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NOTE

The promises of Exercises in Draughtsmanship held out in the

Title Pages of these volumes have not been explicitly fulfilled. But

almost any one of the Figures inserted in the Text, and any one of

the Examples of Architectural Details which follow, are well adapted

to such uses, either as here presented, or altered, either in size, or in

the proportions of their parts, at the discretion of the student.

In any case, the skill and judgment of the student will be exercised

in substituting for the, flat tints by which both the Shades and

Shadows are here represented, a graded tint, the Line of Shade and

Shadow disappearing, since along this line of meeting the Shade and

the Shadow are of equal depth. This is exemplified in Figures 100,

110, 130, and 137, C and D, on Pages 118, 128, 145, and 149.

The chapter upon Perspective, in the Appendix to Part 1, presents

in a condensed form a theory of perspective which is based principally

upon the phenomena of Parallel Planes, and their Horizons. This

theory was first set forth in a volume entitled Modern Perspective, pub-

lished for me in 1882 by the Macmillan Company. It is by their

courtesy that I am permitted here to present this matter in this form.

The application of these principles to the Perspective of Shadows
is, however, here made I believe for the first time.

W. R. W.

Copyright, 1913, by the International Textbook Company
Copyright in Great Britain

All rights reserved
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Chapter V

CIRCLES AND ELLIPSES

49. Circles.—The shadow of a circle is most easily found

by getting first the shadow of a circumscribing Square [Fig. 39 (o)]

or Octagon [Fig. 39 {b)]. The shadow of the circle is an ellipse,

tangent to each side of the resulting pa.rallelogram or polygon

at its middle point.

50. Under the conditions shown in these figures the sides

of the rectangular parallelogram circumscribing the ellipse

measure 1 and V2, if the diameter of the circle is taken as the-

unit of measure (or 2 and 2 V2, if the radius is taken as the unit)

.

The Major Axis of the Ellipse of shadow is longer than the

Minor Axis by just the length of the Diameter of the Circle.

It measures 1.618 D, which is a little less than a Diameter and

two-thirds, or nearly 1.666 D. The Minor Axis measures

.618 D, or a little less than f D. The Semimajor Axis measures

accordingly .809 D, or 1.618 R, and the Semiminor Axis .309 D,

or .618 2?.

51. Graphically, the direction and length .of these axes are

easily determined. (Fig. 40.) In this figure the Radius R
is taken as the unit of measure.

Let C be the shadow of the center of the Circle and con-

- sequently the center of the Ellipse of shadow, and let D be one

of the upper comers of the circumscribing parallelogram. D is

directly above C, at a distance equal to the radius of the

circle (=1).

Then if the point E be taken at the distance of half the Radius

of the Circle fi-om the point D, the distance E C will equal

\ V5 {=\ 2.236=1.118). If now this distance be laid ofE on

each side of £ to A and B, the Major Axis will fall in the direc-

tion C A, and the Minor Axis in the direction C B.

The length of the Semimajor Axis is equal Xo AD, or \ V5

plus \ '(= 1.118-f .5= 1.618), and that of the Semi-minor Axis

is equal to B A or i V5 minus \ (=1.118-.5=.618), the

radius of the Circle being taken as 1. The difference of length

of the two Semi-Axes is thus equal to the length of the Radius:

(i V5-fi)--(i V5-i) = l.

52. This construction follows from the so-called " Method of

Shadows," a device commonly used to obtain the principal axes

of an ellipse when only two conjugate diameters are known.

[Fig. 41 (a).] This figure illustrates the general case, the Con-

jugate Diameters making any angle whatever with each other.

Let a a and h b [Fig. 41 (a)] be the given Conjugate Diameters,

and let a tangent line G L be drawn at a, parallel to bb. If a

circle whose diameter equals bb is drawn tangent to the Ellipse

at this point it may be regarded as lying in a vertical plane;

the Ellipse may be regarded as the shadow of this circle, cast

upon a horizontal plane, and tangent to the Ground Line.

^
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Fig. 41 (a)

Fig. 41 (d)

Fig. 42

The center of the ElUpse, C, will then be the shadow of the point C,
the center of the Circle; the given Conjugate Diameters will be the

shadows of the vertical and horizontal diameters of the Circle, and
the required Axes will be the shadows of other diameters of the Circle.

But since, in any pair of Conjugate Diameters, each is parallel to the

tangents drawn at the extremities of the other, the same must be true

of the Diameters of the Circle whose shadows they are. Each must
be parallel to the tangents at the extremities of the other. The two

Axes of the Ellipse being Conjugate Diameters, those Diameters

of the Circle whose shadows are these Axes must be at right angles

to one another.

The problem then is to find two Diameters of the Circle, at right

angles to each other, whose shadows are also at right angles to one

another.

Let a" a" and b" b", in Fig. 41 (a), be the required Diameters, cast-

ing their shadows in the lines a' a' and b' b', the axes of the Ellipse.

If the Diameters a" a" and b" b" are produced until they meet the

Ground Line at A and 'B, their shadows a' a' and b' b' will meet them

at these points. The problem is to find the points A and B.

Now since A C B and A C B are both right-angled triangles, a

circle constructed upon the line A S as a diameter will pass through

the two centers C and C . The Center of the circle is then a point B
upon the line A B, equidistant from C and C, a point found by
drawing the line C C, and erecting a perpendicular upon its middle

point, as in the figure. The points in which a circle described about

the point £ as a center, with a radius equal to E C or EC , cuts the

line G L, will be the required points A and B. The Diameters a/ a'

and 6' b' can then be directed toward them from C.

Since C casts its shadow upon C, the shadow of a" will fall at a',

and that of b" at b'. Lines drawn from a" and b", parallel to C C,

will then determine the length of the Axes.

Everything that is essential in these operations is shown in Fig. 41 (6)

.

53. Fig. 42 shows that when, as in Fig. 40, the Conjugate

Diameters of the given Ellipse make an angle of 45 degrees with one

another, the point E is distant from the corner D by half the radius

of the circle, as stated in paragraph 51. The point E, midway
between C and C, is now also midway between a and D, the tri-

angles C a E and C D E being equal. E D and E a will then be equal

to each another, and will be as long as half the radius of the circle,

that is to say, ED =E a=\ R.

54. The lengths of the Semimajor and Semiminor Axes, C a'

and C b', are not to be read directly from the diagram, but follow

from the following considerations:

If in Fig. 42 the radius of the circle be taken as 1, then a D will also

equal \, ED will equal J, and E C, A E, and E B will all equal VI
or \ V5.

The equal dimensions A a and DB will equal ^ VS — i, i. e.,

i (2.236) -.5, or 1.118-.5=.618.

Since A a is equal to DB, and C a, CD, and aJD are equal to 1;

and since the right triangles ACC, Aa' a", B CC, Bb' b", ACB',
AC B, AC a', and\BC'a are all similar, we have, (short side : long

side) Aa:l = l:aB{=Aa-\-V).
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Hence A a and A a+ 1 are reciprocals, and -j Aa+1.

AC

1^

Aa
ACWe have, then, (hyp : short side) =—- = -

i. e.,AC=ACAa ''

and AC. Aa=AC'.
I. To find the Semi-Major Axis, Ca' : (long side : short side)

Aa' :Aa"(=AC-l)=Aa' .AC-l=l:Aa'.

Hence,

But,

Therefore,

II.

Aa Aa '^"^
A<.

Aa'=AC-Ca';

Ca' =--^=1+Aa= 1.618.A a

To find the Semiminor Axis, C b' : (short side : long side)

Bf .Bb"{=AC-l)=Bb' : AC-l =Aa: 1.

Hence, Bb' =AC. Aa-Aa^AC-Aa\
But, Bbf=AC-Cb'.
Therefore, C6'=Aa=.618.
The Axes of this ellipse of shadow can most easily be drawn, as is

shown in Fig. 43, by first describing the semi-circle AC B with

the point £ as a center, with the Radius C"£(=iV5+ ^), and thus

determining the points A and B, as above. Then, from the same

center with the radius ED (=i) describing the smaller semi-

circle F D G, determining the points F and G, upon the line C E.

The line C F then measures i V5-fi, which is the length of the

Semi-Major Axis, C a', and the line C G measures i VS— i, which

is the length of the Semi-Minor Axis, c b'. Arcs struck from C",

as a center, with these dimensions as radii, give the points a' and b',

upon lines drawn through C to A and B.

55. Approximations.—Both the direction and the length of the

axes of the ellipse of shadow can be obtained with sufficient accu-

racy for most purposes by simpler methods. (Fig. 44.)

The angle which the Major Axis of the Ellipse makes with the

Ground Line is 31° 44' (the tangent of which is .618)., It is a little

steeper than a line at 30 degrees (whose tangent is .577), and not

quite so steep as a slope of f. (the tangent of which is .666). Fig. 44

shows these three angles. The Major and Minor Axes can accord-

ingly be drawn at 30 degrees and 60 degrees, respectively, without

obvious error, though a. sufficient correction should be made.. If

then the lengths are taken as If D and | D, respectively,

that is, as 1.666 D and as .666 D (instead of 1.618 and .618), the

Major Axis comes out only about one-fortieth too long, and the

Minor Axis only about one-fourteenth too long.

56. Circles on Centers, and Semiellipses of Shadow.

It frequently happens that the position of the elliptical

shadow of a Circle is given, not by a circumscribing paral-

lelogram, or Octagon, but by the shadow of the center of

the Circle and the length of its radius. From these are

easily obtained a number of points of the Ellipse, with the

tangents at those points; the circumscribing parallelo-

gram; and the direction and length of the Axes.

Fig. 45 shows how these procedures are applied to the

Semiellipse of the shadow cast by a Semicircle.

Fig. 43

Fig. 44

Fig. 45

Fig. 46
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57. Circles Edgewise to the Light. (Fig. 46.)

If a circle stands edgewise to the light its shadow upon a plane is a right line. If the light falls in a

direction that makes the angle with the horizontal plane, the shadow cast upon a Vertical plane measures

V6= Vi VI, and upon a horizontal plane, 2V3, the radius of the circle being taken as 1. (Fig. 46 A.)

If the Diameter of the circle is taken as 1, the length of these shadows is Vf and VS, respectively. (Fig. 46 B.)

58. The Auxiliary Plane at 45 Degrees.—The only shadow cast by a Circle upon a Vertical Plane lying at

45 degrees with the Vertical Plane of Projection which is of any practical importance is that shown in Fig. 47,

in which the shadow of a horizontal circle is projected as a smaller circle, the two diameters being in the

ratio of V2 to 1, or 1 to ^ ^|2, and the areas as 2 to 1. (See Fig. 47 A.)

a b II
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between the points thus obtained. The Ellipse can then be drawn within the parallelogram, and one shadow
within the other.

The only case which it is worth while to consider is that shown in Fig. 48, (A), (B), and (C), where the Ellipse

li^s in a vertical plane, set at 45 degrees with the Vertical Plane of Projection, with its Minor Axis vertical,

and its Major Axis horizontal and equal in length to the diagonal of thei Minor Axis. The horizontal projection

of such an ellipse is a straight line making an angle of 45 degrees with the Ground Line, and the Vertical

Projection is a circle whose diameter is equal to the Minor Axis of the ellipse.

At A is the circular projection of the Ellipse and of the rectangle that circumscribes it. The rectangle is

foreshortened into a square, and the ellipse is foreshortened into a circle. At B the ellipse is shown in its

true shape. At C are the. shadows of the Ellipse and of the circumscribing parallelogram.

At D, E, F, and G are the shadows of the four quadrants of the Ellipse, the shadows of two of which,

E and F, are themselves inscribed within squares. These are all subdivided so as to show the shape of

the shadows of the half quadrants.

7TS

/ ,/

1^^\ , A

Fig. 48
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Chapter VI

A

i^W:i:

Fig. 49 (o)

\7 it

B

Fig. 49 f6)

CIRCULAR CYLINDERS

60. A Right Cylinder With a Circular Base.—[Yig. 49 (a) and (6).]—If

the axis of a Right CyUnder with a Circular base is a Principal line, per-

pendicular to one of the Principal planes of projection, both the axis and

the elements of the cylinder are parallel to the two other planes, and the

cylinder is projected upon them as a rectangular parallelogram as long and

wide as the cylinder itself. On the plane parallel to the base it is projected

as a circle.

61. Shade.—The illuminated half of such a cylinder comprises one end

of the cylinder and half the cyUndrical surface, the other half and the other

end being in shade. The Line of Shade is in four parts, two of which are

right lines which are elements of the cylinder and are on opposite sides of

the axis, and two are semicircles, one at each end.

If the axis is parallel to the Plane of Projection, so that the projection

of the cylinder upon that plane is a rectangular parallelogram, part of the

Line of Shade is seen as an element of the cylinder, situated at the "corner"

away from the light, as in the figure.

62. Shadow.—The shadow of such a cylinder on a plane perpendicular

to the axis and parallel to the base is a rectangular parallelogram termi-

nated by two semi-circles which are the shadows of the semicircular

portions of the Line of Shade. The length of the parallelogram is the

diagonal of the length of the cylinder, and its width is the diameter of

the cylinder. [Fig. 49 (a).]

The shadow of such a cylinder upon a plane to which the cylinder is

parallel is an oblique parallelogram terminated by oblique semiellipses.

The sides of the parallelogram are parallel to the axis of the cylinder and

are equal to it in length. Each is the shadow of one of the Lines of Shade

which are on the corners of the cylinder, and it is as far from the projection

of that Line of Shade as the Line of Shade itself is from the plane upon which

the shadow falls. The lines which form the ends of this parallelogram are

inclined to the Ground Line at the angle of 17° 33', the angle whose Tangent

is
-J-.

Each semiellipse is included in, and is tangent to, the shadow of the

square that circumscribes the base of the cylinder. The width of the shadow

is the diagonal of the diameter of the cylinder. The shadow of the Cylinder is

as wide as that of the circumscribing octagonal prism, that is to say, it is

equal to D \'2, or the Diagonal of the base of the cylinder. [Fig. 49 {b)
.]

63. When, as often happens, the plane upon which the shadow faUs

cuts the cylinder, or is so near it that the shadow is partly concealed by
the cylinder itself, then, in the projection, the visible edge of the shadow
is always as far from the corner of the cylinder that casts the shadow as this

corner is from the plane upon which it falls. (Fig. 50 A, B, C, D, and E.)

The width in which the Shade upon the Cylinder is projected equals

1 — 5 ^l'2,, the radius of the cylinder being taken as 1.
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Fig. 50

It follows, as may be seen from the

figure, that if a half cylinder, or half col-

umn, or half of an octagonal prism, is set

against a plane surface, as at ^, it will

have a shadow upon that surface as

wide as half the side of the octagon, or

V2 — 1, and the edge of the shadow will,

in the projection, be as far from the

comer that casts the shadow as is the

axis of the cylinder. The visible

shadow of the three-quarter column
will be half the Radius wider, as at B,

or V2-J.
A whole column, just touching a wall,

as at C, will show just half its shadow, the width of the visible portion being V2, or the diagonal of the Radius.

If the distance of the column from the wall is 2 V2, i. e., is equal to the projection of the oblique side of the

octagon, as at D, the shadow is just as wide as the column.

If the distance is -v2, i. e., equal to the diagonal of the Radius, the whole of the shadow is seen, as at E.

64. If the axis of the cylinder is inclined so as to be at right angles to the rays of light, the shadow cast upon
a plane surface is a parallelogram, the two ends of the cylinder being planes of Light and Shade, and their

shadows right lines.

If the axis is parallel to the rays of light, so that the circle which is in light at one end casts its shadow directly

upon the circle which is in shade at the other end, either circle may be regarded as the Line of Shade, the cylin-

drical surface is a surface of Light and Shade, and the

shadow cast upon any plane surface is a circle, or ellipse.

65. The Shadow of a Principal Line Upon a Principal

Cylinder [Fig. 51 (a), (6).]—If a principal line is par-

allel to the plane of projection, and casts its shadow

upon a cylinder parallel to itself, its shadow will fall

upon an element of the cylinder. Its position can be

obtained by means of a second plane of projection

normal to the first. [Fig. 51 (a).]

If a principal line is normal to the given plane of pro-

jection [Fig. 51 (b)\ and casts a shadow upon a principal

cylinder parallel to that plane, the plane of the invisible

shadow of the line cuts the cylinder at an angle of

45 degrees to its axis. The line of intersection is an

ellipse of which the minor axis is equal in length to the

diameter of the cylinder and the major axis is equal in

__
length to its diagonal. The two axes are in the ratio

of 1 to the square root of 2.

The projection of this ellipse on the given plane of pro-

jection is a right line, lying at 45 degrees, in the direction

of the light, and equal in length to the diagonal of the

diameter of the cylinder, that is to say, to the major

axis of the ellipse. Upon each of the other two planes

of projection, the ellipse is foreshortened into a circle,

equal to the cross-section of the cylinder. [Fig. 51 (6).]

The projection of the shadow cast by a principal line

upon a principal cylinder is accordingly either a right

line parallel to the axis, or a right line at 45 degrees, or an

Pj^ gj „

,

arc of the circle which is the base of the cylinder.

^
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Fig. S2 Fig. C3

66. If in this last case the line which casts the

shadow stops short opposite the corner of the

cylinder, as do the sides of the square in Fig. 52,

at A (and as happens when it is the edge of an

abacus resting on a column), then the projection

of the shadow is an arc of 90 degrees, whose radius

is equal to the radius of the cylinder. This arc

lies between the corner of the cylinder which is

nearest the light and the comer away from the

light, which is occupied by the Line of Shade. The
cylindrical surface beyond this Line of Shade is in

shade and cannot receive the shadow of, the abacus.

67. The Shadow- of a Principal Line Upon Any
Cylindrical Surface, Whose Elements Are Parallel to

Two of the Principal Planes of Projection.—^It ap-

pears from these examples that : (a) if the line is

parallel to the Plane of Projection and also parallel

to the elements of the cylindrical surface, its

shadow on that surface, and the projection of this shadow are equal and parallel to the line itself, as in Fig. 51 (a)

;

(p) if the line is perpendicular to the Plane of Projection, the shadow cast upon any cylindrical surface is pro-

jected upon that plane as a right line, lying at 45 degrees, as in Figs. 51 and 52, without regard to the nature of

the surface; (c) if the line is parallel to the Plane of Projection and at right angles to the elements of the cylin-

drical surface the projection of its shadow is a true section of the cylindrical surface, as in Fig. 51 {b), and in Fig. 52.

Such a line of shadow is the line of intersection of the cylindrical surface by a plane of invisible shadow cutting

across it at an angle of 45 degrees.

This line is parallel to, and exactly resembles, the line of intersection, or miter line, which occurs when a cylin-

drical surface returns upon itself at right angles, as appears in Fig. 53 at A

.

68. It happens accordingly that the shadow cast upon a molding under

these conditions, shows the true contour of the molding, and that the line of

shadow and the outHne of the object, as defined by the miter line away from the

light, often show a symmetrical figure, as they do in Fig. 54.

In like manner the projection of the shadow cast by such a line upon an

inclined plane shows the true slope of the plane, as in the case of the sloping

surface above the moldings in Fig. 54, and as is the case with the shadow of

the chimney in Example XIX.
69. The Shadow of a Point Upon a Cylindrical Surface.—The Shadow of a

Point on a cylindrical surface is found by passing through the point an auxiliary

line parallel to the Plane of Projection and finding its shadow, as explained

above. The shadow of the given point will be a point on this line of shadow,

as is that of point B in Fig. 53.

70. The Shadow of a Surface Upon a Cylindrical Surface.—The shadow of an
irregular line, or of the outline of a plane surface, lying parallel to the Plane of

Projection, such as the circle in Fig. 55 A , may be found by passing through it

an auxiliary line, and erecting upon the shadow of this line ordinates of the

given line, or of the outline of the given surface, taken parallel to the elements of

the cylindrical surface. The shadows of these ordinates will be equal and parallel

to the ordinates themselves, and may be laid off upon the cylindrical surface

froin the shadow of the auxiliary line, as in the Fig. 55, at A.

71. The Shadow of a Solid Upon a Cylindrical Surface.—The shadow of a

solid object, such as the Cube in Fig. 55 B, upon a cylinder, may be treated
as if it were the shadow of a plane figure of the same shape and size as is

the shadow of the solid object when cast upon the given plane of projection.
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Fig. 55 A and B

Thus in this figure the shadow of the Cube' upon the molding is the same as the shadow upon the molding of

the irregular hexagon, which is the shadow of the Cube.

The shadow of a solid upon such a cylindrical surface may accordingly be found by first finding its shadow
upon the Plane of Projection, as in the figure, and then finding (as in the previous problem. Fig. 55 A) the shadow
which would be cast by a plane figure of the same shape and size as this shadow.

The shadow cast, by a plane figure, parallel to a principal plane of projection, upon a cylindrical surface

whose elements are parallel to the plane and are perpendicular to one of the other principal planes, may also be

obtained by the method of slicing, as in Fig. 65 C, where the shadow is like that in Fig. 55 A.
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Chapter VII

HOLLOW CYLINDERS

72. Shade and Shadow.—In a hollow Half Cylinder, like those shown in Fig. 56 A, B, and C, the Quarter

Cylinder which is farthest from the Sun is in light, while the Quarter Cylinder which is nearest theStin is half in

shade and half in shadow, the element of the Cylinder at the corner nearest the light being a Line of Shade and

Shadow, separating the portion of the concave surface which is in shade from the portion which is in shadow.

