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PREFACE

THIS little work supplies, I believe, a felt want.

Elementary treatises on steel-work are numerous, but

a brief yet comprehensive account of the stresses in

masonry has not yet, to my knowledge, been produced.

I have assumed that the reader is familiar with

mathematics only up to quadratics, all more advanced

matter being relegated to foot-notes. Also I have

assumed that a knowledge of stresses in steel, such as

is possessed by the majority of young engineers and

architects in practice, is at the reader's disposal.

Beyond this, I have endeavoured to make the matter

as simple as possible, eliminating complex theory which

may be a little more accurate, but does not adapt itself

to design.

One feature in special I wish to emphasise : the use

of twice the safe shearing stress as the safe compressive
v
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vi PREFACE

stress instead of the direct safe compressive stress.

The reasons for this will be apparent after reading

Chapter I., and, at the same time, the common but

false notion that unsafe stresses are uncommon in

masonry will be avoided.

H. CHATLEY.

SOUTHSEA,

1909.
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OF THE

UNIVERSITY
OF

STRESSES IN MASONRY

CHAPTER I

STRENGTH OF STONE

IN most cases masonry is subjected to only two kinds of

stress compression and shearing. Tension occurs but

rarely, and then generally as the result of bending

rather than of direct pulling.

As will be shown immediately, it is the shearing

stress which is generally responsible for failure rather

than compression, but the latter is most usually taken

as the basis of strength-measurement.

Before proceeding, it will therefore be as well to have

some simple figures to refer to. In each case a low

value is given for the ultimate stress, and the stone is

assumed to be of good average quality.

ULTIMATE STRESSES (tons per sq. ft.)

Crush- Ten- Shear- Bend-
Name, ing. sion. ing. ing.

Granite ., . 900 30 50 100

Basalt. . . 800 80 40

1



2 STRESSES IN MASONRY

Crush- Ten- Shear- Bend-
iName. ing. sion. ing. ing.

Slate . . .800 60 40

Sandstone . . 500 10 30 50

Sandstone (soft) .200 5 10 20

Marble . . 600 30 50

Limestone . . 500 25 40 60

Limestone (soft) . 100 9 35 50

Chalk ... 10

These figures are selected and simplified from

Molesworth's Note-book and Unwinds Testing of

Materials. The majority are on the basis of Bausch-

inger's research.*

We shall refer to this table from time to time as

a basis for calculations. It is useless employing very

exact figures, since every specimen, even from the same

quarry, will vary somewhat in strength.

When a column of masonry is in compression, it is

more likely to fail by shearing obliquely than by

direct compression, because the shearing stress at

which breaking occurs is lower than the compressive

ultimate stress.

Thus on an oblique section inclined to the hori-

zontal, we have a normal and a parallel force. The

*
Mittheilungen aus dem Mech. Tech. Laboratorium in Munchen

1874.
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latter = P sin 0. The area, if the column is square,

is D 2
sec 6, so that the shearing stress is ^.

sm
.D 2 sec

FIG. 1.

This expression is a maximum when 9 is 45, so that

usually we find the column fractures into pyramidal

pieces, the angle of slope being 45.*

For this angle, sin
/ sec

=
J, so that the maximum

shearing force per unit area is half the compressive

* *L (
& Q\ =

de \sec e)
~ sec X cos - sec X tan x sin

sec 20

Hence sec x cos - sec X tan x sin = O
cos = tan

tan 20 = cos 20 = 1

tan = cos = Vr= 1,
= 45.
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stress. It is probable that this value is not fully

reached, since there is a frictional resistance as well to

be considered ; but since the ultimate crushing stress is

generally twenty or more times the shearing stress, it is

obvious that the material will generally fail in the latter

manner.

This is the most general case of fracture in masonry,

and serves to explain the diagonal cracks which appear

in faulty or decaying work.

Many masonry structures, such as retaining walls,

tall chimneys, and to a certain extent arches, are

liable to tensile stress ; but it is a standard principle

to avoid this whenever possible, particularly when

special precautions have not been taken to ensure

soundness in the joints. In fact, most of the theory

of stress in masonry is based on the assumption of

uncemented joints weight, fit, and friction alone

being relied on.

Stone is one of the least elastic substances, the value

f .! -, i e , . . ., / stress per unit area \
of the modulus of elasticity ( r -^ r,- )

\stram per unit length/

being from 20,000 tons per sq. ft. (Bunter Sandstone) to

685,000 tons per sq. ft. (Nummulitic Limestone) ;
* or

* This may be compared with steel as follows :

Modulus of stone, 2 to 13 million Ibs. per sq. in.

Modulus of steel, 30 million Ibs. per sq. in., or about 1,872,000 tons

per sq. ft.
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taking 144,000 tons as a convenient and fair average,

we have

stress
strain

144,000'

or for a stress of 144 tons per sq. ft. (1 ton per sq. in.)

the strain is
1^ . As will be seen from the table

given above, in tension no stone can bear this stress,

although in compression it will do so, apparently. It

will not actually bear it, for the concurrent shearing

stress along any diagonal plane inclined 45 to the

horizontal is upwards of 144 -r 2 = 72 tons per sq. ft.,

which is above the figures given. As a practical rule

it may therefore be said that scarcely any stone will

bear an extension or compression amounting to ToVo" of

its linear dimensions. Since for ordinary blocks of stone

this elongation or shortening is imperceptible, we arrive

at the common result that stone is not visibly elastic.

A further question of some importance in connection

with arches and retaining walls is that of friction between

stone blocks. Although only in rare cases are blocks

laid uncemented in a large structure, it is, as has been

mentioned, usual to assume that the only resistance

existing in the joints to shearing is that arising from

the friction between the blocks.

According to General Morin, the value of /*, the

coefficient of friction between stones, is 0'71 (i.e., the
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angle of friction is about 35J). It must, however, be

recognised that this value will depend on the manner in

which the surface of the stone is finished, and also to

some extent on the nature of the stone. We may take

it that this refers to sawn faces ot a moderately coarse

stone. An example of the application of this to the

shearing of piers already referred to may be given.

On the diagonal plane there is a normal pressure

P cos 6 or P cos2 9-rT)
2

per sq. ft. If we multiply this

by yu, we have the theoretical fractional resistance to

motion on this plane, so that we may write

S P sin _ JUL
P cos

D2 sec
~~

D2
sec 6

'

D2 sec
'

where S is the total shearing force.

This simplifies to

S - Psin 6 - /xPcos
= P (sin

-
fi cos 0) (1)

where S is the shearing force per unit area and ^ P is the

compressive stress per unit area.

If = 45 ? then we have

(la)

Since the shearing force at fracture is generally less

than 01 X the compression force, the probability is still

in favour of the failure taking place by shearing.
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Referring again to arches, it will be seen that it is

possible to set voussoirs until the angle made by the

joint with the horizontal is upwards of 71. It must,

however, be pointed out that, if the joints are thick or

the cement at all liquid, the angle of friction will

probably be much less and it will not be possible to set

the voussoirs up to this angle.

Yet another application of the law of friction

suggests itself in regard to the slipping of blocks along

their bed joints. If a lateral force be applied which

exceeds
fjt
x the weight on the joint, the block will slip

unless dowelled.

We must now devote a little attention to the question

of the strength of joints ; for although this does not

usually enter into calculations, it must necessarily

do so in some special cases. Moreover, it will be

useful to know what surplus of strength we have in

ordinary cases.

The cementing materials employed are generally

1. Hydraulic lime mortar.

2. Portland cement.

3. Portland cement mortar.

It is usual to determine the strength of these

materials by tensile tests, although they are nearly

always used in compressive stress. On account of these
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materials hardening with age it is convenient to use

Unwinds formula

y = a + b 5/r i,

where y is the tensile strength at any time, x weeks

after making, a is the strength one week after making,

and b is a constant.

The following results obtained by Mr. Elliott Clarke

are typical :

*

Neat cement . . y = 303 + 61 l/sc^l

1 to 1 . . . y = 160 + 57 >^1
1 to 2 . . . y = 126 + 44 Jte^l

1 to 3 . . . y = 95 + 36 \jx^\

1 to 5 . . . y = 55 + 26 *Jx~^\

The compressive strength of neat cemenb is about

2 tons per sq. in., i.e., about 300 tons per sq. ft. Of

lime mortar the compressive strength varies from 10 to

40 tons per sq. ft. According to Bauschinger, the

,
. crushing strength f ,

ratio - rr-^ -5r- for neat cement varies from 7 to
tensile strength

11, 10 being usually taken.

The modulus of elasticity of cement is about 250,000

tons per sq. ft. As regards the shearing strength there,

seems to be considerable doubt, but 75 Ibs. per sq. in.

is a commonly assumed figure.

* Unwin's Testing of Materials.



STRENGTH OF STONE 9

Obviously the strength of masonry depends to a great

extent on the strength of joints, particularly in regard

to shearing. As to direct compression, the importance ot

the joint varies with the nature of the work. Thus in

random rubble the mortar is all-important. In heavy

masonry the mortar is scarcely of any importance.

In the case of random rubble, assuming the above

figure for shearing, we have

75 x 2 x 144 = say 10 tons

per sq. ft. as the crushing load. This is probably the

minimum for any variety of masonry.

For granite, on the other hand, we have

50 x 2 = 100 tons

per sq. ft. as the crushing load which produces failure

by shearing. All other cases will probably lie between

these two, and the next step is to deduce from the

crushing load a safe working load.

This is of course done by use of a " factor of safety,"

but, unfortunately, factors of safety are more uncertain

than they are in steel work, where they are sufficiently

so. Stone may contain unseen but dangerous flaws, and

we are dependent on joints of uncertain workmanship

made with material of greatly varying strength. Fur-

thermore, masonry is incapable of retaining much

strain energy, so that shocks are liable to cause fracture
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which would not occur under similar circumstances

with metal. Hence it is very usual to employ factors

of safety varying from 7 to 12. 10 is a commonly

accepted value.

Hence the working values for strength should be about

one-tenth the ultimate values given in the beginning of

this chapter. Further, seeing that a compressive stress is

accompanied (except when there is a lateral support) by
a shearing stress of a maximum intensity equal to half

the compressive stress, we may obtain safe wall and pier

loads by dividing the ultimate shearing stresses by 5 (i.e.,

dividing by 10 and multiplying by 2, to convert from

shearing to compression).

Tons per
sq. ft.

Granite . .10
Basalt . . 8

Slate . . 8

Marble 10

Tons per
sq. ft.

Sandstone . 6

Do. (soft) 2

Limestone . 8

Do. (soft) 7

The strength of work will depend on the manner of

construction and the mortar, as already explained. Thus,

adverting to the rubble and granite comparison, we

have 1 ton per sq. ft. as the minimum, and 10 tons per

sq. ft. as the maximum working load on masonry in

cement mortar.

Probably lime mortar rubble should not bear more
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than J ton. Fine masonry in lime mortar could bear

nearly as much as cement mortar, since the mortar is

not called upon to do much.

Attention should also here be called to the fact that

stone is in no sense of the word approximately isotropic,

as are steel and iron. It is distinctly allotropic, i.e., of

different elasticity in different directions. Its density

is generally greatest in sedimentary rocks across the

planes of sedimentation, and hence, on account of the

greater resistance to compression, these planes (the
" natural bed ") should be laid so as to be approximately

perpendicular to the direction of pressure.

A word or two may be said as to the strength of

dowels, cramps, joggles, &c.

Dowels of slate are generally placed between blocks

to prevent them slipping on one another. It is best to

assume that the blocks are uncemented. The dowels

are generally a little over 1 in. square, of slate or very

hard stone. The ultimate shearing stress of such

material is about ton per sq. in., so that if the total

probable shearing force on the bed be x tons, there

should be %tix rivets (factor of safety 10).

Bronze or copper cramps are generally J in. or more

square, turned in about 2 in. These are partly in ten-

sion and partly in bending. If the two blocks con-

nected be pulled from each other with a force ofy tons,
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and the cramps are, as mentioned, J in. square, the

stress (tensile) in the bronze is

ty 4- 384/ = 388z/ tons per sq. in.

This stress should not exceed 2 tons per sq. in., so that

only a very small pull is allowable. If, on the other

hand, the metal be 1 in. square, the stress drops to 7z/,

so that it is obviously better to have large cramps.

Joggles and similar interesting joints are almost

wholly subject to shearing force, so that we may
write

Total shearing]

resistance of

joggle tons
J

shearing stress

tons per sq.

ft.

'area of

sections

(sq. ft.)

This rule is of importance in the case of lighthouse

work, where very ample provision has to be made

against shearing forces arising from the dynamic action

of waves.

Numerous cases of bending arise in connection with

arches, domes, vaults, retaining walls, chimneys, and

brackets. With the exception of the last there is

always, in addition to the bending, a direct loading ; so

that the material is subject at one place to a great

compressive stress due to both bending and loading,

and in another place to little compressive stress (or
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sometimes tension) due to neutralisation of the loading

by the bending stresses.

Since masonry joints are uncertain, and the tensile

strength of stone low, it is generally as well to avoid

having tensile stresses, although in some cases they

cannot be avoided. In modern practice it is usual,

wherever there may be tension, to build in steel beams

to take it. This device may be regarded as the origin

of reinforced concrete.

It should be noticed that the ability to resist stress

depends in some cases on the age of the stone and its

weathering capabilities. Thus some of the softer stones

decay, and are disintegrated by frost, so that their com-

pressive strength is greatly reduced and their tensile

strength practically destroyed.

The cases of stress in masonry may be conveniently

grouped as follows :

(1) Walls subject to simple compression and

oblique shearing.

(2) Columns subject to simple compression, bend-

ing, and shearing.

(3) Brackets subject to simple bending.

(4) Arches subject to bending, compression, and

shearing.

(5) Arched Structures, including more complex

stresses.
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(6) Retaining walls subject to compression,

bending, and shearing.

The stresses may again be grouped in the following

manner :

(1) Simple compression and oblique shearing. Short

columns and walls.

(2) Simple bending. Brackets, footings.

(3) Bending, compression, and shearing. Retaining

walls, arches, and chimneys.



CHAPTER II

WALLS

WALLS may be classified according as the loading is

wholly or only partially vertical. The latter, in which

the loading is partly lateral, are described as "
retaining

walls,"" and are dealt with later.

It is usual to assume that all loads (including the

weight of the wall itself) are uniformly distributed over

its base. It may be doubted whether this is always

true, particularly when regard is had to the cases of

unequal settlement on uniform soil which occasionally

occurs.

The assumptions underlying this belief really apply

to a wall of uniform material, uniformly bonded with

mathematically plane joints on a bed of uniformly

resilient soil and of infinite length.

In an actual wall of slightly irregular material,

unequal bond, and roughly finished joints, there will

necessarily be an inequality in the distribution of

pressure.

