the Moon/'
the " Heaven of Mercury," etc., which the moon, the

mercury, etc., were respectively supposed to inhabit and

in which they completed their sojourn in paths, which were

assumed to be circular. When, however, some progress

had been made in accurate astronomical observations, it

became evident that such a simple theory could not explain

the motions of the planets, although they ^xplained those

of the sun and the moon, fairly well. Astronomers, accord-

ingly, sought to explain these motions, by imagining the

sun and the moon to be in motion round the fixed earth

and the planets round the sun. This was evidently the

standpoint of Suryya Siddhanta, as the motions of the

planets given there are those round the sun. This was

also the system of Tycho Brahe. According to him :

" The earth is the centre of the universe and the centre of

the orbits of the moon and the sun, as well as that of the

sphere of the fixed stars. The sun is the centre of the

five planets, of which Mercury and Venus move in orbits

whose radii are smaller than the solar orbit, while the orbits

of Mars, Jupiter, and Saturn encircle the earth." Now if

the orbits of the planets were actually circular aud in the

plane of the earth's orbit, such a hypothesis would have

velocity of the sun and the moon by a displacement of the earth from

the centre of the circles they were assumed to describe.

It is noteworthy that in the Suryya Siddhanta, also, rules are given

for determining the position of the planets at any time, which fairly

agree with the then observed places. These give successive approxi-

mations-wawda phala (1st equation), siyhraphala (2nd equation of 1st,

2nd and higher orders). These are also based on epicycles, though it is

not clear how far the systems of epicycles used here agree in character,

with those used by the Greeks.
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fairly adequately represented these motions. But the orbits

are neither circular nor co-planar. Hence, the necessity for

the introduction of epicycles of various degrees of com-

plexity and the various corrections, the most complete

exposition of which seems to be contained in the Almagest
of Ptolemy. At the same time, it is reasonable to suppose
that astronomers at different times tried to free them-

selves from the highly artificial theory of epicycles, which

was intimately associated with a geocentric scheme.

Accordingly, the other, the heliocentric view was revived

from time to time. It is, indeed, conceivable that the germ
of this idea could be traced to the early thinkers. It is

contended that the Hindus knew, at any rate, that the

geocentric theory could not explain planetary motions. It

is certain, however, that Pythagoras (569-470 B.C.) (who is

said to have come to India to study Mathematics) or one

of his followers propounded a system, somewhat similar to

the one accepted now. 1 The idea of the earth's motion

round a central body with the further modification that the

sun is this central body was revived by Copernicus,
2 in the

Sixteenth century but he also attempted to explain all

motions, as made up of circular motions. The problem

was thus practically unsolved, at the time Kepler

took it up.

6. Kepler was an assistant of Tycho Brahe and came

into possession of the latter's splendid results after his

death. It was after vainly attempting to fit in these results,

1 The centre of the universe is occupied, according to the Pythago-

reans, by the central fire as the hearth of the universe round which the

earth and all the heavenly bodies move in circular orbits,

2 This is what Copernicus says : We are not ashamed to maintain

that all that is beneath the moon with the centre of the earth describe

among the other planets a great orbit round the sun, which is the centre

of the world; and that what appears to be a motion of the sun is, in

truth, a motion of the earth.

16



ASTRONOMY

the accuracy of which was undoubted, with a hypothesis of

epicycles of increasing degree of complexity, that he gave up
the postulate of the stationary earth and adopted the hypo-

thesis of a moving earth moving about the sun. But he not

only postulated a helio-centric system but, from a detailed

analyses of the results of Tycho's observations, specially on

the motion of Mars, showed that the orbits of the

planets are ellipses, variously inclined to each other and to

the ecliptic, with the sun at one of the focii. He, in fact,

deduced from these observations, his three celebrated laws,

embodying a remarkably complete and coherent scheme :

7. These laws are

(1) The orbits of the planets are ellipses (with

the sun at one of the focii).

(2) The radius vector joining the sun to a

planet sweeps out equal areas in equal times.

(3) The square of the time taken by a planet to

complete its orbit is proportional to the cube

of its major axis. l

8. At the present day, we have direct confirmation of

Kepler's hypothesis supplied by the phenomena of aberra-

tion, discovered by Bradley. Bradley observed that when

star places were accurately noted, they all appeared to

describe small ellipses, parallel to the ecliptic, and to

complete a cycle in a year. It was, therefore, a priori

evident that the observed motion was apparent motion and

could only be due to the motion of the observer, carried by

V
1 It is not without interest to note that the second law was deduced

by Kepler, as the result of two mistakes. He took it for granted that

the heliocentric motion of a planet is due to force, directed towards the

sun but varying inversely as the distance of the planet from the sun.

Hence, according to Kepler, the velocity is inversely proportional to the

radius vector and, consequently, the time required to describe the

corresponding arc is also proportional to the radius vector in a circular

orbit and, therefore, in all orbits. Accordingly, the total period will be
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the earth in its motion round the sun. In fact, if the earth

were at rest, a star would be seen by means of light issuing

from it and coming to the observer with a known velocity-

in the direction in w.iich the light actually comes. If,

however, the observer is in motion, the direction in which

the star will be seen is the apparent direction in which light

appears to come, just in the same way as to a man walking

forwards, a rain drop falling vertically appears to come

towards him in a slanting direction. Actual calculation

shows that this exactly accounts for the displacements

observed and, thus, aberration supplies practically an ocular

demonstration of the earth's motion.

9. Remembering now that the earth rotates about an

axis whose direction is fixed in space, the complete motion

of the earth can be described by means of the following

model :

Imagine the plane of the ecliptic to be an inclined plane,

suitably inclined to the horizontal plane, assumed to coincide

with the equator. Then, the line of equinoxes will coincide

proportional to the sum of all the radii. And this, he took to be equal

to* the total area described.

It should be admitted, however, that, although Kepler obtained the

law in this accidental manner, he finally adopted it, only because it

agreed with the results of observation.

But if the discovery of this law was accidental, the same is not true

of the law of elliptic orbits. Continued observations of Mars by Tycho

Brahe had accumulated data, from which Kepler set himself the task

of deducing the nature of its path. Since the circular orbit, even an

eccentric one, had to be given up, as the result of observations abun-

dantly showed, he concluded it to be an oval curve of some kind, agree-

ably to the law of equable description of area ;
but as the simplest oval

is an ellipse, he attempted to work on the hypothesis of such an orbit

and found his hypothesis justified on the ample data available. Thus,

the problem of planetary orbits was solved in its kinematical aspect and

Kepler showed that no other hypothesis could be made to accurately

agree with observations.
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with the horizontal line passing through the sun's centre

and the line of solstices, with the line of greatest slope.

The earth's centre will then describe an ellipse, on this

(inclined) plane, with the sun's centre at one of the foci,

while its axis of rotation will always remain vertical.

10. If we admit that it is the earth that moves round

the sun, then these complicated motions of the planets are

found to be due only to motion round the sun, as observed

from the moving earth. The system of planets, viz.,

Mercury, Venus, etc., including the earth, forms, on this

view, a heliocentric system. It hits been, moreover, found

that the distances of the planets from the sun increase, as

we pass for Mercury to Neptune. (See Table). Accordingly,

Mercury and Venus are called inferior planets (or nearer to

the sun than the earth) and Mars and the rest (including

the asteroids), superior planets.

11. Admitting this, the heliocentric, view of Kepler,

viz. t
that the planets, including the earth are in motion

about the sun and that the sun is fixed in space, let us

follow out the consequences of such a view. In order to

simplify the reasoning, let us assume that the orbits of

the planets about the sun are circular and coplanar.

Then, if P be an inferior planet (fig. 58) its angular

velocity about the sun is greater

than that of the earth (Kepler's 1st

law). If we, therefore, superpose

at any moment, an angular velocity

equal and opposite to that of the

earth, on the whole system, the

resultant motion will be that rela-

tive to the earth, at the moment

the sun moving round the earth with

an angular velocity, equal and opposite to that of the earth

and the planet round the sun, with reduced angular velocity..
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1 2. This is virtually the Tychonie system and this

mode of representation would have the observed motions,

if the supposition made above (that the orbits are circular

and coplanar) represented the actual facts.

18. Moreover, when P is between the earth and the

sun, it will appear to be moving in the same direction as

the sun, while when the sun is between the planet and the

earth, it will appear to be moving in the opposite direction.

The former is, as we have seen, called retrograde motion,

the second, direct motion and it is clear that there will be

two positions, at which the motion changes from direct to

retrograde and vice versa. At these positions, the motion

is neither retrograde nor direct; that is, the planet will not

be at all changing its angular position relative to the earth.

In other words, it will appear to be stationary.

14. These characteristics of the motion of an inferior

planet relative to the earth are well-known (art. 2)

and are thus sufficiently explained on the heliocentric

view.

15. Now, since these motions are relative, to an obser-

ver in P, the motions of the earth will be similar to those

of P relative to the earth viz., direct, retrograde and

stationary, corresponding to retrograde, direct and stationary

motion of P relative to E.

The motion of a superior planet, therefore, will, also,

have these same characteristics, relative to the earth.

\ 6 Def. Elongation of a planet is the angle subtend-

ed at the earth by the line joining the planet and

the sun.

When the elongation is zero, the planet is said to be in

conjunction Superior, when the sun is between the planet

and the earth and inferior, when the planet is between the

sun and the earth,
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Obs. It is only an inferior planet that can be in

inferior conjunction, while both inferior and superior

planets can be in superior conjunction.

When the elongation is 180, the planet is said to be in

opposition.

E= The Earth.

S= The Sun.

P= Inferior planet.
longation

When the elongation is 90, the planetis in quadrature.

[Fig. 60.]

Superior conjunction.

S = The Sun.

E= The Earth.

quadrature quadrature

opposition

Fig. 60.

It is only a superior planet that can be in opposition

or in quadrature, while the elongation of an inferior planet

must be between and a certain maximum value less

than 90. [Fig. 59.]

The maximum elongation of mercury lies between 18

and 28.

That of Venus is 47.
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17. As the elongation of a planet measures the

angular distance of the planet from the sun, as- seen from

the earth, an inferior planet can never be, relatively, very

far from the sun, while a superior planet can be at all

angular distances from it.

It follows, therefore, that an inferior planet will

rise or set shorth' before or shortly after sun-rise

or sun-set, while a superior planet may rise or set at all

times.

An inferior planet is therefore either a "
morning star

"

or an "
evening star/'

Let the arrow head repre-

sent the sun's apparent annual

motion as seen by an observer

at E. [Fig. 61.] Then V 2
is the

relative position of Venus at its

Western elongation and V 3 ,
at

the Eastern. From V 4 to V 3

and on to Vu therefore, Venus

is a "morning star
"

while, from

V,, up to V
2 ,
V 4 ,

she is an
"
evening star."

Fig. 61,

18. That the planets are opaque bodies is best proved
from their phases.

Def. Phase. The phase of a planet is measured by
the portion of its illuminated surface, which is turned

towards the earth.

19. As the phase, as well as the elongation, depends
on the relative positions of the sun, the Earth and the

planet, it will be sufficient if we consider the changes of

phase, as the elongation changes ;
in other words, we may

imagine the planet alone to move.
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20. Taking, first, the case of an inferior planet, when

the planet is in inferior conjunction, the whole of the

illuminated portion is turned away from the earth. It is

then said to be New (Ch. VI, 17).

The phase increases as the elongation increases.

At the maximum elongation, the phase is half.

But while the elongation decreases after that, the phase

goes on increasing, till at superior conjunction, the planet

is Pull. The reverse is the case from superior to inferior

conjunction.

In fact, if P is an inferior planet (Fig. 62), then

the tangent at P to its orbit (assumed, circular) separates

the illuminated from the dark portion of the planet.

Now, if E be the earth, and PE is joined, then the

section of the planet perpendicular to PE separates the

half presented to the observer from the half, turned away

from him.

Accordingiy, since the phase is measured by the

portion of the illuminated surface turned towards the

observer it varies as i (1 + cos SPE). [Ch. VI, 17.]
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It is easily seen that at an inferior conjunction,

L SPE= 180 and therefore, the phase= 0.

At max. elongation, ZSPE= 90, or the phase=i
and at superior conjunction, L SPE is equal to 0, or, the

phase= 1.

21. As the increase of phase is associated, in the case

of an inferior planet with increased distance, such a planet

(Venus for instance, since Mercury is hardly visible) does

not present to the naked eye, any appreciable variation in

brightness. In order to detect its phases, therefore, it is

necessary to use a telescope. The figure (63) gives the

telescopic view of Venus.

QO
Fig. 63.

22. The variation in phase in the case of a superior

planet presents a special feature which is worthy of note.

In considering this, we recall in the first place that the

phase varies as \ (I -f cos SPE).

But
sin

=-n (fig- 6 *)> i P is a superior planetoP

and E, the earth. .*. sin 3= sin SEP.
SP

23. But the greatest value of sin SEP is 1, when

SEP= 90. Or sin SPE is greatest at quadrature and

cos SPE is least, at the same time. That is, the phase is

least at quadrature and even then, the phase is more than

half. It is then said to be most gibbous.

17
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Fig. 64.

24. We have seen that the motions of the planets

obey three laws, discovered by Kepler, by observation alone.

Following the order of their discovery the second law

may be thus stated : If a planet goes from P to T, in one

day and from T to U, the next day, then S being the

Sun, the area SPT is equal to the area STU. [Fig. 64 A.]

Fig 64 A.

Now, if the angle PST is small, the area SPT is

proportional to the product, SP 2
. 6 where is the circular

measure of the angle PST, for SP, or the distance of
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the Earth from the Sun, to take the case of the earth first,

varies inversely as the angular radius of the sun. and

the angle PST is really (art. 26) the change in the

celestial longitude of the Sim. Hence, by observing the

angular diameter of the sun and its change in longitude

from day to day, the law can be verified in the case of the

Earth. In the case of any other planet, the reduction

of observations is much more complicated, but the general

principle is similar. [Art. 27.]

5. The first law states that these orbits are ellipses.

The actual procedure in the case of the earth may be

roughly sketched, as follows.

We have seen that the apparent orbit of the sun is

an ellipse, with the earth at one of the foeii. From this,

the real orbit of the earth can, at once, be deduced, since the

sun is really at rest and the earth is in motion.

It will be remembered (ch. V, 17) that the sun's

apparent orbit was obtained as a relation between ES

and the / SE7 (fig. 39). Thus, if E is regarded as fixed

and S, in motion, yES is the longitude of the sun and

ES is the corresponding radius vector, S moving in the

direction of the arrow towards S'. (Fig. 65.)
'

Now, in the derived

orbit of the earth (fig. 66),

S is the fixed body and Sy,

parallel to Ey is a fixed direc-

tion in space. Then, taking

SB, equal and parallel to

ES and similarly directed

M.rcb 21 / x. \ S in both diagrams (figs. 65

and 66) and SE' = ES'

Fig. 65. and parallel,
1 we observe

Apparent orbit of the sun. that the motion of E is from

1

E', S', consecutive points to E (fig. 66) and 8 (fig. 65) are not

shown in these diagrams.
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E to E', i.e., opposite to that of S and that the orbits

are equal.

July 1

Fig. 66.

The real orbit of the earth.

Note. SE7 is a fixed direction in space and, evidently, the change

in the longitude of the sun is equal to the change in the angular

co-ordinate of E. (Pig. 66).

In other words, since the radius vector and angular

co-ordinate are the same, whether the sun or the earth

is the fixed body, the apparent path of the sun will be

exactly of the same nature as the path of the earth, with

reference to the snn, the direction of motion in one case,

being opposite to that in the other. The path is, thus, in

either case, an ellipse with the fixed body at the focus

of the ellipse.
1 This proves Kepler's 1st law of motion,

in the case of the earth.

1 The problem of the earth's motion, as it presents itself in its

entirety is thus one of great complexity. On account, however, of the

smallness of the eccentricity of the elliptic orbit, the solution can be

effected by successive approximations. The actual angular position

differs from the mean position by a small quantity, which is called

the equation of the centre and depends on the eccentricity.
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26. The Earth's path being thus determined, Kepler's

second law can also be verified with

reference to this orbit Referring

to fig. 67 we have to prove that

if the areas ASB, SCD, SEF,

are described in equal times, they

are equal. We have already seen

(art. 24) how this can be done. Equable Description of

(Observe that the /CSD, is the Areas,

change in the longitude of the sun in the lime taken by
the earth to go from C to D. [Art. 25, note.]

Note. It follows from this, that the seasons (Ch. V, 36, 37) are

of unequal lengths, being proportional to the areas marked off by the

line of equinoxes and solstices in figs. 65 and 66.

