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THE CALCULUS.

CHAPTER I.

The Differential Calculus.

1. The treatment of functions in the fourth-class algebra

showed how to find the slope of a graph by determining the de-

rivative of the corresponding function, or to find, by the same

means, the tangents to certain curves when the equations of the

curves were given. These problems exemplify in an elementary

manner the important properties of the Differential Calculus;

we now have to extend the same principles further, and must

adopt a more generally useful style of notation.

In order to introduce this notation as simply as possible, we
shall repeat part of last year's work with some variations.

2. Increments.—In finding the slope of the graph of the func-

tion y— x2
, we supposed x to be increased to the value (x+ h),

y thereby being increased to the value (y+ Jc). Either h or k

might be negative, indicating a decrease. Such a change in a

variable is called an increment, and two increments like these,

one of which results as a consequence of the other, are called

simultaneous increments.

We shall now indicate any increment by a composite symbol

consisting of the letter A (the Greek capital delta, equivalent to

the English D) followed by the symbol for the variable of which

it is an increment. Thus the increment h given to x to increase

its value to (x+h), will now be written Ax and read " delta x,"

or " increment given to x." Similarly for Tc as used here we shall

write Ay (delta y).

2



2 The Calculus.

An increment such as Ax or Ay may be positive or negative,

indicating an increase or a decrease.

To represent a certain sort of increment, the use of which will

be explained in the next article, the small Eoman d is used in

place of the capital A. The resulting symbols dx, dy, are read

d-x, d-y, or differential of x, differential of y.

The following problem illustrates the use of these symbols for

increments.

3. Problem of the Tangent.—To draw a tangent at the point

x2

P (x ,y ) of the parabola, y=— , referred to the pair of per-
a

pendicular axes XOY. (Fig. 1.)

Fig. 1.

As the point P of the tangent is given, it will be sufficient to

find the slope of the tangent.

Suppose the tangent to be the line P Q . Through P draw



The Differential Calculus. 3

P N parallel to OX of any convenient length dx, and through N
draw a parallel to OY, meeting the curve at A and the tangent

at Q . Call NQ = dy; then our problem is to find the value of

dy, so as to get the ratio, dy/dx, of dy to the assumed length dx.

This ratio will be the required slope of the tangent.

Suppose P to be any point of the curve ; draw PM parallel to

OY, meeting PJSf at M, and the secant P P, meeting AN at Q.

Then P M=Ax and MP— Ay are increments which, if given

to the coordinates (x0f y ) of P , will change them to the co-

ordinates (x + Ax, y + Ay) of P. If the point P is supposed to

slide along the curve through P , the secant P P will occupy the

position of the desired tangent when P passes through the point

P ; during this process the point Q will move along the line AN,
passing through Q when P passes through P . The desired

slope of the tangent, p° = -^~ , is thus the value taken on by

the variable ratio p N when P reaches P and Q reaches Q .

ON PM Av
But by similar triangles, jz N = " = -^ , and when P

reaches P , Ax=0. Then the required slope of the tangent is

A//dy

dx Ax AX=0

But now, since P is on the curve,

and since P is on the curve,

subtracting, we find

to

2x Ax+(Axy
u a 9
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Ay __ 2x + Ax
.

Az ~ a '

dy 2x + Ax
dx a Acc=0

dv=-?-^- • ^/r\*y—
a

2x

Thus, in order to draw the tangent, after laying off P N any

2x
convenient distance dx to the right, we lay off NQ ,

—- times as

far upward, and draw PQQ , the required tangent.

If the tangent P Q makes the angle r with the axis OX, then

evidently

-^ = tanr= slope of tangent to curve.

As P may be any point of the curve, the result is expressed

in general : The tangent line at any point (x, y) of the parabola

y—— has the slope—- .u
ft

r a

x2

For instance, the slope of the tangent to y=— at the point

2v3
(3, f) is —~— = 3 ; so that, if any distance dx is measured to

the right of the point (3, f ) and three times as great a distance

upward from the point thus reached, a point of the tangent will

be found.

Note the convenience in the discussion above of having two

expressions for an increment; the A forms have been used for

variable increments, and the differential, or d forms, for the

fixed increments the ratio of which is to be determined. More-

over, Ay is an increment of the ordinate of the curve, whereas dy

is an increment of the ordinate of the tangent.



The Differential Calculus.

4. Equation of the Tangent.—For any curve except a straight

line, -^- — tan r, the slope of the tangent, has different values for

different points of the curve; its value for any particular point

(x ,y ) is indicated by

dy

dx
:=tan<rn .

so.vo

Since the equation of the line through (x
, y ) having the slope

m is y— y = m(x— x )
(Algebra, Art. 101), the equation of the

tangent to a curve at the point (x
, y ) of the curve is

y-yo={v-Xo)
dy

dx
*<h Vo

5. Examples.

1. Find the general expression for ~^-
Ay
Ax

for the
A£=0

curve Sy= x3
, and using 1 inch as unit, plot the points of the

curve for which x— — 3, — 2, —1, 0, 1, 2, 3 respectively, and at

each point construct the tangent, using any convenient value for

dx. Sketch the curve.

2. Derive the general expression for -^- = Ay
Ax

for each
Aa?=0

of the following curves, and write the equation of the tangent to

each at the point indicated

:

(a) x2= Sy at (4, 2) ;
(b) x2= 27y at (9, 3) ;

(c) ±x3= y at

(i, i) ;
(d) Sy= a* at (2, 1) ; (e) ay2= b

2x at (x , y ).

Ans. (a) x-y= 2, (b) 2x-3y= 9,- (c) 3x-y=l, (d)

3s-2y=4, (e) 2ay y=l) 2 (x+x ).

6. Variation of Functions.—A variable y is said to be a func-

tion of a variable x when it depends upon x for its value, and so

changes as x changes. It is often important to measure the rela-

tive Tate of change of the function y with respect to its variable
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Fig. 2.

x; that is, to tell, when a change is made in x, how many times

as much change is made in y. In the case of an algebraic func-

tion of the first degree, the relation is evident; for instance, if

y= 2x+ 7, an increase Ax given to x will change y to 2(x+ Ax)

+ 7, increasing it by Ay=2Ax, twice. the increase in x. More

generally, if y=mx+ b, and x is

increased any amount, y will be in-

creased m times as much. This

shows very clearly in the graph of

the function—a straight line, where

^ the increment given to x is repre-

sented by the horizontal leg of a

right triangle, and the correspond-

ing increment of y by the vertical leg. All these triangles are

similar for the same graph, and the ratio of the legs in each is

_JL = m. Thus from whatever value and by whatever amount x
Ax J

may be increased, y=mx+ b is increased m times as much.

When a function has a curved graph, the relation is more com-

plicated; the ratio of the increment of y to the increment of x

which produces it depends upon the initial value of x, the amount

of the increment given to x, and the direction of the increment

—

whether it is an increase or a decrease. It is, however, of great

value to extend the conception of the rate of increase of y rela-

tively to x to mean the limit approached by the ratio of the in-

crements of y and x as these increments approach zero together.

^JL , is called the derivative of y with re-
Az

J Aaj=o

spect to x. Before going more fully into the process of finding

derivatives, we shall consider a problem illustrative of the mean-

ing and use of the new idea.

It will be understood, of course, that in this article the letters

y and x have been used for function and variable merely for con-

This limit,
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venience and brevity; all sorts of letters may be expected in

various problems. For instance, time is almost invariably indi-

cated by the letter t, and distance (or space) by s.

7. Speed.—The simplest idea of speed is familiar; if a train

goes 80 miles in 2 hours, we say it has a speed of 40 miles an

hour. The distance moved by any body divided by the time occu-

pied in the motion is called the mean speed of the motion.

The following notation for speed is used

:

80miles 4n » 80x5280 , Q2 »/m v-—

;

= 40 m/n= s—^—=7; =o8*f/s(ft. a sec).
2 hours ' 2x60x60 3 ' v '

When the mean speed of a body is the same for all intervals of

time during the body's motion, regardless of when they begin or

how long they last, the speed of the body is defined as being

equal to its mean speed. When a train is stopped at a station

or started from rest, its mean speed changes. If we compute

the mean speed for an interval of time immediately following

a given instant, then for shorter and shorter intervals also im-

mediately following the given instant, we find that as the in-

terval becomes shorter the mean speed changes, reaching a defi-

nite value when the length of the interval is zero; this value is

defined as the speed at the instant in question.

Suppose, for instance, that a train is slowed down, and that

it is known that the number of feet (s) run in t seconds after

the power is shut off and the brakes are put on is given by the

formula

s= 60/-4/2
,

what is the speed four seconds after, or when 2= 4? When tf= 4,

s= 60£-4/2= 176;

in the following table the computation of the mean speed is

shown for several intervals immediately following the fourth

second since the train began to slow down

:
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t at end of
interval.

s at end of
interval.

Distance covered
during interval.

Length of
interval.

Mean speed
duringinterval.

5 sec.
4.1

4.01

4.001
4.000001 °

200.
178.76
176.2796
176.027996
176.000027999996

24 ft.

2.76
0.2796
0.027996 •'

0.000027999996 V

1 sec.
0.1

0.01

0.001
0.000001 ••

24 f/s
27.6
27.96
27.996
27.999996 "

This mean speed is very evidently approaching the limit 28 f/s.

We can demonstrate this rigorously by finding the mean speed

for any interval, At seconds long, immediately following the

instant when t— 4:. Call the distance gone during the interval

As (it is the increase in s caused by the increase At in t).

When t= ±+ At, s=176 + As; so

176 + As=60(4+ A£)-4(4+ Ai0 2= 176 + 28A*-4(A0 2
ft.,

and

As=28A£-4(A0 2
ft.

The mean speed during the interval of At seconds is

:

Mean speed= -^- = 28- 4A£ f/s.

If we replace At in this expression for the mean speed by the

values used for the length of the intervals in the table, we obtain

the numerical values given in the table for the mean speed ; and
it is now evident that if we make At= 0, we get for the actual

speed after four seconds

ds

~dt

As

At
[28-4A*]

At_ //JJ= 28f/fl.

A*=0

8. We can find the speed when the train has gone any num-

ber, t, of seconds since the slowing down began. As before, take

any interval At seconds just after the instant in question, and let

As be the distance gone during the interval, s the distance gone

at the beginning of the interval

:
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s=60t-4t2
,

s+ As=60(*+ A*) -4(*+ A*) 2
;

As=60A*-82A*-4(A*) 2
;

60-8*-4A*As
A*'

is the mean speed during the interval ; the speed is

As_ ,ds

dt
i At

J u=o

The speed is zero when t= 7% sees.; then s= 225 ft. We thus

see that after the brakes are put on, the train will go 225 ft, in

7-J sees, and then stop.

9. There is a very important connection between this problem

and the preceding one, a relation which becomes apparent when

we draw the graph of the function s= 60t— ±t2
. In Fig. 3 this

graph is drawn so that a unit length for s represents 50 ft., and

a unit of t represents 1 sec. Each step in the process of finding

the speed at the end of t seconds can be shown graphically: the

point P shows a distance of s ft. traversed after t sees.; the

point P' shows (s+ As) ft, after (t + At) sees.; the mean speed

As
in this interval, or — , is the slope of the secant line PP'; the
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limit approached by the mean speed, or the actual speed at P,

is the slope of the tangent line at P.

According to the notation of the preceding article, we should

ds
represent the slope of this graph by tan t— — , where dt is any

convenient length (drawn to represent 3 sees, in the figure) and

ds is so taken that -^ shall be equal to the value of
At At=0

For this reason we have used the fraction -57- to represent the

Notice that tan t= 60— St becomes zero when t— ^\, and is

negative for larger values of t, as appears, either from inspection

of the graph or of the algebraic expression 60— St (r may be

measured from the axis of abscissas to either part of the tangent,

and changes from the third quadrant to the second, or from the

first to the fourth, as t passes through the value 7-J). This cor-

responds in the problem to a speed which decreases to nothing

and then becomes negative. The problem as stated and the graph

representing it end at the value t= 7-J, indicated by the point A ;

if, however, the train were stopped by reversing the engines, it

would be only momentarily stationary and then begin to back.

In this case, the backing would be indicated by the negative

speed, and represented by the part of the graph beyond A.

Note again the difference in the use of the symbols com-

pounded with A and those compounded with d. As and At rep-

resent simultaneous variable increments, made to approach the

limit zero (and reach it) ; ds and dt represent any fixed values

whose ratio is this limit. Sometimes dt, ds, and As are grouped

together as simultaneous increments; in this case all three rep-

resent constants; dt represents some increment of time, As the

actual distance traversed in this interval, and ds the distance

that would have been traversed if the speed at the beginning of

the interval had remained unchanged throughout the interval.

On the graph (Fig. 4), dt appears as an increment of the abscissa
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of the point P, As as the corresponding increment of the ordinate

of the curve, and ds as the corresponding increment of the

ordinate of the tangent.

s
250

P^L^r

P'

200 as
V

ds -^
r

/50
eft

100

so

4 5 6
Fig. 4.

/a

10. Examples.

1. A body falling freely near the earth describes a distance

s= 16t2
ft. (nearly), when t is the elapsed time in seconds; find

the velocity at the end of 1 sec, at the end of 2 sees., and at the

instant of starting.

2. A body projected vertically upward from a height, ft, with

a velocity, v, will at the end of t sees, have gone to a height

s= li+vt— 16t2
ft.; in each of the following three cases, find the

speed after t sees., and the speed when the body reaches the

ground; and in each case draw the graph representing s as a

function of t, and draw t to represent speed= tan t.

Case 1: ft = 100, v— +18 (bodv thrown upward at 18 f/s).

Ans. 18-32* and -82 f/s.

Case 2: 7i = 100, v—— 18 (body thrown downward at 18 f/s).

Case3: ft= 100, v= (body dropped).

11. The General Problem of the Derivative.—In the problem

of the speed of the train, we have an instance of the general

problem of the differential calculus ; the problem, that is, of find-

ing a measure for the relative rate of increase of a function as

compared with its independent variable; the distance traversed
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by the train is the function 60/ — It2 of the number of seconds

elapsed since the brakes were applied. We may have occasion to

consider the rate of increase of any function relatively to its

variable ; for functions of other variables than the time, this rate

will have different meanings, but for any function whatever its

measure is the slope of the tangent to the graph of the function,

and the method of its determination is the same as for the time-

rate or speed.

If a point is moved along the graph of any function from left

to right, it will go up or down according as the function in-

creases or decreases with an increase of the argument. The

curve shows by its steepness how fast the function changes in

value as compared with its argument. The direction of the curve,

which changes from point to point, is at any particular point the

same as the direction of the tangent at that point, and is deter-

mined by the angle r from the axis of x to the tangent. Thus the

value of tan r for the graph is naturally the measure of the rate

of change of the function, as compared with its argument.

The rate of change of any function as compared with its argu-

ment, or the derivative of the function, is always determined in

general form, as a function of the argument; the determination

for a particular value of the argument has been made in these

early examples merely as a means of simplifying the conception

of the subject.

The distinctions already noted are made in general between

the uses of the symbols compounded with A and those com-

pounded with d; and, in addition, it is customary for the sake of

brevity, when the function is indicated by y or by f(x), to indi-

cate the derivative by y' or f(x) (read "y prime," "function

prime x"). We thus have the general definition or notation of

the following article.

12. Derivative of a Function.—Given the function y= f(x),

its relative rate of increase as compared with its argument x is
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called its derivative with respect to the argument, and is deter-

mined as follows:

f(x) = f(x+ Ax)-

Ax
«*)

Az=0 Ax
dy
dx

The law according to which a change in x causes a change in

y or f(x) is more explicitly stated by giving the value of the dif-

ferential of the function

:

dy— f{x)- dx or df(x) =f(x)- dx.

Finding either the derivative or the differential is called dif-

ferentiating the function. As an example, we have already shown

that if

y=f(X)=X2
,

tf=f(x) =
(x+Ax) 2— x2

Ax
-2x-ty-

dx
_ Aa<=0

dy— 2x - dx; d(x2
) — 2x • dx.

That is, the change in x2
is (momentarily) 2x times the change

in x.

13. Relation between Derivative and Graph.—If the tangent

to the graph of y=f(x) makes the angle r with the axis of x,

2/'=f(z) = -§=tanr.

When a function increases as its argument increases, its de-

rivative is positive, and the angle r for its graph is in the first

or third quadrant; when a function decreases as its argument

increases, its derivative is negative, and the angle t is in the

second or fourth quadrant; when, as the argument increases, the

function is neither increasing nor decreasing, but changing

from one state to the other, its derivative is zero and t= 0° or

180° ; i. e., the graph is parallel to the axis of abscissas. The
function in this last case is said to have an extreme value, or an
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extremum; a maximum or a minimum according as the value is

greater or less than the adjoining values on either side.

The reader should notice, in the examples already expounded

and in those that follow, that the determination of the value

—y~ = —f- —1/ in every case consists in evaluating an
^X

J A#=0
dX

indeterminate fraction, a function of Ax in the form -=r . (See

Algebra, Art. 45.)

14. Examples.

Apply the formal definition of the derivative to the determina-

tion of the following

:

1. Find the derivative of ax + b with respect to x. (a and b

constants.) Ans. a.

2. Find the ^-derivative of x2+ a. Ans. 2x.

3. Find the ^-derivative of bx2
. Ans. 2bx.

4. Find the differentials of xs and of at3
. Ans. 3a?dx, 3at2dt.

15. Rules for Differentiating.—The process of determining a

derivative by means of the formal definition is used only to estab-

lish a few general rules, from which we can find the derivative

of any function or combination of functions. Several of these

rules were established in the Alegbra (Arts. 86-87, 113-114).

These are here repeated in the new notation, with some addi-

d df(x)
tions. The notation-^— (f(x)), for '

,
v '

is merely a matter

of convenience when the parenthesis is long.

The derivative of the sum of two functions is the sum of

their derivatives. If f(x) and <f>(x) are two functions of x, we

have by definition

£uw ++(*)] =
f{x + Ax) + <f>(x+ Ax) - [f(x) + <j>(x)]

Ax Aa;=0
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f(x+ Ax)-f(x) <j>(x+ Ax)-<}>(x)

Ax Ax Ax=0

d[f(x)+<f>(x)]=f(x)dx+ cf>'(x)dx;

so that the same rule holds for the differential of a sum.

The derivative of the difference of two functions is the dif-

ference of their derivatives. The proof is precisely similar. It

is evident that these rules may be extended to apply to the deriva-

tive or differential of the algebraic sum of any number of func-

tions.

The derivative of a constant is zero. This is obvious, as the

change in a constant c, corresponding to the change in any

variable, is nothing; or the change in the constant is zero times

the change in the variable. Again, the graph of y— c is a

straight line, having t= and tan t= for all values of x.

As a corollary of this and the preceding, the derivative of

[f(x) -\-c\, where c is any constant, is f(x), or

-^[f(x) +*]-/'(*).

Also,

d[f(x) + c]= f'{x)dx.

The derivative of the product of a constant and a function

of x is equal to the product of the constant and the derivative of

the function.

For by definition,
^

c[f(x+ Ax)]-cf(xj
Axii«wi= = cf'{x).

Ax=Q

As a differential,

d[cf(x)]= cf'(x)dx.

The last two rules are conveniently stated : In differentiation,

a constant term vanishes; a constant factor persists.
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-j-{xn)=nx"-i, or d(x") = nxn-i dx.—By definition,

(x+Ax) n -xn

Bv the binomial formula,

Ax A:r=0

(x+Ax) n= xn+ nxn-1Ax+ n ^n ^ xn
~2 (Ax)

+ terms containing higher powers of (Ax)

Hence

(x+ Ax) n— xr

Ax Ax=0
71X
n-i^n(n-l) xn _

2Ax
2

+ (higher powers of Ax) nxr

Az=0

This theorem is here proved on the basis of the binomial

theorem, itself proved (Algebra, Art. 54) only for positive in-

tegral values of n. The extension of the proof to other values of

n is made in a later article of this book (Art. 19.)

Derivative of a Product.—The derivative (or differential) of

the product of two functions is the sum of the products formed

by multiplying each function by the derivative (or differential)

of the other.

—r- (uv) = v—i ^ u ~j-~! or d(uv) = vdu Jrudv, where u and v

are functions of x.—Let Au and Av be the increments of u and v

corresponding to the increment Ax of the independent variable

x; then, by definition,

dx
(vv) Uu+Au) (v+Av) — ttvl

Ax jAar=(

[
v • Au+w Av+ Au- Av ~\
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Aw . Av Aw Av

[Awl _du TAvI dv j|~Aw Av a
"1

SiL-0 " S ; L^L=o " Si and
[.Si • Si •

A
*_Uo

= °-

Hence

d , N du . dv_ (w)=l,_ +tt_,
or

d(wv)=V' <?w+w- dv.

This formula enables us to differentiate the product of any

number of functions of a single variable; and in combination

with other rules to differentiate any polynomial function of two

or more variables. For example,

d(x3 -3x2
y+ y

2 -2xy+ 3x)

= 3x2dx-3[x2dy+ yd(x2)]+2ydy-2(xdy+ydx)+3dx
= (3x2-6xy-2y+3)dx- (3x2 -2y+2x)dy.

16. Examples.

1. Find the ^-derivatives of the following functions: (a)

2-3x+ x\ (b) x2 -x\ (c) x* -14z2+ 24z+ 12.

Ans. (a) 3(z2 -l); (b) z(3z-2); (c) 4(^-7a;+ 6).

2. Find the value of x for which each of the derivatives of

Example 1 is zero. Ans. (a) ±1; (b) 0, f ;
(c) 1, 2, — 3.

3. Trace the curve y=x2— xs
, and find the equation of the

tangent at the points where the curve intersects the ar-axis.

Ans. y=0 and x+y=l.
Find the derivatives of the following

:

4. x\ lOz4
. Ans. 7z6

, 40z3
.

5. x5 -3xs+ l'7x. Ans. 5z4 -9a:2+ 17.

6. at2 — bt+ c. Ans. 2at— b.

Find the differentials of the following:

7. -as 2
, 6s6

. Ans. -2asds, 36s5
<fe,

8. — -V" + v £+s. Ans.
(
— gt+v )dt.

9. — 0#+ vo . Ans. —gdt.

3
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10. In each of the following identities;, find the derivative of
the left member by the rule for the product, and check by find-

ing the derivative of the right member.

11. Differentiate u-u=x by the rule for the product, finding

U~W =^ and thence snow tnat ~d£ ^2Vx'
17. Derivative of an Implicit Function (Algebra, Art. 114).

—

When a function is defined by an implicit relation such as

x2+ y
2= a2

, or, in general, f(x, y) =0, it is understood that x

being given any value, y must have such a value as to make the

relation true, and is thus confined by the relation to a value or

values depending upon the value of x; y is, in other words, a

function of x in the ordinary sense. For any pair of values of

x and y so related, then, x2
.-\-y

2 or f {x, y) is a constant, and its

differential is zero. Differentiating x2+ y
2= a2

, we thus find that

2xdx+ 2ydy= 0,

or

dy _ _ x_

dx y '

thereby determining the derivative of y with respect to x.

Whatever may be the form of f(x, y), the equation df(x,y)=0
involves dx and dy, so that differentiating any implicit relation

between two variables results in an equation involving their dif-

ferentials, which can be solved to give a value of the derivative of

one with respect to the other.

18. Examples.

Find the derivative of y with respect to x in each of the

following

:

dy _ y— 2x
1. x2 -xy+ y

2= l. Ans. dx~2y-x'
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2. fa'-8if+4*-«*+*=.0. Ans. | = |±|-

3/^-3^+*-^. An, | = _-g5|±l.

19. The Differential of jr" when /* is Fractional or Negative.—
We have proved (Art. 15) that dxn= xn

~1dx for the case in which

n is positive and integral. Suppose now that n is a negative

integer, and let n = — m, m being of course a positive integer.

Let y=xn= x~m ; then

xmy=l.

Then (Arts. 15 and 17) :

x™dy+ mxm~1ydx= ;

-£- — —mx~ x
y— nxn ~x

.

Thus the rule is proved for all integral values of n, positive or

negative.

Suppose, further, that n is fractional (either positive or nega-

tive), and let n=— , p and q being integral. Let y= xn = x'
P
9

'

;

then

yQ= xP,

qy
q~1dy= pxp'1dx,

dy__ p x*-1 _ p .^jLfe-u p p=3

ax q y
q

q q

^- = nxn-1
.

ax

This proves the rule for any rational value of n, positive or

negative, integral or fractional; we are thus enabled to find the

derivative of any algebraic expression.
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20. Examples.

Find the derivative of each of the following:

1. \=x~2
. Ans. -2x-3=^. 5. II— . Ans. -fart.

x2 x3 y x2

2.—. Ans. -i. 6.-4=r. Ans.
a? a;

2 ' ' vV 2V#5
*

3. VJ=s*. Ans. |^=^V. 7. *•-<*. Ans. f^-JK

4. VF. Ans. fVz. 8. s
2 -V~s. Ans. 2s-—!-^

Find the differentials of each of the following

:

9. V^F. Ans. iVat'dt. U- 2 a/jL. Ans. -^=.

Find the value of -^- from each of the following

:

»-(f)'+(i)'=>- *-*-;*
21. The Differential of a Function of a Function.—If we are

told that of three men, A, B, and C, A does twice as much work

under given conditions as B, and B three times as much as C,

we conclude readily that A does six times as much as C. By the

same connection of ideas, if y is a function of x, and z is a func-

tion of y; for instance, if y—x2 and z= y
3
, so that the rate of

increase of y is 2x times that of x, and the rate of increase of z

is 3y
2 times that of y, the rate of increase of z is clearly

3y
2 X 2x or 6xy2 times that of x. This is formulated in general

:

If y—f{x) and z= <f>(y), so that
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dz dy dz „, v , t/ *

i& = iit-w=n*)",' (y) -

The identity is sufficiently evident from the fact that dy can-

cels out from the differential expressions for the two derivatives.

The importance of this relation in actual work is very great;

there is indeed no single principle upon which so much depends

in the practical use of the calculus.

Suppose we wish d(x2 -\-ay. We may say:

Let y— (x?+ a) ; then

d(x*+a)*=d(tf)=Btfdt,j

but dy—2xdx; so

d{if) =oif • 2xdx= 10x(x2 + a) 4dx.

With a little practice, however, most of these steps may be

omitted or taken mentalhT

, as follows

:

d(x2+ a) 5= 5(x2+ a) 4d(x2+ a)

= o(x2 + a) 42xdx

= 10x(x2+ a) 4dx.

x dz
Again, given x2 +y2= ar, z— ; to find -j- as a function

of x and y. We have

:

2xdx+2ydy=0;
dy -_ x

m

dx y
And again,

z=-xy~1
,

dz= xy~2dy— if^dx,

dz _x dy _! x I x \ 1_ y
dx y2 dx y

2
\ y I y

'

dz x2
1_ _ x 2+ y

2

dx~ if
"

y
"'

y
3

Since x2+ y
2= a2

, this can be simplified:

dx y
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22. To most persons the simplest way to use the rules of dif-

ferentiation is to learn the expressions for fundamental differen-

tials, and to regard the derivative of a f(x) as the result of find-

ing the differential and dividing by dx.

Moreover, as the principle mentioned in Art. 21 is of the

greatest importance, it is well to memorize the fundamental

rules in such a way that it shall not be readily possible to lose

sight of its application. So stated, the rules applying to alge-

braic functions are as collected below

:

If u and v are any functions of the independent variable,

d(u±v)=du±dv,
d(uv) =udv+vdu,
d(u^) =nun~1du,

No other rules for algebraic functions should be memorized

except as they force themselves on the attention through per-

sistent occurrence; unless an exception be made in favor of the

rule for a quotient, a special case of the rule for a product, which

is readily seen to be

-, u n -, vdu— udv
d— = duv-1= ——z .

V V 2

This rule is useful only when both terms of the fraction are

variable. If either term is constant, the rule for un is simpler to

apply.

23. Examples.

1. Prove the rule for differentiating a quotient.

2. Show that d ^y =
x*_ Ux+±9

dx.

Show, without first expanding the expressions to be differ-

entiated, that:

3. d(a-x) 4= -4:(a-x) 3dx.

4. d(3a+ 2x) n= 2n(3a+ 2x) n-1dx.

5. d(4:-7x2
)
5 =-H0x(4-7x2

)
4dx.
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6. d(3-2x3
)
6 =-36x2 (3-2x3

)
5dx.

7. d(a*+ a2x2+ x*) 3= 6x(a 2+ 2x2
) (a*+ a2x2+ x*) 2dx.

8. d(a— x) 2 (a+ x) 3= (a— x) (a-\-x) 2 (a— bx)dx.

n 7 a —adx , a adx
9. d —— = t—;—

r

2 i
d =

x+a ~ (x+a) 2
' a—x~ (a— x) 2

'

[Xote: Use un rule.]

10. d(2a-3x) 2 (3a-2x) 3 =-30(a-x)(2a-3x)(3a-2x) 2dx.

/j2
4:Q,

2xdxn
-
d W+¥y

=
(a°+a?y ^T

°te: Use u" rule -3

12. dVa2 + x2= ,

xd
2

X
. [Note: =d(a?+ x2 )i.]

V a
i

2'

13. d
Va2 -x2 V(a2 -x2

)

/a— x _
V a+x ~

(a

— aax
. a

(a+ x)Va2 -x2
'

la+x _
V a—x ~

(a-

adx

x)\/a2— x*

(a+ x) 3 (a+ x) 4

(3a-2x) 3 _ 6(a+ x)(3a-2x) 2

17
•
d (2a-3x) 2

~
(2a-3x) 3 dx'

18. d(a-x)$(a+x)l= -$(a+2x) (a-x)-l(a + x)-*dx.

_ _ 1 — dit . /- dw. , 1 — du
19. d— = -zt~, dVu= ^—^:, a—;?. = -zr>w wz

'
~ 2%/u \/u \/ul

A 1 -2du
d —

;i = =—

20. dV(a2+ 3^) 3= 9zVa2+ 3z2dz.

T
g2+ 2a&:r+ &

2
:r
2 _ o(a+ &x)

*1b d 2(a+6) 3 ~ (a+ b) 3 dx'

Va—x—Va+ x
22. d[Va-x+Va+x~\ = , , 2— daL 2ya2—x2

i. ^;2x3 -3a3 _ z2V3dz
3a Va(2^-3a3

)

'
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, x2— a2 4a2xdxJ I'
' \'x*+ a2 3(x2 -a2 )%(x2+ a2 )*'

25. d i/
a^4 = -a2x(a2 -x2 )-i(a2+ x2 )-Zdx.

26. rf(w+ i;)
w= w.(^+ v) w-1 (^+Ji;).

27. d(utl+ vn)=nun-1du+nvn-1dv.

28. d(a+Un
)
m=nmb(a+Mn

)
m-Hn-1dt.

M. d «_=
~*i

2
l
p-\Cp dp.

bp 2— cps (bp2— cp 3
)
2 e

30. If x=at%
, y=bt, d(x2 +y2

) =2t(2aV+ b
2
)dt.

31. Iix=at2,y=U,d^ = =^.

Z%:U X=at%y=U,d^
y
= ^-.

33. In 30-32, find the corresponding derivatives with respect

to x (see Art, 21) :

d(x2+y2
) = 2t(2a 2

t
2+ b

2 )dt _ 2a2
t
2+ b

2

dx 2atdt
'

a

dx\x)~ 2aH3
' dx \2ay) ~ 4aV "

34. if y= ly?z?^ a -**
2
,

^ a ' dz aVa?-x2

24. Trigonometric Functions. Circular Measure.—When we

compare the increase of a function with that of its argument,

the units used are of essential importance. For instance, in the

speed problem of Art, 7, if the speed had been computed in

yards a second rather than feet a second, the rates would have

been one-third as great numerically ; if in yards an hour, twenty

times as great.
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Any trigonometric function, such as sin 6, being the ratio of

two lengths, is an abstract number, so that there is no question

of its unit; but the angle itself may be measured in terms of

various units. Of these the most convenient for use in the

calculus is the radian, or the unit of circular measure; and in

.this subject it is invariably the unit used. So it must be remem-

bered that for the purposes of the calculus, the argument of any

trigonometric function is always understood to be expressed in

circular measure.

As this understanding always exists, it is customary to use

merely the name of the argument, without reference to the unit

;

thus we speak of comparing the changes in sin and 6, meaning

by the circular measure of 6, or the value of 6 in radians.

When the name of an angle is used to indicate a quantity, the

quantity indicated is always the circular measure of the angle.

25. Derivatives of Trigonometric Functions.—In order to find

the derivatives of sin 6 and cos 6, we shall need to know tho

values when A0=O of certain forms. Construct a figure (Fig.

5) showing graphically the circular

measure I—
J

, the sine f —
J

and

the cosine ( —
J

of an angle A0,

and add the tangents as shown.

Note that doubling A0 doubles also

s, a, and t. As A0 approaches zero

as a limit, c approaches r as a limit,

and s, t, and a each approach

zero.

Fig. 5.

By geometry,

2s<2a<2t,

r r

or:

sinA0<A0<tanA0,

A0K
sin A0

<secA0.
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Now

hence

sec A0= —
J A0=O

A0

sin A0
= 1.

&e=o

By means of this proposition, we can now find the derivatives

of sin and cos 6.

By definition,

^sinfl .

dO

which may be written

^sin 6

dO
=

"

sin(fl+Afl)-sinfl

A0 A0=O

"

20+A0 . A0
2 cos—-— sin —=-

z z

Ad Jaa=

dsmO
JA0 J ^=o

dO
= cos 0,

since the limit of the fraction is 1, or

(/(sin 0)= cos Odd.

Similarly,

dcos

dcosO

d$

"

cos(fl+ Afl)-cosfl

A0 J A0=O

sin#,

or

</(cos0) = -sin0(/0.

We can find these derivatives much more simply by making
use of the expressions for the sine and the cosine as algebraic
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functions of the circular measure, which are shown to be (see

Brown's Trigonometry, Art. 66).

cos^l-¥ + ¥ - 1+ ....,

whence the derivatives of the sine and cosine of an angle with

respect to its circular measure are

<2sin0_, P 0* P
Str - 1-

-jjr
+ "jT "w + ' *

*

'

* cos
'

We can now differentiate the other trigonometric functions,

which are algebraic functions of sine and cosine.

iJ™l = jjf (cos 6)--= - (cos ey> ( -sin $)

sin A , „= —5-^ = sec tan 0.
cos-

i^* = -fL (gin*)-i=- (sin «)-*(«»«)

COS
/i x /)= ^—. = — csc cot 0.

sin2
6

-^tam6=~ sin0(cos0)-1

= -sin(9(cos0)-2 (-sin0)+(cos0)-1 cos0

= l+tan2 0=sec2
0.

sin 9( — sin 0) —cos fl(cos 0)

sin2

= -^-=-csc2
0.

sin2

One of the last two has been derived by the rule for the

product, the other by the rule for the quotient; each is readily

handled in both ways.

d , a d /cos 6\
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26. The principle of differentiating a function of a function

by successive application of several rules (Art. 21) occurs con-

stantly in treating trigonometric functions. E. g.,

d(sin3 20) =3 sin2
2(9 J(sin 20)

= 3 sin2 20 cos 20 d(20) =6 sin2 20 cos 20 dO.

It is likely to be the case that a trigonometric expression can

be put in several different forms, one of which may be simplest

for one purpose, another for another purpose. For instance, we

might write

3 sin 40 sin 20 dO for 6 sin2 20 cos 20 dO,

or

24 sin2 cos2 0(cos2 0-sin2 0)d0,

or might express this last form in terms of sin2 only or of

cos2 only. The answers to the examples may need some such

reduction before they agree with those in the text.

27. Examples.

1. Prove the rule for d tan from the rule for d—.
v

2. Prove the rule for d cot from the rule for duv.

3. Since, if sin = 2/, and cos6=x, we have x2+ y
2= l,

fill nT
-~jn-=x> prove from these two relations that—^~= — y. Again,

prove this from the relation cos = sin(£— 0).

Prove the following

:

4. dsin2 £= sin 2x dx— — dcos2
x.

5. dsm(x2
) =2xcos(x2 )dx.

6. dcos(x2
) = — 2xsm(x2 )dx.

7. dVl-cos =±Y2 cosldO.

8. JVl + cos (9= -jY2 sing dO.

y i+cos0 2

1U
-
a

l + cOS0~ 1 + COS0*

11. J(csc0-cot0)=isec 2
fd0.
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12. d cos 50=— 5 sin 50 &0.

13. d(sin 70-sin 30) = (7 cos 70-3 cos 30)d0.
14. d cos 50 sin 20= |(7 cos 70-3 cos 30)d0.

2 sin t
15. J tan2 1 dt.

cos*

16. <2 sin ax2— 2ax cos ax2dx.

17. If £= <zcos<£ and ?/= 6 sin </>,

18. If x=asec<£ and ?/= &tan<£,

dy

dx

dy = &

cot <f>.

a

esc <£.

80- Ia ( 18>^(^)=-^- cot^

CSC3
<£.

Compare Exs. 17-20 with Exs. 34-37, Art. 23.

21. d(sec + tan 0)
n-n sec 0(sec + tan 0)

n
.

22. d(cos4 0-sin4
0) = -2 sin 2(9 d0.

23. For what value of the angle is it's sine increasing one-half

as fast as the angle ? The tangent twice as fast ?

Ans. £ and J.

28. The Inverse of the Trigonometric Functions.—The sym-

bol sin'1 (which is read "inverse sine") stands for "the angle

whose sine is .... " When it is used in the calculus to repre-

sent a quantity, it signifies " the cir-

cular measure of the angle whose

sine is .... " So for the other in-

verse functions. In the familiar

graphic representation of Fig. 6, the

straight lines s, c, t, and the arc

represent the sine, cosine, tangent,

and circular measure of the angle 0.

Thus s is the sine of the arc 0, and

is the arc of the sine s. Conse-

quently many mathematicians read

the symbol sin~x " arc-sine "; e. g., = sin_1 s= cos
_1

c= tan_1 t is

read : " equals arc-sine of s, arc-cosine of c, arc-tangent of t."

Fig. 6.



30 The Calculus.

29. Derivatives of the Inverse Trigonometric Functions.

—

The
x or

relations 0=sin_1 —. and sin0= —< are equivalent; differen-
ce a u

tiating the second, we find that

dx dxcos0d6=—- • d0=
a ' a cos

dx

hence
VaF=x~2

'

dsm-1 -^- = dx

By the same method we derive the following list of differentials

:

</sin-i — = -,
dx = -</cos-i —

,a \/a2— x2 a

adx
</tan-i — =

a a*+jfi
=-</cot-iT

dsw-l± = f*a xVx2— a*
= — (/C8C-1

To these may be added, if versin 0=1 — cos 0,

j i
x dx

(/versin-i — = —====.
a \/2ax—x2

It is helpful to notice, in order to remember when the factor

x
a appears in the differential of an inverse function of — , that

such a differential is always of degree zero, a, x, and dx each

representing a length, and so being of degree 1.

^oP
Fig. 7.
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It should also be noticed that an angle may be given much
more simply as the inverse of one function than as the inverse of

another; the best method of transformation is to draw the geo-

metric figure. For instance,

a a

x ci

30. Examples.

Prove the following

:

„ 7 . i x— 2 dx

b—x dx
2. d cos

-1

3. dtan"1

4. dtan-1

a Va2 -b 2+ 2bx-x2

2x— 1 4dr

2 ~ 4a;
2 -4a-+ 5

*

a:— b 2adx

2a x2 -2bx+ b
2 + ±a 2

5. -=— sin-1 (cos x) = — 1.

6. -^ *<«** *)=r
7

=2?
7. —=— (x sin

-1 #+ Vl —

#

2
) = sin-1 #

.

dx

8. -j— tan-1 -

dx Va2 -x2 Va2 -x'

9. -T- esc"1 '— = ,
, 2

.

ax x a2+ x2

d n
10. -j— sec

dx y~aF^tf~ Va2 -x2

^-S^ViTi— 57T or

( Note : Let a;= cos 9 and write the radical as a function of f .

)
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12. 4-

m

s-
—x

13.

dx™ VT" 2VT:
d

n
. /1+x 1

2Vl

14. -A. ^-i
fc,VI "*2=y=

15. -4- ten-
ds 1-x2 1 + x2 '

31. Exponential and Logarithmic Functions.—The derivatives

of exponential expressions like ax, ex, can best be derived from
their expansion into infinite series (see Algebra, Brown and
Capron, Art. 115). The value of ex, thus expressed, is

/m2 /v.3 n, 4

'"=i+*+f +f + f + ••••'

the derivative of which is

dx
~ 1+ *+

l!f + !- + ]T +
-

•••-'

Hence the derivative of ex is e^ itself.

dex = e* • dx.

Differential formulas of logarithmic expressions are simplest

when the base is e; logarithms to the base e (natural logarithms)

are therefore used more than any others in the calculus; and so

for convenience we write log x for loge x, and always understand

the base to be e when no base is written.

The value of dlogx may be obtained from the equation

y=loge x, which in exponential form, is

ey —x.

Differentiating, we find

so that

#dy=dx. -^= * -1v dx
. e9 x

, 4 dxdlogx=—.



The Differential Calculus. 33

The differential of ax may be obtained from the series for of,

or as follows: liy— ax,

logy=(loga)x,

-^-=(\oga)dx}

dy= (log a)ydx,

d(a*) = a* « log a • dx.

For d logo x we have, if y= loga x,

x-ay}

dx—av loga dy,

dx dx
dy

ay log a x log a

As i
= loga e, the modulus of the system having a as its

ioge a

base,

</log
ff
jr=loga e—

•

When a— 10, the modulus, log10 e= .43429 + , is usually de-

noted by ix, so that

udx .43429(/jt
rflogloJr=^- = —j—.

32. The Logarithms of the Trigonometric Functions.—By
combining the principles of Arts. 25 and 31, we readily obtain

the differentials of the logarithms of the trigonometric functions.

For instance,

,

.

d sin 6 cos dO
, nAnd log sin 0= -^y = -^0- =cot M, etc.

The full list is

:

</logsin0= cotO. dO,

(/log cos 0= —tan0. </0,

(/log tan 0= 2csc20.</0,

</logcsc 0=_COt0. (/0,

d log sec - tan . </0,

4 tflogcot 0=-2csc20.</0.
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33. Logarithmic Differentiation.—It often happens that the

logarithm of a function is easier to differentiate than the func-

/ d
2 -i-x2

tion itself. For instance, finding d ju — ^ involves a good deal
* (X X

of algebraic work, which is lessened appreciably by the following

process

:

Let

V a2 -x2 >
y-

then

log y=i log(a2+ x2
) —\ \og(a2 -x2

),

dy xdx xdx 2a 2xdx

y a2+ x2 a2 — x2
a^— x* 9

i _ 2a2xdx _ J a
2+ x2 2a2xdx 2a2xdx

1 ~ (a2-x2 )$(a2+ x2 )l'

Besides being convenient for products, quotients, powers, and

roots, logarithmic differentiation is necessary for exponential

functions in which both base and exponent are variable.

For instance, to find dxx; if y—xx
}

\ogy=x\ogx,

<-£-= dx-\- log xdx,

dy=y(l+logx)dx=xx (l + \ogx)dx.

34. Examples.

_, d , x— a 2a
1- "XT loSdx x+a x2

2. A log*-
dx x — b (x— a)(x—b)

3 _^- ea sin x= aea 8in x cos x.
dx

ex
"*

4 - y= l°Snr7x- y =l + ex
a

l + e
x
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5. y=\og(x+Vl + x2
). y'=

/
-_ .

Vl + z*

6.f(x)=hg(hgx). f{x ) = -±-.

8. /(0) =log(sec 0+tan 0). /' (6) = sec 0.

10. /(0)=logtan(-+J). f(0)=sec0.

V V(l-s)
U {l-x)V{l-x2

)

V(^+l)(^+ 3)
9

, z2 Qr+ 3)S
La

- V- {x~+zy
y ~ (x+2) 5 (x+i)f

35. "We shall proceed after this article to some applications of

derivatives, and for some time shall develop no further rules for

differentiating; it will therefore be convenient to collect at this

place the rules we have so far derived. These rules are given as

expressions for differentials. As a practical rule for finding

derivatives, we have

:

To find the derivative of a variable z with respect to a variable

dz •

w, find the quotient—*— , and if any derivative appears in this

quotient, determine and substitute its value.

d constant =0. d esc u= — esc u cot udu.

*d(u±v)=du±dv. . du _ .

,

*duv= udv+ vdu.
d sm_1 u= VT^ = ~ d C°S U '

d
u^vdu-udv^ dt^u=-^-

2
= -dcot->u.

V v2
1 + u2

*du n = nun-1du. du -,

a sec
-1 u— —i 9 H = —a esc*1 u*

d
l -du u\/u2 -l-

u ' u2 ' deu= e
udu.
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,, r- du

*dsm u= cos udu.

J tan u= sec2 udu.

dsecu=secu tan udu.

d cos u= — sin udu,

d cot u— — esc
2 udu.

*dau= au loga du.

du
dlog u—

u

dloga u=loga e
du

dlog10 u
fidu .43429 du

du? is found by logarithmic differentiation.

From the rules marked with an asterisk, all the others can be

derived.

36. Miscellaneous Examples.

Prove the following:

1.
-J-

(0-sin0cos0)=2sin2
<9.

2.

3.

smx a cos x-

dx a—b cosx ~ (a—b cosx) 2
'

d

dx (
2x sin x+ [2— x2

~\ cos x) — x2 sin x.

4. -j- sin-1

ax

x

1+a;

-1
l+x) Vx

5 -^ Bin-* A /
*2 - a2 = zVa2-^

* dx * V z2 -& 2 (x2-6 2)V^
fi
A . ,

g\/3 __ V3
°-

da;
tan

x+ 2 2(x2+ x+ l)
#

7
* daT

cos
b + a cosx ya2_j,2

A
da;

a+ frcosa; a+fccosa;

'VoT-
]

Va2 -& 2

a+ & cos a;

Solve the following by letting a;= asin<k finding the deriva-

tive with respect to
<f>,

and thence the derivative with respect to x.

d x a2

9.
dx ^/a^~x~2 ~ (a2 -x2 )*'
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_d_ y a
2 - x2

_
1

dx a2x ~ x2\/ a2 -x2
'

Make similar substitutions in the following

:

11 JL x*
- 3x2 (l + x2

)

' dx (1-x2

)
3 ~ {i-x2y '

-t q 0/ X oX
* ~dx~ (1-x2

)*
=

(1-x2
)*

*

* dx VT+^~ (1 + z2)*'

14. d log (sec 0+tan 0) =sec $ d$.

15. d[sec 6 tan + log(sec + tan 0) ] =2 sec3 &0.

16. de-*2 =-2:re-* 2
da;.

17. dx sinx= x sinx~1 smx+x sinx co&xlogx.

37. Problems in Speed and Time-Rates.—Speed has already

been defined as the relative rate of increase in the distance 5

traversed from a fixed point, as compared with the time t elapsed

since a given instant. It is equal to

ds _ I* As"
dt ''-

L"A^JAt=o
,

the derivative of s with respect to t. Speed may thus be called

the time-rate of distance. Any other variable has in the same

sense a time-rate. Thus if 6 is the angle generated by the spoke

of a wheel during any time, t, -rr is the time-rate of the rotation,

called the angular velocity. Again if A is the area of an expand-

ing surface, or V the volume of an expanding solid, -rr or --=- is

the time-rate of expansion, and so on. All these time-rates are

sometimes called velocities, or simply rates. They are all, of

course, derivatives with respect to time.

Aside from certain general principles., there is no theory of

this application of derivatives; such difficulties as arise in the
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solution of the problem are chiefly matters of algebra and

geometry.

We shall discuss a few examples suggestive of the methods

most commonly useful.

Example 1 : A rope attached to a boat is being hauled in at

the rate of 2^ f/s by a man on a wharf, whose hands are 12 ft.

higher up than the point of attachment of the rope. Find the

speed of the boat (a) in general, (b) when it is 9 ft. from the

wharf.

Let y be the distance of the boat from the

wharf at any time, and x its distance from the

man ; then we have given

and are to find -&. . Then
at

y=\/x2— 14:4:; dy— xdx

Dividing by dt,

dy x
dt

dx

Vz2 -144*

— 5x

V^-144 dt 2x/r
5-144

When y= 9, x= Vl44+ 2/

2= 15,

f/s, in general.

dy

dt

75

Jy=9 18
f/s=-4i f/s.

Note the principle actually employed here : The time-rate of

x
x is given = !• f/s; we find the anrate of y= ,

2
=-

;
then

since the increase in y is
Vz2 -144

times that in x, and the

increase in x is --£- that in t, the increase in y is

dy dy dx

dx dt

— 5x

2V^-144
times that in t.
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dx du
Note that both -r- and -jr-are negative, since x and y both

decrease.

Note particularly that nothing can be accomplished by taking

y= 9 at the start; the general case must be used to get an equa-

tion expressing the functional relation between y and x.

Example 2: Two railroad tracks

cross at right-angles ; on each a train

is approaching the crossing; one, 17 ** A
mi. off, is going west at 12 m/h ; the

other, 22 mi. off, is going south at

15 m/h. Find the rate at which

they are approaching each other (a)

at the end of 40 min., (b) when the

west-bound train is \\ mi. west of

the crossing. After t hours, let the p^ .

train going west be x mi. east of the

crossing; the train going south, y mi. north of it; and let the two

trains be z mi. apart.

17 (1)

We have

:

dx dy

~dt
12 m/h, -^- = - 15 m/h,

z
2= x2 + -

so that

2zdz-

dz 1 /

dt ~ z \

2xdx+ 2ydy,

dx

dt
+y

dy

~dt )

-J = 4" (-12z-15i/)m/h: ^-{±x+ 5y) m/h.

At the end of 40 min., the trains will have gone 8 mi. west and

10 mi. south respectively, so that x=9 mi., y= 12 mi., and

therefore 2= 15 mi. Hence,
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dz

~dt t=§
-A.(4X 9 + 5 X 12)m/h=—9/m/h.

At the end of 40 min. the trains are approaching at 19.2 m/h.

When x— —f, the west-bound train will have gone ^- mi. in
-f-J

hrs., and the south-bound train will be f mi. south of the cross-

ing, so that y= — -f; consequently z -§-• Hence,

dz

dt t=u

-3X8
15

[-4X|-5Xf]m/h= -9/m/h,

and the trains are receding at 18.6 m/h.

Since a:= 17— 12t and y= 22— 15t, it would be possible to ex-

press z directly as a function of t, and thence find
dz
i, , but the

computation would be much more laborious. The general results

would be

z=V773-1068£+ 369£2
,

dz . -534+ 369*

dt ~ V773-1068£+ 369£2
'

Example 3: A man is trotting around a circular track 4 mi.

in diameter at the rate of 6 mi. an hour. Find the rate at which

his distance from a fixed point of the track is increasing.

Let the fixed point be A, and the man's position at any time

be M; let the central angle AOM be $, and the straight line

AM—x; then

x=2 sin | (2 mi.) =4 sin | mi.

dx=2 cos | dO mi.

and

dx = 2 cos |
de

m/h;
Fig. 10. dt

"~ %
dt

but in this relation 6 must be in circular measure. (See Art 24.)
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As the radius is 2 mi., 6 mi. = 3 radii, and the speed of 6 m/h

gives an angular velocity, ~-rr = 3 ; hence

-^- = 3(2 cos | m/h) = 6 cos f m/h.

With between and ir, this rate is positive, and the man is

Teceding from A; with between ?r and 2?r, it is negative, and the

man is approaching A ; this cycle then repeats.

This solution can also be applied to any case of two objects

moving in the same circle, their relative speed taking the place

of the speed of the man in this problem.

Examples.

4. One end of a ladder 29 ft. long is against a vertical wall,

the other on a horizontal floor. If the lower end slides along

the floor at 1-J f/s, how fast is the upper end slipping down the

wall when the lower end is 20 ft. from the wall? 25 ft.

?

Ans. If ft. a sec; ffV6 f/s= 2.55 f/s approx.

5. The free end of a ball of string is attached to a wall ; 8 ft.

lower down, the ball is moving horizontally at the rate of 4J f/s;

how fast is the string unwinding when the ball is 15 ft. from the

wall? Ans. 3f f/s.

6. A stone drops from a height of 100 ft. upon level ground.

Given that its speed when it has fallen s ft. is SVs f/s, find the

speed of its shadow on the ground, when the stone is at a height

of 9J ft, the altitude of the sun being 30°.

Ans. 76V3 f/s= 131.6 f/s.

7. If a shadow of the stone in example 6 is cast by a light 20
ft. above the ground and 10 ft. from the path of the stone, how
fast will this shadow be moving when the stone is 19 ft. above

the ground ? 9fft. ? Ans. 14400 f/s and nearly 144.7 f/s.

8. A stone cast into a pool causes a circular wave, the front of

which moves at the rate of 2^ in. a second. Show that the area

of the circle increases at the rate of h-n-r sq. in. a second, r being

the variable radius of the circle.

9. A gun is fired from a balloon 200 ft. above the ground,

producing a spherical wave in the air, which moves at the rate of
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1100 ft. a second. Find the rate at which the surface of this

wave and the volume enclosed by it are increasing when the wave
reaches the ground.

Ans. Surface, at 1,760,000tt sq. ft./sec. ; volume, at 176,-

000,000tt cu. ft./sec.

10. Gas is pumped at the rate of 10 cu. in./sec. into a spher-

ical toy balloon; how fast are the surface and radius of the bal-

loon increasing: (a) when the radius is 5 in.? (b) When the

balloon holds a cubic foot ?

Ans. (a) Surface at 4 sq. in./sec; radius at-^ in./sec. (b)

Surface at *£ (J)* sq. in./sec; radius at -^ (£)* in./sec

11. Two ships, A and B, are on the same meridian, 117 mi.

apart. A is sailing due east at the rate of 10 m/h, B is sailing

due north, toward A, at the rate of 15 m/h. At what rate are

they approaching each other after they have been sailing 3 hrs. ?

After they have been sailing 5 hrs. and 12 min. ? When are

they neither approaching nor receding? What is the closest

approach they make to each other ?

Ans. +10 m/h, +1 m/h, after 5 hrs. 24 min., 18V13 mi.

12. Two trains are 12 mi. and 6 mi. respectively from a cross-

ing where their routes intersect at right angles ; the first train is

approaching the crossing at the rate of 42 m/h, the second reced-

ing from it at the rate of 36 m/h; are the trains approaching or

receding, and at what rate: (a) after 10 min.? (b) After 2

hrs.? (c) When will the distance between them be least?

Ans. (a) Keceding, 17 T
1
-

g-m/h; (b) receding, about 54.94

m/h; (c) at the end of 5yymin.
13. Two railroad tracks make an angle AOB= 60°; AO = S

mi., BO = 5 mi. A train at A is approaching O at 20 m/h, and
a train at B is approaching O at 30 m/h. Find (a) at what rate

the trains are approaching each other; at what rate they will be

receding or approaching: (b) when B reaches O; (c) when A
reaches O; (d) at the end of 30 min.

Ans. (a) 20 m/h; (b) approaching at 5 m/h; (c) receding

at 20 m/h; (d) receding at about 22.9 m/h.
rjop

14. A solid expands so that the time-rate -=:- of the expansion

of any one of its linear dimensions is Tex, Tc being a constant.

Show that the time-rate -77 of its volume is 3TeV.
at
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15. The roadway of a bridge is 20 yds. above the roadway
below, and the two run perpendicular to each other. One man
is going over the bridge at 3 m/h, and another, directly under
him, is going at 8 m/h. At what rate will they be receding from
each other at the end of 3 min. ? Ans. About 8.54 m/h.

16. A city street has a vertical wall on one side, and 75 ft.

from it, on the other side, is a light. A man starts 15 ft. directly

up the street from this light and crosses straight over at 4 m/h.
Find the rate at which his shadow is moving horizontally along

the wall (a) when he has gone 10 ft.; (b) when he has gone
50 ft. Ans. (a) 45 m/h; (b) 1.8 m/h.

17. Wine is poured into a conical glass 3 in. deep at a uniform
rate, filling the glass in 8 sees. At what rate is the surface rising

at the end of 1 sec. ? When it reaches the brim ?

Ans.
-J im/sec.

; J in./sec.

18. A beam 20 ft. long rests against a vertical wall and a hori-

zontal floor ; a bar is attached by hinges to its middle and against

the angle of wall and floor. The beam slides down so that the

angle 9 between this bar and the wall increases at the rate of 18°

a second. Find the rate at which each end of the beam is mov-
ing when = 30°, 45°, 60°.

Ans. 0=30°, 45°, 60°; rate of upper end=7rf/s, ttV2 f/s,

ttV3 f/s ; rate of lower end= 7rV3 f/s, ttV2 f/s, tt f/s.

19. The connecting rod, PA, of a stationary engine is 5 ft.

long; and the crank AC is 1 ft.; if the crank revolves at the

uniform rate of two revolutions a second, find the speed of the

piston-rod (or of the point P) when the angle PCA is 0°, 45°,

90% 135°, 180°, 225°, 270°, 315°. Ans. If PC= x, when

0=0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°,-^- =0

=^7rx/2, -4*, -PW2, 0, ^W2, 4rr, ^W2, 0.

20. A wheel 3 ft. in diameter rolls along level ground at the

uniform rate of 10 m/h. Find the rate of the forward motion

of the bottom, top, foremost, and hindmost points of the rim.

Ans. x being the horizontal distance moved by a point fixed

on the rim, measured from the point where it touched the road,

£= .|(0— sin0)ft, being the angle generated by the radius to

this point, and when 0=0° 90°, 180°, 270°,-^ =0, 10 m/h,
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20 m/h, 10 m/h, the horizontal speeds of the bottom, hindmost,
top, and foremost points respectively.

21. A line tangent to a circle of 10-in. radius moves across

the circle at the rate of -J
in./sec, keeping always parallel to its

first position. Find the rate of increase of the area of the seg-

ment next the point of tangency when the line has moved J way,

\ way, and f way across the circle.

Ans. 5V% 10, and 5VF sq. in./sec. respectively.

22. A plane moves across a sphere of 10-in. radius as the line

moved across the circle in example 21; find the rate of increase

of the corresponding volume.

Ans. 3 7^7r cu. in./sec, 50?r cu. in./sec., and 3 7j7r cu. in./sec

respectively.

23. An eccentric circular cam of radius a inches revolves about

a point at a distance b from its center C; the point being

in line with a rod which bears upon the rim. Let the rod bear

upon the point R of the rim, and call OR= r, and the angle

COR= 6. Show from the triangle COR that

r— b cos 6+\/a 2— b
2 sin2

0,

so that if the cam makes n revolutions a second, the speed of the

,, ,. . dr ~ 7 T • /i ,
&sin#cos#

rod s motion is -=7- = — airnb sin v -)

—

. 19 .
== •

at va2— b
2 sm~6



CHAPTER II.

Analytic Geometry.

38. Geometrical Applications of Analysis.—The relation be-

tween a function and its graph is utilized in two ways : first, the

properties of a function may be made evident by reference to the

graph; and second, the properties of a geometric locus may be

studied by means of its equation. The second of these was ex-

pounded to a certain extent in Chapter VII, Loci of Equations,

of the Algebra. We shall begin here with a recapitulation of the

results of that chapter.

