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4 STRESSES IN MASONRY
stress. It is probable that this value is not fully

reached, since there is a frictional resistance as well to
be considered ; but since the ultimate crushing stress is
generally twenty or more times the shearing stress, it is
obvious that the material will generally fail in the latter
manner.

This is the most general case of fracture in masonry,
and serves to explain the diagonal cracks which appear
in faulty or decaying work.

Many masonry structures, such as retaining walls,
tall chimneys, and to a certain extent arches, are
liable to tensile stress; but it is a standard principle
to avoid this whenever possible, particularly when
special precautions have not been taken to ensure
soundness in the joints. In fact, most of the theory
of stress in masonry is based on the assumption of
uncemented joints—weight, fit, and friction alone
being relied on.

Stone is one of the least elastic substances, the value

of the modulus of elasticity (stress DEIR unit area )

strain per unit length
being from 20,000 tons per sq. ft. (Bunter Sandstone) to
685,000 tons per sq. ft. (Nummulitic Limestone) ; * or
* This may be compared with steel as follows :
Modulus of stone, 2 to 13 million 1bs. per sq. in.

Modulus of steel, 80 million 1bs.per sq. in., or about 1,872,000 tons
per sq. ft.
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taking 144,000 tons as a convenient and fair average,

we have
stress

t' 1 = -
SURAI = 124,000°

or for a stress of 144 tons per sq. ft. (1 ton per sq. in.)
the strain is 1¢&5. As will be seen from the table
given above, in tension no stone can bear this stress,
although in compression it will do so, apparently. It
will not actually bear it, for the concurrent shearing
stress along any diagonal plane inclined 45° to the
horizontal is upwards of 144 =+ 2 = 72 tons per sq. ft.,
which is above the figures given. As a practical rule
it may therefore be said that scarcely any stone will
bear an extension or compression amounting to %4 of
its linear dimensions. ~ Since for ordinary blocks of stone
this elongation or shortening isimperceptible, we arrive
at the common result that stone is not visibly elastic.

A further question of some importance in connection
with arches and retaining walls is that of friction between
stone blocks. Although only in rare cases are blocks
laid uncemented in a large structure, it is, as has been
mentioned, usual to assume that the only resistance
existing in the joints to shearing is that arising from
the friction between the blocks.

According to General Morin, the value of y, the
coeflicient of friction between stones, is 071 (.e., the
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angle of friction is about 353°). It must, however, be
recognised that this value will depend on the manner in
which the surface of the stone is finished, and also to
some extent on the nature of the stone. We may take
it that this refers to sawn faces ot a moderately coarse
stone. An example of the application of this to the
shearing of piers already referred to may be given.

On the diagonal plane there is a normal pressure
P cos 6 or P cos? -+ D? per sq. ft. If we multiply this
by wu, we have the theoretical frictional resistance to

motion on this plane, so that we may write

S _ Psin® _ uPcos
D?sec DZsecd D2sec 6’

where 8 is the total shearing force.
This simplifies to

S=Psin® — uPcosb
= P (sin 6 — u cos 0) 1)

where S is the shearing force per unit area and u P is the

compressive stress per unit area.

If 6=45°, then we have
S=-2052 P (1a)

Since the shearing force at fracture is generally less
than 0'1 x the compression force, the probability is still
in favour of the failure taking place by shearing.
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Referring again to arches, it will be seen that it is
possible to set voussoirs until the angle made by the
joint with the horizontal is upwards of 71°. It must,
however, be pointed out that, if the joints are thick or
the cement at all liquid, the angle of friction will
probably be much less and it will not be possible to set
the voussoirs up to this angle.

Yet another application of the law of friction
suggests itself in regard to the slipping of blocks along
their bed joints. If a lateral force be applied which
exceeds u X the weight on the joint, the block will slip
unless dowelled.

We must now devote a little attention to the question
of the strength of joints; for although this does not
usually enter into calculations, it must necessarily
do so in some special cases. Moreover, it will be
useful to know what surplus of strength we have in
ordinary cases.

The cementing materials employed are generally—

1. Hydraulic lime mortar.
2. Portland cement.
3. Portland cement mortar.

It is usual to determine the sirength of these
materials by tensile tests, although they are nearly
always used in compressive stress. On account of these
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Obviously the strength of masonry depends to a great
extent on the strength of joints, particularly in regard
toshearing. As to direct compression, the importance ot
the joint varies with the nature of the work. Thus in
random rubble the mortar is all-important. In heavy
masonry the mortar is scarcely of any importance.

In the case of random rubble, assuming the above

figure for shearing, we have
75 X 2 X 144 = say 10 tons

per sq. ft. as the crushing load. This is probably the
minimum for any variety of masonry.
For granite, on the other hand, we have

50 X 2 = 100 tons

per sq. ft. as the crushing load which produces failure
by shearing. All other cases will probably lie between
these two, and the next step is to deduce from the
crushing load a safe working load.

This is of course done by use of a ¢ factor of safety,”
but, unfortunately, factors of safety are more uncertain
than they are in steel work, where they are sufficiently
so. Stone may contain unseen but dangerous flaws, and
we are dependent on joints of uncertain workmanship
made with material of greatly varying strength. Fur-
thermore, masonry is incapable of retaining much
strain energy, so that shocks are liable to cause fracture
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which would not occur under similar circumstances
with metal. Hence it is very usual to employ factors
of safety varying from 7 to 12. 10 is a commonly
accepted value.

Hence the working values for strength should be about
one-tenth the ultimate values given in the beginning of
this chapter. Further, seeing that a compressive stress is
accompanied (except when there is a lateral support) by
a shearing stress of a maximum intensity equal to half
the compressive stress, we may obtain safe wall and pier
loads by dividing the ultimate shearing stresses by 5 (i.e.,
dividing by 10 and multiplying by 2, to convert from
shearing to compression).

Tons per Tons per
sq. ft. 8q. ft.
Granite . . 10 Sandstone . 6
Basalt . . 8 Do. (soft) 2
Slate . . 8 Limestone . 8
Marble . . 10 Do. (soft) 7

The strength of work will depend on the manner of
construction and the mortar, asalready explained. Thus,
adverting to the rubble and granite comparison, we
have 1 ton per sq. ft. as the minimum, and 10 tons per
sq. ft. as the maximum working load on masonry in
cement mortar.

Probably lime mortar rubble should not bear more
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than } ton. Fine masonry in lime mortar could bear
nearly as much as cement mortar, since the mortar is
not called upon to do much.

Attention should also here be called to the fact that
stone is in no sense of the word approximately isotropic,
as are steel and iron. It is distinctly allotropic, i.e., of
different elasticity in different directions. Its density
is generally greatest in sedimentary rocks across the
planes of sedimentation, and hence, on account of the
greater resistance to compression, these planes (the
“natural bed ) should be laid so as to be approximately
perpendicular to the direction of pressure.

A word or two may be said as to the strength of
dowels, cramps, joggles, &e.

Dowels of slate are generally placed between blocks
to prevent them slipping on one another. It is best to
assume that the blocks are uncemented. The dowels
are generally a little over 1 in. square, of slate or very
hard stone. The ultimate shearing stress of such
material is about } ton per sq. in., so that if the total
probable shearing force on the bed be z tons, there
should be 20« rivets (factor of safety 10).

Bronze or copper cramps are generally 4 in. or more
square, turned in about 2 in. These are partly in ten-
sion and partly in bending. If the two blocks con-
nected be pulled from each other with a force of y tons,
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and the cramps are, as mentioned, } in. square, the

stress (tensile) in the bronze is
4y + 384y = 388y tons per sq. in.

This stress should not exceed 2 tons per sq. in., so that
only a very small pull is allowable. If, on the other
hand, the metal be 1 in. square, the stress drops to 7y,
so that it is obviously better to have large cramps.
Joggles and similar interesting joints are almost

wholly subject to shearing force, so that we may

write

Total shearing shearing stress area of
resistance of } = tons per sq.p X sections
ioggle tons ft. (sq. ft.)

This rule is of importance in the case of lighthouse
work, where very ample provision has to be made
against shearing forces arising from the dynamic action
of waves.

Numerous cases of bending arise in connection with
arches, domes, vaults, retaining walls, chimneys, and
brackets. With the exception of the last there is
always, in addition to the bending, a direct loading ; so
that the material is subject at one place to a great
compressive stress due to both bending and loading,
and in another place to little compressive stress (or
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sometimes tension) due to neutralisation of the loading
by the bending stresses.

Since masonry joints are uncertain, and the tensile
strength of stone low, it is generally as well to avoid
having tensile stresses, although in some cases they
cannot be avoided. In modern practice it is usual,
wherever there may be tension, to build in steel beams
to take it. This device may be regarded as the origin
of reinforced concrete.

It should be noticed that the ability to resist stress
depends in some cases on the age of the stone and its
weathering capabilities. Thus some of the softer stones
decay, and are disintegrated by frost, so that their com-
pressive strength is greatly reduced and their tensile
strength practically destroyed.

The cases of stress in masonry may be conveniently
grouped as follows :

(1) Walls—subject to simple compression and
oblique shearing.

(2) Columns —subject to simple compression, bend-
ing, and shearing.

(3) Brackets—subject to simple bending. ‘

(4) Arches—subject to bending, compression, and
shearing.