Further, following the data specified in Ch. V, 27, we

may describe the motion of the earth, as follows :

The earth is in perihelion on 31st December and in

aphelion on July 1st.

It is at 7 on 21st March and at fi on September 23rd.

[Fig. 66.]

27. The path of any other planet, with reference to

S is more difficult to determine.

In order to illustrate the method, we shall assume

the orbits to be circular and in the plane of the ecliptic.

Let P (fig. 68) be the position of an Inferior planet

and E, the Earth at inferior conjunction and let P', E',

their positions at any other time. Then, we know the

/ PSE' and SE', being the corresponding vectoiial angle

and the radius-vector of E. Also, the elongation of the

planet, viz., SE'P' can be determined, as well as the angle

E'SP', or the angle
*

gained by the planet on the earth

1 If Ms the time from E to E', the circular measure of this

angle is -~t, where S is the synodic period.
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round the sun.

vary, as

Thus, the triangle SE'P' can be solved and

the length SP' or the

radius of the orbit can

be determined. * Also

when SP' and the diur-

nal change in the

/ ESP' is known, the

second law can be

verified, as in the

simpler case of the

earth. [Art. 24.]

28. The third law

states that the squares

of the periodic times

the major axes or the greatestof

diameters of the elliptic orbits, described by the planets.

Since the orbits are known, all that has to be done is to

calculate the time taken by a planet to go round the sun, that

is, its sidereal period. The formula (Ch. VI, 13) enables

us to do this. We may state the argument in a different

form. For this, we notice, that if the Earth goes round the

sun in K days, it goes ^ of the total circuit (round the sun) in

one day; similarly, the planet goes ^ of the circuit (round

the sun) in one day, if its periodic time is P
;
thus, it goes

1
If, instead of calculating the angle E'SP', on the assumption that

the planet's orbit, is circular, we measure the angular diameter of the

planet (as seen from the earth), we know the distance E'P', on an

assumed scale. This would enable us to solve the triangle SE'P' and

determine SP', as well as the angle ESP'. Thus, the path can be

determined, and proved to be an ellipse. This, however, still

involves the assumption that the orbit of the planet is in the plane

of the ecliptic.
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ahead of the Earth by ( p~~ p)
f the circuit in one day.

When it has gone ahead by a whole circuit, it will be in

the same relative position to the Sun and the Earth as at the

beginning. The interval (the synodic period) is, therefore,

EP
=

=5 This interval can be observed for it is the
lj r*

interval between, say, two successive conjunctions, and

hence, P can be determined, since E, the number of

days in the year, is known. In the case of a superior

EP
planet, the synodic period is - '

29. These laws seem, at first sight, to be too compli-

cated to be of much use. It is remarkable, however, that

they are all consequences of a single law the law of uni-

versal gravitation.

30. And we reach this grand generalisation that all

these complicated motions of the planets are due to an attrac-

tion (directed to the s?m), varying according to the law

of inverse square of the distance or the acceleration, under

which a planet P moves in its orbit is ^ SP 2
,
where S is the

centre of the sun and, /x, a constant (nearly) for all the

31. Let P be the position (fig. 64 A) of a planet at

any time, moving in the direction PQ. If there had been

no action of the sun, the planet would have continued

to move along PQ, and Q, R would have been its

positions at t, Zt seconds after (t being small).

On account of the attraction of the sun, however,

directed along PS, it occupies positions marked T, U
instead. In other words, the planet is displaced through

QT, RU, in the times t and Zt seconds. Since these
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displacements are due to a force acting along PS, very

nearly, QT, RU are parallel to PS, and the figures PST,
PSU are, ultimately, triangles. We have, accordingly, uy

Euclid, the triangle PQS, (QS being joined)

= the triangle PST.

= QSR.
= TSU.

That is, the areas PST, TSU, are equal or the area

described by a planet in any time is proportional to the

time. Thus, the second law of Kepler is seen to flow from

the supposition that the motion of a planet is due to an

attractive force directed to the sun.

32. Again, if V is the velocity of the planet at P,

PQ=V/5, (1)

and if p is the perpendicular from S on PQ,

we have PQ.j =V^. (2)

which as we have just proved, is proportional to t.

i.e., V^= constant.

Calling this const. //, we have Vj(?
= ^ (3)

ie ^- k-
t.e., \

-^.
But the kinetic energy, acquired by a particle is equal

to the work done by the force producing the motion.

Now, as the plane b is displaced from P to T, T being

a neighbouring point, the displacement may be con-

ceived to be made up of PN (perp. to ST) and TN.

The first, being perpendicular to the force (along ST)

produces no work. The work is, therefore, measured by

the product, F. TN, where F is the force at T.

If, then, U is the velocity at T, V being the

velocity at a specified point P, we have, remembering

that F=/*SP,



THE PLANETS 137

?, very nearly,

ver
.V nearly;

or --~
SP.

-

Bnt U 2 =
^, where/? is the perpendicular from S, on

the direction of motion at T.

,

~s|=- constant,

where D = distance of the planet from the sun, at any

point and p= perpendicular from the sun on the direction

of motion, at that point.

But in a conic section,

& I

=^
is greater than, equal to, or less than

j,
where /

is the semi-latus rectum, according as it is an ellipse, a

parabola or a hyperbola.

Hence, the path of a planet is a conic section where

^ 2 =^and it is an ellipse, provided it has the required

velocity at any particular point ; that is, provided V 2 is

less than -^ ,
where V is the velocity at any point P.

As the body has always the same velocity, whenever it

comes to the same position, it must have started, at

some unknown point of time, with a certain definite

velocity which was suitable for the description of the

elliptic path.

33. From (2) and (3) we have

i.e., twice the area described in time

18
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the whole time K of describing the ellipse is

given by ^K= 2 area of the ellipse.

Now, /= and the whole area of an ellipse =-n-ab,

where ,
b are the semi-axes of the ellipse.

.'. K 2 =4 5- =4?r 2 which is Kepler's third law.
h* fi

84. Since the orbits are, in general, ellipses of small

eccentricity, we may regard them as circles, for rough

calculations. Assuming this to be the case, we may prove

the 3rd law more simply, as follows. [The sun is, then,

to be regarded as & fixed body, placed at the centre of the

circle.]

P.S
Force, directed to the centre oo

'

This must be =-
,

where P=mass of the planet

S= sun

r radius of the circle

v= velocity in the orbit.

Since, moreover, there is no tangential force, v is

constant=^^, K being the periodic time.
fk.

Hence, Koor 3
,

HABITABILLTY OF THE PLANETS.

35. The question of the habitability of the planets is

one, naturally, of great interest. No information, however,

on this point is available at present. The markings on Mars

called canals, for instance, cannot tell us anything as to

whether Mars is inhabited, for it is too far off for us

to be able to understand the true nature of these markings.
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The reason is obvious. The distance of Mars from the

earth is about 200 times that of the moon* With a

telescope, therefore, having a magnifying power of 200

(nearly the best magnifying power, we possess) we can see

Martian objects, as clearly as we can see lunar objects with

the naked eye. That, at once, explains that our attempt

to find out the true nature of objects on Mars must

fail, till we have telescopes of much greater magnifying

power, than we have any hope of making at present.

But there is a further limitation. With a telescope

of high magnifying power, there will be a correspond-

ing diminution of light and definition, so that it seems to

be unlikely, that it will ever be possible for us, constituted

as we are, to get any direct information regarding Mars,

except of the vaguest kind.

86. In the following table will be found all the more

important points referring to the solar system. Any detailed

discussions of these are beyond our scope. There are certain

facts, however, which will easily appear to be especially

worthy of note.

(/?) Inclination of the orbits. The orbits of the planets

are all inclined to the ecliptic, at comparatively small

angles, except Mercury, whose inclination is 7' 0' 10" and

some of the asteroids (Pallas, at 34).

(b) Eccentricity of the orbits. This quantity is small in

all cases, except in that of Mercury, whose eccentricity

is *205, that of the earth being '016.

(c) Rotations. It is reasonable to suppose that all

the planets rotate about axes, more or less inclined to their

orbits. But nothing is known for certain, about Mercury

or Venus which are lost in the solar rays nor about

Uranus and Neptune which are too far off. Of the

rest, the period of rotation of Mars is very nearly equal to

that of the earth, while those of Jupiter and Saturn are
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as M
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very nearly equal to each other, being less than half that

of the earth.

Moreover, the inclination of the axes of rotation on

which the seasons depend are much like that of the earth,

in the case of Mars and Saturn, while that of Jupiter is

very small (34/0"), so that Jupiter has practically no

seasonal changes.

(d) Satellites. Even if Mercury and Venus had any

satellites, they would be lost to view, on account of the

sun's rays. At a total eclipse, however, under favourable

circumstances, they might have been visible. No such

object has so far been observed, though it cannot be

asserted with certainty that no such object exists.

The discovery of a new satellite (as well as of a new

planet), with improved means of observation, is in fact

always, a possibility. In the case of Mars, for instance,

two small satellites were discovered by Mr. Hall of

Washington in 1877, during opposition, when the planet

was very close to the earth.

The other planets have all one or more satellites,

the earth having one (the Moon), Jupiter, four, Saturn,

eight, Uranus, four, and Neptune, one. The motion of all

of them obeys Kepler's Jaws, and is direct, except that of

the satellites of Uranus and Neptune, which is probably

retrograde. Their times of revolution vary, being, however,

in every case, greater than the period of rotation of

the primary (in those cases, in which the latter has

been observed), except in the simple ease of Phobos

whose sidereal period is l
h

39'" 15*.

(e) Physical features. On account of the nearness of

Mercury and Venus to the sun, the details of their features

have not been made out with any certainty. The evidence

of their having an atmosphere is available but is not

conclusive. The most striking facts about them are their
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transits across the sun's disc, that of Mars being necessarily

less so, than that of Venus.

The appearance of Mars presents features which have

a remarkable family likeness to those of the earth, the

most conspicuous of which is the polar
"
ice-caps," which

are brilliant white patches and which, from their seasonal

appearance and disappearance have been taken to be masses

of ice. But the evidence, as to the real nature of the

markings on Mars is still lacking. It seems, however,

reasonable to suppose that Mars have an atmosphere.

Moreover, on account of the fact that the obliquity of the

planet's orbit to its equator is 24-, the conclusion is justified

that its seasonal changes are similar to those of the

earth, but owing to great eccentricity of its orbit, the

lengths of the various seasons vary among themselves,

considerably more than on the earth.

Considerably less is known about Jupiter, the largest

of the planets, than in the case of Mars. The most striking

telescopic feature is presented by the so-called belts, which

appear as dark streaks on a bright background and are

probably belts of the planet's atmosphere, which is very

thick, corresponding to the trade-winds, in the earth's

atmosphere.

Saturn. The most interesting planet from the telescopic

point of view is, undoubtedly, Saturn on account of the

so-called rings. These, three in number, consist of an

infinite number of meteors, coursing round the planet, as

its satellites.

Uranus: The above complete the list of the planets

known to the ancients. Uranus, Neptune and the asteroids

are modern discoveries. On March 13th, 1781, the elder

Herschell discovered a new celestial object, which had a

motion of its own and which he took to be a cornet. It

was soon found however, that it moved in a (nearly)
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circular orbit and, as such, was to be regarded as a planet.

This was the planet Uranus.

Neptune. When the orbit of the planet Uranus was

worked out from observed data, it was found to deviate

from its calculated path, by an amount, which could not be

explained, otherwise than by supposing it to be due to the

perturbations of an unknown planet. This led to the dis-

covery of the planet Neptune. [Intro., 24.]

37. bode's Law. When the distances of the first six

planets from the sun, namely, those of Mercury, Venus, the

Earth, Mars, Jupiter and Saturn, are noted, it will be seen

that these are roughly in the ratio of 4, 7, 10, 16, 52,

100. Now, if we write down the numbers 0, 3, 6, '>, 24,

48, 96, and add 4 to each, we get the above numbers,

except that there will be one isolated number 28, with no

planet, corresponding to it. When, therefore, on the

discovery of Uranus, its distance was found to obey that

law also, its distance being found to be proportional

to 96x2 + 4, an organized effort was made to search

for a planet which would fill the supposed gap. As the

result of this search, a planet was discovered and named

CeieSj which- fairly well answered to the criterion. Since

then, however, a very large number of very small planets

have been discovered, situated between the orbits of

Mars and Jupiter, which, on account of their smallness

the largest of them being only about 228 miles long

are called asteroids and which seem to be fragments of

a parent planet, as the result of an explosion. As some

confirmation of such a hypothesis, it may be stated that

the orbits of some of them resemble those of comets in

their eccentricity and obliquity. Planets lying between

the sun and the asteroids are called interior planets.

Those lying beyond the asteroids are called exterior

planets.
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38. Comets or hairy stars are easily recognisable, on

account of their appearance, in which it is easy to distin-

guish a brighter portion, the coma or the head with, in some

cases, a still brighter nucleus, and, generally, the tail,

flowing from the head and containing a less bright portion,

which is always turned away from the sun. There is

reason to believe that they are white-hot masses of gas

highly attenuated, increasing in brilliance, as they approach

the sun, on account of increased velocity. In some cases, the

comet has the appearance of a gas-jet, issuing from the nu-

cleus, indicating a violent internal commotion, due, it may be,

to the action of the sun and resulting in a loss of material.

39. The motion of a comet is also another of its dis-

tinctive features. The path (fig. 69) is, in general, a conic

section of large eccentricity, which, in most cases, is

practically unity. Thus, the path is an elongated ellifse,

which in many cases becomes parabolic. In some few

cases, the eccentricity has been found to be even greater

than one, so that the paths are hyperbolas.
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40. In those cases, in which the eccentricity is not top

near unity, the comet is said to be periodic, as if? returns to

the region of the solar system, which is within our

purview.
1 The most famous of them is Halley's comet which

has a period of about 75 years. The orbits of these comets are

all inclined to the ecliptic, at considerable angles. The fact

that the paths of the comets are conic sections indicate that

they belong to the solar system. It may, however, be

that the majority of them are moving in space and come

to describe the paths, that we actually observe, wfien they

enter the solar system on account of the forces that

then become operative.

EXERCISE.

1. The maximum elongation of a planet is 30. Is it an inferior or

a superior planet ? Find the radius of its orbit, assumed to be circular

and in the plane of the ecliptic.

2. A planet is found,

(a) to have an elongation of 120

(b) t > be in quadrature

(c) to be gibbous

(d) to be a crescent

(e) to be half-full

(/) to rise only in the morning or evening :

State, in each case, whether it is a superior or an inferior planet.

Give reasons for your answers.

3. Find the apparent breadth of the visible portion of a planet,

when its elongation is 30 and the ratio of its distance from the snn to

that of the earth from the sun, sin" J
.

4. Find the apparent breadth of the phase, when the angle sub-

tended at the planet by SE is 60.

5. The synodic period of Jupiter is 399 days. Find its sidereal

period.

6. The sidereal period of Venus is 224 days ;
find the interval

between its successive inferior conjunctions.

1 With the Lick telescope, Barnard has been able to follow a comet

so far on its outward joui-ney, as to raise hopes that we may perhaps

soon be able to follow some comet all round its orbit. [Turner.]

19
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7. Verify Kepler's third law from the following data :

() Periodic time of mercury = 88 days.

Its mean distance = 38 times the Earth's distance from

the SDH.

(6) Synodic period of Mars = 780 days.

Its mean distance = 15*2 earth's distance.

8. Assuming Kepler's third law, find the velocity of Mercury, in

its orbit, given the mean distance of Mercury from the sun= '38 of the

earth's distance.

9. Find the ratio of the distances from the primary of two of the

satellites of Jupiter (Europa and Ganymede), given that their

periodic times are in the ratio of 1 : 2. If the distance of the first is

9,400 miles, find that of the other.

10. If the velocity of Mars in its orbit is 15 miles per second, find

the velocity of Saturn, assuming Bode's law.

11. Explain why the planets and comets have their maximum

velocity at perihelion.

How does the angular velocity of a planet change with dis-

tance ?

12. Explain how you would prove that the earth's path about the

sun is an ellipse.

The greatest and least angular semi-diameters of the sun are

observed. Show how with the help of these data, the earth's path cai:

be described, geometrically.

13 Explain how it has been concluded that the earth is a planet,

obeying Kepler's laws.



CHAPTER VIII

POSITION OF THE FIRST POINT OF ARIES

Precession and Nutation

1. We have seen that the R.A. of a star can be deter-

mined with the help of a transit instrument and an

astronomical clock, so set as to indicate 0* O"
1

0*, when

the first point of Aries is in the' meridian of the place of

observation and that the clock can be so set, if we know

the R.A. of one star, independently of this operation.