The element which is on the edge of the half cylinder nearest the light is a Line of Shade and the element of the

cylinder which, in the projection, coincides with that of the Axis and receives

the Shadow of Line of Shade, is a Line of Shadow.

73. The Shadows of Principal Right Lines Cast Upon a Hollow Semi-cylinder.

(1) The shadow of a Right Line lying in the Axis of the Cylinder is a Right Line

I parallel to the line that casts it and of the same length. It falls upon the element

of the cylinder which occupies the corner farthest from the light. (Pig. 56 A.)

o
a
e
lO

•o
c
10

Fig. 56

(2) The shadow of a diameter of the cylinder which is normal to the Plane of Projection is a quarter of
an ellipse. Its projection is a Right Line, lying at 45 degrees, parallel to the projection of the rays of light,

and extending from the Axis of the cylinder to the edge farthest from the light. (Fig. 56 B.) See Paragraph 65.

(3) The shadow of a diameter parallel to the Plane of Projection is also a quarter of an elUpse. Its projection
is a circular arc of 90 degrees, of the same radius as the cylinder, concave toward the light, and extending
from the shadow of the edge nearest the Sun, on the Axis of the cylinder, to the other edge. (Fig. 56 C.) See
Paragraph 65.
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These figures show also the projections of the shadc5ws of the middle points of these diameters. They illus-

trate the propositions in regard to the shadows cast upon hollow cylindrical surfaces by principal lines which
are contained in Paragraph 67, namely, that one is parallel to the Axis of the cylinder, one Ues at 45 degrees,
and one gives a true section of the surface on which it falls.

74. The Shadows of Circles Cast Upon a Hollow SemicyUnder.—A Principal Circle of the same diameter as
a Vertical Hollow Cylinder, and with its center on the Axis of the Cylinder, may lie in a plane parallel to either

of the three Planes of Projection. It may be either (1) horizontal, and normal to the vertical plane of projec-
tion, forming a cross-section of the cylinder; or (2) -vertical and normal to the vertical plane of projection; or

(3) vertical and parallel to that plane.

75. (1) In the first case, as shown in Fig. 57 a, the shadow cast upon the interior surface of a semicyUnder
is the shadow of a portion of the horizontal semicircle S, 3, 4, 5, 6, which projects in front of the semicylinder.

Fig. 57 (i>)

The portion that casts the shadow is the 90-degree arc 2, 3, 4, which lies between the point S and the point 4 ;

for the arc 1, 2, whose shadow would fall in the dotted arc 1, 2', is not a Line of Light and Shade, being itself in

shade, and the shadow of the arc 4, 5, 6 does not fall upon the semicylinder, since it would come upon the por-

tion of the cylinder that has been removed. The Line of Shadow cast by the quarter circle 2, S, ^ is a plane

figure, being a quarter of an ellipse, and its projection, as shown in the figure at ^, S', and 4' is also a quarter

of an ellipse.

For it is a maxim of Geometry that if a Cylinder, Cone, Sphere, or other Conic Section of Revolution is cut

by a plane, the line of intersection is some one of the Conic Sections, that is to say it is a Right Line, a Hyperbola,

a Parabola, or an Ellipse or Circle; and also that the projection of this line of intersection upon the concave

Surface of Revolution, is also a Conic Section, and is consequently a plane curve. If, moreover, any Conic Sec-

tion is projected upon a plane, this projection also is either a right line or a Conic Section of the same kind.
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Now a Hollow Cylinder is such a Surface of Revolution, the circular arc that casts the shadow is such a line

of intersection, and its shadow upon the concave surface is such a projection. This shadow must then be a plane

curve, and since the ellipse is the only plane curve that can lie in a cylindrical surface, the Line of Shadow must

be an ellipse, and its projection upon the Vertical Plane of projection must be an ellipse also.

Fig. 57 (6), in which the cylinder is turned 45 degrees upon its axis, so as to bring the rays of Ught parallel to the

Vertical Plane of Projection, shows the same thing. For the Invisible Shadow, or Shadow in Space, of the

horizontal circle 1, 2, 3, 4, 6, 6, 7, 8 is an elliptical cylinder whose axis is parallel to the direction of the light,

making the angle with the Ground Plane. Its cross-section is an ellipse whose Major Axis is £>, the diameter

of the given circle, and whose Minor Axis, as appears from the figure, equals D ^\. This inclined elliptical

cylinder intersects the vertical circular cylinder in the two lines 3, 7, and 0, 3', both of which lie in planes normal

to the Vertical Plane of Projection and are consequently projected upon it in right lines. One of these lines

of intersection is the horizontal circle which casts the shadow, and which is projected in the horizontal line 3, 7

.

The other, which is an ellipse, being an oblique section of the elliptical cylinder, is projected in the obUque line 0, 3'.

The cast shadow 1, 3', 5, which occupies part of this inclined line, is a plane figure lying in the surface of the

cylinder, and is accordingly an arc of an ellipse, as stated in the preceding paragraph.

The Minor Axis of this ellipse of intersection, 1, 6, equals the diameter of the vertical circular cylinder D, as

appears from the plan, and the Major Axis, 0, 3', as appears from the elevation, equals D VS. This elliptical

line of intersection, and the cross-section of the elliptical cylinder of shadow are accordingly similar in shape

(since D : Vj : : I? : VS) . But the large ellipse has three times the area of the other.

Both are shown, in the figure, revolved parallel to the vertical plane of projection.

76. Of the other two vertical circles, shown in Figs. 58 and 59, the shadows are not plane figures, but are

curves of three dimensions, lying on the interior surface of the cylinder, and their projections upon the Ver-

tical Plane of Projection are irregular ovals. If the light is horizontal, lying at 45 degrees with the vertical

plane, as in Fig. 58 A and B, the shadows in space of the two circles are similar horizontal elliptical cylinders,

and the shadows cast upon the hollow cylindrical surface by the circles and their horizontal diameters are exactly

alike. But if the rays of light are inclined, making the usual angle with the horizontal plane, as in Fig. 59 A and B,

\
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the shadows of the horizontal diameters are different, being a 45-degree right line in one case, as at yl, and a

90-degree circular arc in the other, as at B, where the projection of this shadow coincides with the projection

of one quadrant of the circle. The shadows of the two circles, though still symmetrical about the shadows of

their diameters, differ accordingly, as appears in that figure.

The shadows of the horizontal diameters are really quarter ellipses lying in the concave surface, as in Fig. 56

B and C, and have the same projections as in that figure.

77. The most common case of a circle of the same diameter as a cylinder, and perpendicular to its axis, thus

throwing its shadow upon the concave inner surface of the cylinder, is presented by the Half Cylinder shown

in Fig. 60. Here the shadow of the upper rim of a vertical cylinder, 1, 2, S, 4, 5, open at the end nearest the

light, is shown as passing through the points 1, 2", S', 4', and 5, as in Fig. 57

(a), just as if the nearer half of the cylinder had not been removed. The
points 1 and 5 are, so to speak, their own shadows. Point 2 throws its

shadow at 2"; Point S, which is on the front comer of the cylinder, throws

its shadow back to 3', upon the element situated at the opposite corner.

Since this shadow has the farthest to go of any, the point S' is the lowest

point in the curve. The shadow of Point 4 falls at 4% on the edge of the

cylinder, at the same level as 2".

The shadows of the horizontal lines tangent to the circle at the points 2, 3,

and 4> which are drawn as if cast upon planes tangent to the cylinder at the

points 2', 3', and 4'< show that the projection of the curve is vertical at 4% and

horizontal at 3', and that at 2" it lies at an angle of 45 degrees.

78. In the case of a semi-cylinder, open in front and at the end, the

shadow on the interior surface is limited to the arc 1, 2', cast by the circular

arc 1, 2. Just as, in Fig. 57 (a), it was limited to the shadow 2", 3', 4', cast

by the arc 2, 3, 4.

79. The Ellipse of Shadow Projected as a Right Line.—The shadow cast

by the rim of a hollow cylinder upon its interior surface cannot of course be

seen unless the spectator is looking in, as when he is at the open mouth of a

well, or tunnel, or is actually inside it. If, being outside of it, he places his

eye in the plane of the ellipse of shadow, the shadow will appear as a

straight line.

This is illustrated in Figs. 61 and 62. At 61 A is the vertical section of

a short horizontal circular tunnel. This is shown in plan at B, and in eleva-

tion at C. In all three the Line of Shade, 1, 2, 3, 4, 6, casts its shadow at

1, 2', 3', 4', and 6 (1 and 5 being, as before, their own shadows), and the semi-

elliptical Line of Shadow passes through these 5 points.

The Point 0, on the axis of the cylinder, is the center both of the circular

Line of Shade and of the elliptical Line of Shadow. The point 2, at the top

of the circle, casts its shadow at 2', on the side of the tunnel, at the same

level at the center 0. The line 2' 0, is then horizontal, and is a horizontal

semi-diameter of the ellipse of shadow. The plan shows that this line makes

an angle of 45 degrees with the Vertical Plane of Projection.

80. If now the cylinder is projected upon' an auxiliary Vertical Plane of

Projection, which makes an angle of 45 degrees with the principal one, it appears as shown in the figure at D.

The circle at the end of the tunnel is now projected as an ellipse, whose horizontal and vertical axes are in the

ratio of 1 to a/2; the horizontal line 2' is seen endwise, and is projected as a point, and, since all the chords of

the ellipse of shadow which are parallel with 2" are also projected as points, the Ellipse is projected as a line

passing through them. As the ellipse is a plane figure this line is a straight line, and the two points and 1

suffice to determine it.

The plane in which this ellipse lies is, like these chords, normal to this vertical plan of projection, and all the

lines and figures in it, as well as the ellipse itself, are projected in the same straight line. The line 1, S, in Fig. 61 D
is therefore the projection (1) of the normal plane in question; (2) of the elliptical Line of Shadow; (3) of that

Fig. 60
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diameter of the ellipse which is parallel to the auxiliary Plane of Projection; and (4) of one of the 45-degree

diameters of the vertical circle which cast the shadow.

Fig. 61 Z) shows also that the angle which the plane of Invisible Shadow makes with the horizontal plane of

projection is 90 degrees - 0, the complement of the angle 0; for, in Fig. 61 D the line 6 equals J D and 6 4'

equals i D -V^. The angle ^ .^^ is then the angle 0.

81. In Fig. 61 C the ellipse of the Line of Shadow, lying in the surface of the hollow cylinder, is projected

as a circle, coinciding with the circle in which the surface of the cylinder itself is projected, and the diameter 1, 5'

coincides with that diameter of the circle which lies at 45 degrees with the Ground Line G L, as has just

been said.

The rays of light in Fig. 61 Z), which make the angle with the Ground Plane, lie in planes perpendicular

to both planes of projection, as is seen in the plan at B, and are projected at D as vertical lines perpendicular

to the auxiliary Ground Line G' U

.

It appears then from Fig. 61 Z? that if a horizontal cylinder with a circular base has its axis at 45 degrees

with the Vertical Plane of Projection, so that the rays of light, falling at the angle 0, lie in vertical planes

normal to that plane, then the inclined plane in which the ellipse of shadow lies will be normal to the vertical

Plane of Projection and will make the angle 90° — with the Horizontal Plane.

82. Perspective.—Fig. 62 A and B shows the same subject in Perspective, in two positions. In both, the

inclined plane, in which lie the elliptical line of Shadow and the 45-degree diameter of the circle at the base of

the cylinder, is seen edgewise, and its perspective coincides with the perspectives of both these lines.

The line 0, 2', which is a semi-diameter of the ellipse of shadow, and is really horizontal, and the chords of

the ellipse which are parallel to it, are normal to the Plane of the Picture, and accordingly have their Van-
ishing Point at the Center, V^.

The rays of light 2, 2'; S, 3'; 4, 4'> etc., have their Vanishing Point at V^, the Vanishing Point of Shadows.

The diameter 1, 5, lies in a vertical plane inclined at 45 degrees to the Plane of the Picture and itself

makes an angle of 45 degrees with the Ground Plane. Its Vanishing Point is accordingly to be found at

V^, at a distance above V- equal to the diagonal of the distance V^ V^, as has been explained in the

Appendix, in paragraph 38. These lines, having this ratio, one to the other, the angle V^ V^ V^, at the

vertex of the triangle, is the angle 0.

Since the Perspective of a plane, when it is seen edgewise, coincides with the Horizon of the plane, and the

Horizon of a plane passes through the Vanishing Point of all the lines that lie in the plane, this Horizon
(which is the common perspective of the inclined plane in question, of the elliptical Line of Shadow,
and of the 45 degrees diameter of the circular base) may be drawn through V*^ and V^, as in the figure at

both A and B.

83. TPie Half Cylinder.—It is only when shown in section that the inside of a Hollow Cylinder can be
seen in Orthographic Projection, and a Half Cylinder, as has already been pointed out, shows only so much
of the shadow as is cast by one-eighth qf a circle. This shadow comprises accordingly only an eighth part
of the ellipse under discussion, and that the flattest part of the curve, and this is all that generally occurs

in architectural drawings.

84. The most frequent case is that of a horizontal cylinder, such as an archway, or barrel vault (Fig. 63)

.

The curve of shadow starts from the corner of the arch, as in Fig. 61 A, at a slope of one-half, and
terminates on the projection of the axis of the cylinder, with a slope of 45 degrees, at a point determined
by the line drawn at that angle from the top of the arch. The distance of this point from the end of the
cylinder is thus equal to the radius of the cylinder.

85. The Square Niche.—If the end of a Half Cylinder is closed, as in Fig. 64, the line of shadow cast by the
line 1, 2, extends from the point V to 2, and its projection Is a true section of the surface on which it falls,

namely, an arc of 90 degrees, as appeared in Fig. 56 C.

86. Oblique Hollow Semicylinders

.

—If the vertical secant plane, which divides the vertical cylinder
in two, is not parallel to the plane of projection, but is inclined to it, as in Fig. 65 A, B, C, D, E, F, G, and H,
the shadows of circles lying in that plane take the shapes shown in these figures. It is to be noticed
that the three points on the axis of the cylinder which are at the center and two extremities of the vertical
diameter are common to all the circles, though their projections occur in different positions in the several
figures. The shadows of the circles all, of course, pass through the shadows of the two extreme points, both
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which lie in the comer element of the cylinder, and, unlike the points which cast them, are projected in the

same places in all the figures.

The irregular ovals which constitute the lines of shadow are found, like those in Fig. 59 B, by first finding

the semiellipse which is the shadow of the horizontal diameter of the circle, and then drawing vertical ordinates,

above and below it, equal and parallel to vertical chords of the circle.

87. The Oblique Semicylinder at J^B Degrees.—When, as in Fig. 66, and in Fig. 65 C, the secant plane is

taken at — 45 degrees, the semicylinder faces the light, and neither of the vertical edges casts any shadow

upon the concave surface.

The shadow of the vertical diameter of the circle, d c d^, falls at d' (f d^. The projection of this shadow

coincides with that of one edge of the semi-cylinder. The horizontal diameter acb casts its shadow at a c' b.

FlQ. 62 Fig. 64
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The shadow of the upper semicircle adb falls at a d' b, and that of the lower one a d^b at a d^'b. The line

a<fh, which is the shadow of the diameter a c 6, is a true semiellipse, and the shadows of the semicircles which,

are symmetrical above and below this diameter, are also symmetrical above and below its shadow, and are

also true semiellipses, as are also their projections.

The Invisible Shadow of the circle is an elliptical cylinder, the Major Axis of which, the line a b, is horizontal,

and is equal in length to the diameter ofthe cylinder. (Fig. 66 B and D.)

/ \
1 \
/ N
/ \
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Fig. 09
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Chapter VIII

CONES AND HOLLOW CONES
90. Cones.—^The only cone that need be considered is the right cone of which the base is a circle and the

axis is a principal line, that is to say, a line perpendicular to one of the planes of projection.

91. The Line of Shade.—If the base is turned away from the light, as in Fig. 67, it is in Shade, and from a

half to the whole of the conical surface is in light, according as the angle at the base is more or less steep. If

the base is turned toward the light, as in Fig. 68, froni a half to the whole of the conical surface is in shade.

The Line of Shade is made up, in either case, of an arc of the base, which is more than 180 degrees, and of the

two elements of the cone at the extremities of this arc. But if the conical surface is wholly in light, as in Fig. 67 E,

or wholly in shade, as in Fig. 68 E, the Line of Shade comprises the whole circle of 360 degrees, and does not

include any element of the conical surface.

92. These figures show that the projection of such a cone upon the plane which is perpendicular to its axis

is a circle, the projection of the Line of Shade appearing as two radii and the segment of the circumference included

between them. Upon the other two planes of projection the projection of the cone is a triangle, and the Line

of Shade appears, in the projection, as comprising a segment of the base of the triangle and the two elements

of the cone which go from the extremities of this segment to the vertex, as the whole base.

93. The Line of Shade.—It is plain that if the slope of the elements of the cone is less than that of the Sun's

rays the whole conical surface will be in light and the whole base in shade (as in Fig. 67 E), or vice versa (as in

Fig. 68 E), according as the base is turned away from the light or toward it.

If the slope of the elements of the cone is 0, or that of the sun's rays, as in Fig. 67 D, and the base is turned

away from the light, the surface of the cone will all be in light. The shade upon its surface is then reduced

to a line, its projection appearing in plan as that of a single element of the cone, lying at an angle of 45 degrees,

as in Fig. 67 D. If the base is turned toward the light and the conical surface turned away, the illuminated

portion of this surface will in like manner be reduced to a single line, as is approximately shown in Fig. 68 D.

These lines start from one "comer" of the base, and lie endwise to the light, being neither in light nor in shade.

94. When the slope of the conical elements is just 45 degrees, as in Fig. 67 C, and 68 C, a quarter of the first

conical surface is in Shade, and a quarter of the other in Light, and in the vertical projections the two elements

of the cone that enter into the Line of Shade comes on the outline and on the axis.

When the slope is 90 degrees, as at A (that is to say, when the cone becomes a cylinder), half the surface is in

light and half in shade, and the elements of the cylinder, which are Lines of Shade, start from the "corners"

of the base. Intermediate slopes show the Line of Shade in intermediate positions between the corner and

the outline, as at 67 B and 68 B.

95. Critical Cones.—The three cones which have the slope of 90 degrees, 45 degrees, and 35° 15' 50" (which

is the angle 0), are called the three " Critical " cones, though the first of them is really a cylinder.

The Line of Shade upon a Cone is used to obtain the Line of Shade' upon Surfaces of Revolution. Cones are

constructed tangent to such surfaces, as has been shown in Fig. P in the Introduction. The points at which

the Lines of Shade upon the cones are tangent to the Surface of Revolution are points in the Line of Shade of

that surface. The three Critical Cones are generally sufficient for this purpose.

96. The Line of Shade Upon a Cone (Fig. 69 .4, 5, and C).—The Line of Shade upon a Cone does not start,

as might be supposed, as does that upon a Cylinder, from the "comer" of the base. Its position is found, as is

that upon a Pyramid (see Fig. 35, Chapter IV), by first getting the shadow Cast by the vertex of the Cone upon

the plane of its base, and then drawing the shadows of the two elements of the cone that form the Line of Shade.

These proceed from the shadow of the vertex and are tangent to the base. The points of tangency are points

in the required Line of Shade and their shadows are points in its shadow. The Line of Shade in the Elevation

can then be obtained from that in the Plan, as in the Fig. 69 A. This process may be abbreviated by combining
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the Plan and Elevation in the same figure, as is done in Fig. 69 B, where a circle described about the point d

with the radius d, determines the points b and b. This procedure is still further abbreviated in Fig. 69 C. m
which the pbint d is at the intersection of 45-degree lines drawn through V and c.

97. The Shadow of a Cone.—The shadow of a cone upon any plane is obtained by drawing from the shadow

of its vertex lines tangent to the shadow of its base, as has been already illustrated in Figs. 69 A and 71. These

Unes are the shadows of the elements of the cone that enter into its Line of Shade.

Fig. 70 Fig. 71 Fig. 72

98. Fig. 70 A and B shows how the same result is obtained by M. Pillet by means of the auxiliary 45-degree

Plane of Projection, described in Chapters III and IV, and illustrated in Figs. 24 and 47.

99. The shadow of the base cast upon the auxiliary oblique plane is projected as a circle, as shown in these

figures, the diameter of which can be obtained directly from the Elevation by drawing 45-degree lines from

the extremities of the base. The Axis casts a shadow of its own length. Lines drawn from the shadow of the

vertex of the cone tangent to this circular shadow of the base give, as at A, the shadows of the elements of the

cone that form part of the Line of Shade, and the Line of Shade itself can be obtained from them, by tracing

back, to points upon the projection of the base, the rays that cast their shadows. This process may again be
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abbreviated, as at B, by combining the Plan and Elevation. This is virtually passing the auxiliary 45-degree

plane through the Axis of the cone.