(5) Arched structures, including more complex

stresses,
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concerned, the slightest cavity, crack, or bump in any
joint spoils the uniformity of the transmission. 'These
secondary influences are, it is true, generally neglected
in calculations, but they account for the high factors of
safety which it is necessary to employ.

In most cases of walling it is convenient to consider
just one foot run and study that by itself. Every
similar foot will of course be under the same conditions
of stress. Hence we may write two simple rules for

stresses in masonry.

(1) Max.compressive stress = wt. per cubic ft. x height.
(tons per sq. ft.) (tons) (ft.)

(2) Max. shearing stress=} max. compressive stress.

We may deduce from these rules the maximum height
of walls in rubble and granite. In the last chapter it was
shown that the working compressive stress should not
exceed 1 to 10 tons respectively of these stones. Now
rubble weighs generally less than 1 cwt. per cubic ft.
and granite about 1} cwt., so that the maximum safe
height of a random rubble uncoursed wall is about
20 ft., and of a granite wall about 130 ft.

As a matter of fact walls very rarely fail by simple
shearing or compression, since the above-mentioned
limits are passed only exceptionally. The most usual

causes of failure are :
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(1) Foundations of irregular resistance longitudinally,
leading to concentrated pressures and shearing.

(2) Foundations of irregular resistance transversely,
leading to overturning of the wall and collapse by
bending or actual collapse.

(3) Unequal arrangement of concentrated loads on
walls, causing similarly unequal reactions at the founda-
tions and unequal settlement.

Under the first heading we have the case which not
infrequently happens where part of the foundation
sinks leaving a length of walling say « ft. long un-
supported. At each end of this length there are reactions
supporting the intermediate load (say wht when w is
weight per cubic ft., ¢ is thickness, and % the height), so
that there is a shearing force (vertically) of magnitude
about wht-+—2. Concurren’y there is a horizontal force
of the same magnitude, and hence on an oblique plane of
45° inclination to the horizon there is a shearing stress
of w/2 Ibs. per square ft. Since w may be 180 Ibs. or so in
the heaviest stones and even the joints have a shearing
strength of some 75 lbs. per sq. in. at the maximum, it
does not seem probable that in decent work any failure
could happen this way unless % is so small that bending
stresses are appreciable. Hence we may conclude that
concentrated loads (due to beams, roof timbers, &c.)

are probably responsible for such apparent failures.
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The second case is only of comparatively common
occurrence, particularly in low walls and piers not
carefully founded. Monumental masonry generally
fails in this respect. If the supporting material is of
unequal strength the subsidence will be greater at one
point than another. If on the whole there is more
subsidence on one side of the centre than the other we
shall find that the wall will be slightly canted over.
If the centre of gravity of the wall is thus displaced
horizontally through a distance J, there is a moment on
the wall tending to accentuate the pressure on the same
side of the centre, producing a further turning motion,
which \vill; unless special precautions are taken, steadily
increase with time. So soon as & equals half the base
thickness the other side of the wall is put in tension
and, unless well cemented, the work will fall.

The third case has more especial reference to the
building as a whole. Thus if on a wall the load per
sq. ft. of base greatly exceeds that on a similar wall on
the other side of the building, the structure as a whole
tends to turn towards the side of greatest load. Again,
an unsymmetric arch carrying great loads will cause
unequal reactions on the abutments, and unless these
are built in inverse proportion as to base area there
will be unequal settlement and consequent canting of
the arch.
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particularly the case when random rubble or flint work
is employed, the shearing strength being very small
indeed. The use of angle buttresses is attributable to
the same reason.

Walls are further subject to oblique forces from the
arches over openings. As will be seen later, there is
from each end of an arch a thrust upwards and down-
wards, the exact direction depending on the manner
in which the arch is loaded and the form of the arch.
This thrust is gradually distributed through the
masonry so that eventually the whole of the lower
masonry assists in the resistance. In the immediate
neighbourhood of the springing the stresses are, how-
ever, more intense. 'T'hus if the skewback thrust is T
inclined 6 from the vertical, there is a shearing force
on the bed joints just below the springing equalling
T sin 0, and a vertical pressure 'I" cos 6. If we write

Jdl=Tsin @ — p. T cos 0 3)

where f, is the shearing stress in lbs. per sq. ft., d is
the thickness in feet, / the length of the wall in feet to
the next wall-end, and u the coefficient of friction
(about -7), we can calculate f;, d, or ! to suit.

If the length [/ is insufficient and cannot be con-
veniently modified, then dowels or other special shear-
ing resistances should be employed. In this case it
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will be as well to consider also whether the compressive
stress is not too high. The following expression will

of course give this :

_ TcosH

where £, is dead pressure in lbs. per sq. ft.

The failure of walls through insecure foundations has
already been mentioned, but another analogous and
common cause of failure is side pressure. This subject
will be dealt with in detail later, but it should be here
pointed out that certain lateral pressures generally
exist in all walls. Thus every wall which has one or
both sides exposed becomes at times subject to wind
pressure, and walls forming part of a building are
generally subject to certain lateral thrusts from the
beams supported. The sloping rafters of a roof pro-
duce such a thrust unless there is a strong cross-tie.
The common hammer-beam truss is not so secured, and
consequently the walls tend to be thrust outwards. In
a square-pitched roof with a hammer-beam truss there
is a horizontal thrust at the eaves equal to half the
total weight of the roofing supported by the truss.
Thus if the trusses are 15 ft. apart, the span 30 ft., and
the load per sq. ft. is about 50 lbs., there is a horizontal
thrust from each truss, and on each side of it, equal to
some 11,250 lbs. If the wall is 50 ft. high this means
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a turning moment on the wall of 562,500 ft.-lbs. The

trusses generally bear in such a manner as to spread
the thrust along the wall so that the turning moment
per ft. of length is 87,500 ft.-lbs. The nature of
the stresses so produced will be understood when
retaining walls have been studied. At present it is
sufficient to say that either the wall must be inclined
inwards or be made of much greater thickness. The
use of buttresses solves the difficulty. At the opposite
side of the wall to the truss a buttress of increasihg
thickness is constructed. A pinnacle above this assists
to throw the resultant pressure downwards.

The use of a raking shore is almost identical with
that of the buttress. Oblique thrusts generally arising
from unequal settlement, warping of timbers and
internal failures of joints, tend to overthrow the wall
just as the pressure from roof trusses does. The exact
value of these is necessarily quite indeterminate, but
the moment cannot exceed the weight of the wall
and half its thickness, since this moment would cause
collapse. Hence with a raker weighing W lbs. that is
! ft. long and inclined 6, and produces a stability
moment = wt X } (distance of foot from wall),

M = 1Wicos 0 )

will resist a moment from the wall to this amount.
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The extreme stress in the fibres of the needles is

found by the equation
2 [9,
£ bd .:lval;t'c )

t =

6 m

where b is the breadth and d the depth of the needles
(all in feet), and ¢ the distance between the centres of
the dead shores. Thus, using the figures above and
9" x 9" dead shores subject to 280 lbs. per sq. in. stress
(compression), we have m = 5. An odd number being
impossible six must be employed. If they are placed
at 4 ft. centre and the same size needles as shores be
used, the stress works out at some 13,000 1bs. per sq. in.
This is, of course, not permissible, so that at least twice
as many shores and needles are required. Deepening
the needles or shortening the distance between the
dead shores would reduce the stress, but in this case
not sufficiently.

The use of iron ties in retaining masonry walls which
are insecure is also worth consideration, a similar
principle to that used for dead shoring being employed.
If the iron tie be « ft. above the base of the wall, and
its sectional area a ins., stress f lbs. per sq. in., then we

may write

0 2
faw: hlé/i (10)

as in formula (6).
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Thus, again employing the same figures and assum-
ing 1 rod 2”7 square at a height of 80 ft., we have
Jf=4000 lbs. per sq. in.

Stresses are sometimes produced by the scaffolding
employed for erection and repairs. When independent
standards are used these stresses are but trifling. If, on
the other hand, the scaffold is bracketed out from the
work and carries heavy loads (such as unset blocks,
winches, or the like), then a certain moment is exerted
on the wall, If the total weight is W lbs. and the
mean distance from the wall is z ft., there is, of
course, a moment Wy ft. which tends to overturn the
wall, the stresses being computable as for retaining
walls. Similarly, any work, permanent or otherwise,
built out from the wall produces a bending effect upon
the wall. The overhanging wall at the quoin supported
by two columns similarly produces a bending effect
in itself and the adjacent masonry. These effects will
be best considered in the light of the subsequent
chapters.
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In the case of steel it will be remembered that the

constant (“a”) is 555 for rectangular columns, and
for circular columns about 53%5. Since also in Euler’s
formulze we have as the second term in the denominator

Nl

4r 211

(where f,s is the safe load on the short column as
above, I the moment of inertia of section, and E the
modulus of elasticity), we may perhaps safely say that,
other things equal, this constant varies inversely as the
modulus E. Now E for stone is 12 to 3 times smaller
than it is for steel, so that we may write the constant
say 10 times greater than it is for steel.

Hence we arrive at the two following rules:

Safe Load on Long Column = —Iﬁ%—z 1)

1+a (a>

where f, = twice the shearing stress allowable (tons),
s = area. of plan (square feet),

I = length

d = least diameter

}(both in inches or feet),

a = 53¢ for rectangular plans, or 414 for
circular plans.