39. Relation between a Locus and its Equation.—If the values

of the coordinates x and y are varied independently, the point (x, y)

will move all over the plane ; but if x and y are dependent, owing

to the existence of a relation f(x, y) = 0, the motion of the point

(x, y) is restricted to a curve. If f(x, y) —0, when solved, gives

y= F(x), this curve is the graph of F(x), and:

The curve is the locus of f(x,y)=0;

f{x, y)=0 is the equation of the curve;

The coordinates of any point of the curve satisfy f(x,y)=0
and the coordinates of any other point do not; or

Any point whose coordinates satisfy f(x,y)=0 lies on the

curve, and any point whose coordinates do not satisfy f{x,y)—0
does not lie on the curve. (Algebra, Art. 98.)

40. The Linear Equation and the Straight Line.—If the equa-

tion f(x, y) = of a curve is of the first degree, or linear, that is,

of the form Ax+By+ C= 0, its locus is a straight line.

The constants of the line being the ^-intercept a, the ?/-inj;er-

cept o, the inclination to the axis of abscissas r, and the slope m,

, A C
7

C
ra= tanr= ^- , a— -j- , b =—^ •
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A straight line is traced by determining two of its points, or

one point and its slope.

The equation of the straight line through the point (xx,yx ),

and having the slope m or the inclination r± to the x-axis, is

y-y1
= m (X- Xl ),

or

y-y1= tanT1 (x-x1 ).

The equation of the straight line through any two points

(*i>yx) and (z2>y2 ) is

V2

A 1 u.

a^'b

In terms of the constants m> a, and b defined above, the equa-

tion of any straight line may be written

y—mx+ b ( slope and intercept equation )

,

= 1 (intercept equation).

(Algebra, Arts. 99-101.)

41. The Angle between Two Straight Lines.—It is evident

from Fig. 11 that if two straight lines, (1) y=m1x+b 1 and (2)

y=m 2x+b 2 , are inclined to the axis of x at the angles tx and t2

respectively, the angle a between them is

a= r<>— r-i

whence

, tan t9
— tan rntan a— 2 -

—

±-

.

1 + tan t1 tan t2

As the slopes of the lines

are m1
= tan r19 m2

= tan t2,

, m 2
— m,tana=^ .

l + m 1m 2

If the lines are parallel, a=0, tana=0, and m1=m2 ; or the

slopes are equal.

Pig. 11.
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If the lines are perpendicular, a =-^-, tana=co, and mxm2

= — 1, or the slopes are negative reciprocals.

42. The Mid-Point and the Distance between Two Points.—
The point half-way between {xx,yx ) and (x2,y2 ) is

(x1±x2 y1 + y2 \
[~2~> 2 )'

The distance between these points is

d=V(x2-x1 )

2 +(y2 -yl )
2
.

(Algebra, Arts. 104-105.)

43. The Distance of a Point from a line.—The distance from

(xly yx ) \oAx+By+C= Q is (Algebra, Art. 106)

Ax^ + Bi^ + C
VA 2+£2

*

44. Intersections.—The coordinates of the point or points of

intersection of any two curves are the simultaneous solutions of

the equations of the curves. (Algebra, Arts. 107-108.)

45. Finding the Equation of a Geometric Locus.—To deter-

mine the algebraic equation of the curve traced by a point which

moves under given restrictions:

(1) Eefer the problem to a pair of axes, letting the variable

coordinates (x, y) be the distances from these axes of any point

whatever on the curve;

(2) State in the form of an equation in terms of x and y the

definition of the curve or the conditions of the problem. (Algebra,

Art. 109.)

46. The Equation of the Circle.—The equation of the circle

having a radius of length a and the point ( o, c) for center is

(x-b) 2 +(y-c) 2= a2
.

If the center is at the origin, the equation is

x*+y*=a2
.
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Any equation of the form ax2+ ay2+ dx-\- ey+f=0 represents

a circle, the radius bein^ J + e ~ ' and the center at
V 4cr

("if' ir)'
(Algebra, Art. 110.)

47. Tangents to Circles.—For any point on the circle

x2+ y
2= a2

we have

2xdx+ 2ydy= 0,

dy __ —a;

dx ~ y

Then, if m1 =tanT1 is the slope of the tangent at the point

0*w yi) (see Art. 4),

xx

and the equation of the tangent is (Algebra, Arts. 115-116)

xxx+ yxy= a2
.

In the same way, the tangent to (x— b)
2+ (y— c)

2= a
2

is

(x-x± ) (xx-b) + (y-yx ) (y1 -c) = 0,

or

{xx -b) (x-b) + {yx -c){y-c) =a2
.

48. Tangent to Circle in Terms of its Slope.—If a line having

the slope m is tangent to the circle x2+ y
2= a2

, its equation is

y=mx±aVl +m 2
.

If this line is tangent to any circle (x—b) 2+(y—c) 2= a
2
,

its equation is

y— c=m(x— b) ±aVT+m2
.

These forms of the equation are useful in determining the tan-

gents' to a circle from an outside point. (Algebra, Arts. 117-

118.)
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49. Loci of Quadratic Equations.—Any quadratic equation, of

the general form

ax2+ bxy\- cy2+ dx+ ey+f=0
represents some one of four types of loci

:

(1) Two straight lines (distinct or coincident, parallel, or

intersecting).

(2) A closed oval called an ellipse (of which the circle is a

special case) : condition b
2— 4&c<0.

(3) A single-branched open curve called a parabola: condition

b
2 -4ac=0.

(4) A two-branched open curve called a hyperbola: condition

5
2 -4ac>0.
In the Algebra, the circle was defined as a geometric locus,

and its equation found ; but the ellipse, parabola, and hyperbola

were treated merely as the loci of certain equations, or as the

graphs of certain functions. We shall next proceed to introduce

these last curves again as geometric loci; but to facilitate the

process we shall need to be able to use different sets of coordinate

axes in handling the same curve.

50. Transformation of Coordinates.

Suppose we know the equation

f\x, y) = of a curve referred to a

pair of rectangular axes XOY and

wish to find its equation F(x', y)
referred to a pair of rectangular

axes X'O'Y' parallel to these, the

new origin 0' being the point (x ,

y ) in the old system. Let P be any

point of the curve, its coordinates

being (x, y) in the original system,

and {x
f

,
y') in the new system.

Then it is evident from Fig. 12

that the relations between the old

and the new coordinates are

5

Shifting the Origin.—

y'

!f°

a
•JC--H

-X

-X

Fig. 12.
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X— Xq ~\~ X }

Substituting these values, we shall have

the desired equation.

51. Rotation of Axes.—Suppose now that, having the equation

f(x,y)=0 of a curve referred to a pair of rectangular axes XOY

,

we wish to find the equation F(x', y') = of the same curve when

the axes of reference have been rotated about the origin through

the angle 6 to the new position X'OY'.

Y

Fig. 13.

Let P be any point of the curve, and let its coordinates be

(x, y) in the original system and (af,i/) in the new system.

Then it is evident from Fig. 13 that

x—x' cos 6— y' sin 9,

y—x' sin O+y* cos 6.

The principal object of transformation of axes is to simplify

the equation of the curve. It will be found that shifting the

origin makes no change in the terms of highest degree.
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As an example, suppose that, having the equation

x2 -xy+ y
2+ 2x-3y+ 2 = 0,

we use a new pair of axes parallel to the old axes, having the

point (—-J, t) of the old system (the center of the ellipse) as

new origin. The new equation, when the primes are dropped, is

x 2 -xy+ y
2= i.

If we now turn the axes about the new origin through the

angle 45°, the equation (after dropping primes) is

x2+ 3y
2= l

52. Examples.

1. Shift the origin of the equation

Sx2- ±xy+ by2- 8x- 16y- 16 =
to the point (1, 2), and transform the equation thus derived by
rotating the axes through the angle tan-1 2.

Ans. ±x2 + 9y
2= 36.

2. Shift the origin of the equation

6x2 -5xy-6y2 -19y-22x+5 =
to the point (1, —2), and rotate the axes of the equation thus

derived through the angle tan-1 5. Ans. x2— y
2= 2.

3. Transfer the origin of the equation

llx2 -4xy+ 8y
2 -50x-52y+ ll = 0.

to the point (3, 4), and then rotate the axes of the derived

/ 1 \ x2 y2

equation through the angle tan_1 f —=-). Ans. TX+ 9T= 1-

4. Rotate the axes of the equation x2 — y
2— a2 through an angle

of 45°. Ans. 2xy=-a2
.

53. Conic Sections.—A conic section is the locus of a point

which moves so that its distance from a fixed point, the focus,

has a constant ratio to its distance from a fixed line, the

directrix.

The constant ratio, which is designated by e, is called the
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eccentricity and determines, by its value, whether the curve is a

parabola, an ellipse, or a hyperbola.

Half the distance from the focus to the directrix is called the

parameter, and is designated by p. The parameter determines

the size of the conic, the eccentricity its shape.

*£L

<#/

"A/ !

F M

Fig. 14.

If we take as rectangular axes the directrix and a straight line

through the focus, as in Fig. 14, then by definition, FF—ex. As

2p is taken for the fixed distance OF we have, from the right

triangle FPM,

(x-2p) 2+ y
2= e

2x2
, (1)

the general equation of the conic.

When equation (1) is rearranged in the form

ax2+ bxy+ cy2+ dx+ ey+f=0,
as

(l-e2 )x2 + y
2 -±px+4:p2= 0,

the discriminant is seen to be

&
2 -4ac= 4(e 2 -l).



Analytic Geometry. 53

Hence the curve is:

An ellipse when e<l.

A parabola when e — \.

A hyperbola when e>l.

54. Properties of the Conies.—The line through the focus

perpendicular to the directrix is called the transverse axis or

principal diameter of the conic, and the points where it inter-

sects the conic are called the vertices. The double ordinate

through the focus is called the latus rectum.

To locate the vertices we solve equation (1) with the equation,

y=0, of the principal diameter, getting

(x-2p) 2= e
2x2

,

x— 2p= ±ex,

\+e 1—e

If e<l, both roots are positive; if e= l, one root is p, the

other is infinite; and if e>l, one root is positive, the other neg&-

tive. Hence

:

Both vertices of an ellipse are on the same side of the directrix

as the focus;

The parabola has only one (finite) vertex, midway between

the focus and the directrix;

The hyperbola has a vertex on each side of the directrix.

The latus rectum of the general conic (x— 2p)
2+ y

2= e
2x2

is

^pe, since the ordinate corresponding to the abscissa 2p is ± 2pe.

In the parabola, this length is 4p, twice the distance from the

focus to the directrix; in the ellipse, it is less; in the hyperbola,

greater.

55. Typical Equations. The Parabola.—When e= l, the gen-

eral equation (1) becomes

tf=±p(x- V ). (2)
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To simplify equation (2), shift the origin to the vertex (p, o),

as shown in Fig. 15. The equation then becomes

f-^x, (3)

the typical form of the equation of a parabola, the coordinate

axes being the principal diameter and the tangent at the vertex.

Fig. 15.

56. Examples.

1. What is the equation in typical form of the parabola which
has the double ordinate 2b corresponding to the abscissa a?

11 x
Ans. -tt =—

.

o2 a
2. Write the equation of the parabola, vertex at origin, when

the directrix is x=p; when it is y—p; when it is y— —p.
Ans. y

2—— £px; x2=— 4=py; x2— ^py.

3. Show that the line y— mx always cuts the parabola y
2— ^px

in two points. What are the points when m— ?

4. Find the equations of the following parabolas:

(a) Vertex (1, 2) focus (-2, 2).

Ans. (v-2) 2= -12^-1).
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(6) Vertex (2, 3), focus (4, 3).

Ans. tj
2 -6ij-8x+ 2o = 0.

(c) Vertex (2, 2), focus (2, -4).
Ans. x2 — 4x+ 24?/— 44= 0.

[Hint: Write the equation of each referred to its transverse

axis and tangent at vertex; then shift to the required axes.]

57. The Central Conies: Ellipse and Hyperbola.—When e is

not=l, the general conic

(x-2p) 2+ y
2= e

2x2
(1)

has, as we have seen, two vertices, at

(&••)-(&•)•
The line joining the vertices is called the major axis of the

conic; its length is denoted by 2a. The point midway between

the vertices will be seen later to bisect every chord through that

point; it is therefore called the center. (See Figs. 16 and 17.)

58. The Ellipse.—The length of the semi- major axis for the

ellipse is

«_*( _3E-__2£-}_ _3l* ,
2
\ i_ e 1+e/ 1—

e

2 '

and the distance from the focus- to the directrix, in terms of this

length, is

ail — e
2
) a

c
e e

The abscissa of the center is

x ( 2p 2p\_ 2%

(See Fig. 16.)

2p \ 2p a_

e
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Equation (1) is much simplified when the origin is shifted to

e cen

getting

the center. If we first replace 2p in (1) by its value—— a e,
6

(it-l+fl^+^r^
and then shift the origin to (— , Oj, we have, after dropping

(x+ ae) 2+ y
2= e

2 (x+—Y,

primes,

or

or

(l-e2 )x2 + y
2= a2

,

tr

a2
' a2 (l-e2

)

(4)
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59. The Hyperbola.—The length of the semi- major axis of

the hyperbola is

and the distance from the focus to the directrix, in terms of this

length, is

a(e2— 1) a2p= —

*

^ =ae .

The abscissa of the center is _f 2
=— . (Fig. 17.) Eeplac-

i. e e

Fig. 17.

ing 2p by ae— — , shifting the origin to (
— — ,

J
, and drop

ping primes, we have again

a?
+

a2 (l-e2
)

= 1. (4)
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This one equation thus represents either an ellipse or a hyper-

bola according as e<l or e>l.

60. Symmetry of the Central Conies.—It is now evident from

equation (4) why the conies for which e is not=l are called

central conies, and why the point taken as our new origin is the

center. For, corresponding to any point (x1} yx ) lying on (4)

is another point (— xlf
— yx ), also lying on (4), and as the new

origin is half-way between the two points, it bisects any chord

drawn through it. Moreover, the points (x19
— y± ) and (—xx, yL)

also lie on (4), so that the new axes of coordinates are axes of

symmetry for the conic. These axes of symmetry are called the

principal axes or principal diameters of the central conic: the

one perpendicular to the directrix being the major axis, and the

one parallel to the directrix, the minor axis, or conjugate axis.

61. Typical Equations of Ellipse and Hyperbola.—The inter-

cepts on the minor axis, x= 0, of a central conic

2 y2

r _2 / 1 _2\ -
1-

el j_ y
a2 ^ a2 (l-e2

)

are ±aVl — e
2
, real in the case of the ellipse, imaginary for the

hyperbola.

In the ellipse, the length of the semi- minor axis is denoted

by b;

b = a\/l-e 2 (e<l),

so that we have as the typical equation of the ellipse referred to

its principal diameters as coordinate axes:

$+-£-! < 5 >

In the hyperbola, a2 (l — e
2
) is represented by — o

2
,

b =aVe2 -l (e>l),

so that we have as the typical equation of the hyperbola referred

to its principal diameters as coordinate axes

:



Analytic Geometry. 59

(6)
x2 y2

a2 b
2
"

I.

In this form the asymptotes of the hyperbola are

X

a --f = Oand —
o a

4-JL_o

01

b
J a

In the hyperbola, then, b is the length of an ordinate of either

asymptote drawn from either vertex. For convenience in certain

statements, b is often called the semi- minor axis of the hyper-

bola.

62. Dimensions of the Central Conies.—From what has al-

ready been said, the values of the following are evident

:

For any central conic having a major axis of length 2a and

eccentricity e, we have the lengths

:

Center to directrix

:

e<l. e>l.
Ellipse. Hyperbola.

a a

e e

Focus to directrix : ae. ae .

e e

Center to focus: ae. ae.

Latus rectum: 2a(l — e
2
). 2a(e 2— l).

Minor axis: b — a\/\-e2
. [b = aVe2 -l].

In terms of a and b, the eccentricity is

:

e= Ja^=^- for the ellipse, e= J°^- for the hyperbola.

On account of the symmetry of the curves, the ellipse has a

directrix— to the right of the center, and a focus ae to the
e °

right in addition to the directrix and focus at the same distances

to the left ; the hyperbola has a pair to the left as well as one to

the right.
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63. Examples.

1. The focus of a conic is £ in. from its directrix, and the

eccentricity is f . Find the equation referred to the directrix and
a perpendicular through the focus, and reduce to the typical

form. Draw a figure to scale, showing the foci, directrices, cen-

ter, latus rectum, and minor axis.

2. Treat the same problem as that of example 1, changing the

eccentricity to f and replacing the minor axis by the asymptotes.

3. Determine the dimensions of the following curves

:

(1) 9z2+ 25^= 225. Ans. e= i, etc.

(2) 9x2 -16f= U4. Ans. e=-J, etc.

(3) 9x2 + 25i/
2+ l&z- lOOy- 116= 0. Ans. e= $, etc.

(4) \f— (a— x) (x+ a).

(5) Write the equations of the circles, radius a, when the

center is:

(a) at (-a, 0), (b) at (a, 0), (c) at (0, -a), (d) at (0, a).

4. Prove that a circle having its center at an extremity of the

minor axis of an ellipse and its radius equal to the semi- major
axis will intersect the major axis at the foci.

5. Prove that a circle concentric with a hyperbola and passing

through the intersections of the asymptotes with the tangents at

the vertices will also pass through the foci.

6. Show that the circle is a special case of the ellipse, having
equal semi-axes, the foci coincident with the center, eccentricity

zero, parameter infinite, and directrix at infinity.

7. Suppose a right circular cone cut by a horizontal plane in

a circular section. If the plane turns about a diameter of the

circle, how will the eccentricity of the section vary ? What is the

eccentricity of a pair of intersecting straight lines regarded as a

conic ?

64. Conjugate Diameters.—The locus of the middle points of

a set of parallel chords in a conic section is a diameter. This is

proved as follows: Let the equation of the conic be

(x-2p) 2+ y
2= e

2x2
, (1)

as in Art. 53, and let the common slope of the parallel chords be

m, and the general equation of all the chords be

y=mx-rC, (2)
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m thus being a fixed constant and c a quantity that is constant

for any one position of the chord (2), but varies as the chord

moves. (A quantity of this sort is called a parameter.)

The extremities (xlf yx ) and (x2 , y2 ) of any one of the chords

are the two intersections of (1) and (2), so that xx and x2 are

the two roots of

(x-2p) 2+ (mx+ c)
2= e

2x2
,

or of

x2 (l-e 2+m2
) + 2{mc-2p)x+ (4p

2 + c
2
) =0. (3)

If ¥(x', y') is the mid-point of this chord,

t X-, -f- Xo

and is half the sum of the roots of (3) . By the Theory of Quad-

ratics (Algebra, Art. 11), this is

,_ 2p — mcX -l-e2+ m 2 '

so that

c=^-(e2-l-m 2
) + ^..m m

Since P' lies on the line y=mx+ c, we have

y'— mx'+ c,

or

y
f= mx'+— (e

2-l-m 2
) + ?£-.

This relation between the fixed constants and the coordinates

of P1

, since it is free from the parameter c, expresses the restric-

tion under which the point Pf

moves, or is the equation of the

locus of P'. Simplifying the equation and dropping primes, we
have

y=-^-[(ea-l) !r+3p] ) (4)

as the equation of the locus of the mid-point of a set of chords

of slope m in the general couic.
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If the conic is a parabola, e= 1, and the locus is

"=
-:

.

(5)

a line parallel to the transverse axis. Any such line is called a

diameter ; if we regard the parabola as a conic having one vertex

at infinity, and therefore its center also at infinity, we may say

that all these parallels pass through its center.

If the conic is an ellipse, its center is at f— ,
J

and

2p=^-(l-e 2
);

equation (4) may therefore be written

H-t)
and, referred to central axes, becomes

p 2— 1y=-—-* (6)

If the conic is a hyperbola, its center is at f — — , Oj and

2p=— (e
2— 1) ; equation (4) may be written

c

e
2-l(

,
a\

and, referred to central axes, becomes

y- x. (6)

For any central conic, then, the locus of the middle points of a

e
2— l

set of parallel chords, of slope m, is a line of slope through

the center, or a diameter.

The locus of the mid-points of chords parallel to the diameter

(6) is y—mx, one of the original set of parallel chords. This

e
2 — 1

is seen by putting for m in the italicised result of the pre-

ceding paragraph.
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Thus we have the theorem: If the product of the slopes of

two diameters of a central conic is (e
2— 1), each of the diameters

bisects all the chords parallel to the other.

Two such diameters are called conjugate diameters.

65. Focal Radii of Central Conies.—The straight lines joining

the point P(x, y) of a central conic, as in Figs. 16 and 17, with

the foci F and F19 are called focal radii. In the case of the

ellipse, these distances are by definition

:

FP=e(—+x\=a + exJ

and

F1P=e(—-x\=a-ex;

their sum is therefore constant, and equal to 2a.

In the case of the hyperbola, the focal radii are

and

FP—e (x——J —ex—

a

F1P=e(x+ -^\=ex+ a;

their difference is therefore constant, and equal to 2a.

Consequently the ellipse may be defined as the locus of a point

moving so that the sum of its distances from two fixed points is

constant; and the hyperbola as the locus of a point moving so

that the difference between its distances from two fixed points

is constant.

66. Examples.

1. The principal axes of a central conic divide the plane into

four quadrants. Show that two conjugate diameters of an ellipse

never lie in the same quadrant, but two conjugate diameters of a

hyperbola always do.

2. What is the equation of the diameter conjugate to y=2x
x? xp x^ ip

in the conic -q- + -4- = 1 ? In the conic
q

-4- = 1 ?

Ans. y=-ix; y= -

g
-

.
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3. Show that if a diameter y— mx meets a hyperbola

s2

J/1 _ 1

a2 b2 ~ l

in real points, the conjugate diameter does not.

4. Two pins are stuck in a piece of paper and an endless string

is held taut about them by a pencil point. What curve will be

drawn when the pencil moves ? Find its dimensions if the string

is 7 in. long and the pins are 3 in. apart.

Ans. a=2, e= f,
&=-i\/7, etc.

5. Show that if the extremities of a diameter of a central

x2
?/
2

conic -^2 +
a2^_ e2

,= lave (x^y^ and (-x±, -y± ), the extremi-

ties of the conjugate diameter are

(yfep -^VW) and (^=, ^VI=?).

67. Tangents, Normals, Subtangents, and Subnormals.—We
have already seen that if a curve is given in rectangular co-

ordinates by an equation f(x, y) =0, the slope of its tangent at

any point is the value of -? at that point. If P (Fig. 18) is any.

point of the curve, draw any horizontal length from P to repre-

sent dx, and a vertical length in proper proportion to represent

dy, and complete the triangle by drawing the line marked ds.

The resulting triangle is called the differential triangle for the

point P.

Let PT and PN be the tangent and normal to the curve at P,

meeting the axis of x at T and N respectively, and let PM be the

ordinate of P. Eepresent the angle PTM as usual by r, and note

that the angle MPN and the angle from dx to ds are each equal

to t, as all the right triangles in the figure are similar.

We are to find the equations of the tangent PT and the normal

PN, and the lengths PT, PN, TM, NM. These four lengths are

called : PT, the tangent; PN, the normal; TM, the subtangent;

and NM, the subnormal of the curve for the point P. Abbreviate
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the four required lengths as shown in the figure, and let the

coordinates of P be (a, b). Determine the general expression

dv
for -j- for the curve; then

dy

dx
= tan t=

J x—a St

snT
Y

'?

7Vt\ o < I a

A

\ x
St.

„ *j,
an. 7f

Fig. 18.

Hence

L*J.S UJ™'

Since cfc= V(<fcr) 2+ (<fy)*,
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The equation of the tangent is y— &=tanr(a;— a)

or

-4-t], (x-a\
a

The equation of the normal is y— b= — cot r (x—a)

or

'-'Hi!..-"-"-
This discussion exhibits the general methods of finding the

two equations and the four lengths. In any numerical case, the

simplest process is to sketch a figure similar to Fig. 18, mark the

values of a, b, &x, dy, and ds for the given point, and derive the

results directly from the similar triangles.

68. Application of Art. 67 to the Conies. Parabola.—Given

any parabola, of parameter p, refer it to its transverse axis and

the tangent at its vertex as coordinate axes. Its equation is then

y
2= ±px,

and its slope at any point is

dy __ 2p
dx ~

y

If P± (x±, yx ) is any point on the parabola, the tangent at

that point is

or

y1y-2px=y1
2 -2px1

= 2px1,

since, the point P± being on the parabola, y1
2= 4:px1 .

The tangent to y
2= 4px at any point (x1} yx ) lying on the

curve is y1y=2p(x+x1 ).
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The normal at P1 is

or replacing x± by its value in terms of y19

y1x+2py=^(8p2+ y1
2
).

For the differential triangle, if we take dx=y19 we have

dy-2p, ds=YIf + yJ.

The subtangent= y1 -^- = -|^ =^ =2^.

The subnormal— y,
—" =9p.

The tangent= yx

^4p " + yi2 =2Vx1 (x1 +p).
6p

-„ V±P2
+yiThe normal— yx

v r tvi — 2^p(x±+ p).

Note that xx is the distance of Px from the tangent at the

vertex, p is the distance of the vertex from either the directrix or

the focus., (x± + p) is the distance of Px from the directrix.

The Central Conies.—The typical equation of any central conic

(ellipse or hyperbola), in which the coordinates are measured

from the principal axes, is

From this equation,

^ = («
2-D-ax v '

y

In the differential triangle at any point P± of the conic, if we
take dx=y19 then

dy=(e2 -l)x19

and

ds=Vy1
2 +(e2 -l) 2x1

2=\/(l-e2)(a2 -e2x1
2
).
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Prom these, remembering that Px is on the conic, we derive the

following

:

Equation of tangent : -K + 0/ x ox = 1.u ° a a2 (l— e
2
)

Equation of normal: 1- (e
2— 1) -*- = e

2
.

x
i Vi

Subtangent= — .

xi

Subnormal— (e
2— l)x1 .

1
Tangent=—V (

a2— x 2
) (

a2— e
2x±

2
)

.

x
i

Normal=V(l-e 2)(a2 -e2x1
2
).

No attention is paid to the signs of the last four, as merely

the lengths are of interest. The absolute value of each of them

is to be used.

The quantity (a2— e
2x 2

) is the product of the focal radii of

Pv
For the typical equation of the ellipse and hyperbola, a2 (l — e

2
)

is replaced by b
2 and — b

2 respectively; so:

The tangent to the ellipse -y + ^- = 1 at any point (x1} yx )

lying on the ellipse is -—-
-f- -^ = 1.

x^ %P
The tangent to the hyperbola —r — -fj

= 1 at any point (xly yx )
Cb

lying on the hyperbola is -\ — ^M-=l.

It can be shown that the equation of the tangent to any conic

at any point (x19 yx ) lying on the conic can be written by first

writing the equation of the conic with xx in place of x2
, yy for

y
2
> i(xy+yx ) f°r xv> i(x+ x ) f°r x

>
an^ i(y+y) f°r y> an(i

then affixing the subscript 1 to the alternate letters.
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69. Tangents and Normals to the Parabola in Terms of the

Slope.—The tangent to y
2— \px may be written:

2p „ , 2px,

or, since y
2— ^pxx,

U
2/i

2

If we represent the slope of the tangent by m,

2p

Vi

2 ~ m '

so that the equation of the tangent of slope m to the parabola

y
2= ±px is

J m
The normal to the parabola y

2— 4,px at the point Px of the

parabola may be written

:

If we represent the slope of the normal by m,

y1= -2pm;

so that the equation of the normal of slope m to the parabola

y
2= 4:px is

y=mx—2pm—pms
.

Note the significance of these forms ; if we draw a line of any

slope m and make the ^-intercept= p/m, the line will be tangent
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to the parabola y
2— ^px; if the ^-intercept is made = —2pm

—pm3
, the line will be perpendicular to the parabola.

These forms furnish a means of determining the tangents or

normals to the parabola from any point, whether it lies on the

parabola or not.

For instance, to find the tangent from (4, 7) to y
2= 6x, since

any tangent is in general

and the desired tangents pass through (4, 7), we have

solving this for m we get m—\ or \. Hence the tangents are

2y-Zx-2 and 4y-a;=24.

The slopes of the tangents from (x1? yx ) to y
2= 4=px are in the

same way i(y1± Vy^— ^pxx ) ; both are real for a point outside

the parabola, they coincide for a point on the parabola, and are

imaginary for a point inside the parabola.

To find the normals from (12, 6) to y
2= 6x; since they are of

the form

y=mx— 2pm—pm?

and pass through (12, 6), we have

6= 12ra-3m-fra3

to determine m; that is, the roots of m3— 6m+4=0 are the

slopes of the required normals. These roots are 2, V3— 1, and

- V3-1 or 2, .732 and -2.732.

There are thus three normals from this one point to the para-

bola. The equation for the slope, m, of a normal from (xlf yt )

to y
2= 4px is similarly seen to be

m3+ 2p~ Xl m+ -&- =o.
P V
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According as the discriminant of

this equation (Algebra, Art. 74) is

negative, zero, or positive, there will

be three different normals, two co-

incident and one different, or one

real normal and two imaginary.

[The discriminant is

1±^-(27py^+ 4:[2p-xir),

so that the curve 27py
2= 4c(x— 2p)

5
,

called a semi-cubical parabola, is the

boundary of the points from each of

which three real normals can be drawn to the parabola.]

70. Tangents to the Central Conies in Terms of the Slope.—
The tangent to -

3 + -^ 1 1S
a 2 + 63

ViV -
1 or

b
2x

x
b2

y——g-^H

—

If we represent its slope by m,

and since

whence

m= ±

t (6
f
-yi

f
);

<*Vi

Vb 2-
Vl*;

— = ±Va2m2
-f b

2
:

so that the equation of the tangent of slope m to the ellipse

t
b

2

2 n?

y=mx± Va2m2+ b
2
.
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In the same way, we find that the equation of the tangent of

x2
ii

2

slope m to the hyperbola —j ——- — 1 is

y=mx ± V a2m 2— b
2

.

For the circle x2+ y
2= a2

, a special case of the ellipse, the

similar equation is

y=mx±aVl +m 2

(Algebra, Art. 117).

These equations are of the same service as those for the para-

bola ; the equations of the normals of the central conies in terms

of m are less interesting, and much more complicated.

71. Properties of Tangents to Conies.—The focal radius and

diameter through a point of a parabola make equal angles with

the tangent at that point.

The focal radii to a point on a central conic make equal angles

with the tangent at that point.

It is in consequence of the first of these properties that a beam

of light parallel to the principal axis of a parabolic mirror con-

verges at the focus, and that rays diverging from the focus are

reflected as a beam of parallel rays.

From the second property it follows that rays diverging from

one focus of an elliptical mirror are brought to a focus at the

other, and rays diverging from the focus of a hyperbolic mirror

diverge after reflection as if they had come from the other focus.

The second property is proved as follows:

The slope of the tangent to the conic

a* ' a?{l-e'j~
'

is

X2

+ f -

"a
2 a2 (l-e2Y

m x
—:(e 2-l)^

2/i
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The slope of the focal radius joining (xx, yx ) to (ae, 0) is

m,- **
xx
— ae

The tangent of the angle between these lines is

m 2—m 1 _ xx
— ae y x Vi

2+ (l — e
2 )xx (xx

— ae)

l+m2m1
"

1 _/ 1_ e2\^i . Vi
~ yi(si-ae) ~ (l-e8

)giyi*

Since yi
2= (1 —

e

2

)
(a2 — #i

2
), this reduces to

flCl-e2)^-^) = fl(l-e2)
-ey^a-exj eyx

The slope of the other focal radius is

m-o = —^— ,
a^ + ae'

so that by changing e to — e throughout the preceding discussion

and reversing the order of the lines, we find

m x
— m s _ _ q(l — e

2
)

l + m xm 3

~
ey

x

The angles are thus shown to be equal.

72. Perpendicular tangents of a conic intersect in a circle

called the director circle, which in the parabola is a straight

line, the directrix (a circle of infinite radius). This may be

shown in two ways. For example, if the equation of the tangent

to the ellipse

y=mx± Va2m2 + b
2

be arranged as a quadratic equation in m, it will give

m2+ 2m -^L+^^J =0.
a2 — x2 a2 — x2

In order that the two direction ratios m x and m 2 derived from

this equation shall represent tangents at right angles to each

other, they must have the relation
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mxm2
— — 1;

that is, the absolute term of the quadratic

b
2 -y2

i

a2— x2 * 2 '

which gives

a;
2+ 2/

2= a
2 + &

2
.

For the parabola, we should have, in a similar way,

m2 —m — +— = 0,
x x

or

P

or

m m 2= ^— = — 1.1 2
a;

x=—p.

The same results are readily obtained by finding the locus of

the intersection of two perpendicular tangents

:

mx— V a 2m2+ b
2
,

my+x= Va 2 + b
2m2

.

If the two equations of these perpendicular tangents are squared

and added, there results

(x2 + y
2

) (1 +m 2
) = (a2+ b

2
) (1 +m2

)

;

and by eliminating m, we obtain

x*+ y
2= (i

2+ l
2

.

73. Pedal Curves.—Perpendiculars from the focus to the tan-

gents of a conic meet on a circle.

The equations of the tangent of the ellipse and the perpen-

dicular from the focus upon it are

y—mx— V

a

2
ra

2+ b
2
,

my+ x= ae.
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Squaring and adding these equations and noting that o
2—

a2 (l — e
2
), we get

(x2 + y
2 )(l + m2)=a2 (l +m2

),

or, eliminating m,

x2+ y
2= a2

,

as the locus of the intersection of the two lines.

This circle is called the major auxiliary circle of the ellipse,

for reasons that will appear in Art. 87, Parametric Equations.

In the case of the parabola, m may be directly eliminated; the

equations are:

u—mx-\- -P-

,

v m

Subtracting,

or

x v
* m ^ m

x
{

m+i)'

x=0.

The interpretation of the tangent at the vertex of the parabola

as corresponding to the auxiliary circle of the ellipse is evident

from the fact that the center of the parabola is infinitely distant

from the vertex.

The locus of the intersection of a tangent of a given curve

with the perpendicular from a given point is called a pedal

curve. We have just derived the pedals of the conies when the

given point is the focus. The pedal for any other point is derived

in a similar way; the equations of the tangent and of the per-

pendicular from the given point are written in terms of m, and

the arbitrary parameter m eliminated.

As an illustration we will derive the pedal curve of the para-
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bola \f
— \ax, when the given point is (— a, 0). The equations

of the tangent and of its perpendicular from (— a, 0) are:

V=mx+-^> (1)

y=^±a - (2)

The elimination of m and the resulting equation are both

simplified by shifting the origin of (1) and (2) to the given

point ( — a, 0). The lines are then

y= m(x-a) + -^, (1)'

y=-—
• (2)'

/>•

Putting for m in (1)' and simplifying, we get

or(a;
2+ 2/

2)-a(^-2/2)=0

as the equation of the pedal curve referred to the given point as

origin.

74. Examples.

1. Find in detail the equations of the tangent and normal and
the lengths of the tangent, normal, subtangent, and subnormal

X 1]

for the ellipse —^ + -— — 1 at the point (x1} yx ) lying on the
Oi

curve.

2. Give the equations and lengths of the tangent and normal
and the lengths of the subtangent and subnormal to each of the

following at the point indicated.

y
2= 12x at the point having the abscissa 3.

— 4- -~ = 1 at the point having the abscissa 2.

— — -^- = 1 at the point having the abscissa 3.
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3. Find the tangents from (2, 7) and the normals from
(15, 6) to the parabola y

2= 12x.

Ans. y= 3x+l, 2y= x+12, y= x— 9, y— -2x+36.
or ifi

4. Find the slopes of the two tangents to— -j- -^- = 1 from

(A, 2) ; from (3, Je) ; from (3, 2). (See Algebra, Art. 46.)

Ans. y^- and 0; ^^ and oo ; and oo.

5. Find the equations of tangent and normal and lengths of

subtangent and subnormal for the curve y— ex where it crosses

the y-axis. Ans. y— x=l, y+ x=l, 1, 1.

6. Find the lengths of tangent, normal, subtangent, and sub-

normal for y— ex, where x= log V3. Ans. 2, 2V3, 1, 3.

7. Show that the lengths of subtangent and subnormal for the

curve y— sin x are in general tan x and \ sin 2x.

8. Find the subtangent of y= tan x when x=\ . Ans. J.

9. Find the angle between y— sin x and ?/= coS£.

Ans. tan-^v^-

10. Show that the tangents at the extremities of the latus

rectum of a conic meet on the directrix.

11. Let PM be the ordinate, PN the normal of a point P on
the conic y

2= (1 — e
2
) (a 2 — x2

), and call the foci Fr and F*.

Show that NF± : NF2
=PFX : PF2, so that by plane geometry PN

bisects the angle F1PF2 .

12. Prove the property of the parabolic mirror.

13. Derive the pedal of the circle x2
-\-y

2— a2 with respect to

the point (a, 0).

Ans. (a, 0) being taken as a new origin, the pedal is the

cardioid ( x
2 + y

2+ ax) 2= a2 (x2 + y
2
) .

14. Derive the pedal of the rectangular hyperbola x2— y
2— a2

,

with respect to its center.

Ans. The lemniscate (x2+ y
2
)
2= a2 (x2— y

2
), the origin be-

ing the same as for the hyperbola.

75. The Second Derivative.—If y is a function of x, the de-

rivative of y with respect to x is also a function of x, the deriva-

tive of which may be taken with respect to x.

The x-derivative of the x-derivative of a function is called the

second x-derivative of the function, or the second derivative of

the function with respect to x.
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The derivative of the second derivative is called the third de-

rivative, and so on.

The notation used in expressing the higher derivatives is as

follows

:

If y=f(x), then

y'— f(x) = 'y' — -^- represents the first derivative;

y"— f"{x) = ' y' = —^— represents the second derivative;

yf"= f"{x) = ' ,\
' = -jj— represents the third derivative;

and so on.

When it is convenient to consider that the value of dx, which

is arbitrary, is always the same throughout a discussion, another

set of forms can be used to denote the higher derivatives. For if

dx is considered constant, and we find the x-derivative of ~- by

differentiating and dividing by dx, we get y"— }\ -^ ; repeating

the process, we get y'"— / ) ffl ? and so on.

These numerators are cumbersome, so they are abbreviated to

d2
y, d3

y, expressions which are read " d second y " or " second

differential of y" etc., and which mean " the differential of the

differential of y," etc.

The notation, when x is the independent variable, is thus

:

y=f(x),

•= r(«>=-£'

tf'=f"{*)=^.
etc.
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It will be noticed that in place of (dx) 2 we have written dx2
,

which in these forms is always taken to mean " the square of dx."

Whenever there is any danger of confusion with the differential

of x2
, the parentheses must be retained.

The second derivative is the only one that is susceptible of

interpretation by itself, though the others occur very commonly.

The simplest interpretation of the second derivative occurs in

connection with functions of time. If s= f(t) is the distance

traversed during the time t,

s'=f(t) = f,
is, as we already know, the speed of the motion, or the time-rate

d2
s

of increase of the distance, s"= f" ( t)
— -rry- is called the ac-

celeration of the motion, and is the time-rate of increase of the

speed. Thus when a body falls to the earth, going s ft. in t sees,

the law of its falling is (nearly)

s= lQt2
;

from which

or the speed is 32i ft. a second; and

*"=-§- =33w,
or the acceleration is 32 ft. a second in each second; that is, there

is an increase in the velocity of 32 ft. a second during each second

that the body falls.

In problems of motion, then, the first derivative is the speed,

the second derivative is the acceleration. The third derivative

occurs in some sorts of motion, but has no special name.

In geometrical problems in which a curve is represented by an

equation y=f(x) in connection with a system of axes, the first
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derivative, -^ , is the slope of the curve, as we have seen. The

second derivative has no special name, but is very significant, both

by itself and as an element of an important expression.

76. Inflections.—Let y— f(x) be the equation of a curve in

rectangular coordinates; then

2/'=/'(*) = |f =tanr

is the slope of the curve, and

is the derivative of the slope, and is consequently positive when

the slope is increasing (algebraically), negative when the slope is

decreasing, and zero when the slope is changing from one state to

the other. A point which appears to be the junction of opposite

bends, like the middle point of the letter S, evidently has this

Fig. 19.
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last property; such a point is called a point of inflection, and at a

point of inflection of a curve, y= f(x),

jr=r<*)=-g-=o.

Any graph of a cubic function, such as we studied in the

Algebra, has just one point of inflection. Thus the equation of

the curve on page 99 of the Algebra is

10y= 2x3 -15x2+ 24:X+6.

And for this curve,

10ij'=f (x) = 6z2 -30a?+ 24,

10y"=f'(x)=12x-30,
y"— when a?=|-.

As x increases from — oo to + oo , the slope y' decreases, as is

evident from the figure, from + 00, becoming zero when a?=l,

decreasing further to the value =^f when a?=§ (at the inflec-

tion), after which it increases to + oo, passing through the value

zero when x=4=.

In this figure the inflection is clearly the junction of the part

of the curve convex upward with the part convex downward, so

that the tangent at the inflection crosses the curve. Inspection of

an adjacent secant shows further that at the inflection the curve

and the tangent have three common points. This appears also

analytically from the fact that the equation of the tangent, at the

point (|, £$),

1n 149 -54a?
i<>y= —^— ,

when solved simultaneously with the equation of the curve, gives

(2a?-5) 3=

to determine the intersections.

7
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77. Examples.

1. Show that the tangent to the inflection for y—x?— 3x*
-45#+7 is48z+2/=8.

2. Show that if the abscissas of the highest and lowest points
of a cubic parabola a2y=x3+ bx2 + c

2x+d3 are x± and x2, the

abscissa of the inflection is ^^ .

3. Find the inflection of y=x3+ px+q.
4. Find the tangent to the curve y(l+logx) —x at its inflec-

tion. Ans. ^y—x— e.

5. Find the tangents at the inflections of the curve (Witch)

y(a?+x2
) = a3

.

Ans. 2y±x= 2a,

6. Show that if y=x~3 *> . VL = _ 61og^
,

^"~/2

=
2/ x ' y-

--Jr(l-log*), <=—5-(l+»log.*)(l-31og*),BO that

the curve y—x~3 l09 x has inflections at {e~^, e~%) and (e*, e~^).

78. Curvature. Radius of Curvature.—One of the most im-

portant characteristics of a curve, especially in connection with

the bending of beams and other structural supports, machine

parts, etc., is the sharpness with which the curve bends, or its

curvature.

Some curves bend more sharply than others, and except for

the straight line and the circle, any curve bends more sharply

at some points than at others ; the curvature of any conic section,

for instance, is greatest at the ends of its major axis, and de-

creases at increasing distances from, these points.

To measure the curvature of any given curve at a given point,

Ply let the tangent at Pt slide along the curve, its point of con-

tact moving through the arc P±P2
= As, and the tangent itself

turning through the angle Aa (Fig. 20). The angle of turn, Aa,

in comparison with the distance, As, that the point of contact

has to move in order to produce this turn, indicates the sharp-
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ness of the curvature at P± . The quotient,

-
-"—

, is the mean curvature of the curve
As

from P1 to P2 . This mean curvature

varies, in general, for the same point P1?

according to the length of As. As usual

in such cases, its value when As=0 is taken

as the actual curvature at P, ; i. e.,

Aa
As

Fig. 20.

As=0
X,

the curvature at P± .

79. Given a circle of radius a> to find its curvature at a given

point P1 (Fig. 21). Choose any second point, P2, and call the

arc P1P2= As. Call the angle turned

through by the tangent as its con-

tact moves from Px to P2 , Aa. Choose

any diameter OA and call the angle

P1OA = 6, the angle P2OA = 6+A0.
Then by geometry,

Aa= A0,

and using circular measure through-

out, we have

As= aA0: Fig. 21.

Aa
As

Afl

aA6

For the circle, then, the mean curvature is constant for all

points and for all lengths of the increment of arc ; the curvature

of a circle at any point is the reciprocal of the radius.

For any straight line, Aa= for any value of As, and the

curvature is constantly zero. (This is consistent with the con-

ception of a straight line as a circle of infinite radius.)



84 The Calculus.

80. To compute the curvature of any curve at a given point,

let
<f>

be the angle made by a tangent

to the curve with any fixed line OA
(Fig. 22), and A<p be the increment

<p receives when the contact moves

through the arc P1P2
= As; then

Aa— Acf), and the curvature is

X= As ! A.s=0

d<p

ds

d<f> .

The value at P1 of ~j- is the actual curvature at Pt .

The most convenient method of designating the curvature of

a given curve is to give the radius of the circle which has the

same curvature; this radius is denoted by p (rho, the Greek r)

;

then as the curvature of the circle is—

,

P

1 _ d<p __ ds

~y-~aV' p -~d$'

This circle is called the circle of curvature; its radius p is

called the radius of curvature, and its center the center of curva-

ture.

81. The Differential of Arc.—In order to use this formula in

connection with curves whose properties are defined by equations,

we shall need analytical expressions for ds and dcf>. The symbol

ds is the same that we used earlier for the hypotenuse of the dif-

ds
ferential triangle, and is used here because -j— is sec r when ds

is the differential of arc as well as when ds— V (dx) 2+ (dy) 2
.

That is, the differential of arc and the hypotenuse of the differen-

tial triangle are the same.

From the familiarity that we have already gained with the

intimate relation between a curve and its tangent, especially with

their infinitesimal increments, this idea probably will seem an
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obvious inference ; if it is at all vague, the following explanation

should make it clear.
m

82. By the length of a straight line is meant the number of

times it will contain some recognized standard or unit; as a

definition for the length of a curved line we have: "the limit

approached by the length of a broken line formed of chords of

the curve as the length of each chord approaches zero, and as the

number of chords consequently increases indefinitely." Xow
suppose we have two points of a curve, P(x, y) and P'(x+ Ax,

y+ Ay), between which is the arc

As. Let the slopes at P and P'

be tan t and tan (r+ Ar). Sup-

pose a broken line to be inscribed

in the arc from P to P', and for

convenience let the chords of

which it is composed have equal

projections along Ax. (See Fig.

23.)

The inclination of each chord to the .r-axis is between the

values r and (r+ Ar) ; its length is the length of its projection

multiplied by the secant of its inclination. If there are n chords,

Ax
the length of the broken line is times the sum of all n

secants, or is Ax times the average of the secants. This average

is certainly between sec r and sec(T-f-AT) in value; so the length

of the broken line is between the values Ax sec r and Ax sec

(r+ Ar). This is true independently of the number of the

chords composing the broken line, and so holds true when this

number is increased indefinitely; hence the length of the arc As

is intermediate in value between AzsecT and Ax sec (r+ Ar).

Thus we have

:

As
The value of—— is between sec t and sec (r+ Ar).

Ax v J

Y
«. AX >/„.

\\r

£

~^P 1
^T ' IT+UT

(V X

Fig. 23.
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As Ax approaches zero, sec(T+Ar) approaches seer, and so

ds

I &X J 4x=0 dx
=S6CT'

where -p is the ^-derivative of the arc s, and ds is the differen-

tial of arc.

But

sec r=VI+giFr= Ji+ (-g-J
= V&Y+W ;

hence

ds=V(dx) 2 +(dy) 2
,

where ds is the differential of arc.

ds is really ± V (dx) 2+ {dy) 2
', in any problem in which the

sign is of importance, it must be chosen consistently with the

relations

ds _ ds—=— = sec r, —t- = esc r,
az «?/

etc., so that the derivatives shall indicate by their signs whether

s increases or decreases with x or y and shall be of the same signs

as the corresponding functions of t.

83. Curvature in Rectangular Coordinates.—Given a curve

y=f(x) referred to rectangular coordinates, to find its radius of

curvature at any point. Take the axis of x as the fixed line OA
in the preceding article; then

<£= T,

— d<l> _dr _ ds
X~ ds - ds

1 P ~ dr '

T=tan-1 -^ ^tan-1
/-

Differentiating t, and dividing dr by ds, we have:

dT- d(Y)



Analytic Geometry. 87

Since

ds=Vdx2+ dy2=Vl + y'2 • dx,

dr d(y')

ds " (l + y'2)i-dx'

dyj' _ »
dx ~ J '

_ dr_ f
x ~ ds - (1+y'2 )*'

_ ds (1 +^2
)'

P~ dr ~ y" '

If the problem is one in which x is the independent variable

d2v
throughout, y" may be replaced by -r4 ; the formula is often

written

1+
?-

\dx )

d2
y

dx2

We commonly pay no attention to the sign of p; whenever

there is any point in considering it, the simplest method is to

ds
observe that the sign of p= —7— shows whether s and r are in-

creasing together or not. The value of ds is ± Vl + 2/'
2

* dx

according as the arc s and the abscissa x increase together or do

not, and this of course depends partly on the point of the curve

from which s is measured, and the direction of the curve that is

considered positive.

84. Radius of Curvature of the Central Conies.—As an illus-

tration of the use of the formula, we will find the radius of

curvature of any central conic (origin at center).

tf=(l-e*)(a*-x*). (1)
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Substituting the value of y
2 from (1) in the numerator, we

have

2/"=-(l-*2
)
2 ^-

Now

i W2_ V
2+ (e2 -l) 2x2 _ (1-e2

) (a2-x2
) + (e

2 -l)V

by the same substitution, or

f y
2

l + y'2
=~Lyf-(a2 -e2x2

).

Hence

(i±fii_
(1?!li(,,!- eV)l

p~ y"
~~
(!-«2

)
2^

or the positive value of p is

(a2 -e2x2 )S
= (e

2^2 -a2 )l

For the ellipse, a,V 1 — e
2= b, and for the hyperbola, aVe2— 1

= &; hence:

T/ie radius of curvature of the ellipse —^ + 4-
2
— 1 at any point

{x, y) is

T/ie radius of curvature of the hyperbola —j —p- =1 at any

point (x, y) is

ir(^-«
2
)-.
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For either curve, p is thus the f power of the product of the

focal radii drawn to the given point, divided by the product of

the semi-axes.

85. Examples.

1. Derive the value of p for the parabola y
2= ±px directly, first

using ?/'= a/2- , then using y>= -?-
.

x y

Ans
- p=^(x+p) i= ^(y2+iP

2
y--

v x
2. Find p for the parabola -p" = — .

3. What is the radius of curvature for a point of inflection?

-1. Find p for y= cosxJ and show that the least value of p is

for one of the highest or lowest points, when the center of curva-

ture is on y=0.
5. Show that at the vertex, p is equal to the semi- latus rectum

for any conic, and at an extremity of the minor axis of the

ellipse, p— j- .

6. Derive the value of p for the ellipse directlv from the equa-

.. x2 v2
. "(ay+&y )*kon^ + p = l. Ans. P= J^ .

X 1]

7. Do the same for the hyperbola —
2
- — jT = 1-

8. Find the normal and the radius of curvature for

y—\ (ex/c+ e-x/c ).

Ans. p=n=y2
/c.

86. Auxiliary Circles of the Ellipse.—Consider the following

locus problem. Two concentric circles are given (Fig. 24), of

radii a and b (a>&), and two perpendicular diameters, OX and

OY; let any radius Op'p cut the smaller circle at p' and the larger

at p; to find the locus of a point, P, moving so as always to have

the same abscissa as p and the same ordinate as p', with refer-

ence to the axes of coordinates XOY.



90

Let the angle pOX=<j>; then for any value of
<f>,

a cos
<f>,

b sin
<f>.

(i)

Since sin<f>= ^- } coscf>= — , and sin2
<f>
+ cos2

<f>
= 1, we have

a2 + 62
~ l5 (2)

a relation true for any position occupied by P under the given

conditions. The locus is therefore an ellipse of semi-axes a and

b. The larger circle, tangent to the ellipse at the extremities of

its major axis, is called the major auxiliary circle of the ellipse;

and the smaller circle, tangent to the ellipse at the extremities

of the minor axis, is called the minor auxiliary circle of the

ellipse. The points p and p' are spoken of as the points of the

auxiliary circles corresponding to the point P of the ellipse.

<f>
is called the eccentric angle of the point P.
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This proposition furnishes a simple means of constructing any

number of points of the ellipse by the aid of the auxiliary circles,

and there are other relations through which certain construc-

tions are made possible. For instance, the subtangent of any

ellipse having the major axis 2a is ——— . Therefore if any

number of ellipses are drawn with a common major axis, points

on them having the same abscissa will have the same subtangent,

and the major auxiliary circle is one of these ellipses. Thus a

tangent may be drawn to the ellipse at any point, or from any

point of OX, by first drawing the tangent to the major auxiliary

circle for the corresponding point.

87. Parametric Equations.—Besides these geometric relations,

and much more important, is the fact that the pair of equations

(1) represent the same relation between x and y as the single

equation (2), for in most analytic work it is easier to use equa-

tions (1) than equation (2).

Equations (1) express each of the coordinates of the variable

point as a function of an auxiliary variable, <£, so that by assum-

ing all possible values of
<f>,

all possible pairs of values of x and y
can be found, and the points of the locus determined. An
auxiliary variable of this sort is called a parameter, and a pair of

equations such as these are called parametric equations of the

corresponding curve.

It is often convenient to replace the ordinary equation of a

curve by a pair of parametric equations, doing so arbitrarily

without any thought of the geometric significance of the param-

eter so introduced. Any pair will do if, when the parameter is

eliminated, the original equation is produced. The parametric

equations of the ellipse might have been introduced in this way

;

for, given

~2 "T 7.2
X

J
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since

cos2 cf>+ sin2
</>= 1

we are led at once to assume

— = cos d> and -^- — sin <f>,

as the parametric equations of the ellipse.

In the same way, and for the same reason, we assume

x= acos<f>] x=beo$<f>

y= a sin
(f>J

y=bsm<f>

as the parametric equations of the major and minor auxiliary

circles respectively. It is evident from the figure that the param-

eter cf> is the same in all three of these.

Again, in

x2 y2

a2 "
b2 ~ l

>

since

if we assume

then

so that

sec2
<j>— tan2

<j>= l,

X 9 i—- = sec
2

<f>,

i£-=tan2
<£;

x=asec<f>, y— b tan
<f>

are the parametric equations of the hyperbola.

It is entirely unnecessary, in using this pair of equations in

analytic work, to consider the geometric relations between
<f>
and

the hyperbola.

88. Derivatives in Connection with Parametric Equations.—
All our derivative formulas can be applied directly to parametric
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equations, but of course the parameter is the independent vari-

able, so that the second ^-derivative of y cannot be formed by

differentiating the differential of y and dividing by (dx) 2
, but

must be formed by taking the ^-derivative of-p . This is best

done by differentiating the first derivative and dividing by dx.

As an illustration, consider the ellipse

x= acos<f>, y= bsm<f>.

Evidently,

dx= — a sin <f> d<b] , , _ . _ — -
, . ,! *\.ds=Va2 sin2

cf> + b
2 cos2

4>>d<l>;
dy— b cos

<f> d<f>

tanT=^i=-^ C0t^

,,_d(y>)_
]
q
LcSc2

+
' d+

dx -asm<f>-d<j>'

or

„ — b esc3
<£

y—^—

'

P— — .//
—

7

a 2

—r- (a2 sin2
d>+ b

2 cos2
<&)*.

These results may be used as they stand, for to any given

point of the ellipse corresponds a value of <j>, and substituting

this value will give the slope, curvature, etc., at the given point.

If desired, the results may be expressed independently of the

1/ x
parameter. Putting sin <f>= -j- 3 cos<f>=— , &

2= a2 (l — e
2
), p

o a
be-
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comes, for instance,

P=^(a*-e^)K

(Cf. Art. 84.)

The value of p can be derived directly from the definition,

ds
p= -j- , and for some parametric equations this is much the

more convenient way.

Thus, since tan t= cot d>,

a

sec2 t dr—— esc 2
d> dd>.

a

Substituting 1 + tan2 t=1-\—^ c0^2 <£ ^or sec2 T> we ^n^ ^T anc*

a

ds
get for t =p the same result as before.

dr

89. The Cycloid.—One of the most interesting of the transcen-

dental curves is the cycloid, defined as follows: If a circle of

fixed size rolls along a straight line, the curve described by a

point of its circumference is called a cycloid. The line on which

the circle rolls is called the directrix of the cycloid. The curve

consists of an indefinite number of arches, touching the directrix

in points called cusps; the piece of the directrix between two

V_
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cusps is called the base of the corresponding arch, and the point

of an arch furthest from the base is called a vertex. (See Fig.

25.)

If the radius of the rolling circle is a, the base of an arch is

evidently 2ira, and the height 2a.

Take the directrix as axis of x, and one of the points where the

generating point touches the directrix as the origin; take the

axis of y on the same side of the directrix as the rolling circle.

Consider the position P(x, y) occupied by the generating point

when the circle touches the directrix at M, its center having

moved to 0', and the radius drawn to P having turned through

the angle <j>.

Evidently OM= arc PM=a<f>, and PN= a sin
<f>;

x=OM-PN.
Also O'M—a, 0'N=a cos $;

y= 0'M-0'N.

Consequently

x=a(cj> — sin<£),l

y= a(l-coscf>).j

are a pair of parametric equations of the cycloid.

It is possible to eliminate cf> from these equations and express

x as an explicit function of y, but the resulting form is incon-

venient. From the parametric equations, however, the curve is

readily studied.

We can very easily obtain the coordinates of any number of

points; for instance, with

9 = u, -g- ; -^ ; -3-; it; -3-; -g-; -3-; ^^; etc.,

we have

x= 0; .18a; .57a; 1.23a; ira; 5.06a; 5.71a; 6.10a; 6.28a
,

>-CtC
y=0;.5a; a; 1.5a; 2a; 1.5a; a; .5a;
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Since (tt— <£) and (v+<f>) give the same value to y, and give

to x values differing equally from ira, the arch is symmetrical

with regard to x— ira. Since increasing <j> by 2tt increases x by

2ira and leaves y unchanged, the curve consists of equal arches,

stretching indefinitely in both directions.

Differentiating the equations, we have:

dx—a(l — cos <£)d</>= 2&sin2 ^- d<f>,

dy— a sin <}> dcj>= 2a sin— cos 4r d<f>,

ds 2= dx2+ dy2= ±a2 sin2
-|- (sin2^ + cos2 W

4a2 sin2 -^-(#) 2
,

ds=±2a sin
4>

If 5 is measured from the origin and is positive in the direc-

tion taken by the generating point as
<f>

increases, then, since

d<j>
is to be positive always,

4>
ds— 2a sin -^- d<j> for the arch from

<f>
— to cf>= 2ir;

ds=—2a&m~-d<f> for the adjacent arches; and so alternately.

dy

dx
tan t= cot -^-

,

dy . <2>

-f- =sinr= cos -77-

.

eta . <£

-i— = cos r=sm -£-.:
ds 2

whence r— -Z -?- •

Hence, in Fig. 25, the tangent at P is parallel to the bisector
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of the angle PO'M, and consequently passes through the highest

point of the rolling circle.

The sub-normal is

y tan r= 2a sin2
-^- cot ~=asm <j>,

and so =PN; the normal therefore passes through M, the lowest

point of the rolling circle.

The length of the normal is

71= y sec r= 2a sin2 -~ esc -?-=2a sin —

;

— z. z

and the length of the radius of curvature is

ds
2asiD4^

. . 4,

" «(W)
(The positive value of p is —-, , since t decreases as s in-

creases, r being measured from the positive direction of OX to

the positive direction of the tangent.)