100. Pigs. 71 and 72 illustrate the case of a Double Cone. In Fig. 71 the shadow is cast upon a horizontal

plane parallel to the base of the Cone. In Fig. 72 it falls upon a vertical plane parallel to the Axis, and the

rectilinear elements of the shadow are tangent to the elUptical shadow of the base. But it is not easy to draw
this ellipse with sufi&cient precision to determine the point of tangency with exactness, and the methods of

finding the Line of Shade Shown in Figs. 69 and 70 A are preferable.

101. Hollow Cones.—^A Cone, like a Polyhedron, Cylinder, or Sphere, may be either Solid or Hollow, that is

to say, it may be either the outer surface of a solid body which it surrounds or the inner surface of a solid by
which it is surrounded.

If two such cones, one solid and one hollow, of the same shape and size, are exposed to light falling in the same
direction, as large a portion of the conical surface as is turned toward the light in one will be turned away
from it in the other, and vice versa. The portion of the convex surface of the Solid Cone which is turned toward

the light, and is consequently illuminated, will thus be exactly like the portion of the concave surface which is

turned away from the light and is consequently in shade; and the portion of the solid cone which is in shade,

being turned away from the light, will be just like the portion of the concave surface which is turned toward

Fig. 73

the Ught, and is consequently either in light or in the shadow of the other part. The elements of the conical

surface which constitute part of the Line of Shade upon the Solid Cone will correspond to the elements which

constitute the Line of Shade and Shadow upon the concave surface of the Hollow Cone.

This becomes apparent on a comparison of the five Hollow Cones shown in Fig. 73, with the five Solid Cones

shown in Fig. 68.

Fig. 73 D shows also that if the base of a Hollow Cone is turned toward the Ught, and its elements make with

the base the angle 0, one element of the cone will be parallel to the light, and will be neither in light nor in

shade, while all the other elements of the cone, that is to say, all the rest of the concave surface, will be in light.

102. If the angle is less than 0, as at E, the whole inside surface will be illuminated. The Line of Shade

will be a complete circle, but it will cast no shadow upon the inner surface of the cone. If the angle is greater

than 0, as at B and C, the Liqe of Shade will be made up of an arc of the circle less than 180 degrees, and of

two of the elements of the cone which constitute the Line of Shade and Shadow. The portion of the inner sur-

face included between these two elements will be turned from the Ught and be in shade, and will cast a shadow

upon the portion of the interior surface that faces the Ught.

103. If the angle in question is 45 degrees (Fig. 73 C), the angle at the vertex of the cone will be 90 degrees,

and a quarter part of the interior surface will be in shade. Part of the remaining surface facing the light will

be occupied by a shadow, which will be bounded on the side toward the Ught by the two elements of the cone

which form part of the Line of Shade and Shadow, and on the other side by the shadow of the 90-degree arc

which forms the Line of Shade.
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104. If the angle is 90 degrees, as at A, the Hollow Cone becomes a Hollow Cylinder. Half the rim is part

of the Line of Shade, and half the interior surface is in shade, as appears in Figs. 57 and 60, Chapter VII. The
Lines of Shade and Shadow separating the Shade from the Shadow are elements of the Cylinder.

The lowest point of the Shadow is, in every case, at the shadow of c, the comer of the base nearest the light.

105. In Fig. 74: A, B, C, the Hollow Cone shown in Fig. 73 B is shown at a somewhat larger scale, projected

upon three different planes. Its axis is horizontal, and perpendicidar to the vertical Plane of Projection.

At A, the Cone is projected upon the Vertical Plane of Projection, to which the base of the cone is parallel.

The lines a v and a' v are the elements of the cone which constitute the Line of Shade and Shadow. The seg-

ment a' c av is in shade, being turned away from the light, and the rest of the concave surface, being turned

toward the light, is partly in light and partly in shadow. The surface in shadow lies between the Lines of Shade
and Shadow a v and v a', and the Line of Shadow abdb' a', which is the shadow of the line a c a', the shadow
of the point c falling at d, as appears in Fig. 74 C.

106. The Line of Shadow cast by the base of the Hollow Cone upon its interior surface, is, like that cast by^the

rim of a Hollow Cylinder, as shown in Fig. 60, a true ellipse, and for the same reason. For, as has been said in

Paragraph 75, Chapter VII, it is a maxim of Geometry that if a Conic Section of Revolution, such as a Cylinder

or Cone, is cut by a plane, both the line of intersection and its projection upon the concave surface are Conic

Sections. The Line of Shadow in question is such a projection and since it lies across the cone, must be an ellipse.

It is accordingly a plane figure, and its projection upon a plane at right angles to the plane in which it lies must
be a right line, as is shown at a' d, in Fig. 74 C.

^ The Projection of this Elliptical Line of

Shadow upon the horizontal plane, as shown
in Fig. 74 B, is of course also an ellipse.

107. Fig. 74 shows at B the Horizontal

Projection of a Hollow Cone, and at C a Pro-

jection upon an Auxiliary Plane parallel to

Fio. 74 Fio. 75
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the direction of the light. The points a and a' are found, in the Vertical Projection, by laying off upon the 45-degree

line the distance v if, which is equal to the diagonal of the height of the Cone just as was done in the case of the

inverted cones shown in Fig. 68, and then drawing lines if a and v' a', tangent to the circumference of the base.

Elements of the cone drawn from these points to the vertex v, give, in all three projections, the Lines of Shade
and Shadow. The ray of light cdin Fig. C, gives the lowest point of the ellipse of shadow at d. As this ellipse lies

in a plane which contains the point d and the two points a and a', its projection at C must be a right line, as shown.

Through the point b, taken at random upon the line a d, is passed a horizontal plane which cuts the Cone in a

circle that is projected as a right line in C and B, and as a circle at A. The point b is then transferred to A and B
at b and b', by- simple projection. The elliptical Line of Shadow passes through the five points a, b, d, b', and a'.

The shadow of the center of the base o falls at the point e, and the four principal diameters of the base, which

meet and cross at the center, cast shadows that meet and cross at that point. One of these shadows is a right

line. The others are ellipses, being the lines in which the Planes of the Invisible Shadows of the three diameters

cut the conical surface. They all pass through this point e, and also through the extremities of the diameters,

which are, so to speak, their own shadows.

107. The Line of Shadow in a Hollow Cone may also be found by the Method of Parallel Planes, as is illustrated

in Fig. 75 A and B.

Three vertical secant planes 1, 2, and S being passed through the Hollow Cone parallel to the Vertical Plane

of Projection and to the base of the cone, the lines of intersection appear projected as straight lines at B, and

, as circles lying in those planes at A. The shadows of the base of the cone cast upon these three planes have

their centers at q, Cj, and Cj, and their circumferences intersect the circles 1, 2, and 3 at the points /', 2", and S'.

These are points in the required ellipse of shadow, which is the same ellipse as that found in Fig. 74. These

points are found also at 755, by simple projection from the others.

107. The Paradox of the Line of Shade (Figs. 76 and 77).—If a number of Cylinders, gradually diminishing in

size, are piled up in a conical manner, the Line of Shade on

each will be on the "comer," and the total Line of Shade

will be a broken line, or series of steps, at the corner of

the pile, irrespective of its steepness, and irrespective of

the size of the steps. Even if they are so small that the

surface looks almost smooth, and the pile of cylinders looks

like a cone, the Line of Shade will not change, though that

upon the cone which it simulates may lie an3rwhere between

the "comer" and the outline, according to the slope.

A

'^^.
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Chapter IX

SPHERES

110. A Sphere is a solid generated by the revolution of a circle about one of its diameters, as an axis. Every

point of its surface is at the same distance from the center, this distance being the length of the radius of the

generating circle, and if the surface is cut by a plane the line of intersection is a circle. If the secant plane

passes -through the center of the sphere this circle is called a Great Circle. It has the same radius as the Sphere

and is of the same, size as the generating circle. Other sections are called Small Circles.

The projection of a sphere upon a plane which is perpendicular to the line of projection is a circle equal to a

Great Circle of the sphere (Fig. 78, A, B, C); upon any other plane it is an elhpse whose Minor Axis is equal to

the diameter of the sphere (Fig. 78 D)

.

The shadow of a sphere as cast upon a plane is either such an ellipse or, if the plane is perpendicular to the

light, a Great Circle.

The Line of Shade Upon a Sphere.—As was said in the Introduction, there are five ways of finding the Line of

Shade upon a Surface of Revolution: (1) The Method of Projected Tangent Rays and (2) the Method of Tangent

Cylinders, both of which give six or eight points of the Elliptical Line of Shade, and (3) the Method of Tangent

Cones; (4) the Method of Slicing, and (5) the Method of Revolved Tangent Rays, all three of which give

any desired number of points. The Method of Projected Tangent Rays gives also the Major and Minor Axes

of the ellipse of shadow.

111. The Method of Projected Tangent Rays (Fig. 78 A, B, and C).—When a Sphere is exposed to the sun-

light, half of its surface is in light and half in shade, and its Line of Shade is a great circle of the Sphere, lying

in a plane perpendicular to the direction of the light. All the diameters of this circle terminate in the Line of

Shade, and that one of them which is parallel to the plane of projection terminates also in the circle in which

the Sphere is projected. This diameter is projected of its true length and is at right angles to the projection of

the rays of light. A diameter of the circle in which a Sphere is projected, drawn perpendicular to the projec-

tion of the rays of light, will then give, upon the circumference of this circle, two points in the Elliptical Line

of Shade. The rays of light are tangent to the sphere at these two points. They are at the extremities of the

Major Axis of the Ellipse.

112. Fig. 78 shows a Sphere projected upon three different Planes of Projection, in each of which a diameter

taken at right angles to the light terminates in the Line of Shade and determines two points upon it. The Ver-

tical Projection at A gives the points a and a, and the horizontal projection at C gives the points c and c. At B
the sphere is projected upon a plane parallel to the rays of light, and the Great Circle which constitutes the Line

of Shade is seen edgewise, as a right line. The diameter drawn perpendicular to the ray^ of light is here the pro-

jection of the Line of Shade. It terminates in the points b and b, which are two more points of the Line of Shade.

At A the four points thus found in Figs. 78 B and C are projected from the figures at b and b, c and c,

113. Fig. 78 A thus gives the Major Axis of the ellipse in which the Line of Shade is projected at a a, the

Minor Axis at b b, two points upon the ellipse at c c, and, from the symmetry of the figure, two additional points

at c' and c'. The ellipse is found to be described about two squares, whose diagonals constitute its Major Axis,

and also to pass through the points b and b.

The Method of Tangent Rays thus gives eight points in the Line of Shade, five of which are visible.

The points b, b, c, c, and c', c' , in Fig. 78 A, instead of being taken from Figs. B and C, may be found directly,

as shown at A, by inscribing within the circle an equilateral triangle. The sides of this triangle cut the 45-degree

diameter parallel to the projection of the rays of light, at b and b, and its base cuts the vertical and horizontal

diameters at c and c', points with which the other c and c' are symmetrical. Fig. 78 C, in which the ellipse is like

that in Fig. 78 A (the projection of the rays of light again falling at 45 degrees), shows that the ellipse of the

Line of Shade may be circumscribed about two small equilateral triangles, whose common base constitutes the
Minor Axis of the ellipse.
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114. The line ob (Fig. 78 A and B) measures Vj, since it is the short side of a right triangle, the hypotenuse

of which is 1, the radius of the sphere, and the smaller angle is (p (see Fig. 78 £). ,

At C the smaller angle measures 30 degrees^ and the long side of the triangle equals 1. The short side then
here also measures Vj (see Fig. 78 F)

.

The Semiminor Axis of the elUpse is then ^, ( = J VS), when the radius of the sphere is taken at /.

115. The Method of Tangent CyUnders (Fig. 79 A and B).—As was shown in Fig. O in the Introduction, if

a cylinder is tangent to a Surface of Revolution, both having the same axes, the two elements of the cylinder

that form a part of its Line of Shade will cut the line of tangency at two points, and those points will be

points in the Line of Shade of the Surface of Revolution. The figure shows at A that the Line of Shade upon
the vertical cylinder gives the points c and c, that of the horizontal cylinder gives the points c' and c', and, at B, that

of the Normal cylinder, also horizontal, and perpendicular to the Vertical Plane of Projection, gives the points a

and a upon the Line of Shade of the Sphere.

The points c, c; c' and c' are most easily obtained by projecting the points a and a, thus determined in the

vertical projection, upon the vertical and horizontal axes, as is done at A.

The three principal cylinders thus give six points upon the Line of Shade of the Sphere, four of which are

visible in each projection.

116. If now two more cylinders are constructed tangent to the sphere and still parallel to the Vertical Plane,

but making 45 degrees with the Horizontal Plane, as in Fig. 79 C, the projection of the cylinder whose axis is

Fig. 78 Fig. 79
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parallel to the projection of the light, will have its Line

of Shade upon its outline and will again give the points o

and a on the Line of Shade of the Sphere. The tangent

cylinder, the projection of whose axis is at right angles

with the projection of the rays of light, as appears in C
and D, will give two other points of the required Line of

Shade, b and b.

The two 45-degree cylinders thus give two new points,

b and b, of the required Line of Shade, making eight

in all, five of which are visible in the Elevation at A,

namely a, a;b] c, and c'

These eight points are the same as those given above

by the method of projected Tangent Rays.

The Method of Tangent Cones.—As was shown in Fig.

P in the Introduction, if a Cone which has the same

axis as a Surface of Revolution is tangent to it, the two

elements which form part of its Line of Shade will cut the

circle of tangency at two points, and these points will be

points in the Line of Shade upon the Surface of

Revolution.

117. The 45-Degree Cones.—¥ig. 80, A,B,C, and D
shows how points in the Line of Shade upon a Sphere

are thus found by means of tangent cones whose ele-

ments make an angle of 45 degrees with the base. All the spheres are shown in elevation.

Fig. 67 C has shown that when the axis of a 45-degree cone is a Principal Line, perpendicular to a Plane of

Projection, and the base is turned away from the light, three-quarters of the conical surface, including the half

which is visible, is in light; one of the elements of the cone which form part of the Line of Shade is on the outline

which is farthest from the light, and the other is on the further side of the cone, and its projection coincides with

that of the axis. This element is invisible, as is also the entire surface of shade. The visible portion of the cone

is accordingly entirely in light. Fig. 68 C has shown that if the base of a 45-degree cone is turned toward the

Fig. 79

Front Elevation Trent Elevation
Front Elevation

L C
Front Elevation

Fig. 80

light three-quarters of the conical surface is in shade, two of which are out of sight; one of the elements that

constitute the Line of Shade is on the outline of the cone that is nearest the light, and the other is on the near

side of the cone, its projection coinciding with that of the axis, and half of the visible surface is in shade.

Fig. SO A, B, and C shows that six such cones can be tangent to a sphere, two upon each of the three prin-

cipal axes. Three have their bases turned away from the light, and show no part of the Shade, and three have
them turned toward the light and show one-third of the Shade, covering half the visible surface. At A, where the
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axis of the cones is vertical, the upper cone gives two points on the Line of Shade of the Sphere, a on the right

,

and c' behind. The lower cone gives a on the lift and c' in front. The horizontal cones at B give the four

points a, a, c, and c; and the Normal cones at C give c, c c' and c'. The six 45-degree tangent cones thus add no

new points to the eight already determined by the tangent rays and cylinders.

Fig. 80 D shows that if either of these points in the Line of Shade of a Sphere is known, the other five can b e

determined from it.

In these figures, the letters c and c', which indicate points that are out of sight, being on the farther side of the

sphere, are enclosed in circles.

118. The Cones (Fig. 81 A, B, C).—The six tangent cones whose elements make the angle with their

base (Fig. 81 A, B, C), also give six points of the Line of Shade on the Sphere, four of which are new. Each cone

gives one point, that, namely, at which the single element which constitutes its Line of Shade is tangent to the

Sphere. The two vertical cones (Fig. 81 A), give d and d, the highest and lowest points of the Great Circle

of the Line of Shade and of the ellipse in which it is projected; the horizontal cones a,t b B give d' and d', the

extreme right and left points of the ellipse; and the Normal cones at C give the points b and b. Since the line

joining b and b lies at 45 degrees, at right angles with the Major Axis of the ellipse, these must be at the extrem-

ities of the Minor Axis.

These six'points are all shown in Fig. 81 D.

119. Fig. 82 A shows that b and b are distant \'j from the vertical and horizontal diameters of the circle in

which the Sphere is projected, since, in the equilateral triangle a b b, o a= 1, and o b= Vj and d and d are at the

Fig. 81 Fia. 82
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same distance from one of these diameters and twice that distance from the other. The symmetry of the figure

81 D shows that this is true also of the points d' and d'.

Fig. 82 B shows that in a 30-degree and 60-degree triangle the long and short sides, which are in the ratio of

Vf and i, are also in the ratio of 1 to Vj, as in the triangle ao b (which is half of the equilateral triangle abb),

in Fig. 82 A . Fig. 82 C shows that in a (? triangle the hypotenuse and. long _side, which are in the ratio of

V3 and V2, are also in the ratio of 1 and Vf (or 1 and 2 VJ), as in the triangle o p q, in Fig. 82 A.

Fig. 82 D shows how, by a combination of 81 Z) and 80 D, twelve points of the ellipse of Shadow may be deter-

mined, seven of which are visible and five invisible, being on the opposite side of the sphere.

These abundantly suffice to determine the Line of Shade by points.

120. The six points furnished by the Cones may be obtained also as follows: (Fig. 83.)

Draw through the point a at the extremity of a 45-degree radius a horizontal chord, and take upon it the

point (1) distant from the axis half the length of the radius. A radius drawn through this point gives, on the

circumference, the point (2), the point of tangency of the cone. (This construction is justified by the con-

sideration that, since the line o b equals i V2, and the line^ 1 equals i, the line o 1 must equal ^ VS. The sides

of the triangle being thus in the proportion of 1, •S/2, and V3, the angle at the center must be the angle 0.) The
point d can then be got either by finding the comer of the horizontal circle taken through the point 2, or as in the

figure, by drawing the tangent line S, 3, and from the point 3 drawing a 45-degree line back to the point d. This

line represents a ray of light tangent to the sphere at the point d.

This line very nearly passes through the point (1) and the point d can accordingly be got without appreciable

error by drawing a 45-degree line through the point 1, as in Fig. 83 B. The error is less than -^ of the radius.

121. Any number of additional points in the Line of Shade may be obtained by means of additional tangent

cones, as for example, at b a"nd b in Fig. 84 A .

A horizontal chord drawn across the circle at any point, such as the point c in the figure, may represent the

base of a cone tangent to the sphere along the horizontal circle of which the chord is the projection. This cone

has a vertex a.t V, C V being the height of the cone.

The circle drawn about the point C as a center, with this chord as a diameter, represents the base of the cone

in its own plane, and the point V the shadow of the vertex in that plane, C V being the diagonal of the line C V.

Lines from V drawn tangent to the base at a and a, represent the shadows of the elements of the cone which are

its lines of shade, and the lines V b, V b, are the vertical projections of the lines of shade. The points b and b

Fig. 84

Fig. 83
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are points of shade in the horizontal circle, and are points in the required line of shade on the surface of the

sphere.

122. In Fig. 84 B the same two points are obtained by the Method of M. Pillet, shown in Fig. 71, Chapter VIII.

The circle described about the point C has now, for its diameter, half the diagonal of the diameter of the base

of the cone. This represents the shadow of the base upon a 45-degree plane. The tangent lines V a and Va
represent the shadows of the lines of shade upon such a plane, and b and b the points which cast them.

123. The Method of Slicing (Fig. 85).—If through a sphere is passed a series of parallel planes, one element

of which is parallel to the ray of light, the Unes of intersection will be circles standing edgewise to the light.

The planes will be surfaces of Light and Shade, and in each the half of the edge which is turned toward the

sun will be illuminated, the other half will be in shade. Each circle will have two points of shade separating

these semicircles, and these points will be points on the Line of Shade of the sphere.

B

Fio. 86

Fig. 85

If the secant plane is, as in the figure, at 45 degrees with the vertical plane of projection, and perpendicular

to the horizontal plane, these circles will be projected upon the horizontal plane in right lines at 45 degrees,

as in the figure, and upon the vertical plane as Ellipses. But these are difficult to draw and the position of the

tangent rays difficult to determine.

124. If the secant planes are taken parallel to the vertical plane of projection, as in Fig. 86, the circles will

be projected upon it as circles. But though these circles are easily drawn, it is not easy to find the points of

shade upon them, for they must be treated as the bases of tangent Normal cones, and the line of shade upon

each must be determined as in Fig. 70. This is somewhat coarsely illustrated in Fig. 86 A, in which the sphere

is cut up into only seven slices.

However numerous the slices, they would still be segments of cones, and not cylinders. If they were cyHn-

ders, each of them would have its line of shade on the corner, as in Fig. 86 B, which is manifestly incorrect.

The Method of Slicing is accordingly of no practical advantage for finding the Line of Shade upon a Sphere.

125. The Method of Revolved Tangent Rays.-—The Method of Revolved Tangent Rays, like that of Tangent

Cones, gives any desired number of points on the Line of Shade. But while the Tangent Cones give them directly.