In the case of Doric (Roman), Tuscan, Ionic, and

Corinthian orders, the ratio /<d does not exceed 10, so
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for a rectangular one), and y is the least distance from
the centre to the face (= (—z—))

Thus there is in a rectangular shaft b x d (the latter
is the lesser dimension) a stress (compression on one

side and tension on the other)

6W3
f ="
b (5a)
and on a circular shaft
__32W3¢ y
f= i (8b)

If this be added and subtracted from the compression
stress found by (2), (2a), or (20), the maximum and
minimum compressions will be found.*

There is a certain value in any column beyond which
the displacement must not pass without tension being
produced. This is found in the following manner:

Let W = f.s as in the numerator of (1), the altera-
tion to (), (2a), or () being made by the use of a
lower value for f,. Then the stress at the edges of a

rectangular section is

W 6W3¢
'-S' a bd? (4)

* The author is well aware that this method is not theoretically
true for eccentrically loaded columns, but in view of the uncertainty
as to column stresses in masonry it does not seem advisable to use
the more accurate theoretical methods of Prof. Perry (see dpplied
Mechanics).









34 STRESSES IN MASONRY
have /=100 ft. It should be noticed that the height

is not very great, and also that no wind pressure is
allowed for.

It is now necessary to allow for wind pressure. This
of course produces a moment, being the total wind
pressure X height of the centre of pressure,* acting at
the base of the shaft. This moment, say P#, isidentical
in character with that produced by eccentricity, if loaded,
so far as the base stresses are concerned ; so that we
write for a solid rectangular shaft, taking the wind at
50 Ibs. per sq. ft.,

E wlbd 6P
s = {1 v >} yre

wlbd? {1 ta @2} +800 dlh

- ZE ¢

In the case of a tapering shaft such as a chimney the
weight may be computed in the following manner :

If the taper is 1 in n, i.e., in n ft. of height there is a
diminution in diameter of 1 foot, then the diminution
in area is in ratio 1 to n%. Hence we say, taking s as
the base area, that the sectional area at 1 ft. high is

* As the author has shown in his book on the Force of the
Wind, this height is above the mid-height of the shaft (about 60 ft.

up on a 100-ft. shaft) ; this is due to higher velocities of the wind at
greater heights.
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area and moment of resistance (as for hollow steel
columns), but it should be noted that the wind pressure
per square foot of projected area of side will not exceed
half that allowed for a flat-faced shaft. On an octa-
gonal shaft rather more than half should be allowed.
The nature of the stresses in columns forming part
of large buildings needs a little consideration. The
cffect of eccentricity in loading has been already
pointed out. Not less important are the bending
moments transmitted by beams rigidly connected with
the heads of columns. This case does not frequently
happen in masonry, but in monolithic concrete and
reinforced concrete structures it is usual. If one
column have a beam passing continuously over it and
the loading is symmetrical, no bending should occur in
the column. On the other hand, if the beam stops at
the column and is tied down by cramps to it, a moment
is produced in the column. If the load on the beam is
20 per foot run for a span of / ft. the end moment is

wl?

7o+ This moment must be regarded as similar in effect

to a moment caused by eccentric loading.

If a column or pier is not straight, or if the materials
of which it is built are not uniformly elastic, we have
the case of the curved rib, which rapidly develops into
the arch when lateral pressures are considered.
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A curved rib, whose chord is / feet long and whose
versed sine is d feet, resisting a thrust T, becomes
immediately subject to a bending moment at the
centre="Td. This tends toslightly increase on account
of the deflection produced, so that we should write
M=T(dx3). This presupposes that the thrust acts
centrally through the ends. If the rib is fixed at the
ends and is comparatively short, the deflection & will be
negligible.* The stresses may then be computed just
as before, employing Td instead of the eccentricity or
wind moment. When there is lateral pressure the
thrusts may have innumerable positions relative to the
centre line, as will be explained in the chapter on
arches,

It is, however, sufficient to remark here that a curved
rib differs only from an arch in that the arch is so

* 3 can be approximately computed by the curvature law
dy_ M
dz2 EI
bending moment at & from the centre:T(d— Kx2).

[Note that d —i =0, so that x_-—.]

if we assume the curvature is parabolic so that ihe

dy2 _ T(d—«xx2) _ Td Txac2 dy _ dey _ Tdx  Tkaxs e
fud A Sk S8y = b 5y

dz2 El Bl EI 'dx /| daz” EI  3E1

dz2 4
C1=0;y=fﬂ‘TL-Tm + Cg; Cy=0;

dx 2K1 1281

2
Hence & =El2_d 3-3) = gﬁll The effect of & in increasing

itself here may be disregarded.—H. C.
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duced, resisted by a moment of resistance, f0d* - 6, so
that we have, as the maximum tensile or compressive

stress,

=t M

From the values for the ultimate tensile stress given
in the first chapter, it will be seen that the safe ten-
sile stress varies from % to 8 tons per sq. ft. A
safe value for tough stones will be 2 tons. Since the
safe compressive stress (shearing effect also being con-
sidered) averages much more than this (say 6 tons),
we may with economy make the section of the cantilever
larger at the top than below, the area above the neutral
axis being about three times that below it.

There is also a shearing effect at each point between
the load and the support. In the case illustrated, the
shearing effect is equal to the load at the support,
diminishing to zero at the end of the beam. Since the
shearing resistance of stone is comparatively small, this
should receive as much consideration as the bending.
The stress produced in the beam by this shearing force
is most intense at the centre of the section (the neutral
axis). In the case of a rectangular beam it there
reaches the magnitude of % times the mean shearing
stress, which latter is found by dividing the shearing
force by the area of the section.
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In the case of a triangular section, the apex of the
triangle being downwards, the top breadth & and the
depth d, the extreme stress in the top side may be

found by dividing the moment by 117%2’ and the stress on

the bottom may be found by dividing the bending

bd?

moment by 5 The latter will, of course, be twice

as great as the former. If the beam acts as a bracket,
the first will be in tension and the second compression :

12WI

.ﬁ = bdE (2)
_ 24W1

S = ZaT (Ra)

Actually triangular sections are rare, but many
sculptural brackets are approximately triangular in
section ; so that if the dimensions (less all work in
relief) be taken as for a triangular section, the stresses
may be computed.

As an example, let us suppose a stome bracket
supporting a corner turret weighing 5 tons has a
projection of 10 ft., the weight acting at the centre of
the span. Then if the bracket be 4 ft. wide and
5 ft. deep (triangular), the maximum tensile stress is

_Bx8x18

T 25 =3 tons per sq. ft., which is rather
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high. Joints without numerous cramps will, of course,
be impossible, and the bonding in is very important.
This latter point is one very much neglected, leading
occasionally to crushing of the wall in the neighbour-
hood of the bracket, and sometimes to failure of the
wall by bending. 'The bending moment is, of course,
transmitted to the wall with undiminished magnitude.
In fact, it is increased by the weight of the bracket
itself. Hence the wall must be guarded against failure
by bending, as is explained later in dealing with
retaining walls. Further, it must be recognised that
the inner end of the upper side of the bracket tends to
rise, and the outer end of the under side to fall, so that
the upper end of the bedding-in is compressed upwards,
and the under face downwards. It is usual to assume
that these pressures are simply proportional to the
length of the inset, the upper one increasing from the
face of the wall to a maximum at the inner end of the
bracket, and the lower pressure increasing from zero at
the inner end of the beam to a maximum at the face of
the wall. The edge of the under block, or template,
is usually chamfered to prevent spalling at this edge.
If, as is the case usually, the built-in part is rectangular
in section—b wide, d deep, and A long—then we have
the pressure on each side spread over an area, b\, the
mean value being found at A, the value at one end of
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brackets are of importance. Thus a large console or
truss decorated like a Corinthian modillion everywhere
approximately rectangular in vertical section needs no
further strengthening if its load is distributed and the
section is sufficient at the support, for the line of neces-
sary depth will pass well within the mass of stone above
the scroll.  On the other hand, if there is an end load,
care must be taken that the shallowest part (just behind
the lesser scroll) is sufficiently deep to allow an area for
shearing resistance.

This latter consideration will, as has been men-
tioned, generally be the most important in endeav-
ouring to economise masonry. The forms of least
material commonly employed for cast iron, steel, and
timber do not exactly apply to masonry for this
reason.

There can of course be no joint in a bracket or canti-
lever unless metal cramps, dowels, or ties of some kind
are used at the places where tension occurs. Thus if a
bracket has for some reason to be made up with small
blocks, every top joint must be cramped, and every
vertical joint joggled. The effect of substituting ties
or cramps for stone in tension is to lower the neutral
axis to about two-thirds the depth, so that less stone is
available to resist compression.

Thus the moment of resistance becomes :
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at) 2
o \%d> gt = AL LT @
where f; is the tensile stress in the metal, a the sectional
area, d the depth of the stone, b the breadth (rectan-
gular section), and f; the compression in the stone.

It will thus be seen that a jointed cantilever is far
less efficient than a solid one, so that generally it will
need to be larger and the economy will be lost.

The stresses in this case are closely analogous to those
which occur in reinforced concrete, to be dealt with later,
save thatin the latter no part of the concrete is regarded
as resisting (effectively) tension, whereas here the stone
between the joints does resist tension, the magnitude of
the latter being at the upper edge of any vertical section
nearly twice that of the compression at the lower edge
of the same section.