Since p= 2n, the radius of curvature is bisected at the point

M.

90. As an example of the arbitrary use of the parameter, sup-

pose we wish to study the curve given by

(t)t/+*;-»

If we letf-—
J
=cos 2

<f>, we findf 4-
)
=sin2

cf> ; whence

x= acos3
<f>, y= b$m3

<f>

are parametric equations of the curve.

From these it appears that the .r-intercepts of the curve are

± a, the ^/-intercepts ± b, and that these are the extreme values of

8
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x and y. As tan.T= tan
<f>,

the curve is tangent to each

axis at its intercept, and so has four cusps.

This curve, when b — a, is called the astroid. In this case,

t=7t— <£, ds= ± 3a sin <j> cos
<f>

d<\>, + in the first and third quad-

rants, — in the others, if s is

measured positively contra-clock-

wise around the curve. The
length of the tangent is

t= y cscr= y esc <£= &sin2
<f>.

The distance along the tangent

from its contact to the y-axis is

t'— —x sec t— x sec
(f>
= a cos2

</>

;

hence t+ t'= a; and the part of

the tangent intercepted between

the axes is of the constant length a.

The length of the radius of curvature is

p= ± 3a sin <j> cos
<f>
— : axy,

3a
with signs chosen as for ds. As p= -n~ sin 2<£, its greatest value

f)

is -^ , for the points half-way between two cusps. The normals

at these points are -jr in length and reach to the origin.

91. Examples.

1. From the equations for the hyperbola,

x= asec<f>, ?/= &tan<£,

find tan t, the subnormal, and the radius, of curvature.

A . b b2 (a2 &m2
cf>+ b

2 )i
Ans. tanr=— csc<£: s. n.=— sec d>- p=± —^—

—

'— or
a a r

ah cos
3

</>

(a2 tan2
4>+ &

2 sec2
<fr)

3
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What limitations do these equations place on the value of ^ ?

2. In the case of the ellipse

x= acos<p, y=b&m<f>,

given that the value
<f>
=

<f> lt determines the point Px (xu yx ),

show that
<f>
= cf> 1 ± \ determines the extremities of the diameter

through the conjugate point.

3. In the ellipse of example 2, show that if p is the radius of

curvature at P
x ; and 2r is the length of the diameter through the

point conjugate to P1? then ahp= rz .

4. Show that x=at2
, y— bt are parametric equations of a parab-

ola; find in terms of t the lengths of the subtangent, the sub-

normal, and the radius of curvature. Show that the extremities

of the latus rectum are given by t= ± -~- , and find the values

of the three lengths for these points and for the vertex.

5. Show that a point at a distance b from the center of the

rolling circle of the cycloid generates a curve having for its

equations

x=a<f>— b sin <j>, y=a—b cos <j>.

(Any such curve is a trochoid.)

Show that y"= &( flc
p
s <ft-&)

. ^ that, if b<a, the points
* (a-bcoscf>) 3 ' ' r

given by <£= cos
_1 — are inflections. (Prolate cycloid.)

Show that, if a<b, the values (j>x and —<f>19 for which

&m<f>J
=^?-

f give coincident points of the curve. (Curtate

cycloid.)

Show that for either trochoid, p= ± ^

—

Jt —

—

7 \ ,r b(acoscp-b)

and that for the points where the curtate cycloid cuts the direc-

trix, p=Vb 2 — a2
.

6. Transform the equations of the cycloid, using for axes the

tangent and normal at the vertex, y-axis upward, getting

x'— a
(<f>'+ sin <£'), y' = a( — l + cos <f>). ($'= <{>— tt.)
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7. A jointed parallelogram PAOB has one vertex fixed at the

origin of coordinates and moves so that the angle AOX is equal

to twice the angle BOX; if the sides are OA = a, OB— b, show
that the locus of P is given by the equations

x=acos2<fx+b cos 0,1

y=asm 2cf>+ b sin <f>.j

This curve is called a limagon. If b= 2a, it is the cardioid.

Show that, for the cardioid, t=J(7t+30), p= -~- cos -?- •

Find the values of x, y, r, and p for the points given by <f>=0,

~o t "o~ j
Kj -Q-

7
an(l -q- • Draw the curve.

8. Find a pair of parametric equations for

and show that they represent the part between (a, o) and (o, b)

of the parabola represented by the four irrational equations in-

cluded in

*(tT* (I)'--
or by the single equation

(JL + X_iY =4 iL.

9. Find the parametric equations of the companion to the

cycloid, the locus of the point N; and show that, if the origin is

shifted to the point (na, a), the equations become

x'— a<p
f

, y'— a cos $',

where cp'=
<f>
— tt; so that the companion is the cosine curve

x'
w'rraCOS— .v a

10. Show that

sc= a(cos0+0sin0), y=za(sm<f>— <f>
cos 0)

represent a spiral for which p= a<j>.

92. Polar .Coordinates.—We are familiar with the method of

locating a point in a plane by giving its distances (called rec-

tangular coordinates) from two given perpendicular lines. There



Analytic Geometry. 101

^P(r&)

P(-K0)

are other methods of determining the position of a point in a

plane, and of these the most important is by means of polar

coordinates. If, as in Fig. 27, we choose a point of the plane 0,

and a line, OA, through 0, then

the distance r— OP and the angle

6=AOP are polar coordinates of

P. The point is called the pole

or origin, and the line OA the

initial line of the system of polar

coordinates. The distance r and

the angle 6 are called the radius

vector and the vectorial angle of

the point P. The point is designated by {r, 6).

The angle is measured counter-clockwise from the initial

line if positive, clockwise if negative. The distance r is measured

in the direction thus determined if r is positive, in the opposite

direction if r is negative.

93. Transformation of Coordinates.—The relation between

polar and rectangular coordinates is simple if they have the same

origin, and the same line as initial line and axis of x. Thus, in

Fig. 28 we evidently have

Fig. 27.

x— r cos x- + y- = r

y=r sin 6 f -^-=tan

Fig. 28. Fig. 29.
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The equation of a curve in polar coordinates may be found

either by expressing its geometric definition in terms of its polar

coordinates or by transforming its equation as given in rectangu-

lar coordinates. For instance, in the circle of Fig. 29, if the

pole is on the circumference, and the initial line is the diam-

eter through 0, it is evident from the geometry of the figure that

r=2a cos 0,

a being the radius.

Again, the equation of this circle in rectangular coordinates is

(x— a)
2
-\-y

2= a
2
, or x2+ y

2= 2ax,

which, through the formulas of transformation, becomes in polar

coordinates

r2— 2ar cos 0,

or

r=2acos 6.

As another example, consider the parametric equations

x— a cos 2<j>+ 2d cos
<f> "J

y= a sin
2<f>+ 2a sin <j>

J

which represent (Ex. 7, Art. 91) a cardioid. If we first shift the

origin a distance a to the left, these become

x=a+acos 2<{> + 2a cos <£, 1

;in
<f>. \

y=a sin 2<£+ 2a sin

These, since 1 + cos 2cf>= 2 cos2
<f>,

sin 2<j>= 2 sin
<f>

cos<£, may be

written

x=2acos <£(l + cos<£)

y=2asm </>(l + cos $)

Evidently

tan0=-^- = tan<£; = 0.

•}

r2= ^2 + i/
2 =:[2a(l + cos0)] 2 (sin2

</>+ cos2
0),

r= 2a(l-fcos </>) ;
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and r= 2a(l + cos0) is the polar equation of the cardioid, the

pole being the cusp, the initial line the axis of symmetry.

From this equation, r= 2acos0+ 2a, it is evident that the

cardioid is the locus of points distant 2a further from the origin

than the points of the circle r—2a cos 6.

94. Examples.

Find the polar equations of the following curves, taking the

origin and a>axis of the rectangular system as the pole and
initial line of the polar system, except when directed otherwise.

1. x= a; y= b.

2. x2+ y
2= a2

.

3. Ellipse : major axis 2a, eccentricity e, pole at left focus,

initial line the major axis. (Hint : After substituting, solve the

equation for r.

)

Ans . r= "(l-* 2
) or r= _ a(l-e-)

1 — e cos 6 1 + e cos 9

4. Parabola : parameter p, pole at focus.

Ans. r— p esc2

f or r= — p sec2 f

.

5. The hmniscate (Art. 74), (x2+ y
2

)

2 = a2 (x2 -y2
).

Ans. r2= a2 cos 20.

6. The cardioid (Art. 74), (x2 + y
2
)
2+ 2ax(x2+ f) -a2

y
2= 0.

Ans. r—— a(l + cos#) or r=a(l — cos 0).

In each of the examples with two answers, tracing the curve
from the two polar equations will show that the two equations

are equivalent. This may also be seen from the fact that the

point determined from one equation by 6=a is the same as the

point determined from the other by 0=a+ 7r.

95. Derivatives with Polar Coordinates.—Let a curve be given

by an equation in polar coordinates, and let it be required to find

the angle if/ from the positive direction of the radius vector at

any point P to the tangent at the same point. (See Figs. 30

and 31.) This value can be obtained directly, or by transform-

ing to polar coordinates the results already obtained in rectangu-

lar coordinates. Following the second method we have

:

x=rcos6, dx= cos0 dr— r sin dO

y=rsm$, dy— §mO dr+ r cos Odd ;•}
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tan t— dy^

dx

sin dr+ cos 9- rdO

cos dr— sin 6 - rdB
'

Dividing each term of this fraction by cos $ dr, we have

tan

tan#+ ^=-
dr

l-tan0
rdO

dr

But since t=6+
\J/,

Hence

, _ tanfl+tani/r
~

1 — tan tan
\J/

tan^=-^-

dr
As r=f(d), -Tn —f (#) is represented by /; so

d$

tan^= —r

The differential of arc ds is obtained similarly

:

(ds) 2= (dx) 2 + (dy) 2= (rd$) 2 + (dr) 2
.

The other functions of \p may thus be expressed

:

2 , 1,4. 2 ,
(rd0) 2 +(dr) 2 (ds) 2

dr

etc.

COS tf/:

.
,

rdO
etc.

Fig. 30.

96. These results are conveniently

viewed in the following figure, called

the polar differential triangle.

In Fig. 30, regarding the arcs PP'

B and P'B as straight lines of lengths

ds and rd6, PB as of length dr, B as a

rectilinear right angle, and P'PB as

the angle
\f/
between the radius vector

OP and the curve, the results just ob-

tained are easily remembered:
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tan \p— -3- :r ar 9 CO&xp-
dr

ds
Sin \p:

rdO

ds

It is usual to regard as the independent variable in all

treatments by polar coordinates.

97. Applications of the Polar Differential Triangle.—Cor-

responding to a point P(r,6) JV

of a curve r=f(6) (Fig. 31),

draw the radius vector OP,

the tangent PT, the normal

PN, and a perpendicular to

OP through meeting PT
and PN at T and #.

PT and PN are called the

polar tangent and normal, OT
and ON the polar subtangent

and subnormal. Let p be the

perpendicular from to PT. Fig. 31.

Pr=tangent =r sec f=*£ _r ^1+ (-^-)* - £ VF+?*

r2J^ ~2

0!T= subtangent=rtan ^= -p = —

OiV= subnormal =rcot^= ^-~ = -~=rr
.

p=rsin^r = r2^
ds V(dr) 2 +(nZ0)



106 The Calculus.

P
I 2 . / dr V Vt^+V2

'

i-+m
dsThe radius of curvature is found from the definition p= -5-

,

dr

and the relations t=ij/+ 0, tan ^= -^-
3
whence

_ r+/ tanfl _ r cos fl+/ sin
~

r'— r tan 9
~~

r' cos — r sin *

98. Examples.

1. Find for r=2acos#, the six lengths of Art. 97.

2. Show that for the cardioid r= 2a sin2
J,

T=-rt- ±w*r, ^=2asin|<i0
;

/o= §V2a.r.

3. Show that for the lemniscate r2= a2 cos 20,

rr , «/, r3 a2

*=-g+8», p=^, P=-
4. Show that in the parabola,, r=asee2

f , Vr2
-i-/

2 =asec3
|.

the polar subtangent=2acsc 0, and the perpendicular from the

focus on a tangent

=

a sec |.

5. Find the radius of curvature of the parabola r=asec2
|,

and its values for the vertex and the extremities of the latus

rectum. Ans. /o= 2asec3
f ; 2a, and 4aV2.

6. Find the radius of curvature of the ellipse r=^ ^ ,r 1 + e cos

and its values for the points given by 0=0, \, tt, cos
_1

( — e).

7. Find tan^ for the Spiral of Archimedes, r=a$, and for

the Logarithmic or Equiangular Spiral r= aen9 .

8. Show that the radius of curvature for r= aen9 is rVl + n2
,

(1 4-02)§
and for r= aO is

v

, J a.
a -f-U

Higher Degree Curves.

99. Curve-Tracing.—In order to find the form of a curve from

its equation, we can either plot the curve or trace it. In plot-

ting a curve, we find the coordinates of a large number of points,
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and by marking these points obtain a dotted line to serve as a

guide in sketching the curve. In tracing a curve, we locate a

few important points, find approximate forms of the curve at

these points, and then sketch the curve. Thus an ellipse can be

constructed point by point with the aid of the auxiliary circles;

or a circumscribed parallelogram may be used as an approximate

form, as in the algebra ; or again, the circles of curvature at the

ends of the axes will furnish closer approximations.

100. Approximate Forms.—If f(x, y)=0 is the given curve,

and <f>(x, y) =0 is another, meeting f(x, y) =0 in two or more

points coincident at P, <f>(x, i/)=0 is a tangent or an approxi-

mate form to f{x, y) = at P. The greater the number of points

coincident at P, the closer is the approximation.

Approximate Forms at the Origin and at Infinity.—When two

equations are solved simultaneously, the number of common
solutions is in general the product of the degrees of the equa-

tions. It is always easy to see how many of these solutions have

the value zero or are infinite.

For instance, consider the cubic equation

x3 + x2 -y= 0. (1)

It should have three solutions in common with the linear equa-

tion

y=0. (2)

But xz+ x2= or x2 (x+l) = gives x= twice; so (0, 0) is

a double pair of solutions, and the z-axis is tangent to the curve

(i).

The curve y= x2 should have six intersections with (1) ; but

x3= is of the third degree only, and, considered as of the sixth

degree, has three zero roots and three infinite roots. Hence the

parabola y— x2 meets (1) three times at the origin and three

times at infinity. (See Art. 46, Algebra.) The parabola y—x2

is a closer approximation to (1) at the origin than the tangent.
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The curve y=xs should meet the curve nine times; but x2= 0,

considered as an equation of the ninth degree, has two roots cor-

responding to the origin, and seven infinite, y—x3
is therefore

a closer approximation than y— x2 at infinity, but not so close at

the origin.

Fig. 32.

We therefore take y=x2 as the form at the origin, and y—x3

as the form at infinity, using the part of y— x2 near the origin

and the remoter parts of y— x3
. (See Fig. 32.)

From the foregoing, the significance of the following general

principles will be clear.

The terms of lowest degree give the form at the origin (if the

curve goes through the origin) ; the terms of highest degree give

the form at infinity.
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The terms of the very lowest degree give tangent lines at the

origin ; terms not homogeneous, but lower in degree than the rest

of the equation, give a curvilinear form at the origin.

The terms of the very highest degree give lines intersecting the

curve at infinity, but not necessarily tangent to it; terms not

homogeneous, but higher in degree than the rest of the equation,

give a curvilinear form, always tangent at infinity, but not neces-

sarily of as close tangency as possible.

101. Asymptotes.—Tangents to a curve at infinity are called

asymptotes. In Art. 128 of the Algebra, a method was given of

Fig. 33.

determining the asymptotes of a hyperbola. This method applies

equally well to curves of higher degree, both in demonstration

and in application. Thus any real factor of the terms of highest

degree in the equation may be evaluated to give an asymptote.

If there are no such real factors, there are no infinite branches,

and the curve is closed. If the evaluation gives an infinite result,

the corresponding branch is parabolic.

The curve

x3
-\-y

3— 3xy=
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has for tangents at the origin

xy= or x=0 and y=0,

the coordinate axes. Also,

x+ y-
3xy

x2 -xy+y] y=_x=

Sx

3z 2 l-u
so that x+y=—l is an asymptote of the curve. (See Fig. 33.)

Again,

2x2
y + y

2 + 8x=

Fig. 34.

has for tangent at the origin 8a: =0,' the y-axis, and for a closer

approximation at the origin

f=-8x,
a parabola.

Evaluating y(2x2+ y) = -8x for the parabolic factor, we get

-8x1 4
2x2+ y=

y f=—2x2=os
o,

or the parabola y——1x% as a curvilinear asymptote.
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Evaluating for the linear factor, we get

-&c
] A_ n

or the ar-axis, y=0, as a rectilinear asymptote. (See Fig. 34.)

102. Typical Forms at the Origin and at Infinity.—The para-

bolic forms y — x2

, y— x3
, y

2 = x3
, etc., of the general form

ym — ± xn
^ are f frequent occurrence as approximate forms ; each

of them is readily traced by using the general principles above.

For instance, in y—x2
, the term of lowest degree gives y= 0, the

Y

y = r

y=x* y
2= x3

Fig. 35.

rr-axis, as tangent at the origin, and y is evidently positive for

any real value of x. (Fig. 35.)

y— x3
is also tangent to the rr-axis at the origin, and y is of

the same sign as x.

y
2— x3 is tangent to the z-axis at the origin, and x is positive

for all real values of y.

x2— — y
3

is tangent to x= 0, the y-axis, and y is always nega-

tive. This is the same curve as y
2= x3

, but with the cusp point-

ing upward.

A second-degree parabola of the form y
2 — ax has a/2 for the

radius of curvature at the vertex ; this enables us to approximate
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more closely to the proper curvature at the origin for a curve

having y
2— ax for its lowest terms. For instance, the curve of

Fig. 34, having the form y
2= — Sx at the origin,, is very closely

tangent to a circle of radius 4 with its center on the #-axis at

(-4,0).
The forms at infinity of the parabolic types, y=x2

, y— xz
,

y
2= x3

, etc., are from their highest terms similar to x=0, or the

y-Sixis. As a point (x, y) moves out on one of these curves,

x and y both increase indefinitely, but the curve becomes more

and more closely parallel to the ?/-axis. In the same way, x— y
2
,

x=ys
, x2= y

s
, etc., go further and further from the axes, becom-

ing more and more nearly parallel to the a>axis.

xy=l x2y= l

Fig. 36.

W

The hyperbolic forms, xy—\, x2
y— l, xy2 — l, etc., of the gen-

eral form x1l

y
m=±l, evidently have the coordinate axes as

asymptotes, since for each y=oo when x= and x= oo when

2/= 0. For xy= l, x and y are of the same sign; so the two

branches are in the first and third quadrants. For x2
y— l, y is

positive for all real values of x; so the two branches are in the

first and second quadrants; xy2— \ is in the first and fourth

quadrants, xy— — 1 is in the second and fourth, and so on.

103. Uses of Derivatives.—Besides the forms at the origin

and at infinity, it is often necessary to find the form of the curve
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at some other important points. Generally no more is done than

to find the slope at some convenient points, especially the inter-

sections with the axes, and to locate the points where the curve

has some particular slope, especially Oor oo, sometimes ±1.

For instance, the curve of Fig. 32,

y=x2+ x3
,

cuts the £-axis at ( — 1, 0). Its slope is in general

4f
L =2x+3x2

,ax

and is +1 at this point. Again, its slope becomes when x=0
or — § ; so the curve is parallel to the a>axis at ( — § , ^

4
T) . These

data aid materially in giving the proper form to the curve.

Again, the curve of Fig. 34,

2x2
y+ y

2+ $x=0, (1)

has for its slope

dy 4(sy+2)
dx 2(x2+ y)

'

and this slope is for the point on (1) for which xy— — 2.

Putting y= —2/x in (1),

-4z+-4- +8x= 0; x=-l, y=-— =2.
x2 v x

Thus the curve is parallel to the a>axis at ( — 1, 2)

.

The slope of (1) is oo for the point on (1) for which y=—x2
,

or

-2x4+ x*+ 8x= 0,

whence

x=0 or 2 and y=— x2= or —4.

Thus the curve is parallel to the ?/-axis at the origin and at

(2, -4).

The form of the equation (Fig. 33)

xs +f-3xy=0
9
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shows plainly enough that the curve is symmetrical with regard
to y— x} so that the end of the loop is its intersection with y—x.
The tangents at the inflections of a curve are of great assist-

ance in drawing the curve, and are sometimes readily found, par-

ticularly if the equation can he put in the form y=f(x).

104. Analysis of the Equation.—The general principles given

for selecting terms out of an equation to represent a valuable

approximation to the curve at the origin or at infinity are very

broad in application, but do not cover all cases.

For instance, in x3 + y
3— 3xy— 0,

x3— Sxy=x(x2— 3y) =0 and y*— 3xy=y(y2— 3x)=0

are of the same degree as the curve, but give two parabolic forms

at the origin, as well as the tangent axes. It is a tiresome process

to test all the combinations of terms in an equation in order to

find the ones which give close approximations, but the selection

of such terms is greatly simplified by the employment of a

graphic analyzer called the analytical triangle.

105. The Analytical Triangle.—The analytical triangle is

formed by plotting each term of a complete equation, in rectan-

gular coordinates, with the exponents of x and y for the co-

ordinates of the corresponding point. The analytical triangle

AOB of the cubic equation is

given in Fig. 37; a complete

equation of the n-ih. degree

would have (n+ 1) points on

each side of the triangle form-

ed by joining its outside terms.

The sides OA and OB are

called the analytical axes of x

and y, respectively. The points

— on the analytical axis of x rep-

resent all the terms of the

equation which do not contain

y B

f
% \.

y 1 -X
1 l\

!
i \4

«A» Hi jC

Fig. 37.
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y; the points on the analytical axis of y, the terms which do not
contain x; while the points on the side AB represent all the
highest degree terms of the equation, and, as we have seen,

determine the form of the curve at infinity.

The vertices 0, A, and B are called the fundamental points

of the analytical triangle; the vertex corresponds to the origin

of coordinates, the vertex A to the point at infinity in the direc-

tion of the axis of x, and the vertex B to the point at infinity in

the direction of the axis of y.

106. The equation of a given curve is placed upon the analyti-

cal triangle, when all the terms which compose it are designated

by some distinguishing mark. The cubic equation

x3 + y
3 -3xy+ 2x2+ y= (1)

is placed upon the analytical tri-

angle in Fig. 38, where each term

is indicated by drawing a small

circle around it; no attention is

paid to its coefficient, as the ob-

ject of the graphic analysis is to

indicate the terms which give the

equations of approximate forms,

and the meaning of the missing

terms of the complete equation.

107. The Analytical Polygon.—If straight lines are drawn

joining marked points of the analytical triangle so as to form a

convex polygon, outside of which no marked point lies, the figure

thus formed is called the analytical polygon. The polygon abed

in Fig. 38 is the analytical polygon for the equation given in

Art. 106, the marked point within it having no significance in

determining the general characteristics of the curve.

The analytical polygon must have either a side or a vertex

on each side of the analytical triangle. An equation formed

by setting equal to zero the terms of the original equation
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upon any side of the polygon, enables us to obtain an ap-

proximation to some part of the curve. For brevity's sake, we

say that the side of the polygon gives the form of this part of the

curve. An outer side of the analytical polygon is one such that

every marked point lies between it and the origin; an inner side

is one such that no marked point lies between it and the origin;

the remaining sides, if any exist, lie on the legs (analytical axes)

of the analytical triangle.

(1) An outer side gives an approximate form of the curve at

infinity, indicating always a linear or a curvilinear asymptote.

(2) An inner side gives an approximate form at the origin.

(3) A side on one of the analytical axes gives, by solution, the

intersections of the corresponding coordinate axis with the curve.

While these three precepts furnish the fundamental analysis

of an equation by means of its analytical polygon formed by the

marked points of the analytical triangle, the unmarked points

are of importance in determining the curve, especially if they

include one or more of the fundamental points.

If the point is unmarked, the equation has no absolute term,

and the curve passes through the origin. If one of the points

A or B is unmarked, it is at the vertex of a small triangle cut

off from the analytical triangle by an adjacent side- of the ana-

lytical polygon, or by such a side produced; this side is said to

cut off the unmarked vertex, and gives the approximate form of

the curve only in the direction corresponding to the unmarked

vertex. If the terms forming such a side contain a monomial

factor, it is to be disregarded; if such factor should give an

asymptote, this may be found more advantageously from some

other side of the polygon.

The terms of a side lying on AB, being homogeneous, may

always be decomposed into factors of the first degree, either real

or imaginary ; each of the real linear factors gives a direction in

which the curve goes off to infinity, and by evaluating such fac-

tors by the method employed in Art. 101, we may determine the
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asymptotes if any exist ; if the evaluation of a linear factor does

not lead to a finite value, the curve has no asymptote correspond-

ing to it, but goes off to infinity in a parabolic form. It is not

necessary to evaluate the monomial factors, as the infinite

branches corresponding to them are given to better advantage by

the sides of the analytical polygon cutting off the unmarked

vertex A or B.

108. The sides of the analytical polygon abed in Fig. 38 will

furnish the following analysis of the given equation

:

xs + y
3 -3xy+ 2x2 + y= 0.

The outer side ab gives

x3 + if= (1)

as the first approximation of the infinite branch, showing the

linear asymptote corresponding to the factor (x+y).

The side be, lying in the analytical axis of y3 gives the equation

i/ + y=0, (2)

which determines the intersections of the given curve with the

axis of y.

The side ad, lying in the analytical axis of x, gives

x3+ 2x2= 0, (3)

which determines the intersections of the curve with the axis

of x.

The side cd, since the analytical origin is unmarked, gives the

approximate form of the curve at the origin,

2x2 + y= 0. (4)

Equation (2) shows the curve to intersect the axis of y in but

one real point, the origin.

Equation (3) shows the curve to intersect the axis of x twice

at the origin and at ( — 2, 0).
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The slope,
dy -3x2+ 3y-4:X
dx ~ 3y2 -3x+ l

-4
, is —at (-2,0).

Equation (1), when evaluated from the other terms of the
equation, gives the asymptote

/ , \_3xy— 2x2 —y
y=—x=<x>

5x2

3x2 (5)

Fig, 39.

The curve is now readify traced, by drawing the asymptote,

drawing in the form at the origin, and marking the only other

point where the curve crosses the axes. (See Fig. 39.)

109. The three equations which we have already discussed in

Arts. 100 and 101 we shall now subject to more complete analysis

by reference to their analytical polygons.

For y= x2+ x* (Figs. 40 and 32) :

y= gives one intersection with the y-axis at the origin, two at

infinity.
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x2 + xs= gives two intersections with the a>axis at the origin,

and one at (
— 1, 0).

y= x2
is the form at the origin.

y— x3
is the form at infinity in the direction of the ?/-axis.

For xs + y
3 -3xy = (Figs. 41 and 33) :

y
z= gives three intersections with the axis of y at the origin,

and x3— gives three with the axis of x.

x3
-\-tf must be factored and its real factor evaluated, giving

x+ y= — 1 as the rectilinear asymptote.

Fig. 40. Fig. 41. Fig. 42.

The forms at the origin are :

a'
3 — oxy= x(x2— 3y)=0

and

y
3-3xy=y(tf-dx)=0,

a parabola x 2= 3y tangent to the .r-axis and above it, and a parab-

ola if — 3x tangent to the y-axis and to the right of it.

For 2x2y+y2+ 8x=0 (Figs. 42 and 34) :

y
2= gives two intersections with the y-axis at the origin, one

at infinity.

x= gives one intersection with the .r-axis at the origin, two

at infinity.

y
2—— Sx is the form at the origin.

2.r
2
y+ y

2 = or y=—2x2
is the form at infinity in the direc-

tion of the axis of y.
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2x2
y+ 8x=0 or xy— — 4 is the form at infinity in the direc-

tion of the axis of x. (The curve bears no resemblance to

xy— — 4 in the other direction.) The curve therefore approaches

the a>axis as an asymptote, lying below it on the right, and above

it on the left.

110. Parametric Equations x—f{m), y=mf(m).—If a curve

has two or more tangents at the origin, that is, if the lowest

terms of its equation are of at least the second degree, points

of the curve may be determined by a certain pair of parametric

equations much more readily than by the single equation. These

parametric equations are determined by assuming

y— mx,

and thence expressing both x and y as functions of the parameter

m. For instance, applying this method to the strophoid,

x(x2 + y
2)+a(x2 -y 2 )=0,

we find

m2— 1 m2— 1—
o ,

-. a. y=m 2 -,
a,

ra2 -fl '
u m2 -rl

x—

from which, by assuming various values of m, any number of

points of the curve may be determined.

The parameter m of any point of a curve is of course the slope

of the radius vector to the point, or is the same as tan 6 in polar

coordinates.

111. Examples.

1. y
2 (2a—x)=x3

. (Cissoid.)

2. (a2-x2

)y
2= a2x2

.

3. (a2 + x2
)y

2= a 2x2
.

4. y(a2 + x2)=a s
.

5. (fy
2 =(a2 -x2

)\
6. a?y2 =\a2 -x2 )x\

7. x2 (a2 -y2)=a\
8. y

2 (a2 -x2)=x\
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9. axy—x3= 2a3
.

10. a2y-U2x+ x3= 0.

11. y
2 (x-2a)+U2x= 0. (Witch.)

12. xy2= a(x2 + a2
).

13. a3y=(a+ x) 2 (a2 -x2
).

14. y
2 (a—x)=x2 (a+ x). (Strophoid.)

15. a?-y*-x+ y
2 = 0.

16. y*-3ax2f + 2ax3= 0.

17. y
3 + ax2 — axy — 0.

18. a;
4+ 2ai/

3 -3aa:?/2 r=0.

19. x*+ y*= a2xy.

20. z4+2aV-7a2
z?/+ 3ay= 0.



CHAPTEE III.

Maxima and Minima.

112. Maxima and Minima, Extrema.—Sometimes the graph

of a function has a point which is further from the axis of x

than any other point of the graph in the immediate vicinity, as at

A or B in Fig. 43. The value of the function at such a point

is an extremum; a maximum if it is larger than the values near

hy, as at A, a minimum if it is smaller, as at B.

If the coordinates of A or B are (x
, y ), y is an extreme

value of the function, x is the value of the independent variable

that makes the function a maximum or a minimum, and

[*U-M« -"«>-•

This principle ~is not altogether general, for the graph may
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have cusps, as in Fig. 44, where

f(x) is an extremum, although Y

f (x) is not 0. These cases, how- _ A
ever, we shall disregard.

With simple functions, the con-

verse of the principle is commonly

true (i. e., f(x) has an extremum FlG 44

whenever f(x)=0), but it is evi-

dent that if the graph has an inflection where f(x)=0, the

function has not an extremum (C, Fig. 43).

On either side of a point where f(x) is a maximum,

taLTiT= f(x) is decreasing as x increases, and its derivative,

f"{x) % is negative. On either side of a point where 'f(x) is a

minimum, tanT= /'(a;) is increasing as x increases, and its de-

rivative, f'(x), is positive.

We therefore have as tests

:

f(x)=0, f'(.r)<0, f(x) is a maximum.

f(x)=0, /"(#)>(), f(x) is a minimum.

The cases in which f(x)=0 and f'(x)=0 include all such

inflections as C in Fig. 43, and also points at which f(x) has an

extremum (e. g., y— x^ when x= 0).

The test for extrema may be stated as follows

:

If, as x increases through the value x
, f(x) passes through

the value zero and changes sign, f(x ) is an extremum; if f(x)

changes from + to — , a maximum; if from — to +, a

minimum.

In geometric problems, it is almost always easy to see whether

an extremum exists or not, and of which kind it is.

If y— f(x) is positive, y
2 and y have extreme values of the

same sort for the same values of x; for the sign of dy2= 2ydy is

the same as that of dy, and both become zero together. Again,

y and— have extreme values of opposite sorts for the same value
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of x; for d — = \ is opposite in sign to dy and becomes zero

when dy= 0. We may thus often simplify the problem of finding

the extreme values of a given function, by finding those of the

square of the function, or of its reciprocal, and interpreting the

results accordingly.

113. Examples.

1. Find the dimensions of the open box of greatest capacity

which can be made from a piece of tin plate 3 in. square, by cut-

ting a small square from each corner and folding up the edges.

Let #:=the side of the small square; i. e., the depth of the box.

Then (3 — 2x) is a side of the bottom, and the volume V is

V= x(3-2x) 2
.

^V=Vf= 3(3-2x)(l-2x)=--0 when z=for ^. The ex-

treme values of V therefore occur when x— f and when x—\,
and are F= 0, the minimum, and V— 2 cu. in., the maximum.

2. To find the cylinder of revolution of given volume that

shall have the minimum surface (for instance, a closed tin can
of given volume, of such dimensions as to require the least

amount of material in its construction).

Let y= the height of the cylinder and x— the radius of the

base; then 8= 2ttx
2+ 2Ttxy, where x and y are subject to the re-

strictions that the volume shall be constant, or

V= Trx
2y=C.

By elimination, 8 might be expressed as an explicit function

of x or y, and the value of x or y found to make-j— = 0, or

—-T— — 0. It is simpler however to proceed as follows

:

dy

d8= 27r] {2x+ y)dx+ xdy\,

which will be zero when 8 is a minimum.
Since V is constant, we also have

dV= 7r(x2dy-{-2xydx) =0,
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and from this equation

dy— *- dx.
x

Substituting this value of dy in the value of dS,

dS= 27r\ (2x+ y)dx-2ydx\,

and

-g=M3*-y)=o,

if y=2x.
We thus have the proper proportions of the cylinder, and its

actual dimensions can be computed from the relations

V=7rx2
y and y— 2x,

from which

V= 2ttx3 and x-Ml
3. Prove that the maximum area of a rectangle which can be

X 77

inscribed in the ellipse —^ + 4* = 1, having its sides parallel to

the principal axes, is 2ab.

4. Prove the results of example 3, using the parametric equa-
tions x—a, cos <j>, y— b sin

<f>.

5. Prove that the maximum volume formed by revolving a

rectangle inscribed as in examples 3 and 4 about the z-axis is

4^rb
2a

3V3
'

6. A triangle is inscribed in a parabolic segment having a base

2b and altitude a, the vertex of the triangle being at the mid-
point of the base of the segment and the base of the triangle

parallel to the base of the segment; find the maximum value of

the area of the triangle. Ans. A= Q /ir .

7. An open cylindrical can is to contain 231 cu. in. What is

the least amount of tin that can be used to make it ?

Ans. 165.42 sq. in.
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8. Find the most economical proportions for a closed cylin-

drical tin can, if in making each of the circular ends it is neces-

sary to use up a piece in the shape of a regular hexagon circum-
scribing the circle.

Ans. h being the height and D the diameter,i = 2^3 = |1D 77 10

nearly.

9. Find the most economical proportions for a cylindrical tin

cup, making the same allowance for waste as in the preceding

example. Ans. -^ =_ = -
F— nearly.

10. A man is in a rowboat, 4 mi. from the nearest point, A,
on a straight beach, and is bound for a point B on the beach, 25
mi. beyond A. He can row 2^ m/h, and walk 3J m/h. Where
shall he land to reach his destination as soon as possible ?

Ans. |V~6 mi. from A.

11. The altitude of a right circular cone is 1%, and the radius

of its base is a. Find the greatest volume of an inscribed right

circular cylinder. Ans. V—- T̂ 7ra
2
h.

12. Find the dimensions of the cylinder in example 11 if its

total surface is to be a maximum.

Ans. Eadius= **
, height= ffi"

2
^. .

2(h— a) 2(h—a)

13. Determine the cone of maximum lateral surface and the

one of minimum lateral surface inscribed in a paraboloid of

revolution of height a, and diameter of base a.

Ans. The altitudes are — and -q respectively.

14. In a circle of fixed radius a a rectangle of sides 2x and 2y
is inscribed; the figure is revolved about the diameter perpen-

dicular to the side 2x. Find the dimensions so that (a) the

rectangle shall have the maximum area, (b) the cylinder shall

have the maximum volume, (c) the cylinder shall have the

maximum lateral surface.

Ans. (a) and (c),x=y=-j^; (b) «=-|- VS, y= -S=.
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15. From a steamer A, going north at 8 m/h, a steamer B is

observed going west at 10 m/h. If A turns just as B crosses its

path, what straight course must A take in order to cross the

course of B as near B as possible?

Ans. About N. 53° 8' W.
16. The base of a column 9 ft. high is 16 ft. above the eye of

an observer. How far off must he stand for the column to sub-

tend the greatest possible angle? Ans. 20 ft.

IT. An isosceles triangle is circumscribed about a parabolic

segment, the base of which is parallel to the tangent at the ver-

tex. Show that the area of the triangle is least when its altitude

is |- of the altitude of the segment.

18. The expenditure of coal in steaming a ship is proportional

to the time and to the cube of the speed ; find the most econom-
ical speed against a current having the speed a.

Ans. -=- actual speed, -^ through the water.

19. A circular sector is to have a given perimeter and as large

an area as possible; what must be its angle?

Ans. 2 radians.

20. The strength of a beam is proportional to the breadth

and the square of the depth. Find the dimensions of the strong-

est beam that can be cut from a cylindrical log of radius a.

Ans. |V3by^V6.
21. A triangle is inscribed in an ellipse, its vertex at a vertex

of the ellipse, its base a double ordinate. Find the greatest area

it can have. Ans. —— Vo, a and b bein^ the semi-axes.
4 c

22. If the figure of example 21 is revolved to form a cone

inscribed in an ellipsoid, what is the greatest volume the cone

can have? Ans. ff -n-ab
2

.

23. A rectangular strip of copper is to be bent so that its

cross-section is a circular arc; show that to give the maximum
capacity, the arc must be a semicircle.

24. Two circular plates, each of radius a, are to be cut and bent
into conical surfaces and put together to form a can-buoy. What
must be the radius of the base of each cone if the buoy is to be as

large as possible? Ans. -r- V6*.
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25. A wall 27 ft. high is 64 ft. from a house. Find the length
of the shortest ladder that will reach the house if one end rests

on the ground outside of the wall. Ans. 125 ft.

26. Find the least volume that can be left between a sphere

and a circumscribed cone of revolution. (Hint: Find two ex-

pressions for the area of the section of the cone through its alti-

tude, and thus get a relation involving x, y, and a, the radius of

the base and the altitude of the cone, and the radius of the

sphere.) Ans. frf.



CHAPTER IV.

Integration.

114. Definition.—If f(x)dx is the differential of F(x), F(x)

is an integral of f(x)dx.

For instance, since 2xdx is the differential of x2
, x2

is an in-

tegral of 2xdx. d(x2+ c), if c is any constant, is also 2xdx, and

in general

:

F(x) being an integral of f(x)> dx, and c being any constant,

F(x) +c is also an integral of f(x)dx; that is, any differential

expression has innumerable integrals, any two of which differ by

a constant. N

Thus integration, as the process of finding an integral is called,

is the inverse of differentiation, and like most inverse processes,

leads to multiple-valued results.

The notation used for integrals and for integration is the

following

:

$f(x)dx=F(x)+C; this is read: "The integral of f(x)dx

is F(x) plus some constant." The constant C is spoken of as an

arbitrary constant, because it may be any constant whatever; it

must be written if the relation above is to be used as an equation.

The relation §f(x)dx=F(x), written without the arbitrary

constant, is used for formulas, etc., and when so written means

:

"An integral of f(x)dx is F(x)."

In the expression \f{x)dx, f(x)dx is called the integrand.

There is no systematic theory of integration as there is of

differentiation; finding an integral is more a matter of search

and discovery than of computation, but there are principles and

rules to aid in the search. Moreover, as any formula of differen-

tiation can be read as a formula of integration, we can begin by
10
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making the following table of fundamental integrals, in which

u is any variable, and may be a function of the independent

variable

:

(1) \cdu— cu.

un+1

(2) $undu n+1

(3) $eudu= eu .

(4) U«du=^-.
v ' J log a

(5) f-^-=log«.

(6) \co& udu— sin u.

( 7 ) j sin ft,dft= — cos u.

(8) {sec2
ftdft = tanft.

( 9 ) j esc
2 udu— — cot ft.

(10) j sec ft. tan udu— sec ft.

(11) j esc ft cot udu— — esc w

.

(12) jcot m?t£=log sin u— —log esc ft.

(13) {tan udu — \og sec ft— —log cos u.

(14) {esc t«Ztt= log tan-— = — log cot—

(lo) —-=== = sin
-1

1/, or= — cos
-1

ft.
v V 1 — ft

(16) [-^-r=tan-1 Mor = -cot-1
w.

v JH-ft2

(18) j"

sec
-1 W or = — esc

-1
ft.

-1

6?ft

V 2ft, -ft2

(19) {(/1 (ft,)+/2 (ft)+/3 (^)+ )du

= $fi(u)du+$f2 (u)du+$f3 (u)du+ .

(20) \udv— uv—\vdu.
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Any formula of integration (for instance, any of the identi-

ties above) can be verified by differentiation, with the aid of the

definition of an integral

:

d$f(x)- dx= f(x)dx.

Exercise.—Verify each of the twenty fundamental formulas.

115. Direct Integration.—It requires experience and careful

observation to recognize these fundamental forms in all cases.

\{a2 -x2)U{a2 -x2

)

is an obvious instance of

§undu;

but the precisely equivalent expression

-2$x\/ a
2 -x2 -dx,

or the expression

\x^\J a? — x2
- dx,

which is —\ as much, is not so obvious.

The real difficulty is that it is not enough to be able to say that

d(a 2— x2
) is —2xdx; the mere presence together of (a2— x2

)

and x must suggest this fact.

As another instance of the same formula, consider

J
sin 6 cos d6.

A mere reminder that d sin = cos dO is sufficient to make it

evident that

jsin 6 cos d0= jsin 6 d(sm 6) = i^31 .

These will serve to point out the fact that, to practice inte-

gration successfully, the student must be able to remind himself

of the differential formula that will be useful.

In order to keep track of constant factors, it sometimes is
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worth while to abbreviate the integrand by introducing a new
variable.

(x2

6
dx.

We notice that x2dx is a constant multiple of d(x3
), and that

xG= (x3
)

2
. Then let x3— y, so that 3x2dx= dy, and we have

[x2d* _ [
jdy = 1 [

d(y/2) _ x , , y_

Jx6+ 4
—

J v
2+ 4 6 Jl+ 0//2)

2
~

6
2V

x3

X3

Substituting 1/=-^- would have made the work still more

mechanical.

116. Trigonometric Functions.—The fundamental formulas

of trigonometry must also be so well known that useful relations

will readily come to mind. For instance, the three important

integrals

\sm2 6d0, $cos2 6 dO, and j sin 6 cos 6 dO

can be evaluated directly by means of the relations

sin2 = ±(l-cos20)
?

cos2 0=J(l + cos20),

sin 0cos 6= ^ sin 26,

and

fcos 26 d6=i$eos 26 d(26) =i sin 26.

Again

jsin3
6 d6= - f (1-cos

2 0)d(cos 6),

jtan 6 sec2 6 dtf^Jtan 6 d (tan 6) = J sec 6 d(sec 6).

117. Examples.

Evaluate the following:

1. \Vxdx. Ans. fVP.
2. ]gtdt. Ans. igt

2
.
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dx A 1
3-^ _

5. \(x2 -3x + 4:)dx. Ans. ^(2xi -9x2+ 24x).

!^_dx
' )(x+

,
f ^

'

J V3z+

r4V • An«. t^tt
1)1 (x+±)l

Ans. |V3a;+ 2.

a:^ A
— 1

Ans.
(a2 + x2)¥

~~"
3(a2+x2)^*

9. ^W-z2dz. Ans. -i(a2 -x2
)'.

10. $x2 (a3 + x3 )*dx. Ans. i(a3 + ar)i

ll.J^. Ans. Iog(3+*).

12.
a^a; . , 1

Ans. log
a2-x2 ' "

'

"6 Va 2^x
nx

13. (anxdx. Ans. -£
71 log a

14. jze*2
d:r. Ans. Je*

2
.

6 d0= Jtan • d0. Ans. 2 log sec {.-I
1

sin

16. \
—

—

t,
<^0. Ans. — log cos 0=k>2r sec 0.

J COS
60

17. fsin
2 0d0. Ans. |-J sin 20=J(0-sin cos (9).

18. jcos2 0d0. Ans. |+J sin 20=-|(0+sin cos 0).

19. jsin cos d0. Ans. J sin2
6, -J cos2

0, or -J cos 20.

20. jsec2 0tan0d0. Ans. -J tan
2 or 1 sec2

0.

21. jsin3 0<20. Ans.
co^ -cos0.

22. Jcos
3 J0. Ans. sin 0- ^—^ .

23. jtan3 0d0. Ans. ^-? -log sec 0.
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o< f dx
f dx . . ,x—2M-)^5 + ±x- xz = )V9-(x-2y

Ans
-

sm ~T'
25 - [ ,,f lK = L

,

/*, ,v 2
Ans. itan-1^.

J.T
2+ 2a;+ 5 J4+(x+ l) 2 2

f cfo

^•Jo-^Vz'-to+s- Ans
-
-s^ 3 -*)-

28

29
J (1 + x) vx2+ 2x

30. f-^^ dO. Ans. -csc0.
J sm2

31.
f

. f
*

,. . Ans. log tan 0.

J sm cos

32. JVl-cos0<Z0. Ans. -2V2 cos |= -2V 1 + cos 0.

33. jVl + cos(9J(9. Ans. 2Vl-cos 0.

34. (sec ^^33

[

sec2 e+ 8ec ei^ e
. ci6. Ans. log ( sec 6+ tan 6).J

J sec + tan

35. j (sec 0+tan0) n sec J0. Ans. — (sec + tan 6)
n

.

118. Integration by Substitution.—An integral that bears no

evident resemblance to any one of the fundamental forms can

often be made recognizable by the introduction of a new variable.

For instance, if in

$Va 2 -x2dx,

we put #=asin0, we have

Va2— x2=a cos 0, dx—a cos 6 dO,

and the integral becomes

a2

Jcos
2 d6= ^- [0+sin cos 6] .

(Ex. 18, Art. 117.)
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Hence

jV8-A4[Sin-i +^l-i
or

\Va2 -x2dx=i[a2
sin"1—+xVa 2 -x2

].

The integral of any expression irrational merely through the

presence of \/a2— x2
, Va 2+ x2 , or Vx2 — a2 can be rationalized

by an appropriate trigonometric substitution : x— a sin 0,

x=at&nd, or x= asecO. The resulting trigonometric integral

is often recognizable.

The integral of an expression irrational merely through the

presence of V&x+b is generally recognizable, but is made

2v
simpler by putting vax+b = y, dx=—- dy.

a

119. Rational Fractions.—The integral of any rational frac-

tion is made simpler by separating the fraction into partial

fractions. (See Algebra, Art. 136.)

For instance,

dx 1

}x2 (x2 + l)~ } x 2
.

120. Examples.

__ adx

xA/a2-x2

= — tan-1 x
l+x2 x

„ f
adx . , a—Va 2 — x

1. 1
—

/ o . Ans. log

2. k d
2

X
. Ans. \og(x+Va2+ x2

).
}ya2 + x2

f fa
3 -

]Vx2 -a2 ' AnS
'

log(^+V^2 -a 2
).

4 - k /o 2
=

« Ans. log(x+a+ V2a.T+o^).
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5. $x2Va2— x2dx.

Ans.

6. §xVa+ xdx.

7. [tt=^.
J va + x

8.

9

10.

"a+x
a— x

dx

dx.

[
da

ldx
2 -l)

" shr1 — -~Va2 -x2
(a

2 -2x2
).

8 a 8 v '

Ans. %(a+xyt-^-(a+ x)L

Ans. f(a+z)*— 2a(a+ x)K

Ans. —#— 2alog(a— x)

A 1
t

a+x
Ans. >s

- log
2a G a—

x

Ans
- '^ffi-^T)

121. Areas Found by Integration.—Let it be required to find

the area bounded by the parabola

"B y
2= 4x, the axis of x, and the line

x= ±; the area OAB of Fig. 45.

We shall proceed as follows:

Drawing an ordinate, PM, through

any point, P(x, y), of the parabola,

we cut off an area, OPM, the extent

of which is determined by the value

A of OM—x, and varies when we vary

x. This area, OPM, is therefore a

function of x, as yet unknown. Call

HF(x).
Area OPM=F(x).

We shall determine F(x) ; then the

value of F(x) for any value of x

will give the area cut off by the

Fig. 45. ordinate corresponding to that value
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of x. In particular, when x=Q, the area shrinks to nothing;

and when x=4, the area becomes the required area OAB.

F(Q) = and F(4) = required area OAB.

To determine F(x), we first find its derivative according to

the general definition of a derivative.

Extend OM to W, thus giving to x the increment MM'=Ax,
and draw the corresponding ordinate P'M''= y+ Ay.

Then

F(x) =area OPM, F(x+ Ax) =area OP'M'.

AF(x) =area MPP'M'.

Complete the rectangles PM' and P'lf.

Evidently

PM'<AF(x) <P'M.
PM' AF(x) P'M
Ax Ax Ax

or

y<^<(y+*y)

Now the desired derivative

iF(x)l
y>

dF(x) _
\

AF(x)

dx Ax AX=0

for as Ax approaches zero, (y+ Ay) approaches y, and the value

of ^
is always between (y+ Ay) and y.

Finally

dF(x) —ydx;

and as y
2= 4:X,

dF(x)=2Vxdx,

and

F(x)=$2V^dx=%x?+C.
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We have not yet entirely determined F(x), nor could we
expect to do so by merely determining its derivative; for the

process of finding the derivative would have been precisely the

same if F(x) had represented the part of OAB between any

fixed ordinate and AB. The ordinate at which F(x) becomes

zero will, however, complete the determination of F(x) by de-

termining the arbitrary constant C. For since F(0)=0

O =F(0)=$> O + C;

and C=0, so that

Finally

:

The required area 0AB= F(4:) =£(4)C 3^.

122. If it had been required to find the area bounded by

y
2= 4x, y= 0, x=l, and #=4, the discussion would have been

just the same, except that the variable area F(x) would have

been zero when x=l; i. e., we should have had F(l) =0. Con-

sequently, although we should have had

F(x)=fr£+0

as before, the value of C would have been different, since

0=F(l)=i+C
gives

e=-f.
Then

F(x)=i{xi-1)

would have been the general expression for the variable area,

and

F(4) =|(8-1) =¥
would have been the required area.
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aA M M
ir

Fig. 46.

123. Consider now the general process exemplified in the

preceding article. Let it be required

to find the area AKLB, Fig. 46,

bounded by any given curve, y= f(x),

the axis of x, and the ordinates cor-

responding to the abscissas a and h.

Consider, first, the area AKPM
bounded similarly, with the ordinate

corresponding to the variable abscissa

x in place of the one corresponding to

the abscissa b. Denote this area,

which is a function of x, by F(x). Then

F(a)=0, F(b)= area AKLB.

Increase x by MM'= Ax; y is correspondingly increased by

Ay=PM'-PM,
and F(x) by

AF(z)=area MPP'M'.

Complete the rectangles PM' and P'M.

Evidently

Divide by Ax :

PM'<AF(x) <FM.

AF(x)
y< Ax

<y+Ay.

Therefore,

AF(x)
Ax A£C=0

=y=f(x)>

MM=f(x), d(F(x))=f(x)dx,

[dF(x) is called the element of integration.]

F{x)=Sf{x)dx+C;
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i. e., F(x) is any one of the integrals of f(x)dx plus some
constant.

Since.F(a)=0,

0=F(a) = Uf(x)dJ\mma+0,

C=-[tf(x)dx]x=a ,

F(x) = Uf(*)dx-]-Uf(x)dx]x=a ;

and the expression for the required area AKLB is

Area= F(b) = Uf(x)dx]x=b-Uf(x)dx]x=a.

In this expression for the area $f(x)dx may be any one of

the integrals of f(x)dx, but must of course be the same one in

both brackets. Evidently, changing this integral by a constant

will make compensatory changes in the two brackets.

For convenience, the expression for the area is more briefly

written

F{b) = \_Sf{x)dx}%%

or, most conveniently,

ATea= F(b) =
\

b
f(x)dx.

The last form is read :
" The definite integral from a to b of

f{x)dx" In distinction, \f(x)dx is called an indefinite integral

of f{x)dx.

124. Definite Integrals.—Definite integrals have many other

uses besides the determination of areas ; a general definition will

therefore be useful for future reference.

Definition.—If dF(x) =f(x)dx (i. e., if F(x) is an indefinite

integral of f(x)dx), and if F(a)=0, then any other value of

F(x) is

F(b) = W(x)dx] x=h-Uf(x)dx-]x=a=\
b

J(x)dx,

the definite integral from a to b of f(x)dx.
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An indefinite integral, \f{x)dx, is a function of x; the

definite integral, f(x)dx, if a and b are given values, is the
)a

difference between two particular values of this function, and
Cb

so is a constant. If a and b are supposed to vary, f(x)dx

will vary correspondingly : for instance, in the problem of the

preceding article, any change in the abscissas a and b will cause

the area f(x)dx to vary. In other words:
Ja

A definite integral is a function* of its limits.

Besides the values of the limits, nothing affects the value of a

definite integral, f(x)dx, except the form of f(x). For it

Ja

clearly makes no difference whether x is written throughout the

integrand f{x)dx, or some other letter, since this letter, whatever

it is, will be replaced by the limits when the integral is evaluated.

For instance, each of the definite integrals,

fa dx , f«_ dz

Jo Va2 — x2
Jo Va2 —

.

is (sin
-1

1 — sin
-1

0) or £.

It is implied in the definition that the limits b and a written

at top and bottom of the integral sign in a definite integral are

values of the variable whose differential occurs in the integrand.

This is important when a change of variable is made in evaluat-

ing the integral. For instance, suppose we are to find the area

of the circle x2+ y
2= a

2 or y— Va 2 — x2 in the first quadrant of

the coordinate axes. From the preceding article, this is

A =
j
Va2 -x2dx.

In order to integrate, let x= a sin 6 ; then

dx— a cos# d6 ; Va2-r— a cos
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when x=0,
6>=sin-1 = (

when x—a}

0=siir1— — -77-

a 2

then

H» cos2 OdO= 6+ sm0cos6 •na
1

(It is convenient to write the values at the upper and lower

limits in the positions of those limits, and then subtract.)

It is more expeditious to change the limits in this way when

the variable is changed than to express A as a function of x and

then substitute the original limits. The necessity of remember-

ing the algebraic integral is also avoided.

The notation of the definite integral can be used, to express

any particular one of the indefinite integrals of a f(x)- dx; thus

f(x)dx
Ja

represents the indefinite integral of f(x)dx that becomes zero

when x— a.

Thus we have seen that jsin cos d$ may be written

jsin#d(sin0), -Jcos d(cos 6), or Jjsin 20 d(20),

and is therefore

sin2
COS"

2
or — cos 20

These three values differ by constants, and of course there are

any number of others. The particular one that becomes zero

when 0=0 is

sin cos 0<Z0=*HL
2

sin2
fl

2
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or

or

cos 2

2

cos2
, j sin2

=
9

Tya
* "

cos 20
]

6
cos 20

, 1 sin2
6

Jo"
-

4 +*" 2

125. Examples.

Evaluate the following definite integrals:

("2 cos3
a; sin zdz. Ans. J.

o

cos3
2*da\ Ans. t.

Jo
3

ft __dx__
Jo V(a2 -a;2

)

f
a x

' Jo V(a

JO COi

f
1 !- 3^ *—F==dx.

Jo Vl — a;

Ans. -g-.

4. . / , o 7- • Ans. a.
x-)

dO. Ans. i

Ans. -2.

7. Trace the curve a
2
y= ax2— x3 and find the area of the

a2

segment cut off by the a>axis. Ans. ——

.

8. Find the area enclosed by the curve, the z-axis and one of

its asymptotes, given y
2
(

a

2 — x2
) = a2x2

. Ans. a
2

.

9. Find the area enclosed by the first arch of the curve

y= smx and the ar-axis. Ans. 2.

10. Find the area enclosed by the curve y=ex
, the ?/-axis and

the left half of the #-axis, and also the area bounded by the

curve, the axes, and x—1. Ans. 1 and e — 1.
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11. V2ax-x2dx. Ans. ^
Jo i

'/. v (2ax— x2 )xdx.

dx

V{Qx~^x2 -5)

u-\lvWT¥) Ans
-

los^2+i).

V (2ax— x2)xdx. Ans. -^-

13.
J"

. ,,„
dx

n „, Ans. r.

a

lb
'

.

f

2

V(a2 -x*)dx. Ans. -|i (2tt+ 3V3).

126. Areas.—The result of Art. 123 may be stated

:

The area generated by an ordinate of the curve y=f(x) in

moving from the line x~ato the line x—b is

ydx—\ f(x)dx.

It follows from a proof precisely similar to that of Art. 123

that:

The area generated by an abscissa of the curve x= f(y) in

moving from the line y—a to the line y— b is

f
xdy=\ f(y)dy.

Jo )a

Thus the area bounded by y
2— ^x, ?/ = 4, and y= 0, is

I*

4
a f

4
v

2

j v
3

1
4 16

Since the axes and the lines x— 4: and y= 4 bound an area of

16 units, the area computed in Art. 121 is again seen to be

(»- ¥)i«-¥Vf
In practice, the required area can generally be found by tak-

ing the element of integration parallel to either axis ; the choice
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a 2
[, j. .1 a2 [0-0]

2
<f>
— sin cos <£ -" " 2 Ll-oJ
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is determined by the relative difficulty of evaluation of j^a* and

When a curve has convenient parametric equations, it is always

best to use them, as a change of variable is thereby avoided.

For instance, the area of the circle x2 + y
2= a2 in the first quad-

rant of the coordinate axes might have been found from the

parametric equations

x= acos<f>, y= asm<j>,

where dx= —a sin
<f> d<f>.

The generating ordinate moves across this quadrant from left

to right as 4> varies from \ to ; hence

(a fO fO
ydx—\ asm<f>( — asm<f>dcf))= — a 2

\ sin 2
<f>

d<j>

4
'

2
U * J

127. Sign of the Definite Integral.—If $f(x)dx=F(x),

P f(x)dx=F(b) -F(a) and f

a
f{x)dx=F(a) -F(b).

Hence

:

Reversing the order of the limits in a definite integral changes

the sign of the result.

For instance, — a2
\

sin2
<f>

d<j> in the preceding article is the

k

same as a
2 sin2

<f>
d<j>.

Jo

In deducing the expression f(x)dx=\ ydx for the area,

it was tacitly assumed that f(x) or y was always positive, and

that x increased from a to b. If f (x) is negative, the sign of the

integral is reversed; and if x decreases from a to b, dx is nega-

tive, and again the sign of the integral is reversed.

11
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In other words, if the generating ordinate is negative or

moves in the negative direction, I f(x)dx=\ ydx has a nega-

)b [a
ydx or 1 ydx gives the positive area. Of

course, if both of these happen at once, ydx remains positive.
}a

To avoid trouble in practice, it is advisable in any problem in

which such questions may arise to divide the area into separate

parts so that y shall have one sign throughout each part, and

then take the sum of the positive values of the separate areas.