15
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Irregularity of bond is the most potent cause of such

inequality. Thus if a load W be transmitted in any

manner to one block and this be supported by two

others, presupposing the joints are uniform, the load

will be transmitted exactly in the proportion in which

w
ilUir

FIG. 2.

the lengths of bed joint happen to be. Thus in the

#W
sketch, the pressure on B due to A will be 7, where

a and b are the lengths of bed on blocks B and C.

It will perhaps be objected that

(a) The adjacent blocks to A on the same course will

bear similarly, so that the pressure is equalised

(b) That the blocks B and C being similarly un-

symmetrically supported, will redistribute the pressure,

and so on from block to block until the loading is

uniform.

In perfect work undoubtedly both these objections

hold good, but in practice (a) may fail by W being

irregularly transmitted from above or a concentrated

load bearing solely on the block A ; and as far as (b) is
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concerned, the slightest cavity, crack, or bump in any

joint spoils the uniformity of the transmission. These

secondary influences are, it is true, generally neglected

in calculations, but they account for the high factors of

safety which it is necessary to employ.

In most cases of walling it is convenient to consider

just one foot run and study that by itself. Every

similar foot will of course be under the same conditions

of stress. Hence we may write two simple rules for

stresses in masonry.

(1 ) Max. compressive stress = wt. per cubic ft. X height,

(tons per sq. ft.) (tons) (ft.)

() Max. shearing stress = | max. compressive stress.

We may deduce from these rules the maximum height

of walls in rubble and granite. In the last chapter it was

shown that the working compressive stress should not

exceed 1 to 10 tons respectively of these stones. Now

rubble weighs generally less than 1 cwt. per cubic ft.

and granite about 1J cwt., so that the maximum safe

height of a random rubble uncoursed wall is about

20 ft., and of a granite wall about 130 ft.

As a matter of fact walls very rarely fail by simple

shearing or compression, since the above-mentioned

limits are passed only exceptionally. The most usual

causes of failure are :

B
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(1) Foundations of irregular resistance longitudinally,

leading to concentrated pressures and shearing.

(2) Foundations of irregular resistance transversely,

leading to overturning of the wall and collapse by

bending or actual collapse.

(3) Unequal arrangement of concentrated loads on

walls, causing similarly unequal reactions at the founda-

tions and unequal settlement.

Under the first heading we have the case which not

infrequently happens where part of the foundation

sinks leaving a length of walling say x ft. long un-

supported. At each end of this length there are reactions

supporting the intermediate load (say wht when w is

weight per cubic ft., t is thickness, and h the height), so

that there is a shearing force (vertically) of magnitude

about wht-^-%. Concurrent f there is a horizontal force

of the same magnitude, and hence on an oblique plane of

45' inclination to the horizon there is a shearing stress

of ze>/2 Ibs. per square ft. Since w may be 180 Ibs. or so in

the heaviest stones and even the joints have a shearing

strength of some 75 Ibs. per sq. in. at the maximum, it

does not seem probable that in decent work any failure

could happen this way unless h is so small that bending

stresses are appreciable. Hence we may conclude that

concentrated loads (due to beams, roof timbers, &c.)

are probably responsible for such apparent failures.
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The second case is only of comparatively common

occurrence, particularly in low walls and piers not

carefully founded. Monumental masonry generally

fails in this respect. If the supporting material is of

unequal strength the subsidence will be greater at one

point than another. If on the whole there is more

subsidence on one side of the centre than the other we

shall find that the wall will be slightly canted over.

If the centre of gravity of the wall is thus displaced

horizontally through a distance S, there is a moment on

the wall tending to accentuate the pressure on the same

side of the centre, producing a further turning motion,

which will, unless special precautions are taken, steadily

increase with time. So soon as S equals half the base

thickness the other side of the wall is put in tension

and, unless well cemented, the work will fall.

The third case has more especial reference to the

building as a whole. Thus if on a wall the load per

sq. ft. of base greatly exceeds that on a similar wall on

the other side of the building, the structure as a whole

tends to turn towards the side of greatest load. Again,

an unsymmetric arch carrying great loads will cause

unequal reactions on the abutments, and unless these

are built in inverse proportion as to base area there

will be unequal settlement and consequent canting of

the arch.
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Having thus considered the general stress of plain

walling we may proceed to consider two other important

details foundations and footings.

Foundations of the usual set-off type are liable to

fail from shearing or bending. As far as the first is

ttttr
a W

concerned it is only necessary to observe the precaution

of making the depth of the under side of the foundation

such that the intersection of the same with the vertical

edge coincides with a plane inclined 45 to the horizon

and passing through the base of the wall above the

foundation (as sketch). For a given width of founda-

tion it is obvious that the oblique resistance to shearing

is a maximum and cannot be increased save by widening.
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As far as bending is concerned we may take it that the

distributed upward pressure on the projecting part of a

foundation a (see sketch) =
,

^

and the bending

W&2

moment is .

2 (b + Za)

Hence we may write

where/" is the maximum tensile stress and d the depth

of the foundation immediately below the wall.
/

Hence

f-

The working value of f allowable varies from J to

3 tons per sq. ft., according to the stone employed.

Passing to the considerations of wall-ends and quoins

it is important to notice that in the higher parts of

the wall the oblique shearing resistance is small. Thus

at the top of a high wall if there be a concentrated

load of W tons at a distance x feet from the end ot

W
the wall the shearing stress is -, where d is the

thickness, so that this stress varies inversely as x.

On this account it is necessary to build the quoins

of weak walls in much stronger masonry. This is
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particularly the case when random rubble or flint work

is employed, the shearing strength being very small

indeed. The use of angle buttresses is attributable to

the same reason.

Walls are further subject to oblique forces from the

arches over openings. As will be seen later, there is

from each end of an arch a thrust upwards and down-

wards, the exact direction depending on the manner

in which the arch is loaded and the form of the arch.

This thrust is gradually distributed through the

masonry so that eventually the whole of the lower

masonry assists in the resistance. In the immediate

neighbourhood of the springing the stresses are, how-

ever, more intense. Thus if the skewback thrust is T
inclined from the vertical, there is a shearing force

on the bed joints just below the springing equalling

T sin $, and a vertical pressure T cos 0. If we write

fdl = T sin -
JUL.
T cos 9 (3)

wherefg
is the shearing stress in Ibs. per sq. ft., d is

the thickness in feet, / the length of the wall in feet to

the next wall-end, and
/u,

the coefficient of friction

(about *7), we can calculate^, d, or I to suit.

If the length / is insufficient and cannot be con-

veniently modified, then dowels or other special shear-

ing resistances should be employed. In this case it
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will be as well to consider also whether the compressive

stress is not too high. The following expression will

of course give this :

f = Tcos_0 (4)Je
dl

wherefc
is dead pressure in Ibs. per sq. ft.

The failure of walls through insecure foundations has

already been mentioned, but another analogous and

common cause of failure is side pressure. This subject

will be dealt with in detail later, but it should be here

pointed out that certain lateral pressures generally

exist in all walls. Thus every wall which has one or

both sides exposed becomes at times subject to wind

pressure, and walls forming part of a building are

generally subject to certain lateral thrusts from the

beams supported. The sloping rafters of a roof pro-

duce such a thrust unless there is a strong cross-tie.

The common hammer-beam truss is not so secured, and

consequently the walls tend to be thrust outwards. In

a square-pitched roof with a hammer-beam truss there

is a horizontal thrust at the eaves equal to half the

total weight of the roofing supported by the truss.

Thus if the trusses are 15 ft. apart, the span 30 ft., and

the load per sq. ft. is about 50 Ibs., there is a horizontal

thrust from each truss, and on each side of it, equal to

some 11,250 Ibs. If the wall is 50 ft. high this means
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a turning moment on the wall of 562,500 ft.-lbs. The

trusses generally bear in such a manner as to spread

the thrust along the wall so that the turning moment

per ft. of length is 37,500 ft.-lbs. The nature of

the stresses so produced will be understood when

retaining walls have been studied. At present it is

sufficient to say that either the wall must be inclined

inwards or be made of much greater thickness. The

use of buttresses solves the difficulty. At the opposite

side of the wall to the truss a buttress of increasing

thickness is constructed. A pinnacle above this assists

to throw the resultant pressure downwards.

The use of a raking shore is almost identical with

that of the buttress. Oblique thrusts generally arising

from unequal settlement, warping of timbers and

internal failures of joints, tend to overthrow the wall

just as the pressure from roof trusses does. The exact

value of these is necessarily quite indeterminate, but

the moment cannot exceed the weight of the wall

and half its thickness, since this moment would cause

collapse. Hence with a raker weighing W Ibs. that is

I ft. long and inclined $, and produces a stability

moment = wt X J (distance of foot from wall),

M = fW/cos (5)

will resist a moment from the wall to this amount.



WALLS 25

We may thus write, to find the number of rakers

required :

f\ W\Jlt* /f*^
cos = (6)

where n is the number of rakers, w the weight per

cubic foot of the wall, L the length of the wall, h its

height, and t its thickness.

acos

Thus, if the w per cubic foot of measuring is 80 Ibs.,

the length of the wall 30 ft., the height 40 ft., and

the thickness 1 ft., the rakers weighing 1800 Ibs. each,

and the feet being 8 ft. from the wall, 9 such rakers

would be required to prevent collapse if the wall was

in the last extremity. Three groups of 3 rakers would

doubtless be employed in this case, discretion being

used in reducing the number,

In underpinning a wall similar simple calculations

may be made. Thus, if a wall of the above dimensions

and weight has to be supported we write

m(/c )
= toLkt (8)

where m is the number of dead shores required,fc the

safe pressure in Ibs. per sq. in., and a the sectional area

of the dead shore in sq. ins.
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The extreme stress in the fibres of the needles is

found by the equation

n, bd2 QwUit
,QV

6 ni

where b is the breadth and d the depth of the needles

(all in feet), and c the distance between the centres of

the dead shores. Thus, using the figures above and

9" X 9" dead shores subject to 280 Ibs. per sq. in. stress

(compression), we have m = 5. An odd number being

impossible six must be employed. If they are placed

at 4 ft. centre and the same size needles as shores be

used, the stress works out at some 13,000 Ibs. per sq. in.

This is, of course, not permissible, so that at least twice

as many shores and needles are required. Deepening

the needles or shortening the distance between the

dead shores would reduce the stress, but in this case

not sufficiently.

The use of iron ties in retaining masonry walls which

are insecure is also worth consideration, a similar

principle to that used for dead shoring being employed.

If the iron tie be x ft. above the base of the wall, and

its sectional area a ins., stress /'Ibs. per sq. in., then we

may write

fax=
wU

(10)J 2

as in formula (6).
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Thus, again employing the same figures and assum-

ing 1 rod 2" square at a height of #0 ft., we have

/=4000 Ibs. per sq. in.

Stresses are sometimes produced by the scaffolding

employed for erection and repairs. When independent

standards are used these stresses are but trifling. If, on

the other hand, the scaffold is bracketed out from the

work and carries heavy loads (such as unset blocks,

winches, or the like), then a certain moment is exerted

on the wall. If the total weight is W Ibs. and the

mean distance from the wall is y ft., there is, of

course, a moment W/ ft. which tends to overturn the

wall, the stresses being computable as for retaining

walls. Similarly, any work, permanent or otherwise,

built out from the wall produces a bending effect upon

the wall. The overhanging wall at the quoin supported

by two columns similarly produces a bending effect

in itself and the adjacent masonry. These effects will

be best considered in the light of the subsequent

chapters.



CHAPTER III

COLUMNS AND PIERS

THE conditions on which a short column or pier is

placed differ but little from those appertaining to walls,

but so soon as the length becomes considerable certain

other problems arise which greatly increase the chance

of fracture. Just as in the case of steel or wooden

columns, there is a certain amount of bending which

has to be kept below the "crippling" limit; but, un-

fortunately, the conditions are not nearly so simple or

well known. We are, in the absence of better informa-

tion, bound to assume that some such law as Euler,

Rankine, and Gordon's still applies, and endeavour to

produce a formula of the form

Safe Load on Safe Load on Short Column

Long Column
~

T~ i l\
2
}

1 +\ Constant K -} [
I \dj )

where I is length and d the diameter. The safe load on

short column may, of course, be deduced by doubling
the safe shearing stress and multiplying by the plan area.

28
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In the case of steel it will be remembered that the

constant (
u
a") is 2^17 f r rectangular columns, and

for circular columns about ^oW- Since also in Euler's

formulae we have as the second term in the denominator

(where fc
s is the safe load on the short column as

above, I the moment of inertia of section, and E the

modulus of elasticity), we may perhaps safely say that.

other things equal, this constant varies inversely as the

modulus E. Now E for stone is 12 to 3 times smaller

than it is for steel, so that we may write the constant

say 10 times greater than it is for steel.

Hence we arrive at the two following rules :

fs
Safe Load on Long Column =-Jc

2 (1)

wherefc
= twice the shearing stress allowable (tons),

s = area of plan (square feet), ,

[ (both in inches or feet),
d = least diameter/

a =
25-0 for rectangular plans, or g-J-o f r

circular plans.

In the case of Doric (Roman), Tuscan, Ionic, and

Corinthian orders, the ratio l-^d does not exceed 10, so
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that we have as a general rule for circular columns

W being the total load on the column.

In slender Gothic (Decorated or Perpendicular types)

columns the ratio l/d may rise to 20, or even more.

For a circular shaft having this ratio we write

W = jy> (2)

In very long slender shafts the ratio may rise to 30

or 40, the latter ratio giving

W = ify (26)

This last rule may probably be regarded as the

limit.

It must be remembered in this connection that the

rule presupposes the superincumbent load to bear

exactly centrally over the shaft. If, owing to unavoid-

able causes, the centre of pressure on the head of the

shaft is, say, 8 distant from the centre of the shaft,

a further allowance must be made for the bending

moment WS so produced.

In this case we shall have a stress

,= W*2 (3)

in addition to the above. Here I is the moment of

?r^
4 bd3

inertia of the section (-^for a circular section and -
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for a rectangular one), and y is the least distance from

the centre to the face (
= -).

Thus there is in a rectangular shaft b X d (the latter

is the lesser dimension) a stress (compression on one

side and tension on the other)

o.)

and on a circular shaft

If this be added and subtracted from the compression

stress found by (2), (2a), or (26), the maximum and

minimum compressions will be found.*

There is a certain value in any column beyond which

the displacement must not pass without tension being

produced. This is found in the following manner :

Let W =fe s as in the numerator of (1), the altera-

tion to (2), (2), or (26) being made by the use of a

lower value forfc . Then the stress at the edges of a

rectangular section is

* The author is well aware that this method is not theoretically

true for eccentrically loaded columns, but in view of the uncertainty

as to column stresses in masonry it does not seem advisable to use

the more accurate theoretical methods of Prof. Perry (see Applied

Mechanics).
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If on the side where dead-weight pressure is opposed

by the tension due to bending there is an exact balance

(i.e., no real tension), then

W WS _
6'

""

bd*~

But s = bd, so that S =
^ (5)

Hence the eccentricity of the loading must not exceed

J the least dimension of a rectangular column if

tension is to be avoided.