Another important type of bracket is that which is
tee-shaped in section, the table of the tee being upper-
most. The best proportion for this is one which brings
the centre of gravity of the section level with the under
side of the table. Given the dimensions, we know that
the centre of gravity will lie on the line of symmetry at
a distance from the upper surface.

+ 2 ®)
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The moment of inertia is

_ 60 + 6b,0, + 02 (
I="g@s+5) ¢ ©)

so that the maximum tensile stress (top) is

o Mz 1280+ )M
! I (6512 + 6b1b2 + b22)d2

where M is the bending moment.

10)

As an example of this case, let us assume that a can-
tilever of the form given is 4 ft. wide at the top and
2 ft. at the bottom (inside measurements, excluding all
carving) and 5 ft. deep, 10 ft. projection, carrying a
distributed load of total amount 10 tons.

_12(8x4+2)(10x5) _ 8400

Jo= 6 x16+6x 4x 2+ 4)25 = 8700 =20 nearly

(tons persq. ft.).

It is interesting to notice that in all cases the work
may be jointed without danger below the neutral axis,
and for economy of material an arched form may be used
for the under side, as already mentioned.

When terra-cotta or other hollow material is em-
ployed instead of masonry, it will be preferable to dis-
regard the strength of the cement filling, and compute
as if perfectly empty. This leads then to another type
of beam, whose section is a hollow rectangle.

The moment of inertia of a symmetrical hollow
rectangle is
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the brackets are 4 ft. deep, and 3 ft. wide at the wall,

we have

2
f% = 22,500.

_ 6x22,500

f= 3 %16 = 2812 lbs. per sq. ft.

(little over 1 ton).

Beams.—In concluding this chapter it will be
useful to point out that the few cases in which
masonry slabs serve the purpose of beams may be
treated in a manner strictly analogous to that here
employed for brackets.

The moments may be computed as equated to the
stress moment of the section just as is here done. It is
scarcely necessary in a work of this kind to remind the
reader that the bending moment in the centre of
a supported beam with a central bond W is WL/4,
where L is the whole span, and with a distributed
load WL/8, or a concentrated load not central
Wab

, where o and b are the distances from either end

of the beam.

If the ends are fixed down, the bending moments, as
supported, are reduced by the mean value so that
WL/4 becomes WL/8, and WL/8 becomes WL/24 at
the centre and WL/12 at the ends, and soon. Finally,
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the other side T, and R, balance W,. There is thns

a line of thrust R,F F,R, which passes through the
blocks. If the arch were a simple thin rib and this rib
exactly followed the line of thrust it is obvious that the
arrangement would be stable. Such a rib is called
the « linear arch.” It is obvious that a slight alteration
in the loading will modify the line of thrust so that
each particular set of loads necessitates a new linear
arch, and the simple rib will therefore be struc-
turally insufficient. On the other hand, if the said
linear arch lies within the blocks and the forces do not
exceed the crushing strength (or rather the working
strength) of the blocks it will follow that the arch is
stable. If the linear arch passes outside the blocks,
bending and consequently tension on one side will
occur, and the arch will break down.

Our great object, then, in studying an arch is to say
where the line of thrust falls, since from the magnitude
of its compartments the pressure between the blocks is
thereby determined, and by the position of the line at
any joint the distribution of the pressure (i.e., the
bending effect) is ascertainable.

Unfortunately, as has been pointed out in the case of
a single wedge, the exact position of the line is quite
indeterminate, but we may approximate to it in the

following manner :
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the thrusts at crown and skewback give the least values,
the load being constant. 'T'ake half the rest and find
the resultant bond (Fig. 9); assuming that R, passes
through the centre of the skewback, we see that

Ry =Wz + R, = ‘_‘y’“

so that in order that R, shall be as small as practicable
4 must be a maximum. In other words, the higher the
crown thrust the less is its actual value.

Again, assuming that R, passes centrally through the
section, the more inclined R, is to the horizontal the
less is its value. In other words, # should be as small
as possible and y as large as possible.

This idea may be again stated in the following form:
The nearer the crown thrust is to the extrados, and
the nearer the skewback thrust is to the intrados, the
less will each be in magnitude.

The further conclusion may be drawn that so long
as the line of thrust lies within the arch face it should
be as steep in mean slope as possible, so that R, is high
and R, low.

It should be here noticed that R, is the horizonta
component of R, and W is the vertical component.
This applies to any line of thrust, R, being the
horizontal component everywhere, so that we have the
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further conclusion that the horizontal thrust in an arch
is everywhere the same and is equal to the crown
thrust.

It might be supposed from the above rule as to the
positions of the crown and skewback thrusts that the
former might safely rise to the extrados and the latter fall
to the intrados. It will, however, be shown in the chapter
on retaining walls that if the resultant thrust passes
outside the middle third of the arch tension will be
experienced on the side remote from the thrust. This
is very undesirable, so that a further law is expressed as
follows :

The line of thrust should not pass outside the middle
third of the arch.

The maximum compression will always occur on the
same side of the centre line as the line of thrust, and
of course the -minimum compression on the other side.
If the maximum compression exceeds the crushing
strength of the stone, the arch will fail by crushing.
Another point to be noticed is that if the line of
thrust is inclined at less than the angle of friction to
any joint the arch will fail by the blocks slipping on
one another.

It will be seen from the above-mentioned rules how
important the line of thrust becomes, so that our whole
endeavours are directed towards finding it. Hence
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elements W, ... W, say six in number (Fig. 10). Draw
a vector polygon for these loads, and take any point o to
the left of the line, and join » rays to the end of the
vectors.  "Then across the corresponding spaces between
the loads draw parallel lines. So we have a * link
polygon,” 1234567, which is a line of thrust, but not
necessarily that for the arch in question, since the
height at the centre is purely arbitrary, depending on
the distance between o and the vertical line of vectors.
Let W, and W, be the loads on the abutments, i.e.,
scarcely affecting the arch and joints 2 to 6 at the feet
of W, and W, as shown by a line 8. Draw a line
through o parallel to 8 ; then R, and R,, cut off the line
of vectors, are the vertical components of the skewback
thrusts on either side.

Now we have to endeavour to apply this line to the
actual arch. Suppose the height from the springing to
the centre line at the crown is Y, ft., and on the scale
used for the link polygon, AB (the height from the
chord of the polygon to one of its sides in the centre of
the span), is Y, ft. Then if the point v be brought
nearer or farther from the line of vectors in the ratio

>

% (according as Y is less or more than Y,), and the
2
processes of drawing repeated, we shall have a link

polygon passing through the centre of the crown block
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or keystone. If instead of taking Y, as the height of
the centre line we take it to the upper edge of the
middle third, the crown thrust will then pass through
the point of maximum elevation allowable. If at the
same time W, and W, be so chosen that they pass
through the inner edge of the middle third at the
springing, then the condition as to position of the
skewback thrust is satisfied.

Supposing that under these circumstances the line
of thrust nowhere passes outside the middle third, we
assume that the arch is perfectly stable. This does not
necessarily mean that it is strong enough, only that it is
balanced.

Professor Fuller has devised a very ingenious method
of modifying the link polygon to pass through as near
as possible to these points at the crown and skewback,
which will be found in Perry’s Applied Mechanics
and Rivington’s Notes on Building Construction, Pt. 1V.,
but if the above be carefully studied there will be no
great difficulty in performing the operation.

Having proceeded so far, we must now deduce the
stresses in the arch from our given polygon.

Let us suppose we have any section plane or joint in
the arch AB, and the line of thrust is there inclined at
0 to the section, and that the magnitude of the thrust
there is I’ (Fig. 11). Note that P = 'I'sec y, where T
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(4) Tie the extrados or intrados (as required) with
clamps.

For constructional reasons it will generally be in-
convenient to adopt the first line of action, and if a
certain scheme of architectural treatment has been
adopted, the third may be objectionable. The fourth
is only used in extreme cases.

Hence deepening the arch is the most usual pro-
cedure. The steepest link polygon having been drawn,
we must deepen the arch so that the new middle
encloses the line of thrust. On the new arch the
stresses will of course be less, since the area over which
they are spread is greater. On the other hand, if the
dimensions and weight of the arch are appreciable in
relation to the load supported, the increased weight
of the voussoirs must be considered, and a new link
polygon drawn.

Three cases of failure are generally noted in regard
to arches.

(@) The line of thrust passes outside the middle
third at the haunches, causing these to sink in and the
crown to rise.

(8) The line of thrust passes inside the middle third
at the haunches, causing them to burst out and the
crown to sink.

(¢) A third case not uncommonly happens, viz.,
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slope 3, there is a tangential force R = W sin B and a
normal force W cos 3.

When 3 is less than the angle of friction of course
this is immaterial, the resultant reaction being neces-
sarily vertical and equal to W, but near the springing
a point must come where 3 exceeds the angle of friction
and there is shearing force acting on the extrados. It
is of course true that the adjacent parts of the spandrel
tend to neutralise this, but at the same time the point
should receive consideration.

Another matter of importance is the angle of the
skewback. It will be found that as this angle decreases,
i.e., as the arch becomes a larger segment of a circle,
so it is more and more difficult to fit the link polygon
into the arch, particularly in the truly circular forms.
It is this fact which has led to the adoption of the
ellipticarch, Moreover, when the skewback has become
horizontal, as in semicircular, semi-elliptic, or Gothic
forms, it is rarely possible to keep the line of thrust
on the intrados side of the centre.