Of course, all these remarks apply to \xdy as well.

128. Examples.

1. Find the total area of the ellipse in four ways, using the

single equation and the two parametric equations, and in each

case taking the element parallel to the a>axis and also parallel

to the ?/-axis. Ans. -rrab.

2. Trace the curve x(a2+ y
2)—az

, and find the whole area

between the curve and its asymptote. Ans. -rra
2

.

3. Trace the curve x2
y
2 (x2 — a2

) =a6
, and find the area between

the curve and the asymptote, x— a. Ans. tto
2

.

4. Find the whole area between the curve y(a2
-\-x

2)—a z and

its asymptote. Ans. na2
.

5. What is the whole area between the curve x(a2 + y
2

)

2 = a?

and its asymptote?

Ans. — .

6. Find the area between the witch xy2— 2ay2 + 4=a
2x=0 and

its asymptote. Ans. 47m 2
.

7. Find the area between one branch of the cycloid, x—
a(cj> — sm<f>), y= a(l — cos<£), and the z-axis. Ans. Zira

2
.

8. Find the area included between the cissoid x3 -2ay2 + xy2

= and its asymptote. - Ans, 3ira
2

.
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129. Volumes of Revolution.—The area bounded by a curve

y=f(x), two ordinates x— a and x—b, and the axis of x is

revolved about the axis of x, generating a surface. It is required

to find the volume enclosed.

Let P(x, y) be any point of the curve; then the volume gene-

rated by the area bounded by the curve, the axis, the ordinate

x— a and the ordinate of P is a function of x, the abscissa of P.

Call this volume F(x). To obtain its derivative, increase x by

Ax; F(x) is increased by the element of integration AF{x), the

Fig. 47.

volume generated by the area bounded by the curve, the axis,

and the ordinates of P and P'{x-\-Ax, y+ Ay). P and P'

generate circles whose radii are y and (y+Ay) ; the c}iinder

having the smaller circle as base and Ax as altitude is smaller

than the volume AF(x), and the cylinder having the larger

circle as base and the same altitude Ax is larger than AF(x)
;

hence

7ry
2Ax<AF(x) <Tr(y+ Ay) 2Ax,

^2<^? <7r(^+A^ 2
;

so that

dF(x)
dx

AF(x)
Ax Ja.t=0

: *2T
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or

dF(x) —infdx.

Since F(a) =0, the required volume is therefore

V=F(b)=[
b

7rfdx.

The revolution about the axis of x of the area bounded by a

curve y=f(x), two ordinates x— a and x—b, and ihe axis of x

generates a solid of revolution having the volume

V: TT

J
y

2dx.

In the same way, it can be proved that

:

The revolution about the axis of y of the area bounded by a

curve x= f{y), two abscissas y= a and y—b, and the axis of y
generates a solid of revolution having the volume

V=Tri
b
x2

dy.

130. Examples.

1. Find the volume of the cone formed by revolving the line

y— -j-~ x about the z-axis, the altitude of the cone being h.

Ans. -3-.

2. Find the volume of the sphere formed by revolving the

circle x2+ y
2= a2 about the z-axis,, and also by revolving about

the 2/-axis. Ans. |-7ra
3

.

3. Find the volume required in example 2, using the para-

metric equations of the circle.

4. Find the volume of the ellipsoid formed by revolving the

ellipse —
2 -f -£2- = 1, (a) about the z-axis, (b) about the y-axis.

a

Ans. f 7r&
2a; |-7ra

2
&.
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5. Find the volume formed by revolving about the a>axis the

parabolic segment having the double ordinate 2b for its base

and altitude a. Ans. —«-

6. Find the volume of the hour-glass-shaped figure formed by
revolving about the i/-axis the area enclosed between the para-

bola of example 5 and the lines y — b and y——b.

Ans. *£*.
5

7. Find the volume formed by revolving the witch

ifx+ a2x— az —
-2a 3

about its asymptote. Ans.
9

.

8. Find the volume produced by revolving about the a:-axis

the segment of the cissoid y
2 (2a— x)=x3 cut off by x— a.

Ans. 8a37r(log 2-f ) = 0.6655a3
.

9. Find the volume formed by revolving about the z-axis the

part of the curve y=ex lying to the left of the origin.

Ans. f.

10. Find the volume of a capstan 2b in height, the curved
surface of which is formed by the revolution about the y-axis

X 11

of the hyperbola —Y — -p =1. Ans. f 7ra
2
b.

131. Further Methods of Integration: Integration by Parts.—
The formula $udv= uv — $vdu (20, Art. 11-1) is of great service

in the integration of transcendental functions.

For instance, required \x2 log xdx:

Let \ogx—u, and x2dx= dv; then

7 (J/X C o 7 X
du— -

, v=\x'!dx= -s-

:

x }
3

therefore,

j[log#] \_x
2
dx~\ — \udv — uv — \vdu
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Again, required jsin-1 x - dx:

Let sin
-1 x— u, and dx— dv; then

du~ T7T=% >
and v~x'Vl — x2

therefore

xdx
jsin-1 x ' dx^xsur1 x

Vl-x2

= x sin-1 Z+ -JJ {l-x
2)-U(l-x2

)

— x sin
-1 x+ VI — x2

.

132. Examples.

Deduce by means of this formula the values of

:

1. jsin2
dO, jcos2 d$, jsin cos dO.

2. ]x sin xdx=sinx— # cos x.

3

.

|tan
-1 xdx= x tan-1 x— logVl + x2

.

4. jxsin-1 xdx=-y- sin
-1 #— J (sin

-1 a;-jVl-a;2
).

5. (xn logxdx= -flog a;— -

r J.

6. jcot cos d0=cos + log tan J.

133. Trigonometric Functions. j sin /w0 cos n6 dO, etc.—
These integrals are important in problems of Mathematical

Physics, j sin mO cos nO dO is readily evaluated if we note that

sin(ra + n)0+ sin(m.— n)0= 2 sin mO cos nO. For instance, to

find I— jsin 30 cos 20 dO. Since

sin(30+ 20) =sin 30 cos 20+ cos 30 sin 20

and

sin(30-20) =sin 30 cos 20-cos 30 sin 20,

the sum gives

sin 50+ sin = 2 sin 30 cos 20.

Thus

7= i|sin 50 d6+ lS sin d0= - TVcos 50—J cos 0.
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jsin mO sin n6 d$ and
J cos mO cos nO dd are treated in the same

way.

134. Integrals Containing Powers of the Trigonometric Func-

tions.—We have in Art. 114 the integrals of the first powers of

all the trigonometric functions, for

jcsc tfflfclogtan | —log (esc 6— cotB),

and, since csc(£ + 0) = sec and d(l+ 0)=d0,

|sec 0d6-log tan(\ + f ) = log (sec + tan 0).

"We can integrate any positive odd power of sine or cosine,

any positive integral power of tangent or cotangent, and any

positive even power of secant or cosecant by using the formula?

connecting the squares of the trigonometric functions

:

sin2 + cos 2= 1, sec
2— tan2= 1, esc

2 — cot2= 1.

In the following discussion, n represents a positive whole num-

ber, so that 2;i + l is an odd number, 2n an even number.

jsin2 " +1
• d$= jsin2 " sin d0= J (1 -cos 2

0)
n sin dO,

which can now be expanded and integrated.

In the same way,

jcos2 " +1 J0= j(l-sin 2
6)

n cos dO.

jtan" d0= jtan""2 0(sec2 0-1) d0

= jtan"-2 d(tan 0) - jtan""2 dO

11 — 1

Kedueing jtan71-2 d6 in the same way, and so keeping on,

until we reach either

jtan 0d0=$d0= or Jtan d0= log sec 0,

the integral is completed. In the same way,

Jcot" 0d6=- jcot"-2 d(cot 0) - jcot"- 2 d0

= - cotn~\ e -Scot?-* dO.
n— 1
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J sec
2* dO= J (1 + tan2 0)*- 1 sec2

dO.

(1 + tan2
0)

n_1 may be expanded and the powers of tan in-

tegrated by the method just described.

135. We can integrate any even power of sine or cosine by

rising the formulas

sin2 0=i(l-cos20); cos2 0=J(l + cos 20).

$cos2n 6 d6=~ j(l + cos20) wd0=-^r j(l + cos<£)*d<k

where
<f>
= 26. The even powers of cos

<f>,
got by expanding

(1 + cos cf>)
n

, may be treated again in the same way, and the odd

powers may be treated by the method above.

Jsin
2»0d0=-L j(l-cos <£)«#,

where <j>— 26, is similar.

136. Examples.

ZL —

1. [

¥
tan3 0d0=:i-Jlog2. 2. f

*
sec4 d9=$.

Jo Jo

rr n_

3. sec4 a;tana:^=-14
5
-. 4. tan5 xdx— \ + log 2.

Jo Jo

5.
f

2

sin2 cos3 dO= &. 0.
f

2

sin4 0cos 3 «W=A-

77 7T

7.
f

4
tan2 xsec4 ^a:= T

8
5. 8. ( * tan4 d6-\— \.

9. Jsin20sin0d0= ^sin0-isin30.
10. \ cos 20 cos 40

=

\ sin 2(9

+

TV sin 60.

n.j cos* 6 d6= g^

12. Find the area of the segment of the curve x2 (a2— y
2
) =a*

cut off by x= aV2. Ans. 2a 2 (l-f ).
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13. Find the area enclosed by y(a2— x2)—az,y=Qf x——^ 7

and x— — . Ans. a2 log 3 = 1.1a2
, about.

137. The only powers of trigonometric functions left are odd

powers of secant and cosecant. These can be integrated by using

the relations sec
2 — tan2= 1 (or esc

2— cot 2= 1) and integration

by parts. The integration of sec3 follows

:

I={sec 3 0={sec0-sec 2 0d0,

and in \udv— uv— \vdu, if

u= sec 6, dv= sec
2

dS,

we have

du= see 0tan 6 dO, v = taoo.$,

and

7= sec tan 0- {sec tan2 d$;

and since tan2 — sec
2
6— 1,

7= sec tan 0- {sec 3 d0+ {sec dO

= sec tan 0-7+ {sec 6 d6;

so

27= sec 6 tan 6+ {sec d6=see 6 tan + log (sec (9+ tan 0),

7= {sec 3 d0= -£[sec tan 0+log(sec + tan 0) ].

138. Examples.

Prove in this way

:

1. {esc 3 d6= ±[-csc cot + log(csc 0-cot 0)].

2. jsec tan2
0~tf0= i[sec tan 0-log(sec + tan 0) ].

3. jese cot2 d0=^[-csc cot 0-log(csc 0-cot 0)].

4. Prove each of the last four formulas by beginning with the

relation of the squared functions and following with integration

by parts.

5. Show that [° \fa2+ x2dx= ~ [V2 + log(l + V2)].
Jo ^
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6. Show that (sec2n+1 6 d0= -£- sec2""1 6 • tanJ 2n

2n-\
2n

jsec2""1
• dO.

7. Prove Jsec
5

• c?5= J sec3 tan + § [sec (9 tan

+ Iog(sec0+ tan0)].
8. Show that the segment out from y

2= 2ax+ x2 by x= 2a has

for its area a2 (6\/2-log(3 + 2V2)).

139. The method of Art. 137 furnishes a convenient formula

for certain definite integrals, for instance

:

fJo
sin" dO, and | cos" dO,

o

where n is any positive integer greater than nnity.

-I;
I=\ smn 6'd0=\ sin""1

• sin 6 • dO.

Call u= smn~1
6, dv= sin dO; then

du— (n — l)sinn
-2 0cos 8 d9; v=—cos6.

1= sinn_1 6 cos 6 +

it

l)sin*-2 0cos 2 0d0.

The bracket is zero, and cos 2 6=1 — sin2
6.

IT

1= 0+ (n-1)
f

2

sin"- 2 0-tf0-(?i-l)

j= (
n _l) f

2

sin"-2 0-dO- (n-1) J;

w ./=(n-l) (

2

sin«-2 0-rj0;

£ —

I=[
2

zmn 0d6= — - [* 8in»-2 0d0.

sinn 0d0;

n jo
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By this formula,

a

I
sinn

-2

n

6d6= r^[Y
sii

n-2)o
i^OdO;

SO

It

F •

sm"
Jo

ede-._ (
n -l)(n-3)
n(n— 2)

n

sin"- 4
1

lo

155

ode.

If this process is kept up, the last step will finally be

:

If n is even,

2 fT

If n is odd,

sm$de=l.
Jo

Hence

[

2

sin 0d0=[
2

d0=~
Jo Jo 2

it

c

is even

ir it ff

f

2

cosn 0d6=
j

2

sin"(-J-^)^=- f° sinn <j> d<f>= T sinn
<f> dcf>,

if f -0= <£ and d6=-d<t>.

Hence

f

2
eos" </0=

f

2
sin" <£ </<£=

[

2
sin" </0.

Jo Jo Jo

These results should be memorized; they are very often useful.
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140. Examples.

1. Evaluate the following definite integrals by the formulas of
Art. 139.

— !i

(a) j* sin4 = ff ,
(b)

J*

sin5 d$=T\,
IT

(c)
(

V
sin5 de= [

2

sin5 d6+ I sin5
d$.

(d)

'2"
77

cos5 Ode, (e) [* cos5 d0
7

(f) [* cos6
6?0.

2. Find the volume generated by revolving the cycloid

x= a(cf>— sin <£), y= a(l — cos <£)

about its base. [Hint, in y and dx, change (1 — cos<£) to

2 sin2
*, and % to 0.] Ans. 57r

2a3
.

3. Find the volume formed by the revolution of the curve

xy2+ 4cCL
2x= 8a3 about its asymptote. Ans. 4nr

2a 3
.

141. Similar formulas may be developed for the integral of

the product of a power of sine by a power of cosine.

i>sin
m 6 cosn 6 dd-.

n

r
sin™ cos""1 cos <Z0.

Call sin™ cos dB-dv, cos"-1 = w; then

sinm+1—J: , du= — (>-l)cos"-2 0-sin0 dd.

_ f |" sinm+1 cos"" 1

~
[ [ m+ 1

2

-1
m+1

.

By the same formula,

1 r
2 cin»»+2 a

0l + ^£L_^(n _i) COs«-2 0.^0
J Jo m+ 1

r

sin»l+2 cos""2
d0.

2

sinw+2 cos""2
<Z0= -—1 f

2

sinm+4 cos""4
dO.

lo w+ 3 Jo
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Continuing this process, we finally have:

If n is odd,

1=

where

(ra +

7T

1

(

w~
1

il?~
3) yi2

5T f

2

sin"'+"" 1 6 cos de
5l)(m + 3) .... (m + n— 2) Jo

71

i;

smr 6 cos 6 d8= sinm+"

ra + ?t m + n '

and thus,

T sin- e cos- * <w=
/

(?r/'
)(n- 3) --;- 2

,

lo (ra + 1) (ra+ 3) (m + n]

If n is even,

1= smm 0cosn 0d6

^1)1^- 3) (n-5^^1 f*
rf cog0

)(ra+ 3)(ra + o) (m + w — l)Jo(.TO+ 1)

and two different cases arise, according as m is odd or even.

If m is odd, (m+ n) is also odd, and

(n-l)(n-3) ....17=
(ra+ 1) (ra + 3) (m + n-1)

X
(ra + K-1) (m + w— 3) 2

(ra+ra) (ra+ /i— 2) 3

If ra is even, (m+ n) is also even, and

j_ (w-l)(w-3)(n-5) ....1

(ra + 1) (ra+ 3) (ra+ 5) (ra+ ?i— 1)

(ra + n— l)(ra + n— 3) 1 r
X

(ra+ n)(ra + n-2) ....2
X

2
*

In the last two formulas, (ra+ 1) (ra+ 3) .... (m+ n— 1) is

the product of the highest of the factors in

(m+ n-1) (m + n-?,) (1 or 2) ;
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hence the formulas are:

IT

[

2

sin"l 0cosn dd=

(n-l)(n-3)(n-o) 1- (m-1) (m-3)(m-5) 1 5

(m+ n)(m+ n— 2)(m+w-4) 2 ' X 2'

w;7jm m and n are both even;

[^ smm 0cosn 0d0=

(n—\){n—S)(n— 5) (2 or 1) • (m-1) (m—3)(m-5) (2 or 1)

(m + n)(m + n— 2)(m + w— 4) (2 or 1)

w7iew m and w are no£ both even.

These formulas should also be memorized; they contain the

formulas for sinm 6 dO and cosn dO as special cases in
Jo Jo

which one of the two exponents in sinm cos" dd is zero.
Jo

142. Examples.

1 . T sin3 cos 4 e de= %^~ = A = r cos3 6 sin* * <**•

Jo 7 • 5 • 3 35 Jo

2. rsin2 0ecs 5 0J0-

7T

sin4

Jo
cos6 6 d$:

105
'

3r

512
-

sm3 0cos5 0d0=-i-.

5. I
sin 2 0cos 2 0£70=TY
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6. Find the area of the curve (— V + l-^j-
j
=1, using para-

metric equations. (See Art. 87.) Ans. %Trab.

7. Find by means of parametric equations the areas of the

curves a8

y
2= x4 (a 2— x2

)
3 and a

f<

y
2 — xH

(a 2 — x2
).

Ans. -^- for each.
o

8. Find the area between (—
J

-f- (-j-\ = 1 and the coordinate

. ab
axes. Ans. •—%- .

b

143. The indefinite integral of the product of two powers of

sine and cosine can always be got directly, unless both powers are

even. For

jsin2 '"+1 cos" 6 d0= - J (1-cos
2
6)
m cos" 6 d cos 6

or

jcos2m+1 sin" 6 de= \ (1-sin2
6)
m sinn 6 d sin 0.

When both powers are even the use of the double angle will

always simplify the integral. For if m < n,

I- jsin2w cos2n d9= \ (sin2 "1 cos2 '" 0)cos2 <"-w) 6 d6;

since

. n n sin 20 , Q l + cos?#
sm 6 cos 0— -—-— , cos

2 8= ,

I= 22w+(L,) +x lsin
2-(2^)(l + cos2^)"-^(2^)

= g^Li Jsin
2'"<£(l + cos4>)"-'"^

where <£= 20.

A similar reduction gives, if m>n,

I=$sm2m 6cos2n 0d8= —Ls j sin
2

n

<£(1- cos <£)'"""
<7<k

where <j>= 20.
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Whenever the powers are equal, it is well to note that

1= Jsin" cos" d0= -L j sin
n ^ d^

where
<f>
= 26.

For instance,

I
± = Jsin

2
cos3 d0= Jsin

2 0(1 -sin2 0)d(sin 0)

__. sin
3 _ sin5

3 5 '

I2= Jsin
2

cos4 J0= J (sin2 cos 2
0) (cos2

0)670

= ^j fsin2 0(1 + cos <£)<?<£,

or

J2= -|f (20-sin20cos20)+ 2^7sin3
(20).

I3= Jsin
2 cos 2 d0= -~ j sin2

<£ d<£

= i(20-sin20cos20).

144. Examples.

1. Show Jsin
3 0cos3 <W=-i- (J cos3 20-cos 20).

2. Show jsin4 cos4 670=^- (60-2 sin 40+J sin 80)

3. Find P cos 2 sin3
dO. Ans. ¥Vt5

'77

5 7T

4. Find sin4 cos 4
d0. Ans. ^g..

6"

145. Quotients of powers of sine and cosine may be somewhat

similarly handled, but are often best expressed in terms o1

secants, tangents, cosecants, cotangents.



Integration. 161

For instance, taking advantage of the fact that

d tan 9= sec
2
9 dO, d cot 9= - esc2 9 dO,

f^4 d0= (tan3 9 sec
2
9 d$= (tan 3 d tan 9= i^~^

.

J cos
5 9 4

This method serves when the degree of the denominator is

any even number greater than that of the numerator.

Taking advantage of the fact that

d sec 0=sec 9 tan 9 dO, d esc 9— —esc 9 cot 9 d9,

we can handle any quotient of this sort having a numerator of

odd degree, and a denominator of higher degree. For instance.

9
dO= jtan2

9 sec 9 tan dO
COS4 9

=
S (sec2 6-l)d sec = ^^ -sec0.

fsm3 ^ ^_ .
tan2 ^ gec e tan ^ gec ^ de

}cos5 9
J

r / 3 a n\ j n sec 4 9 sec
2

=
j (sec3

9— sec 0) a sec 9——— — —-— .

These methods cover so far all cases where the denominator is

the term of higher degree, except the one where the numerator

is of even degree and the denominator of odd degree. These

may be handled as follows

:

fsinl* d$= fsini| $= [jr^idx,
J cos

5 9 Jcos6 J(l — x)

where x= sin9. This fraction may be broken into partial frac-

tions by the ordinary algebraic methods and the parts integrated.

Another way is to write the integral as

jtan2
9 sec3 9 d0= $(sec~° 9 -sec3 9)d9.

As any power of secant can be integrated, this method is also

invariably feasible.

12
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146. There remain the cases in which the numerator is of

higher degree. The following examples show methods which

can always he made to work:

J cos
2 6 J cos2

9 J cos2
9

where a;=cos 9.

\^e de= f (i-ooB'tf)' ^=I (^ os2 )M
J cos

2 9 J cos 2
9

J v y

9
<Z0= jtan3 sin d$= -cos tan3 + J3 tan2 sec d0[

sin4

Jcos3

(integrating by parts).

147. Examples.

L
f

81^ d9= $ (sec3 9 -sec 9) d9
J cos

3 J v y

=J[sec tan (9— log (sec 0+tan 0)].

2 [
CQs3 x dx— csc3 ^ _ csc5 ^

'

J sin
6

a: ~~ 3 5

o [ dx f sin a^£ -, / , *

<*• -—
-
= hi ^— = log(csca;— cota).

J sin a; J 1 — cos2 x & v '

4. M^ =Hsec0tan0+ log(sec0+tan0)].

, f
^ +/) cot8

6. f^> =
f-

cos ^ 1
r/f

,g
)

a

^=i(cotgco8ec'g-2cot^+
J sin

3
J sin3

cos sin 0) d0.

(d0
= — are readily handled

a+ b cos 9
J

by means of the functions of the half-angle; an example will

show the method.
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2= 2 cos2
1 +2 sin2

1
j2 + 3cos0

- " *-r~
m
~~ *

3 cos 0=3 cos2

f -3 sin2

1

2+ 3 cos = 5 cos
2

f — sin2

|

Let |= </>; then

f dO f 2^
j2 + 3eos0 ~ J5cos2 (£-sin2

(£

(

2 sec2
<fr Jcfr _o[_^L

5-tan2 £ " Jo-a;2 '

where £= tan <6= tan|.

2 \/5+x _1 V5+tan|
2V5 l0S ^Z^ =

V5 l0S V5_tan|
tf0

Jfl — 6 cos </>

'|a+6 sin

where <£= £ + 0.

The only very important integrals of this type are

f dO f dO f J0 f J0

Jl + cos0' Jl-cos0' Jl + sin^' Jl-sin^'

all of which are directly integrable.

149. Examples.

Integrate the following:

2 [
^0 -il 2 + tan j

* j3 + 5cos0
~~ 4 g 2-tanf

3. — =tan? = csc — cot 0.

J1 + COS0 2

4.
f

.

de -- CQtf=-CSC0-COt0.
J 1 — COS 2

5
* |l4ln^

= - cot (?+')= taI1 ^- sec ^
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dO

l-sin0
=:tan (?+?) =tan + sec 6.

150. Representation of an Integral by an Area.—We have

seen that the area bounded by a curve, y= f(x), the two ordi-

nates x—a and x=b, and the z-axis is given by the definite

integral A= P f(x)- dx. (See Arts. 124 and 127.)

Conversely, this area may be used as a graphic representation

of the definite integral. The integral whose value is thus rep-

resented by an area may be itself an area,. a volume, or any other

of the many sorts of quantities that are computed by integration.

151. The Limit of a Certain Sort of Sum.—Quantities such

as we have determined by integration can be found in another

way. For instance,

To Find the Area Bounded by /= -

—

, y=0, and x=a.—

Divide the area into n strips by equidistant ordinates Ax=—
apart. Call the distances from

J\
the origin to the points of divi-

sion in OX:

x — 0, xx
— Ax, x2

— ilAx,

. . . . , xn= nAx= a,

MM'
Fig. 48. and the corresponding ordinates

2/o= = Vi = %i
y2
= yn=

Inscribe a rectangle in each strip and circumscribe one about

it; the sum of the inner rectangles is less than the required

area ; the sum of the outer ones is greater ; and the two sums,

y Ax+y1Ax+ y2Ax+ .... +yn.1Ax
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and

y1Ax+ y2Ax+ .... + ynAx

differ by

(yn-y )Ax.

As Ax approaches zero as a limit, this difference approaches the

limit zero, and each of the sums therefore approaches the re-

quired area. The first sum is

n A ,

(Ax) 2
. , (%bx) 2

A ,

["(rc-l)Aafl 2
A0«Aa;+A L- Ax+ ± '—Ax-\- .... + -^ * ±- Ax

a a a

=M![o+ 12+ 2 2+ 3 2+ .... + (rc-l) 2
]

o

= \nj_(n=l)
(fltt_ 1)ln)=a,\_nlU_ 1\ (1

a \ 6

The second sum is

:){h-l){.)=^^_I (,).

(A3;)
2

. (2Ao;) 2
A ,

(3Aa;) 2
.

,

,

(nAo:) 2
A^ £- Ax+ -* — Ax+ ± '— Ax+ .... + -* '— Ax

a a a a

_ (AxY_
(1

2+ 2 2 + 3 2+ +n2)

= (il(l)^+1 ) (re+i),^)(2+ i)(1+ A).

The common limit approached by the sums as Ax approaches the

limit zero and n consequently increases indefinitely is

a2

(4)(2)(l)=-J,

the required area.

The same method can be used for volumes; indeed, except for

the notation, this is the method already niade familiar in the

study of Solid Geometry, where it was used to find the volume

of the pyramid, cone, and hemisphere. Any quantity that can
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be determined by a definite integral can be regarded as the limit

of a sum of this sort. The advantage of the new conception of such

problems lies in the saving of much preliminary discussion. The
determination of the limit by algebraic means would be laborious

and in many cases impracticable; but it is also unnecessary, for,

as we shall see in the next article, the actual computation can

be made by evaluating a definite integral precisely as in the

earlier method.

152. The Definite Integral as the Limit of a Sum.—Any of

the problems of which we have been speaking may be described

as follows: A variable x is divided at the values x , xx , x2 , x3 ,

. . . . , xn , so that the quantity (xn— x ) is divided into n parts,

namely,

lA,/. q — JU-t Xq+ ZAt.t'-f —— Xn X-\y IjktlsQ— Xq X<£J • . . . ,

and either one of two sums is formed:

f(x~ )Ax + f(x1)Ax1+ f(x2)Ax2 + .... +f(Xn-1)Axn-i , (1)

in which each term is the value of f(x) at one of the points of

division multiplied by the following Ax, or

f(x1)Ax + f(x2 )Ax1 + f(xg
)Ax2 + .... +f(xn)Axn_1,\ (2)

in which.each term is the value of f(x) at one of the points of

division multiplied by the preceding Ax.

The number, n, of parts is then supposed to increase in-

definitely, the sum of all the parts remaining equal to (xn— x )

and the value of each part approaching zero as a limit. In any

such case, each of the sums (1) and (2) will approach as its

limit the value

n

f(x)- dx.

To prove this, consider the graph of.f(x), and the area A
bounded by the curve y= f(x), the #-axis, and the two ordinates
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x=x and x— xn - (Fig. 49.) Divide the part of the z-axis from

x to xn into n parts corresponding

to the values Ax , Ax1} . . . .

,

Axn_ 1} and erect at the points of

division the (n+ 1) ordinates, of

which the lengths are f(x ), f{xx ),

-
, f(xn ). The area A is thus

pIG# 49. divided into n strips.

Each term of the sum (1) is the

area of a rectangle inscribed in one of these strips, and the cor-

responding term of the sum (2) is the area of the rectangle

circumscribed about the same strip.

(Fig. 50.) The first sum is there-

fore the area of the polygon in-

scribed in A } and so is less than A;
and the second sum is the area of

the polygon circumscribed about A

,

and so is greater than A.

The difference between the two

sums is the area of the small rec-

tangles. If the divisions along the #-axis are all equal, this

difference is

A*„[/(0 -/(*„)]•

If the divisions are unequal, let the largest of them be Axi;

then this difference is less than

Axi [f(x n)-f(x )].

In either case, as n is indefinitely increased, Ax or Axi ap-

proaches zero as a limit, and the difference between the two sums

therefore approaches zero as a limit. Consequently, as one of

the sums is always greater than A, and the other always less,

each of them approaches A as a limit. But the value of A is

already known to be

Fig. 50.
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A = \ f(x)dx.

Hence the limit of either the sum (1) or the sum (2), asn
is indefinitely increased, is

"
f(x)- dx.

153. As an illustration of the use of the definite integral

regarded as the limit of a sum, consider the following problem

It is required to find the volume produced by revolving about

the axis of x the part of the parabola -~ = — between x— —

Fig. 51.

and x=a. Divide the volume into n slices by planes perpendicu-

lar to the axis, at the following distances from the origin

:

x , x19 x2 , . • , Xn-D Xn— d,

and let

X1 Xq— &Xq }
X2 X-l— A3Tj , . . . . , Xn Xn-i= &Xn-i*

The corresponding ordinates of the parabola are
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Inscribe in each slice a cylindrical disc; the sum of all these

discs is

Try
2Ax + 7rtj1

2Ax1 + .... +Try2
n-.Axn-\

or

— x Ax -\ x1Ax1 + .... +—-a:n_1
Aa;n_1 .

ci a a

The limit of this sum, as n increases without limit and each

division of the #-axis decreases without limit, is

rr^ rH a
=
Wnab 2

]a/i""""~~ a 2 \ a/i
~ 32

It is obvious that the limit of the sum of all the inscribed discs

is the volume of revolution required; it is, however, logically

conceivable that it may be something less than the required vol-

ume. But if we consider in the same way the discs circumscribed

about the n slices, we have for the sum of their volumes

:

b2 t:6
2 -b 2

7T— x±Ax + — x2Axt+ .... H xnAxn .

u.1 a a

f*« nb2
, Ttb2 [

a
,— xax— — xax—

ho & a }al

The limit of this sum is also

f*« 7zb
2

7
-b2

(
a

,— xax= — xax
)x a a }a/i

the required volume oi

must be the required volume.

lo-n-ab
2

and is either the required volume or something greater; hence

IhTrab 2

32

We shall not take the trouble in later applications to remove

this logical doubt, as it never interferes with the clearness of the

discussion, and can always be treated in the same way. Further-

more, we shall abbreviate the discussion by speaking of only a

typical term of the sum whose limit we take. The preceding

proof, thus abbreviated, is as follows:

Divide the volume into slices by planes perpendicular to the

x-axis, Ax apart, and in each slice inscribe a cylindrical disc, the

volume of which is
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ttv^Ax= xAx.v a

The sum of all these discs is an approximation to the volume

required, and its limit,

— xax.
Ja/i a

is exactly the volume. Hence the volume is

f« Ttb
2— a

J a/4 a
/[;=

iw6:

154. The typical term of the sum whose limit is the definite

integral is precisely the element of integration of which we spoke

in using the earlier method of finding areas and volumes. In

this later method, the parts into which the approximate area or

volume is divided, the values of which are the terms of the sum,

are all called elements of integration.

dx, dx , dxx , dx2 , etc., are frequently written in place of Ax,

Ax , Ax19 etc., for the infinitesimal factor of the element of in-

tegration. When all these are equal, and each is represented by

dxt the typical term of the smaller sum is f(x)- dx and the cor-

responding term of the larger sum is f(x+ dx)- dx. It will be

seen by what has just been done in the preceding example that

in order to be sure that the proof of any such problem can be

completed rigorously, it is merely necessary that the true value

of any one of the parts into which we have divided the area or

volume that we are computing shall be intermediate in value

between the corresponding elements, f(x)dx and f(x+ dx)dx.

155. The conception of the definite integral as the limit of a

sum simplifies the consideration of certain general principles of

integration, notably the connection between the integrals:

7T 77 7T

[" sin" 6 d6,
f

2

cosn 6 dO, P sin™ 6 cosn dO,
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and the integrals of the same functions when the limits are whole

multiples of —

.

An example or two will show the method. Consider

j

V
sin 3

6 cos 4
dO.

It represents the limit of a sum. The function

sin3
6 cos 4

e

passes through a certain set of values as 6 varies, the sign of

each term of the sum depending on sin3
6, since cos4 6 is always

positive. Each term, therefore, from — £ to 0, is negative, and

the terms are repeated in reverse order with positive sign from

to \ , the corresponding terms of the two quadrants thus cancel-

ling each other. The quadrant \ to -n- remains, each term of

which is positive, and equal to the corresponding term in the

quadrant from to f; hence

sin3 cos 4
6 d0= T sin3

6 cos 4
6 d0=

¥
_-_. - „"_

A - ^ . 2 -3-1
•5-3 ~

' 35
2

By the same sort of reasoning

[* sin3 6 cos3 6d6= 0,

as in the second quadrant cos $ is negative ; but

3tt w

f

2

sin4 $ cos4 8dO= S F sin4
6 cos4 6 dO

_ 3
3- 1-3- 1 - 9-

8 • 6 • 4

•

2 2 256
'

since the even powers are positive even-where. It is necessary

in such cases merely to observe the sign of sinm 6 cosn in each

quadrant. Where this sign is negative, the integration through

the quadrant gives
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77

- f

2

sin™ cosn 6 dO;

and where it is positive,

77

+ P sin™ cos" (9 d0;

156. Examples.

1. Draw, very roughly, the graphs of

sin3 x cos4 x— y, from — \ to 7r;

sin3
a; cos3 x— y, from to 77-;

Q
sin2

a; cos6 x— y, from to ^

.

v> 2

Note how the relations just discussed are exhibited by the

graphical representation of the integrals. (See Art. 150.)

Find the following integrals

:

77

2. T sin2 cos3 6 d$= T\. f* sin2
6 cos

3
6 d$= 0.

3. [

n
sin2 cos4 Bde-^.

4. T sin3 0cos2 0d0=O; Psin3
(9 cos2 d0= T\.

3tT 77

("2" f f*H-D
"2"

5. sin3 0cos3 0d0= TV;
sin3 0cos3 d0= ± TV-

J 77 J tt77

157. Areas with Curvilinear Boundaries.—The following

problems are merely an extension of the ordinary problem of

finding areas.

I. To Find the Area of the Ellipse 4/2-4*/+ 17*2 + 12/

— 86*4-73 = 0.—Solving the equation for y, we get

y= i(x-S) ±2V -x2+ 5x-4:.
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The curve is sketched in Fig. 52. Divide the area into vertical

strips Ax apart ; the height of

the strip corresponding to

amr value of x is the sum of

the two equal distances of

the two corresponding points

of the curve from the diam-

eter y—\{x— 3), or is

2x2V-x 2 + 5x-4:.

We might get at this as fol-

lows: The area is bounded

above by the graph of the single-valued function

Fig. 52.

y1 =i(x-3)+2V-x2 + ox-4:,

and below by the graph of

y^=i(x-S) -2\/-x2 + 5x-4:.

The height of a strip is the algebraic difference of corresponding

ordinates of the two graphs, or

yt
— y2= 4V^-^-J-5^—4.

The limits of integration with respect to x are the least and

greatest values of x corresponding to points within the ellipse;

as V— x2+ 5x— 4= y (x— 1) (4— x), these values are 1 and 4.

The area of the strip corresponding to any value of x is

4V— x2+ 5x— 4 • Ax, approximately, and the required area is

exactly
J

Ci

A- 4cV-x2+ 5x-4:'dx.
.1

Since

y-z2 + 5.r-4=V(i) 2
-(a;-f)

2
,

let

f= | sin 0.
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Then

dx=:f COS Bd
when

0> V(f) 2

-(*-f)
2= tcos0;

when
a?=4, $=l,

Therefore

x=i, 0=-;.

A =
it

f cos 6 fcos^^-9f
2

cos 2 OdO- 9"

II. To Find the Areas into which jr2_j_/2_ a2 is Divided by

*4—y2 (a2—

*

2
) =0> and the Area Between the Latter Curve

and one of its Asymptotes.—The curves are shown in Fig. 53

;

x2

XI

p

afx

4
/n

A5

Fig. 53.

they meet where Va2— x2=
-vv

or where x— a ay=±
V2' *~~V2

Of the parts into which the circle

is divided, the easiest to get is AOD,
as it is bounded by the graphs of

only two single-valued functions,

yx
— ya2 —x2 above,

and

below.
Va2 -x2

Divide the area AOD in the usual

way into strips dx wide; the height

of the strip corresponding to any

value of x is

P1M->P2M=y1 -y2 =Vtf
\fa2 -

a2 -2x2

VaF^x2
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area is approximately

exactly

and its area is approximately
, ,

dx; the area required is
Va2 — x2 ^

J_jl Va2- X

Let a;=asin0 ) Va2 -a:2 = acos^
dx= a cos Odd] a2 -2x2= a

2 (l-2 sin2
6)

When x=- -V, 0=--^

When s=-^, 0= 4~.
\/2 4

AOZ):
4 a2 (l-2sm 2

0) _,,,— t - a cos (9 <20
n a cos

"4

77 77 77

= «2 r cos2^^= rt
2

j cos<f>idcj>= -^-sm^f =a2
.

-a2

It is evident from symmetry that the area ACBO is—^r- — a2

= 0.5708a2
, about. The area between the curve x4:— y

2 (a2 — x2
)

= and the asymptote x— a is obtained by summing strips

2x2

high, and is

Va2-x2

A r« 2x2

dx= r
2

2a2 sin2 ^ ^_ jtf^
Jo Va^^2 Jo 2

158. Examples.

1. Trace the ellipse y=^x—3±i\/ 15-\-2x—x2
, and find its

area. Ans. A = 4tt.

2. Trace the curve y=$x-4:±§V -x2+ 20a;-91 and find

the area enclosed by the curve. Ans. A = 6-rr.
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a2

3. Find the area between ay2= xz and y—x. Ans. -y~.

4. Find the area between y
2= 3ax and x2= 3ay. Ans. 3a2

.

5. Find the area between x2 (a2 — y
2)=a4: and x2= 4:y

2
.

Ans. a2 (7r-2).

6. Find the area between x2
-\-y

2= a2 and 2y
2= 3ax.

Ans. ^
2

(4tt+V3).



CHAPTEE VI.

Space Coordinates.

159. Space Coordinates.—Although no analytic treatment of

the geometry of three dimensions is to be attempted in this book,

some of the notation and ideas of the subject will be useful in

our later work.

160. Rectangular Coordinates.—A point, P, may be located

in space by three coordinates, measured as follows : Three

M'

M
Y

N

0M~

Fig. 54.

straight lines, OX, OY, and OZ, are given, each perpendicular

to the other two at their common intersection, 0. These are

called the coordinate axes, and the three planes determined by

them, each of which is perpendicular to the others, are called

the coordinate planes. The distances WP— x, WP— y, L'P— z

of P from the three coordinate planes, are the coordinates which

determine the position of P. (See Fig. 54.)

13
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The coordinates are measured from the planes to the point,

and are positive when directed to the right, forward, or upward,

and negative in the opposite directions.

161. Direction Cosines.—The position of any point, P, in

space may be fixed by giving its distance p from the origin and

the angles a, p, y made with the axes of x, y, z by the line OP.

(See Fig. 54.) It is evident from the figure that the relations

between the rectangular coordinates (x„ y, z) of P and the co-

ordinates (p, a, /?, y) are

x—OP cos POL—p cos a,

y= OP cos POM-p cos /3,

Since

OP cos PON= P cosy.

p
2 = x2 + y

2+ z
2= p

2 (cos2 a+ cos2 p+ cos2
y),

it is evident that the relation

COS2 a+ COS2 p+ COS2
y= 1

always holds among the coordinates a, /?, y of any point, so that

(p, a, ft, y) amount to but three coordinates.

162. Cylindrical Coordinates.—The location of the point P
may be described by saying that it is

at the distance z from the x-y plane,

and directly over the point whose

rectangular coordinates in that plane

are (x, y). The point P may also

be located by giving its distance z

from the plane XOY and the polar

coordinates (r, 6) of L', the foot of

the perpendicular PL' from P to

Fig. 55. XOY. (See Fig. 55.)
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163. Spherical Coordinates.—Any point, P, may be located,

as in Fig. 56, by giving its dis-

tance p from the origin 0, the

angle <£ made by OP—p with the

axis OZ, and the diedral angle

6 made by the plane ZOP with

the plane ZOX. This is equiva-

lent to giving the radius p of the

sphere centered at the origin

and passing through P, and then

locating P on the sphere by giv-

ing two surface-coordinates
<f>

and 6, analogous to the colati-

tude and longitude by which a

location is fixed on the surface

of the earth.

The relations between rectangular and spherical coordinates

are evidently

x— r cos B— p sin
<f>

cos 6,

y—r sin B— p sin <£ sin 6,

z— p cos
<f>.

164. Equations in Three Dimensions.—If no restriction is put

upon the values of its coordinates, the point (x, y, z) may, of

course, occupy any position in space whatever ; if it is given that

x— a, the point is clearly constrained to move in a plane parallel

to YOZ, at the distance a from it ; if in addition it is given that

y— b, the point is further restricted to a line of this plane—the

line parallel to OZ, at a distance Va2 + b
2 from it; if, finally, it

is given that z— c, the position of the point is definitely fixed.

In any system of space-coordinates, a single relation among

the coordinates restricts the point to some surface, two relations

to a curve, the intersection of two surfaces; and three relations

fix it at the common intersection of three surfaces. The locus of
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a single equation in space coordinates is thus a surface, and the

locus of a pair of equations is a curve.

The following instances of surfaces are evident from the

definitions and fundamental theorems of elementary geometry.

x—y is the plane bisecting the diedral X—OZ — Y.

x2+ y
2+ z

2= a2 or p— a is the sphere with its center at and

the radius a.

y—mx is a plane through OZ, making the angle tan-1 m with

the plane XOZ , etc.

165. Cylindrical Surfaces.—An equation in rectangular co-

ordinates, which lacks one of the coordinates, represents a right

Fig. 57.

cylindrical surface of which the elements are parallel to the axis

corresponding to the missing coordinate. For suppose the equa-

tion is f{x; y)=0; it is satisfied by the points of the curve

f(x, y)=0 in the x— y plane, and if this curve, keeping parallel

to its first position, moves in the direction of OZ, its x and y

coordinates will not change, so the equation will still be satisfied.

f(x, y)=0 is thus the equation of the cylindrical surface so

generated. As an example, consider the cylinder x2+ y
2= a2 in

Fiff. 57.
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In the same way an equation f(r, 0)=0 represents a cylin-

drical surface having elements parallel to OZ.

166. Analysis of Equations by Plane Sections.—Suppose we

wish to learn the form of the surface represented by

.2 „,2 *2

a2 + V +
c
3

By making z= Q, we see that its trace on the (x-y) plane is

the r_,,
ellipse -2 + 4 = 1; similarly, its traces on the other co-

Fig. 58.

ordinate planes are ellipses. If we cut it by a plane z— ~k, the

equation of the section, referred to axes parallel to OX and

OF, is

n2 "T" h2

c
2 -Tc2

or

a2 ^ b
2

^r(c2 -Jc2
) -^(c2 -h2

)

= 1.
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The section is thus an ellipse with semi-axes

— Vc2-k2 and -^Vc2 -&2
.

c c

As h is given a larger and larger value, beginning with zero, this

ellipse clearly diminishes, vanishing when k= c, and thereafter

being imaginary. The section is not affected by changing the

sign of h.

Sections parallel to the other coordinate planes give similar

results. The form of the solid, which is called an ellipsoid, is

now evident. (See Fig. 58, which illustrates any section parallel

to ZOY.)
Any equation can be analyzed by these same principles.

167. Surfaces of Revolution.—An equation in the form

f(r, z)=0, where r=Vx2 + y
2
, represents a surface formed by

revolving about the axis of z the trace of the surface on the x-z

plane or the trace on the y-z plane. This is because the inter-

section of f(r, z) =0 and any plane z= h perpendicular to the

2-axis is given by f(r, ~k) = 0, which when solved will give r=a
constant, the equation of a circle. Thus x2 + y

2= az represents

the surface formed by revolving about OZ either of the equal

parabolas, y
2— az in the y-z plane, or x2— az in the x-z plane.

In the same way, any equation in the form f{r,x)—0, where

r'='Vy2+ z
2 represents a surface of revolution about the or-axis,

and /(/', y)=0, where r"=Vz2+ x2
, represents a surface of

revolution about the y-axis.

168. Projections of Space Curves.—The orthogonal projection

of a space curve upon a plane is the intersection with the plane

of a cylindrical surface containing the curve and having its ele-

ments perpendicular to the plane. The equation of the projec-

tion upon one of the coordinate planes is obtained by eliminating

from the two equations of the curve the corresponding coordinate.
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For instance, the two cylinders

x2 + y
2= a2

(1)

and

y
2 + z

2= b
2

(2)

(the first of which has OZ, for its axis, and the second OX)
determine by their intersection a space curve. The projections

of this curve upon the planes of x-y and y-z are clearly the

traces of the two given cylinders. If we subtract so as to elim-

inate y
2
, the resulting equation

a*-z*=a*-b* (3)

represents a third cylinder, with OY for its axis. This cylinder

contains the curve in question, because the coordinates of any

point of the curve satisfy the original pair of equations (1) and

(2) from which (3) is derived and so satisfy (3). Hence the

trace of (3) on the x-z plane is the projection on this plane of

the curve. This projection is a pair of straight lines if a— b r

otherwise a rectangular hyperbola.

169. Examples.

Discuss and sketch the surfaces represented by the following

equations

:

x2 ip
1

1. —J + -jo- — 1- Elliptic cylinder,

2. ^^- + |2
-=1. Spheroid.

x2
-\- y2 z

2

3.
:—

f- -rr =1. Hyperboloid of revolution of one

sheet.

4.
x2+f - 4r =0. Asymptotic cone of (3).
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X2
y
2
-\- z

2

5. —2 Tp— = 1. Hyperboloid of revolution of two

sheets.

x2 iP1

z^
6. —2" + ~fe~

— ~2 =1- Hyperboloid of one sheet.

7. -jo- H

—

2~ = —'• Paraboloid (elliptic).
O C CL

£2 y2 £±

8. —5- + T2" + ^r =1- Bull-headed ellipsoid.
t* c

Find the projections on the coordinate planes of the following

curves

:

/ x*+ y
2 + z

2= ±a2
\ Ans. z

2+ 2ax= ±a2 on ZOX,
d

' \x2+ y
2= 2ax J z*- ±a2

(z
2-

y

2
) =0 on ZOY.

( x2+ y
2= az \ Ans. 2= 2x on ZOX,

10
- tz2+ */

2= 2aa; J 2
2+ 4?/

2= 4a2 onZOF.
11. r=a.cos0. Circular cylinder.

12. 2= rcota. Cone of revolution.

13. az— h(a— r). Cone of revolution.



CHAPTER VII.

Areas, Volumes, Arcs, and Surfaces.

170. Areas.—The computation of areas by means of (x, y)

coordinates has already been explained ; the methods are collected

here on account of their relation to what follows.

If the equation of a curve in rectangular coordinates is

yz=zf(x), y being written as an explicit function of x, the area

APQB in Fig. 59a is given by

f
ydx,

an abbreviation for the process of dividing the area into vertical

strips dx wide and taking the limit of the sum of such strips

from x— a to x=b as their number is indefinitely increased and

dx approaches the limit zero.

If x is given as an explicit function of y, x= cf>(y), the area

CPQB in Fig. 59b is given by

•d

xdy,
. c

an abbreviation for a similar process where horizontal strips are

used as elements of integration.
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An area bounded by y1
= f1 (x) y y2=f2 (x), x= a and x= b is

given by

(yi-y2 )dx,
Ja

the limit of the sum of vertical elementary divisions of the area.

An area bounded by x1= cf>1 (y), x2= <fi2 (y), y— c and y= d is

similarly

I (x± -x2 )dy.

When the bounding curve is given by parametric equations,

these formulas still hold.

In any definite integral, f(x)-dx, dx is positive if x in-
Jp

creases from p to q, negative if x decreases from p to q; where

f(x) and dx have the same sign, the integration gives a positive

result ; where they have opposite signs, it gives a negative result.

In most computations, as for instance in the computation of

areas, we desire the limit of a sum of the positive values of

certain elements; for such a purpose the integration should if

necessary be done in pieces in each of which neither f(x) nor

dx changes sign, and the order of integration should be so

chosen in each piece that f(x) and dx have the same sign. (See

Art 127).

Whatever the variable x in f(x)- dx may stand for, it may
Jp

be used for the abscissa of a graph representing y= f(x), and

then the value of f(x)-dx will be represented by some area
Jp

or sum of areas like that in Fig. 59a. (See Art, 150.)

171. Examples.

1. Find the area bounded by y= smxy y=cosx, x—~ and

x=^. Ans. 2V2.
4
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(>
+ i)

2. The strophoid x(x2+ y
2
) +a(x2— y

2
) =0 has a loop and a

vertical asymptote. Find the area of the loop and the area be-

tween the curve and the asymptote, getting the parts below and
above the axis of x separately.

Ans. A 1= 2a2 (l— -^) ; A 2= 2a2

3. Find the areas bounded by y= sin x and ^=cos 2x.

Ans. |V3 and |V3.
4. Find the area between y

2= 4:a(x-\-a) and 27ay2= 4:(x — a)

Ans. |fa2 (16V2T)

5. Find the area common to a8
y
2= x 4: (a2 — x2

)

3 and

as

y
2= x8 (a2 -x2

). Ans. ~l^--
6. Find the area cut off from a loop of x=a<f>— b sin

<f>,

y— a— b cos
<f>
by the x-axis. (6>a.)

Ans. (2a2+ &
2
)cos-1 4 -3aVF=^.

172. Sectorial Areas by the y=mx Method.—Parametric

equations in terms of m—— (see Art. 110) are used chiefly for

computing sectorial areas bounded by the curve and two lines of

given slope through the origin. For this purpose special for-

mulas are better than those already given.

Let it be required to find the area of the sector bounded by

the curve x= f(m), y= mf(m) and the

lines y=m1x and y=m2x (Fig. 60.)

Divide the difference (m2
—m 1 ) into

any number of parts, each equal to dm,

and divide the sector into elementary

sectors by the lines

y— (mx+ dm)x, y— (m1 -\-2dm)x,

y=(m1+ Sdm)xJ . . . .,

y—{m2
— 2dm)x, y=(m2

— dm)x. Fig. 60.

Consider any one of these radial lines, y— mxy reaching to the
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point P(x, y), and the next one, y={m-\-dm)x, reaching to the

point Q(x+Ax, y+ Ay.) (Fig. 61.)

Draw MPS parallel to the y-axis.

The altitude of the triangle OPS is

OM=x; the base is PS=MS-MP
= (m+ dm)x—mx=xdm.
The area of OPS is therefore \x2dm.

The sum of all the triangles inscribed

in the sector, of which OPS is a type, is

an approximation to the area of the sec-

tor, and the area is

A=i
m 2

mi
x2dm.

(See Art. 154.)

In the application of this formula x2
is written as a function

of m. For the area of a loop having its double point at the

origin, the bounding lines of the sector are the tangents at the

origin between which the loop lies, and the sector is the whole

loop.

The area bounded by two curves

and

z2 =/2 (™), y2= rnf2 {m)

and the lines y=m1x and y=m2x is similarly seen to be

4=-jl " (-V
2 — x 2)dm.

J mi

The element of integration in this case is a trapezoid.

173. Examples.

1. Find the area of the circle y
2= 2ax— x2 by the method of

Art. 172.

2. Find the area of the curve y
2— x2

{\ — x2
) : (a) by the

integral of ydx, (b) by the integral of \x2dm, (c) by substitut-
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ing x=cosd in (a) and changing limits, (d) by substituting

#= cos0 in the equation of the curve and thence finding para-

metric equations of the curve, and then integrating ydx expressed

in terms of 6. Ans. f.

Find the following areas by the method of Art. 172

:

3. The loop of y
2= x2

-{- x3
. Ans. -fa.

4. The curve x*+ x2f+ y
2 -3x2= 0. Ans. ^-2V3C

o
2

5. The loop of xz
-\-ay

2 — axy= 0. Ans. —

.

6. Between x3= a(x2+ y
2
) and x=2a. Ans. f-fa

2
.

7. The loop of the strophoid x(x2+ y
2
) +a(x2 — y

2
) = 0.

a
Ans. _(4-tt).

8. Between the strophoid and its asymptote.

Ans. ^-(4+-).

9. Sector of ellipse #=acos<£, y= b sin
<f>

between two conju-

gate diameters. (See example 2, Art. 91.) Ans. —-=—

.

174. Areas by Polar Coordinates.

—

Problem: To find the

area of the sector bounded by a

curve r=f{6), and the lines — a ^_^?
and 6— (5. Divide the difference

/ X\
{{3 — a) into any number of parts, / / \\

each — dB, and draw the radii vec- / / /\\
tores / /\s J \

6= a+ d6, = a+ 2d6, . . . ., /0k^^^ •

= /3-dd ^^T^X :

o
"

to meet the curve. (Fig. 62.) Ym. 62.

Let P(r, 6) be one of the points of

division, Q(r+dr, 6+ dO) the next (Fig. 63). Draw a circular
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o

*4*V)*

Fig. 63.

arc with the origin as center cutting across the angle dO

from P.

This arc is rdO in length, and
cuts off a circular sector \r2dO in

area. The sum of all the circular

sectors of which this one is a type

is an approximation to the area re-

quired, and the required area is

A = i[* r
2
d6. (Art. 154.)

The area bounded by two curves,

rx=fx ($) and r2=f2 (0),

and the lines 0=a and $=p is in the same way

A=i\* (r 2 -r 2
)d0,

the element of integration being in this case the difference be-

tween two circular sectors.

175. Examples.

1. Find the area of the lemniscate r
2— a2 cos 26. Ans. a2

.

2. Find the area of the cardioid r=a(l — cos 0), or

r=2asm2
%0.

\*tf. •Ans.

3. Find the area of one loop of r—a sin SO. What is the

7i(l
2 TZO

total area? Ans. —r=- , —r- •

12 4

4. Find the area between the curve and its asymptote, given

r=2a(sec 6— cos 6). Ans. Sira
2

.

5. Find the total area of r=acos0, r=a cos26, r=a cos nO.

A na2
.j, . -,, 7ta

2
.»

Ans. —— , if n is odd ; —=- , if n is even.
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6. Find the area of each of the loops of the curve

r— a cos 0cos 26.

Ans. 0.3630 a2 and 0.0148 a
2

.

7. Find the areas of example 2, Art. 171, and examples 7 and

8, Art. IT 3, from the polar equation of the strophoid

r cos 0= a cos 26.

176. Volumes of Revolution.—If a curve is given by an equa-

tion that can be solved in the form y— f(x) or in the form

dx

k ro

dx

i
m

(3)

dx

~\dy
-&<

(4)
(5)

Fig. 64.

l<fy
3°V

(6)

x=f(y), the volume produced by revolving the curve about either

axis of coordinates, or about any line parallel to either axis, may
be got by an integration that sums up the volumes produced by

the revolution about the axis in question of elementary strips of

the area of the type, ydx, xdy, {yx
— y2)dx} or (x1

— x2 )dy, the

limits of integration being the extreme values for the solid of

the variable of integration.
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In the figures, h, the height of a vertical element, is an ordi-

nate or a difference of ordinates; I, the length of a horizontal

element, is an abscissa or a difference of abscissas.

The axes of revolution are marked with arrow-heads.

The lengths a and b may be constant or variable; the lengths

r are always variable.

The solids generated in (1) and (4) are thin discs; those in

(2) and (5) are thin discal rings; those in (3) and (6) are thin

cylindrical shells.

The elements of volume are

:

(1)

irll
2dx

(2)

Tr[(a+ h) 2 -a2]dx

(3)

2irrkdx

(4)

irl
2dy

(5)

w[(b+ iy-b 2]dy

(6)

2irrldy

The forms (1-6) should not be memorized; the elementary

volume produced should in any problem be got by actual compu-

tation ; but it should be noted that the volume given for either of

the thin shells (3) or (6) is the area of its inner curved surface

multiplied by its thickness dx or dy. The volume of (3) is

/ dx \
actually 2tt( r-\——

-J
hdx, a value intermediate between 2-trrhdx

and 27r(r+ dx)hdx; so the integral of the simpler form gives

the correct total volume. (See Art. 154.) The other elements

are volumes of cylinders or the difference between two such

volumes.

177. Examples.

1. Find the volume formed by revolving about the rr-axis the

area included between the parabolas y
2— ax and x2= ay.

Ans. y-g-Tra
3

.
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2. Find the volume formed by revolving the cissoid y
2 (2a— x)

— xz about its asymptote, using as the element of volume a thin

cylindrical shell of radius (2a— x). Ans. 2?r
2a3

.

Find the volume formed by revolving the area of each of the

following about the axis indicated

:

3. (JLV + (jj-\* about the x-axh. Ans. ^hirab 2
.

4. Area between axes and [-) + (-/-) = 1 about y-axis.

. ~a 2
b

Ans. -=-=- .

15

5. Area between ay2= x3 and x— y about ?/-axis.

Ans. -2
2
i
7ra

s
.

v2 x
6. Area between^- = — and x— a about x— a.

o2 a

Ans. f§-7ra
2
&.

7. Cycloid x= a(cf> — sin <j>), y= a (1 — cos <f>)
about y— a.

Ans. Large spindle, -^- (3tt+ 8) ; small spindle,^- (3tt— 8).

8. Area between y
2— -^a(x-\-a) and 27ay 2= 4c(x— a) 3 about

a;-axis. Ans. 807ra
3

.

9. The distance from a point (x, y) to the line x— y is

±\V2(x— y). Find the volume of the spindle produced by
revolving the area common to x2= ay and y

2= ax about their

common chord. (Divide the solid by planes perpendicular to the

axis of revolution.) Ans.
30V2

178. Successive Integrations.—In some problems of integra-

tion, the value of the element of integration is not immediately

evident, and is itself determined by an integration. This may
be done even in the simpler problems that we have already dis-

cussed, though to no advantage except for a convenient method

of writing general formulas which is of value in subsequent work.

14
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To explain the process more simply, we will first show how it

can be applied to some of the familiar problems.

Let it be required to find the

O

%*h(*L
area between two curves,

yi=/i(aO

^ and

a X y2 =f2 (x).

Fig. 65.
Divide the area into rectangles

by lines dx apart, parallel to OY,
and lines dy apart, parallel to OX. (Fig. 65.) Any one of the

vertical strips is thus divided into small rectangles, each dxdy

in area, so that the area of the whole strip is dx\dy. In this

integration dx is the same throughout the strip (is constant),

and the limits are the least and greatest values of y for the strip

;

i. e., yx or f± (x) and y2 or f2 (x). As these limits are functions

of x, the area of the strip,

f/sCr)

dx
A(z)

dy,

is itself dx times a function of x. Now if a is the least and b the

greatest value of x for the area,, the complete area is

f/»(«)

rJa
dx

fifr)

dy

or, as it is commonly more briefly written

:

A— dx\ dy.
J a )fx(x)

There is nothing new in this result; |
dy is merely f2 {x)

J/l(3f)

—fx (x) or y2 —yt , so that this is the familiar formula

A.-
\

(V2-yi)dx.
Ja
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In the same way, the area bounded by x1=F1 (y) and

x2=F2 (y) (Fig. 66) is

2(2/)"d CF2(y)
dy dx.

c " Mm
Either of these processes may be regarded as

piling np rectangles to make a strip, then add-

ing together such strips (each stretching across

the area) to fill the area approximately, and,

finally, by indefinitely increasing the number

of rectangles, obtaining the area. The process

is briefly referred to as integrating dxdy over p^ 66.

the area, and is indicated by \\dxdy over the

area; where \\dxdy is called the double integral of dxdy.