2. The two problems (viz., that of setting the clock

and that of determining the R.A. of a star, independently

of this are in fact, as we shall presently see, identical.

3. Let o- (fig. 70) be

a star and o-L, its declina-

tion circle, intersecting the ^
7<TT

equator at L.

Observe the difference of

R.A. of the Sun and the star,

whose R.A. has to be determined, shortly after the passage

of the former through vernal equinox. Let this be a.

This being the difference in the sidereal time of the tran-

sits of the sun and the star, at the moment, it can be

determined by means of an astronomical clock, although

the clock may not yet have been set, so as to indicate

sidereal time absolutely.

Let the declination 3 of the sun be determined at the

same time ; viz., SN=8. (SN being the declination circle
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of the sun, intersecting the equator at N, at the time of

observation.)

Observe, next, the difference in R.A, between the sun

and the star, when the declination of the sun is again

equal to 8, i.e., shortly before autumnal equinox.

Let this be ft and let S'N' be the declination circle

of the sun (S') at the second observation, intersecting the

equator at N'.

Then yL-yN= a

and L N' = ?.

also ON'=y N=i80-yN'.

.-. 7L=
a4-ff+ 180 = R.A. of the star.

4. Hence, the R.A. of the star is known, independently

of an astronomical clock, properly set. The clock may now

be set, so that it may indicate the R A. of the star, when it

is crossing the meridian. Then, also, it will indicate
A

,

0", 0', when the first point of aries is in the merdian.

In other words, y is the point on the equator which is in the

meridian, when the clock indicates 0*, O m
,

0*. Thus,

at the same time, the position of the first point of Aries is

determined.

5. When the first point of Aries has been determined,

with due care, it is found that it has a motion along the

ecliptic at the rate of 50 //f
24, per year, in a direction,

opposite to the sun's annual motion.

This is known as the precession of equinoxes.

6. The intersection of the equator witli the ecliptic

is called the line of equinoxes. This line rotates about

the pole of the ecliptic, on account of precession.
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On account of this, the R.A. of a star will be

slightly different at the second observation from -what it is

at the first.
1

If the displacement of y in the interval is c, then we

have yL= - -

7. In the above, we have postulated that the second

observation is made, when the declination of the sun is the

same, as at the first observation. In practice, it will not

be possible to note the exact instant, at which this is

accurately the case. In order to obviate this difficulty, the

following device is resorted to : -Observation is made when

the declination of the sun is 8 slightly in excess of 8,

(where the declination S' N' is equal to 8) and again, when

the declination is slightly less than SN, say, 8 2 .

Then, during the interval, the change in the declina-

tion may be assumed to be proportional to the change of

R.A. of the sun and, thus, the moment, when the declination

would be just equal to 8 may be calculated, as well as the

corresponding difference of R.A.

1 When the path of the sun on the celestial sphere had been

accurately traced, it must have been soon apparent that the sun did

not come back to the same point of a sign, at succeeding equinoxes ;
in

other words, the line of equinoxes points to different stars at different

times, having a retrograde mo^on and completing a cycle in about

26,000 years. This is known as the precession of equinoxes. Hipparcus

(134 B.C.) was led to its discovery, by comparing his own determination

of the longitude (i.e., angular distance from the first point of Aries,

along the ecliptic) of certain stars with those of Teniocharis, about

150 years earlier but the fact of precession must have been surmised

quite early in the history of astronomy. It is in fact, maintained by

some that the Hindu Astronomers knew and had determined its rate

before 1192 B.C. necessarily roughly. Their determination (whatever

may have been its date it is mentioned in S'uryya Siddhanta) was more

accurate than that of Ptolemy, as they supposed the displacement in a

century to be 1^.
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Thus, let S !
N

j
= 8

1 ,

S 2
N

2
=8

2 ,
where S

x ,
S 2 are the two

positions of the sun on either side of S' and S
1
N

1 ,
S 2N 2 ,

the

corresponding declinations.

Then,^ =
*ir|- ; or, N.N^^ N.N..

N\N, 8
1
-8

2
8

x
-8 2

Hence, if IS^L^, N'L=, N
2 L=/? 2 ,

then, N^N, =!-

8. The method is due to Flamsteed and lias the

advantage that it requires, not the absolute declinations

but changes in the declinations, so that all uncertainties as

to the value of latitude of the place of observation (a know-

ledge of which is required for the determination of decli-

nation) or instrumental and other errors will not affect the

result.

9.. Obs. In order to determine the position of the

ecliptic, at any time, we must know its points of intersec-

tion with the equator, at that time, and also its inclination

to the equator, called the obliquity of the ecliptic

OBLIQUITY or THE ECLIPTIC.

The obliquity of the ecliptic is equal to the declination

of the sun at the solstices.

Now, we know that

the latitude= zenith distance declination.

If we call this /,

l= z+ <i> at the summer solstice,

for, then, the declination of the sun=o>.

also, l z' co, at the winter solstice.

t

/. (o=" ~. where w is the obliquity and z and c', zenith

distances, at the summer and the winter solstice, respectively.
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We have seen that the declination of the sun

changes very slowly at the solstices. It is not therefore,

possible to make observation at the exact instance at

which the declination is maximum. Resort has in fact to

be made to a method similar to 'Flamsteed's method/

[Art. 8.]

10. Besides the three systems of co-ordinates already

discussed, a fourth system of co-ordinates are in use,

referred to the ecliptic and its secondary through y and 12.

Def. The distance of a body from the ecliptic,

measured along the secondary to the ecliptic through the

body is called the Celestial Latitude.

The Celestial Longitude, of a body is the arc of the

ecliptic intercepted between the first point of Aries and the

secondary of the ecliptic through the body.

11. We have seen that the first point of Aries has a

retrograde motion along the ecliptic, at the rate of 50"*25

annually.

It is, moreover, found that the celestial latitudes of stars

are practically constant. Hence, since stars are bodies

which are practically fixed in space, we conclude that the

ecliptic is a practically fixed plane in space.

If we represent the ecliptic on the celestial sphere

(referred to the centre of the earth)

by a fixed great circle, then K
the pole of the ecliptic must be

also fixed. Let, now, P be the

pole of the equator, O, the centre

of the celestial sphere and y, the

first point of Aries (as usual).

Then Oy is the line of

intersection of the equator

and the ecliptic and is therefore
-pig. 70. A

perpendicular to both OP
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the earth's axis and OK, the normal to the ecliptic.

Thus, Qy is perpendicular to the plane OKP .

Now, since 7 moves along the ecliptic, with uniform

angular velocity, the plane OP K also must move with

uniform angular velocity about OK. In other words, P

must describe uniformly a small circle about K, since the

obliquity of the ecliptic (that is, the angle P OK) is

constant.

The motion of OP about OK is, thus, one of steady

rotation of the same kind as that of the axis of a top

(fig. 71) spinning steadily about an axis, inclined to the

vertical. Now, since the earth has a motion of rotation

about the polar axis, the analogy between the two motions

may be regarded as complete :

12. In the case of the spinning top, there is a couple

acting, due to the force of gravity, downwards and the re-

action of the ground, upwards. If this couple had been

operative on a stationary top, the top would have fallen

away from the vertical, the axis, tending to come into

coincidence with the horizontal plane on which the top

rests. As the top is spinning, however, this spin combines

with that generated by the acting couple, in each element

of time, so as to produce a displacement which carries, the

axis of the top round the vertical. This motion is called

processional motion.
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13. In the corresponding problem of the earth, the

couple is due to the action of the sun and the moon and, to

a very small extent, that of the planets on the protuberant

portion of the earth, tending to move the earth's axis,

towards the ecliptic.

14. Def. Solstitial colure is the great circle

perpendicular to the line of equinoxes. It rotates about

OK and completes a cycle in about 26,000 years.

15. The discovery of precession was essential to all

accurate astronomical calculations, especially in the matter

of the calendar and much confusion arose in the past and

still exists in the calendars of various nations, as sufficient

account has not, in many cases, been taken of this factor.

For, if we define in general terms, the year (say the solar

year) as the period in which the sun completes a cycle,

it is easily seen that the cycle may be taken to refer to any

fixed point in space, back to the same point or from

an equinox to the same equinox. The first is called the

sidereal year ; the second, the tropical year, the difference

in the two being due mainly to precession. As the second

marks the recurrence of the seasons, it, alone, is useful as a

practical unit, so that any other mode of reckoning will

naturally create confusion, for in that case, a particular

point of time in the year will not always correspond to a

particular season (so far, at any rate, as it is determined by

the sun's motion).

There is a further significance attached to the pheno-

mena of precession, from a historical point of view.

For, as we have seen, one effect of precession, is that

the axis of the earth points to different points on the

celestial vault, lying [but for nutation (art. 16)] on a small

circle. All those stars, therefore, that lie on or near that

circle must be pole stars to the earth, in succession. In the

same way, the equinoctial points, also, come to be occupied
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by different stars. Such stars are, naturally, for the time

being, celestial bodies of special importance. Accordingly,

if any star is specially mentioned in the writings of any

period, we may reasonably conclude that this period refers

to the epoch, at which the star is a polar or an equinoctial

star. Similarly, if a particular direction is found to be

signalised, in any way, in any architecture, as in the

pyramids of Egypt, we shall not be far wrong, if we identify

it as the direction of the polar axis or the line of equinoxes,

at the epoch, considered. Considerations like these have

been variously helpful to the historian and the archaeologist.

We have already adverted to the evidence it affords of

the antiquity of the Hindu system of lunar zodiac.

[Introduction .]

16. Now, we have assumed, so far, that the rotation of

the earth's axis, about the axis of (or the normal to) the

ecliptic is steady,
1 that is the obliquity of the ecliptic

(or the arc P K) is a constant quantity.

Observation however, shows, that this is not, altogether,

the case. The inclination, in fact, is found to suffer

periodic variations within narrow limits.

This, indeed, would be a priori evident. The effect of

the action of the sun and the moon, to which the motion

of the point P is due undergoes (as a little consideration

will show) small periodic changes, the effect of which is

that P suffers a disturbance, which has small periodic

components along and perpendicular to KP . It follows

1 To fix our ideas, imagine a circle drawn through Polaris, Draconis

and Hercules, with its centre, at the pole of the ecliptic, that is, a point

about 23^ from Polaris
; then, if we describe a cone with this circle

as base and the observer's eye as the apex, the motion of the axis of the

earth may be described as sweeping out this cone in about 26,000 years.

It follows, therefore, that
' Hercules' will be a pole star at some period

or other ( about 15000 A.D.) ; similarly, Draconis was a pole star about

3000 B.C., i.e., at, about, the age of the pyramids of Egypt.
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accordingly that P is not the actual pole. If P be the

actual (north) pole of the earth then the motion of P is

found, in fact, to be made up as follows :

Imagine a point P to move about K with the steady

precessional motion of 50"';i5, a year. Let a point P have,

at each moment, a small periodic motion along and

perpendicular to KP
, relatively to P ; then P will be the

pole of ecliptic.

The small periodic motion along KP (which produces a

change in the obliquity) and that, perpendicular to KP
constitute Nutation.

Again we have proceeded on the assumption that K,

the pole of the ecliptic is fixed. This is not actually the

case. Its change of position is, however, slight. This is

due to the disturbing action of the planets, the effect of

which is to produce a slight change in the position of the

ecliptic.

EXERCISE.

1. The sidereal interval between the transits of a star and the sun

when the declination of the sun is 6 is 15 hours, on a certain day, and

it is equal to 10 honrs, when the sun has the same declination, again.

Find the R.A. of the star, as well as those of the sun, at these two epochs.

2. Given the declination of the sun on a certain day, show how to

describe the ecliptic.

3. Explain why on account of precession, the intervals between the

passages of the meridian through the same star differ from a mean

sidereal day.

4. What is the present longitude of a star which was the pole star

in 15 B.C.?

5. Which plane attached to the spinning top corresponds to the

plane of solstitial colure ?



CHAPTER IX

ASTRONOMICAL REFRACTION

1. Since a celestial body is seen by means of the rays

of light proceeding from it to the eye, any deviation that

these rays undergo must produce an apparent displacement

in the position of the body. Accordingly, this must be

allowed for, in order that the results obtained may be

free from the extraneous source of error, to which it

gives rise.

2. As the light, coming from a heavenly body has to

pass through the earth's atmosphere, consisting of layers

of air of increasing density, it is refracted or bent more

and more towards the vertical, so that, on reaching the

eye, it appears to come from a point, whose altitude is

greater than that of the object from which it comes.

The object, accordingly, appears to be raised above its true

position.

3. Proceeding to details, it is necessary to remember

that from considera-

tions of symmetry,

the atmosphere may
be assumed to con-

sist of concentric

layers of equal den

sity if we regard

the earth to be

spherical.



ASTRONOMICAL REFRACTION 157

Also, the laws of refraction are (1) that the sine of the

angle of incidence is proportional to the sine of the angl..

of refraction and (2) the incident ray, the refracted ray and

the normal to the surface of separation between consecutive

atmospheric layers lie in the same plane.

Thus, a ray of light from S, say SA, on reaching the

atmosphere will be refracted along AB (fig. 7:1) such that

. _J*_
sgtf, where /* is the index of refraction of the

sin BAG

uppermost layer of the atmosphere, and depends on the

density of this layer and RAC is the direction of the

normal to the surface of this (uppermost) layer, supposed

to be of uniform density. (From symmetry, RAC may
be taken to pass through the centre of the earth.)

There will be refraction again at the next layer and so

on, till the ray reaches the eye at Z (in the direction of

ZS' say).

Accordingly, the apparent direction of the star will be

ZS', instead of Zor (where Zo- in parallel to AS).

Moreover, since the lines AS, BA and RA are in the

same plane (the earth being regarded as spherical), we

observe that from the second Jaw of refraction, the vertical

plane in which the star is actually seen is the same as that

in which it would be seen, if there were no refraction.

Hence, it follows that on account of refraction, the

azimuth of a star does not change but the zenith distance

is decreased.

4. In order to find, approximately, the amount of

deviation that a ray undergoes, we shall assume the at-

mosphere to be plane and to be replaced by a single layer,

which will produce the same deviation of the ray, as the

actual atmosphere does.
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Then if z'= the apparent zenith distance (fig. 73) and

v = the refraction, i.e., the

deviation of the ray on ac-

count of refraction, we have

sin
=/A where /A is

sm z

the index of refraction, of Fig. 73.

the single layer by which we have replaced the actual

atmosphere.

Since r is small, we have

sin z' + r cos s'=
/u,

sin XT', nearly.

Hence, r(p 1) tan g' nearly.

Here, /x depends on the density of the equivalent layer

of the atmosphere ;
that is, the mean density of the atmosphere

and this, again, depends on various atmospheric conditions,

especially temperature and pressure. Within certain limits,

however, we may take this to be constant (
= # + 1), so

that the law of refraction is given by the simple formula,

r= k tan z

(where z' is the apparent zenith distance).

5. As /A is the index of refraction of an imaginary

atmosphere, which produces the same effect as the actual

atmosphere, the constant & is best determined by direct

observation. 1

6. The principle of the method of observation is as

follows :

We observe the zenith distance of a body at a position

A and again at a position B. Then, from the observed or

1 In order to obtain it by calculation, it will be necessary to know

the manner in which the density of the atmosphere varies and the

exact relation between the index of refraction and density. These are

difficult to ascertain and are rather uncertain.
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apparent zenith distances, we can deduce the real zenith

distances, on the assumption of the above law. If, there-

fore, we know (on theoretical grounds), what the relation

between the real zenith distances at A and 13 should be,

we have an equation to determine k.

7. In order to apply this method, in practice, observe

the meridian zenith distance of a circumpolar star at upper

and lower culminations at
o-j

and o- 2 (not marked on the

diagram). Let these be z and z
2 .

Then, their real zenith distances must be

^j+^'tan^j and 2 + A;tan2 2 .

But we know that the sum of their real zenith distances

= 2 PZ, since Po-
1
=Po-

2

= 2 colatitude.

Fig. 73.

.Y 2 colat=~
t -M 2 +/ (tan z

l
+ tan z 2 ).

Hence k is known since 24 and z
2
have been observed,

the latitude of the place being supposed known.

If the latitude is not known, we have to make another

pair of observations, say, the zenith distances, -/ and z
2

'

of

another circumpolar star. This gives

^ 1 +^ 2 +/< (tan r
x

= ~/ + ,
2

' + /(. (tan ;/

whence, k=-
tan ~

2

'

(tan ^i ?
2 )'
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8. In actual practice, it is more convenient to

observe the zenith distances of the sun at summer and

winter solstice, say, s l} and s
2

.