Also from the very fact of the existence of a hori-
zontal thrust throughout it is not possible that the skew-
back thrust should be vertical (i.e., perpendicular to the
joint), for that would imply either an infinite load in pro-
portion to that thrust, which is absurd, or an infinitely
high arch (which is nearly realised in lancet-forms).
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Hence in any arch, vault, dome, or similar structure,
the abutments tend to be forced apart, the outward
push being the same as the crown thrust. For this
reason the end arch of an arcade needs to be buttressed
or strengthened in some such manner. By excessively
loading the abutment (as is done in the buttresses
which support “flying buttresses™) it is possible to
throw down the thrust, but it must always be understood
that the horizontal thrust cannot be balanced except
by friction and shearing resistance in the bed-joints of
the abutment.

In the case of arched bridges, such as London Bridge
and Waterloo Bridge over the Thames, there is a
peculiar type of loading, viz., decreasing from abut-
ment to crown, on account of the work being brought
up to an approximately level surface a little above the
arch. In this case it will be found that the link
polygon for the loads (splitting the distributed load
into a convenient number of parts) will be almost
elliptic in form, so that it will fit into an elliptic arch
with great ease. 'This fact, together with the necessity
for minimising the number of abutments, has led to the
use of elliptic arches in river and railway practice.

In the ordinary case of an arch supporting a wall it
is a very common practice to assume that the whole
of the uninterrupted mass above is supported. As a
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matter of fact the bonding tends to support overhanging
stones, so that the actual mass likely to fall should the
arch be removed is bounded by two diagonal lines
running zigzag along the vertical and horizontal joints
upwards from the ends of the arch, forming a roughly
triangular piece. In brick (quarter bond) structures
these lines will slope in the ratio 8 to 2} = 4 to 3, so
that over a straight arch B ft. along the extrados

%= g—B ft. high, the total area
of the face being 1B? sq. ft.
This fact combined with the tensile strength of

mortar (which is not greatly tried in this case) will

there is a triangle% .

account for many cases in which arches obviously
unsuitable and insufficient to support a large piece of
work stand for many years.

If a building which is underpinned for the purpose
of putting in a shop-front be examined, it will be seen
how much is due to the strength of the mortar and
how little may be due to arches supporting work over
openings.
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components will combine to produce a resultant hori-
zontal thrust = /2T sin 6, and the vertical components
will produce a resultant vertical pressure = 2T cos 6.
The resultant of these two

T, = 2T,/ sin® 6 + cos® 0 1)
The deviation of the thrust T, is such that
it
¢ = tan _, ( {3126> @

where ¢ is the angle made by T, with the vertical.
From this expression it is obvious that ¢ is less than 6,
so that the diagonal rib must be deeper than the barrel
vaulting to contain the line of resistance. The fact
that T, is greater than T also necessitates this, by reason
of the greater pressure.

If we proceed in this manner from the key-block at
the crossing down one rib, taking account of the load on
the rib, we may find the line of resistance just as for a
simple arch and compute bending moment and shearing
just as before.

It should be noted that the geometric form of the rib
necessarily leads to a weak arch, so that special care must
be taken in providing sufficient depth. From this case we
can easily proceed to the discussion of Gothic vaulting.

Before, however, this is considered the question of the
line of resistance in a pointed ‘arch needs brief notice

’
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It is of course obvious that the line of resistance must
follow a curve closely resembling that of the arch itself,
but it should further be noticed that, since there is no
keystone but a vertical middle joint, the crown thrust
must be absolutely horizontal, i.e., the loading must
be exactly symmetrical. Subject to this proviso, the
methods employed for the ordinary arch will be
applicable to this case also.

It will be remembered that the panelling blocks have
their transverse joints approximately perpendicular to
a line bisecting the angle made by the wall ribs with
the diagonal ribs. Lierne ribs may be regarded as
merely serving to stiffen the panelling.

The order of procedure is then as follows, for a level
ridge vault :

(1) Find the line of resistance in each of the side arches,
and notice if these are of themselves sufficiently deep.

(2) Take the skewback thrusts from the intersecting
vaults and combine them into a series of resultants
acting through the diagonal ribs, thus finding lines of
resistance for the latter.

(8) Notice that the panelling joints are nowhere
inclined to more than the angle of friction with the
diagonal or side arches. V

As an alternative to this last, a vertical section may
be taken through the panelling, bisecting the angle
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between a side arch and the diagonal rib, and the
loads on unit width studied. If the line of resistance
passes outside the middle third, then the panelling
should be deepened.

It is a not uncommon practice to fill in the vaulting
from above with concrete, decp over the arch springings
but thin over the crown. This steepens the lines of
resistance and also deepens the arch, thus doubly con-
tributing strength. ‘

Domical vaults may be treated similarly, save that
lines of resistance need to be drawn for the apex arches,
and it should be noticed whether the skewback thrusts
from the same are sufficiently great or oblique in
direction to push out the crown voussoirs of the side
arches,

The proportions commonly adopted for Gothic
vaulting are ample, and if a concrete filling be employed
there is no doubt that the usual forms of construc-
tion are sufficiently strong without special design being
necessary.

Skew Arches

\

It is well understood that the skew, helical, or spiral
construction for oblique arches is intended to give the
necessary strength to the arch. This object is achieved
in two directions :
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(1) The coursing and transverse joints are by the use
of helical lines made perpendicular to each other.

(2) The transverse joints are by the helical arrange-
ment prevented from breaking out on the face of the
arch and so leaving a part of the work unsupported. In
studying this type then from the point of view of
strength, it will be convenient to imagine the heading
joints to be unbroken, so that the auxiliary effect of
bonding along the coursing spirals is neglected, or,
rather, taken as an additional security.

It will be convenient to give symbols to the three
angles made by any one course at a certain point.

(1) 6 = angle between the tangent to the coursing
spiral and the horizon.

(2) ¢ = angle between the tangent to the coursing
spiral and a line drawn perpendicular to the faces of
the arch.

(3) ¢ = angle between the joint and the perpendi-
cular, i.e., the angle between a perpendicular to the
cowrsing spiral, tangential to the arch, and the hori-
zontal.

Further, let us assume a weight W on the crown
block or keystone between any pair of heading spirals
(say unit distance apart).

We can then proceed from block to block in the

following manner :
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On the keystone of any one ring (included between
the above-mentioned pair of heading spirals) 0 is zero,
i.e., the coursing spiral is there horizontal in direction,
so that the thrusts on the adjacent joints are connected
by the expression

W, = 2Tsin ¥

2
L = W (3)

in
2s1n2

This thrust is in a plane inclined ¢ from a sectional
plane perpendicular to the faces of the arch, i.e., in
the tangent plane to the heading spirals.

As we come to the second block we have to remember
that the bed-joint of this block lies in a new coursing
spiral ¢, from the perpendicular section, and the thrust
T so far as that block is concerned must be resolved into
two components, T cos (¢ — ¢,) and T sin (¢ — ¢,), the
first perpendicular to that joint and the second tangen-
tial (shearing).

Furthermore, we have to recognise that the coursing
spiral of the second joint is also no longer horizontal,
but inclined at a small angle 6, to the horizon. Hence
the load W, in the second block must be regarded as
being supported by two upward reactions W, cos 6, and
W, sin 6,, the first being the resultant of the thrust
from the crown block and the third block in the ring
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being studied, and the second (W, sin ,) being laterally
transmitted and tending to cause shear.

Hence we have approximately a shearing force

S = Wysin 6, + Tsin (¢ — ¢,) (4)
and a thrust on to the third block which is the resultant
of T cos (¢— ¢,) and W, cos 0, ; that is,

Ty =T cos (¢ — plys + Wy €08 05y (5)
where T, is the thrust on the third block, i, is the angle
between a perpendicular to the second joint (i.e., the
face of the third block). It should be observed that
this is a vector summation. An algebraical formula can
easily be constructed, but it is preferable to do the work
graphically.

Similarly we may proceed to the fourth block. The
load W on the third block must be split into com-
ponents W; cos 6; and W, sin 6,, the former being that
affecting the ring, and T, must be split into components
T, cos (¢, — ;) and Tysin (¢, — ¢,), of which the first
is the important one in studying the ring. The thrust
on the fourth block will then be by vector summation

Ty = T; cos (¢, — Polys + W 08 Oy
Proceeding thus, a line of resistance can be drawn for

the whole of the ring, and if a section following the
heading spirals be drawn on a base equal to the diagonal
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span, it will at once be seen whether or not dangerous
bending effects are likely to occur.

It will, of course, be remembered that the skewbacks
for skew arches must be cut to the coursing spirals so that
the shear component will cause the resultant thrust to
be as nearly as practicable perpendicular to the same.

In connection with arched ribs it may be useful to
notice the theoretical forms of arch which are the most
suitable for certain types of loading. ’

Two forms are principally noteworthy :

(1) Arch with uniformly distributed load (i.e., constant
load per unit span).

It is well known from the principles of bending
moment that a beam whose depth varies inversely as
the square of the distance from the ends (i.e., parabolic)
is the most economical of material. Similarly it will be
obvious that the link polygon for this kind of load
(which would be a diagram of bending moment on a
beam) will be parabolic in form ; i.e., if y be the depth
below the crown of the figure, the horizontal distance
from the centre line to either side of the link polygon
will be equal to x, so that ka*=y.