Suppose again that the area of Fig. 65 or of Fig. 66 is to be

revolved about the axis of x. Then each element dxdy will

generate a ring of rectangular cross-section and of inner perim-

eter 2-rry. Its volume is thus approximately 2-Kydxdy, and the

total volume generated is

\\2irydxdy over the generating area.

In the same way, the volume generated by an area revolving

about the axis of y is

^2-n-xdxdy over the generating area.

The actual volume of one of the generating rings is in the

first case

irdx (y+ dy) 2— ndxy2= 2irdx
(
y+ ~- ]

dy,

but in order to establish rigorously the correctness of the inte-

gration with respect to y, it is merely necessary to observe that

this volume is intermediate in value between 2irdx(ydy) and

27rdx(y+ dy)dy. (See Art. 154.)
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As another example, let it be required to find the area between

r1= f1 (0) and r2— f2 {B). Divide the area by radii vectores dO

apart and concentric circles dr apart. (Fig. 67.)

Any of the small sectors is thus

divided into figures of a nearly rec-

tangular shape, a typical one of which

is bounded by two straight sides dr in

length and two circular arcs rdO and

(r+ d?*)d9 in length. Its area is very

nearly rdOdr; the area of the whole

sector is

Fig. 67.

and the whole area is

J« JMe)

dO

rdr

[W) -

rdr;
iflie)

if a and /3 are the extreme values of 9. More briefly, the area is

\\rdddr over the area.

The actual area of the small rectangular division is

±(r+dr) 2
ir

2
c

dr
\- -)d6dr;

but as this is intermediate between rdddr and (r+dr)dddr, the

integral is rigorously correct. (See Art. 154.)

Completing the first integration of course gives the familiar

formula

A=t\[ W-rf)d».

180. Volumes of Revolution by Polar Coordinates.—In find-

ing the volume generated by the revolution of a curve given by



Areas, Volumes, Arcs axd Surfaces. 197

its polar equation, successive integrations are actually needed.

Let it be required to find the volume generated by revolving

about the initial line the area between r1
= f1 (0) and r2=f2 (0).

Divide the area as in the preceding article and consider any

elementary division having P(r. 6) for one corner. (See Fig.

68.) The area of this element is to be taken rdOdr as before.

As was the case in rectangular coordinates, this area multiplied

by the distance (2irrsm0) traversed by P gives a sufficiently

close approximation to the volume of the ring generated by the

revolution of the elementary division, so that the volume gen-

erated bv the sector is

2-irr sin 6 • rd0dr=2ir sin 6d0
J/l(«)

and the total volume generated by

the area is

7= 2- T sinOdO[* sin 6 dO
[

m
rHr

}

J* JAW

if a and (3 are the extreme values

of 6.

In the same way, since P , in re-

volving about the perpendicular to

the initial line, describes a path

'2irr cos 6 in length, the volume of

the elementary ring is 2-nr cos 8 rdQdr, and the total volume is

2(0)

2ir f/
2 (

J/i(

cos 9 dO |" ' r
2dr

i(fl)

More briefly, the volumes formed by revolving an area are

:

2ttJ \r
z sin 6 dOdr (revolution about initial line),

SirJJr
2 cos 6 dOdr (revolution about 1 to initial line),

the integral in each case being taken over the generating area.
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181. Examples.

1. Find the volume of the solid formed by revolving the

circle r=2acos0 (a) about the initial line, (b) about the per-

pendicular to the initial line. Ans. (b) 27r
2a3

.

2. Find the volume generated by the revolution of the cardioid

r=2asm2 %0 about the initial line. Ans. f ira
3

.

3. Find the volume generated by the revolution of the lemnis-

cate r2= a2 cos 26 about the perpendicular to the initial line.

Ans. ^ttWVS.

4. The arc of a cardioid r=2&sin2
J revolves about the per-

pendicular to the initial line; find the volume enclosed by the

outer surface so formed, and the volume of the double spindle

inside. Ans. ^ (16 + 5tt) and ~ (16-5tt).

5. The area to the right of the perpendicular to the init:

line between r= a(l — cos 0) and r=a(l + cos6) revolves abc

this perpendicular, and again, about the initial line. Show th

the volumes so generated are-f -rr
2az

and-J-rra
3

.

6. The lemniscate r2= a2 cos 20 revolves about the initial lin

Show that it generates the volume

TVra
3V2[3 1og(l + V2)-V2].

182. Volumes by Parallel Sections.—The methods that v

have used for finding the volume of a solid of revolution in re(

tangular coordinates amount to dividing the solid by planes pei

pendicular to the axis of revolution, computing the volume of

cylinder inscribed between two of the planes, and finally inte

grating to find the limit of the sum of all such cylinders; i. e.

the total volume. The process is made easy in these cases by thv

simplicity with which the volume of the typical element can be

computed (its base being a circle), and is equally easy in any

case where the area of a section parallel to one of the coordinate

planes can be simply expressed in terms of its distance from the

plane.

If the area. A, of a section of a given solid by a plane parallel

to the coordinate plane YOZ at a distance x from YOZ is a
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?iven function of x[A=f(x)'], the volume of the elementary

iylinder between two planes at distances x and x+dx is

Adx or f{x)- dx,

and the total volume is the limit of the sum of all such cylinders,

or

\*f(x)dxJ

I

Fig. 69.

\ and x2 being the minimum and maximum values of x for the

solid.

If the area cut by a plane parallel to XOY or to ZOX can be

expressed in terms of z or y respectively, the volume may be

^found by a similar integration with respect to z or y.

!• The section of

+ W~" 1

made by a plane parallel to YOZ at a distance x from YOZ is

an ellipse, the semi-axes of which are the value of z when y=0
and the value of y when 2= obtained from the equation of the
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ellipsoid, or

— Vfl2-r and ^VW^tf.
a a

The area of the section is thus

a2 v 7

In the same way, a section of this ellipsoid by a plane parallel

to XOY at a distance z from XOF is

and of a section parallel to ZOX at a distance ?/ from ZOX is

Thus the volume of the ellipsoid is

(
a izhc~(a 2 -x 2 )dx
o a2

or

2) ™(V-f)dy
'0

or

JO c

i. e.,

183. Volumes by Successive Integrations.—The method of

parallel sections can be extended to cases in which the area of a

typical section is not immediately evident, for this area can in

any case be found by a preliminary integration. If the pre-

liminary process is made a double integration, the complete solu-
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tion of the problem will necessitate three successive integrations,

and may be expressed briefly by

j \\dxdydz throughout the volume,

where the symbol \ \ \ is read triple integral.

For the ellipsoid in the preceding article, the process might be

7= 8
Jo Mo Mo '

which would be described as building up, out of the small ele-

ments, each (dxdydz) in volume, a column to reach from XOY
to the surface of the ellipsoid, adding such columns to make a

slice parallel to YOZ, reaching from XOZ, where y=0, to the

/ x?
trace of the ellipsoid on XOY, where y= bJ 1— — (z being

zero), and finally adding all such slices to build up the solid

from YOZ, where x= 0, to the end, where x— a.

As x and y have constant values for the whole column, and x

the same value for the whole slice, these quantities are treated

as constants in the corresponding integrations. The integral is

thus reduced as follows

:

Jo

r
b \/i-

dx
Jo

a* V>-* y
2

b2
dy

[1
= /.-

x2

' a2
s'mO

Ca
= 8

Jo

7T

(2
dx • c

Jo
'(• - ^) cos2 6 d6,

a2
j

= 2-bc
C('-

x2
\

a?)
dx = ^7rabc.

Advantage should always be taken of knowledge already

gained, so as to reduce the number of integrations as much as
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possible. The more elaborate process is shown here because the

notation will be convenient later in many connections, and the

process in a few.

184. Examples.

1. Find the volume between the vertex and the plane x=a..oi
the elliptical paraboloid

y
2 z2 x

~W + ~tf ~~a'

by taking an element between two planes parallel to YOZ.

A -rcabc
Ans. -^-.

2. Find the volume cut from a right circular cylinder of

radius a, by a plane passing through a tangent to the base and
making an angle a with its plane. Ans. ira? tan a.

3. What is the volume in example 2, if the plane passes

through the center of the base of the cylinder?

Ans. fa
3 tan a.

4. An isosceles triangle of constant altitude c has for its base

a double ordinate of the circle x2+ y
2— a2

, and its plane is per-

pendicular to the plane of the circle. Find the volume of the

conoid generated as it moves across the circle. Ans. —^— .

5. Find the volume of a conoid generated as in example 4,

except that the triangle moves parallel to the y-axis of the ellipse

J*. j_ J/L=i
a2 + b

2
'

and also when it moves parallel to the #-axis.

A r.abc £ ,

Ans. -^r— tor each.

6. Find the volume common to two equal right cylinders of

radius a which intersect at right angles. What is the common
volume when the two axes are inclined at the angle a ?

Ans. -^-a3 esc a.
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7. A cylindrical hole, diameter 2b, is bored out of a sphere,

diameter 2a; the axis of the cylinder is a diameter of the sphere.

Find the volume left. Ans. ¥(«* )i.

185. Cylindrical Volumes.—The volume enclosed by a cylin-

drical surface and secant surfaces can be found by the method of

Art. 183, which can moreover be readily extended so that the

equation of the cylinder may be used in cylindrical coordinates.

(See Fig. 70.)

For instance, the volume cut out from the sphere x2 + y
2
-\-z

2

— a2 by the cylinder y
2= ax— x2

, two opposite elements of which

are a diameter and a tangent of the sphere, may be obtained by

the integration,

Ia
Wax—x2 .— -_

ax va 2 — x2 — y
2
dy.

Here we build up a column z= yW—x2 — y
2 in height on the

element dxdy of the base of the cylinder to reach from XOY to
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the sphere, integrate for y to form a slice across the cylinder,

and finally sum these slices to form the complete volume.

We can as well take r— a cos as the equation of the cylinder,

and r
2 + z

2= a2
as the equation of the sphere. Then, building up

a column of height z— \/ a2— r2 on the element rdOdr of the base

of the cylinder, integrating for r to determine the wedge from

the 2-axis across the cylinder, and for 6 to sum up all these

wedges, we have for the volume

:

IT

f2" fa cos e
,

F= 4 dO ^Ja 2 -v2 -rdr=%a\\-\).

The same result can be obtained from the form in rectangular

coordinates, but not so readily.

186. Examples.

1. Find the volume of the sphere z
2 + r2= a

2
, using c}dindrical

coordinates.

2. Find the volume cut from the sphere of example 1 by the

cylinder r
2= a

2 cos 2</>. Ans. f a
3 (20-16A/2~+3^).

3. Find the volume common to a right cone the altitude of

which is h and the radius of whose base is a, and a right cylinder

having the radius of the cone for its diameter.

Ans. ha2 (%-±).

4. Find the volume of the cylinder included between the

plane mx+ ny+ c= z, and the plane of xy, the equation of the

x2 v
cylinder being -y + -p- = 1. Ans. irabc.

5. Find the volume cut from the cylinder y
2= 2ax— x2 by the

paraboloid x2 + y
2= az and the x-y plane. Ans. f 7ra

3
.

187. In the following figure are collected the most important

elements of area and volume with all the dimensions infini-

tesimal.
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. / /
i

dz

°v i

|

<

A
»

m
! x

dA
dx

*dx.dy dA-rd&dr
"~ Jx
dV~ dx.c/y.dp

dV = rd$ - dr dz A' pcos Odp
dV=f>cos G dp./Ode. dp

Fig. 71.

188. Length of Arc.—If s is the length of the arc of a curve

from any fixed point to any variable point, ds may be expressed

in some such form as F(x)dx, F(y)dy, F(cf>)d<p, F(6)dd, etc., so

that we have directly (see Art. 124) :

The length of the arc of a curve from the point A to the point

ds, where the limits A and B are the values corre-

sponding to the points A and B of the variable in the integrand.
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Thus the circle of radius a, having its center at the origin may-

be represented by x2 + y
2= a2

, by x=a cos
<f>
and y=a sin

<f>,
or by

r=a; and we have as corresponding expressions for ds:

adx ady
ds= ±

Va2 -x2 ' ad<f> or ±ad$.
ya2 -y2 ?

The length of the quadrant between the points represented in

rectangular coordinates by (a, 0) and (0, a) is

}a Va2 -x2
Jo \/a2 -y2 Jo

r
Jo 2

[Each of the integrands is positive, since from (a, 0) to (0, a),

x decreases and all the other coordinates increase.]

189. Surfaces of Revolution.—The surface 8, generated by

the arc between two points, A and B, of a curve when the curve

revolves about either coordinate axis, is readily found. This

surface is the limit of the surface generated by a broken line

inscribed in the arc as the chords of which it is composed increase

indefinitely in number and decrease indefinitely in size.

The area generated by the chord from (x, y) to (x+ Ax,

y+ Ay) as it revolves about the a;-axis

is by elementary geometry

AS = 2* (y+ -^L] V(A^; + (Ay) 2
;

hence the differential of the surface is

dS= 2iry • V(dx) 2 +(dy) 2= Z-rryds.

In the same way, if the curve re-

volves about the axis of y,

dS=27rxV(dx) 2 +(dy) 2= %-nxds.

Hence the surfaces formed by revolv-

ing the arc from A to B of a given
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curve about the coordinate axes are

S=2tt . yds (revolution about OX, or the initial line),

8=2w\ xds (revolution about OY, or the JL to the initial line).

If the equation of the curve is more convenient in polar co-

ordinates, x may be replaced by r cos 9, y by r sin 0.

190. Cylindrical Surfaces.—To find the area of a cylindrical

surface included between two secant surfaces, let the axis of z

be parallel to the elements of the cylindrical surface, so that the

equation of this surface is in the form

f(x,y)=0.

The problem will of course be solved if we find the area of the

part of the cylindrical surface between either secant surface and

the x-y plane. Let the equation of this secant surface be

*=F(x, y).

Call the section of the cylindrical surface by the x-y plane

the base; then the equation of the base is f(xt y)=0. (See

Art. 165.)

Divide the perimeter of the base into elements of arc each

equal to ds, and through the points of division draw elements of

the cylinder, thus dividing the required area into strips. (See

Fig. 73.)

Suppose the cylindrical surface to be cut along an element

and developed on a plane : the base thus

becomes a straight line which may be

regarded as an axis of abscissas divided

into parts ds in length, and the space

curve in which the cylinder and the

secant surface intersect becomes a plane

curve of which the ordinates are the

^-coordinates of the space curve. The
required area becomes an area between a Fig. 73.
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curve, the axis of abscissas, and two ordinates, divided into strips

in the usual way, so that its value is

8= ^zds,

In this integration, z is the ^-coordinate of the curve

U=F(x,y)\
\f{x,y)=o]

and so may be expressed as a function of x by eliminating y
from the two equations of the curve; s is the length of the arc

of the base, so that ds may be expressed in terms of x through the

-equation of the base, f(x, y) —0. The integral may therefore be

put in the form \<$>{x)- dx. In the same way, it may be put in

the form \0(y)- dy. The limits are the same that would be used

in finding the perimeter of the base.

Again, if the surfaces have convenient equations in cylindrical

coordinates, f(r, 0)-—0 for the cylinder, z= F(r, 0) for the

secant surface, the same form

S=$zds.

can be similarly reduced to the integral of d6 times a function

of0.

191. Examples.

1. Find the length of the arc of y
2= Sx from (2, -4) to

(8,8). Ans. 4V~5+2V2+log|±0|.

2. Find the length of a quadrant of the circle x2+ y
2 = a

2 by
ca I fdy\2

the form s— \ a/' 1 + 1
-—

J

• dx, by direct integration.

3. Find the length of one branch of the cycloid

x= a(cf>— sin <j>), y= a(l — cos<f>).

Ans. 8a.

4. Find the length of the catenary V—~k (ex/c -\-e-x/c ) from

x—— a to x= a. Ans. c(ea/c— e~a,c ).
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5. Find the length of ay 2= xs between x=0 and x=5a.
Ans. "Vr- a.

6. Find the total area of the sphere formed by revolving

x2+y2= a2 about the #-axis.

7. Find the surface of the spindle formed by revolving the

area between a semicircle, the tangents at the extremities of its

diameter, and a perpendicular tangent, about the latter as an
axis. Ans. %ira

2
(ir— 2).

8. Find the surface formed by revolving a branch of the

cycloid about its base. Ans. --^ -n-a
2

.

9. Find the surface formed by revolving one branch of the

curve x=a(<f> — sin </>), y= a(l + co$
<f>)

about the #-axis.

Ans. 3
-f-

-n-a
2

.

10. The cycloid of example 9 revolves about the line y—a,
forming a succession of spindles alternately smooth and ridged.

Find the surface of a spindle of each type.

Ans. ^wa2V^and^ira2 (V2"-l).

11. Find the whole length of the cardioid r=a(l — cos 0), and
the length from the cusp to the highest point.

Ans. 8a and 2a,

12. Find the surface of the solid formed by revolving r=
2a sin2

{ about the initial line. Ans. -^ wa2
.

13. Find the surface of the solid formed by revolving r—
2a sin2

% about the perpendicular to the initial line: (a) the

inner surface, (b) the outer surface.

Ans. ^-2

(3V2-4) and -4/ ira
2 \f2.

14. Find the total surface formed by the revolution of the
circle r=2a cos about the perpendicular to the initial line.

Ans. 4ttV.

15. Find the lateral surfaces of the sections cut from the cylin-

der in examples 2 and 3 of Art. 184.

Ans. 2?ra
2 tan a and 2a2 tan a.

16. Find the lateral surface of the portion of the right cylin-

der, having the radius a of a sphere for the diameter of its base,

which is included within the sphere. Ans. 4a2
.

17. Find the lateral surface of the cylinder r= a sin2

J in-

cluded within the sphere z
2+ r2= a2

. Ans. f a2
( 2V2 - 1 )

.

15
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18. Find the lateral surface of r= 2acos0 included between
z= and r2= az. Ans. 4tt<2

2
.

192. Other Curved Surfaces.—Let it be required to find the

area cut out from a surface Ft (x,, y, z) — by a surface F2 (x,y,z)

= 0. This area lies on ^= and is bounded by a space curve

of which the equations are 2^= and F2= 0. If we eliminate

z from the two equations, getting f(x, y)=0, the new equation

will represent a surface (cylindrical) also cutting Fx
= in the

space curve just mentioned, so we can simplify the problem by

replacing F2= by /=0 in the original statement. Moreover,

f(x, y) =0 is the equation of the projection on the x-y plane

of the space curve bounding the required area. (See Art. 168.)

Divide the plane area bounded by this projection into elements

infinitesimal in both dimensions (e. g., dxdy or rdOdr), and on

each element erect a prism by drawing ordinates parallel to the

z-axis. Let P be any point of XOY within the projection

f(x, y) = and Q the corresponding point directly above it on

Fx (x, y, z)=0. Let the prism corresponding to P and Q cut

out the area dS from the plane tangent to 1^= at Q. The

desired area will be the limit of the sum of elements of the type

of dS. Kepresenting the element of the projection by dA, we

have by elementary geometry

:

d#=secy • dA,

where y is the inclination to the x-y plane of the plane tangent

to Fx (x, y,z)=0 at Q.

The required area is then

S= jsecy dA,

taken over the area bounded by f(x, y)=0, the projection of

the area S on the x-y plane.

The projection of S on either of the other coordinate planes

can of course be used in the same way. If cylindrical coordinates

are used, F(r, 0, z)=0 and f(r, 0)=O replace F1 (x, y, z)=0

and f{x, y)=0 in the preceding discussion.
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As an example, consider the area cut out from the sphere

x 2 + y
2 + z

2
' = or by the parabolic cylinder z

2= —a(x— a). In this

case the secant surface is already a cylinder and can be used

directly; but if we eliminate z, we get as a new secant surface,

cutting out the same area, x2 + y
2= ax, a circular cylinder, which

is still simpler. In cylindrical coordinates, the sphere and the

circular cylinder are r2 + z
2 = a2 and r=a cos 6.

It is geometrically evident that for this sphere,

a a

for the circle r= a cos 6, dA=rdO dr, and the required area is

7T

„ C~2 Ca cos rfir
8= 4a

\

de r^-zs =8tf(>-»)
Jo Jo Va2 -r2 v ;

193. Examples.

1. The cone z= mr or z— cot a- r is cut by the sphere r
2+ z

2

— 2ar cos 9. Find the area of the surface cut from one nappe of

the cone. Ans. -na? sin3
a.

2. Show that the area cut from the sphere in example 1 is

4a2 (a — sin a cos a).

3. Show that the surface of the solid bounded by the cylinders

y
2

-\- z
2— a 2 and x2+ z

2= a2
is 16a2

.

4. Show that the area of each piece cut out from y
2+ z

2= a2

by x2+f= l
2

is 4a
f
J^^dy or 4a P sin"1 V& 2 -s2

dv
Jo V a2 — y

2
Jo a

194. The Loxodrome or Rhumb-Line.—Suppose the earth to

be a sphere a miles in radius, and let L and A be the latitude

and longitude of a point, M, on its surface. Let A be measured

westward from the Meridian of Greenwich, and let north latitude

be positive, south latitude negative, so that </>= -^

—

L is the

colatitude of M .
<f>
and A are thus coordinates of M.
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Let M(<j>, X) and M'
(<f>+ A<f>, A+AX) be adjacent points on a

course which passes through M, making

the angle a with the meridian. (See Fig.

74.) Let the parallel of latitude through

W (radius a sin <f>) meet the meridian

through M (radius a) at m; then

Mm = aA<f>, mM'— a sin <j>AX.

Fig. 74.
Let I be the distance sailed from any fixed

point of the course to M, and Al-MW.
In the limiting form of the triangle MmM',

Cot a = a sec a
sin

<f>
dX '

For a rhumb-line or loxodrome, a is constant, so that the dis-

tance from Mx ($x , X± ) to M2 ((f> 2 , X2 ) is

I— (dl=a sec a c£c/>) =aseca(^,-
<f>± )

Integrating the two members of

= COt adX

(1)

d<j>

sm <£

between corresponding limits gives

P-^^COtaP
2 ^

or

tan^2 ,

log — =COta(A
2

tan +.
K). (2)

The direction of the rhumb-line between any two ports can be

determined from (2), and the distance from (1) ; or if the dis-

tance run on a given course from a given position is known, (1)

will determine the colatitude and (2) the longitude of the posi-

tion reached.



Areas, Volumes, Arcs axd Surfaces. 213

195. Mercator's Projection of the Sphere.—Suppose the earth

to be mapped on a terrestrial globe, and a cylinder of revolution

constructed tangent to this globe along the equator ; and suppose

each parallel of latitude to be projected upon the cylinder by a

conical surface having its vertex on the axis of the globe. The

points of the axis chosen as vertices of the cones which project

the various parallels will influence the form of the projection,

but in any case if the cylindrical surface is developed into a

rectangle, the meridians and parallels will form two sets of

parallel straight lines, mutually perpendicular.

Mercator's projection is one of this sort, so designed as to

show any loxodrome as a straight line, having

its angle with the meridian unchanged by pro-

jection.

Fig. 75 represents a Mercator's projection,

showing a loxodrome, MjM^ two meridians,

M1E1 and M2E2, two parallels of latitude,

M1m 1 and M2m 2 , and the equator E±E2 .

If the colatitudes and longitudes of M
L
and

M2 are (61} A x ) and (<£ 2 , A2 ), then

E±E2
=za(\

±
— A2 )

,

since lengths along the equator are unchanged. Therefore

m 2M2=ExE2 — a(X1
— X2 ).

As the angle a is unaltered, and the loxodrome M±M.2 is a

straight line,

Mxm 2

But

cota= ^>k =
m 2M2 a(\±

— A2 )

cot a
k2
-\

±

log

tan
4>:

tanA
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(Art. 194) ; hence

tanA
M1m2= a log — •

tanA

Consequently, in a Mercator's projection of the terrestrial

sphere the distance between the equator and the parallel of which

the latitude is L is the value of Mxm2 when <f>±
= \ —L, <f>2= *, or

is

, it

V= a log ^— j^ =alog cot
(^
-
|) = a log tan ^ + ^

tan(i-i)
If lines are drawn on a Mercator's projection representing

parallels separated by equal intervals of latitude, the distance

between them will increase rapidly with the latitude. (The rate

of increase is -^- = a sec L. ) The formula y— a log tan '~ + -^-
]

is therefore called "the law of increased latitudes for the ter-

restrial sphere." It is also called " the law of meridional parts

for the sphere."

196. The Terrestrial Spheroid.—The earth is much more

nearly a spheroid (ellipsoid of revolution) than a sphere.

Fig. 76 represents a meridian with its eccentricity much exag-

gerated. A = a is the equatorial radius, the normal at M mak-

ing with a the angle L, the latitude of M. The colatitude is

x is the radius of the parallel of latitude through M . If e is the

eccentricity,

yz=VT-^VaF-x2
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_ dy__ -xVT
tan</>=tarLr:

dx VaF^x2 >

sec
2

<j>

a'— e'x'

x— asincf)

Vl — e
2 cos

2
<j>

, _ a(l — e
2 )cos

<fr
d<}>

(1— e
2 cos2

4>)%

Fig. 76.

If the arc is measured in the direction PNA,

4^ = — sec t— sec
<f>,

ds= dx sec <£,

dx

, _ g(l —

e

2
)^<£

215

(1)

(2)

197. The loxodrome and the Mereator's projection for the

terrestrial spheroid can now be treated as for the sphere, x tak-

ing the place of a sin cf> as the radius of the parallel, and ds tak-
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ing the place of adcf> as the element of arc of the meridian. We
have

:

which, from (1) and (2), is:

cot a=

Coto(,=
ds

xd\ '

)> is:

(i -e2
)d<l>

and

or

(1 — e
2 cos2

cf>)smcf> dX'

dl= sec a ds;

_ a(l — e
2 )seca dcj>

~ (l-62 COS2
^>)^ *

(3) is integrated as follows:

(l-e2
)d<f> . ,.

(1 — e
2 cos2 <£)sm<£

, fl — e
2 sm2 6— e

2 cos2
</> , ,

Xcota= -—
o ,x •—r^d<£

J (1 — e
2 cos2

(1 — e
2 cos2

</>)sin</>

dcf> f e
2 sin <£ d<j>_[ d<j> f e
2 sin—

J sin
<f>

}l — e
2 cos 2

<f>

'

<f> ,
e

, _ „ 1 + e cos <£Aoota=Iogtan-^ +T log ^^J -

Hence

tan +.

(3)

(4)

(x x W„-W 2 + e
i nlr

(l+ ecos^Xl-eeos^)(A.-Ajcot.-log—^- +
g
log

(1_ <eog ^ )(1+ tfeOB+i)

2

Therefore, in the Mereator's projection,

M1m 2
= a(X2

— X1)cota

becomes, when
<f>1
= ^ — L,

<f>2
= %:

y= a logtang+-|-) + -|- log
J

1 — e sin L
+ e sin L



Areas, Volumes, Arcs axd Surfaces. 217

This is the law of increased latitudes for the spheroid; if we

introduce an auxiliary angle, 0, such that e sin L— cos 6, we shall

have

and

-, -, 1 — e sin L > , *

* loST+^ir7X =logtan -

y= a[logtan(-£ + —j + e log tan f ]

.

The use of infinite series will enable us to integrate (4), and

will give a more practical form for

f e
2 sin

<f> dcf> f e
2 cos LdL e , 1 — e sin L

}l-e2 cos 2
cf>

~ ~ }l-e2 sm2 L ~ 2
g

l + esin£'

(See Art. 206.)

198. Examples.

1. Show that if we use denary logarithms, and if A represents

the difference in longitude in degrees, (</> 2
— <£i)' the difference

of colatitude in minutes, and D the distance in knots, the rhumb

-

line course and distance on the terrestrial sphere is given by

COta= ^~ ;10 tan^-log10 tan^i

where log10 A = 2.12034.

2. Find the course and distance by rhumb-line and by great

circle (assuming the earth a sphere) from San Francisco,

8h 9m 43 s W ? 37
o
47 , 2S„ -^ t() Manil^ gh 3m 50 s E^ U o 35/ 35*

N. Ans.

:

Course. Distance.

Ehumb-Line W. 12° 37.6' S. 6368.2

Great Circle W. 28° 14.4' K 6051.0

3. Find the intervals between the parallels of 0° and 5°, 30°

and 35°, 60° and 65° on a Mercator^s projection of a sphere

of radius a, and on a Mercator's projection of a spheroid of

equatorial radius a, eccentricity e — 0.081697.



CHAPTEE VIII.

Series.

199. In the study of functions it is often the case that the

development of a function in power-series gives an expression

more readily handled than the original form. This is particu-

larly true when we attempt to integrate functions whose integrals

are very complicated or cannot be expressed at all in terms of

familiar functions.

200. Development in Series.—Suppose that a function of x

can be developed into a power-series

f (x) = a -\-a1x+a2x
2+ a3x

3+ .... + anxn -\- . . . . ;

then, assuming that the method of finding the derivative of a

finite power-series applies also to an infinite power-series

:

f(x) =a1+ 2a2x+3asx
2+ 4:a

/t
xs+ +nanxn

-x+ ,

f(0)=oi;
f"(x) = 2a2+ 2 • 3asx+ 3 • 4:d4pc?+ + (n-l)nanxn

-2+ ,

f'(0)=2a2 ;

f"(x)=2-3a3 + 2'3'4:a>4X+...+ (n-2)(n-l)nanXn-z+ . . .,

f"(0)=2-Za3 ;

?

f(
n) (x) =2 • 3-4.. (n— 2) (n — l)nan+ multiples of powers of x,

fW(0)=an \n.

Since f(0)=ao , we have Maclaurms Series:

««)-/(o)+*-f(o)+|-r(o)+|no)+....

+ ^P'(0)+....
Exercises.

Use Maclaurin's Series to obtain the series for (a+x) m ,

sin x, cos x, ex and a? already developed in the Trigonometry and

in the Algebra.
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201. Practical Methods.—We can develop sec x directly. Since

csc(0) = oo
?

esc a; cannot be thus developed; by noticing that

esc x— sec (x— 2), we can develop cscz in powers of (x— £). It

is, however, much simpler to replace cos x and sin x in the for-

mulas sec x— , esc x— -. by the first few terms of their
cos x sin x

developments, and carry out the divisions to determine an equal

number of terms of sec x and esc x.

Maelaurnr's Series is used in practice to develop such func-

tions as it readily applies to ; then the development of any simple

function of these can be obtained by elementary processes.

202. Examples.

1. Write four terms of the development of cos 2x, and thence

obtain four terms of the development of sin2 x and of cos2
x.

Ans.

sm2^^- x 4-^-3^ +

cos2 x=l — x2
-\—=- —

~r=- + . .

3 45

2. Find three terms of the development of cscz from three

1 x 1x^
terms of the development of sin x. Ans. — +— + ^7^ .r x 6 360

3. G-iven c. m. 30° = 0.5.236, compute to four decimals (by

logarithms) the first three terms of esc x, and compare their

sums with esc 30°.

4. Find three terms of the development of tan x (from sin x

and cos x). Ans. #+— + ^-=- 4- . . . .

5. Find the developments of i(ex + e-x ) and \{ex— e~x ) from
the development for ex .

/yt2i /y»4 /v*D

14- — +— 4-— 4-1+
|2
^ [4 [6

+
'

' '
•'

Ans.
/Y»3 -|iO jy i

X~\ TFT ~l~ —^~ ~^~ TW
li II .11
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6. Find the development of Vl — cos x, considering Vl — cos x

x —
as a function of -=- . Ans. \/2

JO Jb
|

Jb

2
~23

|y w\i[~

7. Find the development of cos3 x from the identity cos3 x
= f cosz+ |cos Sx. Ans. l—^x2 + ^xi—^xG + ....

203. If the derivative of a function is easier to develop than

the function itself, it should be developed, and the resulting

series integrated on the assumption that an infinite and a finite

power-series obey the same laws of calculus. The arbitrary con-

stant that appears can always be determined from the value of

the function for some one value of its argument. Often the

development of the derivative follows from some familiar theo-

rem. For instance, to develop tan-1 x :

By the Binomial Theorem,

-j— (tan-1 ^) = -—j

—

~ =1 — x2+ x*— xG+ x8 — . . . .,
dx v ; l+x2

tan-1 x=$[l — x2+ xi— x6 + x8— . . . . ]dx
\

/y»3 /yt5 /y*l /y»9

tan-1 = (7= 0,

/VtO /y»0 /y»7

204. Examples.

1. Develop x tan"1 x— log Vl + x2 by first developing its de-

rivativ, Ans. *--£+.*_^ + ... ,

2. Given £=4 tan"1 i-tan"1 ^ -Han" 1 -^ , find the value
of 7T to eight figures from the series for tan-1 x.

Ans. tt=3.1415926.
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3. Develop sin
-1 x by first using the Binomial Theorem to

develop its derivative.

A ,
1 , . 1.3 x5

,
1.3.5 x7

,Ans. ^+^3^3+^5+-2^ T +....

4. Compute sin
-1

J = £ to four figures from the series of ex-

ample 3.

205. Approximate Integration.—The method of the preced-

ing article enables us to find an expression in series for an inte-

gral if we can develop the integrand, and so is of great advan-

tage in the evaluation of an integral which is not a known

function.

For instance, the length of a quadrant of the ellipse x—
a cos

<f>, y-

n

HI
=aVl — e

2 sin<£ is

>Vl-e 2 cos<£- di

77

HI [*
" T C°S2 *

-
2?2

C0S4 *~ ¥g e" C0S6 *

J. * O * D O Q .

g 4
|

4
«W* .... ^;

<?=-f

" e
2 3e4

5<
1 4 43 4

>e 52 . 7^8 72 . 9 . g
io -j

4 47 4s *

206. Examples.

1. Show that if a=10, e=0.1, § = 15.669 is the length of an
elliptic quadrant.

2. Show $xne~x2dx=xn+1
~ 1 x2

a:
4

_n+ l n+3"1"
(n + 5)| ?

a;
6 z8

(n+ 7)_[_3
r

(n+ 9)|J
•" •

3. Show that the area in example 4, Art. 193, is
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if m = -

a

**fi -l
m *

_l (
1>3

)

2 (1-3-5) 2
6 .

\

and if a=2b,
£= 1.0357r&

2
.

e^ , 1 — e sin L
2

l0g
l + esin£

4. Show that the second term in the law of increased latitudes

for the terrestrial spheroid (Art. 197)

'

e
2
cos LdL

1 — e
2 sin2 L

^-e2 sinL(l + ie
2 sin2 Z + ie4 sin4 L+ ....).

5. Given that a= 3437.7 minntes of equatorial arc,

loge N= 2.3.026 log10 if, e = 0.081697,

show that in Art. 197

y= 7915.7 log10 tan (45°+ -4) -23 sin £, approx.,

in minutes of arc.

6. Show that 'the length of the loxodrome on the terrestrial

spheroid (Art. 197) is

Z= a(l-e2 )seca
f

ii2

[l+fe2 sin2 L+-1
-g-
5-e

4 sin4 L+ .... ~\dL.
JLi

207. Differential Equations.—An equation involving deriva-

tives of a function is called a differential equation.

Sometimes such an equation is formed for the sake of de-

veloping a function; as an example, suppose we wish to find the

law of coefficients for the development of tan x. We let ^=tan x,

so that

Jl= sec
2 x=l + y

2

,

and our differential equation is formed:
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Since tan( — x) — — tan (a;), no even powers can occur; as-

sume, therefore,

= a
x
x + a

z
x* + a

b
x° + a

7
x7 + . . . .

*== a*x2 + of* + a. 2*10 + a.2xw + .

+ 2a
1
a.
i
xt +2a

1
a
5
a 6 + 2a

x
a jX* + 2a

1
a
9
x10 + 2a

1
a
11
x12 + 2o

1
a
13
x1* + .

+ 2a3«5x
8+ 2a

3
a.z l0 + 2a

3
a
9
z12 + 2a

3
a
11
x' »+ •

+ 2a
5
a

7
z12 + 2a

5
a
9
x 1

+

* + .

-^|-=a
1
+ 3a3X2 ^5a

5
z t + 7a

7
a;
6 + 9a

9
x8 + lla

11
x ,0 + 13a

1
3X 12 + ....

Comparing coefficients of like powers of a:, we have

ax
= l, 3az

= ax
2
, ha

5
— 2a xaz , 7a7

= 2axa5 + a 2

3 3

9a9= 2^0^ + 2a 3a5 , lla±1= 2^9 + 2a3
aT + a 2

.

The computation for several terms follows

:

^=1.
3a3

= a 1
2= l. a3 =J.

5«5 = ^l«3 = f- «5=T
2
5.

fc,-«MiW-i+J- U+ 5
-g. 17

a7= 5.7-9'

34 4 344-28 62 62
9 ~5-7-9 l~9-5 _ 5-7-9~5-7-9" Oi- 5.7.92

«-«+*>+£*+
5 .¥.,*+..£,, .r

9 + . . . .
-

Exercises.

1. Since sec(O) =1 and sec( — cc) =sec #, assume

1/ = sec a; = 1+ a2x
2+a^+ #6a;

6 + as£
s + . .

and show that -^\ = 2i/
3 — y.

Substitute, and determine a2, a±, a6
:

sec x= l+ix2 + ^x4+ f^x°+ ....
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2. Find five terms of the expansion of log cos x.

An -?- *lL _ ^ _ 17z8

__
31x 10

S '

2 12 45 2520 14175

208. Elementary Series.—The following developments of ele-

mentary functions are collected here for reference:

(l + x) n= l + nx+n(n-l)~- +n(n-l)(n-2) ^-+ . . . .

ax= l +xloga+-j^(xhga) 2 +-^- (xloga) 3+ . . . .

ex z= 1 + x+
X2

P
+

a;
3

|3

+
X4

14

+ .

lqg(l + aO =-X— x2

2
+

z3

3

X4

4
+

sina;--X— x3

13
+

15

—
M + . . .

. X2 X4 X6
.

.
,

z3
, 2X5 17x7

1 , x 7x3 31x5
,

CSCa;=^+T +m + l5l20
+

61x6

sec x-= 1 +
x2

2
- +

5x4
i

24 '

cot rr =
1

X
—

3
"

x3

45 i

log sin#=:l0g;x— X2

6

x4

180

log secx =
X2

" 2
+

x4

12

T6

+16 +

720

2x_5

945"

2835
= —log CSC X.

= — log COS X.

logtan^logx+f + ^ + ||L + . . . . = - log cat*.
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.
t ,

x* 3x5 5x7

113 5
esc-1 3=_ +_ +^ + Y12P + • • • • =I-sec-1

x.

/y»3 zyi5 zv*7

tsjrx x— x 5- + -=- — -=- + . . . . =|— cot-1
a;.

cot
-1 x— -^-* + ^n> — ^-7 + - • • • =\ — tan-1 a;.

x Sx3 5x° 7x7 2

209. Development when fM (0) = oo.—If f(x), f(x) or any

higher derivative is infinite when x= 0, f(x) cannot be developed

by Maclaurin's Series. For instance, an attempt to apply the

method directly to log x will fail; log(l + a;), however, is readily

developed. If

f(x)=log(l + x),

f(*) = (i+*)-S

f'(x) = -{l + x)-\

f"(x)=2(l+x)-\

/(0)=0;

f(0)=i;

f'(0) = -l;
/'"(0)=2;

/(«)(0) = (-l) n- 1

log(l +x)=x--?Y

|»-l(l+a;)-»,

|»-1:

a3 x4

^ 3 4

_i)»-i_^L + . . .

n

From this development the series actually used for computing

logarithms can be derived, as in the Algebra, Art. 162.

log(7i+7i) —\ogn-\-2 *(
* \

3
. 1 (

2n+h^ 6 \2n+hJ ^*\2ii+ h+toTTL +' ' '

210. Taylor's Series.—The procedure that was necessary in

the case of log(l + a;) is useful in many connections. Suppose

we wish to compare a particular value of f(x), say f(x ), with

16
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adjacent values. All values of f(x) may be represented by

f(x +z), where z is variable, and these values will be nearer to

the value of f(x ) as z diminishes. To develop f(x + z), which

is a function of z (x being a constant), we assume

f(x + z) = a + a1z+ a2z
2+ atz

3+ . . . . +anz
n+ ....

Now, since x is a constant, d(x + z) =dz; hence

and similarly for the higher derivatives. Consequently, if we

take successive ^-derivatives of both members of the assumed

identity, and subsequently make z= in each of the resulting

identities, we have

:

f(x +z) =a1 -\-2a2z-\-3a3z
2+ . .

f"(x + z) =2a 2 + 3 • 2asz+ + n(n-l)anz
n-2+ ,

f"(x + z) = \S • a3+ . . . . + n(n-l) (n-2)anz
n~3+ . . .

.

,

?

f{x )=%, f(x )=a19 f'(x )=2a2 ,

f"(so)-={3-a* ...., /
(n)

(^o) =K •••>
so that

This development is called Taylors Series; it is often spoken

of as the development of the function f(x) in the neighborhood

of the value x of its argument x. Maclaurin's Series is a special

case of Taylor's, the development in the neighborhood of the

value zero.
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Taylor's Series is especially adapted to the study of the in-

crease of a function of x when x is increased from a particular

value x by the difference or increment dx.

Call f(x)=y, f(x )=y , f(x + dx)=y + Ay; then

y + Ay=f(x + dx) =f(x6 ) + dxf(x ) + <*£ /"(*,)

211. Finite Differences.—The development

Ay=dx f(x ) + J*2 f'K) + ^- f'K) +• • • •

+ W! /
(.) (a

.o)+ ....

gives, to any required degree of approximation, the increase in

the function y caused by the increase dx in its argument, The

number of terms needed will depend on the nature of the func-

tion, the size of dx, and the accuracy required. In many practical

cases, one term is sufficient; the resulting formula,

Ay— dx- f(x ) or Ay= dy,

is merely the assumption that the increment of y and the dif-

ferential of y do not differ in the decimal places that it is desired

to have correct. Graphically this means that the curve y= f(x)

and the tangent to it at (x
, y ) have ordinates differing by a

negligible amount when x— xQ -\-dx. The second term,

will generally show whether this difference is really negligible.

In any case, enough terms of the Taylor's Series are computed

so that the last one does not affect the decimal places retained in

the computation, and generally one or two more places are re-

tained in the computation than are desired in the result.
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For instance, if y=log10 x,

Xq & Xq O Xq

v
' n V

or

. [dx 1 (dx\ 2
, 1 tdx\3

X-iy-i /dxY
n \xj

_

(/x= log10 e= 0.43429.)

If dx is positive, this is an alternating series, so that the error

committed by taking Ay—dy— — is less than -~ I
J ,

and the value of Ay so taken is too large.

212. Examples.

1. If it is assumed that log10 (N+n) =log10 N+ -=-
, how

large a fractional part of N may n be if the error in the assump-
tion is not to affect the fifth place in the mantissa? [Error

< 0.000005.] How many figures of ^ will be useful in the

approximate computation ?

Ans. (4rr) <-00480; three figures; use fi= 0.434.

log10 (N+ n)=log10 N+'-^.

2. Find by Taylor's Series the value to 5 decimals of sin

(30° 30') from the functions of 30°.

3. Find the increase in log10 sinz, when £= 30°, dx=l\ to 7

decimals, and check by tabular difference between log10 sin 30°

and log10 sin 30° 1'.

4. Find the increase in log10 tana:, x= 45°, dx— V.
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5. Develop y=log10 sec x in the neighborhood of the value

x = tan-1 f and thence find to seven decimals the values of Ay
when dx—V, dx—\# and dx=l° 40'.

Ans. 0.0000948, 0.0009504, 0.0097663.

6. Develop y= sin2 x in the neighborhood of £ = 45°, and
thence find to five decimals the values of sin2 46°, sin2 50°,

sin2 60°, and sin2 75°.

Ans. 0.51745, 0.58683, 0.75000, 0.93301.

213. Small Changes in the Astronomical Triangle.—The for-

mula Ay— dy gives valuable approximations to the changes pro-

duced by small variations in the parts of the astronomical tri-

angle. Of the five parts, L, d, h, t, and Z , three must be given

to determine the triangle, and then the other two can be found.

Each of the other two is thus a function of the three given. For

instance, any one of the four parts, L, d, h, t, can be expressed

as a function of the other three by means of the equation

sin/z,= sin d sinL+ cos d cos Lcos t. (1)

The results obtained from (1) can be simplified by means of the

equations

cos h sin Z= cos d sin t, (2)

cos h cos Z— cos L sin d— sin L cos d cos t. (3)

For instance, suppose L, d, h are given, and it is desired to

find the effect on t of small errors in the data. We will suppose

each of the given parts in turn to vary, the other two being con-

stant, and thus find three errors produced in t, the sum of which

will be the total approximate variation of t.

First, let L and d be constant, h and t variable; then, dif-

ferentiating (1) we find:

cos 7w?7i = + cos d cos L(— sin tdt), (V)

or, by (2) :

cos lidh= —cos L sin Z cos hdt,

dt= —esc Z sec Ldh.
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Next, let d and h be constant, L and t variable,

= sin d cos LdL— cos d cos t sin LdL — cos ^ cos L sin W#.

Then by (3) :

cos d cos L sin tfj£= (sin cZ cos L— cos ^ sin L cos tf)^L

= cos h cos Z<£L,

or, by (2) :

j t • j-jj ry sin t COS <2 7r
cos a cos iv sm tat— cos Z :

—=— aL,
sinZ

dt= cot Z sec LdL.

In like manner, differentiating (1) on the assumption that

t and d are the only variables, and reducing the result by means

of

cos h cos ikf =cos d sin L— sin d cos L cos £ (4)

and

cos L sin tf= cos h sin If, ( 5

)

we find

dt= cotM seed' dd.

Finally, if L, d, h are given, subject to errors AL, Ad, All, the

error in t is approximately

At= cot Z sec LAL+ cotM sec dAd— esc Z sec LAfc.

In the same way, if d, t, h are given, subject to errors Ad, At,

Ah, the error in L is approximately

AL= —cos M sec ZAd+tan. Z cos LA£+sec ZAh.

In the navigation problems of the time-sight and the latitude-

sight, the error in declination is negligible, and these formulas

become, for the time sight,

At= cot Z sec LAL— esc Z sec LAh

and for the latitude-sight,

A£:=tan Z cos LAt+ sec ZAh.
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In either of these, the error Ah arises from inaccuracy in ob-

servation. In the time-sight, AL is the error in the assumed
(dead-reckoning) latitude. If the time-sight is taken when the

sun is near the prime-vertical, Z is nearly 90°, cotZ and esc Z
are small, and the error in longitude, At= sec L(cotZAL
— esc ZAh), is small, so that the longitude found from the obser-

vation is more accurate than the dead-reckoning longitude. The
latitude-sight, on the other hand, should be taken when the sun
is near the meridian, for then Z is nearly 0, and tan Z and sec Z
are small. The effect of the error in the dead-reckoning longi-

tude and the error in h are thus both made small, so that the

latitude found is more accurate than the dead-reckoning latitude.

Formulas involving Z in place of t can be derived in the same
way from

sin d—smh sin L + cos ft cos L cos Z. (6)

214. Examples.

1. The time and amplitude of sunrise or sunset, computed on
the assumption that ft= 0°, are given by

sin A = sin d sec L, cos t— — tan d tan L.

Supposing the assumed values of d and L to be accurate, show
that the change Aft= — 50', due to the mean semi-diameter of the
sun (16') and the mean refraction (34'), will cause a change,
At= sec A secL • 50'.

2. Show that, at the Naval Academy (Lat. 38° 58' 53" K)
the apparent solar times of sunrise and sunset are about as
follows

:

Winter Solstice, Equinoxes, Summer Solstice,
Dec. 21. Mar. 21, Sept. 21. June 21.

d=23° 27' 07" S. d=0. d=23° 27' 07'' N.
, A . . A. A

hrs. min. hrs. min. hrs. min.

Sunrises... 7 17.2 a.m. 5 55.7 a.m. 4 32.8 a.m.

Sun sets 4 42.8 p.m. 6 04.3 p.m. 7 27.2 p.m.

aat the error made in computing h f

, L is

Ah= cos ZAL— sin Z cos LAt approx.,

3. Show that the error made in computing h from assumed
values of t, d, L is
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if Ad= 0. It follows from this that a line of position can always
be laid off by St. Hilaire's method on a large scale chart, regard-

less of the azimuth of the sun.

4. Show that, if Ad= 0,

AZ= tan h sin ZAL— cos M sin Z esc tM.

Use sin t cot Z— cos L tan d— sin L cos tf, and simplify the results

by using cos t cos Z— sin L sin £ sinZ-— cos If, and the for-

mulas (1) and (2) already given.

215. Simpson's Rules.—When an area or a volume is to be

found and the equations of the bounding curves or surfaces are

not known, it is possible to determine the desired result or a fair

approximation to it from measurements of a number of ordinates.

More generally, when a definite integral is to be found, it is pos-

sible to express it, sometimes exactly, more often approximately,

in terms of a few values of the integrand, even if the form of the

integrand is not known.

The problem in this method is: To find 1 f(x)- dx} given the
]a

values f(x ), f(xt ), f(x2 ), . . . ., f{xn ) of f(x) for a number

of values of x uniformly distributed in the range from a to ~b.

216. Simpson's First Rule.—Suppose three values of the un-

known function to be given; shift the origin so that the middle

one corresponds to x=0, and call b — a=H. In this case we wish
H

to find
f

2

f(x)-dx, given /(-f), /(0), /(f). For the sake
J"f

of brevity, call these given values y± , y2 , yz respectively.

Assume the function to be of the form

f(x)=A+Bx+ Cx2 +Dx3
;

then

./ H\ A
BH CE2 DH3

n .

y^ f {- -2) =A~ -T + ir-^"' (1)

y2 =f(0)=A; (2)
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./ H \ A x

BE-
y*=f[-2~) =A+ -o~ +

CIP DIP
4
+

8 (3)

If, in Fig. 77, the heavy line 'PQRS is the graph of f(x), the

unknown function, and the dotted line pQRS is the graph of

y=A+Bx+Cx2 +Dx3
, the true integral and the approximate

integral we are about to find are represented by the areas

AQRSBA, the first bounded by the full line, the second by the

dotted line. The function A + Bx+ Cx2+Dx3 and its graph are

of sufficient flexibility, even with the three values at Q, R, S
fixed, to conform pretty closely to any given function and its

graph.

<?
/>'

VgS?/

,4 jf
. # .

/ >. A9

'.
,
Bx2

,
Cx3

,
Dx(

Fig. 77.

We have for the approximate integral

:

H

J
H (A+Bx+ Cx2 +Dx*)dx

Adding relations (1) and (3) above,

«, .
CH2

so

—
1 g -•/! T# 3 > ^ — </2>

CH2

2
=yi+ys-^

C#2

12 6
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hence

H

J

2

H
(A+Bx+C*°+D*)dx=H U+ C

^)=«(y1+ ±y2 +y3 ).

Therefore, approximately,

H

\*_Bm- dx= f [y, + ±y2 +ys ] = f[/(-f)+4/(0) +/(f)].
2

The position of the origin relatively to a and b has no effect

on the value of the integral; it has merely been necessary for a

definite discussion to fix it somewhere. As H represents (b — a),

and the value of x midway between a and b is ~^
,

"

a
f {x).dx=^±[f(a)+4f p±$) +/(&)]

approximately, or

cb b— a

j
^
f(x)- dx= -g- [yx+^+ysJ,

where y1? y2, 2/3 are the values of f(x) at the beginning, the

middle, and the end of the range from a to b. This formula is

known as Simpson's First Rule.

The assumption which makes the result approximate is that

f(x) is a polynomial of the third or lower degree; if this is really

so, the integration is exact.

217. Examples.

1. If two perpendiculars, y± and ys in length, a distance h
apart, are dropped from points of a curve to a straight line, and
a third perpendicular, y2 in length, is drawn midway between
them from a point of the curve to the straight line, show (a)

that the area bounded by the curve, the straight line, and the

perpendiculars yx and y3 is approximately

4= -g-(2/i+42/2+#3),
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and (b) that the volume produced by revolving this area about

the straight line is approximately

2. Find the following integrals by Simpson's First Eule

:

[

2

(2 + x+ 2x2 + 3x3)dx=^-

and

P (7x3 + 3x2+ 2x+ 5)dx= 12.

Find the following volumes by Simpson's First Eule

:

3. The volume of a sphere.

4. The volume formed by revolving about y= the segment
from x=0 to x= a of the parabola ay2= b

2
x. Ans. ^-n-ab

2
.

5. The volume of a barrel formed by the revolution about the

x2 v2

major axis of the segment of the ellipse ^ + -— = 1 between the

ordinates through its foci. Ans. 56.64?r.

6. The volume of a barrel formed by the revolution about the

major axis of the segment between the ordinates through its

foci, if the length of the barrel is 2h and the diameter at the

bung is 2b. Ans. %irb
2h

/2 , 72 •

7. The volume of a spherical segment, altitude Ji, radii of

bases, b and c. Ans. fah{Zl 2 + Z(?+ li
2
).

8. The volume of a capstan in the form of a hyperboloid of

revolution, each base of radius b, circle of gorge of radius g,

altitude h. Ans. ^(b 2+ 2g
2
).

o

9. The volume of a conoid of height h having a circle of

radius a as base. Ans. -Jthz
2
/*.

218. Closer Approximations.—When the approximation of

A+Bx+Cx2 +Dx* to f(x) is not sufficiently exact, there are two

ways of coming closer to the true value of f(x)-dx,
Ja

one is
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to break up the range into equal parts, and to apply the method

just described to each part; the other is to assume f(x) equal to

a polynomial of higher degree and to determine correspondingly

more values of f(x) from which to compute the integral. Either

method involves an increased number of measurements of f(x),

or of computations of f(x), for cases in which f(x), though not

integrated, is known.

If we follow the first method, dividing the range (b — a) into

two equal parts, and applying the method to each of them,

t/i> y*, 2/3; y*> y5 ,

being the values of f(x) at the beginning, the points of quadri-

section, and the end, we have

p*3 i(h-a)
J(x)dx=^^- (y1 + 4,y2+ y3 ),

b

J(x)dx= *( h
- a>>

(y3 +4y4+y5 ),

b b— a

a
f(x)dx= -j2-(y1+ fy2+ 2yB + fyi+ y5 ).

In the same way, if the range (b — a) is divided into any even

number n of parts and y19 y2i y3 , . . . . , yn are the values of the

function at the beginning, the points of division, and the end,

J

f(x)dx=-^ (y±+ 4:y2+ 2y3+ 4:yi+ 2y5+ .... +#„+1).

In the parenthesis, the first coefficient is 1, the last is 1, the

72

others are alternately 4 and 2, beginning with 4. There are -5-

4's, 2^-2% and 2 l
?
s:

4 (D +2 (^) +3(1)=3)l -
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The sum of the coefficients is three times the number of divisions

of the range. The rule is often abbreviated

:

r.
"*>*= 1+4+2+"'?.. +1

(i
>

4
>

2
> • > *>•

The simpler rule is similarly written

:

O^ifi+T^ 4
'
1 )-

219. Examples.

1. The segment from x= to x= a of ay2= b
2x revolves about

x~a. Apply Simpson's First Eule, dividing the solid by planes

perpendicular to the axis of revolution, first, \ apart, second, |
apart; and show that the errors are fa and l

1
24 of the correct

volume, y|-7r<z
2
&.

2. Treat as in example 1 the volume formed by revolving the

same area about the tangent at the vertex, and show that the

f
3 d:

tAt of the correct volume, f 7ra
2
&.

'4 fa— by Simpson's First Eule, using values
l x

3. Find — and
Ji x

of the integrand for x— 1, f, f- , etc., and compare the results with

1.09861 = log3 and 1.38629 = log 4.

220. Simpson's Second Rule.—Using the same assumption

for f(x), as in the First Eule, but dividing the range into three

equal parts, taking the origin half-way between the ends of the

range, and having given the values of /( — ?), f( — f), /(f),

and f(§), where K— b — a, we can prove by a precisely similar

discussion that

I. f(*)^=f[/(-#)+3/(-f)+3/(?)+ /(f)],
"2

or that

Cb b— a

j a
f(x)dx=-g- (y1 +3y2+3ys+yi ),
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the y's being the values of f(x) at the beginning, the points of

trisection, and the end of the interval. This method may also

be applied if we take 3n equal divisions of the range, giving

£ f(x)dx=^( yi+ Sy2 + 3yti + 2yt

+ 3yB + 3y«+ 2y7 + • • • • +y8»+i)>

where the y's are the values of f(x) corresponding to the points

of division.

These are briefly written:

»/(z)&= »;° [1,3,3,1],

or

- 1+3+3+2 .

a

. . +1 c1. 3 > 3 > 2
>
—

'
y-

They are known as Simpsons Second Rule.

221. Employment of the assumption that f(x) is expressed by

a polynomial of degree n gives, for various values of n, other

approximations; e. g.,

n=4=: £ f(x)dx=^-[7, 32, 12, 32, 7].

n=6: P /(^)^=^#[41, 216, 27, 272, 27, 216, 41];

a slight change in the ratios of these coefficients gives

h^ [42, 210, 42, 252, 42, 210, 42],

or

^ [1, 5, 1, 6, 1, 5, 1],

a very valuable rule, known as Weddles' Rule.
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222. Examples.

1. Prove that if c— b — b — a, so that a, b, and c are equally

spaced values of x, and f(a)=y1 , f(b) = y2 , f{c)—y^ then

/(a;)- dx=-j^(5y1+ 8y2 -y3 ).

This is known as " the five-eight rule."

2. Prove in detail Simpson's Second Rule.

3. Find the volume of the larger segment cut by the plane

x= -jr from the sphere formed by revolving x2+ y
2= a2 about the

#-axis. (Use Simpson's Second Rule.) -Ans. f ira
3

.

dx
4. Find the value of by Simpson's First Eule,

o 1+x2

making ten divisions of the range, and compare your result with

the value of tt= 3.14159265.