3A
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Elevation

Elevation

Fig. 87

Fig. 88

Fig. 89
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the Tangent Rays first determine the projection of the Line of Shade when the Light falls parallel with the Ver-

tical Plane of Projectiori5lb.nd then, by revolving the Surface of Revolution 45 degrees on its axis, determines its

position when the light falls, as usual, at the angle so as to make, in both Planes of Projection, angles of 45

degrees with the Ground Line.

But the first of these steps, though serviceable with the Ovoid, as shown in the Introduction (Fig. M), is not

needed for the Sphere, inasmuc^i as the Line of Shade, when the rays of light fall parallel to the Vertical Plane,

is projected in a Right Line, which is the diameter of the Sphere at right angles to the projection of the rays, as

is shown in Fig. 76 B, and Fig. 87 A. The pl§.n, Fig. 87 B, shows that any point such as I', Fig. 87.4, taken

upon this line is really the projection of the two points on the Line of Shade marked in the plan as /" and /",

and that if the Sphere is revolved 45 degrees on its axis these points of the Line of Shade will be at I'" and I'",

and will now be projected as points of the elHptical projection of this line, as appears in Pig. 87 C, at

Z'" and /•".

Fig. 87 D shows how all these operations may be combined in a single comparatively simple operation.

126. Summary.—In choosing among these five ways of determining the ellipse which defines the Line of

Shade upon a Sphere, the simplest way is first to obtain the points a and a, at the ends of the Major Axis, by
drawing a 45-degree diameter at right angles to the direction of the projection of the rays of light, and then

-to obtain the points at the extremities of the Minor Axis by cutting the other 45-degree diameter by an

equilateral triangle, as shown in Fig. 87 D.

The ellipse can then either be drawn as a continuous curve, by getting its foci, or can be determined by point?.

The points a and a give the four points c, c, c', and c', as is shown in Fig. 80 D, and the points b and b, as

appears from Fig. 81 D, give the four points d, d, d', and d'. These two operations are combined in Pig. 82 D,

giving twelve points of the curve, as has been already said, seven of which are visible. If more points are

desired, they can be obtained either by the Method of Tangent Cylinders and Cones, or by the Method of

Revolved Tangent Rays, which is more convenient for points near the Equator of the Sphere, as the work is

more compact.

127. The Shadow of a Sphere.—The Shadow of a-Sphere, as of any Solid of Revolution, maybe obtained,

as was explained in the Introduction, in five different ways, that is to say (1) by Points; (2) by Tangent Cylinders

or Cones; (3) by Envelopes; (4) by Slicing; or (5) by the Method of Parallel Planes, though this last is not avail-

able for casting shadows upon a plane surface. But the special geometrical properties of the Sphere make it

possible to obtain the Line of Shadow as well as the Line of Shade, more directly. This may be done both by
direct projection and by the use of the Inscribed Square.

128. The Method of Projections (Fig. 88).—The shadow of a sphere upon the vertical plane of projection is

an ellipse whose Major Axis lies at 45 degrees in the direction of the light, and whose Minor Axis, which is as

long as the Diameter of the Sphere, also lies at 45 degrees, at right angles to it.

Fig. 78 has already shown that if the Minor Axis of the ElHpse of Shadow is taken as 1, the Major Axis equals

the square root of 3.

This ellipse is accordingly of the same shape as the elliptical projection of the line of shade, but larger, the

linear dimensions being in the ratio of V3 to 1 , and the areas as 3 to I. Like that ellipse it may be circumscribed

about two equilateral triangles, set base to base, as in the figure.

129. The Method of the Inscribed Square.—If a square be inscribed in the circle which is the projection of a

sphere, it may be regarded as the projection of a Cube. (Fig. 89.) But this cube does not lie wholly within

the sphere. It is partly outside of it, partly inside. Each face of the cube cuts the sphere in a small circle.

The portion of the cube inside th6se circles is inside the sphere, but the eight solid angles at the comers of the

cube are outside the sphere. The eight small circles, and the eight points where the edges of the cube are tangent

to these circles, are common to both surfaces. The Line of Light and Shade, the shadow of which is the outhne

of the shadow of the sphere, passes through six of these points, and their shadows are points of its shadow, and

consequently of the shadow of the Sphere.

The shadow of the Sphere can then, as in the figure, be inscribed within the symmetrical hexagon which is the

shadow of the cube, the projection of which has in the first place been inscribed within the projection of the

sphere.

The projection of the Sphere circumscribes the projection of the cube, but the shadow of the cube circumscribes

the shadow of the Sphere.
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130. The Method of Points.—Since the shadow of a solid object is bounded by the shadow of its Line of Shade,

the Line of Shadow being in fact the shadow of the Line of Shade, the Line of Shadow can be drawn through the

shadows of any points of the Line of Shade whose positions are in any way ascertainable. Such are the twelve

points shown in Fig. 82 D.

131. The Method of Tangent Cylinders (Fig. 90).—The three principal cylinders shown in Fig. 79 and again

in Fig. 90, are tangent to the sphere in three great circles, one vertical, one horizontal, and the third vertical

and normal to the plane of projection. The shadows of these cylinders are bounded by the shadows of their

lines of shade, and as these are tangent to the line of shade of the sphere at six points, a and a, c and c, c' and c',

the shadows of these six points lie in the outline of the shadow of the three cylinders. The intersections

of their outlines form a hexagon which is identical with the hexagonal shadow cast by the "Inscribed Cube"

(Fig. 89). ;;

Since the width of the shadow of a right circular cylinder is the diagonal of its diameter, and -the

eUiptical shadow of the sphere is tangent to the sides of the hexagon at their middle points, a horizontal

projection of the sphere and its tangent cylinders is not needed. The circumscribing hexagon can be drawn

independently.

132. The Method of Tangent Cones (Figs. 91 and 92),—Fig. 91 shows, as was shown in the Introduction,

Fig. L, that if a Cone is tangent to a Surface of Revolution, the axis of the Cone coinciding with that of the Sur-

face, the line of contact between the two surfaces is a circle, which is the base of the Cone, and that this circle of

contact, the Line of Shade of the Cone, and the Line of Shade of the given surface, all pass through the same two

points on that surface. Moreover, the ray of light that passes through either of these points is tangent to both

surfaces, and Ues in a plane which is also tangent to both surfaces at this point. This tangent plane, being

parallel to the light, is a Plane of Light and Shade, standing edgewise to the light, and its shadow, cast upon any

plane surface, is a right line, which is tangent both to the shadow of the Cone and to the Shadow of the Surface

of Revolution, at the point which is the shadow of the.common point of tangency, and the shadows of the two

surfaces and of -the circle of tangency are tangent to one another at this point of shadow.

This is illustrated in Fig. 91, in which the two Lines of Shade and the circle of tangency all three meet

at the points a' and a'.

133. The figure shows the Lines of Shadow, (1) of the two lines which constitute the Line of Shade at the

Cone, (2) of the elUpse that is the shadow of the circle of tangency at its base, and (3) the ellipse that is the

Shadow of the Sphere (which coincides with the shadow of the Line of Shade on the Sphere), all passing through

the points a' and a', which are the shadow of the points of tangency, all three being tangent to one another at

those points.

It follows that if a Cone is drawn tangent to a given Sphere, the two points, such as a' and a* in the shadow of

the cone, where the shadow of the conical surface is tangent to the shadow of the base, will be points otthe

eUiptical shadow of the Sphere, which will be tangent to the shadow of the Cone at these points.

134. Since any number of Cones can be drawn tangent to a Sphere, the shadow of a sphere can be thus deter-

mined at any desired number of points, the shadows of the elements of the cone giving the direction of the Line

of Shadow at those points, as in the figure, since they are tangent to the ellipse of shadow. These tangent lines

form then a polygonal figure in which the ellipse of shadow may be inscribed, just as was done within the hexagons

furnished by the two previous methods.

In Fig. 92 the construction lines necessary for finding the Lines of Shade of the Cones and the shadows

of the Lines of Shade are omitted.

135. The Method of Envelopes (Fig. 93).—If the sphere is cut by planes parallel to the plane surface upon
which its shadow falls, the sections will be circles, and the shadows will be other circles just like them.

If the plane surface to which these secant planes are parallel is a plane of projection, as in the figure, both the
projections of these circles and their shadows will be circles. The shadows will intersect so as to form a sort of

polygon, each side of which is the arc of a, circle, and the shadow of the sphere may be circumscribed about it, as

shown.

136. The Method of Slicing (Fig. 94).—If the secant planes are taken parallel to the direction of the light,

the line of shade of the sphere will pass through the points of shade upon the small circles, and the shadow of the
sphere will pass through the shadows of these points, which will lie in the shadows of the small circles. But
though the shadows of these small circles will be right lines, their projections will be elUpses, and difficult to
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draw, and the points of tangency are difficult to determine. The procedure illustrated in Fig. 94 A is thus .of

no practical value.

But since the shadows of the centers of these small circles are easily found, and the length of the right lines

which are the shadows of such circles bears a constant ratio to the diameters of the circles (namely, that of the

hypotenuse of the d? triangle to its long side, (which is the ratio of VS to V2, or Vf to 1), any number of points

in the Line of Shadow can be-found without constructing the Line of Shade itself, or drawing the ellipses in which

the circles are projected (Fig. 95).

Fig. 94 Fig. 95

ver-137. The Auxiliary Plane at 45 Degrees (Fig. 96).—If the shadow of a sphere falls upon an auxiliary
ticalplane, set at an angle of 45 degrees with the Vertical Plane of Projection, as in the figure at A, the shadow will

be an elHpse whose Minor Axis is horizontal, and equal to 2, that is to say to the diameter of the sphere, and
whose Major Axis is equal to V6, as shown at B. The projection of this shadow upon the Vertical Plane of
Projection will be an ellipse whose vertical axis is also vertical and equal to V6 (= VS V2) and the Minor Axis
equal to a^, as shown at C. The axes will then be in the ratio of VS to 1 and the projection of the ellipse, like
the Line of Shade upon the Sphere, and like the shadow of a sphere upon a Principal Plane, may be circumscribed
about two equilateral triangles, as in the figure.
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138. Ellipsoids.—The projection of a Prolate or Oblate Ellipsoid upon the Plane perpendicular to its axis

is a circle; upon a plane parallel to the axis it is an ellipse similar to the generatrix of the Ellipsoid.

The Line of Shade.—When the Hght falls parallel to the plane of projection, as in Fig. 975 and in Fig. 98, the

projection of the Line of Shade of an Ellipsoid upon that plane is found to be a right line, passing through the

projection of the center of the ellipsoid. It is a diameter of the ellipse in which the ellipsoid is projected. The
Line of Shade itself is then a plane figure, and this figure must be an ellipse. For it is a maxim of Geometry,

as has already been said, that if a. surface of revolution which has a Conic Section for a generatrix is cut by a

plane, the line of intersection is also a Conic Section, and the ellipse and circle are the only Conic Sections that

form a closed figure.

The center of the ellipse of projection being one point in the rectilinear projection of the Line of Shade, only

one other point is needed, of course, in order to determine the line. This point may most conveniently be taken

on the outline, as in the figure, where the ray of light tangent to the projection of the ellipsoid gives a point in

the Line of Shade.

139. When, as usual, the light falls so that its projections make angles of 45 degrees with both planes of

projection, the Line of Shade is an ellipse and is projected in an ellipse. As in the case of the Sphere, the highest

points of the curve are at the corners of the circle, and it is tangent to the outline at the 45-degree points.

(Fig. 97 A .) The eight points, a, a' ; b,b'; c, c' ; and d, d'. as shown in the figure, can be got without difficulty

by means of Tangent Cylinders and Cones. Any number of additional points can then be got by taking points

upon the rectilinear projection of the Line of Shade, as, for instance, at x and y, in the figure, and revolving them
through an arc of 45 degrees, as shown for the Sphere in Fig. 87. This gives the points e, e', and /, /' in Fig. 97 B.

These points are added in Fig. 97 A, and the symmetry of the figure allows them to be duplicated at e', e'

;

and /', /'.

140. Note.—That this projection of the Line of Shade of an EUipsoid is really a right line appears on the

application of the Differential 'Calculus to the Method of Revolved Tangent Rays (Fig. 98)

.

The general equation of the Upright Ellipse is a^ x' -VV^ 'f = c^ W ; a and h being semi-axes of the ellipse, and
X and y the coordinates of any point, such as the point I.

Hence: x'^ = b^—;--)/^; 2xdx= :i-2ydy; -7—= ^^\
a^ a^ ' " dy d? x

.^_ _ ^.K.^'.y.
h2

ln= x tan = x->J^; z= ln--r~= — x^ll-^--= — ^li--^-y;dy (T X c^
-^

f.2

But 3=y-tana. Hence: tan a = -= — ^\~= C.
y (T

Thus the angle « is a Constant, i. e., l^ is always in the same direction from the point 0, and always falls in

the line ocf. The Line of Shade is thus projected in a right line, and is therefore a plane curve.

The diameters h b' and d d' being conjugate diameters, the axes of the eUipse can be obtained from them by
the Method of Shadows shown in Fig. 41, Paragraph 52, Chapter V.

141. The Shadow of an Ellipsoid.—The Line of Shadow of an Ellipsoid is the shadow of its elliptical Line
of Shade, and when cast upon a plane surface is itself an ellipse. It may be found by taking points on the Line
of Shade, and getting their shadows, or, more conveniently, by means of Tangent Cylinders and Cones, which
give not only the position of any desired number of points, but also the direction of the curve at those points.

The shadow upon a plane perpendicular to the axis of revolution can also be got by the method of Envelopes.
But the shadow of an ellipsoid can be got by direct projection, as is shown in Fig. 99 A. It is an ellipse whose

Minor Axis is equal to the smallest diameter' of the Ellipsoid, and whose Major Axis depends upon the shape
of the elUpsoid. The greater the eccentricity of the generating ellipse, the greater is that of the ellipse of

shadow.

142. All this appUes equally to the Oblate Ellipsoid, Fig. 97 B. The only difference is that, in the algebraic

work, the letters a and b change places, the equation of the horizontal ellipse being ay X b'^ x^= a^ W.
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Chapter X

HOLLOW SPHERES

143. The Hollow Hemisphere.—In the case of the Solid Sphere, the Line of Shade is on the external surface

of the Sphere, and the shadow is cast on the ground, or elsewhere. But in the case of the Hollow Sphere, or

Hemisphere (Fig. 100), as with the Hollow Cylinder and Hollow Cone, the shade and shadow both lie upon its

interior concave surface, and the line aba, which is the half of the rim, or edge, which is nearest the Sun, is the

Line of Shade which casts the shadow.

The solid sphere shows upon its convex surface a single line, the Line of Shade, which is a Great Circle of the

sphere, and divides the half of the surface which is in light from the half 'which is in shade.

The Hollow Hemisphere, on the other hand, has upon its concave surface

three lines, all of which are Great Semi-Circles, namely, (1) the Line of Shade

upon the rim, which casts the shadow; (2) the Line of Shade and Shadow,

which divides the shade from the shadow; and (3) the Line of Shadow, which

divides the shadow from the light.

144. The portion of the concave surface which is next to the edge which

casts the shadow is in shade, being turned away from the light. Fig. 100^4.

This shade extends as far as the Great Semicircle a c a, which, on the out-

side of the sphere, is the Line of Shade, being the line where the rays of

light are tangent to the spherical surface. On the inside of the sphere it is.

the Line of Shade and Shadow, separating the surface in shade from that which

is in the shadow cast by it upon the portion which faces the light. The
shadow extends from the Line of Shade and Shadow a c a to the Line of

Shadow ad a, which is the shadow of the Line of Shade ah a. The rest

of the concave surface, extending from the Line of Shadow ad a to the other

half of the rim a.t a ga, is in light.

Fig. 100 5 shows a similar shade and shadow upon a horizontal hemis-

phere. But in this figure the effect of the reflected light is shown, and this

is such as to obliterate the Line of Shade and Shadow.

145. The Line of Shade and Shadow (Fig. 100).—The Line of Shade

and Shadow in a Hollow Hemisphere thus lies in the same Great Circle as

the Line of Shade upon a solid sphere. It is projected in an ellipse whose

Semimajor Axis is 1, and whose Semiminor Axis is V^. This may be

obtained in any of the ways described in the previous chapter, but it is of

less practical importance than the Line of Shade, for in the case of the

Solid Sphere it is this line that casts the shadow, but in the case of the

Hollow Hemisphere the line that casts the shadow is half the rim of the

hemisphere. This is given as one of the data of the problem, and constitutes

the semicircular Line of Shade ab a.

146. Moreover, in the case of the Solid Sphere the Line of Shade is a conspicuous line, and it needs to be

exactly defined. It separates the illuminated half of the sphere from the shaded portion of the surface just

where the shade is at its darkest, being there most turned away from the reflected light, and, if the surface is

smooth, the Line of Shade often looks, as has been said, almost like a dark line. In the Hollow Sphere, on the

contrary, the Line of Shade and Shadow separates the shade from the shadow, both of which are equally exposed

to the reflected light along this line, and are, where they meet, of exactly the same degree of darkness, as is seen

in the horizontal hemisphere at B. The line is in nature, as in this drawing, imperceptible. It exists only in

Pig. 100
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theory. In drawings, however, which, like Fig. 100 A, have the shades and shadows put in in flat tints, the

Line of Shade and Shadow is visible, and needs to be carefully drawn. This is the case with most of the figures

and illustrations in this book, and, generally, in architectural drawings made to a small scale.

147. The semicircular edge aba which casts the shadow upon the hollow surface; the semicircular Line of

Shade and Shadow ac a; the semicircular Line of Shadow a da; the other semicircular edge aga; and the rays

of light that are tangent to the hemisphere at the extremities of these four semicircles, all meet at the points a and
a, which are at the extremities of the diameter which, in the elevation, Hes at 45 degrees.

148. The Line of Shadow (Fig. 101).—The rim of .a Hollow Hemisphere .is a great circle of the sphere,

being the line where the sphere is cut by a plane taken parallel to the Plane of Projection and passing through

its center. The half of the rim which is next to the sun casts its shadow, as in the previous figure, upon the con-

cave surface. The Line of Shade is thus a semicircle. The Line of Shadow is a similar semicircle.

149. I. For, in the first place, as has already twice been said, it is a maxim of Geometry that if a Conic

Section of Revolution is cut by a plane, and the line of intersection is then projected upon its interior surface,

the projection is always a conic section, and is a plane curve. Now the sphere is such a surface of revolution,

the Line of Shade is such a line of intersection, and the Line of Shadow is such' a projection. It is accordingly

a plane curve. But the only plane curve that can be drawn upon the surface of a sphere is a circle. The line of

' shadow is therefore a circle, and since its diameter is the diameter of the sphere, it is a Great Circle.

150. II. Fig. 101 C also shows that the shadow cast by the edge of the hemisphere upon the hollow spherical

surface must needs be a Great Circle of the sphere, since it is just like the line that casts it.

For the invisible shadow of the Great Circle which forms the edge of the hemisphere is an elliptical cylinder,

the axis of which passes through the center of the sphere at o. The symmetry of the figure about the ray through o

shows that the line of intersection o di& just such a line as the line b o, and since 6 o is the projection of half of

a Great Circle of the sphere, so must o dhe.

Fig. 101 D ^hows the elliptical cross-section of this cylinder of invisible shadow. Its Major Axis is equal to

the diameter -of the sphere, or 2, and its Minor Axis equals 2 VI-, or f VS. This ellipse is then of the same shape

as the elliptical projection of the Line of Shade and Shadow, as shown in Fig. 78 A and C, and of the same shape

and of the same size as the shadow cast by the sphere upon a principal plane of projection, as appears in

Fig. 78 D. It circumscribes two equilateral triangles.

151. III. The Method of Slicing—The same result is reached by constructing the Line of Shadow graphically,

emplopng the method of Slicing. This is seen also in Fig. 101 C. The hollow hemisphere is here shown as

projected at A upon the vertical plane, at B upon the horizontal plane, and at C upon an auxiliary plane, par-

allel to the rays of light, just as was done in Fig. 78, to find the Line of Shade upon a sphere, and in Fig. 74 for

the Line of Shade upon a Hollow Cone.

Planes parallel to the rays of light cut the hemispherical surface in semicircles which appear, when projected

upon the auxiliary plane of projection, of their true size and shape. The points b, 1, and 2, on the edge nearest

the Sun, throw their shadows on the points d, P, and P. The shadow of each point falls upon the semicircle

that passes through it. Since, by construction, each point of shadow occurs in the same part of the semicircle,

the line connecting them o d, which is the Line of Shadow, isjust such a right line as is o b, and is also a radius

of the semicircle. The Line of Shadow must accordingly be a plane curve, namely, a great Semicircle of the

sphere, and its projection on the vertical and horizontal planes (as at A and B in Fig. 100, and at A in Fig. 101)

must be a semiellipse.