In the case of a circular column we have

whence S must not exceed (6)8

Another interesting question in connection with a

column is the maximum height. We have already seen

(chap, ii.) that there is a limit to the height to which

a wall may be built. In the case of a column there are

two causes acting, one to increase the height and the

other to diminish it. The first is the taper and the

second the flexural stresses which may occur in the lower

portion. As far as the taper is concerned this is so

much neutralised by the entasis and the projection of

the capital or superstructure that it seems hardly

worth considering. As far as the flexural stresses are
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concerned, the following fairly simple process should

serve :

From (1) we have

fcS
'

rns (7)

3)
where w is the weight per foot cube.

Hence
wal3 + wl =/.

10

This involves the solution of a cubic equation, and this

may of course be performed by Cardan's method, but as

a matter of fact we generally are fixed as to the ratio
-^

by aesthetic reasons, so that it will be preferable to

write

and

I =

Thus if the column is to be circular and Ijd = 10,

w X 1J*

Thus in the case of granite, wherefe is, say, 24,000

Ibs. per sq. ft. (a little over 10 tons) and w is 180 Ibs., we

c
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have /=100 ft. It should be noticed that the height

is not very great, and also that no wind pressure is

allowed for.

It is now necessary to allow for wind pressure. This

of course produces a moment, being the total wind

pressure X height of the centre of pressure,* acting at

the base of the shaft. This moment, say PA, is identical

in character with that produced by eccentricity, ifloaded,

so far as the base stresses are concerned ; so that we

write for a solid rectangular shaft, taking the wind at

50 Ibs. per sq. ft.,

wlbd f , , _//\
2
) 6Ph

'

bd*

300 dlh

(9)
bd*

In the case of a tapering shaft such as a chimney the

weight may be computed in the following manner :

If the taper is 1 in w, i.e., in n ft. of height there is a

diminution in diameter of 1 foot, then the diminution

in area is in ratio 1 to w2
. Hence we say, taking s as

the base area, that the sectional area at 1 ft. high is

* As the author has shown in his book on the Force, of the

Wind, this height is above the mid-height of the shaft (about 60 ft.

up on a 100-ft. shaft) ; this is due to higher velocities of the wind at

greater heights.
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,9 ( 1 --
2)>

and f r tne second foot s 1 1 --2) , so that

the respective areas form a geometrical series in which

the common ratio is 1 1 --A The sum f these to

a height h is found by the usual rule for geometrical

progression.

2= (10)

This will be the volume of the shaft material, and if

multiplied by the weight per cubic foot, will give the

total weight.

Thus for a shaft 150 ft. high, tapering 1 in 10 and

25 ft. sq. at base, with an internal flue 10 ft. sq., we

have as the total volume :

{/ | \i5<n

Mi-IPO) }
ft

This multiplied by the weight per cubic foot (say

158 Ibs.) gives the weight, nearly 3300 tons.

To apply the foregoing rules as to column stress and

weight to this case we must compute the ratio l/d and

also modify our bending rule to suit the form of section

(no longer solid).
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The shaft is 25 ft. diameter at the base, so that the ratio

l/d
= 6 (Note : d in this case may be taken as the bottom,

since the weight increases with the height from the top

/
2

of the shaft) and a = T^ nearly,* so that 1 -f- a I -7

\a

equals say -f-,
and the possible compressive stress is

4 .^ = 6'6 tons per sq. ft.
4 625

The wind pressure may be taken at 50 Ibs. per sq.

ft. on the area of one side [
= mean width (20 ft.) x

height], 3000 sq. ft., acting at 50 ft. up

= 12,000,000 ft.-lbs.

=
nearly 5400 ft.-tons.

In the case of a hollow square section the formula

(3a) becomes
/ 6 X moment X d

where d
Q
is the internal diameter.

This works out to

6 x 5400 x 25 = 2'04 tons per sq. ft.

(25
2 + 102

)(25
2 -102

)

Hence the maximum compression in this case is 6'6+
2'04 = 8'7 tons per sq. ft., and the minimum is 66
2-04 = 4*62 tons per sq. ft. There is against this

* This follows from the method given at the beginning of the

chapter.



COLUMNS AND PIERS 37

method the objection that the taper is not generally

uniform and that entasis is important. This is true,

but, on the other hand, a carefully obtained mean taper

will give results which do not differ greatly from those

obtained by more laborious treatment.

As before, the deviation of the resultant from the

centre of the base without producing tension is calculable

by writing, as in (4),

W_ 6WS.d
,74 _ ,74

We should notice here that WS= P&, and that

= d2 d 2
,
so that this expression simplifies to

so that

* = . <

6 63"

If d 4- d = w, so that d = we have

It should be noticed that the deviation becomes more

as the flue increases, until finally, when the shell is very

thin, a deviation = - is permissible.o

A similar method may be adopted with hollow cir-

cular shafts, making the proper substitutions for the
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area and moment of resistance (as for hollow steel

columns), but it should be noted that the wind pressure

per square foot of projected area of side will not exceed

half that allowed for a flat-faced shaft. On an octa-

gonal shaft rather more than half should be allowed.

The nature of the stresses in columns forming part

of large buildings needs a little consideration. The

effect of eccentricity in loading has been already

pointed out. Not less important are the bending

moments transmitted by beams rigidly connected with

the heads of columns. This case does not frequently

happen in masonry, but in monolithic concrete and

reinforced concrete structures it is usual. If one

column have a beam passing continuously over it and

the loading is symmetrical, no bending should occur in

the column. On the other hand, if the beam stops at

the column and is tied down by cramps to it, a moment

is produced in the column. If the load on the beam is

20 per foot run for a span of / ft. the end moment is

wt2

YO
This moment must be regarded as similar in effect

to a moment caused by eccentric loading.

If a column or pier is not straight, or if the materials

of which it is built are not uniformly elastic, we have

the case of the curved rib, which rapidly develops into

the arch when lateral pressures are considered.
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A curved rib, whose chord is / feet long and whose

versed sine is d feet, resisting a thrust T, becomes

immediately subject to a bending moment at the

centre= Td. This tends to slightly increase on account

of the deflection produced, so that we should write

M= T(d X S). This presupposes that the thrust acts

centrally through the ends. If the rib is fixed at the

ends and is comparatively short, the deflection 8 will be

negligible.* The stresses may then be computed just

as before, employing Td instead of the eccentricity or

wind moment. When there is lateral pressure the

thrusts may have innumerable positions relative to the

centre line, as will be explained in the chapter on

arches.

It is, however, sufficient to remark here that a curved

rib differs only from an arch in that the arch is so

* 8 can be approximately computed by the curvature law

3-?= -^r, if we assume the curvature is parabolic so that the
ax* xLl

bending moment at x from the centre as 1(d - KXZ) .

[Note that d=^ =0,so that *y]
dy* _ T(d-icx2) _ Td _ T/ca;2

m dy__ f d^ _ Tdx _ TKX*
((

5x2
~

El
"
El El

'

dx~J d& El 3E1

Hence S = -^ (i
-

J)
=

. The effect of 8 in increasing
JtLl DJil

itself here may be disregarded. H. C.
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arranged that the thrust shall pass axially through it,

whereas in a curved rib the thrust is generally along

the chord of the axis.

The method of bedding the ends of a curved rib is

rather important. The deflection will be considerably

greater if the ends are fitted with a hinged or circular

joint than if there is a square butt joint. Owing to

friction the difference is not so great as might be

expected, but it certainly exists.

The question of buttresses and retaining walls, which

are analogous to the column, is discussed in a later

chapter.



CHAPTER IV

BRACKETS AND CANTILEVERS

ALTHOUGH it is unusual to construct this type of

structure in masonry, cases do occur, and the study

of them will lead usefully to the more complex problems

Load

FIG. 4,

involved in arches and retaining walls. In these cases

there will occur that which is generally prohibited, viz.,

tensile stress in the stone (Fig. 4).

The general problem is the same as that of the

rectangular beam. A bending moment, "W7, is pro-

41
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duced, resisted by a moment of resistance,fbd?
-=-

6, so

that we have, as the maximum tensile or compressive

stress,

6wl m

From the values for the ultimate tensile stress given

in the first chapter, it will be seen that the safe ten-

sile stress varies from \ to 8 tons per sq. ft. A
safe value for tough stones will be 2 tons. Since the

safe compressive stress (shearing effect also being con-

sidered) averages much more than this (say 6 tons),

we may with economy make the section of the cantilever

larger at the top than below, the area above the neutral

axis being about three times that below it.

There is also a shearing effect at each point between

the load and the support. In the case illustrated, the

shearing effect is equal to the load at the support,

diminishing to zero at the end of the beam. Since the

shearing resistance of stone is comparatively small, this

should receive as much consideration as the bending.

The stress produced in the beam by this shearing force

is most intense at the centre of the section (the neutral

axis). In the case of a rectangular beam it there

reaches the magnitude of f times the mean shearing

stress, which latter is found by dividing the shearing

force by the area of the section.
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In the case of a triangular section, the apex of the

triangle being downwards, the top breadth b and the

depth d, the extreme stress in the top side may be
7 72

found by dividing the moment by , and the stress on

the bottom may be found by dividing the bending

moment by . The latter will, of course, be twice

as great as the former. If the beam acts as a bracket,

the first will be in tension and the second compression :

/-is? .

Actually triangular sections are rare, but many

sculptural brackets are approximately triangular in

section ; so that if the dimensions (less all work in

relief) be taken as for a triangular section, the stresses

may be computed.

As an example, let us suppose a stone bracket

supporting a corner turret weighing 5 tons has a

projection of 10 ft., the weight acting at the centre of

the span. Then if the bracket be 4 ft. wide and

5 ft. deep (triangular), the maximum tensile stress is

= -- - = 3 tons per sq. ft., which is rather
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high. Joints without numerous cramps will, of course,

be impossible, and the bonding in is very important.

This latter point is one very much neglected, leading

occasionally to crushing of the wall in the neighbour-

hood of the bracket, and sometimes to failure of the

wall by bending. The bending moment is, of course,

transmitted to the wall with undiminished magnitude.

In fact, it is increased by the weight of the bracket

itself. Hence the wall must be guarded against failure

by bending, as is explained later in dealing with

retaining walls. Further, it must be recognised that

the inner end of the upper side of the bracket tends to

rise, and the outer end of the under side to fall, so that

the upper end of the bedding-in is compressed upwards,

and the under face downwards. It is usual to assume

that these pressures are simply proportional to the

length of the inset, the upper one increasing from the

face of the wall to a maximum at the inner end of the

bracket, and the lower pressure increasing from zero at

the inner end of the beam to a maximum at the face of

the wall. The edge of the under block, or template,

is usually chamfered to prevent spalling at this edge.

If, as is the case usually, the built-in part is rectangular

in section b wide, d deep, and X long then we have

the pressure on each side spread over an area, &X, the

mean value being found at JX, the value at one end of



BRACKETS AND CANTILEVERS 45

X being 0, and at the other twice the mean value. The

centre of pressure on each face is then fX from one end

of X, and the distance between the centres of pressure

on the two faces is , so that if the total pressure on
o

each face is
/?,

then = the bending moment = Wl.
o

But p = the mean pressure (tons per sq. ft.) X b X X,

which again = J max. pressure X b X X, so that we

may write

b\ X'max.'"''*' '^ __ T\f/ ta\
* Q ^ '

& r s

and hence

A*=S (3a)

or

6X2

From these rules we may proceed to find the length

of the inset, or knowing this, we may find the maximum

compression.

Using the figures given above and assuming a rectan-

gular inset 4 ft. wide by 5 ft. deep and 5 ft. long, we

get
6x5x5 nl , f .

Pmax.
= r Q

= li tons per square toot.

Several other questions in connection with masonry
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brackets are of importance. Thus a large console or

truss decorated like a Corinthian modillion everywhere

approximately rectangular in vertical section needs no

further strengthening if its load is distributed and the

section is sufficient at the support, for the line of neces-

sary depth will pass well within the mass of stone above

the scroll. On the other hand, if there is an end load,

care must be taken that the shallowest part (just behind

the lesser scroll) is sufficiently deep to allow an area for

shearing resistance.

This latter consideration will, as has been men-

tioned, generally be the most important in endeav-

ouring to economise masonry. The forms of least

material commonly employed for cast iron, steel, and

timber do not exactly apply to masonry for this

reason.

There can of course be no joint in a bracket or canti-

lever unless metal cramps, dowels, or ties of some kind

are used at the places where tension occurs. Thus if a

bracket has for some reason to be made up with small

blocks, every top joint must be cramped, and every

vertical joint joggled. The effect of substituting ties

or cramps for stone in tension is to lower the neutral

axis to about two-thirds the depth, so that less stone is

available to resist compression.

Thus the moment of resistance becomes :



BRACKETS AND CANTILEVERS 47

whereft is the tensile stress in the metal, a the sectional

area, d the depth of the stone, b the breadth (rectan-

gular section), &ndfc the compression in the stone.

It will thus be seen that a jointed cantilever is far

less efficient than a solid one, so that generally it will

need to be larger and the economy will be lost.

The stresses in this case are closely analogous to those

which occur in reinforced concrete, to be dealt with later,

save that in the latter no part of the concrete is regarded

as resisting (effectively) tension, whereas here the stone

between the joints does resist tension, the magnitude of

the latter being at the upper edge of any vertical section

nearly twice that of the compression at the lower edge

of the same section.

Another important type of bracket is that which is

tee-shaped in section, the table of the tee being upper-

most. The best proportion for this is one which brings

the centre of gravity of the section level with the under

side of the table. Given the dimensions, we know that

the centre of gravity will lie on the line of symmetry at

a distance from the upper surface.

d

OP THE
UNIVERSITY

OF
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If the condition mentioned is to be fulfilled, then

n= d, so that

d
l + d Mi _ (̂

2
'

Mi + bd
~

2'

K ^ >)

FIG. 5.

Multiplying across, we have

(dl + d) (^1^1)
= d (b^ + 6c?),

so that the condition that the centre of gravity shall be

in the required place is that

Mi2 = ^>
or that

d = d
l \h (6)

The moment of inertia of the section about an axis

through the centre of gravity in this position is

(bd + Mi) * 3
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so that the maximum tension

- 3Md
fff

.

=

b3T+bj1

and the maximum compression

It should be noticed that the maximum shearing stress

occurs at the level of the neutral axis, so that the upper

71*

C,LG.

K bz -..

FIG. 0.

block must be well keyed to the lower. Several orna-

mental forms of bracket closely approximate to this

section.

Yet another type of section not infrequently met

with is a symmetrical trapezoid, b
:
wide at top and b

2

at the bottom.

The neutral axis is situated at a distance x from the

upper surface
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The moment of inertia is

so that the maximum tensile stress (top) is

,m

, + 6
2)M

I
"
(6V + 6&A + b

2*)~d*

where M is the bending moment.