If now we write 22, as the distance between the inner
edges of the middle third at springing level (i.c., the
span and twice the horizontal distance from the intrados
to the middle third) and make y,=vertical height of
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of resistance, this line can be put on to the arch at
once.*

(2) Arch with uniformly distributed load along its
curve (i.c., constant load per unit length).

In this case the curve is one known as the * catenary,”
and we have the following awkward relation between
the distance from the centre line , and the depth from
the crown to the curve y:

& g x
y =ccosh™ or Y = cosh®
¢ (5 5

&)

where cosh(?) represents a mathematical quantity,tables

of which are to be found in most engineering books.t
The following values may be useful :
x Y © Y
< e ¢ ©
-0 1:0 25 6132
05 1-128 30 10-07
1-0 1-543 40 2731
1-5 2:352 50 7421
2:0 3762 60 20172
* All arch problems really reduce themselves to this. A link
polygon for the loads being fitted through three points, its deviation,

from the centre line anywhere is calculable (graphically or otherwise),
and the latter is proportional to the moment on the arch at that

point.
1 Cosh %:g(ExlczE'w/c), so that mathematical readers can easily

calculate it.,
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are tied across so as to prevent the horizontal thrust
being transmitted to the lower work. 'The pull in each

such tie-rod will be
P= ’;3 T, cos 6, (10)

where n), §, and T, are obtained from (1) and N is the
number of rods.

Generally, however, the dome is supported on a sub-
dome or pendentive, which again rests on walls or
piers. If the latter there are generally four (or more)
in number.

The pendentive dome generally consists only of four
spherical triangles, combining to form a complete circle
under the true dome, and the lower cusps or angles
descending to the four piers, arches being sprung
between the piers.*

If a section be taken across the dome centrally and
parallel to a line connecting the two piers, the arch
of the dome will be seen to spring from the crown of
the arch between the piers Another section taken
diagonally across two alternate piers will show the dome
springing from the rim of the pendentive and the latter
sending its thrusts down to the piers. A third view
taken externally shows the inter-pier arches sending

* See Mitchell’s Building Construction, Fletcher’s Architecture,
or any text-book on Byzantine architecture or masonry.
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The loads on the inter-pier arches are practically
uniformly distributed, so that no great difficulty arises
with them.

The thrust from the super-dome to the pendentive
may be regarded as the initial thrust on the latter, and
may be continued down the rings. Each ring, however,
consists of a smaller number of blocks, and the thrust
must be increased from ring to ring in inverse ratio
to the number of blocks until the supporting piers are
reached.

Very frequently in domed construction, particularly
in the Renaissance style, heavy finial ornaments or
towers are built above the dome, and must be considered
in its design. The effect of their weight is threefold :

(1) To steepen the diagram ;
(2) To increase the horizontal thrust;
(3) To increase correspondingly all the thrusts.

The first item is of considerable importance, since we
find that many of the domes, if hemispherical, are subject
to considerable bending, so that many architects have
found it advisable to employ hyberbolical forms. Thus
in St. Paul’s Cathedral the true (structural) dome is
conical with a slightly curved apex. If, as in the case
mentioned, this dome is not sightly it has to be screened
with false light domes. In some cases (as the Brompton



DOMES 95

Oratory) a suitable visible dome may be so formed,
something after the fashion of a Saracenic cupola.

If the reader draws some lines of resistance on which
the central load is great, it will be easily seen why
such a device is necessary, the only alternative being
to thicken the dome, with a consequent increase of
immediate load, and also greater effects on the sub-
structure.

Similarly it will be found that elliptic domes (i.e.,
elliptic in any vertical section) are most suitable when
the loading is greatest at parts most remote from the
apex.

Ogee domes, such as occur in Saracenic work, are not
capable of supporting great loads, since the line of
resistance in such a case will necessarily leave the
middle third at some point.

In cases where there is any doubt as to the security of
an existing dome, or where it seems desirable to take
special precautions to prevent collapse, iron bands are
frequently put round the haunch rings. These serve
the double purpose of reinforcing the rings to resist
tension, and also to balance the effect of an outward-
acting shearing force.

If the shearing force be computed by formula (7) for
a joint in any particular ring we find the total outward
force in the ring is #S, where » is the number of joints
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and S the shearing on one joint. If this be divided by
7, we have the diametric effect (as in boiler design), so

that we may write

nS
= = 15
o = (15)

where f, is the tension per sq. in. in the band and « its
sectional area.

As far as bending effect is concerned, it must be
realised that horizontal rings are of little use in resisting
the bending effects of the vertical lines of resistance,
but will be useful if, owing to the irregular distribution
of the load or the special form of the dome, the lines ot
resistance running horizontally round each ring produce
bending. If the iron be not fixed into the stone, it
reinforces the latter by the total amount of its tension,
so that it is thereby able to resist bending to an extent
f.a x 8, where & is the distance to the centre line of
the ring. If the iron is cemented into the stone the
tensile resistance is less but the compressive resistance
is greater.

It has frequently been remarked by architects and
engineers who have visited the Orient that the domes
so frequently erected there are, according to our
standards, unstable and yet rarely seem to fail. It will,
then, perhaps, be useful to point out wherein the theory
fails to take into account practical safeguards.
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If we look through the rules already given it will be
noticed that the following assumptions underlie them :

(1) That masonry should not be subject to more
than one-tenth its ultimate stress.

This alone would account for many cases in which
failure does not occur, for undoubtedly, if we could
prophesy an absence of vibration and flaws in the
stone and joints, a much lower factor of safety could
be used.

(2) That the line of resistance should fall within the
middle third of the joint.

This condition ensures that tension shall not occur in
the work. On the other hand it is quite possible that
in many cases tension might safely occur up to a certain
limit, so that this again will explain the permanence of
domes built without such precautions being taken.

(3) That the resistance of the joints is uniform or
uniformly varying.

This is a condition which must undoubtedly be
assumed in constructing a working theory, although
there is every probability that it is not realised in
fact. Irregularities in the mortar and on the stone
will frequently cause irregular resistance, and, moreover,
recent researches on the subject of reinforced concrete
have indirectly shown that masonry is not by any means

uniformly elastic.
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Hence we may conclude that in many cases the
nature of the construction (guided by experience in-
expressible in words) has been such that the extra
resistance obtainable in this way has been taken
advantage of.

Another point which perhaps deserves attention is
the statement commonly made that large domes, such as
those of St. Sophia or St. Peter (Rome) or of Florence
Cathedral, have been built without this theory. This
is, of course, the old question of practical instinct versus
theory, and it seems scarcely necessary to point out
that the theory is but an outcome of the results
obtained by long practice, and that very probably it
would be found that now such domes could be con-
structed with even greater economy of material than
was displayed by the illustrious architects who executed
these works.

Before leaving the subject of domes, it will be useful
to refer to the question of piercings and lanterns. It is
obvious that any such opening in a dome must be
surrounded with an arch ring, which serves the same
purpose as the masonry occupying the same space
would do in a complete dome.

Thus a lantern on the apex of a dome is surrounded
with a horizontal ring, which forms the key-block to

the dome. 'T'his ring acts in precisely the same manner
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as the key-block would have done, and must be de-

signed to resist the same forces.

Similarly any piercings in the sides of a dome will
take the place of the masonry whose room it occupies
and be subject to the same forces. One particular
point in this connection may be mentioned, viz., that
since the thrust increases as we descend the dome, the
lower part of the ring round an opening will happen to
be subject to greater forces than the upper. On the
other hand, the greater size of the rings in the lower
parts of the dome will distribute the pressures over a
larger surface, so that it may be doubted whether there

any actual increase, and in small domes it will
certainly suffice to construct an arch ring of uniform
strength round the opening. Very frequently stilted
arches are used (compare the lights round the base of
the main dome at St. Sophia), and the lower blocks in
such cases will be subject to considerable horizontal
shearing from the dome ring abutting against them.
The direct loading on to the arch will, however, tend to
increase the frictional resistance, so that rarely will it
be necessary to use special construction to resist the
extra force.

In conclusion it may be pointed out that the dome is
a construction which gives the maximum amount of

uniform distribution of pressure.



CHAPTER VIII
RETAINING WALLS AND DAMS

THE question of walls required to resist lateral pressure
has received considerable attention. It involves two
problems, both of which are, to a certain extent,
indeterminate, viz. :

(1) Lateral pressure of retained material.

(2) Stresses in a wall subject to such lateral pressure.

For completeness’ sake we may devote a little atten-
tion to the former problem, but seeing that the latter
is more important as regards the masonry itself, this
will be first considered, and the lateral forces assumed
both as to magnitude and position.

It is essential that all the forces acting on the wall,
taken as a whole, shall be in equilibrium, unless the
wall is rigidly secured to the earth, so that it may be
regarded as an integral portion of the same. The
latter assumption is only made under exceptional
circumstances, and it is usual to simply assume that :

(1) The moment of the lateral force is balanced by
100
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the moment of the weight of the wall about some point
between the centre of gravity (projected on to the base)
and the outer edge of the base.

(2) The shearing effect of the lateral force is balanced
by the frictional resistance of the blocks to sliding.

In other words, the wall is regarded as consisting
only of uncemented blocks. The margin of safety so
secured is perhaps, in some cases, excessive, but this
point will be considered later.

The stresses in the material of the wall are of three
kinds : (@) bending, (b) compression, (c) shearing.