IT

5. To find 46 2

f

2 cos2
<£ d<f>

(example a Art 193 and
Jo VI—i sm2 r '

example 3, Art. 206), compute the function at intervals of 7J°
and apply both the first and the second of Simpson's Rules. In
computing the values of the integrand, use an auxiliary angle

such that sin2
<f>
= 2 sin2

6 ; then the values of the function can

be computed from the form

:

<j> log sin 2 log cos

9.84949-10

9 log sin log sec

f{4>) log

223. Evaluation of-~ Problem: To determine the value

7X1 X^)

to assign to a fraction —>-' when x= a if u (a) =0 and v(a)=0 }

in order to complete the definition of an otherwise continuous

function. (See Algebra, Art. 45.)
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We have by Taylor's Series

:

u(x) =u\_a+ (x— a)] =u(a) + (x-a)u'(a)

+^# «"(*)+—

,

v(x) =v[a+ (x— a)] =v(a) + (x— a)v'(a)

Since u(a) = and v(a) = 0,

+ I*^LV'(«)+....

w(:r)

-y (#)_

(a;-a)tt'(a) + ^r#^- w"(a) +

(x-a)v'(a)+ (
X

,

2

a)2
i/'(a)+. . . .

tt'(a
) + T9~ w"W+ • *

•

v'(a) + ^v"(a)+

Thus we have, if u(a)=Q and v(a)=0,

u'{a)

~¥{a)
'

If the fraction

u(x)

V 0*0.

u'(x)

~V(x)

u'(x)

, resulting from differentiation of the

u(X i

terms of -7—r , is indeterminate when x—a (that is, if v! (a) =
v(x)

and v'(a) = 0), the same method gives
u"(x)

V(s).
as its value

and so on. If differentiation of this sort is kept up after the

fraction becomes determinate, the results will be correct only by

accident.

It is often more convenient, especially when a=0, to write

the actual developments of u(x) and v(x) ; for if these develop-

ments are known, all the differentiation is avoided. Only the

first non-vanishing term of the development need be written.
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For example:

sinz
(a)

Llog(l + aOJ x=0

cos a;

1 + x

-T -i;

x=0

or

smx
log(l + a;) :c+

(b)
0-*sin0

l + cos0+ cos20Je=£ [-si1

— ; cos

1

-l

sin 0-2 sin 20

-1

Or, putting 6=\—<j>> the fraction is

<£_£ cos <£

l + sin</>— cos 2</>J^=o

I-+-.<• 2 +)

! + </>--1 + (2«>)
2

2
+

= -1.

4>=o

224. Evaluation of — .—When ^)
x

{- defines a continuous
co v{x)

function except for x—a, and u(a) = oo and v(a) = co, the

proper value to be given to the fraction in order to complete the

definition may be found by writing

u(x) _ y(x)

v (x) 1

u(x)

which has the form —when x— a, and so may be treated by thi

methods just given.

For example,

sec

sec 50

17

00

cos 50

cos

5 sin 50

sin
= 5.
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225. The following theorem facilitates the evaluation in many
cases

:

If u(a) = oo and v(a) = oo,

'u(x)

v(x)

oo

00

u'{x)

v'{x)

In the following proof, the x's are omitted for brevity

:

" 1
1

~— dv
~u~
V

a

V

T = V2

=— du

.
u _ a L u2 a

dv

du

Hence

or

u(x)

du

dv

v(x)

du(x)

dv(x)

u
V a

U

.
v a

dv

du a

[-1

'

uf

(x)dx

v'(x)dx_ x=a
= \u'(x)

x=a

This theorem should be made nse of only when it gives forms

simpler to invert than the original ones ; reduction to — is

necessary at some time in handling — fractions, for without it,

every derived expression will remain

For example,

log(s-l)
[>g(z2 -l)J x=l

00

00

_1_
X-l
2x

x2-l

x+ ~\

2x
= 1.

x=\

Jar=l

226. Any factor of an indeterminate form may be evaluated

separately, unless the factor is zero or infinite.
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For example

:

cos 20

l-tan0

1— COS X

_x\og(l + x) _

(cos2 fl-sin2
fl)cosfl"

cos — sin

= (cos 6+ sin 0)
t

1

'=T

cos — sin 0)cos

(cos — sin 0) J 0=J

a:=0

1 — COS X

x2 log(l+£)

log(l + ar). x=0

x=0

_ 1— 2"
1

1+Z

1.

=h
x=0

227. The Forms Ox oo, 1°°, 0°, and oo .—Other types of inde-

terminate forms may be treated by first reducing them to the

form -pr- or — , as follows

:

oo

Oxoo: To evaluate [<f>(x)> 0(x)]x=a if <j> (a) =0, 0(a) = oo
;

write

[+(*)•»(*) Ua'
or

[0(*)]-\ x=a

00

1*: To evaluate [[<£('#) I'^l^a if <j>(x)=l, 9(x) = oo,

evaluate

[log[*(*)]«W]<M= [«(*)• log +(*)]_„= oo • 0.

If the result is b,

ll<l>(x)]
m

]x=a= e».

0°, oo°: To evaluate [[<f>(x)']
9^]x=a if <£(*)= or oo,

0(a) =0, evaluate

[tog[*(*)]^ =[«(*)-l^+(*)]^0(:i:oo).

If the result is &,

[[+(*) ]**]«=•».
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228. Examples.

Determine the following:

tan x—

x

x— sin x

1-x
log X

X'

= 2.

= — 1.
z=l

.1 — cos mx
ax— bx

1.

2.

3.

4.

9.

10.
n sinaj-sin nx

11. [a tan x— £ sec a

5.
!*— <?-*— 2a;]

a— tana
= -1

6. [(1-*)"-].= V

tana

x cc=0

ce=0

= log

m"

a

.

loS x

/tan ay/*
2

"

=0.

= 6*.

m sm a;— sm ma
a: (cos x— cos ma)

tan nx—n tana

m
cc=0 3

x=0

X=-^

= 2.

= -1.

. (Use series.)

(Use series.)

12. [sec0-tan0]
fl=!

= O.

13. [sin a tan x
] *= = [tan a sin x

] x=0 = 1.

14. [(sina)^2 -]^=yy/i.
e

1
15. (cos mx)n,x*

J a;=o V eT

16. Trace the curve y—x2 logx
.

17. Trace the curve y=x~3 logx
.



CHAPTEE IX.

Mean Values.

229. The sum of a set of quantities divided by their number is

the average or mean of the quantities. That is, if ax, a2 , a3 , . . . .

,

On are n quantities, their mean is

— (ax + a2+ a3+ .... + a„).

Consider the following problem: Two straight roads, AB
and AC, make an angle of 30°

;

from A to B is 1 mile, and along

AB telegraph poles are set 110

feet apart; to find the average dis-

tance of these poles from AC.

Let any pole be P, its distance

from AC be PP', and let AP=x;

Fig. 78.
then PP'= ±. There are 48 dis-

tances, 55 feet, 110 feet, 165 feet.

220 feet, etc. ; and their mean is

A-X55X (1 + 2 + 3 +4+ .... +48) =13471 ft.

Now suppose that instead of 48 posts 110 feet apart there

were n posts

would be

"5280

5280
feet apart; their mean distance from AC

2n
(1 + 2 + 3+ ....+») = 1320(+->

If the mile of road AB is bordered by a fence having pickets

2 inches apart, the mean distance of all the pickets from AC is

1320 ft. \ in.
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It is natural to call the mean distance of the roadside from

AC,

1320+\ 1320 ft.

230. This last result might have been got as follows : Using

x as before, suppose points uniformly distributed along AB, h

to the foot; and suppose AB divided into parts each dx feet long.

If PQ is any one of these parts, it contains kdx points, each of

which is approximately— feet from AC; the sum of the dis-
a

tances from AC of all the points in PQ is approximately ^rkdx

feet, and the number of these distances is k. The sum of the

distances from AC of all the points of AB is approximately

<c=5280

2\ -9- kdx feet,

#:=0

and the number of these distances is approximately

£=5280

? t

kdx.

cc=0

The mean distance in feet is approximately

and is exactly

7, ~2 kdx /M-K~dx

%kdx %dx

580 x_
dx

(5280)
2

5280

dx~ 5280
1320.

jo

We might, with the same result, have supposed each of the

distances for points in the element to be -|- feet, and have called
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the number of points in the element equal rather than propor-

tional to the length of the element; when the idea at the basis

of the process is clear, it is well to abbreviate in this way.

231. Illustrative Examples.—Eequired the mean distance

from the base of points on a semicircumference of radius a:

(1) regarded as the limit of such a mean distance for points

distributed uniformly along the arc, (2) regarded as the limit

of such a mean distance for points whose projections are uni-

formly distributed along the base.

The arc in (1) or the base in (2) is called the region of uni-

form distribution.

In (1), radii to the points bound equal angular divisions; call

one of the divisions dO; the equal

divisions of the arc, the region of

uniform distribution, are each adO

long. Let points be uniformly dis-

tributed along the arc so that there

are lcad$ in each element; the dis-

tance for each is approximately

a sin 6, the sum of the distances for all the points in the element

is a sin 6-kadd approximately; the exact value of the mean,

fa sin • k • adO
o

.

Fig. 79.

M = a -L°

sin d6 2a= a

ka • dO dO
Jo jo

In (2), divide the region of uniform distribution, the base,

into parts e&ch.=dxJ each containing

kdx points, for each of which the

distance is approximately Vaf — x2
:

Sum of distances for an ele-

ment= kV^— ^dx.

Sum of distances for all the ele-

Fig. 80. ment= 2k \/a2— x2
• dx.
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a
Number of distances taken in all the elements= 2&dx.

—a

Mean value=—-

—

~~ x —- approximately.
^ax

Limit, or mean distance required

cos2 e d6
[° Va2-x2 -dx

a
)— ]—a :

ax
—a

The mean distance in (1) is about 0.6366a; in (2), is about

.7854a. It is clear that the distances of points near the base,

where the arc is nearly vertical, have counted much less heavily

in (2) than in (1).

Note that a mean value is not defined unless the region of

uniform distribution is given.

232. In order to find the mean value of a given function for

a given region of uniform distribution, divide this region into

elements throughout each of which the function may be assumed

to have the same value; find the integral of the product of the

function by the element throughout the region, and the integral

of the element itself with the same limits. The mean value will

be the quotient of the first integral divided by the second.

The region of uniform distribution may be, as in the cases

cited, a length, or it may be an area or a volume. Other func-

tions than functions of position are treated in the same way;

for instance, the average distance fallen by a body in a given

time may be computed as the limit of the average of the dis-

tances fallen as it reaches points distributed at uniform distances

from top to bottom of its path, or as the limit of the average of

the distances fallen at instants of time distributed at uniform

intervals from start to finish of its fall.
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Lines passing through a fixed point and uniformly distributed

about it (so as to divide the space around about into equal plane

or solid angles), if they lie in one plane, mark points uniformly

distributed around any circumference centered at the fixed

point; and if not so confined, mark points uniformly distributed

over the surface of any sphere centered at the fixed point.

233. Examples.

1. Find the average distance of points of a circle from the

center, and the average distance of points of a sphere from the

center, the regions of uniform distribution being the area and
volume respectively. Ans. \a and fa.

2. Show that the mean distance of points on the circumfer-

ence of a circle from a fixed point on the circumference is —

.

7T '

region of uniform distribution the circumference.

3. Show that the mean distance of points of a circle from a

fixed point of the circumference is -q^-, points uniformly dense

over the surface.

4. Find the average distance of points of the surface of a

hemisphere from the base, the region of uniform distribution

being (a) the hemispherical surface, (b) the base.

A a 2a
Ans. -, -g-.

5. Find the mean distance of points uniformly distributed

over the surface of a sphere from a fixed point on the surface.

a 4a
Ans. -g_.

6. Find the mean length of chords drawn from a fixed point

on the circumference of a circle and uniformly distributed about

the point. Ans. —

.

7. Find the mean distance of points uniformly distributed

throughout a sphere from a fixed point on the surface.

a 6a
Ans. -¥-.

5
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8. Find the mean length of chords drawn from a fixed point
on the surface of a sphere and uniformly distributed about the

point. Ans. a.

9. Examples 2 and 6 have the same result; examples 5 and
8, different results. Why?

10. Show that the average distance from the base of points

uniformly distributed through the volume of a hemisphere is f
of the radius.

11. Show that the average latitude of points uniformly dis-

tributed over the surface of the northern hemisphere of the earth

is about 32° 42'.

12. Show that the mean distance of points uniformly dis-

tributed along the perimeter of a square from one corner is 0.8239

of the side.

13. Show that the mean distance from one corner of a square

of points uniformly distributed over the area is 0.7652 of the

side.

14. A line is divided at random into two parts. Find the

mean of the product of the segments so formed, the points of

a2

division being uniformly distributed. Ans. -^-.

15. Show that for the ellipse x=aeo§<j>, y— bsmcj), if the

length of a quadrant is Q, the mean radius of curvature for

points uniformly distributed along the arc is

(3a4+ 2a2
&
2+ 36 4

).
IGabQ



MECHANICAL APPLICATIONS

CHAPTER X.

Kinematics.

234. Displacement—Kinematics treats of the relation between

change of position and the time in which change of position takes

place. A change of position from a point A to a point B is meas-

ured by what is called the displacement AB, which is determined

by the distance AB and the direction of B from A. Just as the

distance from A to B is defined as the length of the straight line

joining A and B, and is, therefore, independent of whatever path

may actually be traced by a point moving from A to B. so the dis-

placement AB has nothing to do with the path of motion, but is

wholly determined by the relative positions of A and B. The

direction of a displacement is as important as its numerical mag-

nitude or distance.

235. Two displacements are equal if they produce the same

change of position; that is, if they have the same distance and

direction. The sum of two displacements is the single displace-

ment which causes the same change of position as the two dis-

placements combined. It is found as follows : Let the given dis-

placements be p and q, Fig. 80a ; let the point A be given the dis-

placement p, which carries it to B, determined by drawing AB of

the length and direction of p; let the displacement q be given to

the point B, so that it is carried to C(BC— and
||

to q and in

the same direction) . Then A is carried by two successive displace-

ments which result in the new position C. This change of position

is measured by the single displacement AC, or r, which is thus the

sum of the displacements p and q.

p+ q— r.
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If the displacement q is made first, and followed by the dis-

placement p, A will be carried to the same final position 0, as is

evident from the parallelogram ABCD of Fig. 80a. The sum of

two displacements is, therefore, independent of the order in which

they are combined.

Indeed, the sum of two displacements is the same even if the

two take place wholly or partly in the same interval of time. For

instance, suppose a man to be rowing a boat in a river, and suppose

q in Fig. 80a to be the displacement that would result from his

rowing if there were no current, and p to be the displacement that

would be caused by the current if he did no rowing ; then r is the

actual displacement due to the combined causes.

w
Fig. 80a.

Then, in order to construct graphically the sum of two displace-

ments, choose some convenient scale of distances, and draw a

triangle ABC, giving AB and BO the directions of the given dis-

placements, and making their lengths correspond to the distances

of the displacements; the direction of the required sum will be

from A to 0, and its distance, or numerical magnitude, will be

represented, to the chosen scale, by the length of AG.

The sum r, of two displacements p and q, is ordinarily called

the resultant of the displacements, and the displacements p and q

are called components of r. The addition of displacements is

called composition; thus, the displacements p and q are said to be

compounded into the resultant r.

The angle from one displacement to another is the angle through
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which the first displacement must be turned in order to make it

point in the same direction as the second; thus in Fig. 80a the

angle from p to q is
<f>
= 180 ° — B.

The distance and direction of the resultant (or sum) of two

component displacements can be computed by the Law of Cosines

and the Law of Sines of Trigonometry from the formulas

r2 — p
2 + q

2 + 2pq cos $=p 2 + q
2 — 2pq cos B,

. a sin <£

i
r

236. If two displacements involve the same distance, and are

opposite in direction (</>= 186 ), their combined effect is to cause

Fig. 81.

no change of position ; that is, their sum or resultant is zero. In

this case, each displacement is the negative of the other.

If we are given the resultant of two displacements and one of

the component displacements and are required to find the other

component—in other words, if we are required to subtract a dis-

placement, we can do so by adding its negative.

For instance, if we are to determine the difference p— qoi the

displacements p and q, in Fig. 81, we have, from the right-hand

triangle, p+ (
— q) — d, and evidently d is the required difference,

since, from the left-hand triangle, q + d— p.

237. If we are given the resultant of two displacements and the

two directions of the components, we can determine the com-

ponents as follows: Let r (Fig. 82) be the given displacement,

and let the required directions of its components be those of the
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lines a and b. Draw to convenient scale and in the proper direc-

Fig. 82.

tion a line to represent r, and from its ends draw parallels to a

and b. In either of the triangles thus formed, we have 'two dis-

placements, p and q, whose sum is r, as required. The lengths of

p and q can be computed by the Law of Sines, since

sin (<£— 0) n , sinp=r ^—;

—

'- and q= r——= .r sm<£ 2 sm<£

In this case, r is said to be resolved along the given directions

a and b into the two components p and q. When the given direc-

tions are perpendicular, (</>= 90°), the resulting components,

p—r cos 6 and q= r sin 0, are called resolved parts.

238. The most usual way of treating displacements, especially

in problems that are at all complicated, is

to resolve each displacement along the di-

rections of a pair of rectangular coordinate

axes, as in Fig. 83 ; the resolved parts are

then evidently : x—r cos 0, y—r sin 8; and

the resultant is determined from its com-

ponents by: r2= x2+ y
2
, 0=tan-1 $- —

sin-1 ^-— cos
- Two such resolved parts, referred to a given
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pair of axes, determine the resultant displacement completely. In

fact, the distance and direction which define the displacement are

merely the polar coordinates of the point to which the origin is

carried by the displacement ; the resolved parts, on the other hand,

are the rectangular coordinates of the same point.

The resultant of any number of displacements is found by

adding (or compounding) some two, adding the sum of these to a

third, and so on, until each of the given displacements has been

used.

It is possible to compute the distance and direction of the re-

sultant of a number of displacements from the trigonometric rela-

tions already given, but this is by no means the easiest way. It is

much simpler to choose a convenient pair of rectangular axes,

resolve each of the given displacements along the two axes, combine

separately the ^-components and the ^-components of all the dis-

placements, and finally determine the resultant of the two per-

pendicular displacements thus found.

For instance, let it be required to find the sum or resultant of

the following displacements: px 2 mis. N. 20° E., p2 2J- mis. N.

135° W., p3 3 mis. N". 15° E., p4 1J mis. N". 20° W., p5 45 mis. W.
40° S. Taking the positive direction of the z-axis due east, we

have

r. 0. x=r cos 9 y=r sin.6.

^=2 1
= 7O° 3-!= 0.684 yx

= 1.879

r2= 2.5
2
= 125° x2

= - 1.434 ft= 2.048

r3
= 3

3
= 75° x3

= 0.776 2/3= 2.897

k=1.5 4= 11O° x±= - 0.513 ft= 1.410

r5
= 45 65=-l±0°x5

= -34.47 y5
= -28.93

1.460 -36.42

+ 1.46

8.234 + 8.23

X=%x== -34.96 Y=Sy=: -20.70
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A o4.yb

R=VX2+ Y2=X sec ®=Y esc ©= 40.63.

The combined effect of the five displacements is thus the same as

that of a single displacement of 40.63 mis. W. 30° 28' S.

239. Examples.

1. A point undergoes the following displacements: 40 ft.

N. 60° E.; 50 ft. S.; and 60 ft. 1ST. 60° W.; find the resultant

displacement. Ans, 10V3 ft. W.
2. Show that two component displacements represented by two

chords of a circle drawn from any point P and at right angles, are

equivalent to a single displacement represented by a diameter of

the circle.

3. A ship makes 40 miles S. 30° E., 60 miles S. 60° W., and 50

miles N". 30° W. ; find the resultant displacement.

Ans. 60.83 miles N. 159° 28' W.

4. A particle suffers five successive displacements of magnitudes
a, 2a, 3a, 4a and 5a, parallel to the sides of a regular hexagon
taken in succession ; what is the resultant displacement ?

Ans. 6a, making 180° with the first.

5. A steamer is carried by her propeller 12 miles N., and by the

wind 3 miles S. 15° E., finds that her displacement is 15 miles

NE. ; find the displacement due to a current, which is unknown.
Ans. 9.94 miles N. 81° 18' E.

6. A carriage wheel, 16 inches radius, rolls along a horizontal

road; find the displacement of a point originally in contact with
the road after the wheel has made a quarter revolution.

Ans. (approx.) 18.4 in., at angle of 60° 17' with the horizontal.

Speed, Velocity and Acceleeation.

240. Speed.—The speed of a point moving in a straight line

was defined in Arts. 7-10 as follows

:

If a point moves As feet in Atf seconds, v— —^- is its mean
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speed. If this mean speed is constant throughout the motion, the

As
point moves with the uniform speed, v = — .

If the mean speed is variable, the actual speed of the point at

any instant is the value at that instant of the time-derivative of

the distance traversed, i. e., v — —77- .

These are also the definitions of uniform speed, mean speed and

speed for motion of any kind.

It should be observed that speed is in a^^ case a distance; in the

case of uniform speed it is the distance actually traversed in each

second ; the mean speed is a uniform speed, and a variable speed

is the limit of a mean speed.

The speed of a moving point is, therefore, represented graphic-

ally by a length corresponding to the distance traversed in one

second.

For instance, if a point moves in 5 seconds over the quadrant of

a circle of 10 feet radius, its mean speed is —'-=— = 3.1416 f/s,
o

and would be represented by a length corresponding (in accord-

ance with a chosen scale) to 3.1416 feet.

241. Velocity.—The definition of velocity is similar to the defi-

nition of speed, but with the important difference that the dis-

placement given to the moving point takes the place of the distance

traversed by the point.

If the velocity is constant, the same displacement must be given

to the moving point in any two equal intervals of time ; that is, the

point must move the same distance and in the same direction; in

other words, it must move with uniform speed in a straight

line. Motion with constant velocity is, therefore, uniform recti-

linear motion.

If a point moves in a straight line with variable speed, its mean

velocity during any interval after a given instant, and its actual

18
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velocity at the given instant, are evidently determined in magni-

tude by the corresponding speeds and in direction by the direction

of the motion.

The velocity of a point moving in any way is represented

graphically by a displacement corresponding to the displacement

given to the point in 1 second. In rectilinear motion, the mean
velocity and the velocity are represented by displacements whose

distances are the lengths representing the corresponding speeds,

and whose directions are the direction of the motion.

242. The velocity of curvilinear motion is always variable, for

whether the speed changes or not, the direction must; conse-

quently, although the magnitude of the actual velocity at any in-

stant is the speed at that instant, the magnitude of a mean velocity

is not the corresponding mean speed.

Consider, for instance, the example of Art. 240, and suppose, for

convenience, that the point moves over the quadrant of the circle

of 10 feet radius in 5 seconds at uniform speed.

Then, in moving over the quadrant AB (Fig. 84), the point

covers 15.708 feet in 5 seconds at the

uniform speed (which is also its mean

speed) of 3.1416 f/s. This motion, how-

ever, gives it a displacement AB of

14.1428 feet in the direction from A to B.

Its mean velocity is, therefore, 2.8286 f/s

in a direction making an angle of 135°

with OA. The mean speed is represented

by a length corresponding to 3.1416 feet

drawn regardless of direction; the mean
velocity by a distance corresponding to 2.8286 feet at the angle

135° with oA, as AM.
To find the actual velocity at A, consider the motion from A to

P, calling the angle AOP= A0. Then the arc AP= As= lOA0,

10 A0
and as As= 3.1416A^ At=

3.1416
is the number of seconds
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A0
required to reach P. The displacement AP is 20 sin — in mag-

nitude, and makes the angle (90°— -s— ) with OA The corre-

sponding mean velocity is a displacement, 20 sin
A0 10 A0

(smjf\

3.1416

3.1416 I —— I in magnitude and makes the angle (90°
A0
9

with OA. Since
sin a:

x
1, the limit approached by this

mean velocity as At and hence A0 becomes zero, is the displacement

3.1416 at 90° with OA, represented by AV1 in the figure. The
velocity at A thus has for its magnitude the speed at A, and for its

direction the direction of the motion at A. In the same way, the

velocity at any point of the path will be seen to have the speed of

the motion for its magnitude and the direction of the motion for

its direction. If the motion continues around the circle, the

velocities at B, C, D are represented by the displacements BV2

CVS , DVA, from which it appears that the change in velocity be-

tween opposite points of the circle causes a reversal of direction,

and amounts, therefore, to 6.2832 f/s.

243. There is no material difference in the most general case of

curvilinear motion. Let a point move in any way along a curve

AB; to determine its velocity when, after t

seconds, it reaches the point P. Consider its

motion from P to P' ; call the arc PP'— As.

the chord PP'— Ac and the time taken to move

from P to P'— At. Then the mean velocity is

Ac
——-in the direction of the chord PP' ; and

the mean speed is -^- ; the limit of the mag-

nitude of the mean velocitv when A£= is Fig. 85.
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—tt- = —77- , the speed at P, and the limiting direction of^ J At=0 at

the velocity is that of the tangent at P or of the path of motion

at P.

In any case of curvilinear motion, then, the velocity at any

point of the path has for its magnitude the speed at that point,

and for its direction the direction of motion.

244. Since a velocity is a displacement (the displacement that

would take place if the moving point preserved its motion un-

changed for 1 second), the addition and subtraction of two veloci-

ties, or the composition and resolution of any number, has already

been discussed in the treatment of displacements.

For instance, in the discussion just preceding, we might have

referred the motion of the point P to rectangular coordinates.

Then the displacement PP' might have been determined by its

two components, found by resolving it along the axes. If P has

the coordinates (x, y) arid P' the coordinates (x+ Ax, y+ Ay),

the components of the displacement PP' are Ax and Ay in the

Ax
directions of the axes; the mean component velocities are— and

—— in these directions and the velocity at P has for its com-
At

J

dx dv
ponents in the directions of the axes the limiting values -, and -j? .

The resultant velocity is, therefore,

•(-*;

+

m
in the direction making the angle

tan Kdt^dl
ds

with the #-axis, or is -rr in magnitude, and

^ 0(y makes the angle tan-1 -J^ with the #-axis, and
Fig. 86. ° dx
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so is again seen to have the magnitude of the speed and the direc-

tion of the motion.

245. Examples.

1. A ship sailing north at a speed of 8 m/h is carried east by a

current of 4 m/h ; find the resultant velocity.

Ans. 8.94 m/h, K 26° 34' E.

2. A point moves N". 30° E. 60 feet in 10 seconds, then west 30

feet in 20 seconds; find the mean speed and the mean velocity.

Ans. Mean speed 3 f/s, mean velocity V3 f/s N.

3. What will be the apparent velocity of rain drops falling

vertically 20 f/s to a person in a train having a speed of 30 m/h ?

Ans. 43.33 f/s, at 24° 27' with the horizontal.

4. A ship steaming 8 m/h due east has an apparent north wind
of 6 m/h ; what is the velocity of the wind ?

Ans. 10 m/h N. 53° 8' W. (nearly).

5. If the mean speed of the earth in its path around the sun is

18.6 m/s, and the speed of light is 186,000 m/s, what is the ap-

parent angular displacement of the sun, due to the combined
motion of the two ?

Ans. 20" 6 in a direction opposite to the earth's motion.

6. A ship heading east at 10 knots an hour, makes 10 knots an
hour NE. due to a current; find its velocity.

Ans. 7.65 knots an hour N. 22^° W.

7. Find the velocity of a point on the rim of a wheel, radius a,

rolling along a straight line.

Ans. v=4a sin -=j- , in a direction 90° —6 to the given line.

(0= i the angle of revolution measured from the lowest point.)

8. Find the velocity of the point of problem 7, when the center

of the wheel moves uniformly at a speed of 60 m/h ; &=4 feet and

<f>=26= ~ and ir.

Ans. v= 88V2 f/s for <f>= -^-, v= 176 f/s for
<f>
= ir.
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9. A sailing ship heads NE. and makes a speed of 15 m/h, at

the same time the wind carries her 2 m/h SE., and a current

4 m/h N". 30° W. ; what is her velocity over the ground ?

Ans. 16.14 m/h K 38° 23' E. (approx.).

246. Acceleration.—Acceleration was defined in Art. 75 foi

rectilinear motion as the time-rate of speed: v= ~ , a= ~ =
at ' at

This special case of acceleration is the distance a second
dt

2

that the speed increases in each second, or, if the acceleration is

variable, is the limit of such an increase.

Acceleration is defined in general as the time-rate of increase

of velocity, and so is the displacement a second by which the

velocity increases in each second, or the limit of such an increase.

As an acceleration is thus a displacement, the composition, resolu-

tion, etc., of accelerations is merely another special case of the

performance of these operations on displacements.

247. Acceleration in Rectilinear Motion.—In the case of recti-

linear motion with uniform speed, the acceleration is zero, since

there is no change of velocity. For rectilinear motion with

variable speed, the change in velocity in any interval of time is a

velocity in or opposite to the direction of motion—for if the in-

crease in velocity were in any different direction, its addition

would change the direction of motion.

Hence, for rectilinear motion, the mean change in velocity dur-

ing the interval, or the mean acceleration, is in the direction of

motion for any interval of time, and its limit, the acceleration, is

also in the direction of motion.

It is, however, only in the case of rectilinear motion, that is,

motion in which the direction of the velocity does not change, that

the acceleration is in the direction of motion.



Kinematics. 263

248. Acceleration in Uniform Circular Motion.—Consider, for

instance, the case next in simplicity to rectilinear motion : uni-

form circular motion, in which a point moves along the circumfer-

ence of a circle at a constant speed. Let the radius of the circle be

a feet, and the constant speed z f/s. The

velocity at any point in the path has for its

magnitude the speed, z f/s, and for its di-

rection the direction of the motion, and so

may be represented by a tangent to the path

at the point in question, marked in the direc-

tion of the motion, of length to represent z

feet. Let PV represent in this way the

velocity v at a point P, and P'V the velocity
Fig~~87

v + Av at a point P', the arc PP' being As

feet and subtending the central angle A$. Construct the displace-

ment P'R to represent At'= v+ Av + ( — v ) . Then P'R= Av is the

change that occurs in the velocity of the moving point as it goes

from P to P' . Dividing Av by the number of seconds the motion

takes, we shall have the mean acceleration in the corresponding

interval. The distance PP'= As=aA0 is covered uniformly at

z f/s, taking seconds. The mean acceleration is, therefore,

In the triangle P'V'R each of the sides P'V and RY'
aAO

represents z feet, and the angle V— AS. Hence the side P'R rep-

resents 2z sin4r feet
-
The anSle Rprv'= 90 ° ~ 4r • Thus A"5

magnitude of the mean acceleration is

zAv

Ad
zX2zsm -o-

z2
AS

sm ~2~

aAd aAO a AS
9
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and its direction is at the angle 90° — with the direction of

motion or is at the angle -=- with the radius P'O (directed from

P' to the center ) . In the limiting case of the acceleration at P,

(A0=O) we therefore have: The acceleration at any point of

z
2

the path in uniform circular motion is -— in magnitude, and is

directed toward the center of the circle ; z being the speed of the

motion, a the radius of the circle.

249. It should be observed that in all the preceding discussions

we have used foot and second as units of length and time; the

statements would have been more general if we had written " unit

of length " and " unit of time " in all cases, but the definite units

are simpler. Our results, of course, apply in the case of any units,

but it is necessary that the units used in any particular discussion

should be the same throughout.

250. The treatment of uniform circular motion by rectangular

components is instructive. Let the

Y| point move as before in a circle of ra-

^^| ^\ dius a ^eet a"k a uniform, speed of z f/s.

/ /a—^-\p Eefer the motion to a pair of perpen-

L ^ ^9^\\ dicular axes, OX and OY, drawn

T °\
x M

\
A X through the center of the circle, and, P

\ J being any position of the moving point,

\^!__^/ let (x, y) be its coordinates and the

angle XOP= 0. Let us find the ac-

FlG 88
celerations ofM and N, the projections

of P on OX and OY. x—aco^, 6, y=

a sin 6, arc AP= a6; and since v..
' =z, -jt = — , a constant.

at 'at a
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Call — = —u — <°-

a at

dx . A dO dy n dO

dt dt ' dt dt

dx • n dv n—— = — a<D sm 6, —2— — (Jam COS 0,
dt at

d2x d^u—— — — aw 2 cos 6, -^ — — cud
2 sin 6.

Then the velocity of motion is given by the components — am sin

in the direction of the z-axis and aw cos 6 in the direction of the

y-axis, or is awV sin2 0-fcos2 d=aoi~z in the direction making

, , aw cos , am cos 6 , -> , , A * • m n\tan"1
=

—

j. ^sim1 = tan"1
( —cot 0) =sm-1 (cos 0) —— aw sin aco
\ / \ /

90° +0 with the cc-axis. This merely reproduces the given con-

ditions.

The acceleration has for its components — aw 2 cos in the direc-

tion of the a:-axis, — aw2 sin 6 in the direction of the ^-axis, and so

a<D
2 sin 6

is a<o
2 in magnitude and is directed at the angle tan-1

— aw 2 cos

sin-1 m
2

= tarn1 tan 6>= sim1
( - sin d) = 180° + 6 with the

tc-axis. Since m= — and a<o
2—

, the results of the earlier dis-
a a

cussion are thus verified.

251. In the general case of motion in a plane curve, the ac-

celeration is determined as follows: Let a point moving in a

plane curve (Fig. 89) be at P and At seconds later be at P'. Let

the arc PP'= As, and let the velocities at P and P' be v and v+ Lv,

represented by the displacements PV and P'V . Construct the

increment &v = P'R; then the mean acceleration in the interval

P'R
of At seconds has the direction of P'R and the magnitude —r—

.
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Fig. 89.

It is convenient to treat the compo-

nents of the acceleration in the direction

of motion at P and in the perpendicular

direction. Eesolving Av in these direc-

tions, we have a mean component ac-

celeration of magnitude —- in the di-

rection of motion at P, and a mean com-

P'M
At

ponent acceleration of magnitude

in the direction of the interior normal at

P. Let A<£ be the angle between the

tangents at P and P' ; then the angle

P'V'M= A<f>, and

MR-P'V cosA<l>-RV'=(v+ Av)cosA<f>-v

= Av cos Acf>— 2v sin2 -^ .

The magnitude of the component of the mean acceleration in the

direction of the tangent at P is thus

A<£

MR Av AJL • A<£— = —cos A+-V sin- sin

i±*
A<f>

At

The limit of this, when A*= 0, is ^ Xl-^xOxlX ^r = 4r,9
dt dt dt

since, when A£= 0, A<£= 0.

The component in the direction of motion at P of the ac-

dv
celeration at P is thus ^r > where v represents the magnitude of

d s di> d s
the velocity, or the speed, -rr , at P. This component, —^ — -^ ,

is commonly called the tangential acceleration or acceleration in

the path of motion.
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Further,

P'M- P'V sin A<£=
(
v + Av ) sin A<£.

The magnitude of the component of the mean acceleration in the

direction of the interior normal at P is thus

P'M sinA<£
,

Ay .

A , sin A<£ A<£ Ay . A ,

The limit of this, when At= 0, is

d<j> _ ds d<f> ^2 d<p v2

dt dt ds ds p
}

ds
since, by Art. 80, -=-- is the radius of curvature, p.

The component in the direction of the interior normal at P of

v
2

the acceleration at P is thus — , where v represents the magnitude

ds
of the velocity, or the speed, -

, at P, and p is the radius of curva-

ture of the path of motion at P. This component is commonly

called the normal acceleration at P. The normal acceleration is

always directed along the interior normal, hence the positive

value must always be used for p in the formula.

Finally, then, the tangential and normal components of the ac-

dv d2
s

celeration of a point moving in a plane curve are a t = -rr = -p- in

v2

the direction of motion, and an= along the interior normal,

dsv= -j- being the speed.

Consequently, the total acceleration is

,/ 2 , 2_ // d2
s \

a
,

v*



268 The Calculus.

in magnitude, and is directed at the angle

tan
- = tan

-

d2
s
with the direction of mo-

P
dt*

tion, on the same side of the tangent as the curve

itself (Fig. 90).

In the special case of rectilinear motion, we

d2
s

have p= oo
y
an— 0, so that at= —th- is the total

acceleration.

In the special case of uniform curvilinear motion, we have

v constant, 0, so that an=— is the total accelera-
P

dv _ d2s

tion. As a particular example of this case, we have the uniform

circular motion already discussed in Art. 248.

In the general case of curvilinear motion, the normal accelera-

v2

tion, an - , arises from the changing direction of the velocity;

d2
s

—r^ , arises from the variation of
dt

2
the tangential acceleration, a*

ds
the speed, v = -vr , or magnitude of the velocity. To emphasize

O/V

this relation, an is sometimes called the shunt, at the spurt of the

acceleration.

252. Examplt

1. A point moves in a circle of 4 feet radius with a uni-

form speed of 4 f/s ; show that the magnitude of the acceleration

is 4 f/s 2
.

2. Derive from the component velocities and accelerations the

total acceleration in example 1, and show that it is directed

towards the center (assume the path of mlotion a;=4eos0,

y= 4:SmO).

3. A point moving in a given direction with a speed of 600 f/s,

one minute later is moving with the same speed in a direction of
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60° with the first; what is the total change in velocity and the

mean acceleration?

Ans. 600 f/s and 10 f/s 2 in a direction of 120° with the first.

4. The earth's equatorial radius is 3962.8 miles; find the

velocity and the acceleration of a point on the equator due to the

earth's rotation on its axis.

Ans. 1522 f/s and 0.111 f/s2
.

5. If the value of g on the equator is 32.1 f/s2
, find what hori-

zontal velocity a point must have in the plane of the equator to go
around the earth.

Ans. 27,438 f/s E. or 24,394 f/s W.
6. The mean distance of the moon from the earth is 238,800

miles, and its mean period of revolution about the earth 27^- days

(approximately) ; show that its mean speed is 3354.6 f/s and its

acceleration 0.0089 f/s 2= 0.107 inch per second.

7. Show that tangential and normal accelerations of a point on
the rim of a wheel of radius a rolling along a straight, line are

— -4- A-a r.ns H —a t= 4a sin 6 -^ + 4a cos I
-=-

J
and an= 4^a sin (-=-) , where 6

is one-half the angle through which the wheel has turned.

8. If the center of the wheel in example 7 moves at the uniform
speed of 60 m/h, and a— 4 feet, show that the total acceleration

has the constant magnitude 1936 f/s2 and is directed toward the

center of the wheel.



CHAPTER XI.

Forces.

253. Words are often used as scientific terms in senses rather

different from their ordinary meanings ; for instance, the distinc-

tion between velocity and speed that we have been obliged to make

for the sake of accuracy is foreign to every-day use. The term

force, however, has in mechanics the meaning with which every-

body is familiar. The forces most commonly in evidence are

probably the pushes, pulls and twists exerted by one's own muscles

and the pull or attraction of the earth, the force of gravity, which

is exerted on all material bodies. The simplest force with which

to experiment is the pull of a stretched coiled spring or rubber

band, for if such a spring is kept stretched to a fixed length, it

exerts a constant pull. The force of gravity is not so simple, be-

cause it acts more strongly on some bodies than on others.

If a material body of any sort is placed on a very smooth hori-

zontal table and pulled with a constant force (by a spring, for

instance), the pull will be practically the only force acting. Under

these circumstances, the body will move with increasing velocity,

but constant acceleration. If this body and another just like it are

acted upon together by the same pull, the acceleration will be half

as great, and a pull strong enough to move both bodies with the

original acceleration will move one of them alone with twice the

acceleration. Again, suppose we have a number of bodies all alike,

made of steel, say, and a second set all alike among themselves,

made of wood. Suppose the wooden bodies are large enough so

that when ten of them together are acted upon by a certain pull

they acquire the same acceleration that is given by this pull to three

of the steel bodies. Then it will be found that the force required
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to give a certain acceleration to one wooden body will give -^o this

acceleration to one steel body.

As a result of experiments of this sort, though of course most

elaborately and carefully made, certain facts and definitions have

been established, on the basis of which the science of mechanics

has been developed.

254. First, it is found that any force, acting by itself on any

material body, gives to the body an acceleration in the direction

of the force. Also, if the magnitudes of different forces are de-

fined to be proportional to the accelerations they give to the same

body, it is found that the same relative magnitudes will thus be

assigned to all forces, no matter what body is used in testing them.

As a corollary of this law, it appears that if no force acts on a

body, the acceleration of the body will be zero ; that is, the body

will be at rest or else moving with uniform speed in a straight line.

It is found that the size and material of a body affect the mag-

nitude of the acceleration it receives from the action of a force,,

and that if the masses of different bodies are defined as magni-

tudes inversely proportional to the accelerations given to the bodies

by the same force, the relative magnitudes thus assigned will be

independent of the force used in the tests.

255. Law of Motion.—All the preceding is summed up in the

Law of Motion:

If a force f, acting on a body of mass m, gives to it an accelera-

tion a, the magnitude of f is proportional to the product of the

magnitudes of m and a, and the direction of f is the direction of a.

This relation of the magnitudes of f, m and a is expressed in

the 'Equation of Motion:

f
— hma.

256. Units.—The value that must be given to the constant k

will of course depend upon the units chosen for acceleration,

mass and force. It is desirable to make the equation of motion as
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simple as possible ; consequently the relation between the units is

always made such that the unit force will give unit acceleration

to a body of unit mass; then l = fcx 1 X 1, or 35?= 1, and the equa-

tion of motion becomes

f
— ma.

There are four systems of units in use; in the first place, the

English Systems take 1 f/s (one foot a second each second) as

the unit of acceleration, and the Metric Systems take 1 cm/s2
.

Further, in the Gravitational or Engineers Systems, a familiar

force is chosen as the unit of force, so that the mass to which this

force will give unit acceleration must be the unit of mass, while

in the Absolute Systems, the mass of a well-known body is taken

as the unit of mass, so that the force which will give it unit ac-

celeration is the unit of force. The basis of all these systems is

the fact, experimentally established, that the earth's attraction

(the force of gravity), if unimpeded, will give the same accelera-

tion to any two bodies in the same situation. The value of this

acceleration is indicated by g; it varies for different situations,

and is not even constant over the surface of the earth ; its surface-

value, however, is never far from 32.2 f/s2 or 981 cm/s2
.

The force with which gravity acts on a body (under certain

standard conditions) is called the weight of the body; the weight

of a piece of platinum kept in the Standards Office in London is

called one pound, and the weight of a piece of platinum in the

Palais des Archives in Paris is called one kilogram.

I. In the English Gravitational System, the unit of force is the

pound, the unit of acceleration is 1 f/s2
, and the unit of mass is

the mass to which a force of 1 pound would give an acceleration of

1 f/s2
. Now if a body weighing 1 pound contains m units of mass,

the equation of motion, f— ma, gives, for the force with which

gravity acts on the body, \ — m • g, whence m— — ; that is, a body

weighing 1 pound contains — (about fa) units of mass, or the
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unit of mass is the mass of a body weighing g (about 32) pounds

W
Consequently, there are — units of mass in a body weighing 11'

y

pounds.

II. In the Metric Gravitational System the unit of force is 1

gram, the unit of acceleration is 1 cm/s2
, and the unit of mass,

to which the unit force gives unit acceleration, weighs 981 grams.

III. In the English Absolute System the unit of mass is the

mass of the body (the piece of platinum spoken of earlier)

which weighs 1 pound, the unit of acceleration is 1 f/s 2
, and the

unit of force is the force which gives unit acceleration to the unit

mass. Then, if the force with which gravity acts on a body weigh-

ing 1 pound (the force of 1 pound) contains / of the units of force

of this system, the equation of motion, /= ma, gives for the force

with which gravity acts on this body

:

f=l-g, or f=g;

that is, the force of 1 pound contains g (about 32) of the units of

force of this system. The unit of force in the English Absolute

System is called a poundal; 1 poundal= — pound, about -£%

pound, or half an ounce. A force of x pounds is thus a force of

gx poundals—about 32a; poundals; a body weighing W pounds

W
or Wg poundals contains W absolute units of mass and — gravi-

tational units of mass.

IV. In the Metric Absolute System the unit of mass is the

mass of a body weighing 1 gram, the unit of acceleration is 1

em/s2
, and the unit of force is the force which gives unit accelera-

tion to a unit mass. The absolute metric unit of force is called

dyne; it is -g^-y gram, or 1 gram= 981 dynes.

There is no name for any one of the four different units of

mass ; this is because in practice the mass of a body is always ex-

pressed in terms of the weight of the body. Thus the equation of

19
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motion for a body weighing W pounds, acted upon by a force of f

pounds, and acquiring an acceleration of a f/s2
, is /= — a; since

y

W
the body contains — gravitational units of mass.

Again, a body weighing W poundals, acted upon by a force oi

f poundals, and acquiring an acceleration of a f/s2
, has for its

W W
equation of motion /'= — a ; since the body weighs — pounds,

y yW
and so contains— absolute units of mass.

9

Consequently, the equation of motion for a body in terms of the

weight of the body, the force acting, and the acceleration acquired,

W
can always be written f= — a, provided that / and W are both

expressed in terms of the same unit, either the pound or the

poundal, and that a and g are expressed in terms of the same

unit, the foot a second each second.

The same is of course true of the metric units, with centimeter,

gram and dyne in place of foot, pound and poundal. Indeed, this

equation, ^~ = —
, is merely the assertion that the magnitudes

of the accelerations given to the same body by two different forces

are proportional to the magnitudes, f and W, of the forces

themselves.

257. Composition and Resolution of Forces.—It is found by

experiment that when a number of forces act at once on the same

body, the effect of each is independent of the effect of the others

;

that is, that the acceleration actually given by all the forces is the

sum or resultant of the several accelerations that would be given

by the different forces, each acting by itself. If each of the forces

acting on a body is represented by a line having the direction of

the force and having a length proportional to the magnitude of
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the force, all these lines will be in the directions of the accelera-

tions given by the forces, and their lengths will be proportional to

the magnitudes of the accelerations. Hence these directed lengths

will be displacements that represent (to different scales) either

the forces or the accelerations given by them, and the composition

and resolution of the forces can be effected by the methods already

described for displacements, velocities and accelerations.

That is, the triangle construction, or the corresponding compu-

tations, can be used to combine two or more of the forces acting on

a body, or to separate any one of the forces into components acting

in given directions ; then the effect on the motion of a body of such

a resultant force is precisely the same as the effect of its com-

ponents.

258. It should be observed that this treatment of forces is con-

cerned merely with directions and magnitudes. A line drawn in

the direction of a force from the point at which the force is applied

is called the line of action of the force. Shifting the point of

application from one point to another along the line of action is

found to have no effect if the two points are rigidly connected;

but any other change in the point of application does alter the

effect of the force. Consequently, in compounding and resolving

forces a resultant and its components are treated as having the

same point of application.

259. Resolved Parts of a Force.—Perpendicular components

of a force are called resolved parts of the force, as is the case with

Y
p

//?#

^0 , \ X
o ycos j?

Fig. 91. Fig. 92.
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accelerations. For instance, a force /, which causes an accelera-

tion a in a given direction OP, may be resolved in two perpen-

dicular directions, OX and OY, giving, if the angle XOP is called

<j>, the resolved part / cos </> in the direction OX and the resolved

part / sin cj> in the direction OY (Fig. 91)

.

Note that the acceleration a in the direction OP amounts to an

acceleration acos</> in the direction OX and an acceleration

a sin cf> in the direction OY, and that these are the accelerations

that would be due to the forces / cos </> and / sin <f>
acting indi-

vidually.

Again, in order to determine a force / from its resolved parts,

fx in the direction OX and fy in the direction OY, we have

'Vfw
2
+fy

2

=f for the magnitude of f, and <j>— tan-1 -'*- = sin
-1

Jf-
h I

for the direction of /.

260. Equation of Motion for a Given Direction.—The equation

W
of motion, f=ma or /= — a, expresses the relations between

y

the magnitudes of f, m. and a for any moving body ; the fact that /

and a have the same direction is of equal importance, but can be

no more than implied in the equation. Since, however, a resolved

part of the acceleration is due to the resolved part in the same

direction of the force, we can always write the equation of motion

for the resolved parts in two different directions, thus obtaining

two algebraic relations which involve both the equality of magni-

tudes of / and ma and the identity of directions of / and a. The

Law of Motion is consequently utilized in practice in the following

form:

The (algebraic) sum of the resolved parts in any given direc-

tion of all the forces acting on a body is equal to the mass of the

body multiplied by the resolved part of the acceleration in that

direction.

This is formulated: f± cos <j>x+ f2 cos</>2 +/3 cos</>3 + . . . . =
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ma, or 2/ cos <j>
— ma! ; cf> ±, <f>2, <f>3 , . . . . etc., representing the

angles between the direction of a and the directions of f19 /2, f3 ,

.... etc.

The Equation of Motion may be written for any two directions

that prove convenient ; there is no reason why the two should be

perpendicular. It is often desirable to write an equation that shall

fail to contain one of the forces ; it is evident that this can be done

by choosing the direction perpendicular to that of the force in

question.

261. Examples.

Use g= 32 unless otherwise indicated.

1. If 1 pound= 453.59 grams, and 1 meter= 3.281 feet, con-

vert a pound into dynes, g— 32.19. Ans. 445,000.

2. If a force of 10 pounds produces in a body an acceleration of

20 f/s2
, find the weight and the mass of the body.

Ans. 16 pounds;
-J.

3. A weight of 10 pounds lies in the scale pan of a spring

balance, hanging from the top of an elevator ; if the elevator starts

up with an acceleration of 5 f/s2
, what would the balance indicate ?

Ans. 11 pounds 9 ounces.

4. A weight of 40 pounds is hanging vertically by means of a

long string ; what force applied horizontally would give the weight

an acceleration of 4 f/s2
? Ans. 5 pounds.

5. A weight of 10 pounds hanging vertically by a string is

pushed by a horizontal force so that the string makes an angle of

30° with the vertical; find the force and the tension of the string.

Ans. /=5.77 pounds and tension= 11.55 (approx.).

6. A weight of 100 pounds is suspended from two pegs, placed

in a horizontal line 5 feet apart, by two cords 3 and 4 feet long,

respectively ; find the tension in each cord, by construction and also

by the equations of the forces resolved horizontally and vertically.

Ans. Shorter cord 80 pounds, the other 60 pounds.

7. A weight of 2000 pounds is suspended by two ropes making
angles of 30° and 45° with the vertical, respectively; find tx and
t2, the corresponding tensions in the ropes.

Ans. ^= 1464.1,^= 1035.3 (approx.).
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8. Two forces of 3 and 5 pounds acting at a point have a re-

sultant of 7 pounds; find the angle between the forces and also

between each force and the resultant.

Ans. 60°, 21° 47' and 38° 13' (approx.).

9. If a man can lift 180 pounds when standing on the ground,

how much can be lift in an elevator ascending with an acceleration

of 8 f/s2
? When it is descending with the same acceleration ?

Ans. 144 and 240 pounds.

10. An anchor weighing 5000 pounds hangs vertically from the

end of a boom which makes an angle of 45° with the vertical mast
where it is hinged ; the outer end is supported by a lift making an
angle of 60° with the mast; find by resolution of the forces acting

at the end of the boom, the tension on the lift and the thrust on the

boom. Ans. T= 3660 pounds, P=4482 pounds.



CHAPTEE XII.

Motion op a Heavy Particle.

262. Definitions.—The equation of motion can be used to deter-

mine an unknown force when the acceleration is given, or to deter-

mine the acceleration when the forces are given. In one large

class of problems it is required that there shall be no motion, i. e.,

that the acceleration, and, therefore, any resolved part of the ac-

celeration, shall be zero. The study of such problems is called Stat-

ics. The study of the motion caused by given forces is calledDynam-
ics. In a problem in dynamics, when the acceleration has been

determined from the equation of motion, there remains a problem

in integration, the determination of the velocity and position of the

moving body at any time. This part of the problem is treated in

accordance with the principles of Kinematics. We have discussed

kinematics only so far as concerns the acceleration, velocity and

displacement of a moving point, and so are prepared to treat only

those problems in which all the forces may be considered to act at

a single point, and in which the motion is the same as if all the

mass of the moving body were concentrated at that point. This

is not so narrow a restriction as would appear at first sight, for

as we shall see later, a very large class of problems can be treated

on this assumption. For instance, we shall prove that the force of

gravity acts on any body precisely as it would if all the mass of

the body were concentrated at a definite point within the body,

called its center of gravity.

When all the forces acting on a body are considered to act at one

point, at which the whole mass of the body is concentrated, the

body is said to be considered as a heavy particle. We shall confine

ourselves for the present to the Dynamics of a Heavy Particle.
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263. Rectilinear Motion under Gravity.—A force having a con-

stant direction produce's an acceleration in the. same constant

direction ; a force constant in magnitude as well as direction pro-

duces a constant acceleration in a fixed direction. The simplest

case of accelerated motion is motion in a straight line with con-

stant acceleration. As an example of uniformly accelerated recti-

linear motion consider the motion of a body falling under the

action of gravity alone. This is either the motion of a body fall-

ing in a vacuum, or approximately the motion of a body falling

through the air.

Suppose the body to be H feet above the ground, moving ver-

tically upward with a speed of V f/s, and let the weight of the

body be W pounds. Then the force is W pounds, acting vertically

W
downward, and the mass is -— , so that the equation of motion

W
gives, if a is the vertical downward acceleration, W= — a, whence

y

a=g.

Then if, at the end of t seconds, the body is s feet above the

ground and moving v f/s vertically upward,

as the upward velocity is decreased by the downward acceleration.

Integrating, we have v=—gt+C. Here C is some constant;

since, by the given conditions, v= V when £=0,

V=-g>0+ C, or C= V;

hence

v= V-gt (2)

As s, the distance above the ground, is increased by the upward

velocity v, v— + -^ . Hence, -^- — Y-gt. Integrating,

s=Vt-igt2+ K.
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K is an undetermined constant; but by the conditions, s—H
when t= 0; hence,

H=V-0-ig-0+K, or K=H.
Finally,

s=H+Vt-igt2
. (3)

Equations (2) and (3) give the velocity and the position of the

body after it has been in motion any given number of seconds;

they apply to the case of a body having an initial velocity down-

ward, if V is taken negative.

If we eliminate t from (2) and (3), we derive an expression

for v in terms of s; the same result can also be obtained by a dif-

ferent integration of the equation of motion, which is important

because it is the only feasible method in a large class of problems

involving variable forces.

„. dv , ds dv ds dv ,, . i

Since a= —rr and v= -T- , a= -— = -y • so that we have
dt dt ds dt ds

v -=- = — g, or vdv— — gds.

Integrating, ^v 2= —gs+ C, and since v= V when s=H,

iV2=-gH+ C; C=i(V2 + 2gH);
hence

v2= V2+ 2g(H-s). (4)

Thus the increase in the square of the speed is 2g times the dis-

tance the body has fallen, and, in particular, the speed is the same

at a given height whether the body is rising or falling.

264. We have made no use, in the foregoing discussion, of the

equation of motion for the horizontal direction. The horizontal

component of gravity is zero, hence the horizontal acceleration is

zero. As the horizontal velocity is constant, and is zero at the

start, there is no horizontal motion. In this case, then, the simple

initial conditions cause the direction of motion to be the same as

the direction of the acceleration, or of the force. In the example
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that follows, the force (and, therefore, the acceleration) is ver-

tical, but the path of motion is a curve.

265. The Parabolic Trajectory.—Suppose that a body acted

upon by gravity alone starts from a pointH feet above the ground,

moving with a speed of V f/s at an angle <j> above the horizontal.

Consider the vertical and horizontal motion separately, with refer-

ence to axes drawn through the initial position of the body. Then

if (x,y) are the coordinates of the body at any time, it will have

moved x feet horizontally and y feet vertically, and will be at

the height (y+H) feet. The resolved parts of the acceleration

d?v dv • d?x dx
and the velocity are -^ and -rf vertically, -rr2 and -n horizon-

tally.

Fig. 93.

Just as in the simpler case, the equation of motion gives for

the vertical direction

:

d2
y

and for the horizontal direction,

dx du
The initial values, however, are V cos

<f>
for -^ , V sin

<f>
for -^ ,

and zero for x and for y. The integration of the equations, there-

fore, gives
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vx=-^ =Vcos<f>, vy=-^- = Vsm<j>-gt; (1)

x=t - V cos<f>, y=t- V sin</> — \gt2
. (2)

The velocity of the body after t seconds is, therefore,

v= ~Vvx
2+ Vy

2 in magnitude, in a direction making the angle

tan-1 —*- = cos
_1 —— with the horizontal

vx v

The curve traced by the body, called its trajectory, is given by

the pair of parametric equations (2), which furnish the readiest

means of solving most problems involving the trajectory. Elim-

inating t, we find as the single equation of the path of motion,

since t— -~ ,

7cos<£

y=
~ gx

9 +a;tan<i>.y 272 cos2
(/>

v

The trajectory for a body acted upon by gravity alone is thus a

parabola. The highest point (x
, y ) of the parabola is given by

dy _ 7 sin<ft— gt _ ft
. , _ V sin

<f> .

dx~ 7cos</> ' °~ g '

if o

t i7 • ^ i j z T72 sin2
<f>

V2 sin2 <£ F2 sin2
d>

_ V2 (l-eos2<f>)

Transforming to (x
, y ) as a new origin, putting x=x + x',

y=y + y', t= t + t', and dropping primes, we have

x=t.Yamf, y=-$gt\ or S-jpL*1
.

The highest point is, therefore, the vertex; the axis is vertical,

and the parameter is -—- .
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In the case of a projectile, fired from a gun, the greatest height

V2

reached, -j— (1 — cos 2<f>), will be a maximum when the elevation

of the gun is 90°, as this value makes cos 2<f> a minimum.
The horizontal distance traversed when the projectile regains

its original level is called the horizontal range; it is evidently

R= 2x — — —- , and is a maximum when sin 2</> is a maxi-
if •

mum, or = 45°.

266. Rectilinear Motion under any Constant Force.—The

methods of integration used in determining the motion of a freely

falling body can be applied directly to any case of rectilinear

motion under a constant force. For if the constant force is F
pounds, the equation of motion is

:

W F FF= — a, whence a= ^ g, so that the constant ^ g takes the

place of the constant g throughout the discussion. For instance,

suppose a body weighing 20 pounds is placed on a board so in-

clined that if the body is started down the board it will move with

constant velocity, showing that there is no force acting on it

(i. e., that the sum of any forces acting is zero), and suppose

that it is drawn down the plane (starting from rest) by a spring

balance kept at a constant tension of 2 pounds. Then the equa-

tion of motion for the direction down the plane is : (<7= 32 f/s2
)

,

2 = ffa, whence a= 3.2 f/s2
.

Integrating, and determining the constant of integration in

accordance with the initial conditions, we have for the speed and

the distance after t seconds

:

v= 3.2t, s=lM\
Again, suppose the board on which the weight rests is elevated

at an angle of 30° to the horizontal. To simplify the problem,

we will suppose that gravity is the only force acting in a down-

ward direction along the board, neglecting the effect ', of any
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roughness of the board. The resolved part of the force of gravity

down the board is Wsin 30° = 20x^= 10 pounds, so that for the

acceleration down the board we have

10=ffa, a=16 f/s 2
.

Hence, t seconds after motion starts, the velocity and distance

down the board are

v= 16t and s= St2
.

267. Examples.

1. A weight is dropped from a balloon ascending with uniform

speed of 20 f/s, and is observed to strike the ground 4 seconds

later; find the height of the balloon and the velocity with which

the weight strikes. Ans. 7i= 176 feet, v = 108 f/s.

2. A steamer approaching a dock with engines reversed, pro-

ducing uniform retardation, is observed to go 300 feet in 20

seconds after reversing engines and 100 feet in the next 10 sec-

onds; find a and v and the distance and time before coming to

rest.

Ans. a—— J f/s2
, v = -5

g
5-f/s, £= 55 seconds, s=504J feet.