As an example of this case, let us assume that a can-

tilever of the form given is 4 ft. wide at the top and

2 ft. at the bottom (inside measurements, excluding all

carving) and 5 ft. deep, 10 ft. projection, carrying a

distributed load of total amount 10 tons.

12(3x4+ 2) (10x5) _8400-

(6x16+6x4x2+4)35 3700^^ ft-).

It is interesting to notice that in all cases the work

may be jointed without danger below the neutral axis,

and for economy of material an arched form may be used

for the under side, as already mentioned.

When terra-cotta or other hollow material is em-

ployed instead of masonry, it will be preferable to dis-

regard the strength of the cement filling, and compute
as if perfectly empty. This leads then to another type

of beam, whose section is a hollow rectangle.

The moment of inertia of a symmetrical hollow

rectangle is
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^i^ (ID

where 6
X
d

l
are the inside dimensions.

The stresses work out to

Terra-cotta brackets will necessarily be of small pro-

jection, and the following case will illustrate the need

of careful proportioning in practice.

Material 2 in. thick, projection 2 ft., load (spread)

2 tons, outside breadth 1 ft., depth 1| ft.

6 x U x 2 x 1 18
'

which is a dangerous stress for this material.*

By reversing the process already employed for find-

ing the stresses, we can determine how much projection

can be given to a cantilever.

Thus a rectangular bracket with a projection of %l ft.,

bonded uniformly, is subject to a stress

6WZ
" ~

bd2 '

so that

I = ,
or the whole projection 2J = (1 3)

* The load on this bracket should not be more than half a ton ; the
stress would then be 1 '94 tons per sq. ft.
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Thus if the maximum tensile stress allowable is 1 ton

per sq. ft., and the load 10 tons, b being 2 ft., and d up
to 3 ft,

2 X 9 X 1
3

3x 10

Similarly, the maximum load on a beam of given

projection, 2/, may be computed as follows:

(14)

Thus, assuming a maximum stress of J ton per sq. ft.

and the following dimensions : 2 ft. breadth, 3 ft. depth,

6 ft. projection (7=3 ft.), we get :

TUT <4 X t/ X o" -1 j_W=
-61T8

= * ton '

It will perhaps be useful also to refer to the effect of

a gallery on the supporting brackets. If the latter be

arranged at a distance s ft. from centre to centre, the

load on each is %wls, where 2/ is the projection and w is

the load per sq. ft. Thus, if the flooring and the load

of a gallery amount to about 2 cwt. (say 250 Ibs.) per

sq. ft. and the cantilevers are 5 ft. apart, the total

projection being 6 ft., we have a total load

W = 2x250x3x5 = 7500 Ibs.

The moment of this is 7500 x 3 = 22,500 Ibs.-ft. I
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the brackets are 4 ft. deep, and 3 ft. wide at the wall,

we have

f^.
= 22,500.

6x22,500
Ibs. per sq. ft.

(little over 1 ton).

Beams. In concluding this chapter it will be

useful to point out that the few cases in which

masonry slabs serve the purpose of beams may be

treated in a manner strictly "analogous to that here

employed for brackets.

The moments may be computed as equated to the

stress moment of the section just as is here done. It is

scarcely necessary in a work of this kind to remind the

reader that the bending moment in the centre of

a supported beam with a central bond W is WL/4,
where L is the whole span, and with a distributed

load WL/8, or a concentrated load not central

,
where a and b are the distances from either end

of the beam.

If the ends are fixed down, the bending moments, as

supported, are reduced by the mean value so that

WL/4 becomes WL/8, and WL/8 becomes WL/24 at

the centre and WL/12 at the ends, and soon. Finally,
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it should always be remembered that the stress due to

bending is found by the rule

Bending Distance of the point
moment X considered from the

(ft.-tons) neutral axis (ft.)
(tons per = * =r-=-^ -^ -. 7

f , \ Moment of inertia of section
*! ft)

(ft. units)

Tension, of course, must be principally taken into

account.



CHAPTER V

SIMPLE ARCHES

THE theory of the arch has always proved one of the

most difficult problems of applied mechanics, for the

reason that it involves the consideration of internal

stresses without any definite point cTappui.

It is usual to assume, in the first place, that the

blocks of which an arch is built are not cemented one

to another, but simply sustaining by mutual action and

friction. How great a margin this leaves will easily be

realised by those who have tried to put together an arch

without mortar. It is exceedingly probable that the

margin thus allowed is over ample, since many arches

theoretically unsafe have proved stable. On the other

hand, when an arch is large cement is far less important

than initial stability.

To illustrate the difficulty which one experiences

in studying the question we will first consider the case

of a simple wedge, dropped into a tapered slot and

weighted (Fig. 7). By the principle of the balance of

55



56 STRESSES IN MASONRY
force we know that reactions are experienced from

either side which neutralise one another and the weight.

If both surfaces are perfectly smooth and inclined

at exactly the same angle away from the vertical the

reactions will be equal. If the loading be slightly

FIG. 7.

eccentric they will be unequal. If either of the surfaces

be slightly irregular or inclined at a different angle

from the vertical the reactions will be unequal. If one

side surface be at all softer than the other the reactions

will be unequal, and in all cases under practical condi-

tions it is impossible to say where the resultant on each

side acts. Assumptions obviously must be made, and

if possible allowed for afterwards. These will shortly

be given, our first step being to study the general con-

ditions of things when a number of wedges are set

between one another instead of a single wedge. (Fig. 8.)
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Thus, let us suppose a small arch consists of three

voussoirs, and that the upper surfaces are horizontal

and loaded with weights W15
W

2,
and W3

. The

FIG. 8.

central block (key-stone) is in the same condition as the

single wedge before considered. Two forces situated

somewhere across the faces are balancing the bond W
2

.

These lateral thrusts must of course be transmitted to

the next block, so that we have F
x
and a second

reaction from the other face R
x ; and similarly on
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the other side F2 and R
2
balance W3. There is thus

a line of thrust R^FgRg which passes through the

blocks. If the arch were a simple thin rib and this rib

exactlyfollowed the line of thrust it is obvious that the

arrangement would be stable. Such a rib is called

the " linear arch." It is obvious that a slight alteration

in the loading will modify the line of thrust so that

each particular set of loads necessitates a new linear

arch, and the simple rib will therefore be struc-

turally insufficient. On the other hand, if the said

linear arch lies within the blocks and the forces do not

exceed the crushing strength (or rather the working

strength) of the blocks it will follow that the arch is

stable. If the linear arch passes outside the blocks,

bending and consequently tension on one side will

occur, and the arch will break down.

Our great object, then, in studying an arch is to say

where the line of thrust falls, since from the magnitude

of its compartments the pressure between the blocks is

thereby determined, and by the position of the line at

any joint the distribution of the pressure (i.e., the

bending effect) is ascertainable.

Unfortunately, as has been pointed out in the case of

a single wedge, the exact position of the line is quite

indeterminate, but we may approximate to it in the

following manner :
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It is obvious that if two points in a symmetrical line

of thrust or three points in an unsymmetrical one can be

found, all other points will be determinable. Any doubts

the reader may have as to this will be solved shortly.

Considering first a symmetric bond, these two points

will be most conveniently on the centre line and the

skewback. Now there is a mechanical law known as

"
Moseley's principle of least resistance

" which states

that when there is any choice in the values of resistances

to balance an entire force these resistances will be the

least possible. Let us now inquire what position for
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the thrusts at crown and skewback give the least values,

the load being constant. Take half the rest and find

the resultant bond (Fig. 9) ; assuming that R
x passes

through the centre of the skewback, we see that

so that in order that R
2
shall be as small as practicable

y must be a maximum. In other words, the higher the

crown thrust, the less is its actual value.

Again, assuming that R
2 passes centrally through the

section, the more inclined R
x
is to the horizontal the

less is its value. In other words, x should be as small

as possible and y as large as possible.

This idea may be again stated in the following form:

The nearer the crown thrust is to the extrados, and

the nearer the skewback thrust is to the intrados, the

less will each be in magnitude.

The further conclusion may be drawn that so long

as the line of thrust lies within the arch face it should

be as steep in mean slope as possible, so that R 2
is high

and R
x
low.

It should be here noticed that R2
is the horizonta

component of R
x
and W is the vertical component.

This applies to any line of thrust, R
2 being the

horizontal component everywhere, so that we have the



SIMPLE ARCHES 61

further conclusion that the horizontal thrust in an arch

is everywhere the same and is equal to the crown

thrust.

It might be supposed from the above rule as to the

positions of the crown and skewback thrusts that the

former might safely rise to the extrados and the latter fall

to the intrados. It will, however, be shown in the chapter

on retaining walls that if the resultant thrust passes

outside the middle third of the arch tension will be

experienced on the side remote from the thrust. This

is very undesirable, so that a further law is expressed as

follows :

The line of thrust should not pass outside the middle

third of the arch.

The maximum compression will always occur on the

same side of the centre line as the line of thrust, and

of course the minimum compression on the other side.

If the maximum compression exceeds the crushing

strength of the stone, the arch will fail by crushing.

Another point to be noticed is that if the line of

thrust is inclined at less than the angle of friction to

any joint the arch will fail by the blocks slipping on

one another.

It will be seen from the above-mentioned rules how

important the line of thrust becomes, so that our whole

endeavours are directed towards finding it. Hence
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our next step will be to find how it may be drawn

without reference to the'arch itself, and then endeavour

FIG. 10.

to adapt it to the arch. Subsequently we shall try to

find the stresses produced.

Let us suppose the load on the arch is composed of
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elements W
l

. . Wn , say six in number (Eig. 10). Draw

a vector polygon for these loads, and take any point o to

the left of the line, and join n rays to the end of the

vectors. Then across the corresponding spaces between

the loads draw parallel lines. So we have a " link

polygon," 1234567, which is a line of thrust, but not

necessarily that for the arch in question, since the

height at the centre is purely arbitrary, depending on

the distance between o and the vertical line of vectors.

Let W
1
and W

6 be the loads on the abutments, i.e.,

scarcely affecting the arch and joints 2 to 6 at the feet

of Wj_ and W
6

as shown by a line 8. Draw a line

through o parallel to 8 ; then Rj and R
2 , cut off' the line

of vectors, are the vertical components of the skewback

thrusts on either side.

Now we have to endeavour to apply this line to the

actual arch. Suppose the height from the springing to

the centre line at the crown is Y
x ft., and on the scale

used for the link polygon, AB (the height from the

chord of the polygon to one of its sides in the centre of

the span), is Y
2

ft. Then if the point v be brought

nearer or farther from the line of vectors in the ratio

-^ (according as Y
x

is less or more than Y
2),

and the

Xa

processes of drawing repeated, we shall have a link

polygon passing through the centre of the crown block
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or keystone. If instead of taking Yl
as the height of

the centre line we take it to the upper edge of the

middle third, the crown thrust will then pass through

the point of maximum elevation allowable. If at the

same time W
l
and W6 be so chosen that they pass

through the inner edge of the middle third at the

springing, then the condition as to position of the

skewback thrust is satisfied.

Supposing that under these circumstances the line

of thrust nowhere passes outside the middle third, we

assume that the arch is perfectly stable. This does not

necessarily mean that it is strong enough, only that it is

balanced.

Professor Fuller has devised a very ingenious method

of modifying the link polygon to pass through as near

as possible to these points at the crown and skewback,

which will be found in Perry's Applied Mechanics

and Rivington's Notes on Building Construction, Pt. IV.,

but if the above be carefully studied there will be no

great difficulty in performing the operation.

Having proceeded so far, we must now deduce the

stresses in the arch from our given polygon.

Let us suppose we have any section plane or joint in

the arch AB, and the line of thrust is there inclined at

to the section, and that the magnitude of the thrust

there is P (Fig. 11). Note that P = T sec ^, where T
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is the horizontal (
= crown) thrust, and

i//
the angle the

thrust makes with the horizontal.

(Note that
i// -f = w

9
the angle which the section

plane AB makes with the horizontal.)

Resolve P into components perpendicular and

parallel to AB ; P sin is the pressure on the joint or

section plane, and P cos the sliding or shearing

force.

Also if the force P crosses the section at a distance

8 from the centre, then there is a turning moment

P sin x 3 on the joint.

Hence we arrive at the stresses, considering 1 ft.

depth of arch,

Maximum compression^ ?|^ + 6P si"

(See chap, viii.)
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This may be more conveniently written

Psinfl /- 68 \
Maximum compression = . ^ 1 + -pg (1)

(Ibs. per sq. ft.)

P must be given in Ibs., and S and AB measured in

feet. The minimum compression is the same, changing

the sign, but of course this is of little importance.

The maximum shearing stress is usually taken as

3 Pcos.0 ,"

Professor Karl Pearson has adduced reasons for

doubting this, but at present the rule must stand. (See

chap, viii.)

In some cases the arch has been formed with hinges

at crown or abutments or both, so that the thrust must

pass, disregarding friction, through the centre of the

joint there. This, of course, avoids bending moment

at these places.

As has been said, the line of thrust should not pass

outside the middle third. If in a design it is found

that the arrangement of loads is such that the line

will not fall within the middle third there are four

courses to pursue :

(1) Alter the loads.

(2) Deepen the arch.

(3) Alter the shape of the arch.
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(4) Tie the extrades or intrados (as required) with

clamps.

For constructional reasons it will generally be in-

convenient to adopt the first line of action, and if a

certain scheme of architectural treatment has been

adopted, the third may be objectionable. The fourth

is only used in extreme cases.

Hence deepening the arch is the most usual pro-

cedure. The steepest link polygon having been drawn,

we must deepen the arch so that the new middle

encloses the line of thrust. On the new arch the

stresses will of course be less, since the area over which

they are spread is greater. On the other hand, if the

dimensions and weight of the arch are appreciable in

relation to the load supported, the increased weight

of the voussoirs must be considered, and a new link

polygon drawn.

Three cases of failure are generally noted in regard

to arches.

(a) The line of thrust passes outside the middle

third at the haunches, causing these to sink in and the

crown to rise.

(b) The line of thrust passes inside the middle third

at the haunches, causing them to burst out and the

crown to sink.

(c) A third case not uncommonly happens, viz.,
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shearing of the arch due not to direct shearing, but

compression. This is of course analogous to column

stress, and may be studied in the same manner.

One consideration which is somewhat neglected is

the shape of the extrados. When the voussoirs are

FIG. 12.

stepped, it is quite legitimate to regard the load as

vertically transmitted to the voussoirs, although here

the precaution should be taken of carefully finding the

centre of gravity of the mass of work above and

including the voussoir.

When, however, the extrados is curved (as in ordi-

nary elliptic, semicircular, and segmental arches) it

should be noticed that the mass of the spandrel above

any voussoir or set of voussoirs does not bear squarely

on to the same.