Then, if s and s' are the true zenith distances of the

sun, at these epochs, we have

where S is the declination of the sun at either solstice.

Hence,

s 1 +S2 + & (tan ,

If, finally, latitude is unknown, it can be eliminated by

observing a circumpolar star, as in art. 7.

9. The effect of refraction can be represented on a

diagram, as follows :

Let S o be the position of a star

(fig. 74). Then since refraction

evidently increases the altitude

without changing the azimuth,

8 will be the apparent position of

the body, where ZSS is the

vertical of the star.

10. The effects of refraction. Fig. 74.

(7) On the time of sun-rise and sun-set. At the

horizon, where z= 90, the above formula obviously fails.

From actual observation, however, it has been found that

the horizontal refraction ranges between 34' to 39'.

As this quantity is slightly greater than the diameter of

the sun, it follows that when the sun's lower limb appears

to be rising, its upper limb may still be below the horizon.

Thus, the time of sun-rise is accelerated and, similarly,

that of sun-set, delayed, on account of refraction. The

effects in the case of the moon are similar.
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(2) On the form and size of

discs. In order to show this, let us

represent, on the celestial sphere,

the undistorted disc of the sun in

the first place. Let this be AB

(fig. 75). Let ZAB be the verti-

cal circle and CD a parallel to the

horizon through the centre of the

disc.

solar anil lunar

Z

Fig. 75.

Then A is displaced to a point A' above A in the

vertical circle ZAB and B to a point B'.

But since the zenith distance of B is greater than that

of A, BB' is greater than AA'. Hence A/ B' is less than

AB. On the other hand, the diameter CD remains

practically unchanged. The result is that the circular disc

of the sun becomes an ellipse, with its minor axis along

the vertical through its centre.

11. The formulae for refraction can of course, be

expressed in terms of apparent altitude, or real zenith

distance.

Thus, since r= k tan z ',

where z' is the apparent zenith distance,

we have z z=?k tan z',

where z is the true zenith distance.

Since 3= 90 a, z'= 90 a' where a and a' are the

corresponding altitudes, we have a' a= A- cot a'

Again, r=k tan z k tan (z r)

__k (tan z r)

\+r tan z

.*. r= k tan z, if y 2
,
kr (both of the second order)

are neglected.

21
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TWILIGHT.

12. All these phenomena are due to refraction of

light. But light also suffers partial reflection, at the suc-

cessive layers of the atmosphere and the solid particles

suspended in it. The most striking phenomenon to which

such reflections give rise is that of twilight. This is

caused by irregular reflection of solar light, at the upper

regions of the atmosphere, when the sun is actually below

the horizon. The effect of this is that, at sun-set, complete

darkness does not set in, at once, nor is it completely light

at sun-rise but that there is a period of varying light

between the moment of actual sun-set or sun-rise and that

of complete darkness. It has been found that at the

moment of complete darkness, the sun's zenith distance

is on an average 108.

13. Accordingly, the duration of twilight will neces-

sarily be different at different places and in different

seasons. In order to determine this, it is necessary

to find the position of the^sun at any time at any place,

when this zenith distance is 108:

Describe the celestial sphere of the place and trace the

diurnal path of the sun, from his known declination (which

is a parallel to the celestial equator at a distance, equal to

the declination, viz., SS', tig. 76).

Describe, also, a verti-

cal circle (i.e., a great circle

passing through the zenith

and nadir), such that ZS

is equal to 108 Then, S

will be the required position

of the sun, at the moment

when twilight ends (or

begins) at the place, con- Fig. 76.

sidered.
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If now S' is the position of sun-rise or sun-set, the

difference in the hour-angle of S and S' (r/~. /SPS') gives

the duration of twilight. It is clear, therefore, that

the duration of twilight will depend on the place of

observation and the declination of the sun.

14. At the equator, P (the North ce lestial pole) coincides

with the North point (N). Here, at the equinoxes, the corres-

18
ponding difference in the hour angle is 18 or -

hours,
1 o

showing that, at the equinoxes, the duration of twilight

is P 12'" at the equator.

15. In order that twilight may last all night, it

should end at midnight and therefore, the point S defining

the position of the sun, when twilight enJs should be on

the celestial meridian, below the horizon. In other words,

the distance of N from the sun's diurnal circle should be

equal to 18. That is, the colatitiule should be equal to

18 + & (where 8 is the declination) ;

or 90-/=18 + 3

or 72 = / + 5 (where / is the latitude).

At the poles, there will be a long period of continuous

twilight.

EXERCISE.

1. Find the latitude of the place at which twilight just lasts all

night, when the sun's declination is 20N. [Ans. / + 20=72.]
2. Find the declination of the sun, when twilight just Lists all

night at the latitude of 55. [17.]

3. Is it possible for a place in latitude 25 to get twilight all

night ? [No.]

4. What is the lowest latitude which can khave twilight, the

whole night. [72 2328 /

.]

5. Explain by means of a diagram what will be the duration of

twilight, at the equator at the solstices and also at the poles,



CHAPTER X

ABERRATION

1. In the case of refraction, a ray of light from an

object undergoes actual deflection, in passing through the

atmosphere, thus producing an apparent displacement

of the object.

2. Since, however, the observer is in motion (on

account of the earth's diurnal motion), the direction in

which a star is seen is the direction in which light appears

to come, while if the earth were at rest, a star would be seen

by means of light, issuing from it and coming to the

observer with a known velocity, in the direction in which

light actually proceeds from the star. The earth's motion

produces an apparent displacement, called aberration.

3. Thus, if E (fig. 77) is the position of the earth

(i. e., the observer), a- that

of a star in space (actual),

then, Ecr is the direction

in which the star would be

seen, if the earth were at

rest. But since the earth

is in motion in its orbit,the

direction in which a star is

seen will be different.

We proceed to consider what this apparent direction

will be.

4. To simplify the explanation, we shall assume, as

on the corpuscular theory of light, that something in the

nature of a material particle is emitted from the star, which

Fig. 77.



ABERRATION 165

moving with the velocity of light, produces, on reaching

the observer's eye, the sensation of vision.

Now, in order to find the direction in which this reaches

the eye, we must superpose on the system consisting of

bodies E and o-, a velocity equal and opposite to that of E.

Let o-L (fig. 77) represent the velocity of the Earth on

the same scale, on which o-E represents the velocity of

light.

Then, completing the parallelogram, we get the direc-

tion (crM), in which light appears to come, on the

principle of relative velocities ; or if we draw Eo-' parallel

to Mo- and produce IV to meet Eo-' at o-', a-' will be the

position of the star, as seen by the observer, just in the

same way, as, to a man walking forwards, a rain drop

falling vertically appears to come towards him in a slant-

ing direction.

This displacement (o-o-') is called aberration.

5. We may follow out the consequences, further. Let

EA be the earth's orbit, E, o-, the position of the eaHh

and the star in space, v' being the displaced position of

the star (fig. 78). Also let AB be the ecliptic, K its pole

Fijr. 78. Fig. 79,

o-, a star, S the sun, E the earth (at the centre of the celes-

tial sphere) (fig. 79). Then if we draw EP perpendicular to

ES (in both figures), EF will be the direction of motion of

the earth, assuming its orbit to be circular.
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[In tig. 78, the plane of the paper coincides with the

plane of the ecliptic, while in the second figure (fig. 79),

it is perpendicular to that plane.]

Also, the angle o-EF represents the same angle in both

diagrams (figs. 78 and 79).

Then, on the celestial sphere also, o- is the real position

of the star and </, the displaced position on account of

aberration. The displacement, accordingly takes place

along a great circle through a- and F, where F is a

point on the ecliptic at a distance of 90 from S, since

SE is at right angles to EF (fig. 79).

6. Again, since EF is the direction of motion of the

earth, the apparent direction of motion of S is from S to B

as in the figure 79, which proves that the point F is be/iind

the sun. Finally, from the triangle o-Ecr' (fig. 77).

crer' velocity of the earth sin o-Eo-'

o-E
"

velocity of light
~~

sin o-rr'E
'

Thus, K sin o-o-'E = sin o-Eo-'

/:.*., sin o-o-' = K sin o-'F (tig. 79),

if we put the ratio of the velocity of the earth to the

velocity of light=K, a small constant.

Moreover, K sin o-'F = K sin o-F nearly, since K and

the angle o-Eo-' are both small. [In-fact K = 20"'49.]

Since oV is small, we get

o-o-' = K sin o-F, nearly.

7. We conclude, accordingly, that the star a- aber-

rates towards a point F, 90 behind the sun and the

aberration o-o-' is equal to K sin o-F.

The angle o-EF is called the earth's way. Thus, the

law may be stated thus :

aberration = K sin of earth's way.

8. As the sun moves in its orbit, o- will follow the sun,

completing a cycle in one year. Moreover, the minimum
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value of <rF is ft, if ft is the arc of the great circle through
the star perp. to the ecliptic.

(For from a point ou a sphere, the shortest arc of a

great circle that cau be drawn to another great circle,

is the intercept of the great circle, perp. to the latter.)

But ft is the celestial latitude of the star.

Hence, the minimum value of <T<T'

= K sin (celestial latitude).

The locus of cr', on the celestial sphere is, therefore, a

small curvilinear ellipse, with centre o-, and having the

following dimensions :

major axis= K ;

minor axis = K sin (celestial latitude of the star).

9. As to the path of the star in space, due to aber-

ration, we observe that this is the locus of cr'
(fig. 77).

Now <rcr', is proportional to the velocity of the earth and is

parallel to this velocity. The locus of a-' is, therefore, the

kodograpk of the earth's orbit, with reference to the real

position of the star, taken as pole.

This is known to be a circle, and its plain is evidently

parallel to the earth's orbit.

10. It is worthy of note, moreover, that the displace-

ment curve of a star on the celestial sphere is an element

of the ecliptic practically, a small portion of a straight

line, if the star is on the ecliptic. For, in this case, the

eel. latitude is zero.

11. Also, when the star is at the pole of the ecliptic,

the path becomes a circle ; for then, the eel. lat. being 90,

its minor axis is equal to the major axis.

l. All these are facts of observation, so that actual

calculations based on the principle of aberration account

completely for the displacements observed. In fact, the

observed fact that all stars partake of a common motion,

describing the hodograph of the earth's orbit in a plane
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parallel to that orbit, in the same period (vi:., one year) is

evidence, the cogency of which, it is impossible to resist,

leading to the conclusion that this motion is apparent

motion and can only be due to the motion of the observer,

carried by the earth in its motion round the sun. The

phenomenon of aberration, thus, supplies an ocular

demonstration of the earth's annual motion round the sun.

EXERCISE.

1. The apparent meridian altitudes of a circumpolar star are 25

and 30. Find the latitude of the place, given the co-efficient of

refraction= 58"'2.

2. The apparent altitude of a star is sin" 1
T
5
^ find its true altitude.

3. The apparent zenith distances of two circumpolar stars at their

meridian passage are (1) 30 and 40, (2) 25, 45, find the latitude

of the place.

4. If the apparent meridian zenith distance of the sun at summer

and winter solstice are 30.and 40, find the latitude of the place.

5. Represent on the celestial sphere, the effect of refraction on the

distance between two stars.

6. Explain why the azimuth of a star is unaltered by refraction.

Would the shape of the earth have any effect on the phenomenon ?

7. Show, by means of a diagram, the effect of refraction on the

rising and setting of a celestial body.

8. Compare the effect of refraction and aberration in their geo-

metrical aspects.

9. If the velocity of the earth is doubled, what is the effect in the

nature of the aberrational ellipse of a star.

10. Explain how the dimensions of the orbits described by stars in

space about their actual positions differ from each other. Are they all

similar ?

11. Indicate on the celestial sphere, the position of a star, if any,

such that the effect of aberration is annulled by the effect of refraction

at u given moment, at a given place.
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12. Indicate on the celestial sphere, the position of a star, if

any, such that its declination is unaffected by aberration, at a given

moment.

If <r be the star and F is the point on

the ecliptic to which stars aberrate, and

P is the pole of the equator, then <rP should

be perpendicular to <rF.

Fig. 80.
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GEOCENTRIC PARALLAX

1. We have seen that the direction in which a star

is seen remains the same, no matter how we change our

position on the surface of the earth. This is due to the

fact that stars are so far off that the angle subtended at

any, the nearest of them, by the'greatest distance that we

can measure on the earth's surface (viz., the earth's

diameter) is absolutely negligible.

2. The distances of the members of the solar system,

however, being of much lesser magnitude, the angles

subtended at these bodies by the diameter of the earth,

though small, are still measurable.

Taking the case of our nearest neighbour, the moon,

it has been found from observation that its distance from

the earth varies (in round numbers) between 253,000

miles and 221,600 miles. The method of measuring this

distance is practically the same as would be used for

measuring the distance of a very distant object on the

surface of the earth. For this, we measure a suitable

length on the ground and find the angle subtended at the

object by this base line. Then, if the distance is so great

and the angle, so small, that the triangle (formed by the

object and the assumed base line) can be taken to be

isosceles, then the distance of the object is about 3,500

times the base, if the angle is one minute.

In the case of the moon, the base line has to be pro-

portionately longer and the measurement of the angle, on

account of its minuteness, has to be conducted by indirect

astronomical means.
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3. Def. The angle subtended at a celestial body
by the radius of the earth is called its geocentric parallax.

When the body is at the horizon, the corresponding

geocentric parallax is called horizontal parallax.

4. Assuming the earth

to be a sphere, it easily

follows that if p is the

horizontal parallax,

Fig. 81.

where r = the radius of the earth and D = distance of

the body from the centre of the earth.

Also if P = the geocentric parallax (fig. 81) gener-

sin P T

ally, then =^ where z is the zenith distance of
sin ^ I-)

the body, as seen by an observer on the surface of the

earth. This is called apparent zenith distance.

5. Now, since the quantities p and P are small, we

may take

sin P = P, sin p = p
and therefore P = p sin z,

the angles being expressed in circular measure.

6. Before proceeding to discuss the methods of

measuring these quantities, in the case of the various

members of the solar system, we shall briefly consider its

importance in Astronomy.

7. From the equation p = yr,
it easily follows

that if we know p, we can find D, or the distance of the

body from the centre of the earth, the radius of the

earth being known,
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Thus, since, in the case of the moon the greatest and

least values of the horizontal parallax are, 61' 27" and

53' 54" we conclude that the greatest distance of the

moon = 252,658 miles and the least distance of the moon

= 221,616 miles. Similarly, since the mean parallax of the

sun is 8"'8, its distance is nearly 92,852,000 miles.

(earth's rad.= 3,963 miles).

8. We can, also, refer the positions of bodies to the

centre of the earth, if we know their parallax.

We have seen that the position of a body on the celes-

tial sphere of an observer is necessarily its angular position,

and this is also the same as its angular position in space, as

seen by the observer. In the case of infinitely distant bodies,

like stars, the variation in the angular position is absolutely

negligible, no matter how the position of the observer

changes on the surface of the earth but for bodies of the

solar system, this variation due to a change in the

position of the observer is appreciable, though small.

9. In order, therefore, that observations made at

different places should be comparable, it is necessary to

reduce all observations to a standard position common to

all observers. This standard position is, evidently, the

centre of the earth.

This reduction requires a knowledge of parallax.

ForA if the zenith distance of a star as seen by an

observer at any place is z, then, evidently,

when z = zenith distance as seen from the centre of the

earth, z
, being measured on the supposition that the verti-

cal to the observer, when transferred to the centre of the

earth, is the same as the vertical of the observer at the

surface.

z is called the true zenith distance and z, the apparent

zenith distance,
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10. The position of a body on the celestial sphere,

corresponding to the Irue zenith distance is called the true

position of the body, that corresponding to apparent zenith

distance, being called the apparent position.

11. If we assume the earth to be spherical, the

direction of the normal at any point on the surface

passes through the centre.

In this case, therefore, the azimuth of the body is

the same whether the position be referred to the centre or to

the observer at the surface.

12. The relative positions can, thus, be represented very

simply on a diagram. For if M (fig. 82)

be the position of a celestial body refer-

red to the observer's celestial sphere at a

point on the surface of the earth, M will

be the corresponding position referred to

the centre, where M M is on the vertical

through M and will^be above M, since

'z is less than z. Also, M M= P.

Note that the above change in the position of the

body will affect fioth its R.A. and declination.

Lunar parallax.