152. Fig. 101 A shows also the shadows cast upon a hollow hemisphere by the four principal diameters of the

Great Circle which is parallel to the plane of projection, just as was done for the Hollow Cone in Pig. 74. They

all pass through the shadow of the center of the circle of /, touch the line of shadow cast by the semi-circum-

ference, or rim, which is nearest the light, and terminate in the other semi-circumference. These Lines of

Shadow are all arcs of Great Circles and are projected as arcs of ellipses.

153. The Vertical Projection of the Line of Shadow (Fig. 101 A).—The Major Axis of the ellipse in which the

Line of Shadow is projected upon the vertical plane Ues at 45 degrees, at right angles to the projection of the

rays of light, and its length is that of the diameter of the sphere.

The point d, in Fig. 101 A, is distant from the center o one-third of the radius. The Minor Axis of the elUpse

in which the Line of Shadow is projected is then one-third of the Major Axis, and the shade and shadow together

cover two-thirds of the circular area.
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154. These results are reached by the following computation. (Fig. 101 C.) Since the diameter b g, which

is the hypotenuse oi a,0 triangle bdg, equals 2 (the radius being taken as 1), the chord d g, which is the short side

of the same triangle, equals 2 Vl, and the segnient of the diameter e g, which is the short side of the tri-

angle de g, equals d g^\= 2 (J) =f. The segment o e then equals \, and so does the segment o d &t A, which

is the Semiminor Axis of the ellipse. Hence, the Minor Axis equals ^ of the diameter.

155. Fig. 101 A .shows that 45-degree chords drawn across the vertical projection of the hemisphere, parallel

to the projection of the rays of light are also divided by the Line of Shadow in the ratio of 2 to 1, just as the

diameter parallel to them is divided. The point h' accordingly is at the distance of one-third of the length of

the chord h j from the point /, at the extremity of the horizontal diameter. The point h' is the shadow of the

point h, at the extremity of the vertical diameter.

156. The Horizontal Projection of the Line of Shadow (Fig. 102).—In Fig. 102 the vertical projection of the

Semicircular Line of Shadow which has just been determined, is again shown at A . The problem now is to find

the horizontal projection of the Great Circle of which it forms a part. This is shown at 102 B.

If it were required to find the shadow cast within a horizontal hemisphere by the semicircle of its own edge,

which is parallel to the plane of projection, the result would be the same as that just obtained, and as shown in

Fig. 100 B. The axes of the ellipse of shadow would lie at 45 degrees, and the shade and shadow would cover

two-thirds of the circle. But the present problem is to find the shadow cast upon a horizontal hemisphere by a

vertical circle, perpendicular to the plane of projection, the same circle ab a which at A casts the shadow a da.

157. The problem is, that is to say, to find the horizontal projection of the Great Circle which, in the vertical

projection, appears as an ellipse whose axes lie at 45 degrees, and whose Minor Axis is one-third of the Major.

The horizontal projection will, of course, also appear as an ellipse, the Major Axis of which will be a diameter
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of the sphere. It is required to find the inclination of this Major Axis, and the length of the Minor Axis, at right

angles to it.

This involves the determination, in Fig. 102 A, of the length of the half chord r', and of the line x; and in

Fig. 102 B, of the half chord r", of the lines y, z, and b, and of the angle 0. The line b is the required Semi-

minor Axis.

The Minor Axis of this ellipse of shadow is just twice as long as that of the ellipse shown in the vertical projec-

tion, and the angle d by which the Major Axis is inclined to the Normal Diameter of the sphere, is the angle of

26° 34', the angle whose Tangent is ^. These results are reached by the following computations:

In Fig. 102 A the Line of Shadow cuts off a third part of the half chord r', as has been explained in Para-

graph 155, and illustrated in Fig. 101 A. It also cuts froni the horizontal diameter the segment x, which is the

hypotenuse of a right Isosceles triangle, the equal sides of which measure ^ r'.

We have then from Fig. 102 A: r^= r'^-\- (r iy= ^r'\ x^ = 2 (i r'y= i r'\

Hence, r^= 5x^; r= x V5; r : x= Vs : 1.

The Line of Shadow touches the projection of the outline of the sphere at the point a, at the extremity of the

Major Axis, distant from the projection of the vertical diameter of the sphere by the length of a line which is the

side of another Isosceles right triangle, of which the hypotenuse is o a, the radius of the Sphere. This line meas-

ures accordingly r Vj.

In Fig. B, the line o a is projected as a segment of the diameter of the sphere which is parallel to the Ground
Line. It is the hypotenuse of a right triangle of which the long side is y, and the short side is z. The angle at

the base is called 0. Hence y'^+ z^= \r''. This triangle is similar to the larger triangle in the same figure in

which the hypotenuse is r, and short side x. Since in both these triangles the hypotenuse is to the short side

as V5 is to 1, the acute angle must be the angle of 26° 34', whose Tangent equals \, as appears in Fig. 102 C.

We have then Tan 0=^, y= 2z, z=iy.

y-|-z^=/-|-i/= f /=2 >'^/=w»'^ J'=2rVS-- z = rV-iV-

Hence, y= i r", and 6= f r. For the Line of Shadow cuts the radius and the half chord proportionally.

158. These results show that in the horizontal projection of the Great Circle which constitutes the Line of

Shadow in a Hollow Sphere, the Major Axis of the ellipse makes with the diameter of the sphere which is per-

pendicular to the vertical plane of projection the angle 0, whose tangent is i, and with the diameter which is

parallel to the vertical plane of projection the angle 90°— 0, whose tangent is 2. That is to say, the slope of the

diameter is as 1 to 2.

159. These results furnish the following three propositions:

I. The shadow upon the surface of a Hollow Sphere cast by a Great Circle of the sphere, is itself a Great

Circle of the sphere..

II. If the Great Circle that casts the shadow is parallel to the plane of projection, the projection of the circle

of shadow upon that plane is an ellipse, the Major Axis of which is equal to the diameter of the sphere, and is at

right angles to the projection of the rays of light. The Minor Axis lies in the direction of the projection of the

rays of light. Its length is one-third of the diameter.

III. If the Great Circle that casts the shadow lies in a principal plane, perpendicular to the plane of projection,

the projection of t'he circle of shadow upon that plane is an Ellipse, whose Major Axis is equal in length to the

diameter of the Sphere, and is nearly in the direction of the light, making with the projection of the Great Circle

an angle whose tangent is 2. The Minor Axis is equal to two-thirds of the Major Axis.

160. The Method of Parallel Planes.—The Line of Shadow in a hollow hemisphere can also be obtained by

the method of parallel planes. Fig. 103 A and B.

If a hollow hemisphere is cut, as in the figure, by planes parallel to the vertical plane of projection, the lines of

intersection will be projected horizontally in straight lines, as at B, and on the vertical projection in the circles

/, £, 5,' and 4, as at^. The center of the semicircular Line of Shade will cast its shadow on these planes at the

points cS c^, (^, and c* and the shadow of the Line of Shade will fall upon these planes in the semicircles 1', 2',

5', and 4'. The points in each plane where the circles are intersected by the corresponding semicircular shadows

are poiiits in the required Line of Shadow.
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161. T/ie Quarter Sphere.—The interior of the surface of the Quarter Sphere receives the shadow of part of

the semicircle parallel to the plane of projection and of part of that perpendicular to it (Fig. 104) . The Hne a b

throws its shadow at b d, and the line a c At c d, the shadow of the point a falUng at d.

In both plan and elevation the Great Circle which is parallel to the plane of projection casts a shadow which

appears as an ellipse with its Minor Axis in the direction of the Hght, and equal in length to one-third the Major

Axis. The great circle which is perpendicular to the plane of projection casts a shadow which appears as an

ellipse whose Minor Axis is two-thirds the Major Axis, and the Major Axis, which lies nearly in the direction of

the light, makes, with the projection of the circle which casts the shadow, the angle whose tangent is 2, or 72° 26'

(=90° -26° 34').

The cusp at the point d, in which the elUpses of shadow intersect, is the shadow of the point a, and lies in the

45-degree chord drawn parallel to the projection of the light, at two-thirds its length. For the elliptical shadow

of the circle which is parallel to the plane of projection cuts off one-third of the chord, just as it cuts off one-third

of the diameter parallel to it.

162. Oblique Hollow Hemispheres.—^The vertical secant plane which forms the Line of Shade is sometimes

inclined to the vertical plane of Projection instead of being parallel to it.

The Ellipse of the Rim or Line of Shade.—The line of intersection, or rim of the hemisphere, is of course

always a Great Circle, and its vertical projection is always an ellipse whose Major Axis is the vertical diameter

of the circle in which the sphere is projected. The Minor Axis is horizontal and its length depends upon the

obliquity of the secant plane. These ellipses take the form shown in Fig. 105 A, B, C, D, E, F, G, and H.

The Ellipses of the Line of Shade and Shadow, and of the Line of Shadow.—This does not, of course, alter the

semicircular Line of Shade upon the outside of the sphere, or the semicircular Line of Shade and Shadow upon

the inside. Since these lines are, geometrically, the same Great Circle, the semiellipses in which they are pro-

jected form the two halves of a single ellipse. This Great Circle has the same position however the sphere is
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divided, and its projection is always the ellipse whose Major Axis is the diameter of the circle which makes
45 degrees with the horizontal diameter, and lies across the rays of light, and whose Minor Axes, lying parallel

to those rays, measures, as in Fig. 78 A and B, f -^3 — 2a/^. This Major Axis is lettered a a'.

The Ellipse of the Line of Shadow.—The Great Circles that constitute the different rims being all different,

the shadows that they cast are all different. These shadows also are Great Circles of the sphere, as explained

in Paragraph 149. These Lines of Shadow are projected as ellipses whose Major Axis, though inclined at dif-

ferent angles, are diameters of the same circle.

163. Two points on each curve can be got without difficulty and the s)niimetry of the ellipse gives two more.

One of these is the point h', which is the shadow of the point h, at the upper extremity of the vertical

diameter of the hemisphere. Since this point is common to all the vertical secant circles, or rims, its

shadow is common to all the Lines of Shadow. It occurs, as was shown in Fig. 101, upon the 45-degree chord

drawn through the top of the circle, parallel to the direction of the light, at two-thirds of its length from its

upper end. The symmetry of the ellipse gives a second point, marked h'' in the figures, upon the opposite

side of the ellipse.

164. Two other points are furnished by the principle illustrated by Fig. E in the Introduction, in which it

was pointed out that the Line of Shade that casts the Shadow ; the Line of Shade and Shadow which separates

the Shade from the Shadow; and the Line of Shadow, all pass through the same point. The two points in which

the ellipse, which is the projection of the rim, intersects the ellipse which is the projection of the Line of Shade

and Shadow are therefore points of the Line of Shadow. In each figure then the two points, lettered p and p'

,

at which the rim cuts this ellipse are points in the elUptical Line of Shadow, the three ellipses intersecting at

these points. The Line of Shadow being a Great Circle of the sphere, the elUpse in which it is projected has

for its Major Axis a diameter of the circle in which the outHne of the sphere is projected, and is tangent to this

circle at the extremities of this diameter. If these relations are^borne in mind, the points h' and p, or any other

two points, suffice to deterrhine the ellipse of the Line of Shadow.
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+3'0°

Fig. 105

165. Fig. 106 A shows how the axes of the ellipse may be determined, two points having been found. Let

the points 1 and 1 be the two given points. These points are the projections of two points that lie in a

Great Circle of the sphere, the projection of which is the required ellipse. The problem is- to find its Major
and Minor Axes.

A plane passed through these two points perpendicular to the plane of projection will cut the sphere in the
Small Circle which is projected in the line 2 112, cutting the plane of projection in the line 2 2, the diameter
of the Small Circle. If this Small Circle is now revolved about this diameter into the plane of projection, the

points 1 and 1 will fall at 3 and 3, and a line drawn through S and 3 will meet the line 2 112, produced, at the
point 4< lying in the plane of projection. But the hne 4 3 3, in its unrevolved position, as projected at 4 1 1,

lies in the oblique plane which contains the Great Circle whose projection we wish to obtain, and since all Great
Circles have their centers in the center of the sphere, the line .^ c is the line in which this oblique plane cuts the
plane of projection. The line 5 5 is then a diameter of the Great Circle and is the required Major Axis of the
ellipse 6115 in which the Great Circle is projected.

Fig. iOe A
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B -5,

Fig. 106 B

The symmetry of the elUpse affords, besides the given points 1 and 1, the six other points 1' and /', 1" and /"

and 1'" and 1'". These eight points and the points 5 and 5, at the extremity of the Major Axis, being deter-

mined, the required eUipse can be drawn through theni with sufficient precision.

166i Fig. 106 B shows how the Minor Axis of this eUipse may be found, with exactness.

If the half chord 2, 1, 3 is drawn through one of the given points, perpendicular to the Major Axis, and a radius

cb Ji-is drawn parallel to it, the line c 6 will be the Minor Axis, and since the semiellipse 5 b <? divides this radius and
this half chord proportionally, we have: cb : r^2, 1 : 2, 3. If now we draw a second radius c 3, and a line 1, 6,

parallel to the Major Axis, we have the proportion: c6 :r= 2,l -.2; 3; the Minor Axis cbis, then equal in length to

the line c6.

167. The Line of Shadow Projected as a Right Line (Fig. 107).—Fig. 105 shows that in A, B, C, and D, the

semiellipse of the Line of Shadow lies above the .center of the circle; in E, F, G, and H it lies below it. At D
the secant plane makes an angle of 30 degrees with the Vertical Plane of Projection, at Ea.n angle of 15 degrees.

There must obviously be an angle between 30 degrees and 15 degrees at which the Line of Shadow will pass

through the center, the ellipse being seen edgewise and appearing in projection as a straight line, as in

Fig. 107 A.

Fig. 107 A
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Fig. 107 A shows the Line of Shadow thus projected as a diameter of the circle,

passing through the point h% which is the shadow of the point h at the top of the

vertical diameter of the circular rim. Since the point h' is distant from the end of

the horizontal diameter one-third of the length of the 45-degree chord passing

through it, it must be distant from the horizontal diameter one-third of the radius

of the circle, and from the vertical diameter two-thirds of the radius. The angle «,

therefore, included between the projection of the Line of Shadow and the hori-

zontal diameter, is the angle whose Tangent is \.

The angle ^ (= 45°— a) , included between the Line of Shadow and the 45-degree

diameter, must then be the angle whose tangent is \. For, as the following oper-

ation shows, the sum of two angles whose tangents are, respectively, J and ^, is an

angle of 45 degrees.

(tan «= i; tan /9= i); tan(« + ^) = ^_^^^ ^^^^^^
- = ^^_^^= ^_^=j

= l=tan 45°.

Hence, a+ jS= 45°.

168. The Vertical Projection of the Line of Shadow being thus determined, it

remains to find the position of oblique circle which casts it, that is to say of the riin.

169. The point p, at which the Line of Shadow cuts the elliptical Line of

Shade which is common to all the figures, is also a point in the ellipse in which

the rim of the hemisphere, when found, will be projected. This projection of the

rim is a vertical ellipse, and its Major Axis is the Vertical Diameter of the circle.

It is required to find the length of the Minor Axis, r', as shown in Fig. 107 B,

and the inclination of the Major Axis, shown in Fig. 107 C as the angle 0.

Let us call the distance of the point p from the center, n ; its distance form the

horizontal diameter of the circle, I; from the vertical diameter, m; from one Fig. lOTSandC

45-degree diameter, x; and from the other, y. The hne n is the common hypotenuse of the two « and /9 triangles,

the sides of which are I and m, and x and y. The lines s and /, and the lines x and z, are the sides of two other right-

angled triangles, in both of which the hypotenuse is a radius, r. This radius is not shown in the figure.

From Fig. 107 B may be read the following equations, the radius of the sphere being taken as 1.

Fromthe a and/3triangles (tan a=J, tan/3=^): "w= ;8Z. x= Zy. w'= P+ m^= x^+y^. l = P+ s^= x^+ z^.

From the half chords of the ellipse, which are proportional to the half chords of the circle:

z
:

y= 1

:

: m=l : r'

Vi. z=y^. l=x^+ z^=9y' + 3y'=12y'
m

y=- aS- 2= V-A-=i.

' =7= ^- vf=vii=vt=2Vi
From the Q triangle in the horizontal projection (Fig. 107 C) we get the equation

:l_r" = A e=^. Tan 6'= ^ = ~=i. 6»=26° 54'= tan U.- -P=|-
170. The angle, between 15 degrees and 30 degrees, at which an oblique hemisphere must stand in order that

the Vertical Projection of its ellipse of shadow shall be a right line, is then the angle 26° 34", the angle whose
tangent is \. When standing at this angle the circular ring which casts the shadow is projected as an ellipse

whose Minor Axis is to the Major Axis, or diameter of the sphere, in the ratio of Vf to 1.

171. The vertical projection at Fig. 107 A, and the horizontal projection at Fig. 107 C, look like exact counter-

parts of one another, and in fact they are so. For the two ellipses of the Line of Shade are necessarily alike,

the rays of light in the elevation making the same angle with the Ground Line as in the Plan. The two straight

lines are also symmetrical,- by construction, the projection of the Line of Shadow in the Elevation having the
slope of \, just as the projection of the rim has in the Plan. If, moreover, the Great Circle of the rim that is pro-

jected in the Plan as a right line is projected in the Elevation as an ellipse whose Minor Axis is V|, the Great
Circle of the Line of Shadow that is projected as a right line in the Elevation, will in the Plan appear as a similar

'

ellipse, as shown, all the conditions being the same.
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Chapter XI

Fig. 108

RINGS AND SPINDLES

Any lines l3nng in a plane may be revolved about any right line also lying in the plane, as an axis, and
thus give rise to a variety of forms, all of which come under the designation of Surfaces of Revolution. Besides

the Cylinder, Cone, and Sphere, which form the subject of the previous chapters, the most important of these

are Ovoids, Rings, and Spindles.

The Shades and Shadows of Ovoids were discussed in the Introduction.

172. Rings.—If a Circle, Ellipse, or Oval,

is revolved about an axis, lying in its own
plane, but outside its circurnference, the

resulting surface is a Ring, either solid or

hollow. Fig. 108 illustrates the case of the

Circle, showing sections of solid Rings at A

,

and of hollow Rings at B. The shape, or

proportions, of the Ring, depends, as the

figure shows, upon the ratio between r, the

radius of the Generatrix, or generating circle,

and R, the radius of the Directrix, or circle

on which it moves.

173. The Torus, Scotia, Hollow Torus, or

Gorge, and Hollow Scotia.—This affords four

surfaces of revolution: the Torus, the Scotia, the Hollow Torus, or Gorge, and the Hollow Scotia (Fig. 109

A,B,C,D).
•

The word Torus properly implies a solid ring, like that shown in Fig. 108 A. But in Architecture, the name
is regularly given to the surface of revolution which constitutes the outer half of such a ring. (Fig. 109 A.)

The figure shows a flat circular disc with a convex edge, and consists of a short solid cylinder, surrounded by
the outer half of a solid Ring.

The inner half of a hollow Ring is called a Scotia (or "shadow" surface)^. (Fig. 109 B.) The figure

shows'a flat disk with a concave edge, and consists of a soHd Cylinder, surrounded by the inner half of a

hollow Ring.

The inner half of a solid Ring is called a Hollow Torus, or Gorge (Fig. 190 C). The figure shows a round

hole, surrounded by the inner half of a solid Ring, the sides of the hole being convex toward the center.

The outer half of a hollow Ring is called a Hollow Scotia. Like the Gorge, or Hollow Torus, the figure .shows

a round hole, but the sides of the hole, instead of being convex, are concave. (Fig. 109 D.)

The name Torus is sometimes applied, carelessly, to the Half BLound, or cylindrical molding of similar section.

(Fig. 109 E.) The name Scotia, in like manner, is sometimes applied to the Half Hollow, or cylindrical

molding of similar section. (Fig. 109 F.)

In Fig. 109 the Shades and Shadows are put in in flat tints, the shadows being darker than the shades.

174. The Torus and Scotia are circular figures, convex in plan toward the spectator, as is the case with the

Solid Cylinder, Cone, and Sphere. But the Hollow Torus, or Gorge, and the Hollow Scotia, like the Hollow

Cylinder, Hollow Cone, and Hollow Sphere, cannot be seen in Elevation unless the nearer half of the surface is

cut away. They then show, as here, semicircular figures, concave toward the spectator.

The Torus and the Hollow Torus, or Gorge, like the Sphere and other convex surfaces exhibit only a Line of

Shade, separating the light from the Shade. The shadows they cast fall upon some' other surface. But the



128 SHADES AND SHADOWS

X, Line ofShade

TORUS

HOLLOW TORUS
CGORGEJ

HALF ROUND

(or torus)

Lin^ ofShades ShadowandUneof/Shadow

SCOTIA

HOLLOW
SCOTIA

HALF HOLLOW
(pv scotia)

Fig. 109

Fig. 110



RINGS AND SPINDLES 129

Scotia and the Hollow Scotia, being concave in section, cast shadows upon themselves (just as do the Hollow
Cylinder, Hollow Cone, and HoUowSphere). Like these they exhibit both shade and shadow, separated by the

Line of Shade and Shadow.

Fig. 110 shows the same surface as Fig. 109, but with the tints .graded. On the Scotia and Hollow Scotia

the Line of Shade and,Shadow disappears, as always in concave surfaces.