Thus if W (Fig. 12) be the mass of the spandrel

bearing on a voussoir whose extrados [has a mean
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slope /5,
there is a tangential force R = W sin /3 and a

normal force W cos
/3.

When (3 is less than the angle of friction of course

this is immaterial, the resultant reaction being neces-

sarily vertical and equal to W, but near the springing

a point must come where /3 exceeds the angle of friction

and there is shearing force acting on the extrados. It

is of course true that the adjacent parts of the spandrel

tend to neutralise this, but at the same time the point

should receive consideration.

Another matter of importance is the angle of the

skewback. It will be found that as this angle decreases,

i.e., as the arch becomes a larger segment of a circle,

so it is more and more difficult to fit the link polygon

into the arch, particularly in the truly circular forms.

It is this fact which has led to the adoption of the

elliptic arch. Moreover, when the skewback has become

horizontal, as in semicircular, semi-elliptic, or Gothic

forms, it is rarely possible to keep the line of thrust

on the intrados side of the centre.

Also from the very fact of the existence of a hori-

zontal thrust throughout it is not possible that the skew-

back thrust should be vertical (i.e., perpendicular to the

joint), for that would imply either an infinite load in pro-

portion to that thrust, which is absurd, or an infinitely

high arch (which is nearly realised in lancet-forms).
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Hence in any arch, vault, dome, or similar structure,

the abutments tend to be forced apart, the outward

push being the same as the crown thrust. For this

reason the end arch of an arcade needs to be buttressed

or strengthened in some such manner. By excessively

loading the abutment (as is done in the buttresses

which support "flying buttresses") it is possible to

throw down the thrust, but it must always be understood

that the horizontal thrust cannot be balanced except

by friction and shearing resistance in the bed-joints of

the abutment.

In the case of arched bridges, such as London Bridge

and Waterloo Bridge over the Thames, there is a

peculiar type of loading, viz., decreasing from abut-

ment to crown, on account of the work being brought

up to an approximately level surface a little above the

arch. In this case it will be found that the link

polygon for the loads (splitting the distributed load

into a convenient number of parts) will be almost

elliptic in form, so that it will fit into an elliptic arch

with great ease. This fact, together with the necessity

for minimising the number of abutments, has led to the

use of elliptic arches in river and railway practice.

In the ordinary case of an arch supporting a wall it

is a very common practice to assume that the whole

of the uninterrupted mass above is supported. As a
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matter of fact the bonding tends to support overhanging

stones, so that the actual mass likely to fall should the

arch be removed is bounded by two diagonal lines

running zigzag along the vertical and horizontal joints

upwards from the ends of the arch, forming a roughly

triangular piece. In brick (quarter bond) structures

these lines will slope in the ratio 3 to 2J- = 4 to 3, so

that over a straight arch B ft. along the extrados

4 B 2
there is a triangle -^

= B ft. high, the total area
o o

of the face being JB
2
sq. ft.

This fact combined with the tensile strength of

mortar (which is not greatly tried in this case) will

account for many cases in which arches obviously

unsuitable and insufficient to support a large piece of

work stand for many years.

If a building which is underpinned for the purpose

of putting in a shop-front be examined, it will be seen

how much is due to the strength of the mortar and

how little may be due to arches supporting work over

openings.



CHAPTER VI

VAULTS AND SKEW ARCHES

(Including a Note on Simple Types of

Load on Ribs)

THE principles described in the previous chapter are

equally applicable to all arched structures, but some

difficulty arises in dealing with the cases of vaults and

domes. The different constructions may be conveniently

grouped in the following manner :

(1) Barrel vaults.

(2) Gothic vaults.

(3) Skew vaults.

In the case of a straight barrel vault, each foot run

may be regarded as an arch of that thickness and be

studied in the same manner. At an intersection, how-

ever, certain peculiar features must be considered, since

the whole of the voussoirs and superincumbent load

over the crossing is transmitted to the quoins of the

abutments through diagonal ribs. As it is unusual to

72
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construct a vault in this fashion unless the spans are

equal we will assume that this is the case.

Taking any section, such as AB or AjBj, we find a

A

FIG. 13.

segmental arch bearing at the ends on to skewbacks

formed on the voussoirs of diagonal ribs. Thus the

blocks 1 and 2 in the diagram transmit their thrust to

the intersection block 3. If, as is supposed, the thrust

from 2 and 1 are equal and equally inclined (say T
inclined from the vertical), then the horizontal
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components will combine to produce a resultant hori-

zontal thrust = J2T sin (9, and the vertical components

will produce a resultant vertical pressure
= 2T cos 0.

The resultant of these two

TA = 2TVJ sin
2 + cos2

(1)

The deviation of the thrust TA is such that

where is the angle made by TA with the vertical.

From this expression it is obvious that <p
is less than 0,

so that the diagonal rib must be deeper than the barrel

vaulting to contain the line of resistance. The fact

that TA is greater than T also necessitates this, by reason

of the greater pressure.

If we proceed in this manner from the key-block at

the crossing down one rib, taking account of the load on

the rib, we may find the line of resistance just as for a

simple arch and compute bending moment and shearing

just as before.

It should be noted that the geometric form of the rib

necessarily leads to a weak arch, so that special care must

be taken in providing sufficient depth. From this case we

can easily proceed to the discussion of Gothic vaulting.

Before, however, this is considered the question of the

line of resistance in a pointed arch needs brief notice
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It is of course obvious that the line of resistance must

follow a curve closely resembling that of the arch itself,

but it should further be noticed that, since there is no

keystone but a vertical middle joint, the crown thrust

must be absolutely horizontal, i.e., the loading must

be exactly symmetrical. Subject to this proviso, the

methods employed for the ordinary arch will be

applicable to this case also.

It will be remembered that the panelling blocks have

their transverse joints approximately perpendicular to

a line bisecting the angle made by the wall ribs with

the diagonal ribs. Lierne ribs may be regarded as

merely serving to stiffen the panelling.

The order of procedure is then as follows, for a level

ridge vault :

(1) Find the line of resistance in each ofthe side arches,

and notice if these are of themselves sufficiently deep.

(2) Take the skewback thrusts from the intersecting

vaults and combine them into a series of resultants

acting through the diagonal ribs, thus finding lines of

resistance for the latter.

(3) Notice that the panelling joints are nowhere

inclined to more than the angle of friction with the

diagonal or side arches.

As an alternative to this last, a vertical section may
be taken through the panelling, bisecting the angle
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between a side arch and the diagonal rib, and the

loads on unit width studied. If the line of resistance

passes outside the middle third, then the panelling

should be deepened.

It is a not uncommon practice to fill in the vaulting

from above with concrete, deep over the arch springings

but thin over the crown. This steepens the lines of

resistance and also deepens the arch, thus doubly con-

tributing strength.

Domical vaults may be treated similarly, save that

lines of resistance need to be drawn for the apex arches,

and it should be noticed whether the skewback thrusts

from the same are sufficiently great or oblique in

direction to push out the crown voussoirs of the side

arches.

The proportions commonly adopted for Gothic

vaulting are ample, and if a concrete filling be employed

there is no doubt that the usual forms of construc-

tion are sufficiently strong without special design being

necessary.

Skew Arches

It is well understood that the skew, helical, or spiral

construction for oblique arches is intended to give the

necessary strength to the arch. This object is achieved

in two directions ;
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(1) The coursing and transverse joints are by the use

of helical lines made perpendicular to each other.

(2) The transverse joints are by the helical arrange-

ment prevented from breaking out on the face of the

arch and so leaving a part of the work unsupported. In

studying this type then from the point of view of

strength, it will be convenient to imagine the heading

joints to be unbroken, so that the auxiliary effect of

bonding along the coursing spirals is neglected, or,

rather, taken as an additional security.

It will be convenient to give symbols to the three

angles made by any one course at a certain point.

(1)
= angle between the tangent to the coursing

spiral and the horizon.

(2) = angle between the tangent to the coursing

spiral and a line drawn perpendicular to the faces of

the arch.

(3) \p
= angle between the joint and the perpendi-

cular, i.e., the angle between a perpendicular to the

coursing spiral, tangential to the arch, and the hori-

zontal.

Further, let us assume a weight W on the crown

block or keystone between any pair of heading spirals

(say unit distance apart).

We can then proceed from block to block in the

following manner :
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On the keystone of any one ring (included between

the above-mentioned pair of heading spirals) 6 is zero,

i.e., the coursing spiral is there horizontal in direction,

so that the thrusts on the adjacent joints are connected

by the expression

or (3)

This thrust is in a plane inclined $ from a sectional

plane perpendicular to the faces of the arch, i.e., in

the tangent plane to the heading spirals.

As we come to the second block we have to remember

that the bed-joint of this block lies in a new coursing

spiral ^ from the perpendicular section, and the thrust

T so far as that block is concerned must be resolved into

two components, T cos (0 fa) and T sin (0 fa) 9 the

first perpendicular to that joint and the second tangen-

tial (shearing).

Furthermore, we have to recognise that the coursing

spiral of the second joint is also no longer horizontal,

but inclined at a small angle (92
to the horizon. Hence

the load W2
in the second block must be regarded as

being supported by two upward reactions W
2
cos

2 and

W2
sin 2,

the first being the resultant of the thrust

from the crown block and the third block in the ring
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being studied, and the second (W2
sin 62 ) being laterally

transmitted and tending to cause shear.

Hence we have approximately a shearing force

S = W
2
sin

2 + T sin
(<j>

- ^) (4)

and a thrust on to the third block which is the resultant

of T cos
(</> </>i)

andW
2
cos

2 ; that is,

T2
= T cos

(<t>
- &)te + W2 cos

2)r, 2 (5)

where T
2

is the thrust on the third block, i//2
is the angle

between a perpendicular to the second joint (i.e., the

face of the third block). It should be observed that

this is a vector summation. An algebraical formula can

easily be constructed, but it is preferable to do the work

graphically.

Similarly we may proceed to the fourth block. The

load W
3
on the third block must be split into com-

ponents W3
cos

3
and W

3
sin $3, the former being that

affecting the ring, and T
2 must be split into components

T
2
cos (0i <

2) and T2
sin (^ </>2),

of which the first

is the important one in studying the ring. The thrust

on the fourth block will then be by vector summation

T
3
= T

2
cos (ft

-
2V3 + W3

cos 6>
37r/2

.

Proceeding thus, a line of resistance can be drawn for

the whole of the ring, and if a section following the

heading spirals be drawn on a base equal to the diagonal
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span, it will at once be seen whether or not dangerous

bending effects are likely to occur.

It will, of course, be remembered that the skewbacks

for skew arches must be cut to the coursing spirals so that

the shear component will cause the resultant thrust to

be as nearly as practicable perpendicular to the same.

In connection with arched ribs it may be useful to

notice the theoretical forms of arch which are the most

suitable for certain types of loading.

Two forms are principally noteworthy :

(1) Arch with uniformly distributed load (i.e., constant

load per unit span).

It is well known from the principles of bending

moment that a beam whose depth varies inversely as

the square of the distance from the ends (i.e., parabolic)

is the most economical of material. Similarly it will be

obvious that the link polygon for this kind of load

(which would be a diagram of bending moment on a

beam) will be parabolic in form ; i.e.^ if y be the depth

below the crown of the figure, the horizontal distance

from the centre line to either side of the link polygon

will be equal to a?, so that KM* =y-

If now we write Qx-^ as the distance between the inner

edges of the middle third at springing level (i.e., the

span and twice the horizontal distance from the intrados

to the middle third) and make ^= vertical height of



VAULTS AND SKEW ARCHES 81

the arch from the upper edge of the middle third to the

springing level, we may write

and K =
a\

and we can calculate the position of the line of resistance

as compared with the centre line of the arch by subtract-

S.cosO

ing from the height of the latter above springing level

the value

where x is the horizontal distance from the centre line ;

so that if the centre line of the arch is b above the

springing line the line of resistance is situated at a

distance vertically below equal to 8= 6 (yl

(Fig. 14).
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Now in the previous chapter we have seen that

there is the same horizontal component of the thrust

everywhere. If this be H it is obvious that the

moment on the section of the arch at the place

considered is

Furthermore, if the line of resistance is inclined to

the horizontal at the place considered, the actual thrust

in the direction tangential to the line of resistance is

H sec 9.

H can be found by drawing a polar diagram as

before.

[NOTE. This may be employed to prove the truth of

the above formula for the bending moment. The

line of thrust passes below the centre line at a

perpendicular distance S cos $, but H sec 9 . 8 cos 9

= HS, as above.]

Any case which has a definite distribution of the load

may be similarly dealt with when it is remembered

that the link polygon for that system of loading

is not only a type of the line of resistance, but is

also a diagram of the bending moments on a beam

similarly loaded, so that when the latter are known,

and certain positions can be predicated for the line
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of resistance, this line can be put on to the arch at

once.*

(2) Arch with uniformly distributed load along its

curve (i.e., constant load per unit length).

In this case the curve is one known as the u
catenary,"

and we have the following awkward relation between

the distance from the centre line ,r, and the depth from

the crown to the curve y :

, x ?/
, x

y = c cosh - or ^ = cosh ,

c c c

where coshf -
J represents

a mathematical quantity,tables

of which are to be found in most engineering books,f

The following values may be useful :

5
'

_y *
Jf

c c c c

1-0 2-5 6-132

0-5 1-128 3-0 10-07

1-0 1-543 4-0 27-31

1-5 2-352 5-0 74-21

2-0 3-762 6-0 201-72

* All arch problems really reduce themselves to this. A link

polygon for the loads being fitted through three points, its deviation,

from the centre line anywhere is calculable (graphically or otherwise),

and the latter is proportional to the moment on the arch at that

point.

f Cosh =4(E*/
tf=E -*/), so that mathematical readers can easily

calculate it.
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The constant c =, whereHis the constant horizontal
w

thrust, and w the load per foot of girth. Since c is

required before the curve can be drawn, H must be cal-

culated, as may be done easily in the following manner.

Assume the loads to be spaced at convenient short

intervals of girth (say -J ft.), and calculate the total

moment of these about the inner edge of the middle

third at the springing level, for halfihe arch. Let the

total be M, then
M = Hyv

where y^ is as given before, viz., the height from the

springing level to the crown of the middle third.

Thus we have
H M

Divide this into #, the horizontal distance from the

centre line to any point under consideration, and find

y~ from the table, converting the units if the measure-
c

ments do not work out conveniently. Multiply this by

c, and we have /, the distance of the catenary below

the crown level of the middle third.

Then, as before,

b f c cosh i- cosh ),

c c I'
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where x
l

is the distance from centre line to the inner

edge of the middle third at springing level, and the

moment on the section is HS.

These two cases are sometimes convenient in calcu-

lating the line of resistance. It should be noticed that

the method is absolutely identical with the graphical

one previously employed.



CHAPTER VII

DOMES

THE balance of forces within a dome is very similar to

that which occurs in an arch, and as a matter of fact

the forces in any vertical section may be regarded as

identical with those in an arch of the same form pro-

vided that the lateral pressures have already been

considered.