3. A body moves 12 feet while being uniformly retarded from
24 f/s to 6 f/s ; find the time and acceleration.

Ans. £=
-f

seconds, a= —22.5 f/s2
.

4. A projectile fired from the top of a tower at an elevation of

45° strikes the ground 60 feet from the foot of the tower at the

end of 4 seconds ; find the height of the tower, also the time before

striking if the projectile had been fired horizontally.

Ans. h= 196, £2= 3-| seconds.

5. A body is thrown at an elevation of 60° with a velocity 150
f/s ; find the coordinates of its position at the end of 5 seconds,

and its velocity at that instant.

Ans. #=249.5 feet, z=375 feet, v= 80.82 f/s, r= -21° 52'.

6. Show that the time of descent of a body down any chord

drawn from the highest point of a circle is the same as the time

of falling down the vertical diameter.

Ans. t
2 = for all chords.

9
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7. A car starts from rest with an acceleration of 4 f/s2 ; at

what angle must a man lean forward to keep himself in equi-

librium? Ans. tan"1 $= 7° 8' (nearly).

8. A train running at 30 m/h against a constant resistance of

12 pounds per ton of 2000 pounds shuts off steam just as it strikes

an up-grade of 1 ft. in 200 ft. ; find the time and distance before

the train comes to rest. Ans. 125 seconds, 5=2750 feet.

9. Find the distance required in example 8 by direct integration

of the equation of motion (Art. 266)

.

10. Show that the speed acquired in sliding down a smooth
plane from rest, under the force of gravity, is the same as for fall-

ing freely through the height of the plane.

11. A body weighing 20 pounds is pulled along a smooth hori-

zontal plane by a horizontal force of 5 pounds. Find its motion.

How is this motion affected if the pull is inclined at the angle
<f>

to the horizontal ?

Ans. The body moves with constant acceleration; a=8 f/s2,

a =8 COS <j> f/s
2

.

12. A body weighing 20 pounds, on a smooth plane inclined at

the angle tan_1 f to the horizontal, is pulled by a force of 14

pounds acting up the plane and parallel to the plane. Find its

motion. How is this motion affected if the pull is inclined at the

angle 4> to the plane ?

Ans. The body moves with constant acceleration up the plane

:

a= 3.2 f/s2
, a'= 3.2(7 cos <j>-6) f/s2

.

13. A body weighing 64 pounds, on a smooth plane inclined at

the angle sin
-1

-J to the horizontal, is pulled for 3 seconds by a

force of 12 pounds acting up the plane and parallel to the plane.

How far up the plane will it go, and with what speed will it pass

its initial position in its descent? Ans. 9 feet, 6V2 f/s.

14. A canal-boat weighing 7-J tons is brought from rest to a

speed of 3 m/h in one minute by a constant pull of 200 pounds,

making the angle cos
-1

\\ with the direction of motion. Find
the resistance, assumed constant.

Ans. 163.4 pounds, making the angle 200° 3' with the direc-

tion of motion.

268. Rectilinear Motion under Two or More Forces and under

Variable Forces.—When a force is applied to a body, it is gener-
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ally impossible to prevent other forces from acting, so that the

motion is caused, not by the applied force alone, but by this force

combined with one or more resistances. For instance, the motion

of a body under the action of gravity is affected by the resistance of

the air through which it falls, by the resistance of a rough sur-

face down which it slides, or by the resistance of a coiled spring or

mass of sand upon which it falls. Either an applied force or a

resistance may vary as it acts. Any force has laws of action, more

or less accurately determined by experiment, from which its effect

can be deduced. We shall next consider a few of the most

familiar forces.

269. Hooke's law for the force exerted by an elastic rod, cord,

coiled spring, etc., holds for all practical purposes provided the

stretching or compression is not great enough to destroy the

elasticity. It is formulated as follows:

The natural length being I, and the length when stretched

l+ Al, the force exerted is proportional to Al.

The actual value of the force depends upon both the material

and the form of the elastic object.

For example, suppose a spring 10 inches long, which exerts a

pull of 2 pounds when stretched to a length of 11 inches, to be

hung up with its axis vertical, and a body weighing 5 pounds to be

attached to its lower end. Then when the spring is stretched s

feet it exerts a pull of 24s pounds. The equation of motion for the

forces acting on the body in the downward direction (if we neglect

the weight of the spring and the resistance of the air) is

:

since a= v -=- (see Art. 263).

Separating the variables, we have:
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Integrating, and determining the arbitrary constant (5 and
v are zero together) :

Again separating the variables,

dt= -,=£= , or WYidt:
8Vs-^-s2 '

°
\Zi\s-s2

Integrating, and determining the arbitrary constant,

^cos-^, (1)

whence

1-cos —5— J = T
5
2 sin1 —5 (2)

The motion is, therefore, an oscillation -£% feet or 5 inches down
and back, repeated indefinitely. During a complete oscillation,

cos ^— goes through a complete cycle of its values, from 1

through 0, — 1, back to 1, and cos
-1—-— increases from 2&tt

to 2(&+ 1)tt; hence the time of a complete oscillation is

T=^ 2*= ^p = .51 second (nearly). (3)

The neglected resistances will actually shorten the oscillations

until the body comes to rest 2-| inches below its initial position,

the spring then being stretched by a steady pull of 5 pounds.

270. The Force of Gravity.—According to the law of gravi-

tation (which is universal) any two particles of matter attract

each other with a force proportional to their masses and in-

versely proportional to the square of the distance between them.

It follows from this that a sphere of which the density is the

same at all points equidistant from its center attracts a particle
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at any distance s from its center as if all the mass of the sphere

were concentrated at its center, with a force inversely propor-

tional to s
2

if the particle is outside the sphere, directly propor-

tional to s if the particle is inside the sphere.

This is a very close approximation to the law of the attraction

of the earth, or of the force of gravity. If we denote the force

of gravity on a particle of mass m at a distance s feet from the

center of the earth by / pounds, the value of / at the surface of

the earth by mg, and the radius of the earth by a,

f=-~2 ^ s^>a, f=cms if s<a, f— mg if s=a.
s

Hence, taking g= 32.2 f/s2
, a=3960 mis., b = ga2 = lAlxl01Q

,

c= l- = 1.5ixl0-6
.

a

For a body falling directly toward the center of the earth from

a great distance, we have, neglecting resistances

j. bm —b
f=—T = -ma, or «=-^-.

For a body falling vertically inside the earth (down a mine

shaft, for instance) we have, again neglecting resistances,

j— cms— —ma, or a= — cs.

These equations are integrated in essentially the same way as

the equation of motion under Hookers Law.

271. Examples.

1, 2. An elastic cord, of natural length I feet, is fastened at a

point I feet vertically below a hole in a smooth horizontal table.

A particle P, weighing W pounds, is attached to the free end of the

cord and placed on the table. Let the particle be s feet from the

hole at the end of t seconds.

1. Given W=32 pounds, find the motion if the particle is

drawn back 3 feet from the hole and let go, the tension of the

cord being 12 pounds when the particle is started.

20
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Ans. 5= 3 cos 2t; the particle oscillates back and forth, com-
pleting an oscillation in 3.14 seconds.

2. Given W=4 pounds, find the motion if the particle is

started from the hole with an initial (horizontal) speed of 10

f/s, a steady pull of 2 pounds being needed to hold the particle

1 foot from the hole.

Ans. s=f sin 4£; the particle makes a complete oscillation in

1.57 seconds.

3. A coiled spring is set up on a firm support with its axis

vertical; the natural length of the spring is 5 feet; under a steady

pressure of 10 pounds, the spring is compressed to a length of 4^
feet. A weight of 10 pounds is placed upon the spring. Find
the motion of the weight.

Ans. If the top of the spring is at under a steady pressure

of 10 pounds, the weight will be s feet below G, t seconds after it

has passed G, where s=% sin St; and will oscillate from 6 inches

below C to 6 inches above and back, making a complete oscilla-

tion in T=0.79 seconds (nearly).

4. If the weight in example 3 is dropped upon the spring from
a point 2 feet above, find the motion.

Ans. Using s and t as before, s=f sin8#, T=.79 second.

5. Given that the earth's attraction for a body outside the

earth is inversely proportional to the square of the distance of

the body from the center of the earth, show that when a body
weighing W pounds is s feet from the center, it is attracted with

Wa2

a force of —^ pounds, the radius of the earth being a feet, and
s~

that if the body is at rest when s=H, its speed is v in gen-

eral, and v x
when it reaches the earth, where

and the greatest value possible for v ± is less than 7 m/s.

6. Given that the earth's attraction for a body inside the earth

is directly proportional to the distance of the body from the

center of the earth, show that when a body weighing W pounds is

Ws
s feet from the center, it is attracted with a force of —- pounds,

(X

the radius of the earth being a feet, and that a body starting from
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rest at one end of a hole bored diametrically through the earth

would reach the other end in n J — seconds= about 42£ minutes.

272. Resistance of a Rough Surface.—The resistance offered

to the motion of a body A by a body B with which it is in contact

is subject to well-established laws. This resistance, the force

with which B presses against A, is the same as the force with

which A is pressed against B. The magnitude and direction of

the resistance, determined from observation of their effect on the

motion of the resisted body, are found to be subject to limitations

due to the physical nature of the bodies in contact.

Thus, if a body is at rest on a firmly supported flat board, the

resistance of the board is a force equal to the weight of the body,

directed vertically upward, and as the body may remain at rest

when the board is tilted, the inclination of the resistance to the

resisting surface is capable of variation. This variation is lim-

ited by the roughness of the surface.

Friction.—The laws governing the resistance of a rough

surface (commonly called the Laws of Friction) are expressed in

terms of the resolved parts of the total resistance along and nor-

mal to the surface ; the normal component R is called the reaction

of the surface (sometimes the normal reaction) ; the component

along the surface F is called the frictional resistance or the fric-

tion (sometimes the tangential reaction).

If a body is at rest on a surface inclined at an angle 6 to the

horizon, then, since the resultant of F and R,

or the total resistance, is a vertical force,

W
tan 0= -p- . The greatest angle that will

JXr

allow the body to remain at rest is called

the angle of repose; its tangent is the great-

F
est value possible for the ratio -^-

.

FlG 94
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The Laws of Friction are

:

I. For any two bodies in stationary contact, the ratio -~ of the

friction to the reaction is limited ; it can never be greater than a

certain proper fraction, called the coefficient of statical friction,

and usually denoted by ft.

If the angle of repose is a, /x=tana.

II. The value of ft depends merely upon the roughness of the

bodies in contact, being independent of the magnitude of the

total resistance, and of the size and shape of the area over which

the bodies touch.

-pi

III. For any two bodies in moving contact, the ratio -^ is

constant; its value may be represented by //. ft! is called the

coefficient of dynamical friction.

IV. The value of //, like that of ft, depends only upon the

roughness of the surfaces in contact; it is independent of the

speed. /A is always less than ft,, but never much less.

These laws are essentially exact except for very fine points or

edges and very low or very high speeds. Values of ft and ft! are

given in engineering hand books for various materials, according

to their condition of polish and lubrication.

Two unknown quantities must be found in order to determine

an unknown force ; the laws of friction determine one of these in

the case of the resistance of a rough surface if the resisted body

is in motion along the surface, or at rest and just on the point of

moving. In the case of a body at rest and not on the point of

moving, the laws are of no assistance; they are also useless for

determining the resistance of anything like a rough hinge, for

which the direction normal to the surfaces in contact is inde-

terminate.

273. The following problems will illustrate the use of the laws

of friction. A body is placed on an inclined plane ; the statical
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coefficient of friction for the body and the plane is .45, the dynam-

ical |; if the angle between the plane and the horizontal is 0,

find what happens if 0=20°, and if = 30°.

Since ju=tan a =.45, the angle of repose, a, is between 24° and

24^°; if 0=20°, the body will, therefore, remain at rest. If

0=30°, resolve the resistance into the normal and frictional com-

ponents R and %B and the weight W into the components

W — WW cos 0— — V3 normal to the plane and W sin 6— — downward

along the plane. If a is the acceleration with which the body

Fig. 95.

slides down the plane, the equation of motion gives, for the direc-

tion down the plane:

W
2J?

W

and for the direction normal to the plane

:

~ V3-£= 0.

From these, a= g U- ^) =.15360.

The body, therefore, moves down the plane with a constant

acceleration of about 4.92 f/s2
, which is independent of the value

of W.
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274. Suppose the body in the preceding example is held from

moving by a pull directed at an angle
<f>

with the plane, and sup-

pose first that the pull P± is just enough to keep the body from

sliding down, and next that the pull P2 is just too little to pull

the body up the plane.

In either case, the pull P will have a component along the

plane, tending to drag the body up, and a component normal to

the plane which will increase the pressure against the plane if

the pull is below the plane, and decrease it if the pull is above.

Consequently, P1 must be below the plane, and P2 above it. It

remains to determine the angle
<f>

so as to balance to best advan-

tage the changes in the dragging force and in the friction caused

by changing
<f>.

In the first case, the resistance points up the plane as much as

possible, so that the equations for motion along and normal to the

plane are

:

^-A5R-P1 cos <f>
=

~ VS-E + P.sin^
whence,

* i

W
.1103

Pig. 96. W cos
<f>+ .45 sin

<f>

'

In the second case, since the resistance points down the plane

as much as possible, we have

:

W
2

W
2

+ A5B-P2 cos <j>=

V3-R-P2 sm<j>=0

whence,

P, .8897

W ~ cos
<f>
+ .45 sin <j>
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In either case, the least value of 'P occurs when tan
<f>
— .45,

that is, when the angle made with the plane by the pull is equal

to the angle of repose. The least values are, therefore,

Px
= 0.1006W, P2= 0.8115Tf. These are the limiting values

desired, for in each case the required pull was the least pull that

would call into play the maximum frictional component of the

resistance.

275. No comprehensive statement exists for the law of atmos-

pheric resistance. The statement that has generally been con-

sidered good enough for text-books is that this resistance is pro-

portional to the projection, on a plane normal to the motion, of

the surface bounding the moving body (proportional to the " op-

posed surface") and to the speed of motion for low speeds, the

square of the speed for medium speeds, and the cube for higher

speeds. In practice, it has been customary to determine the

pounds resistance per square foot for a particular type of body

at varied speeds, tabulating the results. Recent studies of the

aeroplane have demanded some general law to be used as a basis

of design, and some progress has been made—enough to show

that the usual text-book law is by no means general. Sir Hiram

Maxim has tested aeroplane struts of different cross-sections, and

found that at a speed of 40 m/h, the resistances of the atmos-

phere varied from 9.12 pounds to 0.38 pound per square foot of

opposed surface. We shall need some basis for our problems, and

so, as it would be inconvenient to give the data in each case, we

will agree to take the atmospheric resistance proportional to the

speed, its square or its cube, according as the speed is less than

20 f/s, between 20 f/s and 500 f/s, or greater than 500 f/s, and

to call the resistance 7.2 pounds to the square foot of opposed

surface at a speed of 60 f/s. This is to be understood as merely

a rule to do problems by ; nothing but experiment with the body

actually in question will at present give a useful formula.

The resistance offered by water to the motion of a ship has
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been more thoroughly studied, but with results that only serve

to discourage any attempt to invent a simple law, further than

the obvious one that the resistance increases with the speed of the

ship until it is equal to the driving force. This is evident be-

cause the speed of the ship, at first accelerated, soon reaches a

maximum uniform value.

276. To illustrate the effect of atmospheric resistance, consider

the case of a sphere weighing 25 pounds, with a total surface of

3 square feet, let fall from a height in still air. The opposed

surface is f square foot, and when the sphere is moving v f/s, the

atmospheric resistance in pounds per square foot of opposed sur-

face is .04v if v is less than 20 f/s, .002i;
2

if v is between 20 f/s

and 500 f/s, .000004?; 3
if v is greater than 500 f/s. Let s be the

number of feet that the sphere has fallen at the end of t seconds

;

then s, t and v are zero together.

While v is less than 20 f/s, the equation of motion is

25-(.04xf)«=t#a=f!^. (1)

Separating the variables, we have 1.28dt= ———— ; inte-

grating and determining the arbitrary constant,

-0.0384*= log(l-0.0012t;) ; (2)

whence,

v=~^=833.33(l-e-°- 0S3 * t
). (3)

Integrating again, and determining the constant,

s= 833.33£-21,701.5(l-6T - 0384 '). (4)

277. The law of the resistance changes when ^=20 f/s,

2= 0.6326 seconds and 5=6.33 feet.

In the next stage of the problem, we have

25-(0.002xfK=M %> (6)
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and if s feet is the distance fallen in addition to the fall of 6.33

feet, the initial values are £= 0, v = 20, s= 0.

Treating the equation as before, we have:

dv
1.28dt-

25 _

0.49574*= log awire gg±j- (6)

^"
(ft
-^y 'lx

i.3667e°-*9"«+ l' [ }

s=520.84 log[0.5775e - 24787 '+ 0.4225e-°- 24787
']. (8)

If we require the time when the body will have attained a

given speed, we see that if v is greater than 129.1, formula (6)

gives an imaginary value to t. But when v— 129.1, the force

acting on the sphere is from (5), 25 — .0015v2= 0, the re-

sistance at this speed being exactly equal to the force of gravity.

As a result, the sphere would fall with constant speed from this

point on; but, according to the formulas, when v= 129.1, t and s

are infinite. The body falls with diminishing acceleration, -its

speed approaching the limiting value of 129.1 f/s. At the end

of 15.22 seconds, v = 129 f/s, 5= 1679 feet (the sphere has fallen

from rest to 1685 feet in 15.85 seconds) and the acceleration is less

than ^o f/s 2
.

278. Mechanical Connections.—Of somewhat the same nature

as the topics just treated, is the effect of connecting bodies by

means of strings or rods that are so light and inelastic that the

effect of their mass and elasticity may be neglected without

serious error. Such a rod will transmit a push or a pull without

altering the magnitude of the transmitted force, merely chang-

ing its direction and point of application; a string will serve in

the same way, but of course only to transmit pulls. The direction

of a taut string is changed by passing it over a pulley, a peg or

something of the sort, with some loss of force, which, however,
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may also be neglected in the case of a light pulley with smooth

bearings or of a smooth peg. Under these conditions, the two

tensions in a taut string are directed along the string in both

directions at any point, are equal and constant throughout the

length of the string, and so exert the same pull at each end. The

tension or compression in a stiff light rod is in accordance with

similar laws.

279. Example.

Two bodies, A and B, weighing 10 pounds and 25 pounds re-

spectively, are connected by a light in-

extensible string. A is placed on an
inclined plane (//= .2) inclined at an
angle of 60° to the horizontal; the string

is passed over a pulley C at the top of the

plane, so that the part AC is parallel to

the plane, and the part BC is vertical.

Find the motion. Let T be the tension of

the string, F and R the frictional and
normal components of the resistance of

the plane,' 1^= 10 pounds and W2
= 25

pounds, the weights of A and B.

Then, as indicated in Fig. 98, if a is the acceleration of A up

the plane, or of B vertically downward, the equations of motion

w
2 =Z5lbs.

Fig. 98.

are:

For A

:

Wr- JP-Tf1 8in60° = -^1 a
l

9

22-Tf1 eos60°= 0,

F=— .

And for B
W

Thence,

W.
T=.2(W1 cos 60°) +Wx sin 60° + — a W2

- W.
S a.
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or

r=9.6603+M a= 25 -M«;
whence,

• a= 14.025 f/s2
.

The pull of the string is T— 14.043 pounds on each body.

280. Examples.

1. Two weights, W1 and W2 , are connected by a thin inexten-

sible cord which passes over a smooth pulley having a horizontal

axle. Show that the weights move with the acceleration

2-3. A weight of Wt pounds hangs from a thin inextensible

cord I feet in length which passes over a smooth pulley at the edge
of a smooth horizontal table and is attached at the other end to a

weight of W2 pounds lying on the table. The table top is h feet

from the floor, and Wt starts from rest at the edge of the table.

Find the motions of the weights.

2. W± =4, TF2
= 21, J=fc=4.

Ans. W1 reaches the floor in 1J seconds ; W2 reaches the edge
of the table in 1J seconds and J second later strikes the floor 3-J

feet from Wx .

3. W1= 9 9 TT2= 135, 1=12, h= 9.

Ans. W± reaches the floor in 3 seconds, W2 in 4J seconds,

falling 4r| feet from W± .

4. Given the same conditions as in example 2, except that the

table slopes at an angle of 6 to the horizontal, the edge at which
the pulley is situated being at the top of the slope and horizontal,

find the value of if there is no motion, and the acceleration of

the weights if sin0=^, and if sin0=:f.

Ans. = sm-1
T̂ ; 04= 1.28 f/s 2

, W± descending; a2
rr2.56

f/s2
, W2

descending.

5-6. Given the same conditions as in examples 2-3, except that

the table is rough and slopes, as in example 4, 9 being tan-1 f

;

find for what value of (x there would be no motion, and find the

acceleration of the weights if //=T52 .

5. F1
= 32, W2

= S0.

Ans. fx must be ^ or greater; a= f^ f/s 2
, W1 descending.
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6. W1
= 4, W2= 30.

Ans. fx must be yV or greater; a=f^ f/s2
, W2 descending.

7. Given the same conditions as in examples 5-6, find for what
values of W± there will be no motion if W2= 30 and /x— J.

Ans. TF-l between 6 and 30

8-9. A body weighing W pounds rests on a rough horizontal

plane and is pulled by a force of P pounds directed at an angle

cj> above the plane.

8. W=15, fi=%. Find P if the body is just on the point of

moving, and
(f>
= 0; again, <£= tan_1 T

5
2-, <£= tan-1 f. For what

value of
<f>

is P least, and what is the least value of P ?

Ans. P1
= 6, P2= H, Ps= 5{h cA-tan-1

!, 2%= 5.57.

9. W= 12, //=£, P=15. Find the acceleration, a f/s2
, with

which the body moves according as
<f>
= 0, tan-1 f ; the value of

<f>

for which a is greatest, and the greatest value of a.

Ans. a1
= 29J, a2= 29^, ^tan"1

J, a3
= 31.49.

10-11. A weight of Wt pounds rests on a rough horizontal

table-top, h feet above the floor ; a light inextensible string I feet

long is attached to the weight at one end, passes over a smooth
pulley at the edge of the table, and is attached at the other end to

a weight of W2 pounds, which hangs without other support,

Find the motions of the weights if at the start the string is taut

and W2 is at the edge of the table.

10. 1= 6, h=6, T7i= 10, F2= 5, //= f.

Ans. W2 reaches the floor in 2.37 seconds; 0.62 second later

W! strikes the floor 3.1 feet from Wa-

ll. 1=10, h=6, W±
= 15, W2= 9, //= -!.

Ans. W2 reaches the floor in 1-J seconds; f second later W1

stops 1 foot from the edge of the table.

12-13. The ridge of a peak roof is h feet higher than the eaves

and the breadth is 2b feet'between the eaves. Two weights, oi

Wx pounds and W2 pounds, one on each slope of the roof, are

connected by a taut rope I feet long, which passes over a smooth

pulley at the ridge in a plane perpendicular to the ridge.

12. Wi= 120, W2
= 300 and W± is just about to slide up. Li

h = 10, 1 = 15, what is fi ?

Ans. /*=f.
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13. Wi= 53, W2= 331, fi=i, h= 9, b = 12. Find the motion

3f the weights, given that 1=15, that W2 starts at the ridge, that

the rope slips from both weights when W± reaches the ridge, and
that the eaves are 3Of feet above the ground.

Ans. Wt reaches the ridge in 2 seconds, and 1$ seconds later

strikes the ground 10-J feet from the building; W2 reaches the

aves in 2 seconds, and 1-J seconds later strikes the "ground 13-J

feet from the building.

14. A sphere d feet in diameter, weighing w pounds to the

ubic foot, falls from rest; show that until its speed becomes 20

f/s, its acceleration is — (c— v), where c= -JH- , fc=0.04.
c

v ' 3k

Show that a rain-drop 0.12 inch in diameter cannot acquire a

speed of 10T
5
2- f/s in a vertical fall, given w=62.5

Ans. t=— W— ,c=W.
g

to C— V
lz

15. If the initial velocity of the sphere in example 14 is ver-

tically downward, and between 20 f/s and 500 f/s, show that until

its speed becomes 500 f/s, its acceleration is -^ (a2— v2
), where

L 2^, fc= 0.002.

Show that bird-shot 0.028 inch in diameter fired vertically

upward in still air will fall to the ground with a speed of less than

23J f/s, given w= 700.

281. The Simple Pendulum.—The simple pendulum consists of

a heavy particle suspended from a fixed point by a weightless in-

extensible string or rod, and moving in a vertical circle.

Let O be the fixed point, let the particle start from rest at A,

and reach the position P after t seconds. Call the lowest point

of the circle B, and let angle BOA = o , angle BOP=0, arc BP= s.

Let the weight of the particle be W pounds, and call the length

of the pendulum OP= l feet.
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The motion of the particle is caused by a tension N directed

along PO, and the weight W directed

vertically downward. For the motion

W
in the path at P we have — at—W sin 0,

since N has no tangential component.

at
--~dt>

d2
s la

hence

at

Fig. 99.

d2
s

dt
2

dO

-I
d2

dt2
g sin 0.

If we call —r- = to, we have
dt

and

d2

dt2

d2

dt2

dco

dt

dw dO

~dO ~dt

duo

~dO'

du>

~dO
^r =— r- sin 0.

Integrating, we have, since <o= when 0=6O,

Oi
2 —-3-{ cos 6— cos 6 ) .

Hence

M l~W~t a T\
°>=-jT =— Y —r-(cos0— COS0O ),

-de
Jf*.

The function

Vcos0— cos 6

dt)

is a new function somewhat like
Vcos0— cos 9

the jV 1 — e
2 cos2

<j>d^> that we found in Art. 205 for the length of

an elliptical arc.

282. If O is small, we can get an approximation to the time

required to swing through a given angle by putting



Motion of a Heavy Particle. 303

cos0o
=l-^, cos 6=1-^-, or cos 0-cos o

= J(0o
2 -<92

).
z z

We then have, since £= when 0=0
O ,

/J , f -de e

vf'Hv^ =cos
*;-

An inverse cosine has any number of values, but since t starts

from and increases gradually throughout the motion, cos
-1 -^— =

a/— • tf must do the same, starting from cos
-1

-^° .= when the

particle P is at A, becoming cos
-1

-w- = -= when P reaches B,
"o ^

n

cos
-1 -^—° = 7r when P reaches A'. The motion from A to A' is

called a vibration; at the end of the vibration,

o» =^=-^(cos(-0o)-cos0o)=O,

and the particle starts from A' under the same conditions as it

left A. The pendulum therefore vibrates back and forth between

A and A 1

, and if T is the time in seconds of a vibration,

J^-T— tz, T— tt a/— seconds (approximately).

283. If O is not small enough for this approximation to be

sufficiently accurate, we can obtain any required degree of ap-

proximation as follows: lTi\J~fT= . write
y I Je VCOS0— cos O

'

8 9
cos 0=1 — 2 sin2 -— , cos o

= l — 2 sin2
-^ ; then, noting that the

Z A

values of the integrand are the same for equal and opposite values

of 6, we have

:
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dO

v l Jo

vX8in'"2

T-W-r
sin2

4.

K 2
6

sin*-sr — sin-'-g-

To simplify the limits, put sin-^- = sin-# sin<£; then

WE^=^?i d<£

^»
cos i_- * ^i-sin'Asin**

Abbreviate sin -^- by k; then

n
Jo Vl-A; 2

,

V g Jo Vl-& 2
sin2

<£

Since

(1-&2 sin2
</>)-*= l +p2 sin2

<£ + il?
A;
4 sin 4

<£
Zi ' 4

and

r=,;i[1+(J)
.i.+

(Hj
l.

+(
|i

f|j
l._

284. Taking #= 32.16 f/s 2
, tt= 3.1416, the first approximation

T=xJ gives as the length of the second's pendulum,

(T= l) 1= 4- = 39 -10 inches.
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For the second approximation, this result must be divided by

If O
= 5° (it is never more for an accurate clock),

^-= i sin2 (2° 30') =0.0004757,

so that the more accurate value of I is

39.10 x (1-0.00095) =39.06 inches.

The effect of the third term of the series is inappreciable. If a

pendulum -J^ feet long vibrates in 1 second, a pendulum -^-

feet long vibrates in 8 seconds and in one day makes 86,400-=-$=
86,400(l + 0.000476)"1 vibrations; hence a clock with a pendu-

lum constructed according to the formula ir
2
l= g will lose about

41.1 seconds a day if it swings over a complete arc of 10°.

285. Variation of Gravity.—In this discussion of the simple

pendulum, W, the weight of the moving particle, is the earth's

attraction for the particle at mean sea-level in London (latitude

51°) and the acceleration given by this attraction at the same

place is 32.19 f/s2
. These are the standard conditions mentioned

in Art. 256 as the basis for comparing force, acceleration and mass.

The earth's attraction for a body at mean sea-level varies with the

latitude, and the acceleration it gives to the body varies in the

same ratio. The values at sea-level for a few latitudes are

:

L= 0° 40° 51° 90°

g = 32.09 32.16 32.19 (=g) 32.26

logg = 1.50637 1.50729 1.50772 1.50860

The acceleration due to gravity also varies with the distance

above or below sea-level, being f j-
J
g at a place h feet above

sea-level, and (^-— ) 9o at a place d feet below, a being the earth's

radius in feet.

21
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The earth's attraction for a body weighing W pounds is

W
mg' = g', where g is the acceleration due to gravity at the

place where the body is situated, and # = 32.19. Then, in the

problem of the simple pendulum, the equation of motion becomes

w w—
- a t = q' sin 6; or a t = q

f

sin 6,

g g

instead of at — g sin 0, so that g' takes the place of g throughout.

286. Examples.

1. What must be the value of o for a pendulum of length

1= -j-to lose 1 second in a day? Ans. O= 46' 47".

2. A pendulum that beats seconds when swinging through a

very small arc is made to vibrate through an arc of 120°

(0O :=6O ) ; how many seconds will it lose in a day?
Ans. About 5890 seconds= lh 38m 10s

.

3. A pendulum constructed to beat seconds in a locality where

#= 32.19, is found to lose 72 seconds a day. What is the value

of g where the pendulum is, and what change must be made in its

length to adjust it?

Ans. #'= 32.137; length must be decreased 0.165 per cent.

4. If the pendulum of example 3 is on a mountain in latitude

40°, how high is the mountain? (Take the earth's radius 4000
miles.)

Ans, About 1.4 miles.

5. A pendulum beats seconds at sea-level; how many seconds

a day will it lose at the bottom of a mine 1056 feet deep ?

Ans. 2.16 seconds.

6. A spring-balance is graduated in London at sea-level; what
will it read when sustaining a 10-pound weight at sea-level at

the equator? Ans. 9.969 pounds.

7. Show that the weight given by a lever-balance is inde-

pendent of the variation of gravity.

287. Motion in a Vertical Circle.—If the pendulum of Art.

281 is started by giving the particle P an initial speed of v f/s
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v
in the circle, or an initial angular rate, w = -y , the first inte-

gration of the equation of motion gives

(o
2
=:(O

2
-\—

f-
(cos 6 — cos O ).

The force N is determined from the equation of motion in the

direction PO :

whence

J\ — W COS 6— an = j- =
g gig

-^- =Cos0+-— =J^L- + 3cos0-2eos0o .W a a

lio
2

to
2 becomes zero when 6— 619 if cos $x

= cos o
—

2g

la 2

N becomes zero when 9=02 , if cos 2—

t

cos #o o^~ ~i cos ^i-

Bx
and 62 are in the same quadrant ; if they are acute, 62 is greater

than X ; if obtuse, d1 is greater than 2 .

1 2

Hence if -^- <cos O , the upward motion of P will cease before

y can become zero, and the pendulum will vibrate.

7 2

If —r
°- >cos o , N becomes zero before w= 0. If PO is a rod,

it will keep moving until w:=0, in the meantime being under

compression, and then will vibrate back. If PO is a string, how-

ever, P will start from the point (I, 2 ) with an initial velocity

in a direction making the angle -n— 62 with the horizontal, and

will move under the action of gravity alone (in a parabola) until

stopped by the string..

7 2

If -^- > 1 + cos , it is impossible for w to be zero, and if PO
- 2g

is a rod, the pendulum will make complete revolutions.

\w 2

If -j^- >§+ cos0o , it is impossible for N to be zero, and the
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pendulum will make complete revolutions whether PO is a string

or a rod.

288. In the problems so far discussed, we have been required to

find the nature of the motion from data concerning the forces;

in the next article we shall consider an example of the. inverse

problem of finding the relations of the forces when the motion is

completely given.

289. Motion in a Horizontal Circle.—If a particle acted upon

by gravity is constrained by any resistance of R pounds to move

Fig. 100.

in a horizontal circle of radius a feet, with a uniform speed of

v f/s, the resultant of R and the weight of the particle, W pounds,

must be a horizontal force — pounds, directed toward the
g a r

center of the circle, for the total acceleration of the particle is

— in this direction. Suppose the line of action of R to be PO,

and the vertical through the center C of the circle to be OC; let

the displacement PO represent the force R; then the displace-

Wv2

ments OC and PC must represent W and, . If is the angle
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v
made by R with the vertical, tan =

, and R—W sec in
ga

magnitude and is always in the same vertical plane as PC.

In applications of this principle, the angle = tan_1 — is

usually the only important value. For instance, along a railroad

curve a feet in radius, over which trains pass at v f/s, the road-

v2

bed should have a lateral slope of tan-1
to the horizontal, so

ga

that the force R may be exerted wholly against the tires of the

wheels rather than partly against the flanges.

Again, if the rods of a centrifugal governor are I feet in length,

and if o> is the greatest angular speed that the balls should have,

the governor is adjusted to shut off steam when the rods make

the angle 6 with the vertical, where

, „ v2 aoj2
I sin &o2

A
n

tan 6= = = , or cos
ga g g ' W

In the same way, it is found that if we wish to cause the

particle in Art. 281 to move from A in a horizontal circle, we

must give it the initial velocity v = lu = y/ gl sec# f/s in the

horizontal direction perpendicular to AO. When the simple pen-

dulum moves in this way it is called the conical pendulum.

290. Examples.

1. A lead is swung in a vertical circle of 30 inches radius with

just enough force to make complete revolutions. What is its

speed at the top of the circle, at the bottom, and when it is let

go so as to start off at an angle of 45° to the horizontal ? ((7= 32.)

Ans. 8.944 f/s, 20 f/s, 18.792 f/s or 11.267 f/s.

2. A curve on a railway of 4' 8" gauge has a radius of 847 feet.

How much must the outer rail be raised above the inner for trains

going at the rates of 15 m/h, 30 m/h, 45 m/h and 60 m/h ?

Ans. 1 inch, 4 inches, 9 inches, 16 inches,

3. The inner edge of a semi-circular curve on a running track
has a radius of 105 feet, the outer edge a radius of 121 feet; the
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track is flat and banked so that the outer edge is 2 feet higher

than the inner. For what range of speeds is the track adapted ?

Ans. From 20J f/s to 22 f/s.

4. What angle will be made with the vertical by a simple

pendulum hung in a car which is going 60 m/h around a curve

of 1000 feet radius? Ans. tan"1 0.242 = 13° 36'.

5. If the gauge of the track in the preceding example is 4' 8"

and the outer rail is 7" higher than the inner, what must be the

coefficient of friction between a box and the floor of the car if

the box is not to slide? What if the two rails are on the same
level? Ans. .114, .242.

6. A particle is placed at the top of a fixed smooth sphere and
slightly displaced. Show that it will leave the sphere when it

has descended over an arc= cos
-1

f, and has acquired a speed of

iVGga f/s, a being the radius of the sphere.



CHAPTER XIII.

Momentum, Work and Energy.

291. General results of great importance can be obtained from

the equation of motion, /= raa. In the discussion to follow, /

may be the resultant of all the forces acting, so that a is the total

acceleration, or / may be the resultant of the resolved parts of

all the forces in some given direction, and a the resolved part of

the acceleration in the same direction.

292. Mean Speed under Constant Force.—From the relations

, dv ds
f=m*, a= w , v=-

3r ,

it is readily seen that a constant force / will move the mass m a

distance of s feet in t seconds, changing its speed from v to v lt

where vx= v + at, and s— (v -\-%at)t.

The mean speed V, at which the same distance would be cov-

ered in the same time, is

s . ., , v + v.

and is equal to the average of the initial and final speeds.

This relation also holds for curvilinear motion under a force

having a constant tangential component.

293. Momentum.—The product, mv, of the mass of a body by

its velocity, is called its momentum in the direction of the velocity.

Momentum is thus a directed quantity, bearing the same relation

to velocity that force bears to acceleration. Momenta can there-

fore be compounded and resolved by the methods given in Chap-

ter X, and the relations between momentum and velocity treated

in the same way as those connecting force and acceleration.
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From the relations f=ma=m —^- = ^f > it appears that

the force acting to produce motion in a given direction is the

time-rate of the momentum, in that direction; that is, force is

related to momentum as acceleration is related to velocity.

We may observe that /= ^ _
'

is the equation of motion for

a body with variable mass.

294. Impulse.—Calling the momentum mv=M,
dM=d(mv) =fdt,

so that if the force / changes the momentum from M to Mx in t

seconds, the total change in momentum is

M±-M =
\

Ml
dM= P fdt. (1)

JM JO

This value is called the impulse given by the force / in the time t

In case the mass m is constant, the total change in momentum
(or the impulse) is

mfa-vj^fdt; (2)

and if the force / is also constant, — F, we have, as a check,

m(vx
— v )=Ft, or v x

— v = ati (3)

where a—— is constant.m

The mean value of the force

or to the constant force which would produce the same change of

momentum (the same impulse) as / in the same time.

Equation (1) or (2) can be used to compare the effects of one

force on two different bodies, even when the force itself and the

time during which it acts are both unknown. For instance, sup-
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pose a 1-ounce bullet is fired from a 15-pound rifle, leaving the

muzzle with a speed of 2000 f/s, with what initial speed does the

rifle recoil? Here the gaseous pressures against the bullet and

against the end of the chamber are the same, though the intensity

of the pressure is unknown ; so that if we neglect the resistances

to the motion of the bullet through the bore, we have for the

bullet and for the rifle

^(2000-0)= JWl|f(„_0) = j;R

and / and t are the same in the two equations.

Consequently, the rifle recoils with a speed of v — -zr= X
15 ' N 16X32

= 8J f/s. If the recoil is stopped in TV second, the mean resist-

ance is

^=ifX-¥X-^= 39 TV pounds.

Suppose the gun recoils 2 inches; then, if the retarding force

were constant, the average speed would be -^ f/s, and the recoil

would take AXxo = 2V second. The mean resistance is therefore

HX¥X¥=97.7 pounds.

295. Impact.—As a further example of the use of momentum,

consider what happens when two bodies collide. The pressures

which the two bodies exert on each other change the velocities

of the bodies as any forces do, but the time during which they

act is often so short that it is impossible to make any observations

for determining the rates of change of the velocities (the accelera-

tions) or the rates of change of the momenta (the forces) . Con-

sequently the equation of motion, f— nia, is of no use.

The total changes in velocity and the total changes in momen-

tum (the impulses) can be observed, however, and the laws that

govern them can be used to determine the effect of a collision or'

impact.
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The pressures exerted on each other by two bodies in collision

are equal in magnitude and opposite in direction and act during

the same interval of time; consequently, the impulses or changes

in momentum are equal and opposite, that is, the sum of the

momenta of the two bodies is unchanged by the collision. In- case

one of the bodies is so large that its change of motion is too small

to be observed, this relation, though still true, is useless—as, for

instance, when one of the bodies is " fixed " ; i. e., cannot move

without moving the earth.

It is found by experiment that the same laws of friction hold

for impulses as for forces ; we can treat here, however, only cases

in which friction is negligible. We shall consider the impact of a

particle impinging on a smooth fixed surface, and the impact of

two smooth particles moving in the same straight line. In these

cases, a homogeneous sphere can be treated as a particle.

Experiment shows that the effect on two bodies of the impulse

of their collision is to change their relative velocity by reversing

its component in the direction of the impulse and multiplying the

magnitude of this component by a number e, called the coefficient

of restitution, the value of which depends on the elasticity of the

bodies. The perpendicular component of the relative velocity is

unchanged.

296. For instance, suppose a body weighing 12 pounds moves

10 f/s in a direction making an angle of 30° with a smooth fixed

surface, and suppose the coefficient of restitution for the body and

the surface to be f ; find the motion after the body strikes the

surface.

In this case, since the surface is fixed, the relative velocity of

the body and the surface is the velocity of the body. Since the

surface is smooth, the impulse is normal to it; the component of

the velocity normal to the surface is 5 f/s toward the surface,

and is changed by the impulse to fxS^-1/ f/s away from the

surface; the component of the velocity along the surface is un-
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changed by the impulse. Hence the body leaves the surface in a

_i_o

3 -i 2V3 _
direction making the angle tan-1 -~= = tan

-1—^— =21° 3

with the surface, at V(5V3) 2 + (^)
2= 9.28 f/s.

Suppose that a ball weighing 12 pounds and moving 10 f/s to

the right meets a ball weighing 3 pounds and moving in the same

line 15 f/s to the left, and suppose the coefficient of restitution

for the balls to be f.

To avoid confusion about direction and sign in a problem of this

sort, it is well to fix upon one direction as positive, and to express

Fig. 101.

all velocities accordingly. The relative velocity must be found

by subtracting the velocities of the two balls in the same order

before and after impact. Taking the positive direction to the

right, we have, if after the impact the 12-pound ball moves v x f/s

and the 3-pound ball v 2 f/s (each to the right) :

Hv1-hA^=«xio+A(x-i5)=|f >

since the sum of the momenta is unchanged, and

»!-»,= -t[10-(-16)] = -H*

since the relative velocity is reversed and multiplied by e. These

equations,

4v,:V 1+ V2
= 25

©1-v2=-20|
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give v±=l f/s, v2— ^l f/s, both balls moving to the right after

the collision.

If these balls had been inelastic (e= 0), we should have had

v1— v 2— 0, v\= v2 — h f/s to the right ; if e had been 1, we should

have had vt= 0,v2
= 25 f/s to the right.

297. Examples.

1. A particle impinges upon a smooth surface, moving along a
line that makes the angle a with the surface, and rebounds along

a line making the angle /? with the surface. Prove that tan/?
= e tan a.

2. Show that if a billiard ball is knocked around the table, its

path across a corner is parallel to its path across the opposite

corner.

3. A ball A, weighing 5 pounds, moving 7 f/s, is struck by a

ball B, weighing 6 pounds, moving in the same direction; after

impact the speed of A is doubled. e—%. Find the speed of B
before and after impact. Ans. 14 f/s and 8J f/s.

4. Two balls, moving 25 f/s and 16 f/s in opposite directions,

impinge directly upon each other. e= f. Find the distance
between them 4J seconds after the collision. Ans. 123 feet.

298. Work.—If the point of application of a constant force F
moves the distance s in the direction of the force, the product Fs
is called the work done oy the force. If the point of application

of a variable force / moves through the distance s in the direction

of the force, the work done by the force is fds. In either case,

if the motion is along a path of length s at an angle
<f>

to the

direction of the force, the work done is / cos <f>ds.
Jo

It is evident from this definition that the work done by a re-

sultant force is the sum of the work done by its components; if

each of the forces acting on a particle is resolved along and per-

pendicular to the motion of the particle, each of the normal com-

ponents will clearly do no work (cos
<f>
= 0), so that all the work

is done by the components in the direction of motion. This is
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also evident directly from the definition, since if / represents any

force acting on the body, / cos
<f>

is its component in the direction

of motion.

The work done by a force is positive or negative according as

the force has a positive or negative component in the direction in

which its point of application moves. When a force does negative

work on a body, the body is said to do positive work against the

force.

The unit of work, in the English Gravitational System, is the

foot-pound, the work done by a force of 1 ponnd as its point of

application moves 1 foot in the direction of the force.

299. As an illustration of the definition of work, consider the

work done by gravity when a body moves along the sides of a

right triangle ABC, of which BC is ver-

tical and AC is horizontal (Fig. 102).

If the body weighs W pounds, f=W
pounds. If the motion is from B to C,

the work done is directly Wa foot-pounds, /? "^ tt

)a
/ cos <fids, f=W pounds,

<f>
= 0. Fig. 102.

o

If the motion is from C to B,
<f>,

the angle between the downward

direction of gravity and the upward direction of motion, is 180°,

so the work is — Wds=— Wa foot-pounds. If the motion is

Jo

from C to A or from A to C, ^= 90°, and the work done by

gravity is zero. In the motion from B to A,
<f>
= cos

-1 — , and

(c aW— ds— Wa foot-pounds ; in the motion from
o c

A to B, = 180° -cos-1 — , and the work is f

* -— ds= -Wa^
c Jo c

foot-pounds. In any circuit of the triangle, gravity does as much

negative work as positive, or a total of zero.
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300. Work Done by a Constant Force.—If the point of appli-

cation of a constant force / moves in a curve, let the axis of x be

drawn in the direction of f; then, in the expression for work,

/ cos <f>ds, <f>
is the angle made by the direction of motion with

:

the axis of x, and cos <b—-^- . Therefore, if the abscissas of the^ ds

initial and final points of the path are x and x, the work is

/cos</><is= fdx—(x— x )f.
Jo J«o

The work is therefore independent of the path traversed,

depending only upon the magnitude of / and the component in

the direction of / of the displacement given to its point of

application.

301. Work Done by a Central Force.—A central force is always

directed toward a fixed point and varies in

magnitude according to the distance of its

point of application from the fixed point.

Let be the fixed point, and A the point of

application of the central force / (Fig. 103)

.

Then if A moves over any path, the angle
<f>

between the direction of the force and the

Fig. 103. direction of motion is the angle between the

dv
radius vector and the path ; hence cos </> = -7- . But by definition,

the force is a function of r, say F(r). Then the work done as A
moves along the path is

S

f cos <f>ds=\ F(
Jro

r) dr,

and depends merely upon the limits of integration, and the initial

and final distances of A from O, being otherwise independent, of

the path of motion.
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302. Work Done by Gravity.—The force of gravity is very

nearly constant for differences of level less than a thousand feet,

and is for all levels practically a central force directed toward the

center of the earth. Thus, if a body weighing W pounds is low-

ered h feet, the work done by gravity is hW foot-pounds, no matter

what path the body traverses to reach the lower level. Moreover,

although at present the application of this law is apparently

limited by the assumption that the body can be regarded as a

particle, we shall see later (Art. 323) that in this connection any

body can be treated as a heavy particle.

303. Examples.

1. A body, weight 6 pounds, starting from rest, is drawn by a

cord up a rough inclined plane in 3 seconds, the cord being

parallel to the plane and the motion uniformly accelerated. In-

clination of plane 30°, length 10 feet, fi=i- Find the tension

of the cord and the work done by it.

Ans. T— 4.456 pounds. Work= 44.56 foot-pounds.

2. An elastic cord is stretched by a gradually increasing pull

until its natural length of 1 foot is increased to 18 inches, the

pull then being 24 pounds. Find the work done by the pull, and
the work that would be done by gravity in the first descent of a

weight of 24 pounds hung on the end of the cord, the other end
being supported. (See Art. 269.)

Ans. 6 foot-pounds and 24 foot-pounds.

304. Work and Energy.—If a particle of mass m moves in t

seconds over a path of s feet, the speed changing from v f/s to

v f/s under the action of a force of F pounds whose component in

the direction of motion is F cos (f>=f pounds, then since

dvf=ma=mw ,

we have

fds— m -rr ds= m —j- dv —m vdv.
at at
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and the

Work= fds=\ mvdv = im(v 2— v 2
).

Jo ]v

Here / is positive if it accelerates the motion (<j> acute), nega-

tive if it retards the motion
(<f> obtuse)

.

The product, \mv 2
, of the mass of a body by one-half the square

of its speed, is called the kinetic energy of the body. The change

in the kinetic energy of a body is the same in magnitude and sign

as the work done in changing the motion of the body. The
kinetic energy of a moving body is thus the amount of negative

work that must be done on the body to bring it to rest, or is the

amount of work that the body, by virtue of its motion, can do

against a resistance. The value mv2
, twice the kinetic energy, is

often called vis viva, or active force.

305. For instance, if a constant pull of 12 pounds, exerted on a

body weighing 9 pounds, lifts the body 3 feet, the pull does 36

foot-pounds of work on the body, gravity does —27 foot-pounds,

and both together 9 foot-pounds. Or, the total work is done by

the upward resultant of 3 pounds as its point of application moves

3 feet upward.

The forces therefore make a change of 9 foot-pounds in the

kinetic energy of the body, so that

9=im (v*-v 2
) =&(v2 -v 2

) ; v 2 -v 2= te.

Starting from rest, the body would acquire an upward speed

of 8 f/s, and if the pull were then released, it would rise by virtue

of its 9 foot-pounds of kinetic energy, going up 1 foot against the

action of gravity. In falling 4 feet back to its original level, the

body would regain through the action of gravity the 36 foot-pounds

of energy given to it by the upward pull.

Starting with an upward or downward speed of 6 f/s, the body

would acquire an upward speed of 10 f/s, and if the pull were

then released would rise 1-ft- feet higher through its \2/ foot-
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pounds of kinetic energy, and in falling to its original level

would regain 41^ foot-pounds of kinetic energy, its initial 5-j^

foot-pounds plus the energy given to it by the upward pull.

Again, suppose a body weighing 12 pounds is projected along

a rough horizontal plane (//= £) with an initial speed of 8 f/s.

The body has if X 64 foot-pounds of kinetic energy, and is acted

upon by a retarding force of -^-= 4 pounds, which will do —12
foot-pounds of work, reducing the energy to zero, while the body

moves 1^-=3 feet. The body therefore comes to rest after it has

moved 3 feet and has done 12 foot-pounds of work against a

resistance of 4 pounds.

306. Potential Energy.—There is an important physical dif-

ference in the nature of the forces in these two examples. In the

first example no energy is lost, for the body has at any time,

either in kinetic energy or through its position, the power of doing

as much work as has been expended on it, and returning to its

original level with its original kinetic energy left. The work it

can do through its position is called potential energy; forces like

those of this problem, which do no work that is not available in

the form of either kinetic or potential energy are called conserva-

tive forces. The resistance of the rough plane in the second

example is not a conservative force; the kinetic energy that it

takes away is lost as far as mechanical effects are concerned.

If a body weighing W pounds rises h feet, its kinetic energy

is decreased Wh foot-pounds by the action of gravity. At the

same time, its potential energy is increased Wh foot-pounds, for

in falling h feet the body would acquire a speed of \/2gh f/s and

therefore-^— 2gh=Wh foot-pounds of kinetic energy. Gravity

thus causes no change in the total energy of a moving body, so

that the change effected in the total energy by the combined action

of gravity and any other forces is equal to the work done by the

other forces.

22
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307. Examples.

1. A 400-pound shot is fired with a muzzle velocity of 1800 f/s

from a gun weighing 50 tons; find velocity of recoil and the ratio

of the kinetic energy of the gun to that of the shot.

Ans. 6f f/s, 2M.
2. Prove that when a shot is fired from a gun, the kinetic

energies of the shot and the gun are inversely proportional to

their weights.

3. Determine the mean effective pressure in the bore of a

6-pound gun if the projectile travels 7 feet before leaving the

muzzle at 2100 f/s. Ans. 59,062-J pounds.

3. A 2-pound weight and a 3-pound weight on a rough hori-

zontal table are connected by a thin inextensible cord and moved
by a constant pull of 7 pounds in the direction of the cord. //= J.

From the work done by the pull and by friction, find the speed of

the weights when they have moved 3 feet 9 inches from rest.

Ans. v= 16.

4. Show that when two bodies move with the same speed, their

kinetic energies are proportional to their masses, and that when
they are acted upon by the same force during the same time their

kinetic energies are proportional to their speeds.

5. A weight of W± pounds rests on a rough horizontal table

I feet from the edge, and is attached to one end of a light inex-

tensible cord which passes over a smooth pulley at the edge of the

table and supports a weight of W2 pounds hanging h feet above

the floor. From the work done by gravity and by friction, find

the speed of the weights when the falling weight reaches the floor,

and the speed with which the sliding weight reaches the edge of

the table.

An, ^= 2
^g;^7'> ; «,'=»,'-*>'(»-*).

6. Show that if, in example 5, 1^= 10, W2= 15 and //= f, in

order that Wt may just reach the edge of table I must be f/i.

7. Show that the work done by gravity when a body weighing

W pounds falls to the earth from an infinite distance is Wa foot-

pounds, the radius of the earth being a feet, and that therefore

the body will be going V2ga f/s when it strikes the earth.
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8. Two weights, of Wx pounds and W2 pounds, hang from the

ends of a light inextensible string which passes over a smooth
pulley. After t seconds, the heavier weight, W2 , has descended
s feet and is going v f/s. Show that

and by differentiating with respect to t, that the acceleration of

the weights is

dv^ W2 -W,
dt ~ W2 + Wj'

308. Power.—The power exerted by an engine is measured by

its rate of doing work. The unit of power in the English Gravi-

tational System is thus the foot-pound per second. 550 foot-

pounds per second or 33,000 foot pounds per minute make one

horse-power (H. P.).

Any unit of force combined with the corresponding unit of dis-

tance may be used as a unit of work, and with the unit of time

will form a unit of power. We thus have foot-poundal and foot-

poundal per second in the English Absolute System, gram-centi-

meter and gram-centimeter per second in the Metric Gravita-

tional System. In the Metric Absolute System, the dyne-centi-

meter unit of work is called an erg, and 10,000,000 ergs a second

constitute 1 watt.

If a force of F pounds moves a body weighing W pounds at a

tangential acceleration of a f/s2 against resistances having a

tangential component of R pounds, we have, if the tangential

component of F is F cos <£= /,

f-R=—a>
or f=B+W— .

9 9

The work done by the force F (or by /) as its point of applica-

tion moves over any arc s of the path is

M
=i

}ds
=\i(

R+w
j)

ds -
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The rate of work is

Powers d
(™f

k > = rf (wfk ) * =v (R+W-0-).
at as at \ g J

If the body is being hauled up an inclined plane, making an

angle with the horizontal, the part of the resistance due to the

force of gravity is W sin pounds, or the weight times the grade;

frictional resistances are also proportional to the weight. If the

total resistance of R pounds is proportional to the weight, and is

given as h pounds for each pound weight, the source of power

causing the motion develops

R+W ~ )
= Wv (fc+— ) foot-pounds per second,

or

Wv
(* + f)550

H P

309. For instance : At the foot of a 3 per cent grade, a 200-ton

train is going 45 m/h, and at the top of the grade, which is 1

mile long, is going 30 m/h. If the pull of the locomotive is

constant and the traction and atmospheric resistances amount to

20 pounds to the ton, what horse-power does the engine develop?

20 3
The total resistance per pound is 9<Mn pound plus the r^ pound

due to gravity. As the forces are all constant, a is constant, and

the mile is covered (at a mean speed of 37-J m/h) in —
seconds, with an increase in speed of —15 m/h= —22 f/s; there-

- -22x75 11 ., 2
' , a 11 „

fore a— -=—-. _. = — 7B f/s
>
an(i — = — tb—™ • Hence

2x60x60 48 ' ' g 48x32

.„. p _ 200x2240 / 3 20 11 \
•~ 550 ~ M 100 + 2240 48X32^

tj t> 8539

At the foot of the grade, H. P. = 1164.4 ; at the top, H. P. = 776.3.
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Again : The driving wheel of a locomotive is 8 feet in diameter,

the pistons are 2 feet in diameter, the stroke is 5 feet and the mean
steam pressure in the cylinders is 250 pounds per square inch.

What EL P. is furnished by the steam pressure in two such cylin-

ders when the locomotive is going 45 m/h ?

The driving wheel makes s __„_ revolutions a second. The6 8ttX3600

mean steam pressure is 36,0007r pounds, and in a complete revolu-

tion, the work done is 360,000tt foot-pounds for each cylinder.

Hence

If the engine of a locomotive works under a constant steam-

pressure, the horse-power it develops is evidently proportional to

JVv f a \
the speed of the locomotive, so that -fkTtI k-\

J

—cv, where c

is a constant. Consequently the acceleration a is constant, and the

pull of the locomotive is constant.

If work is to be done continuously by a moving mass, either the

speed of the moving body must be kept up by the continuous

application of force, or else the mass must be renewed as fast as

its kinetic energy is used up. Power is furnished in the first way

by the fly-wheel of a stationary engine, in the second by a stream

of water.

310. Examples.

1. At what uniform speed can an engine of 30 H. P. draw a

train weighing 50 tons up a grade of 1' in 280' and against trac-

tion resistances of 7 pounds to the ton ? Ans. 15 m/h.

2. An engine under constant steam pressure brings a 500-ton

train from rest to a speed of 60 m/h in 2 miles against resistances

of 11 pounds to the ton. What is its H. P. when it has gone 220
yards, and when it has reached its highest speed ?

Ans. 733J, 2933f
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3. A pipe is delivering 11 cubic feet of water a second at the

rate of 80 f/s; what horse-power is used if the speed is reduced
one-half? Ans. 93.75 H. P.

311. Characteristics of Motion.—With the usual notation of

m, v and f, with L for impulse, K for work, E for kinetic energy,

P for power, the zero subscript to indicate initial values, and the

subscript t to indicate tangential components, we have the follow-

ing relations between the characteristics of motion

:

M=mv, E=imv2 =iMv,

L=M-M
,

K=E-E ,

*~
dt ~ dt

'
dt - dt

Ji

The relations on the left involve direction and line of action as

well as magnitude ; those on the right involve merely magnitude

and sign. K is the work done by / upon the moving mass; the

work done by the moving mass against /""is —K=E — E. The

power of the moving mass is —P.



CHAPTEE XIV.

Eigid Bodies.

312. Mass of a Body of Variable Density.—If any point P of

a body is surrounded by a closed surface containing a volume AF

of which the mass is Am, the ratio -r-y. is called the mean density

of the body within the chosen surface. If the mean density is

independent of the surface drawn and of the position of P, the

body is said to be of uniform density, or to be homogeneous. The

density of the body at any point P is defined as the limit of the

mean density as the chosen surface, always enclosing P, contracts,

and AT7 approaches zero.

Density = p — -^ •

Then if the density p, at every point of any non-homogeneous

body is a given function of the position of the point, the mass of

the body is m — \pdY taken throughout the body.

For instance, suppose the density of a sphere of radius a is 1 at

the center and decreases by an amount proportional to the distance

from the center, becoming f at the surface. The density at a

distance r from the center is p= l — At, and as p= f when r= a,

k = -^— , and p = a~
. A spherical shell of radius r and thick-

3a 3a

ness dr therefore has for its mass dm— ^— r
2 (3a— r)dr, approxi-

mately, and the total mass is

m=p-
\

a
(3ar2 -r3 )dr= Tra

3
.

3a Jo
'
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313. Resultant of Like Parallel Forces.—We have so far con-

sidered only such forces as have concurrent lines of action. Two
forces of which the lines of action are parallel are called like or

opposite parallel forces, according as their directions are the same

or opposite.

The resultant of two parallel forces can be found by combining

the triangle construction with the principle that the point of

application of a force acting on a rigid body can be -shifted along

the line of action without altering the effect of the force.