175. The Lifi^ of Shade and the Line of Shade and Shadow; the Line of Shadow.

The Line of Shade upon a Torus or Hollow Torus (both of which have convex outlines), and the Line

of Shade and Shadow upon a Scotia or Hollow Scotia (which have concave outlines), may be found by
means of:

(1) Tangent Cylinders and Cones
; (2) Projected Tangent Rays

; (3) Revolved Tangent Rays
; (4) Slicing.

The Line of Shadow cast by either a solid or a hollow Ring may be found:

(1) By Points; (2) by Tangent Cones and Cylinders; (3) by Slicing; (4) by Parallel Planes; (5) by an Auxiliary

45°.Plane.

Of these seven methods Slicing is the most laborious and the least accurate ; but as it gives both the Shade

and the Shadow it is sometimes to be preferred.

176. These four kinds of Rings may be grouped by pairs, according to their points of resemblance, in three

different ways, as follows: (Fig. 109.)

1. According as the Ring surrounds a solid disk (A and B), or an open hole (C and D).

The Torus and the Scotia (Fig. 109 A and B).—These both have in the center a short vertical cylinder, with

a convex or concave edge, or profile; they thus have the form of a solid circular disc, the half which is seen in the

elevation appearing as a convex semicircle.

The Hollow Torus, or Gorge, and the Hollow Scotia (Fig. 109 C and D).—Both these have in the center a

circular hole, bordered by a convex or concave profile; they are represented as if seen in section, appearing

in elevation as concave semicircles.

2. According as the profile is convex (A and C), or concave (5 and D).

The Torus and the Hollow Torus, or Gorge (Fig. 109 A and C).—Both these have a convex edge, or

profile, being, the outer and inner halves of a solid ring, and exhibit a surface partly in light and partly

in shade, being separated by the Line of Shade. The cast shadow falls upon some other object.

The Scotia and the Hollow Scotia (Fig. 109 B and Z)).—Both of these have a concave profile, each being

half of a hollow ring, and exhibit a surface partly in shade, partly in shadow, and partly in light. The

shade and the shadow are separated by the Line of Shade and Shadow, and the shadow and the light by

the Line of Shadow. •

.

'

3. According to the geometrical character of the surfaces of revolution.

The Torus and the Hollow Scotia (Fig. 109 A and D).—These two are, geometrically, the same surface, the

Line of Shade which separates the light from the shade in the Torus, being the same as the Line of -Shade

and Shadow which separates the shade from the shadow in the Hollow Scotia.

The Scotia and the Torus or Gorge (Fig. 109 B and C)

.

—These two surfaces also are geometrically identical,

and the Line of Shade on one is, again, the same as the Line of Shade and Shadow on the other. ^
177. Similar Surfaces. Since the shape of the Shade and Shadow on any surface depends upon its

geometrical properties, it is convenient to consider together the two rings that have geometrically the same

surface, taking first the Torus and the Hollow Scotia (A and D), and then the Scotia and the Hollow

Torus or Gorge, (B and C).

The Torus and the Hollow Scotia.

The Torus. The Line of Shade Upon the Torus.

Tangent Cylinders (Fig. 111).—The figure shows the points a and a' on the Line of Shade of a tangent

horizontal cylinder, perpendicular to the Vertical Plane of Projection, the cross-section of which corresponds

to that of the outline given in the Elevation; the points b and b' on that of a circular vertical cylinder; and

the points c and c' on that of a horizontal cylinder, parallel to the Vertical Plane of Projection, and of the

same shape as the normal cylinder. But c and c' can also be obtained from a and a', in virtue of the

symmetry of the figure. A horizontal cylinder lying at 45°, and also of the same shape as the normal cylinder,

gives the points d and d' (Fig. Ill C).
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Fi G. 112

178. Tangent Cones (Fig. 111).—Any number

of additional points upon the Line of Shade can

of course be determined by using a corresponding

number of Cones. But, as in the case of Spheres

and ElKpsoids, the six points a, a' ; c, c'; and d, d',

given by the two critical cones (inaking the angles

and 45° with the Horizontal Plane), and the two

points b and b', given by the vertical cylinder,

generally suffice.

The Line of Shade upon an Upright 45° Cone

(as has been seen in Fig. 67) consists of two

elements of the Cone, one of which is on the out-

line of the Cone farthest from the light, as at v^ a

in the figure, and the other lies on the farther side

of the Cone, and is projected in a vertical line, as

at v^ c' . This cone gives the points a and c' on

the required Line of Shade.

The Line of Shade upon a (D Cone (as was also

Fig. Ill shown in Fig. 67) consists of a single element of

the Cone, lying in the direction of the rays of light,

like the line w' d' in the figure . This line gives the point d' on the required Line of Shade. The points c' and d' thusfound

are on the farther side of the Torus. The other points, marked a', c and d, maybe obtained from a, c' and d' in virtue of

the symmetry of the figure. But theymay also be obtained by means'of inverted cones, such as areshownin Fig. 68.

179. These Cones and Cylinders suffice to furnish eight points upon the Line of Shade, namely, o and a',

b and b', c and c', d and d', all of which are easily determined "by inspection," as follows: The points a and a'

axe. upon the outline, at the comers of the generating circles ; c and c' are on the axis at the same level as a and a'
;

b and b' are on the corners of the "Equator," or largest Horizontal Circle, and d and d' are on the corners of the

horizontal circles in which the <P Cones are tangent to the Torus, and are on the level of the points at which the

outlines of these cones are tangent to the outline of the Torus. At B is shown the horizontal projection of the

Torus and its Line of Shade, and at C their projection upon an auxiliary plane, set at 45°.

180. It appears from these figures that the Line of Shade upon a Torus, though approximating in shape to an

Ellipse, is not really an Ellipse, nor any plane figure. But it is symmetrical both about a horizontal plane . and

about a Vertical Plane set at 45° and bisecting the Torus, as appears at B and C.

181. Projected Tangent Rays (Fig. 111).—The same figure shows that the six points a, a';b, b';a.ndd,d' can be

obtained by means of the projections of rays of light drawn tangent to the outlines of the three projections of the

Torus, and c and c' can be derived from a and a', as above, in virture of the symmetry of the figure.

182. Revolved Tangent Rays (Fig. 112).—Fig. 112 shows that any number of points on the Line of Shade

can also be obtained by the Method of Revolved Tangent Rays. The Tangent Rays that slope at the angles:

90°, 45°, minus 45°, 0, and minus will indicate the eight important points, b, b'; a, a'; c, c'; d, d'.
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Fig. 113

183. Slicing (Pig. 113).—The figure shows the Torus cut by seven vertical planes which are marked in the

plan: 1, 2, 3, 4, 5; 6, and 7. The lines of intersection appear in the vertical projection as ovals, of which the

halves that lie on the visible, or nearer, half of the Torus are drawn with a full line and the other halves with

a dotted line. The first one lies wholly on the hither side and the seventh one wholly on the farther side. Upon
each oval, tangent rays give two points of the required Line of Shade. The tangent rays on the hither

side of the Torus are marked, 1, 1,2, 3, 4, 6, and 6, and those on the farther side 7', 7', 6', 5', \', 3', 2',

The Secant Plane marked 4. taken through the Axis of Revolution gives the points d and d' (which are the

highest and lowest points of the Line of Shade), and also the vertical projection of the points h and 6', which

by the symmetry of the figure, is the same as that of the points e and e'; where line 4 cuts the Equator of the

Torus. But the other Secant Planes are taken at random, and the special points a and a', c and c', if desired,

must be found by one of the methods already described.
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184. The Sphere as the Limit of the Torus.—Fig. 114 A and B shows that as R, the Radius of the Directrix,

grows smaller (r, the Radius of the Generatrix, remaining unchanged) the shape of the Torus changes until,

when R equals zero, the Torus becomes a Sphere. The Sphere is the limit of the Torus. But the character of

the Line of Shade does not alter, and the eight principal points upon any Torus (as also upon the Sphere) may
be found as explained in Paragraph 179.

The figure shows these Toruses in elevation, first, at A, lighted by rays parallel to the Vertical Plane of Pro-

jection and making the angle with the Horizontal Plane ; then at B, lighted by similar rays whose projections

make angles of 45° with both planes, as in the previous figures.

i:^

^

Fio. 114
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Fig. 116

187. Slicing (Fig. 115).—Fig. 115 also shows how, if the points on the Line of Shade have been obtained

through Slicing the Torus by vertical secant planes, parallel to the light, the Shadow of the Torus upon the

vertical plane of projection may be obtained by finding the shadows of these points on the vertical lines where

the secant planes cut it.

188. The Shadow of a Torus Upon an Irregular Surface.—The shadow cast by a plane or solid figure upon an

irregular surface can be obtained, in general, only by slicing both surfaces by planes parallel to the light.

But any such shadow cast upon a cylindrical surface, vertical or horizontal, may be found by the method
shown in Fig. 55, Chapter VI, and again illustrated in Fig. 116. The shadow is first cast upon the plane of

projection, and then transferred to the cylindrical surface just as if it were cast by a plane figure of the same
shape and size as the shadow.
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189. The Hollow Scotia.—The surface of the Hollow Scotia is geometrically the same as that of the
Torus. As was shown in Fig. 109 D, it is concave both in the horizontal and in the vertical section.

190. The Line of Shade and Shadow Upon the Hollow Scofia (Fig. 117).—The Line of Shade upon the Torus
and the Line of Shade and Shadow upon the Hollow Scotia are, as has been said, geometrically the same line,

and the same processes that are used in Figs. Ill, 112, and 113, to determine the Line of Shade upon the Torus
may also be used to determine the Line of Shade and Shadow upon the Hollow Scotia. Fig. 117.

191. The Line of Shadow Upon the Hollow Scotia.—Fig. 117 shows also the shadow cast upon the doubly
concave interior surface of a Hollow Scotia. The Line of Shadow is the shadow of the Line of Shade 1,2,3, 4, 5, 6,

7, 8, which is the open circle at the top of the figure, as appears from the Plan at 117 B. The Line of Shadow
is projected, in both plan and elevation, as a complete oval passing through the points 1', 2% 3', 4', 5', 6', 7\^'.
The vertical secant planes marked in the plan 2; 1, 3; 8, 4; 7, 6; and 6 (drawn through the points 2; 1 and

3; 8 and 4; 7 and 5; and 6; respectively), cut the surface of the Hollow Scotia in curved lines, similarly marked
in the elevation. Since these curves all stand edgewise to the light, the ray that passes through any of these

points casts the shadow of the point upon the lower part of the same curve, and lines passed through them
at 45 degrees give points on the required line of Shadow at P, 2', 3', 4', 5', 6\ 7', and <S^ in both Plan and
Elevation.

Fig. 118

Fig. 117
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Fig. 119

192. Slicing.—Thus Slicing gives as many points of the Line of Shadow as may be desired, and furnishes

two that are of special interest, namely the highest and lowest points of the curve, marked in the figure 4' and 8'.

These are obviously the highest and lowest points, since both the elevation and the plan (Fig. 117A and B) show

that the ray 8, 8' is the longest of any, and the ray 4, 4', the shortest. Since all the rays descend from the

same level, 8' must be the lowest point of the Line of Shadow and 4' the highest.

These two points being determined in both plan and elevation, the Line of Shadow can be drawn through then:

without serious error, if it is borne in mind that in the Plan the curve is symmetrical about the line 8', 4'> and

is tangent at its extremities to the rays drawn through the points S and 6. In the Elevation it is tangent tc

the rays drawn through the points 1 and 6.

193. Fig. 118 shows the shape of the shadow cast upon the surface of the Hollow Scotia when, as in Fig. 109 Z)

the nearer half of the ring is cut away and the figure seen as a concave semicircle. The Line of Shade thei

consists, in part, of the horizontal semicircle 1,2,3, 4, 6, and in part of the curves 5a and la' , on the outline o:

the figure. The upper segment of the Line of Shadow starts accordingly at the point a, where it is tangent tc

the outline, and terminates at the point 6% where there is a cusp. The lower segment, in like manner, lies betweei

the point a', and the point 1'.
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Fig. 120

In both Fig. 117 and Fig. 118 the shadow is represented as being cast by the horizontal circle that consti-

tutes the upper edge of the Hollow Scotia itself. But- in actual practice the Hollow Scotia is generally sur-

mounted by a short vertical cylinder, as in Fig. 120, and the actual shadow is composed partly of the shadow

of the half of the upper edge of the cylinder nearest the light, and partly of the Shadow of the half of the upper

edge of the Hollow Scotia farthest from the light, as shown in the figure, the two Lines of Shadow crossing at

the poiiits x and x.

The Method of Slicing has the advantage not only that it gives both the Line of Shade and Shadow and

the Line of Shadow, but that it gives them both in the Vertical projection, where they are most wanted.

194. Parallel Planes.—The Method of Parallel, Planes (Fig. 119) gives only the Line of Shadow, and gives

that only in the horizontal projection, or Plan, from which it has to be transferred, point by point, to the

Elevation.

195. The Auxiliary 45° Plane.—Fig. 120 shows how the Line of Shadow upon the Hollow Scotia may be

obtained by means of a 45° Auxiliary Plane, which is always available when the line that casts the shadow is a

horizontal circle.

Neither the Method of Parallel Planes nor the Method of the Auxiliary 45° Plane gives the highest and

lowest points of the curve, which must be obtained as in Fig. 117.
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Fig. 122

196. The Scotia and the Hollow Torus, or Gorge.

The Line of Shade and Shadow upon the Scotia is the same as the Line of Shade upon the Hollow Torus, the

surfaces of these two rings being, geometrically, the same.

The Scotia. The Line of Shade and Shadow upon the Scotia.

Tangent Cylinders, Tangent Cones, and Projected Tangent Rays.—Fig. 121 shows eight points on the Line of

Shade and Shadow of the Scotia, corresponding to the eight principal points upon the Line of Shade of the Torus,

shown in Fig. 110. These are easily determined by means of Tangent Cylinders, Tangent Cones, or Projected

Tangent Rays, or, as that of the Torus was determined in Fig. Ill, by simple "inspection," as follows:

The points a and a' are on the corners of the generating semicircles that form a part of the outline of the Scotia

;

b and V are on the corners of the Equator; c and c' are on the axis of revolution at the same levels as a and a'
;

d and d', the highest and lowest points of the curve, are at the comers of horizontal circles drawn through the

points of the semicircles which form the outline where they slope at the angle 45°. There is a point of contrary

flexure between a and b, one between a' and b', and others at b and b'

.

197. Revolved Tangent Rays.—Fig. 122 shows how any desired number of points on the Line of Shade and

Shadow of the Scotia, such as l", can be obtained by the Method of Revolved Tangent Rays.

198. Slicing.—Fig. 123 (a) shows the Scotia cut by five vertical planes drawn parallel to the direction of the

light, as was done in the case of the Torus, in Fig. 113. The lines of intersection are projected in the plan as

right lines and in the elevation as curves, each of which has two branches, one of which, for each of the planes

marked 2 and S, is on the farther side of the Scotia and is not shown. The second branch of plane No. 1, also

on the farther side of the Scotia, is shown by a dotted line. In the Secant Plane No. 4, almost the whole of

the second branch is visible. In Plane No. 6, which is drawn tangent to the cylindrical core of the Scotia, the

two branches meet at the point b.

The curves of intersection cut by Plane No. / lie at two of the comers of the Scotia, and the other two corner

curves, cut by a plane at right angles to No. 1, have the same projections as these two.

As in the previous case of the Line of Shade upon the Torus, the Line of Shade and Shadow upon the Scotja

is drawn through the points of these curves at which the rays of light are tangent to them, that is to say, the

points at which the projections of the curves have a slope of 45°. It crosses line No. 5 also at the point b. This

is the point where the Line of Shade and Shadow crosses both the Equator of the Scotia and the line upon thp

comer of the Scotia. Its position is independent of the slope of the rays of light. Fig. 123 (b) shows the same

for a Scotia of different proportions.
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Fig. 123 (o) Fig. 123 (i)
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199. The Line of Shadow Upon the Scotia. Slicing.—Fig. 124 shows the elevation and plan of a Scotia cut

by Vertical Planes set at 45° and parallel to the direction of the light, as in Fig. 123, with the Convex semi-circle

of the upper edge of the Scotia casting its shadow upon the surface below, a surface which is convex in horizontal

section and concave in vertical section.

At A is the Vertical projection of the Scotia, showing curves of intersection similar to those of Fig. 123. Since

these curves all stand edgewise to the light, the rays of light that pass through the points 1, 2, 3, 4, 5, and 6

upon the convex Line of Shade which forms the upper edge of the Scotia cast the shadows of these points

upon the lower parts of these same
curves, and lines drawn through

them at 45° gives points of the

required Line of Shadow at P, 2",

3', 4', 5', and 6\

200. Here, as in the Hollow

Cylinder, Hollow Cone, and Hol-

low Sphere, the Line of Shade and

Shadow separates the upper part

of the concave surface, which is

turned away from the light, from

the lower part, which is turned

toward the light, and is conse-

quently either in light or in the

shadow cast by the upper part.

The Line of Shadow separates the

portion of the lower part which is

in the shadow from the portion

which is in the light. The shade

thus extends from the Line of

Shade (which is the upper edge of

the Scotia) to the Line of Shade

and Shadow; the shadow extends

from the Line of Shade and Shadow
to the Line of Shadow.

Any number of points of the

Line of Shade and Shadow and

the corresponding points of the

Line of Shadow, can thus easily

be obtained. But it generally

suffices to obtain the highest points

of these curves, passing only a

single 45° Vertical Plane through

the axis of revolution, like Plane

No. 1 in Fig. 124. The resulting

line of intersection, on the nearer

side of the Scotia, lies in the cor-

ner of the Scotia nearest to the

light and the highest points of

both lines lie in it. The points at

which these lines are tangent to

the outline of the Scotia are at

the same level as those where they

cross the axis.

Fio. 124

5A
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The Line of Shadow can then

be drawn through this point with

a fair degree of accuracy, without

obtaining any other points, if it is'

borne in mind (as is to be seen in

figure 124) that the highest point

of the Line of Shade and Shadow
is also upon this corner curve,

that the two lines are farthest

apart at these points, and that

though they grow gradually to-

gether, as they descend,, they do

not cross,,since a shadow cannot

fall within a shade. Moreover the

Line of Shadow, like the Line of

Shade and Shadow, crosses the

outline nearest the light at a point

which is on a level with the point

where it crosses the axis of revo-

lution, and crosses the outline

farthest from the light near its

lowest point. At both points the

Line of Shadow and the Outline,

lying in the concave surface, are

tangent to planes which are tan-

gent to the surface, and as at the

outline each plane is seen edge-

wise, and is projected as a right

line, the projections of the two lines

are tangent to the outline. It is

plain indeed that when a line lying

in a Surface of Revolution reaches

the outline, its projection makes
*

an. angle with the projection of

the outline, as in Figs. Ill C" and
121 C, if at that point the line is

normal on the Plane of Projec-

tion. Otherwise, its projection is

tangent to the projection of the

outline, as in Figs. Ill A and
121 A.

Fig. 110 S shows a Scotia, with the Shade and Shadow forming a continuous gradation, lighted by diffused
reflected light coming in a direction opposite to that of the Sun's rays. The shading is darkest where the reflected
light is least strong, namely, along the lower edge of the Shadow and on the corner of the Scotia nearest the
Sun, and the Line of Shade and Shadow entirely disappears.

201. Parallel Planes.—Fig. 125 shows how the Line of Shadow is obtained by the Method of Parallel
Planes. While the Method of Slicing gives both the Line of Shade and Shadow and the Line of Shadow,
and gives both of them in the Elevation, where they are usually most wanted, the Method of Parallel
Planes gives only the Line of Shadow, and gives it in the Plan, from which it has to be transferred to the
Elevation.

On the other hand the. Method of Parallel Planes is more accurate than Slicing, even when the Line of Shadow
is wanted only in the Elevation.

Fig. 125
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202. The Auxiliary Plane at 4S°.—Fig. 126 shows how the Line of Shadow upon the Scotia may be determined

by means of an Auxiliary 45° Plane. The Scotia is cut, by a series of horizontal planes, in a series of horizontal

circles. The required Line of Shadow is the shadow cast upon them by the lower edge of the fillet at the top,

which is also a horizontal circle. The shadows cast by all these circles upon the Auxiliary Plane are projected

in true circles. (See Paragraph 58, Fig. 47, Chapter V.) The points ^', 2', 3', 4', 5\ 6', and 7', in which the,

circular shadow of the edge of the fillet cuts the other circular shadows, are the shadows of points 2", 2", 3", 4",

6", 6", and 7" in the required Line of Shadow, These points and the Line of Shadow itself are found in the

elevation by tracing back the rays of light from the points of intersection until they cut the corresponding hori-

zontal lines in the elevation.

203. The Hour-Glass Scotia (Fig. 127).—When the radius of the Directrix of a Torus equals the

radius of the Generatrix, the semicircles that defiiie' the Generatrix are tangent to one another, and the

cylindrical core of the Scotia is at its center diminished to a point. This form may be called the Hour-Glass

Scotia. It is the limit, of the Scotia just as the Sphere is the limit of the Torus.