If the keystone is surrounded by n voussoirs (Fig. 15)

we may regard each as receiving an equal thrust whose

W
value is approximately cosec 0, when W is the load

on the keystone, the inclination of the bed-joint to

the vertical, or rather the angle between the axis of

the dome and the conical surface of the joint.

The stability of any other voussoirs may be regarded

conveniently in the following manner, on the assump-

tion that the blocks are uncemented and frictionless.

Taking a vertical section, we find the weight of the

voussoir (one load on it, if any) acting vertically down-

86
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FIG. 15.

wards through the centre of gravity of the block, and

the thrust from the next block above. If the resultant
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of these two is perpendicular to the lower bed -joint there

is no tendency to slip. If it incline inwards, then the

Centre

El'e vat ion

\Centre of"
Dome

Plan

FIG. 16.

component parallel to the bed-joints tends to push the

voussoir inwards, and this may be regarded as resisted

by the lateral resistances acting normally to the
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vertical planes of the heading-joints. If the resultant

is directed outwards, shearing and friction must provide

the necessary resistance (Fig. 16).

We may thus consider the dome in the following

manner, working from the key-block. Let the load on

this be W , and in the first ring let there be n^ blocks.

The thrust from the key-block on to each of these

blocks is w
T^-ll cosec ft (1)n

i

If the load on each of these is W
1?
then the vertica

component of the resultant is

W
Wj + .115 cosec ft . sin ft

*h

W= W
x + (2)n

i

and the horizontal component is

w w
cosec . cos 0. = cot ft (3)

M! n
:

If the bed-joints of the first ring are inclined
2
to the

vertical, the component thrust parallel to the joint is

1+ cos
2
- cot ft sin

2 (4)
ii-^

I \ ti-t
'

and normal to the joint

T2
=
(W,

+
^)

sin 6, +
(^.

cot
flj

cos
2 (fi)
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The latter thrust is transmitted to the second ring,

and if there are n
2
blocks in the latter, each may be

regarded as subject to a thrust

= -irT
2 (6)

712

If Fj is positive, then there is an inward thrust of this

magnitude, and since there are n
x
blocks in the first

ring the vertical planes of the joints between these

STT
planes are inclined to one another at an angle =

n
i

and the thrust S
x
across the faces of these vertical joints.

7T
sm .

So we may proceed from ring to ring, substituting

successively

n
2
for nv n

s
for n

z, &c.,

T
2
for Tv T3

for T
2 , &c.,

and similarly for S
15
F

15 Ov and Wv noting of course

that the resultants will each time combine with the

weights on the successive voussoirs.

If at any joint the quantity Fl (the tangential com-

ponent of the resultant from above) becomes nega-

tive, then shearing and friction must be considered as
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already mentioned. Thus if F is negative we may
write

F =/A + MT (8)

when fs is the shearing stress per sq. ft. of section A,

/x is the coefficient of friction, and T the normal force

as before. From the above formula

n F ttT /0 .

fs = -

g- (Sa)

(fj.
is about *7. See chap, i.)

The bending moment on the joint is found by

drawing the resultant of W and T for any one

block and noticing where it cuts the bed-joint. If it

passes through a point 8 distance from the centre the

moment
M = Tnl

x 8 (9)

when Tn+1 stands for the normal component of the

resultant ofWn and Tn .

The same method is applicable to domes of any

vertical section, provided they are circular in plan. If

a dome is not circular in plan, allowance for the varia-

tion in the joints must be made when applying (7). It

will be found that there is a tendency in such a dome

to burst outwards at the sides or the ends, according

as the line of resistance falls.

In some cases domes which are only visible externally
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are tied across so as to prevent the horizontal thrust

being transmitted to the lower work. The pull in each

such tie-rod will be

P = '

T, cos 0, (10)

where nl9 0, and Tx are obtained from (1) and N is the

number of rods.

Generally, however, the dome is supported on a sub-

dome or pendentive, which again rests on walls or

piers. If the latter there are generally four (or more)

in number.

The pendentive dome generally consists only of four

spherical triangles, combining to form a complete circle

under the true dome, and the lower cusps or angles

descending to the four piers, arches being sprung

between the piers.*

If a section be taken across the dome centrally and

parallel to a line connecting the two piers, the arch

of the dome will be seen to spring from the crown of

the arch between the piers Another section taken

diagonally across two alternate piers will show the dome

springing from the rim of the pendentive and the latter

sending its thrusts down to the piers. A third view

taken externally shows the inter-pier arches sending

* See Mitchell's Building Construction, Fletcher's Architecture,

or any text-book on Byzantine architecture or masonry.
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down their thrusts to the piers, and a plan will show

that all these thrusts tend to push the piers diagonally

outwards.

The total value of this diagonal thrust on each pier is

TP
= tan <9P

= T
x

. cos Ol (11)

where TP is the diagonal horizontal thrust in Ibs.,

2(W) is the total load on the dome in Ibs., and O
l
the

angle made with the vertical by the thrust from the

pendentive, or n
19 T, and

1
are as in (1) and (10).

If the pier is square, S feet long on each face, then

the moment of inertia of the section about a diagonal

axis is

S4

a
and the maximum stress due to bending is

12TPH
f =

-J59

wheref is the maximum stress (Ibs. per sq. ft.), TP is

the diagonal thrust from (11) in Ibs., H is the height

of the pier in feet and S the width of the face. The

dead load on each pier is 2(z#) -r 4, so that the actual

stresses are

cos flt
. H

( '
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The loads on the inter-pier arches are practically

uniformly distributed, so that no great difficulty arises

with them.

The thrust from the super-dome to the pendentive

may be regarded as the initial thrust on the latter, and

may be continued down the rings. Each ring, however,

consists of a smaller number of blocks, and the thrust

must be increased from ring to ring in inverse ratio

to the number of blocks until the supporting piers are

reached.

Very frequently in domed construction, particularly

in the Renaissance style, heavy finial ornaments or

towers are built above the dome, and must be considered

in its design. The effect of their weight is threefold :

(1) To steepen the diagram ;

(2) To increase the horizontal thrust ;

(3) To increase correspondingly all the thrusts.

The first item is of considerable importance, since we

find that many of the domes, if hemispherical, are subject

to considerable bending, so that many architects have

found it advisable to employ hyberbolical forms. Thus

in St. Paul's Cathedral the true (structural) dome is

conical with a slightly curved apex. If, as in the case

mentioned, this dome is not sightly it has to be screened

with false light domes. In some cases (as the Brompton
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Oratory) a suitable visible dome may be so formed,

something after the fashion of a Saracenic cupola.

If the reader draws some lines of resistance on which

the central load is great, it will be easily seen why
such a device is necessary, the only -alternative being

to thicken the dome, with a consequent increase of

immediate load, and also greater effects on the sub-

structure.

Similarly it will be found that elliptic domes (i.e.,

elliptic in any vertical section) are most suitable when

the loading is greatest at parts most remote from the

apex.

Ogee domes, such as occur in Saracenic work, are not

capable of supporting great loads, since the line of

resistance in such a case will necessarily leave the

middle third at some point.

In cases where there is any doubt as to the security of

an existing dome, or where it seems desirable to take

special precautions to prevent collapse, iron bands are

frequently put round the haunch rings. These serve

the double purpose of reinforcing the rings to resist

tension, and also to balance the effect of an outward-

acting shearing force.

If the shearing force be computed by formula (7) for

a joint in any particular ring we find the total outward

force in the ring is ?*S, where n is the number of joints
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and S the shearing on one joint. If this be divided by

TT, we have the diametric effect (as in boiler design), so

that we may write

(15)
7T

where ft
is the tension per sq. in. in the band and a its

sectional area.

As far as bending effect is concerned, it must be

realised that horizontal rings are of little use in resisting

the bending effects of the vertical lines of resistance,

but will be useful if, owing to the irregular distribution

of the load or the special form of the dome, the lines ot

resistance running horizontally round each ring produce

bending. If the iron be not fixed into the stone, it

reinforces the latter by the total amount of its tension,

so that it is thereby able to resist bending to an extent

ft
a x , where S is the distance to the centre line of

the ring. If the iron is cemented into the stone the

tensile resistance is less but the compressive resistance

is greater.

It has frequently been remarked by architects and

engineers who have visited the Orient that the domes

so frequently erected there are, according to our

standards, unstable and yet rarely seem to fail. It will,

then, perhaps, be useful to point out wherein the theory

fails to take into account practical safeguards.
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If we look through the rules already given it will be

noticed that the following assumptions underlie them :

(1) That masonry should not be subject to more

than one-tenth its ultimate stress.

This alone would account for many cases in which

failure does not occur, for undoubtedly, if we could

prophesy an absence of vibration and flaws in the

stone and joints, a much lower factor of safety could

be used.

(2) That the line of resistance should fall within the

middle third of the joint.

This condition ensures that tension shall not occur in

the work. On the other hand it is quite possible that

in many cases tension might safely occur up to a certain

limit, so that this again will explain the permanence of

domes built without such precautions being taken.

(3) That the resistance of the joints is uniform or

uniformly varying.

This is a condition which must undoubtedly be

assumed in constructing a working theory, although

there is every probability that it is not realised in

fact. Irregularities in the mortar and on the stone

will frequently cause irregular resistance, and, moreover,

recent researches on the subject of reinforced concrete

have indirectly shown that masonry is not by any means

uniformly elastic.

G
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Hence we may conclude that in many cases the

nature of the construction (guided by experience in-

expressible in words) has been such that the extra

resistance obtainable in this way has been taken

advantage of.

Another point which perhaps deserves attention is

the statement commonly made that large domes, such as

those of St. Sophia or St. Peter (Rome) or of Florence

Cathedral, have been built without this theory. This

is, of course, the old question of practical instinct versus

theory, and it seems scarcely necessary to point out

that the theory is but an outcome of the results

obtained by long practice, and that very probably it

would be found that now such domes could be con-

structed with even greater economy of material than

was displayed by the illustrious architects who executed

these works.

Before leaving the subject of domes, it will be useful

to refer to the question of piercings and lanterns. It is

obvious that any such opening in a dome must be

surrounded with an arch ring, which serves the same

purpose as the masonry occupying the same space

would do in a complete dome.

Thus a lantern on the apex of a dome is surrounded

with a horizontal ring, which forms the key-block to

the dome. This ring acts in precisely the same manner
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as the key-block would have done, and must be de-

signed to resist the same forces.

Similarly any piercings in the sides of a dome will

take the place of the masonry whose room it occupies

and be subject to the same forces. One particular

point in this connection may be mentioned, viz., that

since the thrust increases as we descend the dome, the

lower part of the ring round an opening will happen to

be subject to greater forces than the upper. On the

other hand, the greater size of the rings in the lower

parts of the dome will distribute the pressures over a

larger surface, so that it may be doubted whether there

any actual increase, and in small domes it will

certainly suffice to construct an arch ring of uniform

strength round the opening. Very frequently stilted

arches are used (compare the lights round the base of

the main dome at St. Sophia), and the lower blocks in

such cases will be subject to considerable horizontal

shearing from the dome ring abutting against them.

The direct loading on to the arch will, however, tend to

increase the frictional resistance, so that rarely will it

be necessary to use special construction to resist the

extra force.

In conclusion it may be pointed out that the dome is

a construction which gives the maximum amount of

uniform distribution of pressure.



CHAPTER VIII

RETAINING WALLS AND DAMS

THE question of walls required to resist lateral pressure

has received considerable attention. It involves two

problems, both of which are, to a certain extent,

indeterminate, viz. :

(1) Lateral pressure of retained material.

(2) Stresses in a wall subject to such lateral pressure.

For completeness"
1

sake we may devote a little atten-

tion to the former problem, but seeing that the latter

is more important as regards the masonry itself, this

will be first considered, and the lateral forces assumed

both as to magnitude and position.

It is essential that all the forces acting on the wall,

taken as a whole, shall be in equilibrium, unless the

wall is rigidly secured to the earth, so that it may be

regarded as an integral portion of the same. The

latter assumption is only made under exceptional

circumstances, and it is usual to simply assume that :

(1) The moment of the lateral force is balanced by
100
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the moment of the weight of the wall about some point

between the centre of gravity (projected on to the base)

and the outer edge of the base.

(2) The shearing effect of the lateral force is balanced

by the frictional resistance of the blocks to sliding.

In other words, the wall is regarded as consisting

only of uncemented blocks. The margin of safety so

secured is perhaps, in some cases, excessive, but this

point will be considered later.

The stresses in the material of the wall are of three

kinds : (a) bending, (6) compression, (c) shearing.

The first is due to the turning moment acting on

the wall, the second to the weight of the wall, and the

third to the sliding effect of the lateral forces.

In any mass of masonry the pressure on the base is as

nearly as possible represented by the rule

T /iv j?j. \ weight (Ibs.)
Pressure (Ibs. per sq. ft.)

= ,

v

,

'

x.area ot base (sq. ft.)

This is, if the wall is thoroughly bonded, true even when

the faces are battered.

It is convenient to consider only one foot-run of the

wall, for if that piece is stable all similar pieces under

the same conditions will also be stable.

Hence we may write

'- <"
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where P is the compressive stress at any level in Ibs. per

sq. ft., w is the load in Ibs. above that level, and D is

the diameter of the wall in feet at that level.

The lateral force, which for the present we will call

F Ibs., will generally be horizontal in action (Dr. Scheffler

opines that in a surcharged retaining wall it acts

parallel to the slope of surcharge, but Rankine adopts

the view that the action is horizontal. The latter is on

the safe side), and if its height above the level of the

section considered is h ft., then the turning moment on

this section is

M = Yh (2)

It is shown in works on applied mechanics that the

turning moment M, the dimensions of a rectangular

section, and the maximum stress are connected by the

following rule :

B is unity (one foot run of the wall), so that

This/
1

is the stress in the masonry due to the latera

pressure, on the outside of the wall compressive and on

the inside tensile, so that, combining it with the dead

pressure, we have two useful formulae :
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, , . . W
,

6M
Maximum compression = ^ -J- -^

,,. . W 6M
Minimum compression = -^ ^2

(5)

(or tension)

Since the blocks are regarded as uncemented it is

obviously undesirable that the masonry should be in

f"

w

FIG. 17.

tension, so that if we write the second expression as equal

to zero we have the case where the tension due to bend-

ing just neutralises the compression due to weight. It

will be convenient to know where, under these conditions,
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the "resultant force'

1

passes through the section. The

"resultant force" here referred to means the resultant

of the total load above the section, and the lateral

pressure acting on the wall above the section. Thus, if

AB is the section, and F and W act in the positions

shown (Fig. 17), the resultant, R, passes through a

point, d, from the centre of the section. Splitting this

resultant into the original components, we see that it

may be regarded as a force, W, acting vertically on the

section at d from the centre, and a shearing force on the

section equal to F. The moment of the first about the

centre = We?, so that we have

M = Wd = FA (2a)

Putting this value for M in (5), we have

W 6Wd=-
D D2

so that

(6)

Hence we have the important and well-known rule :

In a wall with straight faces (i.e., in plan), in order

that there shall be no tension at the interior edge of a

section, the resultant of the forces acting on the wall

above that section must pass within the middle third of

the base, i.e., not more than one-sixth the width of the

section in front of the centre of gravity.
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In cases, by no means few in number, where the above

rules lead to very thick walls,* various devices are em-

ployed to economise masonry. One of the simplest is

to incline the wall backwards against the retained

material. The effect is to throw the centre of gravity

backwards, so that the resultant is also brought back.