*U--

Fig. 104.

Let P and Q (Fig. 104) be two like parallel forces, A and B
their respective points of application. Join AB, and let equal

and opposite forces —M and M be applied at A and B, having AB
as their common line of action. These two forces neutralize each

other, so that, R being the resultant of —M and P, and 8 the

resultant of M and Q, the pair of forces R and 8 is equivalent to

the given pair, P and Q. In order to find the resultant of R and

8, shift their points of application to the common point of

their lines of action, and resolve each of them in the direction of

AB and that of the forces P and Q. Evidently the components

of R are —M and P, and of 8 are M and Q, so that the resultant



AC
OC

M
~ P >

BC
OC

M
"

'

AC
BC

Q
" P '

Eigid Bodies. 329

of R and #, which is also the resultant of the forces P and Q in

their original positions, is a force T, of magnitude T—P-^-Q,

having the same direction as P and Q. Moreover, if T's line of

action meets AB at C, we have from similar triangles,

or

The magnitude, the direction and the line of action of the

resultant of the given forces P and Q are thus completely deter-

mined.

If a common perpendicular to the lines of action of P, T and

Q is divided by them into segments a and b,

¥
=W = -p> or Pa= Qh -

314. Moment of a Force.—The moment of a force about a

straight line perpendicular to its line of action is defined as the

product of the magnitude of the force by the length of the com-

mon perpendicular to the line of action and the given straight

line if the rotation that the force tends to produce about the

straight line as an axis is contra-clockwise, and as the negative of

this product if the rotation is clockwise.

When the forces considered all lie in the same plane, so that the

straight lines about which moments are taken (the axes of the

moments) are all perpendicular to this plane, it is convenient to

speak of the moment of a force about an axis as its moment about

the point in which the axis cuts the plane.

315. Moments of Parallel Forces.—The moments of the forces

P and Q of Art. 313 about a line perpendicular to their plane at

any point of the line OC (about any point of OC) are Pa and
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— Qb; the moment of T about the same axis is zero, or the sum
of the moments of P and Q.

Consider the moments of P, Q and T about any point 0' of

their plane. For convenience, shift the forces along their lines

of action until their points of application, A, B and 0, fall on

the perpendicular to their lines of action through 0' (Fig. 105).

Then AC=a, OB=b; call 0'A=x.

The moments about 0' are : Of P : —Px; ofQ: — Q(a+b + x);

31 jc ^ &__/?_ A A.

T

Fig. 105.

of T=P+ Q: -(P+ Q)( a+ x). The sum of the moments of

P and Q, since Qb—Pa, is

- ^Px+Qa+Qb + Qx] = - {P+ Q) (a+ x),

or the moment of T. The same result is obtained if 0' is between

A and B or on the other side of B.

Consequently, the resultant of two like parallel forces of mag-

nitudes P and Q is a third like parallel force of magnitude

(P+Q), having for its moment about any axis perpendicular to

the common plane the sum of the moments of the two given forces

about the same axis.

It evidently follows that the resultant of any number of like

parallel forces is a force having the same direction as its com-

ponents, a magnitude equal to the sum of their magnitudes, and

a line of action such that its moment about any axis perpendicular

to the common direction of the forces is the sum of the moments

of all the forces about the same axis.
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316. Resultant of Opposite Parallel Forces.—The process of

Art. 313, if applied to a pair of opposite parallel forces of different

magnitudes, shows that their resultant has the same direction, and

tends to produce rotation in the same direction, as the larger

force ; that its magnitude is the difference between the magnitudes

of the two forces, and that its line of action is so situated in the

plane of the two forces that the moment of the resultant about

any point of the plane is the difference between the moments of

the two given forces about the same point.

Consequently, the results stated in Art. 315 for like parallel

forces will hold with one exception for any parallel forces if the

magnitudes of forces in one of the two directions are represented

by positive numbers, and those of forces in the opposite direction

by negative numbers.

317. Couples.—The exception occurs when the forces reduce to

two opposite parallel forces of the same magnitude, with different

lines of action. Such a pair of forces, called a couple, can be

replaced or balanced only by another couple. The sum of the

moments of the forces constituting the couple, called the moment

of the couple, is of course even in this case the same for any axis

as the sum of the moments of the original forces ; aside from this

fact, we shall not for the present be concerned with the nature of

couples.

318. Identical and Identically Opposed Forces.—Two forces,

fx and f2, having the same magnitude, the same line of action and

the same direction, are identical ; this is indicated by writing

:

fx = f2 . Two forces fx and /2 , having the same magnitude, the

same line of action, and opposite directions, are said to be equal

and directly opposed, or balanced; this is indicated bv writing:

f,--7«-
Note that fi — f2 or fx——f2 imply magnitude and direction,

but not line of action.
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Two forces produce no effect on the motion of a body when and

only when they are equal and directly opposed; in other words,

if a body is at rest under the action of parallel forces, the algebraic

sum of all the forces is zero, and the sum of the moments of all the

forces about any axis is zero, for the resultant of the forces having

one of the two directions must be equal and directly opposed to

the resultant of the forces having the opposite direction.

319. Balanced Parallel Forces.—The lever furnishes the sim-.

plest instance of balanced parallel forces ; the following problem

is of the same nature.

A light circular table, 10 feet in diameter, is supported on three

vertical legs, spaced at equal angular intervals, each 4 feet from the

center. Let be the center of the table-top,

A, B, C the points directly over the legs. It

is required to find the tensions or compres-

sions in the legs if the table is stationary

and of negligible weight and supports a

weight of 60 pounds placed on the line OA :

(1) on the edge of the table at the point

nearest A, (2) at the point farthest from A,
Fig. 106. ^ between B and ^ ^ ftt ^ (5) flt A

Consider the forces acting on the table-top ; these are the weight

of 60 pounds and the pressures or pulls of the legs, which are di-

rectly opposite to the compressions or tensions in the legs. Let A
represent the pressure exerted by the leg at A (or the compression

in A), and so for the other legs; then negative values will indi-

cate pulls exerted by the legs, or tensions in the legs.

In any of the cases, we have

A+£+C=60,

and if we take moments about the line AOy we find B= C. Tak-

ing moments about the perpendicular to AO at we find ikf+ 4A
— 2(B+ C)=0, where M is the moment of the 60-pound weight,
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and is —300, 300, 120, and —240 in the several cases. Solving

the three equations in each case we find

:

Case 1 2 3 4 5

70 -30 20 60

= C= -5 45 30 20

320. Examples.

1. Show that in the case of any lever, if we neglect the weight

of the lever, the work done by the power in any motion is numeric-

ally equal to that done by the resistance.

2. A triangular table, sides 6 feet, 8 feet and 10 feet, has a

vertical leg under the middle point of each side. Neglecting the

weight of the table, find the compressions in the legs when a

weight of 300 pounds rests at a point 3 feet from each of the

perpendicular sides.

Ans. 75 pounds, and 225 pounds respectively.

3. Find the compressions if in example 2 the weight is placed

2 feet from each of the perpendicular sides.

Ans. 150 pounds, 100 pounds and 50 pounds respectively.

4. Solve example 3 with the legs at the corners.

Ans. 125 pounds at the right angle, 75 pounds at the smaller

acute angle, 100 pounds at the larger.

321. Center of Gravity of a Body.—Suppose three mutually
perpendicular coordinate planes to be fixed in a material body

and the body to be placed so that the axis of z is vertical. Let the

body be divided up into elements of volume, of which dV is

typical, and let the density of the body at a point of this element

be p, so that the mass of the element is p • dV'
— dm.

Then the body may be conceived as made up of heavy particles

of which the element of mass dm is a type, and the force of

gravity acting on the body (the weight of the body) may be

regarded as the resultant of a system of like parallel forces, the

forces with which gravity acts on the constituent particles, of

which gdm is a type. When these forces are summed by integra-

tion, the approximate assumptions become exact; consequently,
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the force with which gravity acts on the body has for its magni-

tude the integral of gdm taken throughout the body, or

g\dm — gm, m being the mass of the body, and gm— W, its weight.

Suppose the line of action of the resultant force of gravity (which

is vertical) to be at the intersection of the planes x= x
, y= y0?

and consider the moments of the resultant about the axes of x
and y, each of which is perpendicular to all the forces. The
moments of an element gdm, situated at a point (x, y, z) of the

body are ygdm about the axis of x and xgdm about the axis of y.

The sum of all the elementary moments about either of the axes

is the moment of the resultant, W—mg, about the same axis;

hence

™>gyo=Sygdm ; m9xo
= fagdm,

or

_ \xdm \xdm _ \ydm \ydm
X°~ ~m~ ~ Jdm~ '

Vo ~ ~~m~~ ~ JdnT
'

the integrations in each case being taken throughout the body.

If we suppose the body to be set up with the .T-axis or the y-axis

vertical, we find y or x as before, and

_ \zdm _ \zdm
m ~~ \dm

The point {x , y , z ), through which the resultant weight of

the body always acts, is called the center of gravity of the body.

Each of its coordinates is the mean distance of points of the body

from the corresponding coordinate plane, the distribution being

proportional to the mass, or to both the volume and the density.

In the case of a homogeneous body, the factor p in dm=pdV
is constant, so that

_ pjxdV _ SxdV _ SydV _ \zdY

The center of gravity in this case is called the center of gravity

of the geometric solid occupied by the body.
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322. Centers of Gravity of Areas and Arcs.—It is often im-

portant to find the center of gravity of a geometric surface or arc

;

in such problems the element of volume dV is replaced by the

element of surface dS, or by the element of arc ds.

The coordinates of the center of gravity of a plane area, if dA is

the element of area, are thus given by the integrals : x = fAA ,

y — f-j A >
taken over the area ; and for an arc of a plane curve,

the coordinates of the center of gravity are given by the integrals

:

x =J^ ,y =Syte taken along the arc.
)ds )ds

b

It is only in the case of a plane surface that the center of

gravity lies on the surface, and except in the case of a straight

line, the center of gravity of an arc of a plane curve never lies on

the curve.

If a body is in any way symmetrical, the location of its center

of gravity is always partly evident; for instance, the center of

gravity of any homogeneous solid of revolution is evidently on

the axis of revolution, and the center of gravity of any homo-

geneous central figure is at the geometric center.

323. Work Done by Gravity on an Extended Body.—If an

extended body weighing W pounds moves so that its center of

gravity falls h feet the work done by gravity is + Wh foot-pounds,

for the resultant force of gravity is applied at the center of

gravity, which moves in the direction of the force. In moving

the body so that its center of gravity rises h feet, Wh foot-pounds

of work are done against gravity. For instance, to up-end a

24-foot ladder weighing 50 pounds requires 600 foot-pounds of

work, and to pump out a cistern 10 feet deep containing 120

cubic feet of water standing 4 feet deep, requires 62.5x120x8

f= 60,000 foot-pounds of work.
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324. Computation of the Coordinates of Centers of Gravity.—

As a coordinate of the center of gravity of a body is merely the

mean distance of the points of a body from the corresponding

plane, there is nothing new about the process of computing the

coordinate by an integration. In the first illustrative example of

Art. 231, and in examples 4a and 10 of Art. 233, we found the

distance of the center of gravity from the base in the case of the

semi-circumference, the hemispherical surface and the hemisphere

of radius a to be
2a 3a

2 and -£- respectively. In the case of

4a
the semi-circle, the corresponding distance is ^—

.

The center of gravity of a triangle is between each vertex and

the mid-point of the opposite side, twice as far from the vertex

as from the opposite side; the center of gravity of any pyramid

or cone is between the vertex and the center of gravity of the base,

three times as far from the vertex as from the center of gravity of

the base.

Bearing in mind that the center of gravity is the point at which

the resultant force of gravity acts, we can use these elementary

results for the purpose of finding certain centers of gravity without

integration.

For instance, let it be required to find the center of gravity

t of the trapezoidal area in Fig. 107. Divide

the figure into a triangle and a rectangle, as

shown. Let area= weight for convenience

f p= —
)

, and consider the moments of the

9' triangle and the rectangle about the 6' and
4' 6" sides. The sums of these moments are

the corresponding moments of the whole area.

Then if x and y are the distances of the re-

4'&" -* quired center of gravity from the 6' and 4' 6"

Fig. 107. sides, respectively,



Eigid Bodies. 337

46Xf+iX3X|] = (iX|)(6X|) + (|Xf)(iX|X3),

?y[6Xf+i-X3X|]=(|X6)(6X|) + (6+|X3)(ixfX3),

whence x=2A f

, y= 3.8'

Again, to find the center of gravity of a solid consisting of a

hemisphere and a cone having a common base,

the vertical angle of the cone being 90°. Let

the radius of the hemisphere be a; then

the altitude of the cone is a. Take moments
about a diameter of the base. [The figure

shows the section of the solid by the plane

through the geometric axis and perpendicular

to the axis of moments.] F
^

108
Let volume= weight, and let the distance

of the required center of gravity from the common base be x.

Then

X ( fTra
3 + l-rra? ) = -^- X fTra

3 - ±. X faa*,

325. Examples.

1-3. Find by integration the centers of gravity of the follow-

ing homogeneous figures (see Art. 324) :

1. Semi-circle. (Find the moment about the base of an ele-

ment perpendicular to the base, considering its mass to be con-

centrated at its mid-point.)

2. Triangle.

3. Cone or pyramid.
4. Show that the solid mentioned in the second illustrative

example of Art. 324 will stand with any point of the hemispherical

surface in contact with a horizontal plane if the vertical angle of

the cone is made 60°.

5. How much work is done by gravity in emptying a cone full

of mercury through a hole in its base into a cylindrical beaker

having the same base as the cone, if the altitude of the cone is

23
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1 foot, the radius of its base 6 inches and the base of the cone is

5 inches above the base of the cylinder? [Take tt—2^, s. g mer-

cury=14.] Ans. 114 -^2 foot-pounds.

6. Show that if the table top in the illustrative example of

Art. 319 weighs 20 pounds, each of the results is increased by 6§.

7. A chain 20 feet long, weighing 15 pounds to a foot, hangs
down from the deck of a ship into the hold; what work is done
against gravity in hauling it up on deck ? In hauling up the first

10 feet of its length ?

Ans. 3000 foot-pounds, 2250 foot-pounds.

8. One end is turned off a cylinder of revolution 9 feet in

length, so that a solid is left consisting of a cylinder 8 feet in

length and a cone of altitude 1 foot. Find the center of gravity

of the solid.

Ans. 3.83 feet from the common base of the cylinder and the

cone.

9. One end is turned off a cylinder of revolution 9 feet in

length, leaving a cylinder 8 feet in length capped by a hemisphere.

Find the center of gravity of the solid.

Ans. 3.66 feet from the common base of the cylinder and the

hemisphere.

10. Find the center of gravity of the part of the ellipse,

x— a cos <j>, y— b sin
<f>

in the first quadrant.

A 4a 46
Ans. xQ

=—,y =—.

11. Find the center of gravity of a circular arc of 90°.

2\/2
Ans. a— 0.9003a from the center.

12. Find the center of gravity of a broken line composed of a

circular arc of 90° and its chord.

Ans. ,— a= 0.8088a from the center.

13. Find the center of gravity of one of the halves into which

a parabolic segment of altitude a, base 2b, is divided by the

altitude.

Ans. fa from the base, fl from the altitude.
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14. Find the center of gravity of a paraboloid of revolution of

altitude a, radius of base 0.

Ans. fa from the vertex.

15. Find the center of gravity of the solid formed by revolving

one-half the parabolic segment of example 13 about the base.

Ans. yg-fr from its base.

16. Find the center of gravity of the solid left when a pyramid

is cut from a cube of edge I by a plane passing through a diagonal

of one face and a vertex of the opposite face.

Ans. It lies on the severed diagonal of the original cube,

jr= V3 from the center of the cube.

17. Find the center of gravity of the area between one arch of

the cycloid x=a(cf>— sin<£), y= d(l — cos<f>) and the z-axis.

Ans. y = §a.

18. Find the center of gravity of the half above the initial line

of the area bounded by the cardioid r= 2asin2 ^

.

Ans. xn
—

2

5a 16a

6 '" 9tt

19. Find the center of gravity of the sold formed by revolving

the figure of example 18 about the initial line.

Ans. x =—£a.
20. A solid is formed of a hemisphere of radius a and a solid

of revolution of height h, the two having a common base. What
must be the value of h for the solid to stand with any point of its

hemispherical surface in contact with a horizontal plane, the

solid of revolution being (1) a cylinder, (2) a paraboloid?

Ans. (1) h=~ V2, (2) fc=JLV6.

326. The Pappus-Cavalieri Theorems.—The first of the follow-

ing very useful theorems was contained in a compilation of mathe-

matical knowledge made by Pappus, of Alexandria, about 300

A. D. ; it was proved by Cavalieri, an Italian, about 1629, by

his famous " Method of Indivisibles
"

; it was announced at

about the same time by a G-erman, G-uldin, who appropriated it

from Pappus. It is commonly known as " Guldin's Theorem."



340 The Calculus.

I. If a plane area is revolved about an axis in its own plane

which does not pass through it, the solid generated has a volume

equal to the product of the given area by the length of the path

traced by its center of gravity.

II. If an arc of a plane curve is revolved about an axis in its

own plane which does not pass through it, the surface generated

has an area equal to the product of the length of the arc by the

length of the path traced by its center of gravity.

In each case, let xQ be the distance of the center of gravity G

Pig. 109.

from the axis of rotation, and let x be the distance of any point P
from the same axis. In I, let dA be the element of area at P,

then if A is the revolved area, and V the volume it generates when

its plane is turned through the angle a,

and

A = $dA, Y—\xadA—a\xdA,

\xdA
xn—

SdA

All these integrals are taken over the same area; hence

V=Ax a, which proves I, since x a is the length of the path

traced by G.
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In II, let ds be the element of arc at P; then if s is the length

of the revolved arc, and S the surface it generates when its plane

is turned through the angle a,

s—\ds, 8=\xads— a\xds,

and

\xds

All these integrals are taken over the same arc ; hence 8=s- x a,

which proves II, since x a is the length of the path traced by G.

For instance, if a circle of radius a is revolved about a tangent

through 2ir, its center describes a path 2-n-a in length, and the

volume and surface of the resulting solid are TTa
2 x2-na—2ira?'

and 27rax27ra = 4:Tr
2a 2

.

327. Examples.

1. A rectangle of which the sides are 1 foot and 1 foot 8 inches

in length is revolved about an axis in its plane parallel to the

1-foot sides and 1 foot 6 inches from the nearer one. Find the

volume of the ring so formed.

•22
Ans. 24-f- cubic feet, using tt— '-=-

.

2. Given that the center of gravity of a half parabolic segment
is fa from the base, §& from the altitude (example 13, Art. 325),
find the volumes formed by revolving this area about the base and
about the altitude.

Ans. T
8
5-7ra

2
&, %irab 2

.

3. From the known values of the surface and volume of a

sphere find the positions of the centers of gravity of the arc and
the area of a semi-circle.

4. A semi-circle is revolved about a tangent at its vertex ; find

the volume and the surface of the solid generated.

Ans. a3
(7r

2 -f7r)= 5.6808a3
; inner surface 27ra

2 (7r-2) =
7.1728a2

, outer surface 4rra
2

.

5. From the result of example 4, determine the center of

gravity of the area enclosed by a circular arc and two perpendicu-
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lar tangents, and find the volume of the solid generated as this

area revolves about the chord of the quadrantal arc.
-j a q

Ans. —— r- a= 0.2234a from each tangent, volume=
o(4— tt)

TV7rV2(37r-8)a.
3= 0.5275a3

.

6. From the results of examples 8, 12, 13, Art. 191, locate the

center of gravity of an arch of the cycloid and that of the upper
half of the arc of the cardioid.

Ans. Cycloid, y =±a; cardioid, x = — §a, y — ^a.

328. Wind Pressure on a Plane Surface.—If the pressure

exerted by the wind on a plane surface normal to the direction of

the wind is uniform over the surface, and amounts to p pounds

per square foot, the wind pressure on a plane surface whose

normals make the angle 9 with the direction of the wind will be

p cos pounds per square foot. The point where the line of action

of the resultant wind-pressure meets the plane is called the center

of effort of the pressure, or the center of wind-pressure. The

process of finding this center of effort is precisely the same as that

of finding the center of gravity of the area under pressure, for

the forces acting are in both cases proportional to the area over

which they act, the elements of pressure being p cos OdA in one

case, ffpdA in the other. Consequently, the center of wind-press-

ure for a plane area is the same as the center of gravity.

The center of wind-pressure for a sail is determined by the

method exemplified in the example of the trapezoidal area in

Art. 324.

329. Total Fluid Pressure and Center of Fluid Pressure for a

Plane Surface.—The pressure in a fluid is found to be the same

in all directions at any one point, and to be exerted against any

surface in a direction normal to the surface. In a fluid having

no vertical motion, the upward pressure on the base of a vertical

column h feet high and having a cross-section of 1 square foot, is

therefore the weight of h cubic feet of the fluid plus whatever
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pressure there is on 1 square foot of the upper surface. If the

fluid weighs w pounds to the cubic foot, the pressure due to the

weight of the fluid alone is thus wn pounds per square foot at a

depth of h feet. Fresh water weighs 62^ pounds per cubic foot,

sea water 64 pounds. At a depth of h feet in fresh water there

is a pressure in every direction of f p -| —
)
pounds, the

pressure on the upper surface being p pounds per square foot.

In an open body of water, p is the atmospheric pressure, 15

pounds per square inch when the barometer stands at about 30^

inches. In many cases, the atmospheric pressure acts on a sur-

face equally in opposite directions, so that only the pressure due

to the weight of water, called the water-pressure, need be con-

sidered.

330. Water-Pressure on a Vertical Plane.—Suppose a plane

surface to be submerged vertically in still water ; to find the total

pressure on it, due to the weight of the water (called the total

water-pressure) , and the line of action of the resultant pressure

(intersecting the plane of the surface in a point called the center

of pressure).

Take as the axis of x the horizontal line "in which the plane of

the submerged surface cuts the surface of

the water, and as the axis of y any con- —
venient vertical line in the plane of the sub-

merged surface. Divide the surface into in-

finitesimal elements of which dA at the point

(x, y) is typical. Then the water-pressure

on the element dA is ivydA in magnitude, y
and the resultant of all such elementary F 110

pressures has for its magnitude \wydA
taken over the submerged surface, for the elementary pressures

are parallel forces.
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If the line of action of the total water-pressure intersects the

plane of the submerged surface at (x
, y ), the moments of the

total pressure about the axes are x $wydA about the y-axis, and

yQ\wydA about the #-axis. The moments of the elementary

pressure wydA at (x, y) are wy2dA about the #-axis, and wxydA
about the 2/-axis. Hence

x \wydA — \wyxdA, y^wydA — \wy2dA,

or

_ \wxydA _ \wy2dA
X°~ SwydA '

y°~ $wydA
'

331. If (x
r

, y ') is the center of gravity of the submerged

vertical plane surface considered homogeneous,, y
'=

?-, A
—

— , A being the area of the submerged surface, and the total
A

water-pressure,

P= jwydA = w\ydA — wy 'A ;

that is, the total pressure on a submerged vertical plane surface

is the same as if the surface were horizontal and at a depth equal

to the actual depth of its center of gravity; in other words, the

mean water-pressure on the surface is the pressure at the center

of gravity.

332. Water-Pressure on an Inclined Plane.—The total water-

pressure on an inclined plane surface and the center of pressure

can be found in essentially the same way by taking the axis of x

as before and the axis of y in the inclined surface. If the in-

clination of the plane of the surface to the vertical is a, a point

(x, y) of the surface is at a depth y cos a, so that the total water-

pressure is

P— ^wy cos adA — wy r

cos a • A,
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and is again the submerged area multiplied by the pressure at its

center of gravity, y
' being the dis-

tance of the center of gravity from the

#-axis, measured on the inclined plane.

Again, (x
, y ) being the coordinates

(measured on the inclined plane) of

the center of pressure, the equality of

the moments about the coordinate axes

of the total pressure and the sum of

the elementary pressures gives

xQ\wy cos adA — \wxy cos adA,

y^wy cos adA — \wy2
cos adA,

whence r and y have the same values

independently of a.

Fig. 111.

333. Computation of Centers of Pressure.—From Arts. 331

and 332 it appears that the center of pressure for a plane area is

the same point of the area, however the plane may be revolved

about its intersection with the free water-surface; and the total

pressure is unchanged by any revolution of the area about a hori-

zontal axis through its center of gravity.

The preceding discussion is typical of the process of finding

centers of pressure, but the details of the method can often be

altered to advantage. For convenience, we always consider the

plane of the submerged area to be vertical, and take one of the

axes, say the #-axis, horizontal; but the origin should be chosen

so as to simplify as much as possible the relations between y and

x on the boundary of the submerged area. For instance, if this

area is a triangle, the origin should be taken at a vertex ; if it is a

circle, at the center.

In such a case, if the depth of the origin below the free sur-

face is c, and that of the center of gravity of the area A is h, the

total pressure P and the coordinates of the center of pressure
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are given by

P= whA J Px = $wx(y+ c)dA, Py = $wy(y+ c)dA;

and the depth of the center of pressure is (y + c).

If the plane of the submerged area is inclined at the angle a

to the vertical, we have only to change the last result to

(y + c) cos a.

In evaluating y0> it is always possible to take as the element of

integration a strip of the area between two horizontal lines dy

apart, and when rectangular coordinates are used, it is best to

do so. If the area is symmetrical with regard to a vertical line,

the center of pressure lies on that line; otherwise, x may be

evaluated by a double integration, or by using the horizontal

strip as the element of integration and replacing x in the formula

by the abscissa of the center of gravity of the element.

334. Examples.

Find the total fluid pressure and the depth below the free sur-

face of its center of effort for each of the following vertical plane

areas

:

1. Kectangle; breadth ~b, height h; upper edge in surface.

Ans. P=iwbh2
, y = %h.

2. Triangle; base o } horizontal; altitude h; vertex in surface.

Ans. P=iwbh2
, y = %h, c. p. on median through upper

vertex.

3. Triangle; base b, in surface; altitude h.

Ans. P—\mbW-, y =iK c. p. on median through lower vertex.

4. Quadrant of circle ; radius a, one edge in surface.

Ans. P=iwa?, y = —| a, x = %a.

5. Circle; radius a, just submerged.

Ans. P=7rwa?, y =%a.

6. Ellipse ; semi-axis a vertical, center in surface.

Ans. P=%wa?b, yo=jjr*>
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7. Parabolic segment; base %b, in surface; altitude h.

Ans. P=^wh 2
b, y = jh.

8. Isosceles trapezoid; base 3 feet in surface, base 5 feet at a

depth of 4 feet.

Ans. P= 2166f pounds, */ =fffeet=2feet 9.23 inches.

Find the total fluid pressure and the depth D of the center of

pressure below the center of gravity for each of the following

completely submerged vertical plane areas, h being the depth of

the center of gravity below the free surface.

a2

9. Square ; side a. Ans. P= iva
2
h, D— -^-.

a2

10. Circle; radius a. Ans. P= Trwa2
li, D = —ri

-.

11. Triangle; base %b, horizontal; altitude a; vertex up.

Ans. P= tuabh, ^=ToTT*

12. Parabolic segment; base 2b, horizontal; altitude a; vertex

up.

Ans. P=±wabh, D=^-.3
175/i

335. Kinetic Energy of an Extended Body.—If a material

hody moves so that all its points have the same velocity—a speed

of v f/s in a given direction—the kinetic energy of an element

dm of its mass is \v 2dm, and the kinetic energy of the whole body

is \\v2dm—\v 2\dm—\mv 2
.

The motion just described is called translation; it is only in

translation, when the paths of motion of the points of the body

are parallel straight lines, and the body is rigid, that the kinetic

energy is \mv 2
.

Any motion of an extended body is the resultant of a rotation

about an axis (which may itself be moving) and a translation

along the axis ; the kinetic energy of a body in any motion is the

sum of ,the energies due to these two motions.
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336. Kinetic Energy of a Rotating Body.—Suppose a body to

be rotating about a fixed axis at the angular rate of <o radians a

second. Imagine the body divided up into infinitesimal elements

of volume by some three sets of surfaces, and consider each of the

divisions of the body as a heavy particle. Let the volume of any

one of these particles be dV, and the density p, so that its mass is

dm—pdY, and let its distance from the axis of rotation be r feet.

The particle is moving in a circle of radius r feet with an angular

speed of w radians a second, or with a speed in its path of v= o>r

f/s. Its kinetic energy is therefore dE —\dmv% —\dmh?r2
'. The

kinetic energy of the whole body is the sum of the kinetic energies

of all the particles, or is

E= jJwVdra =i«
2jr*dm,

the integration being taken throughout the body.

If the body is homogeneous, p is constant, and E=i<o2p$r2dV.

337. Moment of Inertia and Radius of Gyration.—The quan-

tity \r2dm, which bears the same relation to the angular speed

and kinetic energy of a rotating body that the mass bears to the

linear speed and kinetic energy of a body in translation, is called

the body's moment of inertia with reference to the given axis,

and is indicated by /.

The value H , = — is the mean value of the squared dis-
)dm m

tance from the axis of rotation of points of the body, the distri-

bution being proportional to the mass, or to both volume and

density. This mean value is indicated by Tc
2
; as l—mk2

, k is the

distance from the axis at which a heavy particle of the same mass

as the body would have the same moment of inertia, or the same

kinetic energy when rotating about the given axis at the same

angular rate, h is called the radius of gyration of the body with

reference to the given axis.

338. Computation of I and k2
.—Moments of inertia are of

fundamental importance, not only in the consideration of rotat-

ing bodies, but also in many other connections, such as the bending
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of beams and the stability of ships. The moments of inertia of

homogeneous areas are used in the latter problems, and are con-

venient in the computation of moments of inertia of material

bodies.

If p is the density of a body at an element of volume dV
'

, the

element of mass is dm— pdV, and

i=^Pdv ;
y=-L = Sft£r.

J r m ) pdV

If the body is homogeneous, p is constant, and

L-p)rav , ft - m -
^dy

--^- .

The transition to the conceptions of the moment of inertia

and squared radius of gyration of an area or an arc, with dA or

ds in place of dV, is the same as the corresponding process in the

case of centers of gravity. In what follows, the density will be

supposed uniform if not specified.

A few simple moments of inertia and certain general principles

aid materially in the actual computations. It is a part of the

definition that the same moment of inertia is obtained from a

given mass at a given distance from a given axis whether the mass

is concentrated at a point or distributed in any way over the

circumference of a circle or the surface of a cylinder, and that the

moment of inertia of a system of particles or bodies is the sum of

the moments of inertia of its constituent parts.

Thus, for a circumference of radius a with reference to an axis

perpendicular to its plane through its center, or for a cylindrical

surface of revolution of radius a with reference to its geometric

axis, h— a.

For a rectangle with reference to an axis in its plane parallel

to one of its sides, the radius of gyration is the same as for

one of the perpendicular sides; and for any right cylinder with

reference to an axis parallel to its geometric axis, the radius of

gyration is the same as for a section normal to its axis.
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For, let the dimensions of the rectangle be I and b, and let the

axis be parallel to b (Fig. 112). Then if lines

are drawn across the rectangle parallel to the

axis, the moment of inertia and the mass of the

rectangle are the same as if the mass of every

such line were concentrated at the point where

the line crosses I, and so are what the correspond-

ing values for the line I would become if the

density of the line were b times that of the rec-

tangle. As the radius of gyration is independent of this density,,

the first part of our proposition is proved. ,

The second part of the proposition is proved in the same way

by drawing cylindrical surfaces of revolution having the axis of

reference as a common axis, and supposing the mass of every such

Fig. 112.

Fig. 113.

surface to be concentrated along the arc in which the surface cuts

the normal section of the given cylinder.

339. Examples.

Find the values of I and h2 for each of the following homo-
geneous figures, the first five by direct integration, the rest by
combining values already found.

1. Straight line of length I; axis perpendicular to the line at

I
3

I
2

one end. Ans. l—-—
i 'k

2—-~.
o o

2. Straight line of length I; axis perpendicular to the line

extended, and distant c from the nearer end.

Ans. I= cl(c+ l) + |-, fc
2= c(c+Z)+ | .
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3. Eectangle of length I and breadth b ; axis one of the sides of

l
3b I

3

length I. Ans. 1= -~- , lc
2—-—.

4. Eectangle of length I and breadth b; axis parallel to the

sides of length b and distant c from the nearer one.

Ans. I= clb(c+ l)+^-,k2= c(c+l)+^.

5. Triangle of altitude h and base b ; axis parallel to the base

and through the opposite vertex.

ih
2

.Ans. 1= \bh\ Tc
2=

,

'

?" /'6"

a"
6

3
3" 3"

6"

8"

F.[G. ].14. Fig. 115.

6. The accompanying T-beam section, axis as shown in Fig.

114. Ans. 1= 540, fc
2=15.

7. The hollow square in the accompanying figure (Fig. 115) ;

axis shown. Ans. 7= 31,968, k2— lll (inch-units).

8. Two straight lines, each of length I, perpendicular to each

other at their mid-points ; axis parallel to one through an end of

the other. Ans. I—^lB
i k2=^l2

.

9. A pole AB, standing upright with the end B on a horizontal

plane, falls without sliding. Find the speed with which A hits

the plane if AB= 2± feet (the kinetic energy is acquired through
the work done by gravity during the fall)

.

Ans. 48 f/s.

340. Perpendicular Axes for a Plane Area.—If Jcx
2 and Jcy

2

are the squared radii of gyration for a plane area or arc with

reference to two perpendicular axes lying in its plane, the squared
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radius of gyration with reference to an axis perpendicular to the

plane at the intersection of the given axes is

Let the three mutually perpendicular axes be OX, OY, OZ,

and take them as axes of coordinates. Then the moments of

inertia of the given area with reference to these axes are:

Ix —\y2dA, Iy—\x2dA, and Iz— \r2dA,

where, since r2= x2+ y
2
,

Iz= \x2dA + Sy
2dA =IV+IX .

Then

A.Kg — jljlKx i~ A- toy i

or

Kg =z Kx T" Ky .

Fig. 116.

An exactly similar proof establishes the

proposition in the case of an arc.

341. Parallel Axes for any Body.—If ha
2 and kg

2 are the

squared radii of gyration for any body with reference to any axis

a and an axis g, parallel to a through the center of gravity G;
and if R is the distance of G from a, then

Kq, — Kg -J- -ti •

Choose a set of perpendicular axes, taking g as the axis of z,

and let a cut the plane of xy at (h, k) (see Fig. 117).

Then Ig— - mkg
2

' = \ (x
2+ y

2
) dm, and Ia= mka

2= §r2dm, where

^=(x-hy + (y
- Ky and h2+ k2=R 2

; i. e., r2 = (x2 + y
2
) +R2

— 2hx— 21cy.

From the formulas for the coordinates of the center of gravity,

_ \xdm q_ \ydm
~ \dm ' ~ \dm

'
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Hence, from

ml'a
2= [r 2dm= J (x

2+ if) dm+ \R2dm— 2h$xdm — 2k]ydm

we find

mk 2 — mkg
2 + mR2

,

or

rCa -—fog ~v -tv"

>

It is readily seen that if ka
2 and k^2 are the values of k 2 for any

bod}- with reference to two parallel axes, distant Ra and Ri, re-

spectively from the center of gravity,

Vt*.o)

Fig. 117.

342. Fundamental Radii of Gyration. Straight Line and

Rectangle.—The squared radius of gyration for a straight line of

length I with reference to an axis, a, perpendicular to I at one end,

I
2

is -=- , and with reference to a parallel to a through the middle
o

I
2

point of I is ^r , for, from the theorem of parallel axes, we have

72 p-— = kg2
H

—

-7- . The same theorem will give k2 for the line I

o 4

with reference to a perpendicular to I anywhere in space.

24
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These are also the values of k2 with reference to the same axes

for any rectangle having I as one side, and parallels' to the axis

of reference as the perpendicular sides.

The squared radius of gyration for a rectangle having the

dimensions a and b, with reference to an axis perpendicular to

its plane through its center, is found from the theorem of per-

pendicular axes to be —^— .

The theorem of parallel axes will now give the value of k2 for

any axis perpendicular to the plane of the rectangle.

These will also be the values of k2
, with reference to the same

axes, for any right parallelopiped having the rectangle as a

cross-section.

343. Examples.

Find 7 and k2 for each of the following homogeneous figures

with reference to three mutually perpendicular axes through the

center of gravity, one of them being an axis of symmetry.

1.

2"

_£ 7,2_11 jL 2
O, H,y — --g-, tiz —

= 180, Iy
2= 132, 7/=312 (Fig. 118).

lh 25 H
2\

6

*

I

JO

13" *"

3 3 \

5
i

F

8"

[G. 1L18.

u.
v

F
72

LG.

H

119.

8025, 7^=16,280, 7*= 24,305,

*--*-, kz
2= ^H¥ig.ll9)._5 3_

ti

L. 2_ 407
, tly

g ,
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h= hb3

48
"> *!/

fc
36

~ 36
'

4= 3^(3& 2 + 4/*
2
),

fa
f =

b2

"24' Ky
/i
2

~18'

355

kz
2 =^(3b 2 + 4:h

2
)
(Fig. 120).

Fig. 120.

4. Find fc
2 for these figures with reference to axes perpendicu-

lar to their planes, the axis passing through one of the lower

corners in the figures of examples 1 and 2, through the left vertex

in the figure of example 3.

Ans. (1) V=*P, (2) k*=^, (3) P=m
2

,

+ 6
'

.

5. One diagonal of a rhombus is equal to a side: find Tc
2 with

d2
GL

2

reference to each diagonal. Ans. ^7 and ^

6. The dimensions of a rectangular parallelopiped are I, a and
b. Find its moment of inertia with reference to an edge of

length Z. Ans. ^~(a2 + b
2
).

7. Find the moment of inertia with reference to a lateral edge

for a right prism of which the cross-section is an equilateral

triangle.

Ans. Lateral edge being I, edge of base a, I=-f^la*'\/S.

8. A cube balanced on one edge on a horizontal plane is slightly

disturbed and falls without sliding; what is its angular rate of

rotation when it hits the plane, and what is then the speed of a

point on the edge opposite to the stationary edge?

Ans. co
2=-^V2; v

2= 3glV~2.

344. k2
for a Circumference or for a Circle.—For a circum-

ference of radius a, with reference to an axis perpendicular to its

plane at its center, Jc= a; and with reference to any diameter, Tc

must be the same as with reference to any other diameter. The
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value of h2 for a circumference with reference to any diameter is

therefore determined by the theorem of perpendicular axes,

a2= k*+ Jc
2
, to he lc

2= ~.

To find k2 for a circle of radius a with reference to a perpen-

dicular to its plane at its center 0, divide the circle into elemen-

tary rings by concentric circumferences dr

apart; then, assuming the density=1,

dm= 2>7rrdr,

r_Jo
27rr

zdr

2irrdr

i-va*

TTOf

Fig. 121.

Using the theorem of perpendicular axes,

as we did for the circumference, we find h2 for the circle with

a 2

reference to any diameter to be —r-
.

We might have obtained the last result by observing that Tc
2

r
2

. .*

for the element %irrdr is -=- , so that its momenr of inertia is

irr
zdr, and for the circle,

F=-J

xr sdr

2*rdr
na 2

Again, we might have used rectangular coordinates, taking the

diameter in question as the axis of x, and using either the element

xdy, for which Jc= yJ or the element ydx, for which h2= ~~
. The

corresponding elements of the moment of inertia would have been

xy2dy and iy
Bdx.

The theorem of parallel axes will now give h2 for any circum-

ference or circle with reference to any axis in or perpendicular to

its plane.
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The value of k2 for a right circular cylinder with reference to

its geometric axis or to any parallel axis is the same as for its

right section.

345. k2 for any Area or Arc.—The methods suggested for the

circle will give h2 for any area with reference to the coordinate

axes, and, thence, by the theorem of perpendicular axes, with

reference to a perpendicular to the plane at the origin. The

theorem of parallel axes will then give k2 with reference to any

axis parallel to either coordinate axis or perpendicular to both of

them. These results will include the values of h2 for any right

cylinder with reference to any parallel to its elements.

If the boundary of an area is given by a polar equation, it is

best to take dm= rdOdr and perform a double integration, and

if k2
is wanted for an axis perpendicular to the plane at the pole,

to determine it directly.

346. Examples.

1. Find k2 for an ellipse having the semi-axes a and b with

reference to each principal diameter and to the perpendicular to

the plane of the ellipse at the center.

Ans. kx
2 =-^-, ky2 =-°~-

, kz
2 =z°^— .

2. Find / for an elliptic right cylinder with reference to an

element through an extremity of the major axis of a right section.

Length I, semi-axes a (major) and b.

Ans. lTrabl(5a2+ V).

3. Find k2 for a parabolic segment, height K, base 2b, with

reference to its axis of symmetry and to a perpendicular to its

plane through its vertex.

Ans. kx
2= ib

2
, kz

2= -jt{7b
2+ 15a2

).

4. Find k2 for the area bounded by the #-axis, and an arch of

the cycloid, x— a{<^>—sin</>), y= a(l — cos<j>), with reference to

the .r-axis. Ans. kx
2=^a2

.

5. Find k2 for the area bounded by the cardioid r= 2a sin2
f.

with reference to the initial line and to the perpendicular to its

plane at the pole. Ans. kx
2—^a2

, kz
2 =.%^a2

.
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6. Find k2 for the arc of a cycloidal arch with reference to its

base. Ans. ffa
2

.

7. Find k2 for the arc of a cardioid with reference to a perpen-

dicular to its plane at the cusp, and with reference to a parallel

axis through the center of gravity.

Ans. F=ffa2
, kg

2 =i^£a\

8. Show that if a vertical plane area is submerged in a fluid

so that its center of gravity is h below the level free surface, its

center of fluid pressure will be at a depth D below its center of

gravity, where hD= lcg
2
, kg being the radius of gyration for the

submerged area with reference to a horizontal axis through its

center of gravity.

347. kz for a Solid of Revolution with Reference to the Geo-

metric Axis.—In finding k2 for a solid of revolution with refer-

Fig. 122.

ence to the axis of revolution, the most convenient element of

volume is that generated by the revolution of some element of the

generating area. For example, to find k2 for a sphere of radius a

with reference to a diameter, take the diameter as the axis of x;

the sphere is generated by the revolution about the axis of x of

the circle x2
-\-y

2— (i
2
, or, in polar coordinates, r= a.

The element ydx generates a disc, for which

dm= dV= Try
2dx, IC ~ 2

dl— ^y^dx;
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(a Ca

^Trii^dx y71
\ (a2— x2

)
2dx -, 5/1 9 , i\ 022 * =

2
Jo

v y

= fr*z (!-$+ &) = ?a

The element xdy generates a cylindrical shell, for which

dm— dY— 2-rtyxdy, k 2 — y
2
, dl— 2iry

zxdy;

and again, the element rdOdr generates a ring, for which

dm = dV= 2irr sin OrdOdr, I2= r2 sin2
6, dl=2^ sin3 Odddr;

each of these, the first by a single integration, the second by a

double integration, gives in the same way k2— %a2
.

k2 for an axis parallel to the axis of revolution is found directly

by the theorem of parallel axes.

348. Examples.

1. Find k2 for an ellipsoid of revolution with reference to the

axis of revolution.

Ans. Length being 2a, greatest transverse diameter 2b,

k - 5
•

2. Find k2 for a cone of revolution with reference to the geo-

metric axis.

Ans. Height being h, radius of base b, k2=^b 2
.

3. Find k2 for a paraboloid of revolution with reference to the

geometric axis.

b2

Ans. Height being h, radius of base b,k2= -=-.

4. Find k2 with reference to the geometric axis for the solid

generated by the cycloid, x=a(<f>— sin <£), y=a(l — cos<£), in

revolving about its base. Ans. k2— 1.575a-
2

.

5. Find k2 with reference to the geometric axis for the solid

generated by revolving the cardioid r= 2asin2
f about the in-

itial line. Ans. k2—^a2
.

6. If all of the solids in examples 1-4 are of the same length,

and if each of them weighs 480 pounds to the cubic foot and has

a maximum transverse diameter of 4 feet, find their respective
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kinetic energies in foot-pounds when each is making 2 revolutions
o QPPOT1

H

Ans. I1
= 1024«-S I2

= 384tt4
, I3 =:6407r

4
, I4= 945tt

4
.

7. Find &2 with reference to the geometric axis for the surface

formed by revolving an arch of the cycloid about its base.

Ans. &2 =ffa2
.

8. Find h2 with reference to the geometric axis for the surface

formed by revolving the cardioid r=2a sm2
J about the initial

line. Ans. lc
2 =-\^a2

.

349. Axis of Reference not an Axis of Symmetry.—In other

cases of finding Tc
2 for a solid, it is generally most convenient to

Fig. 123.

divide the solid into elements of volume by planes that are either

parallel or perpendicular to the axis of reference. For example,

to find h2 for a cone with reference to a perpendicular to the

geometric axis through the vertex, divide the cone by planes

parallel to the axis of reference and perpendicular to the geome-

tric axis (see Fig. 123) . Let x be the distance of any one of these

planes from the axis of reference ; then the corresponding element

of volume is dV= ir(^p) dx, and its h2 isz2 + i (-£) .

The moment of inertia is therefore, if we take p= l,
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V= ^
h

; hence ]c
2= Y\(4:h

2 + b
2
).

With reference to a parallel axis through the center of gravity,

350. Examples.

1. Find A;
2 for a cylinder of altitude h, radius of base ~b, with

reference to a diameter of its base, and to a parallel axis through

b
2 h2 b

2 h2

the center of gravity. Ans. k2= -r- -f -^- , &/= -j + y~-.

2. Find &2 for a paraboloid of revolution of altitude h, radius

of base b, with reference to a tangent at the vertex, and to a

parallel axis through the center of gravity.

b
2 h2 b

2 h2

Ans. J*=_ + __,V=-
g
- + ls

.

3. Find k2 for an ellipsoid of semi-axes a, b, c with reference

to each of its principal diameters.

Axu, ,&=»+*, V=^, W=^-
4. A circle of radius a is revolved about a line in its plane dis-

tant na(n>l) from its center. Find h2 with reference to the

geometric axis and with reference to a diameter perpendicular to

the geometric axis for the solid so formed, and for its surface.

a2

Ans. Geom. axis: Solid, k2— —r- (4n 2+ 3) ; surface, h2=

a2 a 2

-
7V-(2n

2+ 3). Perp. axis: Solid, fc
2= -—

- (4n 2 + 5) ; surface,

k2=~(2n2+ 5).

5. A parabolic segment, height fe/ base 2b, revolves about the

base; find h2 for the solid so generated, with reference to a

diameter of the maximum circular section and with reference to

the geometric axis. Ans. kx
2=^T (4zh

2+ 3b 2
), kz

2=£Th2
.

351. D'Alembert's Principle.—For convenience of statement

we divide the forces acting on a body or system of bodies into two

classes : external or impressed, forces, the source of which is out-
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side of the body, and internal forces, the reactions between the

particles of the body or system.

Consider a system composed of two connected particles, Pt

and P2, and suppose the total external force acting on Pt to be flf

and that acting on P2 to be f2 . Let the reaction of P.2 upon Px

be r1} then the reaction of Px
upon P2 is r2 = — rt, a force having

the same line of action as r± . Let the accelerations of P± and P2

be ax and a2, their masses m x and m2 . Then m^ is the single

force which would give Pt the motion it actually has; ra^ is

therefore called the effective force for Plm m2a2 is the effective

force for P2 . Now the equations of motion for P± and P2 are

:

/i + ri =wiai> f2+ r2 = m 2a2,

Fig. 124.

where the + indicates the process of finding a resultant, and the

equality of (f+ r) with ma holds for magnitude, direction and

line of action ; i. e., is an identity. If we now add these identities,

we have

A+ r±+ f2+ r2 =m1a1+ ra2a2 ,

which reduces, on account of the relation between rx and r2, to

fl+ fi —Wlal+ ^2a2?

another identity.

This reasoning can evidently be applied to any number of par-

ticles, for all the internal forces occur in equal, directly opposed

pairs, and drop out in the summation. If the particles form a

continuous body or system of such bodies, the summation becomes
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an integration. Then D'Alembert's Principle may be stated as

follows

:

The resultant of the impressed forces acting on a material

body or system is identical with the resultant of the effective

forces for all its particles.

It follows from this that the sum of the resolved parts of the

impressed forces in any given direction is equal to the sum of the

resolved parts of the effective forces in the same direction.

For instance, if a body weighing W pounds is falling under the

action of gravity alone, we know that the resultant of the im-

pressed forces is a vertical force of W pounds acting through its

center of gravity; hence the resultant of the effective forces for

all its particles, which we may indicate by \adm taken throughout

the body, is this same force ; then if the body is rotating, so that

a is not the same for all the particles, the horizontal components

of adm must balance one another when summed up for the whole

body.

352. D'Alembert's Principle Applied to Rotation.—The appli-

cation to linear motion is only half the use of D'Alembert's Prin-

ciple ; the other half is its application to angular motion, or rota-

tion about an axis. The kinematics and dynamics of angular

motion can be founded theoretically on the corresponding sciences

of linear motion, or may be established independently.

It is found that the moment of a force plays the same part in

angular motion that the force itself plays in linear motion. In

Art. 314 we defined the moment of a force about an axis perpen-

dicular to its line of action. If we have a force F and an axis I

in any position, we can draw a plane parallel to I through F's

line of action, and resolve F in this plane into f parallel to I and

/ perpendicular to I. Then the moment of F about I is denned to

be the same as the moment of / about I.

It can be shown that the moment about any axis of the resultant

of anv set of forces is the sum of the moments about the same axis



364 The Calculus.

of the component forces. Consequently, D'Alembert's Principle

tells ns that the sum of the moments of the impressed forces about

any axis is equal to the sum of the moments of the effective forces

about the same axis.

For instance, if a falling body is acted upon by both gravity

and atmospheric resistance and descends without rotation, all of

its particles having the same acceleration a, the sum of the

moments of the effective forces about an axis through its center

of gravity G, if x is the distance of any particle of mass dm from

G, is \xadm—a\xdm taken throughout the body, and is therefore

zero. Moreover, as the sum of the forces of gravity acting on the

particles passes through G, gravity has a zero moment about the

same axis; therefore the total atmospheric resistance has the

moment zero about any axis through G, and so is a single force

acting through G-.

If, on the other hand, the falling body starts at rest and rotates

as it falls, the total atmospheric resistance does not pass through G.

353. The Equation of Rotation.—If a body is capable of turn-

ing about a fixed axis, it will turn if acted upon by a force that

has a moment about that axis. The numerical relation between

the moment and the rotary motion is obtained as follows: Let

Fig. 125 represent a section of the body by

a plane perpendicular to the axis at 0, and

let dm> at P be an element of mass. Let <a

be the angular rate at which P moves about

when the body rotates, and let OP— r;

then the acceleration of P has two resolved

v2
parts : = no2 in the direction. PO, and

—jr — r -=— in the direction of the tangent

PT.

The effective force for the particle at P
is therefore the resultant of r<a

2dm along PO, which has no mo-

Pig. 125.
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ment about the axis, and r -^- dm, which has the moment
at

r —— dm.
at

Ihe sum of the moments of all the effective forces about the

dt
axis of rotation is therefore jr2

—=r- dm taken throughout the body.

If the body is rigid, -j— is the same for all its points, and the

sum becomes

dt ^ am- L
dt - mlc

dt
'

If M is the sum of the moments about the axis of rotation of

all the external forces, we have from D'Alembert's Principle,

at

This is a second equation of motion; it is distinguished from

the equation of linear motion, f=ma, by being called the equation

of rotary motion. The two equations are also called the equations

of translation and rotation.

There is an evident correspondence in the two equations be-

tween momentum and force, moment of inertia and mass, angular

acceleration and linear acceleration. The moment of inertia,

however, is not, like the mass, a fixed characteristic of the body,

for it varies with the relative position of the body and the axis.

354. The Compound Pendulum.—The compound pendulum in

its simplest form consists of a rigid body capable of turning freely

on a fixed horizontal axis; this is the pendulum used in clocks and

in physical apparatus for determining local values of the accelera-

tion due to gravity. The devices used to minimize friction at the

axis are so successful that the action of this force may be neg-
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lected in considering the motion. The only impressed forces,

then, are the forces of gravity on the particles of the pendulum,

the resultant of which acts vertically downward through the

center of gravity G of the pendulum.

Let Fig. 126 represent a section of the

pendulum by a plane perpendicular to

the axis at and passing through G; OV
and OG are the traces of planes contain-

ing the axis, the first of them vertical.

Let OG= a; then the moment of the im-

pressed forces is Wa sin 0, if W is the

weight of the pendulum and the angle

YOG is called 6.

According to Art. 353,

dojFig. 126. Wa sin 0: la
dt

W k* **
9

a
dt

2

and Ia and ka
2 are the moment of inertia and squared radius of

gyration for the pendulum with reference to the axis of rotation.

Hence

d26 _
dt2 ~ k 2

sin 6.

This is precisely the equation for the motion of a simple pen-

k 2

dulum of which the length is 1= —?—
; that is, the compound

pendulum vibrates as if all its mass were concentrated at a point

Q of the line OG, called the center of oscillation, at a distance I

from 0. lis called the length of the equivalent simple pendulum.

If the squared radius of gyration for the pendulum with refer-

ence to a parallel to the axis of rotation through G is kg
2
,

fCg
a

If we let GQ= b, OQ =a+b and

ab
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355. Examples.

1. A cone of altitude 4a, base of radius 2a, is free to rotate

about a small smooth axis, perpendicular to the geometric axis, a

from the vertex. Find the length of the equivalent simple

pendulum. Ans. l—^-a.

2. A rod of a centrifugal governor is \ inch in diameter and
6 inches long and carries a sphere 1 inch in diameter at the lower

end. What is the length of the equivalent simple pendulum,
supposing the rod suspended from its extreme upper end ?

Ans. Very nearly 6 inches.

356. Moments of Inertia Determined by Experiment.—Sup-

pose we wish to find the moment of inertia of a body with refer-

ence to a given axis, and that the shape is inconvenient for com-

putation. An apparatus may be set up similar to a lathe, but

driven by a weight hung from a light cord wound on a drum

carried on the axle and concentric with its axis of revolution.

The body may be fastened to both head-stocks in such a way that

the axis with reference to which the moment of inertia is desired

will coincide with the axis of revolution. Let the radius of the

drum be \ foot and the driving weight 10 pounds, and suppose the

weight is observed to fall \\ feet in the first 2 seconds. Suppose

the moment of inertia of the moving parts of the apparatus itself

to be -2V (engineer's units) and assume the effect of friction

negligible. Let g— Z2.

Let the weight descend 5 feet, and the apparatus rotate through

6 radians, in t seconds, and let T be the tension in the cord. Then
the equation of translation for the weight and the equation of

rotation for the revolving mass give, if I is the moment of inertia

of the body and the apparatus together,

10~T=™W> (1)

Txi=I§. (2)
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l^=2^f,so,from(2),
dt2 dt

A _
dt

d2
<i

and from (1),

10-4a7=Ha, I=rA(32-a).

The constant acceleration a is readily seen to be f f/s2
; hence

/= f|f. The moment of inertia of the body alone is T=fH— 2V
If the body weighs 150 pounds, the corresponding radius of gyra-

tion is k, where

F= §)' =M-3f£<r= ff(l-0.01536),

&= f (1-0.008) feet= 4.96 inches.

If the effect of friction cannot be neglected, it is best allowed

for by making two tests with different driving weights and elim-

inating the moment of friction and the two tensions from the

four equations of motion.

If a body is suspended from an axis and allowed to vibrate

through a small angle, its time of vibration, T— ir J -, will give

aT2 k 2

the length of the equivalent simple pendulum, I— ^-r- = ,

where k is the radius of gyration with reference to the axis of

suspension, and a is the distance of this axis from the center of

gravity. Then if a is known, k—— V ga.

357. Combined Translation and Rotation.—It can be shown

that when a body moves in any way, its center of gravity moves

as if it were a heavy particle having the same mass as the body

and acted upon by forces equal to the forces acting on the body.

At the same time, the body if rigid revolves about any axis
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through its center of gravity precisely as it would if the center of

gravity were fixed.

Consider, for instance, the motion of

a sphere down a rough inclined plane.

Let the weight of the sphere be W
pounds, its radius a feet, the coefficients

of friction /x and / and the inclination

of the plane to the horizontal <j>. In t

seconds, let the center of the sphere

move s feet down the plane, and let the

radius to the point initially in contact

with the plane rotate through radians.

Then if the sphere rolls, s— aB; if it also slides, s>a$. The roll-

ing is due to rotation about the horizontal axis, and is caused by

friction alone ; the friction may not be sufficient to cause rotation

rapid enough to keep up with the translation.

The equation for translation down the plane gives

Fig. 127.

w jl j? W d2
sW sm<£ —F— — -jjz

g dt2

d~s

The equation for rotation about the horizontal diameter gives

dt
aF=I^ =fa2 w <m

g dt2

d2

l
dt

2

5g F
2a W

d2
s d2

If the sphere merely rolls, s— aO,-^ =a -^ ,

Qi
1

/ • F
g(sm<f>- w

F
-§sm<f>.

Thence

d2
s * • ,

-3P
=?«"*•

(3)

(4)

From this constant acceleration, the motion of the center of the

sphere down the plane can be determined directly.
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To determine whether pure rolling is possible or not, we have

the equation for translation normal to the plane

:

R=W cos
<f>, . (5)

pi

from which ~» =y tan*, by (3). The greatest value possible

for-p- is ht the coefficient of statical friction; if fi is greater than

f tan *, the sphere will merely roll ; if fi is less than f tan *, the

sphere will also slide.

In case the sphere both rolls and slides, we have the equations

pp

of motion, 1, 2 and 5, and we also know that -^- = // constantly.

Thus we have

^=2^ cob*
d2

it
2
'

dO

dt
(fVcos*)*.

,= (|L,, C08+),.

v =

-^=#(sin*-//cos*).

dt
(sin* — /*' cos <f>)t.

s= ^g(sm<f>— fx cos*)£ 2

The amount of slipping at any time is (s— a6), and the rate of

slipping is v — a*)= gt (am <j>—i(i cos *) f/s.

358. Examples.

1. Show that if a cylinder rolls directly down an inclined plane

without sliding, //, must be greater than -J tan *, and the accelera-

tion down the plane is §g sin * f/s2
. Show that if the cylinder

slides as well as rolls, the acceleration of the center down the

plane is g (sin *— /*' cos *)f/s2
, and the rate at which the point of

contact slips on the surface is gt (am *— 3// cos *) f/s.

2. Two spheres, each of radius a and weighing W pounds,

look alike, and will stand in any position on a horizontal plane,

but one is said to be solid, the other hollow. They are rolled

(without sliding) down an inclined plane; sphere A goes 10 feet



Eigid Bodies. 371

and sphere B 9 feet in the same time. Which is hollow, and what
is its radius of gyration ?

Ans. -172- = 2 4- jl2
m general> B is hollow, with l,2 -4

a

2
-

3. A hollow cylinder of mean radius a, of which the thickness

may be neglected, and a homogeneous cylinder of radius a having

the same weight are started together down an inclined plane;

show that their accelerations are in the ratio j if they roll without

sliding.
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