Fig. 126
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Fig. 128
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204. The Hollow Torus, or Gorge (Fig. 128).—The Line of Shade Upon the Gorge.—The Line of Shade of the
Hollow Torus, or Gorge (Fig. 129), is, as has been said, the same as the Line of Shade and Shadow upon the
Scotia (Fig. 122), the geometrical form of the two surfaces being identical.

205. The Line of Shadow of the Gorge.—Fig. 128 shows also how the Shadow of the Hollow Torus can be
obtained from the Line of Shade by means of Points, just as was done for the Torus in Fig. 115.

• 206. Upright Rings.—Fig. 129 shows the aspect presented by the four kinds of Ring, when the axis of revolu-
tion is parallel to the Ground Line, the Shade and the Shadow being shown as in Fig. 109, with flat tints. Fig. 130
shows the same with graded tints, as in Fig. 110.

HOLLOW TORUS
•(GORGEJ

[iiiiiim i ir|iiiiinMii
,

HOLLOW SCOTL\

TORUS SCOTIA .HPILOWJORUS HOLLOW SCOTIA

(gorge;

Fig. 130

207. Spindles (Figs. 131, 132).—When R, the radius of the Directrix of a Torus is smaller than r, the

radius of the Generatrix (the axis of revolution being inside the circumference of the generating circle, so that

the Generatrix is only an arc of a circle) , the resulting surface of revolution is called a Spindle, from its resemblance

in shape to the bobbins used in spinning. In these figures the radius of the Generatrix is longer than that of the

Directrix, the difference being greatest at A, and diminishing until at E the two radii are of the same length.

R then equals / and the result is a Sphere. The Sphere is accordingly the limit of the Spindle, as well as of

the Torus.

In these figures the light is shown as making the angle with the horizontal plane. In Fig. 131 it is parallel

to the vertical plane of projection; in Fig. 132, it makes with it the angle 45°.

208. It is to be noticed that although the five Spindles regularly increase in diameter from A to E (the angle

at the vertex decreasing from 60° to 0°), the Line of Shade as shown in the plans changes shape irregularly.

The Cusp, which is rather blunt at A
,
grows sharper in B and C, and then more blunt until it disappears altogether

at E. This, however, is not really as unreasonable as it seems. For the five figures constitute not a single

sequence, but two. In the figures 6i the first series. A, B, and C, the Line of Shade starts at the vertex of the

Spindle, the difference in the three figures being that the angle the light makes with the surface of revolution

grows less and less, until at (7 it is parallel with the surface. Under these circumstances the cusps grow sharper

and sharper. But in the second series, C, D, and E, the highest point of the Line of Shade has begun, to recede

from the vertex of the spindle. The rays of light are in each case parallel to the surface of revolution at the

highest, or initial point, of the Line of Shade, which constantly gets farther and farther from the Vertex. Under

these circumstances the cusp grows more and more obtuse until it disappears altogether.
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209. Fig. 133 shows a series of concave surfaces of revolution which resemble Spindles, in that the Generatrix

is an arc of only a few degrees, the curve being so flat that no shadow is cast, and they exhibit only the Line

of Shade. These figures, which are shaped much like the Capstan of a ship, obviously consist of the central

segment of a Scotia.

45*
J5^

Fig. 133
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Chapter XII

COMPOSITE FIGURES OF REVOLUTION
210. The Surfaces of Revolution already considered, namely the Cylinder, Cone, and Sphere, the Ovoids

and Ellipsoids, and the varieties of Torus, Scotia and Spindle, have for their Generatrices single geometrical

lines, straight or curved.

If two such lines, straight or curved, are combined, either tangentially or at an angle, surfaces of revolution

result which present some interesting features. Forms of this character frequently occur in Architecture, both

in the larger masses of which buildings are composed, and in their decorative details.

211. The Lines of Shade, the Lines of Shade and Shadow, and the Lines of Shadow, in these figures may
be found in any of the ways described in the preceding chapters. If the scale of the drawings is not too large,

the five points in the Line of Shade given for surfaces of Revolution by the Tangent Cylinder and the two Critical

Tangent Cones will generally suffice, especially if it is borne in mind that when the axis is vertical both the shades

and the shadows lie symmetrically on either side of a vertical plane taken through the axis of revolution parallel

to the ray of light, so that when they are projected upon the vertical plane of projection, the highest and lowest

points come on the comers of the circle of revolution, and the points on the axis of the figure are in, the elevation,

on a level with those on the margin nearest the light.

212. Tangent Surfaces.—In Figs. 134, 135, 136, although the different portions of the surfaces of revolution

which are generated by the different lines are tangent to one another, the Lines of Shade meet at an angle.

Fig. 134 A, B, and C, shows the Sphere tangent to the Ovoid, Cylinder, and Cone; at D the Half Torus and
Half Scotia are tangent to the Cylinder ; at E the Half Torus and Half Scotia are variously combined with each

other.

213. In Fig. 135 A and B the Quarter Torus and the Quarter Gorge are tangent at their extremities, and
in C and D a similar combination is made of the Quarter Scotia and Quarter Hollow Scotia.

B C

Fig. 134
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Pig. 138

214. In Fig. 136 A, B, C, and D, these combinations are repeated with arcs of 4.5 degrees. Fig. 137 shows

the same, with the Shades and Shadows graded.

215. Surfaces Meeting at an Angle.—In Fig. 138 A and B, the difEerent portions of the surfaces of revolu-

tion meet at an angle, as is seen on the outline, and their Lines of Shade do not meet, but are connected by

the Lines of Shade upon the solid angles that lie between the surfaces. At A Cones of different slopes are

superposed, and the case of the Cone and the Cylinder, previously considered in Chapter VIII, is again illus-

trated. At B segments of the Sphere are met by segments of Cones, Sphere, or Cylinders. In this figure the

upper cone would cast a small shadow on the spherical surface, and that surface would cast a small Shadow

on the lower cone.

216. Niches.—The most important of the compound surfaces of revolution is the Niche, upright or inverted.

This name is given to a combination of the Hollow Cylinder and the Hollow Sphere, or, rather, of the Hollow

Half Cylinder and the Hollow Quarter Sphere.

217. The Upright Niche (Fig. 139 A).—In the Upright Niche the elliptical Line of Shade and Shadow makes,

at the point marked x in the figure, an obtuse angle with the Vertical Line of Shade ^d Shadow upon the cylinder.

The Line of Shadow in an Upright Niche consists of three parts, or segments.

In the first segment, which extends from a to W, a portion of the circular edge of the Niche a h casts its shadow

upon the spherical surface. This is part of the Ellipse of Shadow shown in Fig. 101, Chapter X. The Major

Axis lies at 45 degrees and is as long as the diameter of the Sphere, and the Minor Axis is one-third as long.

The curve is concave toward the light.

In the second segment the arc b c throws its shadow on the cylindrical surface at 6^ c^. The arc W (f is part

of the curve shown in full in Figs. 53 and 65 F, Chapter VII. These figures show the shadow thrown upon a

Hollow Vertical Half Cylinder by a vertical circle which has the same radius as the Cylinder, and which lies in

the plane which divides the Cylinder in half.
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The arc b^ c*, as projected, is neither elliptical nor circular, but it very nearly coincides with the arc of a circle,

whose radius is the diagonal of the radius of the given circle. In Fig. 140 this arc is shown by a dotted line.

The line b^ (f is tangent both to the curve a b^ above it, and to the right line cf d^ below it. It is convex toward

the light, and the Line of Shadow thus experiences a contrary flexure at the point ¥.

In the third section the edge of the Cylinder a,t c d throws its shadow on the cylindrical surface in a vertical

line, at (f d^.

,218. The Inverted Niche (Fig. 139 B).—The Shadow of the Inverted Niche is in like manner composed of

three parts.

In the first segment the edge of the Cylinder at / fe throws its shadow on the axis of the cylinder at f ¥.

In the second segment the edge of the Cylinder b c throws its shadow across the spherical surface at b^ (f.

This is the intersection of the Sphere by a plane. The line is part of a small Circle of the Sphere, the projection

of which on the veilical plane is an ellipse whose Major Axis is equal to the square root of 2, which, as appears

in the plan, is the diameter of the Small Circle, and whose Minor Axis is 1, and equal to the radius of the sphere,

this radius being taken as unity. The line P c^ is an arc of this ellipse.

In the third segment the arc c d throws its shadow on the concave spherical surface at c^ d. This is a portion

of the oblique elHpse of shadow shown in Fig. 101, Chapter X, whose Minor Axis is one-third of the diameter

of the Cylinder.

219. Fig. 140 shows how the Shadows in a Niche are obtained by the Method of Parallel Planes.

Fig. 139 Fio. 140
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The surface of the Niche is here cut by four planes, parallel to the vertical plane of projection, numbered in

both projections 1, 2, 3, and 4. The centers of the two semicircular portions of the rim cast their shadows on

these planes at the points c^, c^, (?, c*, and the shadows of the semicircles themselves fall upon the secant planes

in the eight semicircles marked V 2^ 3^ 4^ The eight points in which these eight semicircles of shadow cut the

four lines in which the secant planes intersect the surface of the Niche, are points in the required Lines of Shadow.

220. Oblique Niches.—Fig. 141 A, B, C, D, E, F, G, and H shows the shadows cast in Vertical Niches, the

faces of which stand at different angles with the vertical plane of projection. These shadows are composed

of the shadows cast by their rims upon the corresponding hemispheres (as shown in Fig. 105 Chapter X),

and of the shadows cast upon the corresponding semicylinders by circles lying in the secant plane (as shown
in Fig. 65, Chapter VII).

221. In all these figures the upper portion shows Upright Oblique Niches. The degree of obliquity is

shown in the plans which occupy the middle of the figure. Since, as in Fig. 105, the Quarter Spheres which

form the head of the Niche are in all the figures portions of the same Sphere, the Line of Shade and Shadow
is in all the figures the same, as is also the point in the Line of Shadow marked h^, which is the shadow of the

highest point of the circle that casts the shadow, being the point at the top of the Niche, at the extremity of

the axis of the Cylinder. As this point is the same in all the figures and the spherical surface is the same, the

point of shadow is always h^, as has been said in paragraph 163.

The Line of Shadow on the Quarter Sphere, at the top of the Niche, is in every case, as in Fig. 140, made
up of two parts or segments. The first segment is the shadow of the arc p he, which is a part of the circular

rim of the Niche. This shadow p h^ (f is cast upon the hollow spherical surface and is an arc of the elliptical

Line of Shadow ph^ (f p. The second segment is the shadow of the line c d, cast upon the cylindrical surface

at (f (f. This line is part of the line shown in Fig. 14. In A, B, C, D, and E a portion of this Line of

Shadow is hidden by the right-hand edge of the rim of the Niche.

In all these figures (except in C) the Line of Shadow h^ c^, where it crosses the horizontal diameter of the

head of the Niche, is tangent to the Line of Shadow c' cf cast by the Line c d upon the inner surface of the

Hollow Cylinder.

222. The lower portions of these figures show Inverted Oblique Niches.

The Line of Shadow is in each case, as in Fig. 140 B, made up of the segments of two ellipses.

The first or upper segment is the shadow of the vertical edge of the Cylinder at dc cast upon the hollow

spherical surface at cf c^. This line is an arc of the vertical ellipse whose Minor Axis is the line c d^ and whose
Major Axis is a vertical line equal in length to the 45-degree chord d (f, shown in the plan. This ellipse is the
vertical projection of a Small Circle of the Sphere, whose diameter is of that length.

The second segment of the Line of Shadow, c^ p', is an arc of the elliptical shadow ph^ d^ <f p'. It is the shadow
of portion of the circular rim which lies between c and p', and it is tangent to the arc cf c^ at c^.

223. In Fig. C the light, falling at 45 degrees, casts no shadow at all upon the Inverted Niche, which directly

faces it, as has been said above. In Fig. F the shadows are the same as in Fig. 137, since the Niche is turned
neither to the right nor to the left.

In all the figures the Line of Shade and Shadow, dividing the shade from the cast shadow, is made up partly
of the elliptical Lines of Shade and Shadow upon the spherical surfaces, and partly of the vertical rectilineal

line upon the cylindrical surface.

224. All these niches occur in the Round Altar which, in Example C V, constitutes the last of the Architectural
Illustrations at the end of this volume. They are similar to the small niches which terminate the channels of

Ionic and Corinthian Columns.
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APPLICATIONS TO ARCHITECTURAL DETAILS

CHAPTER V. CIRCLES AND ELLIPSES

Circles. Example XXXVI. Two Lamp Posts. Plan and Elevation.

These Lamp Posts are composed chiefly of horizontal circles. The shadow of the first one is thrown upon the
portion of the wall which is parallel to the Vertical Plane of Projection and is composed mainly of ellipses of the
shape already made familiar.

The shadow of the second Lamp Post, cast upon the portion of the wall which turns at an angle of 45 degrees,
is composed mainly of circles, as has been explained in Paragraph 58, Fig. 47, Chapter V.

EX. XXXVI

Example XXXVII. A Shed With Two Circular Lanterns. Plan and Elevation.

This example, like the previous one, illustrates the shadow cast by horizontal circles upon vertical planes, one
of which is parallel to the Plane of Projection and one stands at 45 degrees with it.

These shadows are left for the Student to draw.
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EX. XXXVIII

Example XXXVIII A. A Post with Concave Mouldings.

Example XXXVIII B. A Post with Convex Mouldings.

These shadows are bounded by arcs of ellipses, such as are cut in figure 48, D, E, F, and G, page 85.
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CHAPTER VI. CYLINDERS

Example XXXIX. A Cylindrical Shelf Supported By a Cylindrical Pillar. Plan and Elevation.

The line of Shade upon the shelf consists of the half of the lower edge which is nearest the light, from 6 to 0,

passing through (the points 0, 1,2, 3, 4, B, 6) and the elements of the cylinder which connect these two semicircles.

One of these elements occupies the front right-hand comer of the shelf at 0, the other the back left-hand comer at 6.

The line of Shade on the pillar occupies the corresponding comers of the pillar.

The shadow cast by the shelf upon the pillar may be ascertained, as is done in the figure, by taking, in both pro-

jections, a number of points in the line of shade upon the shelf, and finding their shadows on the surface of the piUar.

These will be points in the required line of shadow. Five such points are sufHcient, if taken as here, so that the

shadows numbered 1\ 2^, and 5^, shall fall on the elements at the comers of the pillar, the one numbered 2' on the

front element, and the one numbered 4^ on the outline. It is obvious that P and 6^ will be at the same level and

so will 2" and 4", and that 3" will be the highest point of the curve: Also that the projection of the curve will be

horizontal at 3^ and vertical at 4*.

Example XXXIX shows the shadow cast upon a vertical plane set at 45 degrees with the Vertical Plane of

Projection, as explained in Fig. 47, page 84.

The shadows of the horizontal circles are projected as circles whose radius is half the diagonal of the given

horizontal circle.

Fig. C shows that the line 6^, If, 3', 2', P, is not an arc of an ellipse, but half of a broken curve which is the line

in which the large elliptical cylinder of shadow cuts the small vertical circular cylinder.

The shadow cast by such a pillar and shelf upon a vertical plane parallel to the vertical plane of projection is

composed of the shadow of the shelf and of the pUlar, overlapping, just as do the shadows upon the 45-degree plane

at B. These shadows are left for the Student to draw out.

Example XL. A Square Shelf Supported By a Cylindrical Pillar. Elevation.

The corner of the square shelf which is nearest to the light casts its shadow upon the comer of the cylinder;

the left-hand edge toward the Hght, being a normal line, casts a shadow whose projection is a line at 45 degrees,

and the front edge casts a shadow which is a true section of the cylindrical pillar and occupies an arc of 90 degrees,

extending from one comer of the pillar to the other. (See Fig. 52 A, page 88.)

EX. XXXIX EX. XL
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Example XLI. A Circular Shelf Upon a Square Pillar. Plan and Elevation.

45 degree lines drawn in the plan through a and ai, taken at the comers of the pillar, show that the shadows of

these points will fall first at a and ai, and then at the points a' and ai", a and ai being Points of Flight. The elliptical

arc a ai in the elevation wUl obviously be similar to the arc a' and ai'. The semiellipse shown by the dotted line

through a' and ai' represents the shadow of the semicircular shelf cast upon a vertical Plane of Projection taken

through the middle of the shelf. This shadow is drawn as explained in Fig. 45, Paragraph 56, in Chapter V, page 83.

Example XLII. An Octagonal Shelf Upon a Circular Pillar. Plan and Elevation. Shade and Shadow.

The left-hand- edge of the Octagonal shelf, perpendicular to the Vertical plane of projection, casts upon the

Cylindrical pillar a shadow which is projected as a line of 45, like the corresponding shadow in Example XL. The
only visible portion of this shadow lies between the points 1' and 2'-

The edge of the Octagonal shelf which lies between the points 2 and 4 makes an angle of 45 degrees with the Ver-

tical Plans and is part of an imaginary line the shadow of which upon the cylindrical pUlar would be an ellipse

lying in the surface of the cylinder. This wotild be projected in the ellipse shown in the figure as passing through

the points a', 2', S', 4', and S\ The elliptical arc 2'-4' is the shadow of the line 2-4.

The front edge of the Octagonal shelf, between the points marked 4 and 7, is part of an imaginary line, parallel

to the Ground Line, the shadow of which would be a true section of the circtilar pillar, like the shadow shown in

Example XL. The segment of this line comprised between the points marked 4 and 6, the shadow of which would

fall upon the pillar, has for its shadow the circular arc 4' ^' 6'.

EX. XLI

Thus the shadow of a horizontal circle

falling upon a 45° plane is projected in a

vertical circle, just as is the shadow of a

horizontal line falling upon a vertical cylin-

der, as shown in Figs. 51 and 52.

6A
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Example XLIII. A Semicircular Shelf Upon a Semioctagonal Pillar. Plan and Elevation.

The shadow cast.by a semi-circular shelf upon a plane parallel to the vertical plane of projection would be, as

explained in Paragraph 56, Fig. 45, a semiellipse enclosed in a parallelogram consisting of a square, one side of

which is equal to the radius of the semicircle, and two half squares. Such a semiellipse is Shown in Fig. XLIII A,

passing through the points a, b, and c.

Fig. XLIII B shows that the portion of the semicircle that throws its shadow upon the front face of the octagon

lies between the points 3 and 4, and Fig. XLIII A shows that the shadow of this segment which falls upon the plane

passed through the center of the semicircle is the elliptical arc, having its lowest point at h. The shadow cast by
this segment upon the front face of the octagonal pillar, which is parallel to the plane of projection, is obviously

similar to the arc, as in the figure.

The shadow cast upon the oblique side of the octagonal pillar, between the points 2' and S", is part of the shadow

cast upon a vertical plane standing at 45 degrees with the vertical plane of projection. But the projectisn of such

a shadow upon the vertical plane of projection is an arc of a circle whose radius is half the diagonal of the radius of

the horizontal circle which casts the shadow. This is explained in Fig. 47, page 84, and again illustrated in Example
XXXIX, page 156. The points 2' and 3' being given, and the length of the radius shown, the center is easily

found.

Example XLIV A. A Semicylindrical Gutta. Plan and Elevation.

Example XLIV B. {See Fig. Jf5.) Perspective Plan and Perspective.

EX. XLIV
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Example XLV A. A Greek Doric Regula and Guttae. Plan and Elevation.

Example XLV B. The Same. Perspective Plan and Perspective.

In the Greek Doric orderthe Guttae, thoughsometimesconoidal.withconcavesides, areoften cylindrical, ashereshown.
Example XLVI. The Same, With the Lower Part of the Triglyph.

EX. XLVI
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Example XLVII. A Cylindrical Tomb. Plan and Elevation.

Care must be'taken that the highest parts of the shadows shall come upon the comers of the cylinders that

are nearest the light.

Example XLVIII. A Greek Doric Freze.

In the Greek Orders there is much variety of treatment, no two examples being exactly alike. In general, how-

ever, the Doric Architrave has only one Band or Fascia, instead of the two bands of Roman Order; the guttse

are cylindrical and short, being one-third as high as the Tfenia, two-thirds, the two together being as high as

the Tsenia. The face of the Triglyph is flush with the Architrave below it, and the Metope is set back, instead

of having the Metope on the same plane as the Architrave and the Triglyph set forward as in the Roman Doric

Order; the Triglyph itself is thicker, the channels being cut at an angle of 60 degrees, so that tney have the section

of an equilateral triangle; the chamfers at the edges having a slope of 45 degrees. The Upper Taenia is wider

over the Triglyph than over the Metope, as shown in the Example. It follows that one side of the channel is in

shade and the other receives a cast shadow. The chamfer, or half channel, that is farthest from the light is a surface

of light and shade, being parallel to the light, and it casts a narrow shadow upon the Metope.

Example XLIX. A Doric Pilaster Capital and Base; Elevation.

Example L. A Square Baluster, Elevation.

The belly, or widest part of a Baluster, generally measures, in width, about a third of the height, and comes

about one-third of the way up.

Square balusters vary in shape, just as Round balusters do.