13. Let A, B be two places in the same meridian,

very far apart, one in the Northern and the other in the

Southern Hemisphere. [Fig. 83.J

Let z^apparent
zenith distance at A,

z 2 =apparent zenith

distance at B,

P! = parallax at A.

= /AMC,
and P 2

= L BMC.

Fig. 83.

Fig. 82.
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Then,

Pj =j0 sin z l

P
2 =j0 sin z 2

/. P
t +P 2 :=j (sin gj+sin z 2 )

= the circular measure of /AMB

__ _
sin z

t -f sin z 2 ,

if the circular measure of Z AMB = 0.

.*. if z u z
2 are observed at the two stations and the

angle AMB is determined, we can find the horizontal

parallax.

14. In order to determine the L AMB, we may pro-

ceed in one of the following ways :

(1) Since the angle BCA is the sum of the latitudes of

the two places A and B, if ^ and / 2 are these latitudes

(north and south respectively),

Then, + l
l +l 2 =z l +z<i

or, =
Zl + z .

2 l^1
2

.

(2) The angle BMA may also be obtained by direct

observation.

For this, the angular distance between M and a star is

observed at A ; let it be 6 ^

Similarly, the angular distance between M and the

same star is observed at B ; call it 2 .

Then =
1
+0 Z) evidently, if we admit that the

direction of the star (indicated by arrows in the diagram)

remains unchanged, as we pass from A to B. This is true,

on account of the enormous distances of stars from

the observer (Ch. XII).

15. For the success of this method, the two places of

observation should be as far apart as possible and (if

possible) on the same meridian. But this may not prove

convenient in practice. It is desirable, however, that the



GEOCENTRIC PARALLAX 175

meridians should differ as little as possible. For if there is

an appreciable change of meridian, account will have to be

taken of the change of declination of the moon, as it moves

from one meridian to the other. But this introduces a

complication, for apart from the difficulty of introducing

this correction, an extremely accurate knowledge of the

moon's motion is involved.

16. The observatories at Greenwich and the Cape of

Good Hope satisfy the requirements of the problem

extremely well, their distance in latitude being more than

85, and their difference in longitude, less than 18.

17. From the above, it is abundantly clear, why it is

necessary for the success of this method that the stations

A and B should be as far apart, as possible. For, unless

this is the case, the angle AMB will not be sufficiently

large to be measurable.

Even then, it is only in the case of the moon that the

method is applicable, on account of its comparative

nearness.

18. By measuring the parallax of the moon from day

to day, from full-moon to full-moon, it is easy to verify

that the distance of the moon varies, so that the path of the

moon round the earth is an ellipse.

19. If we try to apply the same method for determining

the distance of the sun, we should fail altogether. For the

parallax of the sun is so small that such comparatively

direct measurements will not avail. Had it not been so,

the method of the Greek Astronomer, Aristarchus, would

have been quite capable of giving the required result. It

would, therefore, be not without interest to consider this

ingenious method, although it failed because the quantity

to be measured was much too small to be observed by its

means.
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MM,

Fig. 86.

20. It is known that when the moon is just half full,

(at M ) (fig. 86) the Jingle subtended by the line joining

the earth and the sun subtends a right angle at the moon.

If this moment can be accurately uoted, we should know

one of the acute angles and, therefore, all the angles

of a right-angled triangle, of which one side (viz., the

distance of the moon from the earth) is known, for the

angle subtended by the line joining the sun and the moon

at the earth is evidently proportional to the interval be-

tween new-moon (M t ) and the moment considered. But this

interval differs so little from the period of half a lunation

only about half an hour, that it is difficult to determine it

with accuracy. Aristarchus took this difference (i.e., the

ticne of describing the / M EM) to be twelve hours and

hence got a result altogether wide of the truth.

The extreme minuteness of the angle to be determined

renders it necessary that resort should be had to indirect

means for its determination :

21 . Our object being to observe the angle subtended

at the sun by the line joining two distant places (say A
and B) on the surface of the earth, we may proceed

as follows :

Take another base line CD (fig. 87), which can be

identified by astronomical observations, such that AC and

BD meet in the sun at S ; then if we can measure the

angle subtended by CD at the sun, we can determine solar

parallax, provided we know the length AB.
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Fig. 87.

For the circular measure of this angle;
AB

sun's distance

and parallax (in circular measure)=
rad. of the earth

sun's distance

Now, the planet Venus is an opaque body which

moves in an orbit, lying between the sun and the earth. It

will, therefore, sometimes happen that it will appear to

move across the sun's disc as a black spot. If the observers

at A and B note the moments at which Venus is just enter-

ing the sun's limb, the direction in which Venus is seen by
these observers will be given by AC and DB and the line

DC will really represent the path of Venus, in its orbit, as

seen by an observer on the earth, during the interval that

elapses between the observations made at A and B. The

rate at which Venus appears to move in its orbit (as seen

by au observer on the earth) is known, for it is, in fact, the

rate at which the angle subtended at the sun by the line

joining the earth and Venus changes.
1 Hence, the angle

1 Since the Synodic period of Venus is 584 days, the angle it gains

on the earth in one day is ff^ degree.

This is 1'54" per minute.

That is, if the planet moves from P to P'

(fig. 88) and the earth from E to E' in one day,

then, the angle E'SP'= ff degree.

This is, then, the average rate at which

Venus moves along its orbit, as seen by
the earth.

23

E'
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subtended at the sun by CD can be calculated. Thus, the

distance of the suil from the earth can be determined,

provided, of course, we know the length AB. This is

Delisle's method.

22, A, B are taken near the earth's equator but as far

apart from each other, as possible.

In the diagram (fig. 87), the places, A, B, the equator

AB, as well as the planet's orbit and S are taken in the same

plane ;
this is not actually the case. Allowance has, accord-

ingly, to be made for this in the calculation. Moreover,

in the above explanation, the sun's centre and the point of

ingress are taken to be coincident (in order that the two

diagrams (figs. 87, 88) may agree).

4 ^ 23. In Halley's method, the

observers at A and B note

the moments of ingress (1, 2)

and egress (2, 4) of the planet

(fig. 89) or the whole duration

of the transit.

The mode of using the results

of observation is as follows :

Fig. 89.

Contacts in a Transit of Venus.

(1) Knowing the rate at which the elongation (fig. 88)

SE'V' 1

changes (about 4" per minute 2
), we can calculate

1 Since the path of Venns across the sun's disc (fig. 89) as seen

by an observer is its relative path, its angular

position at any moment is determined by

SE'V'. [Fig. 88.]

E'. V are corresponding positions of the earth

and Venus during the transit.

2 The rate at which Venus appears to cross the

solar disc may be roughly calculated as follows :

From fig. 88,

E'V circular measure of V'SE'

SV'~
=

circular measure of SE'V'

since both the angles are small.
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the angle subtended by the paths aa and 66'
(fig. 90)

traced by Venus on the solar disc, as seen by the observers

A, B.

Fig. 90. Halley's Method.

Hence, the angle subtended by ccl where c, d

are the middle points of aa and bb' can be a
calculated :

' ^

For, if R is the radius of the sun

(centre S) (fig. 91)

a'

Fig. 91.

and cd=dti cS.

Thus, ccl can be calculated as an angular measure, since

all other quantities in these equations except cd are given

in angular measure ; i.e., since the angles subtended at the

observer's eye by the corresponding lengths are known,

the angle subtended by cd can be calculated.

(2) Moreover the actual length of cd can also be

calculated.

E'V 3
But

-gy7
==Y approximately. Accordingly,

angular rate at which Venus gains on the earth

angular rate of transit across the sun, as seen from the earth

Hence the angular rate of transit

= % x i"-55 (art. 21 foot note) = 8"'6, approximately.
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For the triangle ABV and cdV (fig. 90)

may be regarded as similar, and, accordingly,

cd _ AB
cV~AV A

t.., cd (in miles) =AB (in miles).
dist ' of V from the sun

dist. of V from the earth

723= AB (in miles) nearly. [Art. 26.]

(8) Now, if any length I on the sun's surface subtends

at the earth, an angle, whose circular measure is Q, then, we

have the relation 0= =, where D is the distance of the

sun from the earth; but parallax P =
, in circular measure,

a being the radius of the earth.

I
Hence -pr

= -.
P a

Therefore, if
"= no. of seconds in and P "= no. of

seconds in P
,

I" I

we have^p-77
=

, where we may take l=cd in miles
r a

and since its angular measure is also known, we can find

PC"-

24. Obs. When the distance of the sun from the earth

has been determined, the determination of the dimensions

of the solar system becomes a matter of simple calculation.

RADII OF THE SUN .AND THE MOON.

25. Let jt?" be the equatorial horizontal parallax of the

moon in seconds.

P "
be the parallax of the sun in seconds.

r" = angular radius of the moon

R"= ,, ,, of the sun .,
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d=. distance of the raoou, =D distance of the sun,

a= radius of the earth, ; that of the moon, R, that of sun

^=j (in circular
d

measure).

^-
= P (in circular

measure).

Similarly, |
-*--='

Similarly, i.e.,
~ = and =J^.

Ex. The sun's horizontal parallax is 8"'8, finds its distance.

8*8 a
Circular measure of parallax

=
2Q626fi

=
IK

..

= 93,700,000 miles nearly.

if a= 4000 miles.

26. In the case of a planet, the following method

will give its distance, if the earth's distance from the sun

is known.

Let V (fig. 84) be an inferior planet at its greatest

elongation ; then, if the orbit be assumed to be circular

(which will be, nearly, true for Venus but not for
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Mercury) then, EV= SE cos SEV, where / SEV is the

greatest elongation. For Venus,

EV 277_=_ nearly .

Similarly, for a superior

planet.

27. Another method, which

is also suitable for a superior

planet is as follows :

Let E',E (fig. 85) be the

positions of the earth in its

orbit and P,P', the corresponding positions of a superior

planet, when in quadrature.

Then, L SEP = / SET' = a right angle, if the earth's

orbit is assumed to be circular.

If t is the interval from E to E', and the angles are

expressed in circular measure.

Then

and

:. ZESE' / PSS' =(w e wf ) t-,

also %7T= (w e w p ] S,

if w,= angular velocity of the earth,

w p
= of the planet,

and S= synodic period.

Again ZESE' zPSP' = 2ZESP, if the orbit of P is

assumed to be circular.

/. 2ZESP= ~ is known, since t can be determined
o

as well as S.

EP
But tan ESP=-=--: whence, EPcan be determined as

-hs

well as SP, if ES is known, by one of the methods, already

described. The ratio ES : SPmay also be assumed known,

from Kepler's Third law.



CHAPTER XII

ANNUAL PARALLAX

1. Having measured the distances of the members of

the solar system, we proceed next to measure the distances

of stars. These distances are so great, that any base line on

the surface of the earth is quite inadequate for the purpose.

In fact, eve a the distance of the earth from the sun is wholly

inadequate for any but the nearest of them. Taking actual

figures, the maximum angle subtended by the radius of

the earth's orbit at a star being defined as secular or annual

parallax of the star (fig. 94), it is found that Aldeberran

Star

Fig. 94.

has only a parallax of '116 second and Cants Minor '226

second. In other words, the distance of the former is

1,890,000 times and that of the latter, 819,000 times the

distance of the sun, which, itself, is more than 93 million

miles. It follows from this, that if we assume Aldeberran

to be even as large as the sun, its angular radius will be

only a millionth part of that of the sun, so that, unless the

magnifying power of our telescopes is enormously in-

creased, a star must still appear to be a mere point, even

if seen through the most powerful telescope.
1

1 It is interesting to note that Neptune, the outermost member of

the solar system is at a distance of only 30 times that of the sun.

The distance of the nearest stars is, thus, great, in comparison with the

furthest member of the solar system. It is, hence, easy to conclude

that there is an enormotfs void, separating the solar system from its

nearest neighbour.
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2. Let us now consider how secular parallax is taken

account of, in correcting stellar positions.

Let E (fig. 95) be the position of the Earth in its orbit

and P', that of a star ; then EP' is the direction in which it

is seen from E. As E changes its position, this direction

changes, while the direction in which it is seen from the

sun remains unchanged, as the positions of both the sun

and the star are fixed. Completing the parallelogram,

PP'SE, we observe that EP is a fixed direction in

space.

With E as centre, describe the celestial sphere of the

P' P

Fig. 95.

observer and draw EP', EP and ES parallel to these lines

in the second figure. Then, EP is the fixed direction of the

star, EP', the direction, as seen by an observer, carried

with the earth in its orbit and, accordingly, PP' is the

displacement of the star on account of annual parallax.

Again, since E, S, P, P', are in one plane through E, in the

second figure, P, P', S are on a great circle, in the first.

Accordingly, this displacement is easily seen to be towards

S, the position of the sun on the celestial sphere.

Let the angular displacement PEP' be equal top.

Then, from the triangle P'EP (second fig. 95),

sin p sin PP'EW 1B PE
'
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= sin PP'E.
SE
PE

n PFQ distance of the sun from the earthsin JTJZJO.
j-.

distance or the star from the sun

since the L s PP'E and PES differ by the infinitely small

angle p.

The maximum value of p is called the Annual paral-
lax of the star.

Let this be j .

T i
fti

distance of the sun from the earth , . .,
Inen,^? = and is the

distance of the star from the sun

Annual Parallax.

3. To determine the annual parallax of a star, we may
proceed by a method, similar to that employed to determine

the diurnal parallax of the moon.

[We have already considered a method of determining
the annual parallax of a superior planet in art. 27, ch. X,
where we determined the angle SPE (fig 85), when / SEP
is 90 and this is the annual parallax of the planet.]

For this, a faint star, very near the one whose annual

parallax is to be determined, is selected and the angular

distances between the two are measured, when the earth is

at E and E', two diametrically opposite points of the earth's

orbit. [In other words, the diameter of the earth's orbit is

taken as the base line.'}

Let these be
l
and 6%.

Then, if we can assume that the faint star is so remote

that it has no parallax, i.e., the lines of sight to it

from E and E' are parallel, then evidently,

6^ + 0} = EP'E' =
2j(? very nearly.

4. From the mode of representation, on the celestial

sphere, of the displacement due to parallax, it obviously

follows that the effect is similar to that due to aberration.

24
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And we may at once deduce that

(1) the path of the displaced position of a star due

to parallax, taken throughout the year is an ellipse, whose

major axis is p (or the annual parallax) and minor

axis isj sin/3 (where /3= celestial latitude) ;

(2) that the path reduces to a circle, when the star is

at the pole of the ecliptic, and

(8) that it is a straight line, when it is in the plane of

the ecliptic.

5. Let us now compare the different causes, which pro-

duce an apparent change in the position of a body.

These are

(1) refraction,

(2) diurnal parallax,

(3) annual parallax,

(4) aberration,

(5) precession and nutation.

The effect of all these is to produce an apparent

displacement of the body :

(1) Refraction displaces it along the vertical through

the star, awayfrom the zenith.

() Diurnal parallax also produces displacement along

the vertical, but towards the zenith.

(3) Annual parallax displaces the body along the great

circle through the star and the sun, towards the point,

which the sun occupies at the time.

(4) Aberration displaces it towards the point 90

behind the sun, along the great circle through the star and

this point.

(5) Finally, precession produces a change in the

longitude of all celestial bodies, by the same amount, while

nutation produces a small periodic change in both latitude

and longitude.
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When all these changes have been allowed for, it is still

found that the observed displacements are' not wholly

accounted for. This must, accordingly, be due to the proper
motion of these stars, In other words, the so-called fixed

stars are not really fixed but have motions of their own.

EXERCISE.

1. Taking the moon's horizontal parallax to be 57' and its angular

diameter 32'
,
show that the moon's radius is 1,123 miles nearly.

2. The synodic period of mercury being given, find the angle gained

per minute by mercury on the earth round the sun (as centre), on

an average.

3. The sun's horizontal parallax being taken to be 8"'8 and his an-

gular diameter, equal to 32', find its diameter in miles.

4. Find the angular velocity with which mercury crosses the sun's

disc, assuming the ratio of the distances of mercury and the earth to be

as given by Bode's law.

5. Why is it not strictly true that the azimuth of a heavenly body

is unaffected by parallax ?

6. What is the distance of a star, of which the parallax is 2" ?

7. The annual parallax of a double star is 0"'307, and the apparent

angular distance between its two members is 15". Find the distance

of the double star and the distance between its two members.

8. Show that if pQ is annual parallax in seconds of arc, the distance of

T>

a star is 206265 -

,
where R is the distance of the earth from the sun.

Po

9. Show that if D is equal to the distance of a star in light-years,

then D =
'

/, . where a light-year= distance that light travels in a year
f-O

(velocity of light 186000 miles, per second).