Another common method is to make the wall thicker

at the base, so that D is increased there (and d propor-

tionately). The faces may be "
battered," i.e., evenly

sloped or stepped. If the wall is stepped on the back,

the earth on the steps can be included in the weight

of the wall.

Yet another method is to buttress the wall at inter-

vals with short pieces of thick walling, so that the mean

value of D is again increased. The buttresses may be

outside or inside. If inside, the wall is sprung in

arches between, the construction being termed " coun-

terforted."

The wall may also be curved on the outer (and

sometimes also the inner) face, so that the thickness

increases more rapidly than the depth. This arrange-
*

Putting (2a) in the first rule of (5), we have

2W
maximum compression = .

and since at the bottom of the wall W= DHw, where H is Ihe

height and w the weight per cubic foot, the connection between the

height allowable and the maximum compression is :

maximum compression = 2Hw.



106 STRESSES IN MASONRY

ment is often employed for dams where the total water

pressure varies as the square of the depth, and is un-

affected by friction. It will, however, be more convenient

to deal with this matter when the nature of the lateral

pressure has been considered.

Lateral pressure on a wall may arise from a number

of causes, which may, however, be specified as follows :

(1) Water pressures.

(2) Earth pressures.

(3) Constructional pressures.

The last case, including flying buttresses, oblique

struts, arch abutments, &c., may conveniently be

considered as a variation of the arch problem.

Water pressure has certain very simple charac-

teristics.

(a) It acts perpendicularly to all surfaces opposed

to it.

(b) Its magnitude at any point is proportional to the

depth of water.

(c) Its total magnitude down to any point is pro-

portional to the square of the depth.

(d) It depends entirely on depth and is irrespective

of quantity. Thus two dams J" apart, the intervening

space being filled with water, are subject to the same

pressure as the retaining walls or banks of a reservoir
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containing many million tons, if the heights are the

same. (Moral Beware of cracks in dams.)

(e) The mean pressure of water is at half the depth.

(f) The resultant pressure of water on a plane

and continuous surface (as that of a battered or per-

pendicular wall) is two-thirds the depth from the

surface.

The standard rule referred to in (c) is as follows :

F = i = re> H2 = 31-25H 2
(7)

where w is the weight of a cubic foot of water, and H
is the depth in feet, F the total pressure in Ibs. on a

vertical and plane surface extending the full depth.

If the surface is not vertical, but of length H sec 0,

where is its inclination with the vertical, the total

pressure is

S1-25H 1 sec (la)

The moment of the first force is

FH
Fk =>

^p
= 10-41H3

(8)

The moment of the force on the inclined wall is

10'41H3sec2

(Sa)

It should be noted that the latter force acts at an

angle with the horizontal, and that the moment is

expressed about the foot of the internal slope, not about
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the centre of the wall, as is required for calculating the

stresses. The latter is as follows :

10-41H 3 sec
2 - 15*62H2D sin (86)

where D is the base thickness (horizontal).

In the case where the wall has an irregular or curved

internal face the matter must be treated in rather a

different manner. Two systems may be adopted. The

first is more in conformity with the preceding method,

and is as follows :

Take the face bit by bit as it changes slope (or if it

is a curve assume it made up of a number of chords), and

find the pressure on each bit as follows :

Let the depth at one end of the length be H
x
and at

the other H
2
. Then the mean pressure is

81-25 (fl^ + Hj),

and if the length is L then the total pressure is

If L is inclined from the perpendicular, then

L = (H2
- H

x) sec 0,

so that the total pressure AF
= 31-25 (H2

2 - H^) sec
1 (9)

Measure the distance perpendicularly from the line of

action of this pressure (inclined B
l
to the horizon) to

the centre of the wall at the section considered, and we
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obtain the moment of the force about that point. The

sum of all such moments taken above the section will

give M, and the wall may be designed to accord with

the previous rules. If L in the section taken is small,

the pressure may be assumed to act through the middle

of it. If it is comparatively large the following simple

rule may be used to find the centre of pressure (i.e., the

point at which the resultant force acts) :

Draw at each end of L a perpendicular proportionate

to H! and H
2
. Join the heads of these lines and find

the centre of gravity of the enclosed trapezium. The

line of action will pass through this centre of gravity

and be perpendicular to L.

Instead of taking the moments separately, the various

forces may be combined by a link polygon so as to find

the resultant force. This resultant will then correspond

to Fin the previous problems, and, being multiplied into

its perpendicular distance in feet from the centre of the

wall at the section considered, will give the required

moment M. Notice that no forces acting below the

section may be included.

The second method is to take the wall bit by bit as

already suggested, finding the resultant force on each

bit, and then combine this with the resultant force

coming from the section above. Thus in the first

section there will be the weight of that section of the
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wall and the lateral pressure on that section. The

resultant of these will be continued to combine with the

weight of the second section (weights, of course, will act

through the centres of gravity of each section), and the

common resultant will then be combined with the

lateral pressure on the second section, and so on until

the bottom of the wall is reached. In this manner a

line of thrust similar to that employed in arches will be

mapped out. Its intersection with a section taken at

any level will indicate by its position on the section and

its components the direct bending and shearing forces

as in the case of the arch.

(This same method applies to lateral buttresses.)

Earth Pressures. These are identical in kind

with water pressure, but less in magnitude where regard

is had to the actual weight of the supported material.

Referring back to rule (7), we have F =
Jo> H2

,
where

w is the weight of a cubic foot of water (62*5 Ibs.

nearly). The same rule applies here, but we must

multiply by some fraction less than unity, so as to

allow for the reduction of pressure due to internal

friction ; thus we have

F, = >e
H2 x K (10)

When we is the weight of a cubic foot ot retained

material (sand 100 to 170, according to wetness, shingle
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90, clay 120), K depends on the nature of the material,

chemically and physically. In experiments on friction

we find that the angle to which a slope may be fixed

without a block on it slipping is a convenient measure

of the friction between the block and the slope.

Similarly, a mass of loose material slides on itself until

the slope has a certain angle, which is analogous, if not

identical, with the one in the experiment. This angle

is termed the angle of repose (Rankine), and generally

denoted by the Greek letter (phi). In the case of a

wall supporting a bank with a horizontal surface

1 ~ sin

1+ sin

surcharged to the angle < ; K = cos (11 a)

The angle of repose varies from (water) to 90

(hard rock). Important intermediate values are as

follows :

Wet clay, 16.

Sand, 22.

Shingle, 40.

Well-drained clay or compact earth, 45.

When = 42, K in (11) is about
-J-,

and in (lla)

about f.

In cases where the slope of surcharge is less than
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the angle of repose, or becomes more complex, being

expressed by

cos ft s/ cos 2
/3

cos 2

</>

K COS 8 ~
,
==-

, (11&)
cos ft + V cos 2

/3
- cos *<

(/3
is angle of surcharge).

This somewhat cumbrous expression will rarely need

to be used, since the slope of surcharge is usually the

angle of repose.

The resultant force acts, as in the case of water, at

two-thirds the depth of the supported mass.

Another theory of earth pressure, which is conve-

niently adapted to graphical methods and differs but

slightly in its results from the foregoing, deduces the

conclusion that of the mass retained a certain wedge

alone need be considered as producing lateral pressure.

This wedge is bounded by three planes :

(1) The back of the wall.

(2) The surface of the surcharge.

(3) A plane making an angle
= 45 with the

A

back of the wall.

This mass is regarded as supported by the reactions

from the wall (the lateral pressure), and reaction from

the remaining earth and friction on the latter.

If the mass of the wedge be calculated and regarded
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as acting through the centre of gravity, and resolved

into two components, one horizontal and the other

inclined at an angle upwards from the perpendicular

FIG. 18.

to the slope of the remaining mass, then the former is

the lateral pressure.

This (Fig. 18) is perhaps the simplest method to

apply, and is analytically correlated to the preceding.

With regard to the shearing force acting through any

section, it may perhaps be useful to point out that the

usual assumption made is that the shearing force is dis-

tributed throughout the thickness in the same manner

as in a simple rectangular beam i.e., two-thirds the

mean value at the centre, zero at the edges, and a

H
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parabolic variation between these points. Professor

Karl Pearson has pointed out that the grounds for this

assumption are uncertain, and a very interesting series

of papers has appeared in the Proceedings of the Insti-

tution of Civil Engineers recently on the subject.

It can hardly be said that a simple alternative has

been arrived at, and as the matter will only be

important in very large dams, it scarcely calls for

mention here.



CHAPTER IX

ARTIFICIAL STONE AND CONCRETE

FOR the purpose of studying the stresses in masonry

constructed with artificial materials it will be convenient

to subdivide the latter in the following manner :

(a) Terra-cotta blocks, made hollow.

(b) Sillcated cement, concrete, or terra-cotta blocks,

cast solid.

(c) Monolithic concrete.

The first class is rarely required to bear any stresses

greater than those produced by its own weight. If any

case arises in which considerable stresses are produced it

will be well to regard the resistance as wholly derivable

from the terra-cotta shell, the Roman cement or other

filling serving as a surplus resistance.

The second class differs, of course, but little from

ordinary masonry. The tensile strength of the material

has no peculiar properties.

115
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The last form, however, needs special consideration

for the following reasons :

(1) The absence of joints greatly increases the

shearing and bending resistance.

(2) The monolithic character of the work ensures

complete distribution of the load, and at the

same time tends to reduce bending moments

(i.e., in cases such as floors fixed all round).

(3) A comparatively high tensile resistance may be

resisted throughout a considerable length of

work.

These effects may be summarised by saying that the

continuous character of the structure leads to a similar

continuity in the stresses and bending moments through-

out the whole.

It is therefore the peculiar feature of monolithic

structures to transmit their bending moments even-

tually to the ground, so that every individual member

is subject to an external moment equal to its average

impressed moment, the algebraic sum being zero.

Thus beams with central concentrated load W, span

L, are subject to an impressed moment WL/4, but the

ends being constrained to remain in their original

direction there must be applied to those ends (and

transmitted through the supporting walls) a moment
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WL/8, being the average value of the impressed

moment, (WL/4 + 0) -f 2 = WL/8, and the moment

of any point in the beam is

M = M - WL/8 (1)

where M is the moment caused by the load on the beam,

regarded as a case of simple support. At the faces of

the walls the moment on the beam will be then

WL/8, and at a point -J span from the walls the

moment is zero (the point of reflex curvature) and at

the centre the moment is WL/8.

It will be obvious that the moment at any point is

less than if the beams were simply supported.

In the case of a uniformly loaded beam, where the

moment, if simply supported, is

M =
"

(2)

where w is the load per foot run, L is the span, and x

the distance from the abutment, the whole bending

moment diagram is a parabola, whose vertex measure-

ment is wL2
/8. Now the mean height of a parabolic

segment is two-thirds the vertex height, so that the

externally applied moment is K?L2
/12, and the moment

M at any point in the beam when part of a monolithic

structure is

M. = M - rc>L
2
/12 (3)
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or, substituting from above,

,, _~

This is, of course, zero when

6(Lr - ,x-
2
)
= L2

,

so that

L L

This means that the points of zero moment (reflex

curvature) are respectively L/ JI% on either side of the

centre.

The supporting walls will of course have to transmit

the constraining moment z#L2
/12.

It will be noticed that in this case the maximum

moment is not at the centre (where it has the value

wL2
/24), but at the walls (where it is zoL2

/12).

In the case of a beam with irregular loads a similar

method may be employed. First calculate the moments

as if the beam were simply supported, and then find the

average moment. Subtract this, and the result is the

moment when the ends are fixed. (Fig. 19.)

Thus in the case illustrated the moments under the

two loads are respectively
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and

.m.
L

The mean value is found as follows :

I*
-*-

W,

I

;j

FIG. 19.

so that the real moments at the points under the loads

are M
l
M

OT
and M

2
M

OT
. At the ends the moment

isM,.

It is somewhat doubtful whether the principle of

three moments may be applied to monolithic structures

having continuous beams, because this principle implies

that there is exactly equal settlement, and that the

deflections everywhere are perfectly elastic. Recent

researches as to ferro-concrete have demonstrated the

fact that concrete has not a definite modulus of elas-

ticity (although we often have to assume so), so that it



120 STRESSES IN MASONRY
would appear inadvisable to apply the notion of perfect

elasticity in such a severe case as this.

With regard to the vertical members of a monolithic

structure, regard must be had to the manner in which

they are connected to the horizontal ones. It has

already been mentioned that the latter transmit to the

vertical members certain moments as well as the direct

load. If we disregard the crippling effect due to mere

length, we may say that any vertical wall or column is

subject to the following effects :

(1) Wc = 2(W),

where 2(W) represents the sum of all the loads on it,

including its own weight and the usual proportions of

the floors, roof, live load, &c. ;

(2) Mc
= 2(M),

where 2(M) stands for the algebraic sum of all the

moments on it, from floors, transverse beams, roof

frames, &c. ; so that we may state the maximum and

minimum stresses

where A is the area of the section considered (generally

the base), and Z is the modulus of the same section.

By arranging floors, &c., systematically about the
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vertical members, the algebraic sum of the moments

may be reduced to a very small amount indeed.

In monolithic structures it will frequently happen

that the floors are made self-supporting for a con-

siderable area, i.e., fixed at all edges. A panel of floor-

ing of this kind tends to be subjected to stresses acting

along lines radiating from its centre, but the exact

magnitudes have not been settled. Rankine, Grashof?

and others have deduced formulae for calculating these

stresses, but the whole matter is very uncertain. We

may, however, assume that the material is able to resist

bending effects in two directions at right angles to each

other without interference. Let us first consider the

case in which the panel is merely supported at all edges,

not fixed. The total reaction on each edge may be

supposed to be a quarter the total weight, although

this assumes that all the supporting surfaces are mathe-

matically level. Assuming the panel to be square, and

the load per sq. ft. is w9 the length of the sides being /,

we have wP/4} as the reaction on each side. If we sup-

pose this to be concentrated at the centre of each side,

we shall have a moment at the centre where either

transverse section is considered equal to z0/
2
/4 x

(7/2 -//4) = wl2

/l6 as a rough value.

Equating this to the moment of resistance of the

transverse section, we get
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Itf _wP

^ 6 "16

Swl

(d = thickness).