EX. XLVIII EX. XLIX EX. L
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CHAPTER VII. HOLLOW CYLINDERS '

Example LI. A Round Window, Oeil-de-Boeuf, or Hole in the Wall; Elevation and Section.

Example LII A. A Fountain, Discharging the Overflow From a Reservoir, Plan, Elevation, and Section.

This Example is left for the Student to draw, in conformity with "the following Example:

Example LII B. The Same; Perspective.

The circular tunnel is so situated that the Line of Shadow appears in the Perspective as a right line. (See

Fig. 62, page 95.)

EX. LI
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Example LIII A. An Arch, Elevation, and Section. With the Shadow of the Whole Arch Indicated.

Example LIII B. The Same. Perspective.

The line V^ V" equals in length the diagonal of the line F' V'^. (See Parti, Appendix.)

Example LIV. An Arcade. Elevation.

In the case of the two arches that are parallel to the wall, the outer edge of the intrados casts upon the wall a

semicircular shadow similar to itself, which intersects the similar shadow of the inner edge of the intrados.

In the same way the shadows of the outer and inner edges oi the arch which stands at right angles to the wall

are boimded by intersecting semiellipses.

EX. LIII

EX. LIV
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Examples LV. Recessed Arches.

Example LVI A. A Bracket With Owlo and Cavetto. Two Elevations.

Example'LVI B. The Same. Perspective Plan and Perspective.

EX. LV

EX. LVI



164 SHADES AND SHADOWS

Example LVII A. A Bracket With Cavetto and Ovolo. Two Elevations.

Example LVII B. The Same. Perspective Plan and Perspective.

Example LVIII A. A Bracket With Cyma Recta. Two Elevations.

Example LVIII B. The Same. Perspective Plan and Perspective.

EX. LVII

EX. LVIII
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Example LIX A. A Bracket With Cyma Reversa. Two Elevations.

Example LIX B. The Same. Perspective Plan and Perspective:

Example LX. An Exedra. Plan and Elevation.

EX. LIX

EX. LX
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Example LXI A, B, and C. Pediments.

Pediments.—The discussion of Pediments, among the Architectural Illustrations of Chapter IV, considered only

the relations between the slope of the Pediments and the slope of the Cymatium, or Gutter, which forms the upper

member of an Entablature. In the figures illustrating this discussion it was convenient to reduce the C37matium

to a straight line—a condition seldom met in actual practice.

The cylindrical surfaces, convex or concave, now to be considered, differ from those discussed in Chapter VI and

Chapter VII, in that the axes of the cylinders are not Principal Lines, parallel to two planes of projection; but, though

parallel to the vertical plane of projection, are inclined to the horizontal plane.

Example LXI, ABC, shows how these conditions modify both the Shades and the Shadows of the convex Mold-

ing (or Ovolo), of the concave Molding (or Cavetto), and of the Cyma Recta, which is a curve of double curv-

atiore. The case of the Cyma Reversa, which is of less frequent recurrence as a crowning member, is not illustrated.

It is left for the Students to work out, if they care to do so.

The discussion and illustration of Curved Pediments, which involve the consideration of Conical" surfaces, is

taken up among the Architectural Illustrations of Chapter VIII.

In all these Drawings the Shades and Shadows are shown in flat tints, the Shadows being darker than the Shades.

The effects of the Reflected Light upon the curved surfaces would change the flat tints to graded tints, and the

Shades and Shadows would coalesce.

In this Example, as in Examples A and B, the miter lines are really elliptical, though projected as arcs of circles,

and so much of the right-hand ones as are exposed to the light cast shadows which are arcs of such ellipses as are

shpwn in Fig. 48, page 85.

In A, the cymatium is convex, the molding being an Ovolo; at B, it is concave, the molding being Cavetto;

and in C, it unites the two, the molding being a Cjrma Recta.

The Lines of Shade upon the convex cymatium shown in Example LXI A, the lines of Shade and Shadow upon

the concave cymatium shown in Example LXI B, and the corresponding lines in Example LXI C, are found by
cutting across the cylindrical surface by vertical planes parallel to the direction of the light, that is to say, making

45 degrees -with the Vertical Plane of Projection. The elliptical line of intersection upon the First Rake is similar

to the miter line, and like it is projected as the arc of a circle (this line of intersection is accordingly not needed,

and in C it is omitted) ; that upon the Second Rake is projected as the arc of an ellipse. Rays of light drawn tangent

to these curves give the position of the Lines of Shade in A, at a and b, and of the Lines of Shade and Shadow in B
at a' and b'.

In Example LXI A, the Lines of Shade passing through a and b cast shadows parallel to themselves passing through

o" and b'. These Lines of Shadow meet at the point c\ which is the shadow of the point c upon the Line of Shade

of the First Rake, and also of the point /, which is a Point of Flight; c and / are found by tracing back a 45-degree

ray from c\ The short segment of the Line of Shade above c, on the First Rake, throws a small elliptical shadow
upon the Second Rake. This shadow terminates at /, as appears in the figure. In Example LXI B, the concave

arc does not measure quite 90 degrees.

The Line of Shade which casts the shadow is the lower edge of the fillet which crowns the concave cjrmatium.

In the First Rake the shadow of the point a falls near the lower edge of the cymatium itself at a", and in the Second

Rake the shadow of b is about a quarter of the way down at &'. The point c is the last point that throws such a

shadow, and the rest of the Line of Shade, from c to h, casts a shadow upon the Second Rake, from c' to h', as

shown, which, as well as its vertical projection, is an arc of an ellipse.

In Example LXI C, the circular arcs that compose the cjrmatium measure only 60 degrees, not 90 degrees, and
the Lines of Shadow are modified accordingly. There is no shade upon the Second Rake, and only the two small

shadows which are cast by the Lines of Shade of the First Rake.
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CHAPTER VIII. CONES
Example LXII. A Conical Roof and Dormer. Plan and Elevation.—The Lines of Shadow cast upon the conical

roof by the straight lines of the Dormer are of course Conic Sections, two of them being ellipses, of which one is

seen edgewise and is projected as a right line. The Shadow cast upon the roof by the vertical comer of the Dormer
is an arc of a hypebrola, as is also its projection upon the Vertical Plane of Projection.

The two Lines of Shadow cast upon the cylindrical tower below by two horizontal circles are not ellipses, but

are like those shown in Example XXXIX C. That cast by the Line of Shade upon the Ovolo, though resembling

an Ellipse is, also, not a Conic Section.

The Roman Doric order often has Guttae shaped like the frusta of cones, instead of the pyramidal forms shown
in Example XII.

Example LXIII A. Conical Guttce. Plan and Elevation.

B. The Same. Perspective.

Example LXIV. General Grant's Tomb. Elevation.—This exemplifies the Paradox of the Cone, as set forth in

Fig. 75, Paragraph 106.

Ex. LXII Ix. LXIV Ex. LXIII
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Hollow Cones play even a less conspicuous part in Architecture than do Solid Cones, neither the larger featuf'es

nor the details of ornamentation often assuming this form. The only noticeable cases are the Conical Niche, the

Conical Pendentive, and Curved Pediments.

Example LXV. A Conical Niche. Plan and Elevation.

Example LXVI. A Conical Pendentive. Plan and Elevation.—A Pendentive, effecting the transition from square

to octagonal walls, sometimes has the form of the upper half of a Conical Niche.

The Figure shows such a Niche in Elevation. Below is the rectangular comer, the walls of which, as appears

from the plan, stand at 45 degrees. The Shadow of the Arc a b falls upon the conical surface in the elliptical line a b',

as in the previous Example, and in Fig. 73 C. The Shadow of the arc b c falls upon the right-hand waU in the

line b', c', which is an arc of the elliptical line of Shade shown in Fig. 47 B, Paragraph 56. The left-hand waU,

being parallel to the light, is a Surface of Light and Shade, and neither receives nor casts any Shadow.

Ex. .LXV

Ex. LXVI
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Curved Pediments.—Curved Pediments have generally an arc of 90 degrees. The Cymatium, or Gutter, rises at

an angle of 45 degrees and projects in front just as much as along the eaves. The miter line at the intersection

of the two lies in a vertical 45-degree plane.

The profile of the horizontal Cymatium along the wall determines the precise shape of this miter line, and this

determines the profile of the pediment molding, or vice versa.

If, as in the examples discussed in Chapter IV, we substitute an inclined line for the ctirved profile of the Cymatium,

the Cymatium of the Curved Pediment will be a segment of a hollow cone with a horizontal axis, like the upper

quarter of the niche shown in Example LXV. A section through the top of the pediment will give the true incli-

nation of the elements of the cone. The three cases which it is worth while to consider are illustrated in Example

LXVII A and B.

Example LXVII A. The 45-Degree Cymatium.—If the C}niiatium along the wall slopes at 45 degrees, as is

usually the case, it is a plane of Light and Shade. It is seen in the Elevation as the hypotenuse of an inverted

right-angled triangle, the vertical and horizontal sides of which are equal. If this dimension is taken as a unit of

measure, the length of this hypotenuse is V2. The miter line at the comer, that is to say that the line in which

this cymatium is intersected by a vertical plane cutting it at 45 degrees, is the hypotenuse of a second right-angled

triangle l3^ng in this diagonal plane, as is shown alongside,, the height of which is 1 and the base, -\/2. The length

of the miter line is VS. It makes the angle <P with the horizontal plane. This miter line at the bottom of the

pediment and the hypotenuse of the cross-section at the top of the pediment are elements of the hollow cone of

which the curved cymatium is a segment. They make the angle with the base of the cone.

The element which coincides with the miter line lies in the direction of the light and is, as in Fig. 73 D, neither

in the light nor in the shade. All the rest of the interior surface of the cone is in light, as in the figure.

Example LXVII B. If the horizontal cymatium along the wall shows in profile, as seen in elevation, a less slope

than 45 degrees, then this cymatium is in shade, being turned away from the light, and the cymatium of the curved

pediment, which is part of the interior surface of a hollow cone, is more or less in shade and shadow, according

to the slope.

If this angle is exactly 45 degrees, as is the cone in Fig. 73 C, then just half the Cjhuatium is in shade; the

shadow upon the other half is like that shown in Example LXVII B.

If the horizontal cymatium, along the wall, shows in profile a line steeper than 45 degrees, then that cjrmatium

is whoUy in light, and the conical cymatium also.

In the Greek-provinces, and in the modern so-called Neo-Grec Style, the cymatium along the wall is often so steep

as to be vertical. The miter line is then also a Vertical Line, and the whole curved-cymatium lies in a Vertical Plane.

Ek. LXVII
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CHAPTER IX. SPHERES AND ELLIPSOIDS.

Example LXVIII. A Post and Ball. Plan and Elevation.

Example LXIX A. A Half Dome. Plan and Elevation.

Example LXIX B. The Same. Perspective Plan and Perspective.—This is left to be drawn by the Student.

The center of the Sphere must come just above the Center of the Picture at V", or the ellipses representing the

horizontal circles will have' inclined axes.

Ex. LXVIII Ex. LXIX
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Example LXX. An Arcade and Spherical Lanterns. Plan and Elevation.

Example LXXI. Beads.

Example LXXII. Beads and Fillet.

Ex. LXX

Ex. LXXI Ex. LXXII
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Example LXXIII. Eggs and Darts. Elevation and Section.

Example LXXIV.—Some of the buildings in Venice are decorated with circular discs of marble, enclosed in

a ring of what Mr. Ruskin calls Venetian Dentils, and carrying at their centers a small sphere of polished marble.

Ex. LXXIII

!,™„, "i Oibk

Ex. LXXIV

CHAPTER X. HOLLOW SPHERES. EXAMPLE LXXV
Example LXXV. A Hemispherical Niche. Elevation and Section.

XJ'i

Ex. LXXV

7A
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CHAPTER XI. RINGS
Example LXXVI. A Tuscan Base. Elevation and Plan.—The Tuscan Base consists of a square plinth sur-

mounted by a Torus, above which is a broad Fillet, called the Cincture, which, however, is properly to be considered

as the lowest member of the shaft. The height of the Torus and Cincture taken together is the same as that of

the Plinth, and measures J D, that is to say, one-quarter of the diameter of the Shaft taken just above the Cincture.

The height of the Tuscan Base is accordingly J D, including the Cincture. All Bases are generally | D high.

Example LXXVII. A Greek Attic Base. Elevation.—Greek Bases have no plinths.

The Greek Attic Base consists of two Toruses, of which the lower one is the largest. Between them is an ellip-

tical Scotia and two Fillets, the upper one of which projects as much as does the Torus above it. These Toruses

sometimes have an elliptical section.

The shaft terminates in a large cong^ and a rather large Cincture.

The height of the Base is J D exclusive of the Cincture.

Ex. LXXVII

.
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Example LXXVIII. ^A Roman Attic Base. Elevation.—The Roman Attic Basg is | D in height. It also does not

include the Cincture. But as it has a Plinth | D in height. The Torus and Scotia are smaller than in the Greek

Attip Base, which otherwise it much resembles, but the upper Fillet does not project beyond the center of the Torus

above it.

Example LXXIX. A Gothic Base. Elevation.—A simple Gothic Base of this form often occurs in France con-

sisting, like the Tuscan Base, of only a Torus and a Plinth. There is no Cincture, or Cong^. Their place is often

supplied by a Cyma Reversa, or by a small Cavetto; these, however, are attached to the base and the joint is above

them, the Shaft terminating without a molding. In the Greek and Roman Bases the joint comes below the Cincture.

Example LXXX. A Greek Ionic Base. Elevation.—In the Greek Ionic Bases the principal feature is the Scotia,-

and the upper Torus is larger than the lower one, which, as here, is sometimes omitted altogether. This example

is taken from one of the Choragic Coltunns, with triangular capitals, on the south side of the AcropoUs at Athens.

Example LXXXI. Vignola's Tuscan Capital. Elevation.—The Tuscan Capital, according to Vignola, consists

of a square Abacus crowned by a Fillet and Cong6, below which is an Echinus of the shape of a half Torus, or Ovolo,

the outline of which is a circular arc of 90 degrees; below this is a short cylinder as large in diameter as the upper

part of the Shaft. This is called the Necking. It terminates in a Cong^ and Fillet, which support the Echinus.

The Abacus, the Echinus and Fillet, and the Necking .and Cong6 form three equal divisions, each | D in height.

The height of the capital is thus | D, the same as that of the Base.

The Shaft below the Necking terminates in a Bead or small Torus which is supported by a third Fillet and a large

Cong6. It is called the Astragal, and has a flat stirface on top as wide as the Conge below it.

Ex. LXXX Ex. LXXXI
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The Fillet and Conge may thus be considered characteristic features of the Tuscan Order. They occur for a fourth

time at the bottom of the Shaft, as in all Classical Orders, and as appears in the previous examples.

Example LXXXII A and B. Vignola's Roman Doric Capital. Elevation.—The Roman Doric Capital, like the

Tuscan, is f D in height, and like it consists of three equal parts, each measuring J D. But the Fillet which sur-

mounts the Abacus is narrow and is supported by a small Cyma Reversa in place of the Tuscan Conge. The | D
which constitutes the middle part is itself divided into thirds. The upper two-thirds are occupied by an Echinus

which is like the Tuscan Echinus, but smaller. The lower third is again divided into thirds, and the Echinus is

supported either, as at .A, by a smaller Torus, Fillet, and Cong^ (like the Astragal, though smaller), or, as at B,

by three equal Fillets.

When the Shaft is fluted it has 20 shallow charmels which meet on an edge, or arris, and terminate below the

Astragal in small elliptical niches, These are not shown in this figure.

In the Roman, Orders the face of. the Architrave comes, in the Elevation, just over the upper diameter of the

Shaft, though in perspective it overhangs it.

Ex. LXXXII
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Example LXXXIII A and B. Two Greek Doric Capitals. Elevation.—The Greek Doric Capital has a plain

Abacus, and the Echinus, which is supported by two or more angular Fillets, is eUiptical or hyperbolic.

Below the Necking, instead of an Astragal, is a groove called a sinkage, or Apophyge, and the channels of the

shaft are carried past it through the Necking. These are not shown in Fig. A. As in the Roman order, the

channels are separated by an Arris.

In the Greek Doric Order the Architrave has only one Fascia or Band. When the Echinus has an elliptical outline

and projects a good deal, the face of the Architrave comes in elevation over the upper diameter of the shaft, as in the

Roman order; but when the Echinus is steep, with a hyperbolic outUne, it overhangs, even in the elevation

They all overhang in perspective.

^^KWiAurl
''I I'l;' i;^

Ex. LXXXIII
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Example LXXXIV. An Archivolt With Convex Section. Elevation.

Example LXXXV. An Archivolt With Concave Section. Elevation.

Ex. LXXXIV

Ex. LXXXV
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CHAPTER Xil. COMPOSITE FIGURES
Example LXXXVI. Vases, Elevations.—The Student may profitably substitute for the forms here given

others of his own devising, finding the Line of Shade upon each. It is an interesting exercise to use all five of the

principal kinds of outline (the straight line, the convex line, the concave line, the Cyma Recta, and Cyma Reversa),

making three vases of each kind, one narrow and high, one broad and fiat, and one about as high as it is wide.

Example LXXXVII. Finials, in Stone or in Wood.—These also it is left for the Student to design.

Example LXXXVIII.^ A Baluster. Elevation.—^A Baluster is a kind of stunted column with a simple Tuscan or

Doric Cap and a Tuscan or Attic Base. For the straight line of the shaft is substituted a Cyma Reversa, called the

Sleeve, or sometimes a Beak Molding, which often has a Fillet between the concave and convex portions, as in

Examples L and XC—B. Balusters are used in a Parapet or low walls, which have a base of their own beneath

them, and above them a simple Rail, resembling a Cornice, or small entablature. The Base and Rail are each about

one-sixth the height of the Baluster. The widest part of the Baluster occvu-s at about one-third of its height, and

this is their breadth at that point.

Example LXXXIX. The Same, in Dijjused Light.

Ex. L,AAJS.VlI Ex. LXXXVIII Ex. LXXXIX
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Ex. XC

Example'XC and B. Two Other Balusters.

Example XCI. A Double Baluster.

Example XCII A

.

B.

C.

A Balustrade. Elevations.

The Same, on a Smaller Scale.

The Same, on a Still Smaller

Scale.

Ex. XCII

Balusters often occupy the whole space between one Post or Pedestal and the next, forming a. Balustrade.

If the distance is so great that the . Cap has to be made of separate lengths of stone, a Block called an Uncut

Baluster is placed under the joint. Not more than two Balusters should occur without such an interruption. The

Cap is generally one-fourth the height of the Balusters and so is the Base, of which the Scotia is generally the

principal member.

Fig. B shows that the points at which the lines of Shade and the lines of Shadow cut the oi;itlines which are nearest

the light are at the same level as the corresponding points at which they cut the axis; and that the points at which

they cut the comer line which is nearest the light are the highest point of the Lines of Shade, and the lowest

points of the Lines of Shadow. Moreover, the points at which the cylindrical siirfaces of the shaft and the

upper and lower fillets, and the middle lines or "equators" of the two Toruses, pass from light to shade, and the

middle fillet passes from shadow to shade, all fall upon the "conner" line which is farthest from the light. At
these six points these six surfaces are vertical.

If these relations are borne in mind, the shades and shadows of capitals. Bases, Vases, Finials, and Balusters can

be drawn with, in all -essential particulars, a close approach to accuracy.
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Example XCIII. A. B.C. An Ionic Capital, in Block, with Shadow.

Ex. XCIII

2 '

Ex. XCIV Ex. XCV

Example XCIV The Same, Detailed. B.

Example XCV. The Baluster of an Ionic Capital. Elevation.—The scrolls at the side of an Ionic Capital

much resembles a Double Baluster. But they vary a good deal, and sometimes have leaves carved upon them.
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Example XCVI. A. A Modillion in Block. A ModilHon is a bracket, longer than iV is high, which consists

of a large Baluster next the wall, and a smaller one at the outer end, with moldings between them which have

outlines of a Cyma Recta. Modillions carry a small Abacus which has the profile of a Cyma Reversa, and

crowns the interval of wall between them.

B. The Same, Detailed. Two Elevations.

Example XCVII. A Console, in Block. Two Elevations.—A Console is an upright Modillion. It has the out-

line of a Cyma Reversa; the small Baluster coming below, the larger one above. It has an Abacus like that of

the Modillion.

Example XCVIII A and B. Another, in Block and Def&iled.

Example XCIX. Another Console. . Both Consoles and Modillions vary greatly in their proportions.

Ex. XCIX
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Example C A. A Corinthian Pilaster Capital, in Block.

B. The Same, Detailed'.

Example CI. A Corinthian Capital, in Block. Elevation, With Shadow.

Example CII. A Corinthian Entablature. Elevation.

Ex. c

^mJimLlliJJ.LLlNill.l.Lai.lU IIJJJiJJ.111^

Ex. CII
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Example CIII: A Niche and Entablature.

Example CIV. An Oblong Altar, With Niches. Elevation.

Example CV. A Round Altar, With Niches. Elevation.—There are in this example twenty-four niches separated

by plain Fillets, as in Ionic and Corinthian Columns.

Ex. cm

Ex. CIV Ex. CV
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