CHAPTER XII.

ECLIPSES

1. From the phases of the moon, it is easy to conclude

that the moon is an opaque body. That being so, as the

earth goes round the sun, and the moon, round the earth,

it will, sometimes, happen that the moon, coming between

the sun and the earth, will cut off the sun's light partially

or wholly, We shall, then, have a solar eclipse (fig. 96).

Similarly, if the moon enters the shadow cast by the earth,

it will be partially or wholly invisible from the earth.

There will, then, be a lunar eclipse. [Fig. 97.]

Pig. 96, representing a solar eclipse.

2. We propose to consider the conditions and circum-

stances of a lunar and a solar eclipse.

Fig. 97.

Lunar eclipse.
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3. It will be evident, at once, that a solar eclipse

can only take place at a new moon, for it is only

then, that the moon comes between the sun and the

earth, while a lunar eclipse can only occur at a full

moon.

4. Again, at a lunar eclipse, the moon actually enters

the shadow of the earth, so that, to all places on the earth's

surface, at which, the moon would be otherwise visible

(t. e.
y
at all places at which the moon is actually above the

horizon), the moon will be eclipsed, whereas in the case of a

solar eclipse, the nature of the phenomena will depend on

the position of the observer.

5. Now, if the orbits of the earth and the moon were

coplanar, there would be an eclipse of the sun, at every new

moon and an eclipse of the moon, at every full moon. But

as these orbits are in different planes, an eclipse can only

take place, if the new moon or the full moon occurs either

at a node or at a point, sufficiently near to a node. The

reason of this will, presently, appear.

6. As the earth moves round the sun, a cone of shadow

moves in space. If we take a normal section (art. 8, note)

of this cone, at the distance of the moon, we may imagine

this section to move, as a disc of shadow (cast by the

earth), with its centre in the plane of the earth's

orbit. At the same time, the lunar disc, as presented to

the observer (full at opposition) is moving with its

centre along the lunar orbit. We may, therefore, replace

the motions of the moon and the cone of shadow by those of

the lunar disc and the disc of shadow. Now, as the orbits

of the moon and the earth are inclined to each other, it

may happen that these discs do not overlap each other at all,

at a particular full moon, either partially or wholly. There

will, in that case, be no eclipse. If, however, they do

overlap, there will be an eclipse a partial eclipse, if they
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overlap partially and a total eclipse if the shadow overlaps

the lunar disc, completely. We proceed to consider these

various cases.

7. Let N (fig. 98) be the node of the lunar orbit and

NE, a portion of the path traced out by the centre of the

earth's shadow at the distance of the moon (which must

evidently be similar to the ecliptic).

Let NM be a portion of the lunar orbit, E, the cen-

tre of the shadow, M, the centre of the moon, when these are

in opposition in longtitude (i. e.
t
when they have the same

longitude), in the neighbourhood of a node.

It will be presently seen (art. 14) that NE and NM are

elementary lengths, so that N, E, M may be taken to be

coplanar; also, ZNEM= 90, since (E, M, having the same

longitude), EM must be perp. to NE.

8. As both the discs 1 are in motion, superpose a motion

in longitude, rin equal and opposite to the hourly change in

longitude of the earth's shadow on both [n'm, mM. being the

hourly changes in longitude and latitude of the moon].

Then, E may be held to be at rest and M to move along its relative

path MN'. If we now draw EL perp. from E on this relative path, EL
will be the shortest distance between the centres of the two discs during
the actual motion.

Fig. 98.

1 These discs are really sections of the cone of shadow and the moon

by the plane NEM,
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9. (1) If, therefore, EL (drawn perp, from E on N'M)

(fig. 99), is greater than the sum of the radii of the shadow

and the lunar disc, there cannot be an eclipse,

() If it is less than this sum, there must be an eclipse.

(3) If this distance is less than the difference of the

radii, there will be a total eclipse. [Fig. 101.]

Pig. 99.

10. Hence, if E, as centre and radius, equal to the sum

of the radii of the two discs, we describe a circle, the points

(Mj, M 2 ) (fig. 100) at which it intersects MN' (if itdoesat

all 1

) are the points of first and last contact of the moon

with the shadow, at a partial eclipse.

N

Fig. 100. Progress of a partial eclipse.

If with E, as centre and radius, equal to the difference

of the radii, a circle is described, the points (M3

1
Otherwise, there will be no eclipse.

i
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M4) (fig. 101) at which it will intersect N'M (if it does)
1

will be the position of the centre of the lunar disc for the

beginning and end of the total eclipse. *

Fig. 101. Progress of a total eclipse.

Mj, M 4 (where EMj=EM 4 =the sum of the radii

on N'M) mark the positions of the centre of the lunar disc

for the beginning and end of the eclipse.

In every case, L marks the middle of the eclipse.

11. The condition for an eclipse and its nature are

thus dependent on

(1) the length N'E which depends on the interval

between moon's passage through the node and the full

moon;

(2) the size of the shadow (at the distance of the

moon) and that of the lunar disc, as presented to

the observer.

12. To find the size of the shadow, at the distance of

the moon at a full moon, we proceed as follows :

Let S be the centre of the sun and E (fig. 07) that of

the earth, TV, one of the common direct tangents to the

sun and the earth, V, the apex of the cone formed by the

direct tangents, and EM, the distance of themoon from the

earth.

1
Otherwise, the eclipse cannot be total.
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Then, the angular radius of the shadow

= /MEV
=ZEMT-/MVE
= pw-(ZTES-ZVTE)
=j0-O+^,

where j,B = the horizontal parallax of the moon,

0= semi-diameter of the sun,

p a =the parallax of the sun, all expressed

in circular measure.

13. It is found, however, that in calculating the con-

dition for an eclipse, this quantity has to be increased by

-g^-th of its value, in order that the calculated results should

agree with those observed. This is, evidently, due to the

fact that the solar rays, passing through the lower strata

of the earth's atmosphere are quenched by absorption, so

that the cone of shadow practically touches a larger sphere

than the earth.

14. The size of the shadow, as just reduced

changes in value, with the change in the distances

of the sun and the moon from the earth. The angular

radius of the lunar disc (as seen by an observer on the sur-

face of the earth) changes also, having in fact, a maximum
and a minimum value'. We have, moreover, seen that a

lunar eclipse cannot take place, unless EL (fig, 99) is less

than the sum of the radii of the shadow and the moon.

Ecliptic limits. The value of NE or N'E (for they

are very nearly equal) corresponding to this limiting value

of EL gives the ecliptic limit. There will be a major

ecliptic limit, so that if NE is greater than this

value, an eclipse cannot take place and a minor ecliptic

limit, such that, if NE is less than this quantity, an

eclipse must take place. It is, moreover, easy to see

that NE is of the same order of quantities as the size

25
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of the shadow and the lunar disc. In other words, NE
is an elementary length [Art. 7.]

15. For a solar eclipse, the lunar disc itself forms the

disc of shadow, while the section of the cone touching the

earth and the sun, at the distance of the moon is the

illuminated disc. When this disc is shut out of view

by the interposition of the shadow or the lunar disc,

there is a solar eclipse partial or total.

16. To find the size of this illuminated disc, we notice

that its angular radius is

=J. + 0-|>.. [Fig. 96.]

17. In the case of a solar eclipse, however, the position

of the observer makes a considerable difference in the

character of the eclipse observed and the conditions required.

18. Thus, let S be the sun, M the moon and

A'

"'
5

;

M

M'
A

Fig. 102. Total eclipse of the sun.

AOA', the earth (fig. 102). Let also OO' be the region

of the earth, common (at any time) to the earth and

the direct tangent cone 1

enveloping both the moon

and the sun, and AA' the region, common to the earth

and the conjugate cone; then, as both the moon and

the earth are in motion, these will trace out belts on the

earth and it is easily seen (by drawing a tangent cone to

the moon from the observer) that for any place within the

belt OO', the eclipse will be total, that for any place

1 If lines are drawn touching two spheres, so as to meet at a

point, away from the centres of both, they form the direct tangent cone.

If they meet between the centres, they from the conjugate cone,
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beyond OO' but within AA', the eclipse will, be partial,

while for places beyond AA', there will be no eclipse.

19. Again, if the direct tangent cone to the sun and

the moon meets the earth along the belt PQ (fig. 103),

then for any place within this belt, only the central portion

of the sun is eclipsed. The eclipse is, in this case,

called annular.

Fig. 103.

20. We have seen that an eclipse will take place, if

the relative positions of the sun, the moon, the earth and

the moon's nodes have certain defined configurations.
1

Now the moon's nodes have a retrograde motion,

completing relatively to the observer, a cycle in 346*62

days. Thus, in a period of about 6585 days
9 or 18 years

1 In other words when the moon is in opposition at or near a node,

as seen by the earth.

8 The synodic period of the revolution of the moon's nodes is

346*62 days, i.e., relatively to an observer Jjon the surface of the earth,

a revolution of the nodes is completed in 346'62 days. Also, one

lunation occupies 29 53059 days. That is, the moon is in opposition to

the sun, as seen by an observer on the earth's surface, in each succeed-

ing period of 29*53059 days.

The same relative positions of the sun, the moon, the earth and the

lunar node (suitable for an eclipse) will therefore, recur in a period

which is as nearly as possible the least common multiple of these two

quantities. This period is about 6585 days.

For 223 lunations

= 223x29*53

= 6585

= 19 x 346*62

= 19 synodic revolutions of the node.
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and 11 days (or 10 days, if there are five leap years in this

period), the node, as well as the sun, the moon and the

earth will come back to the same relative positions as

at the beginning.

It will follow, therefore, that if a series of eclipses take

place, during an epoch of 223 .lunation or 6585 days,

eclipses will recur in the same order and practically

under similar circumstances, during each succeeding period

of 6585 days.

21. This was the saros (lit. repetition) of the Chal-

deans, By means of a table, carefully prepared, of all the

eclipses during any one such period, it was possible to

predict all future eclipses, with a fair degree of approxima-

tion as to dates and circumstances.

22. Frequency of eclipses. In order to determine the

frequency of eclipses during a year, we have to bear

in mind that the solar ecliptic limits are about 15 32'

and 18 36', while the lunar ecliptic limits are 9i

and 12.

Again, in the interval between a new moon and a full

moon, i.e., 14| days, the sun moves through 15^

(= 14x62'19") on an average, relatively to the

node, which is less than the minor ecliptic limit for a

solar eclipse but greater than the major ecliptic limit for

a lunar eclipse.

Hence, there must be a solar eclipse in the neighbour-

hood of a node. It can be shown, however, that there may
be as many as three eclipses near a node one lunar and two

solar (if a full moon occurs exactly at a node, for instance).

Thus, at each passage of the sun, through the node,

there may be as many as 3 eclipses, 2 of the sun and 1 of

the moon. And there must be, at least, one solar eclipse.

We observe, further, that while the sun's passage from

one node to the next is completed in 173 days, six lunations
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comprise a period of about 177 days. It follows,

accordingly, that the number of eclipses are somewhat

unevenly distributed and it can be shown 1 that there

cannot be more than 7 eclipses in the year.

23. We have seen that when the moon enters the

cone, touching the sun and the earth, a considerable portion

and under certain circumstances the whole of the sun

is eclipsed. This is, obviously, due to the comparative

proximity of the moon to the earth. In the case of a

more distant body like Venus and Mercury, the phenomenon
will be different. They appear to cross the solar disc as

a black spot.

1

Assuming a daily advance of the snn, relative to the node of 62',

let us suppose, in the first place, the full moon to occur exactly at a

node. Then, at the previous and following new moon, the angular dis-

tance of the sun from the node, on an average will be 15 20'. As this

is less than the major ecliptic limit for a solar eclipse, there may be two

solar eclipses at that node and three eclipses altogether, including the

lunar eclipse at the node itself.

At the next node, the full moon will occur 4 days after passage

through the node, at an angular distance from the node which is within

the minor ecliptic limit for a lunar eclipse. There will thus be a lunar

eclipse at the full moon. Moreover, since the previous new moon will

occur at an angular distance of 11 12', there will be a solar eclipse also

at this new moon, but at the following new moon, occurring, as it does

at an angular distance of 19 29', from the node, there will be no eclipse.

At the first node again, on the completion of the cycle, the full moon

will occur, 8 days after passage through the node, i.e., at the angular

distance of 8 16' of the shadow from the node. There will, therefore,

be a lunar eclipse at this node also, preceded by a solar eclipse at the

previous new moon but not followed by another.

Thus, in 354 days (from full moon at a node to full moon 8 days after

passage through the same node), there may be six eclipses.

If we count the eclipse at the new moon preceding the first full-

moon, we get seven eclipses in 368| days.

If, however, the full moon occurs, two days before the sun's passage

through the node, then the previous new moon will occur, at an angular

distance of 13 15' from the node, while the following new moon will
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The general conditions for this to happen are of course

the same as in the case of a solar eclipse :

They must be in inferior conjunction at or near enough
to a node.

On account of the small size of these planets, as seen

by the earth, as well as the smaller obliquity of their

orbits, the conjunction required for a transit must occur

much nearer to the node than in the case of the solar

eclipse. This leads to an interesting result.

Taking the case of Venus, since the period of its

revolution round the sun is 224*7 days, we have

since 8 years

= 8x365-256= 2922 days nearly
= 13x224-7 + 1 day (nearly)

two transits may occur at an interval of 8 years.

Thus, if a transit occurs exactly at a node in any

year, there may be one at the same node, 8 years after, as

the next conjunction occurs sufficiently near to the node

(within 1 day) but the next conjunction (16 years after)

will occur 1*8 days later than its passage through the node.

This will make it impossible for the transit to occur.

We have further

235 years= 235x365-265

= 85835 days
= 382 x 224-7 very nearly,

so that in every 235 years, a transit must occur at the

same node.

occur at an angular distance of 1724/

, making three eclipses (2 solar,

1 lunar) possible. At the next node, there will also be three, while

at the original node, after completion of the cycle, there will be two.

These eight eclipses will cover 368J days but there will be seven in

354 days. Taking account of all possible cases, in this way, it is found

that the maximum number of eclipses possible in a year is seven.

We conclude, accordingly, that there cannot be more than seven

eclipses in n year, nor less than two.
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This being the next number after 8, for which the

above relation holds, we conclude that, at the same node, a

transit must be followed or preceded by a transit at an

interval of 8 years but that the next transit cannot take

place till 235 years, after.

The following table gives the actual occurrences of

these transits :

Ascending Node. Diff. Descending node. Diff.

Deo. 6,1631 A.D.

8 years

Dec. 4,1,639 June 1761

275 years 8 years

Dec. 1874 June 1769

8 years 235 yearn

Dec. 1882 2004

transils of mercury are more frequent than those of

Venus, since its periodic time is only 87*96 days nearly.

EXERCISE

1. In an eclipse, does the obscuration begin on the eastern or the

western limb of the body eclipsed ? In a solar eclipse, does the shadow

of the moon move eastward or westward on the earth's surface ?

2. In a total lunar eclipse, given the size of the shadow at

opposition in longitude, the size of the lunar disc, as well as the latitude

of the moon at opposition, draw a diagram to determine the progress

of the eclipse, the rate of motion of both the moon and the earth,

being given.

3. Show by means of a diagram the effect of a change in the

moon's motion on the duration of an eclipse.



CHAPTER XIII

TIME

1. In order to measure a physical quantity, we have

to choose a suitable unit, in terms of which the. quantity,

has to be measured and devise means, whereby the given

quantity and the unit chosen may be compared, so as to

find out how many times, this quantity contains the unit.

. The unit chosen must satisfy the following

criteria :

(1) It must be of the same kind, as the quantity

to be measured.

() It must be an invariable quantity.

(3) It must be easily procurable or accessible, or

must be capable of being easily identified.

3. The unit of time used in Astronomy for scientific

purposes is the sidereal day ;
that is, the period of the

earth's rotation about its axis, and is therefore, equal to

the interval between the successive transits of a star

across the meridian of a place.

4. It is obvious, in the first place, that the 3rd

criterion specified above is satisfied by the unit.

5. Before, however, we can be satisfied that it is

really suitable for our purpose, we must consider (1) how

any given interval of time may be compared with it and

(2) what grounds there are for supposing that it is a

constant interval of time.

Both these purposes are served by the Astronomical

clock.
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This is a clock, which, as we have seen (art. 14, ch. iv)

keeps sidereal time. In other words, the interval of time,

indicated by it is a sidereal interval, so that its

hour-hand sweeps out 360 in a sidereal day of 24

sidereal hours,

6. Let us assume, now, that the clock is correct ; that

is, that the period of oscillation of the pendulum or of the

spring is constant and equal to two sidereal seconds.