This is at the best an uncertain value, but it is

probably higher than the real one, because we must

recognise that the reactions on each side are actually

distributed.

The following rules are commonly employed for these

cases :

K 2

Circular Slab, supported all round,f -^-=- (10)
OtZ

whereyis the maximum stress (tons per sq. ft.),

r is radius (ft.),

w is load (tons per sq. ft.),

d is depth (ft.).

Circular Slab, fixed all round,f= ~f (11)

7)

Square Slab,fixed all round,f = -^ (12)
*iCL

where s is the length of the side (ft.).

Rectangular Slab, fixed all round, breadth b, length I,

J "
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This last is the case which most frequently occurs,

and applies to all coffer panels and floors of uniform

thickness.

As an example, we will take the case of a panel

forming part of a floor above a coffered ceiling, the

breadth of coffer in the clear being 5 ft., length 6 ft.,

load per sq. ft. 200 Ibs. (including floor), and thick-

ness 1 ft.

64 X 52 x 200
^ =~

2 X 1 (6
4 + 54

)

6,480,000

3841
=

nearly 1700 Ibs. per sq. ft.

It should be noticed that the tension is on the

upper side near the edges, and on the under side in

the central parts.

A continuous ground layer fixed under or into the

walls is a similar case, and an example of this may
be interesting, as showing the theoretical origin of

the cracks which are not infrequently seen in such

cases.

A floor is covered with a ground layer, the dimen-

sions in the clear being 20 x 30 ft., and the load per

sq. ft. (due to weight of the structure as a whole) say

half a ton. The thickness of the ground layer may be

taken at 18 ins.
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~ 304 x 202 x 1220

2 x (f)
2 x (30

4 +.204
)'

395,280,000,000

4,365,000
-early 90,800 Ibs.

This stress no concrete could stand, so that we see

the practice of putting a continuous ground layer in

monolithic structures is not to be recommended without

reinforcement. If a ground layer is employed at all, it

should not be fixed to the main walls, but connected

hermetically with an asphalt or other waterproof damp

course, so that the actual weight of the building is

borne by the foundations of the wall, and not by the

concrete layer. In the latter case the concrete layer

may be as thin as we please, provided the earth

beneath is properly levelled, since it will be con-

tinuously supported and loaded only with its own

weight.

This same rule may be employed to find the maximum

length allowable in a panel, for by multiplying across

the denominator we have

so that

and

-
tfw) = -
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. *

Thus if d be 1J ft.,/*! ton per sq. ft., K> TV ton, and 6

4 ft., we have

V ggy.i"'V 2(f)
-

(4
2 x T

/ = 4
(4

2 x TV)

= 4 X t/^05

= 4x1-2 = 4-8 ft.

A point not usually noticed is that since slabs fixed

at the edges are subject to a restraining moment at

those edges, beams which hold the edges are subject to

a twisting moment. It is obvious from the formula (13)

that the bending moment (which is proportionate to

the stress) is less than that of a beam supported at the

two edges only in the ratio

so that to find the twisting moment on an edge we

may take the moment W//8 as the value where two edges

only are supported, W being the whole load (= Wbl)

and Z the greater dimension of the rectangle. Then

the twisting moment on the beam is
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It is shown in books on applied mechanics (see Perry,

p. 358, 302) that the shearing stress in a rectangular

beam subject to twist is approximately

f _. 3

where d is the half-depth and b the half-breadth of the

beam.

This should be allowed for in important cases. Thus

in the practical case last calculated we have

W = iV X 4 x 4-8 = 1-92 tons, I = 4'8, and b = 4'0.

Let b be 2 ft, and d = 3 ft. We have

The resultant is here seen to be unimportant, but

obviously other dimensions might greatly increase its

value.

Further it should be noticed that this same moment

which holds the edge of the slab is transmitted to the

walls as a bending moment, and must be considered in

designing the walls, as has already been mentioned in

the beginning of this chapter.

Sufficient has been said to show that the key-note to
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monolithic construction is continuity of stress. There

must of course be a corresponding continuity of con-

struction, and special precautions must be taken to

allow for contraction and settlement of the work.



CHAPTER X

REINFORCED CONCRETE

THE question of economising weight and material in

masonry construction, while at the same time preserving

the advantages of high compressive resistance, has led

to the practice of reinforcing concrete with steel bars

and rods. Numerous patent systems are in vogue,

among which particular mention should be made of

the Hennebique and Kahn systems.

The essential principle underlying all these systems is

that of placing steel where tension is to be resisted.

The exact theory is as yet in a very uncertain state, but

certain simple rules may be given for designing which

will serve in most cases. For more elaborate formulae

the reader is referred to the numerous text-books on

the subject.

We will first consider the case of a simple beam with

one reinforcing rod (Fig. 20).

It will be remembered that in dealing with all beam

problems there is a rule

128
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Bending | Edge stress x Mom. inertia of section

moment/ Edge distance from n axis

This rule still applies, but there is a preliminary

difficulty in regard to the position of the neutral axis.

|4--- b H

y

4

\ A

FIG. 20.

This is no longer in the centre of the sectional area, as

is the case with all homogeneous materials. There seems

to be little doubt as to the fact of the dependence of

this quantity on the ratio of the elasticity modulus of

concrete to that of steel. This ratio is commonly
assumed as 1:10 or 1 : 12, but there is considerable

difficulty in finding the modulus in the case of concrete.

In a case such as is shown the neutral axis is often taken

as at one-third the depth from the top edge, i.e.,

dy4-
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The bending moment is of course easily found when

y is known ; i.e.,

M =/,AD x &f (1)

where ft
is the tensile stress in the steel, fc the com-

pressive stress in the concrete, and b the width of the

section.

&

i

d

I *r-
Fm. 21.

This formula assumes that the tensile strength of the

concrete is neglected, and that the compressive stress in

the concrete varies as the distance from the neutral

axis. The above assumption as to the position of the

neutral axis is known to be false in many cases, and

Hati, Considine, and others have devised rules to find

the true value ofy in terms of d.

The following method recently worked out by the

author will apply in most simple cases :

Let any section ab of the beam (Fig. 21) be subject

to bending and assume that it remains plane. (S.

venanfs hypothesis.) Then since e, the strain in the



REINFORCED CONCRETE 131

armature, = ~ , where E is the modulus for steel,
&8

the strain in the concrete at a distance O above

the neutral axis (supposing it be possible to go so

far) is ^4r,* and these two are equal.
y&c

Then A =A^R (2)Es E C

Also, since bending is resisted by a simple couple, the

resultant compressive and tensile forces are equal to

one another, and we have

.by (3)

From (3) we have

and from

f "P
-

.^
=

-=^-, which is taken as 10 : 1 generally.

Eliminatingft/fC9 we have

* The stress of the upper edge is fc and the strain ~ . At unit
J^c

distance from the neutral axis the strain is ~r-, and at D from the
y&o

neutral axis ^?
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Now D = d -
(y + g\ which substitute, and we have

V = 10

fa/
2 =

= 20Ad - 20AT/ -

Hence
- g)

Now A is generally expressible as a fraction of &d, the

sectional area of the beam, so that we have, taking

AA =
,

n

IQfoZ

100 -
W*

where - has been taken as .

m
Thus when n = 100 and m 6 (a common propor-

tion), 7/
= '32cZ or *52d, the latter being an impossible

value. It will be noticed that this agrees with the

first assumption, but if A = then y is '5d (nearly).50
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An alternative form of the bending-moment equation

may be obtained by use of the simple couple principle.

The centre of pressure in the compression area is \y

from the neutral axis, so that the moment may be

written

M = ftA(D + to) =. by(D + ft) (6)

From these rules (i.e., formulae (1) or (6) and (5) )

the dimensions may be readily computed. It is neces-

sary to assume values for n, m, and 5, and readj ust them

if d becomes disproportionate.

Reinforced concrete columns are somewhat difficult

to design, since the bending moment to which they

may be exposed is quite indeterminate.

A rule frequently employed is

W = 400(AC + 15A 8) (7)

whereW is the total load in Ibs. and Ac and A, are the

areas respectively of concrete and steel in square inches.

This rule, of course, only allows for simple compressive

stress (400 Ibs. per sq. in. for concrete, and 6000 Ibs.

per sq. in. for steel). The effect of the concrete on the

steel is to slightly lessen its resistance by reason of the

lateral constraint produced and initial strains due to

contraction. A not unusual practice is to design the

column as if of concrete alone, and then add 5 per cent.
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of steel (i.e., percentage of sectional area) to provide

against possible bending stresses.

In the case of arches and dams we proceed, as in

masonry, to find the position of the resultant through

the mass and compute the bending moment about the

centre of the section by multiplying the normal com-

ponent of that resultant into the distance between it

and the centre of the section. There is no longer any

need to restrain this resultant to the middle third,

although, of course, the moment will increase rapidly

as the resultant becomes more remote. It is usual to

reinforce the wall or arch with rods on both sides to

take the bending. If we write

M =/,Ad (8)

where M is the bending moment, A is the total sec-

tional area of the rods on one side, and d their mean

distance from the centre line, the reinforcement will be

ample.

The following values for stresses, &c., will be useful :

Chicago
Regulations. Galbraith.

Lbs. per sq. in. Lbs.

Concrete (8:1)

Ultimate/; . . . 2000

Extreme fibre stress . . 500 430

Shearing stress ... 75 20
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Concrete (8 : 1) contd.

Direct compression (col. r)

Adhesion of concrete to

steel

Chicago
Regulations.

Lbs. per sq. in.

350

75

Galbraith.

Lbs.

700

70 to 570

Steel

Tensile stress

Shearing stress

Ratio E8 to E 6,

elastic limit 12,800

10,000 10,000-17,000

12 10

I quote the Chicago figures as typical and useful for

calculation. The second column contains figures col-

lected by Mr. A. R. Galbraith, A.M.I.C.E. (Ireland),

and published in his paper to the Institute of Civil

Engineers (Ireland) in 1904. This paper contains the

essential theory and practice of reinforced concrete

construction peculiarly well condensed.

In all the cases where bending occurs it is necessary

to provide for shearing forces which accompany the

flexural stress.

Thus in the case of the beam subject to simple

bending there is a shearing force whose maximum

intensity occurs between the neutral axis and the

reinforcement, being there equal to the total stress in
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the latter. Above the neutral axis it diminishes,

becoming zero at the top surface of the beam.

To prevent failure in this respect there are various

devices. The Hennebique system adopts wrought-iron

stirrups which clip round the reinforcement and bed

vertically into the concrete. In the Kahn system the

reinforcing rods are bent upwards at convenient inter-

vals to an angle of 45, being thus put in tension to

balance the vertical shearing force.

Assuming a parabolic distribution of the shearing

stress above the neutral axis, the following expression

follows :

F,A (9)

where S is the total shearing force in Ibs., fs is the

shearing stress per sq. in. of concrete, and F8 the

shearing stress per sq. in. of steel.

The horizontal shearing force is of equal intensity,

so that if stirrups or plates be used we may write

S = nfa (10)

where S is the total shearing force in Ibs. at the section

considered, n is the number of plates or stirrups in the

immediate neighbourhood of the section, a is the sur-

face of contact between the stirrups and the concrete,

and / is the shearing stress in Ibs. per sq. in. for

concrete on steel.
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If Kahn bars or similar diagonal reinforcements be

employed, making an angle of 45 with the horizontal,

S=mfiA*^ (11)

where m is the number of bars occurring at the section

considered,yj is the tensile stress in the steel and A the

sectional area.

Up to this point we have treated the question just as

we do beams. There are, however, certain points to be

considered arising from the monolithic (i.e.^ continuous)

character of reinforced concrete construction.

In the first place, reinforced concrete floors are

usually attached at all edges, so that it is necessary to

consider the case as one of bending, the beam being

fixed all round. If w be the load per foot run of a

beam fixed at the ends it will be remembered that the

wl2

maximum bending moment is =-
> while if it be fixed

at the edges it generally remains less than
^~, i.e.,

^M~? where w is the weight per super foot and B

the breadth of the slab.

Furthermore, in such case there is a reversal of the

bending moment at a point midway between the centre

and the supports, so that the reinforcement is diagonally

passed from the under side of the beam in the central
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parts to the upper side at the supports. In quays and

some similar cases this is provided for by reinforcing at

both top and bottom edges.

Under this latter arrangement it is simplest to

regard the bending moment as expressed by the

following rule :

M = /;AA (12)

wheref is the stress (tensile) per sq. in. of either top or

bottom reinforcement, A the total area of top or bottom

FIG. 22.

reinforcement, and A the distance between the two.

The concrete in this case simply serves to support

the steel, protect it, and reduce deflection. The beam

may be regarded as having concrete in compression if

necessary, and the neutral axis may be found in much

the same manner as before. In the case here considered

I assume that the upper and lower reinforcements are

equal to one another (this is not essential), and that
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they are equidistant from the edges of the beam. By

the notion of a simple couple we have

where fcs is the compressive stress in the steel, fti
the

tensile and^ the compressive stress in the concrete.

By the plane distortion of the sections we have

P v\ f
JcciJ _Jts

and

/k=^. (146)
E, tfEc

Hence we have

V
and from this

Substituting these values in (13), we arrive at

Writing

D = (2 - (.27 + g)
and

8 - (*
-

5-)
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and substituting, we have

(x -
"

-
(a?

Transferring the d in the denominator to the right-

hand side and simplifying we get

which, solved as a quadratic, leads to

E,&

If we now procee to substitute, as before,

bd d , Ec 1A =
, g = , and ^r = -. ~-

n' * m E, 10

we get x in terms of d:

d d
=

V n

If n = 100, and m = 6, x is nearly -. As might be
T?

expected, the compressive resistance of steel decreases

the compressive resistance of the concrete, and the

vertical axis is higher.
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The moment which the beam is capable of resisting

is then

8) + (18)

[Compare with (12), and note that A = D + S, the

second term being the moment of the concrete stress.]

The assumption which underlies the formulae given

above (that the deformed beam has its originally plane

sections still plane) is open to certain objections, and

many Continental engineers have suggested alternative

and more complex rules. On the score of simplicity,

however, I have preferred to employ the above method,

and the results do not generally depart much from those

obtained by experiment.*

There is now a copious literature on this subject, the

more important text-books being :

Twelvetree's Reinforced Steel Construction.

Christophers Le Beton Arm'e. Berangeur, Paris,

1902.

* Thus Professor Liter assumes a paraboloid distribution of com-

pressive stress in the concrete, so that the stress at any distance z

from the neutral axis varies as KZ*. Students will do well to obtain

the formulas for the position of the neutral axis on this assumption

and compare with the above.
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Morel's Le Cement Arme et ses Applications,
1902.

Ritte's
" Die Bauweise Hennibique," in Schweizer-

ische Bauzeitung, 1899.

Considerable information may also be derived from

the handbooks of the Hennebique, Kahn, and other

companies.
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