The first is due to the turning moment acting on
the wall, the second to the weight of the wall, and the
third to the sliding effect of the lateral forces.

In any mass of masonry the pressure on the base is as
nearly as possible represented by the rule

weight (1bs.)

Pressure (lbs. per sq. ft.) = ot B 1)

This is, if the wall is thoroughly bonded, true even when
the faces are battered.

It is convenient to consider only one foot-run of the
wall, for if that piece is stable all similar pieces under
the same conditions will also be stable.

Hence we may write

w

P )
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the “resultant force™ passes through the section. The

“resultant force ™ here referred to means the resultant
of the total load above the section, and the lateral
pressure acting on the wall above the section. Thus, if
AB is the section, and F and W act in the positions
shown (Fig. 17), the resultant, R, passes through a
point, d, from the centre of the section. Splitting this
resultant into the original components, we see that it
may be regarded as a force, W, acting vertically on the
section at d from the centre,and a shearing force on the
section equal to F. The moment of the first about the
centre = Wd, so that we have

M= Wd = Fhr (2a)
Putting this value for M in (5), we have
W _ 6Wd _ 0:
D D 7
so that
D
d=+% (6)

Hence we have the important and well-known rule:

In a wall with straight faces (i.e., in plan), in order
that there shall be no tension at the interior edge of a
section, the resultant of the forces acting on the wall
above that section must pass within the middle third of
the base, i.e., not more than one-sixth the width of the

section in front of the centre of gravity.
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In cases, by no means few in number, where the above
rules lead to very thick walls,* various devices are em-
ployed to economise masonry. One of the simplest is
to incline the wall backwards against the retained
material. The effect is to throw the centre of gravity
backwards, so that the resultant is also brought back.
Another common method is to make the wall thicker
at the base, so that D is increased there (and d propor-
tionately). 'The faces may be ¢ battered,” i.e., evenly
sloped or stepped. If the wall is stepped on the back,
the earth on the steps can be included in the weight
of the wall.

Yet another method is to buttress the wall at inter-
vals with short pieces of thick walling, so that the mean
value of D is again increased. 'The buttresses may be
outside or inside. If inside, the wall is sprung in
arches between, the construction being termed ¢ coun-
terforted.”

The wall may also be curved on the outer (and
sometimes also the inner) face, so that the thickness
increases more rapidly than the depth. This arrange-

* Putting (2a) in the first rule of (5), we have

W

o n 2
maximum compression = .

and since at the bottom of the wall W=DHuw, where H is the
height and w the weight per cubic foot, the connection between the
height allowable and the maximum compression is :

maximum compression = 2Hw.
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ment is often employed for dams where the total water
pressure varies as the square of the depth, and is un-
affected by friction. It will, however, be more convenient
to deal with this matter when the nature of the lateral
pressure has been considered.

Lateral pressure on a wall may arise from a number

of causes, which may, however, be specified as follows :

(1) Water pressures.
(2) Earth pressures.
(8) Constructional pressures.

The last case, including flying buttresses, oblique
struts, arch abutments, &c., may conveniently be
considered as a variation of the arch problem.

Water pressure has certain very simple charac-
teristics.

(a) It acts perpendicularly to all surfaces opposed
to it.

(b) Its magnitude at any point is proportional to the
depth of water.

(¢) Tts total magnitude down to any point is pro-
portional to the square of the depth.

(d) It depends entirely on depth and is irrespective
of quantity. Thus two dams }” apart, the intervening
space being filled with water, are subject to the same
pressure as the retaining walls or banks of a reservoir
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the centre of the wall, as is required for calculating the
stresses. "Uhe latter is as follows :
10-41H3sec?§ — 15:62H?*D sin 0 (80)
where I is the base thickness (horizontal).
In the case where the wall has an irregular or curved
internal face the matter must be treated in rather a
different manner. Two systems may be adopted. The

first is more in conformity with the preceding method,
and is as follows :

Take the face bit by bit as it changes slope (or if it
is a curve assume it made up of a number of chords), and
find the pressure on each bit as follows :

Let the depth at one end of the length be H, and at
the other H,. Then the mean pressure is

3125 (H, + H,),
and if the length is L then the total pressure is
31'25L(H, + H,).
If LL is inclined @ from the perpendicular, then
L =(H, - H,) sec 6,
so that the total pressure AF
= 81'25(H,2 — H,?) sec 0, )]
Measure the distance perpendicularly from the line of

action of this pressure (inclined 0, to the horizon) to
the centre of the wall at the section considered, and we
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obtain the moment of the force about that point. The
sum of all such moments taken above the section will
give M, and the wall may be designed to accord with
the previous rules. If L in the section taken is small,
the pressure may be assumed to act through the middle
of it. If it is comparatively large the following simple
rule may be used to find the centre of pressure (i.e., the
point at which the resultant force acts) :

Draw at each end of L a perpendicular proportionate
to H, and H,. Join the heads of these lines and find
the centre of gravity of the enclosed trapezium. The
line of action will pass through this centre of gravity
and be perpendicular to L.

Instead of taking the moments separately, the various
forces may be combined by a link polygon so as to find
the resultant force. This resultant will then correspond
to Fin the previous problems, and, being multipliedinto
its perpendicular distance in feet from the centre of the
wall at the section considered, will give the required
moment M. Notice that no forces acting below the
section may be included.

The second method is to take the wall bit by bit as
already suggested, finding the resultant force on each
bit, and then combine this with the resultant force
coming from the section above. Thus in the first
section there will be the weight of that section of the
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wall and the lateral pressure on that section. The
resultant of these will be continued to combine with the
weight of the second section (weights, of course, will act
through the centres of gravity of each section), and the
common resultant will then be combined with the
lateral pressure on the second section, and so on until
the bottom of the wall is feached. In this manner a
line of thrust similar to that employed in arches will be
mapped out. Its intersection with a section taken at
any level will indicate by its position on the section and
its components the direct bending and shearing forces
as in the case of the arch.

(This same method applies to lateral buttresses.)

Earth Pressures.—These are identical in kind
with water pressure, but less in magnitude where regard
is had to the actual weight of the supported material.

Referring back to rule(7), we have ¥ = }w,H?, where
w, is the weight of a cubic foot of water (62'5 lbs.
nearly). The same rule applies here, but we must
multiply by some fraction less than unity, so as to
allow for the reduction of pressure due to internal
friction ; thus we have

F, = 1w, H? x « (10)

When w, is the weight of a cubic foot ot retained
material (sand 100 to 170, according to wetness, shingle
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90, clay 120), « depends on the nature of the material,
chemically and physically. In experiments on friction
we find that the angle to which a slope may be fixed
without a block on it slipping is a2 convenient measure
of the friction between the block and the slope.
Similarly, a mass of loose material slides on itself until
the slope has a certain angle, which is analogous, if not
identical, with the one in the experiment. This angle
is termed the angle of repose (Rankine), and generally
denoted by the Greek letter ¢ (phi). In the case of a
wall supporting a bank with a horizontal surface
_ 1 —sing

= 1+ sin ¢ (1)

K

surcharged to the angle ¢ ; « = cos ¢ (11a)

The angle of repose varies from 0° (water) to 90°
(hard rock). Important intermediate values are as
follows :

Wet clay, 16°.

Sand, 22°.

Shingle, 40°.

Well-drained clay or compact earth, 45°

When ¢ = 42°, ¢ in (11) is about }, and in (11a)
about .

In cases where the slope of surcharge is less than
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the angle of repose, or becomes more complex, being
expressed by
cos 3 — J cos 23 — cos ¢

S I e o e e

Kk = cos 3

(B is angle of surcharge).

'This somewhat cumbrous expression will rarely need
to be used, since the slope of surcharge is usually the
angle of reposc.

The resultant torce acts, as in the case of water, at
two-thirds the depth of the supported mass.

Another theory of earth pressure, which is conve-
niently adapted to graphical methods and differs but
slightly in its results from the foregoing, deduces the
conclusion that of the mass retained a certain wedge
alone need be considered as producing lateral pressure.
This wedge is bounded by three planes:

(1) The back of the wall.
(2) The surface of the surcharge.

(8) 4 plane making an angle = 45° — (}2? with the
back of the wall.

This mass is regarded as supported by the reactions
from the wall (the lateral pressure), and reaction from
the remaining earth and friction on the latter.

If the mass of the wedge be calculated and regarded












116 STRESSES IN MASONRY

The last form, however, needs special consideration
for the following reasons :

(1) The absence of joints greatly increases the
shearing and bending resistance.

(2) The monolithic character of the work ensures
complete distribution of the load, and at the
same time tends to reduce bending moments
(i.e., in cases such as floors fixed all round).

(8) A comparatively high tensile resistance may be
resisted throughout a considerable length of
work.

These effects may be summarised by saying that the
continuous character of the structure leads to a similar
continuity in the stresses and bending moments through-
out the whole.

It is therefore the peculiar feature of monolithic
structures to transmit their bending moments even-
tually to the ground, so that every individual member
is subject to an external moment equal to its average
impressed moment, the algebraic sum being zero.

Thus beams with central concentrated load W, span
L, are subject to an impressed moment WL/4, but the
ends being constrained to remain in their original
direction there must be applied to those ends (and
transmitted through the supporting walls) a moment



g
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WIL/8, being the average value of the impressed
moment, (WL/4 + 0) ~ 2 = WL/8, and the moment
of any point in the beam is

M,=M - WL/S 1)

where M is the moment caused by the load on the beam,
regarded as a case of simple support. At the faces of
the walls the moment on the beam will be then
— WL/8, and at a point } span from the walls the
moment is zero (the point of reflex curvature) and at
the centre the moment is WL/8.