Then, a simple observation is enough to show that the

interval between the successive passages of the same star

and those of all stars are the same. This proves that a

sidereal day is a constant interval of time. Moreover, an

interval measured by such a clock gives the magnitude of

any sidereal interval, with any desired degree of accuracy.

7 . Def. The Local sidereal time at any place is the

sidereal interval that has elapsed,

since the preceding transit of the

first point of Aries, across the meri-

dian of the place. It is, therefore,

equal to the hour angle of the

first point of Aries (as an inspec-

tion of fig. shows).

8. In order to determine the local sidereal time,

therefore, it will be necessary, in the first place to set the

astronomical clock, so that it may indicate
A
, 0", 0%

when the first point of Aries is on the meridian. If there

were a star exactly occupying the first point of Aries, the

setting of the clock would have been a matter of compara-

tive ease. As, however, there is no such star, we have to

resort to indirect methods. [Ch. VIII.]

9. Let us recall that the procedure followed is to

select a star whose R.A. is known and observe it at its

meridian passage and at the same time set the clock, so

26
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that the time it- indicates at the moment is equal to

the R.A. of the star.

This, however, requires that the R.A. of a star should

be known, independently of the clock and we have

seen how this is done. When the clock has been

set, the time indicated by it at any moment, is the local

sidereal time, if the clock is correct. Otherwise, a cor-

rection has to be applied, called the error of the clock.

10. Although a sidereal day is a suitable unit of

time for astronomical purposes, it is not a convenient unit

for practical purposes. For the first point of Aries is on

the meridian, i.e., it is 0*
M

0* by the sidereal clock, at

midday on the 21st March, at sun-rise on 22nd June, at

midnight on 23rd September (when the sun's R.A. is 180)
and in the evening, i.e., at sun-set on 22nd December.

11. The practical inconvenience of this mode of

reckoning time is, thus, apparent. Since, in fact, it is by
the motion of the sun that our daily lives are ordered,

it is easy to see that a practically useful unit of time

should have reference to this motion.

The solar day, that is, the interval between the

successive transits of the sun, across the meridian of a

place, would, accordingly, appear to be the natural unit of

time, but for the fact that it is not a constant interval.

We conclude, accordingly, that the unit of time that

would be practically useful must satisfy the following

conditions :

(1) It must, necessarily, be a constant interval.

(2) The unit must never differ except by a few minutes

from a solar day.

(3) The number of these units in the year should be

equal to the number of solar days in the year.

Hence, the unit should clearly be the mean of all the

solar days in the year.
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12. Such a unit is called the mean solar day. A
clock that keeps mean solar time, i.e., 24* hours (mean

solar) of a mean solar day is called a mean solar clock,

It is, in fact simply, our ordinary clock.

Thus, the time at any moment by such a clock would

be, very nearly, equal to the hour angle of the sun but not

exactly. It is equal to the hour angle of an imaginary

body called the Mean Sun. [Art, 17.]

13. The time that has elapsed since the preceding

meridian passage of the sun is called the apparent
time.

The difference between solar time and apparent time is a

small quantity. Still it requires careful investigation, in

order that the time by the ordinary clock and the apparent

time may be compared.

This difference is called the equation of time, so

that Clock time apparent time= equation of time.

We shall see that the apparent time can be deter-

mined by means of a sun-dial. Hence, equation of time

can also be defined as the difference between clock-time and

dial-time.

14. In actual practice, while the unit of time is the

mean solar day, another unit (called the Civil Day)

is taken, which is equal to it but is reckoned from mid-

night to midnight, so that our ordinary clocks point to

twelve, when the mean sun is in the meridian.

But as the dial face is divided into 12 parts, mean

time, as given by the clock is still proportional to the

hour angle of the mean sun, up to midnight, even as a

mean solar clock ought to do, if we followed the mode

of reckoning, as with the Astronomical clock.

15. To find the' relation between the sidereal day and

the solar day.
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We know that the sun is at 7 on the 21st of March.

Hence, the sun and 7 will be at the meridian together on

that day.

Fig. 103.

On account of the diurnal rotation of the earth, 7 will

be again at the meridian of the place at the end of one

sidereal day but in that interval, the sun will have moved

on, from 7, so that the meridian will have to rotate

through 360 plus the change of R.A. of the sun in one

solar day, before it can over-take the sun. Hence,

one solar day= one sidereal day+ the sidereal interval

corresponding to the sun's change of R.A. in one

solar day. (1)

It follows, therefore, that if the number of solar days

in the year is equal to N, then,

N solar days=N sidereal days + the sidereal interval

corresponding to the sun's change of R.A. in the year

(i.e., 360 or 24 hours).

But as this last is equal to one sidereal day, we have

N solar days=(N+ l) sidereal days. (2)

That is, the number of sidereal days in the year is one

more than the number of solar days, in the year.

But the number of sidereal days in a year can be

obtained by observation. For this, we have only to find

by the astronomical clock, the time taken by the sun to

complete its circuit round the earth.
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This, of course, can be obtained with any degree of

accuracy.

Thus, we get the value of N + 1 and, hence, the number

of solar days in the year is known.

16. It follows also from equation (1) (art. 15) that

(1) since the sun's change of R.A. is not uniform, the

solar day is not a constant interval of time, and

(
2

)
if the motion of the sun were such that its change

of R.A., while completing its revolution in a year had been

uniform, then, the solar day would have been a constant

interval of time and would have been the mean of all the

(actual) solar days in the year.

17. Imagine, then, a body moving uniformly along the

equator, with the mean angular velocity of the true or

actual sun. Then, the interval between the successive

passages of such a body across the meridian of a place will

be equal to the mean solar day.

This imaginary body is called the mean sun. Hence,

the moment, at which the mean sun transits across the

meridian (i.e., 12 6

, by the ordinary clock) is the local mean
noon and per contra, the time of the true sun's meridian

passage is called apparent noon.

18. It follows, accordingly,

(1) the mean time is the hour angle of the mean

sun, expressed in time at the rate of 15 to one mean

solar hour,

(2) the number of mean solar days in the year is equal

to one more than the number of sidereal days,

Hence,

One mean solar day 366*242210

One sidereal day ~365'242216'
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19. We have seen that the equation of time is a small

quantity, being the difference between clock-time and

apparent time. If our clocks 2culd always be relied on to

give correct time, this quantity at any rate, corresponding

to apparent noon could be found by simply noting the clock-

time of the true sun's meridian passage. The difference

between this and 12 hours would then give the equation of

time (positive, if this time is less than 12). Similarly

the difference between clock-time and the hour-angle of

the true sun would give the equation of time at any

moment.

20. For this, it is necessary to set the clock correctly,

Moreover, no clock can always keep correct time ; we have

accordingly to determine the equation of time, independent-

ly of the clock (by calculation) and thus set and correct the

clock. We proceed now to consider how the equation of

time arises and varies throughout the year. The actual

calculations are given in advanced treatises.

21. It will be observed that the difference between the

solar and mean solar day arises from the fact that while

the sun moves along the ecliptic with non-uniform motion,

the mean sun moves along the equator, uniformly. The

difference thus arises from two causes :

(1) On account of the fact that the motion of the sun

is along the ecliptic, instead of being along the equator,

i.e.y on account of the obliquity of the ecliptic \

(2) that, the motion of the sun (along the ecliptic)

is variable, i.e.,
" on account of unequal motion"

22. The effect due to each of these being small, we

may consider each separately and obtain the resultant effect

by adding them together algebraically.
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In dealing with them, therefore, we may regard only

one alone operative and the other, for the 'time being,

non-existent.

M

Fig. 104.

23. THE EFFECT OF OBLIQUITY. Since, in considering

the effect of obliquity, alone, we are to neglect the effect

of unequal motion, and since the mean sun moves uniformly

along the equator, by definition, another imaginary body

must be supposed to move, uniformly along the ecliptic,

at the same rate.

Let us suppose that they start together at 7 and let the

diagram represent the celestial sphere of an observer

supposed to be at the centre of the earth.

Then if we take yS=7M, then, the mean sun will be

at M, when the true sun is at S (since both are moving

uniformly at the same rate).

Hence, the declination circle through S is always nearer

7 than that through M, while the sun moves from vernal

equinox to summer solstice (for Northern latitudes).

Now, the diurnal motion of the earth is in the same

direction as the apparent annual motion of the sun. Hence,

any meridian, as it is carried round on account of the

earth's diurnal motion will first have the true sun and then

the mean sun transiting across it.
1 That is, the apparent

1 Since the celestial sphere represents the celestial vault, we

may imagine yM/yS to be two fixed curves, traced on the celestial vault.

The earth will then be a concentric sphere, rotating about the normal

to the plane of yM .
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or true noon will precede mean noon. Therefore, mean

time will be less than the apparent time. Or, the equation

of time, is negative. The same is true from autumnal

equinox to winter solstice, while from (either) solstice to

(either) equinox, it is positive.

At 7 and ft as well as at the solstices, this part of the

equation of time is evidently zero, and calculation shows

that its maximum values are = + 10 minutes, nearly.

24. (2) The effect of UNEQUAL MOTION.

We must now imagine the " mean sun >M to move along

the ecliptic with uniform angular velocity and the true sun

to move along the ecliptic with unequal
2
angular velocity,

which follows Kepler's 2nd law.

As the starting point of the mean sun has not so far

been defined, let the two suns start together at perigee,

where this portion of the equation of time will then vanish.

Then, since,

'

at perigee, the true sun's (apparent)

angular velocity is maximum, the true sun will go

ahead of the mean sun and, accordingly, any meridian will

have first the mean sun and then the true sun,

over it; that is, the mean noon will precede true

noon or, in other words, mean time will be greater

than the apparent time. The equation of time will,

accordingly, be positive from perigee to apogee. But the

equation of time is again zero at apogee and, accordingly,

there must be a moment between these two epochs, at

which this portion of the equation of time is maximum.

Calculation shows that the maximum value occurs about the

end of March and its value is, then, 7' 1 minutes nearly.

Similarly, from apogee to perigee, the equation is negative.

1 Or the imaginary body which was requisitioned in the previous

discussion.

2 And opposite to that of the earth in its orbit.
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25. On the whole, we have the following results :

The equation of time due to obliquity is zero, on 2 1st

March, 22nd June, 23rd September, 22nd December,

and max= 10m in February and August
and= 10m in May and November.

+10"*

+ 5
m

5 m

-10m

IR^
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The actual results are plotted on curve, fig. 105 (1).

The equation of time due to

unequal motion = on 31st December, and 1st July.

and max. = 7 *7, about the end of March

and = 7*7 at the end of September.

Plotting these on curve (2) and adding the ordinates of

curves (1) and (2), we find that the equation of time

vanishes four times, a year, viz., On or about April 15,

June 15, September 1, and December 24th.

Time by Observation.
i/

26. Time is determined by observation as follows :

Observe the clock time of the sun's meridian passage.

Then the difference between the clock time and 12 should

be equal to the equation of time for the local apparent

noon, at the place of observation. If this is not the case,

the clock is in error and the correction required is known.

The Nautical Almanac gives the equation of time

corresponding to Greenwich mean noon as well as Green-

wich apparent noon for each day and its hourly variation.

Hence, in order to obtain the equation required, in the

preceding paragraph, it is necessary to know the Greenwich

time corresponding to the local time considered. This is

easily obtained.

For each 15 of west Longitude makes a difference of

1 hour in time. Thus, if M is the local mean or apparent

time and L is the west Longitude of the place.

Then M + - = the corresponding Greenwich time
15

(mean or apparent).

27. To find the local sidereal time, it is only necessary

to observe the transit of a known star ; then the R.A. of the

star is equal to the local sidereal time at the moment of

observation.
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28. Conversion of time.

1. To convert a given sidereal interval into the

corresponding mean solar interval and vice versa.

For this, it is only necessary to remember that 365*242216

mean solar days are equivalent to 366*242216 sidereal days.

365*') 4^216
Thus, one sidereal day = - - solar day. Hence,

if M A
= number of mean solar hours in a given interval

of time, and S A
= number of sidereal hours in the same

interva1' then ' 386TO6
"

86<OTI6

.'. M = S t(l-) when n = __!:__
6
= -00273043;

also S.=M,(L+*'), where '=- l
;
= -0027379l

and (l +O (!-)= !.

Again, one sidereal day contains

23* 56" 4*-0906 = 24* 3" 55**9094 (mean).

One mean solar day contains

24 A
3"

1 56'5554 (sidereal) = 24 h + 3'" 56*5554

Thus, the factor n produces a change of 3"
1

55* -9094

in 24 hrs. or 9 s '8296 per hour.

Similarly, the factor n produces a change of 3
m

56* -555 in 24 hrs. or 9* '8565 per hour.

Ex. 1. Express 16'' (mean) as a sideral interval. Ana. 162'"

37
S><
704.

2. To convert mean solar time at any place or local

mean time into local sidereal time and vice versa.

If 7 is the first point of aries, then the hour angle of 7

= local sidereal time.
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Also the hour angle of the mean sun M is the local mean

time. But ?M = R.A. of M. Then, from the figure 106,

where PAB is the celestial sphere of the place of observa-

tion, it is evident that

sidereal time = mean time+ mean sun's R.A.

For, if P is the celestial pole and 7M, the equator

and PAB, the celestial meridian,

then ?PA = hour angle of 7

= local sidereal time

and MA= hour angle of the mean sun

=local mean time

B

Fig. 106.

or if S = sidereal time,

M = mean time,

R = mean sun's R.A.

Then, S = M + R.

But R.A. of the mean sun is given in the Nautical

Almanac for Greenwich mean moon from day to day. Also,

since R.A. of the mean sun changes uniformly, throughout

the year,

change of R.A. of the mean sun in 1 day

365-2412

i.e., change of R.A. of the mean sun in 1 hour ='
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Now if L = west longitude of the place of observation,

M H- r = mean time at Greenwich, corresponding to the
1 o

meantime (M) of observation at the place.

/. if H = II. A. of mean sun at Greenwich &t previous

mean noon,

then, R = R --

whence, S = M + R.

and M =

0)

(

since
1-

therefore

The first equation gives the sidereal time, when the

mean time is given, the second, the mean time, the sidereal

time being given.

Ex 1. On 1909, Feb. 18th, the sidereal time at Greenwich mean

moon is 21
h

51."* 13* '55. Show that the transit of the first point of

Aries takes place at 2* 8"' 25 ''35 mean time.

We have, S= M (1+n') + R
,
since L =

HereB =2l fc

51
M
13 5 -55

.'. when S= 0, i.e., when the first point of Aries transits across the

meridian,

or =24

M=(24-21" 51"' 13'-55)(1-?0

= (2
h
8m 46 8

-45) (1-n)

= 2" 8m 46' -45 -21-095

= 2
h
8m 25' -35 nearly



214 ASTRONOMY

Ex. 2. Columbia College, New York, is in longitude 4'' 55m 54',

west of Greenwich. The sidereal time of mean noon at Greenwich

on 1903, Dec. 12 is 17
H
23

m
8'. Show that on the same day, when the

sidereal time at Columbia College is 20 fc

8m 4', the local mean time

is2'' 43'" 41'

We have M = S-R -"n
( (S-R + :pr
\

S= 20" 8m 4'

andR =l7 h 23m 8' and - =4 h 55" 54'.
15

3. To convert apparent solar time into mean solar

time.

This is obtained from the equation

Clock time dial time= equation of time, provided

we know the equation of time.

Now, the equation of time for each day is given in N.A

for Greenwich mean noon, as well as apparent noon. For

any other time, the necessary correction is also given

as difference, which gives the rate at which the equation

of time changes, per hour. Hence, the equation of time

for Greenwich time (mean or apparent) can be calculated.

Finally, since any given local time can be converted into

corresponding Greenwich time, the equation for any local

time can be deduced.

4. The relation between lojal time and Greenwich

time.

This is at once deduce 1 from the fact that each 15 of

longitude corresponds to a difference of 1 hour so that-

Local time +^-= Greenwich time,
1 where L is the

west longitude of the plane.

Ex. The longitude of Calcutta is 88 20' !" 79 E. ;
find the local

time corresponding tc Greenwich noon.

1 Is true for sidereal time as well as solar time, for it depends on

the diurnal rotation of the earth, relative to a star or the sun.
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Fig. 107.

29. Length of morning and afternoon. One effect

of the equation of time is note-

worthy.

Assuming the diurnal circle of

the sun to be a parallel of the

celestial equator ESW (i.e., neg-

lecting a small change in the

declination of the sun during one

day), it easily follows from the

diagram (fig. 107), that the

interval from E to S is equal to

that from S to W, where E and W mark the positions at

sunrise and sunset and S marks the position, at the

meridian passage, of the sun's centre.

That is, the interval from sun-rise to the apparent

noon is equal to the interval from apparent noon to

sunset. Let this interval be =1.

If then, the morning is reckoned from sunrise to mean

noon, this interval is equal I + E where E is the equation of

the time.

Similarly, the afternoon is equal to I E.

Hence, morning afternoon = *2 E.

The actual length of the morning and the afternoon

depends on the declination of the sun and therefore on the

time of the year.

30. All these modes of reckoning refer to the meridian

of the observer. When we wish to obviate this difficulty,

we may reckon time from a fixed epoch, say, vernal equinox.

Time, so measured is called equinoctial time ; that is, it

is the interval (measured in mean solar units) that has

elapsed since preceding vernal equinox.

81. Def. The time taken by the earth to complete

its revolution round the sun is called the year.
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According to the points of reference, however, we have

to distinguish different kinds of years. Thus, we may
reckon the cycle completed when the Earth goes from

a fixed point in space, a star, for instance back to the

same star. The period is, then, called a sidereal year.

Or, we may take the period from one vernal equinox

to the next, i.e. (on the geocentric view), from the moment

when the sun is at y to the moment, when it comes to y

again. This period is called the tropical year. If y were

a fixed point in space, the tropical year would be equal

to the sidereal year. But this is not the case (on account

of precession).

Finally, we may reckon this period from the moment

at which the earth is in perihelion to the moment when

it comes back to it. This is called the anomalistic year.

If the major axis of the earth's orbit had been a fixed

direction in space, this would be the same as the sidereal

year. As this is not the case, it also differs from the side-

real year.

On account of the retrograde motion of the first point

Aries at the annual rate of 50"'22 and progressive

motion of the apse-line at the rate of 11" -25 per year,

the relation between the different kinds of years is given

by the following equations, viz.:

360-50- r/22 360 360 +1 l"-26

tropical year
~~

sidereal year~ anomalistic year

82. We have already seen how the tropical year can

be determined by observation. It is, in fact, equal to

365-242216 mean solar days. Hence, the sidereal year
is equal to 365'256374 mean solar days and the

anomalistic year to 365*259544 mean solar days.

33. The Calendar. Just as the sun's apparent daily

motion regulates our daily lives, the tropical year, which
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marks the recurrence of the seasons would seem to be the

natural long-period unit of time, as it is with reference to

the recurrence of the seasons that our lives are regulated.

But for practical convenience, such a long-period unit of

time should consist of an exact number of days.
1

34. Accordingly, the long-period unit of time is

chosen so that (I) it should consist of an exact number of

days, and (-2) the beginning and end of this period shall

never differ much from the beginning and end of the

tropical year.

This is called the civil year.

35. These two conditions are satisfied, as far as

possible by adopting the following mode of reckoning :

(1) An ordinary year is taken to consist of 365 days,

while a leap year to consist of 366 days.

(2) Every 4th year is a leap year, so that a year

which is divisible by 4? is a leap year, except the centuries

that are not divisible by 400, these being taken to be

ordinary years.

36. These conventions are based on the following

calculation :

A tropical year consists of 365 rf

5i 48W 45'-5'

Hence 4 tropical years= 365 d
x4-f 23* 15

W
02*.

Hence, three ordinary years and one leap year (in every

4 tropical years) differ from four tropical years by 44m53*

only and accordingly, the introduction of the leap year

(due to Julius Caesar) produces a nearly complete adjust-

ment. This is called the Julian Calendar.

But the above difference, small as it is, accumulates in

course of centuries, so that in 400 years, it becomes

nearly equal to 3 days.

1 A little consideration will show, how almost in every case, a

difficulty will arise, if this did not happen to be the case ; e.g., in

calculating age, yearly profit, yearly salary, etc.

28
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Hence, in order that 400 years of the (corrected)

calendar should be equal (nearly) to 400 tropical years,

it is necessary to drop 3 leap years in the course of every
400 years. This can be most, simply, effected by regard-

ing only those century years which are divisible by 400

as the leap years, the other centuries being only reckoned as

ordinary years. This reformed calendar was due to Pope

Gregory and is called the Gregorian Calendar.

37. This small residual difference will accumulate into

about one day in 2,000 years and may therefore, for the

present, be neglected.

38. Sun dial.

Apparent time, or time indicated by the motion of the

true sun is evidently given by the hour angle of the true

sun. Now, as the sun moves on the celestial vault, the

shadow cast by a style on any chosen plane will move

with it, so that the shadow, the style and the sun are

always in the same plane. In other words, the shadow

is the inter-section of the chosen plane with the plane

containing the style and the sun. Hence, the angular

position of the shadow will depend on the hour angle of

the sun and will enable us to measure this hour angle,

at any time. This will enable us to determine the apparent

time.

If the chosen plane coincides with that of the celestial

equator, at the place of observation and a style is placed

in the direction of the polar axis and hence perpendicular

to the chosen plane, then, it is clear that the angle that

the shadow makes with its position at midday is equal

to the hour angle of the sun and since, on our definition,

apparent time is simply proportional to this hour

angle, we get the apparent time by simply reading off

this angle.
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As the sun's motion is not uniform, the hour angle is

not strictly proportional to apparent time but we have

agreed to define it so, the error committed being allowed for

all practical purposes (for which we only require mean

time) by the correction which is called the equation

of time.

If the chosen plane is other than that of the celestial

equator, we have to take the projection of the shadow

on this plane and the corresponding angles made by the

shadow have to be determined by calculation.

EXERCISE.

1. The longitude of Dublin being 6 40' W., find the time in Dublin,

when it is 2 P.M. at Greenwich.

2. At Madras in longitude 80 14' 19"'5 East, an observation is

made on September, 6th, 1865 at 9* 21" 12' 8 meantime; find the

corresponding sidereal time.

If the sidereal time is 20 fc 24 13 '72, finil the corresponding

meantime.

3. Find the R.A. of the true sun at true noon on the 30th of

January, being given the following j equation of time at mean moon on

the 30th of January and sidereal time of mean noon on the same date.

4. At New York in longitude 74 l'i W., an observation is made

at 7
h

15"' 10', mean solar time on a certain day ou which the side-

real time of mean noon at Greenwich is 10* 15
m
54'

;
find the corres-

ponding sidereal time.

5. The times of sun-rise and sun-set on November 1st are found from

the tables to be 6* 56M and 4 h
32"

1

respectively. Find approximately

the equation of time.

6. Assuming that the maximum amount of the equation of time

due to obliquity exceeds the maximum of that due to eccentricity,

show that the equation vanishes four times in the year.

7. The mean time being 4 hours, find the corresponding sidereal

time, given the sun's mean daily motion to be 59 >n 8'33 and the R.A-

of the preceding mean noon 144.

8. If in a certain system of calendar, the leap year recurs every

third year, find how the adjustment may be effected, so that in n years,

it may be nearly complete.



CHAPTER XV

THE POSITION OF A PLACE ON THE EARTH'S SUEFACB

Latitude by Observation

1. Observe a circumpolar star at its upper and lower

transit across the meridian. Then, if a lt a
2
be the altitudes

of the star at these transits, then

Latitude= ttl+a *
.

ForNo- 1 =a 1
No-

2
=a

2

if cr^o^are the positions of

the star at upper and lower

culmination, fig. 108, N being

the north point.

Then, NP+ Pcr^a,
P Fi-' 108>
ro- 2 =a 2 ;

Pcr
1
=P<r 2 .

This method is only suitable for use in a fixed obser-

vatory. It, however, does not require a knowledge of the

declination of the star.

2. If the declination of the star is known, one obser-

vation will suffice.

For then Per
1 =Po- 2

= declination (8).

Hence, NP= lat.= ai -8.

The same method will apply, if any other body, the

sun for instance, is observed (provided, of course, its decli-

nation is known).

Obs. In the case of the sun, the meridian passage of

the sun's centre has to be noted.

3. At sea, the only useful method is that of observa-

tion of the meridian altitude of the sun or a star in

preference, the former. As the meridian altitude is the
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maximum altitude on any given date, observations are

taken at short intervals, commencing before apparent noon

till the maximum is passed. As the change in altitude is

then very slow, the effect of a change of position, on account

of the motion of the ship has comparatively little effect.

It is, moreover, of no importance, as an absolutely correct

determination of latitude is not required.

When the sun is the body observed, its declination has

to be calculated from the Nautical Almanac. This gives

the sun's declination for each day of Greenwich mean noon

and its hourly variation. The chronometers carried by the

ship give Greenwich time and hence the interval between

Greenwich mean noon and the local apparent noon is known.

Thus, the declination of the sun corresponding to local

noon (i.e., time of maximum altitude) can be calculated.

Ex. The sun's declination on previous

Greenwich noon = 22.

Chronometer time 6*.

Horary change = 19"'5.

Hence, the sun's declination at local noon = 22 1' 57".

Longitude by Observation.

4. Longitude referred to any prime-meridian, Green-

wich for instance, is known, if we know the Greenwich

mean time and the corresponding local mean time. We
must, therefore, have some means of knowing Greenwich

mean time, at the moment at which local mean time is

also determined.

(a) By the chronometer. If we have a chronometer

which gives Greenwich time, then if the local time is

6 P.M. and the Greenwich time is, say, 2 P.M., the longitude

= 60E.
(6) By means of a suitably chosen celestial phenomena.

If the chronometer fails, we may note the local mean time
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at the moment when any celestial phenomena occurs

and if the mean time of the same phenomenon is given
in the nautical almanac, since this time is always
Greenwich mean time, we have a means of determining
the longitude.

Two such phenomena are of especial importance :

(1) Lunar distances.

(2) Occupation of a star by the moon.

The nautical almanac gives a series of tables giving

the moon's distance from certain bright stars and planets

(as seen by an observer at the centre of the earth) for

every third hour of Greenwich mean time.

If, then, the distance of the moon, from a given star

is noted and corrected for parallax, we may find by

interpolation or by a direct reference to the tables, the

Greenwich mean time at the moment of observation. And,

thus, the longitude is determined.

Similar methods will apply to the case of an occupation.

But these are not suitable for use at sea.

(c) By electric telegraph. If the Greenwich mean

time is signalled by electric telegraph to a station at which

the local mean time is also noted>t the same time, the

longitude can be determined. At sea, the signal is trans-

mitted by wireless.

5. It will be observed that the determination of longi-

tude depends on a determination of the local time.

Obs. If the local apparent time is determined, the local

mean time can be calculated as in Art. 26 (3), Ch. XIII.

(1) The readiest method is to determine the

local sidereal time, by the meridian transit of a

known star.

But this can be only availed of, in a fixed observatory.

(2) Since, generally, the time corresponding to

meridian altitude, that is the maximum altitude of the
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sun is apparent noon, this is the simplest method for

use at sea,

6. When both the latitude and longitude have been

determined, the position of the place is known.

Such a method, however, is hardly suitable for use at

sea. The following simple method, due to Capt. Sumner is

the one in common use.

For this, it is necessary to remember that at each

moment, the sun is vertically overhead at some point on the

surface of the earth called the subsolar point. Moreover, the

angular distance of this place from any other place is

equal to the zenith distance of the sun, as observed at the

latter, at the moment considered.

This being premised, let P be the subsolar point, at any
moment. With P, as centre and

radius equal to the arc of

a great circle which subtends at

the centre of the terrestrial globe,

an angle equal to the observed

zenith distance of the sun, describe

a small circle on the globe. Then,

the place of observation must

be on this small circle. Fig. 109.

Let Q, (not shown on the diagram) be the subsolar point,

a few hours later ; then, if we describe a second great circle

having for its radius, the zenith distance of the sun at the

second observation, the intersections of the two circles are

the only two possible positions of the place of observation,

provided the observer (or the ship) is at rest. It would

then be easy to tell which of the two points represents the

actual position of the ship, either from a knowledge of its

approximate position or from a rough observation of the

azimuth of the sun,
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If the ship is in motion, let AB, represent on the scale

of the globe the run of the ship during the interval between \

two observations ( in direction and magnitude). Then it will
*""

be necessary to lay off a length AB in direction and magni-

tude, such that A is on the first circle and B on the second.

Then A must be the first position of the observer, and B,

the second.

As before, we get two such pairs of positions and

we have to select one pair, on similar considerations as

the above.



ANSWERS.

2. 3492 miles,

3. 45.

CHAPTER I.

CHAPTER III.

4. 213 21'; 33* 44" 52'.

5. ll-6.

6. o>h ^L ; when /=90.
9

7. 698'4 miles.

12. At the same time.

13. 0. R.A. = 0. H.A. = 90, Z.D= 90; the latter

two will vary.

CHAPTER IV.

1. Half the diff. of the readings gives the meridian

altitude. Latitude being known B is given by
colat+ S= altitude.

2. /=65 18' 10*

8= 77 25' 25"

Observation is to be made by Alt-azimuth.

3. 59 27' 50".

4. 12* 34".

f =56 2' 30".
'

i S= 5347'30".

8.2
= 10.

29
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CHAPTER V.

1. 6 A.M. 6 P.M.

3. At the Summer solstice 83 28'.

Winter 46 32',

Equinoxes 60.

4. 38 7'.

6. 10-8, 90.

14. 72000 years,

CHAPTER VI.

5. (i) 52 min. nearly, (it) 50 min.

9. 49-9 ft.

11. 32-68 days.

13. -06.

14. 2156 miles.

CHAPTER VII.

1. Inferior : half the radius of the earth's orbit.

2. (a) Superior, (6) superior, (c) superior or inferior,

(d) inferior, (e) inferior, (f) inferior.

3. -93.

4. -75.

5. 4325 days.

6. 579 days.

8. 1-6 times the velocity of the earth.

9. (t) 1:2*- (ii) 15040 miles.

10, 6 miles.
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CHAPTER VIII.

227

1. R.A. of the star= 18-5 hours

and that of the sun =8*5 and 8'5 hours respectively.

4. 27 1' 4"-64 in 1921 A.D.

5. The plane containing the axis of the spinning-top

and the vertical line about which it revolves.

CHAPTER X.

1 . The latitude I is given by

180-2/=55+58'/
-2 (tan 25 + tan 30).

2. Sin' 1
rs- -2' ]9"'7.

3. Apply formulae

130c-2=30

4.

/fr (tan 30 + tan 40),

* (tau 25 + tan 45).

= 30 + 40 + fc (tan 30 + tan 40)
where ^=coeff. of refraction.

3.
360C

CHAPTER XL

-where T is the No. of minutes in the Synodic

period.

4. 872000 miles.

Ci024 per hour.

7. 11972190 million miles.

8. 77994723-1 million miles.

million miles.
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CHAPTER XIII.

1. 1* 33" 40* P.M.

2. For R.A. of the mean sun, consult Nautical

almanac.

j

Sid. time 20* 24- 13-72.

Mean time 9 A 21- 12' -8.

4. 3* 2* 42'-4.

5. 16 minutes.

7. 4* + 9* 36 M
4- -00273791 (4 + J)

where 1=- longitude west of the place.
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Equation of time, 203.

Curves shewing variations, 209. Jupiter
Vanishes for times yearly, 210.

Equator celestial, 51.

terrestrial, 29.

Equatorial telescope, 62.

Equinoxes, 89.

precession of, 148.

Error of transit instrument, 66.

collimation, 69.

deviation, 68.

level, 67.

residual error, 67.

Eudoxus, 119.

G

Galileo, 17.

Gravitation, law of, 135.

Gregorian calendar, 218.

H

Halley methods of finding golar

parallax, 178.
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Phases of the moon, 105.
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138
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movement of, 154.
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Saros, of the Chaldeans, 5, 196.

Satellites, 34.

of the planets, 141.

Saturn, rings, 142.
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Sextant, 75.

Sidereal day, 58, 200.

period, 103.

year, 13, 216.
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Solar system, table of, 140.

Solstices, 89.

Solstitial colure, 153.

South point, 51.
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; apparent, 203

;

conversion of, 211
;
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205.

Tithis, 6, 9.
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64.
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Tropical year, 13, 216.

Twilight, 162, duration of, 163 ;

lasting all night, 163.

Tycho Brahe, 13, 121.

Tychonic system, WJ5,
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Variation of day and night, 89, 91.
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127.

phases of, 129.

transit of, 198.

Weber, 7.

West point, 61.

Whitney, 7.

Yao, 3.
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217; sidereal, 216; tropical,

216.

Zenith, 50.

Zenith distance, 55.

Zodiacal system, 7, 10.