It will be obvious that the moment at any point is
less than if the beams were simply supported.

In the case of a uniformly loaded beam, where the
moment, if simply supported, is

M = 2Lz — wx? @
2

where w is the load per foot run, L is the span, and 2
the distance from the abutment, the whole bending
moment diagram is a parabola, whose vertex measure-
ment is wL?8. Now the mean height of a parabolic
segment is two-thirds the vertex height, so that the
externally applied moment is wL?/12, and the moment
M, at any point in the beam when part of a monolithic

structure is
M, = M — »L?12 3)
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would appear inadvisable to apply the notion of perfect

elasticity in such a severe case as this.

With regard to the vertical members of a monolithic
structure, regard must be had to the manner in which
they are connected to the horizontal ones. It has
already been mentioned that the latter transmit to the
vertical members certain moments as well as the direct
load. If we disregard the crippling effect due to mere
length, we may say that any vertical wall or column is

subject to the following effects:
(1) W, = (W),

where Z(W) represents the sum of all the loads on it,
including its own weight and the usual proportions of

the floors, roof, live load, &ec. ;
@) M, = (M),

where 3(M) stands for the algebraic sum of all the.
moments on it, from floors, transverse beams, roof
frames, &c.; so that we may state the maximum and

minimum stresses

W, M.
n S oo 8
f A 5 Z ®)
where A is the area of the section considered (generally
the base), and Z is the modulus of the same section,

By arranging floors, &c., systematically about the
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vertical members, the algebraic sum of the moments
may be reduced to a very small amount indeed.

In monolithic structures it will frequently happen
that the floors are made self-supporting for a con-
siderable area, i.c., fixed at all edges. A panel of floor-
ing of this kind tends to be subjected to stresses acting
along lines radiating from its centre, but the exact
magnitudes have not been settled. Rankine, Grashof;
and others have deduced formula for calculating these
stresses, but the whole matter is very uncertain. We
may, however, assume that the material is able to resist
bending effects in two directions at right angles to each
other without interference. Let us first consider the
case in which the panel is merely supported at all edges,
not fixed. The total reaction on each edge may be
supposed to be a quarter the total weight, although
this assumes that all the supporting surfaces are mathe-
matically level. Assuming the panel to be square, and
the load per sq. ft. is w, the length of the sides being /,
we have w/*/4 as the reaction on each side. If we sup-
pose this to be concentrated at the centre of each side,
we shall have a moment at the centre where either
transverse scction is considered equal to wl/4 X
(Y/2—1/4) = wl*/16 as a rough value.

Equating this to the moment of resistance of the

transverse section, we get
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This last is the case which most frequently occurs,
and applies to all coffer panels and floors of uniform
thickness.

As an cxample, we will take the case of a panel
forming part of a floor above a coffered ceiling, the
breadth of coffer in the clear being 5 ft., length 6 ft.,
load per sq. ft. 200 lbs. (including floor), and thick-
ness 1 ft.

f= 6* x 5% x 200
T2 x1(6*+ 5%

6,480,000
= "gaal = nearly 1700 lbs. per sq. ft.

It should be noticed that the tension is on the
upper side near the edges, and on the under side in
the central parts.

A continuous ground layer fixed under or into the
walls is a similar case, and an example of this may
be interesting, as showing the theoretical origin of
the cracks which are not infrequently seen in such
cases.

A floor is covered with a ground layer, the dimen-
sions in the clear being 20 x 380 ft., and the load per
sq. ft. (due to weight of the structure as a whole) say
half a ton. The thickness of the ground layer may be
taken at 18 ins.









126 STRESSES IN MASONRY

It is shown in books on applied mechanics (sce Perry,
p. 358, § 302) that the shearing stress in a rectangular

beam subject to twist is approximately

SM(d,%2 + b,%)

where d is the half-depth and & the half-breadth of the

beam.
This should be allowed for in important cases. Thus
in the practical case last calculated we have

W = X 4% 48 =192 tons, / = 48, and b = 4°0.
Tetbbe2ft.,and d = 8 ft. We have

192 x (48 . i
= 16484 + 49) = 0-39 ft.-ton

2 4 g2
fi= 2 xs(zg?(fg;l;Q)—OOWton per sq. ft.

The resultant is here seen to be unimportant, but
obviously other dimensions might greatly increase its
value.

Further it should be noticed that this same moment
which holds the edge of the slab is transmitted to the
walls as a bending moment, and must be considered in
designing the walls, as has already been mentioned in
the beginning of this chapter.

Sufficient has been said to show that the key-note to






CHAPTER X
REINFORCED CONCRETE

THE question of economising weight and material in
masonry construction, while at the same time preserving
the advantages of high compressive resistance, has led
to the practice of reinforcing concrete with steel bars
and rods. Numerous patent systems are in vogue,
among which particular mention should be made of
the Hennebique and Kahn systems.

The essential principle underlying all these systems is
that of placing steel where tension is to be resisted.
The exact theory is as yet in a very uncertain state, but
certain simple rules may be given for designing which
will serve in most cases. For more elaborate formule
the reader is referred to the numerous text-books on
the subject.

We will first consider the case of a simple beam with
one reinforcing rod (Fig. 20).

It will be remembered that in dealing with all beam
problems there is a rule
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An alternative form of the bending-moment equation
may be obtained by use of the simple couple principle.
The centre of pressure in the compression area is 3y
from the neutral axis, so that the moment may be
written

M=f£AD+ ) =l yD+3) 6

From these rules (i.e., formule (1) or (6) and (5))
the dimensions may be readily computed. It is neces-
sary to assume values for n, m, and b, and readjust them
if d becomes disproportionate.

Reinforced concrete columns are somewhat difficult’
to design, since the bending moment to which they
may be exposed is quite indeterminate.

A rule frequently employed is

W = 400(A, + 15A,) (7)

where W is the total load in Ibs, and A, and A, are the
areas respectively of concrete and steel in square inches.
This rule, of course, only allows for simple compressive
stress (400 lbs. per sq. in. for concrete, and 6000 1bs.
per sq. in. for steel). The effect of the concrete on the
steel is to slightly lessen its resistance by reason of the
lateral constraint produced and initial strains due to
contraction. A not unusual practice is to design the
column as if of concrete alone, and then add 5 per cent.
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the latter. Above the neutral axis it diminishes,
becoming zero at the top surface of the beam.

To prevent failure in this respect there are various
devices. The Hennebique system adopts wrought-iron
stirraps which clip round the reinforcement and bed
vertically into the concrete. In the Kahn system the
reinforcing rods are bent upwards at convenient inter-
vals to an angle of 45° being thus put in tension to
balance the vertical shearing force.

Assuming a parabolic distribution of the shearing
stress above the neutral axis, the following expression

follows :
S = 3fiby + 6D + FA 9)

where S is the total shearing force in lbs., f; is the
shearing stress per sq. in. of concrete, and F, the
shearing stress per sq. in. of steel.

The horizontal shearing force is of equal intensity,
so that if stirrups or plates be used we may write

S = nfa (10)
where S is the total shearing force in lbs. at the section
considered, n is the number of plates or stirrups in the
immediate neighbourhood of the section, a is the sur-
face of contact between the stirrups and the concrete,
and f is the shearing stress in lbs. per sq. in. for
concrete on steel.
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If Kahn bars or similar diagonal reinforcements be

employed, making an angle of 45° with the horizontal,

S =mfiA +J2 (11)
where m is the number of bars occurring at the section
considered, £, is the tensile stress in the steel and A the
sectional area.

Up to this point we have treated the question just as
we do beams. There are, however, certain points to be
considered arising from the monolithic (i.e., continuous)
character of reinforced concrete construction.

In the first place, reinforced concrete floors are
usually attached at all edges, so that it is necessary to
consider the case as one of bending, the beam being
fixed all round. If w be the load per foot run of a
beam fixed at the ends it will be remembered that the

2
maximum bending moment is zi% , while if it be fixed

2
at the edges it generally remains less than g%, i.e.
w,BI2
24’
the breadth of the slab.
Furthermore, in such case there is a reversal of the

where w, is the weight per super foot and B

bending moment at a point midway between the centre
and the supports, so that the reinforcement is diagonally
passed from the under side of the beam in the central
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The moment which the beam is capable of resisting
is then

2
£AD + 8) + L2 as)

[Compare with (12), and note that A =D + J, the
second term being the moment of the concrete stress.]

The assumption which underlies the formula given
above (that the deformed beam has its originally plane
sections still plane)is open to certain objections, and
many Continental engineers have suggested alternative
and more complex rules. On the score of simplicity,
however, I have preferred to employ the above method,
and the results donot generally depart much from those
obtained by experiment.*

There is now a copious literature on this subject, the

more important text-books being :

Twelvetree’s Reinforced Steel Construction.
Christophe’s Le Béton Armé.  Bérangeur, Paris,
1902.

* Thus Professor Liter assumes a paraboloid distribution of com-
pressive stress in the concrete, so that the stress at any distance z
from the neutral axis varies as «22. Students will do well to obtain
the formule for the position of the neutral axis on this assumption
and compare with the above.
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