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PEEFACE

There are many books on Navigation available for the

use of the student, and among them some are exceedingly

good. Why, then, add yet another volume to a mass of

literature already sufficiently, and more than sufficiently,

large? Well, it seemed to me that for many reasons

another work designed on somevs^hat novel principles

might be useful. Most writers have treated the subject

from the point of view of addressing themselves either to

the highly educated or to the totally uneducated, and there

is, I think, room for a treatise designed to meet the

requirements of those who lie between the two extremes
;

men who, while ignorant of mathematics and astronomy,

possess intelligence and a certain amount of rudimentary

knowledge.

Navigation is in many respects a peculiar subject.

All the problems being based upon the higher mathematics

and astronomy, the solutions of them can be calculated

and formulated only by men thoroughly conversant

with those sciences ; but Navigation has to be put in

practice by men who are not, and cannot be expected to

be possessed of much knowledge of those matters. More-

over, mariners have to work their problems in a hurry,

and frequently under adverse circumstances. To sit in a
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comfortable chair in a warm and cosy room, and leisurely

work out abstract calculations from imaginary observa-

tions, is quite a different thing from taking real observations

on a wet, slippery, and tumbling deck, and working them

in a dimly-lit cabin full of confusion and noise, and with

little time to spare for the operation.

Therefore, for the convenience of the practical man,

it is necessary that the scientific man should reduce the

formulas to the simplest possible dimensions. With

those formulas the practical man can find his way about

all right if he learns and remembers them, and how to

work them; but, as it is very difficult to remember a

lot of formulas learnt by heart, it is highly desirable

that the practical man should have some idea of what he

is doing and why he does it.

Few things appear to be more difficult than for one

well up on any subject of a scientific character to impart

his knowledge to another who is scientifically ignorant. A
thorough past-master may succeed in explaining matters

popularly in language which can be understood by the

many ; but the expositions of writers on highly technical

subjects—whether connected with Science, Art, Philosophy,

or anything else— are frequently rendered so obscure, by

the lavish employment of highly technical language, as

to be unintelligible except to the educated few.

All the Epitomes—Norie's, Inman's, Eaper's, and

manj^ other books— give explanations of the various pro-

blems in Navigation somewhat too minute and too diffuse,

I venture to think, to be attractive to the ordinary reader,

with the result that the formulas are generally learnt

by heart. A man must be gifted with a gigantic memory
if he can remember how to work everything from



Logarithms to Lunars. Moreover, in most works the

definitions, though of course absolutely scientific and

correct, are so scientific and so correct as to be somewhat

unintelligible to the unscientific person, whose ideas on

geometry are very hazy. Books such as Captain Martin's

and Mr. Lecky's are most valuable, but they preconceive

a considerable amount of knowledge on the part of the

student. Books such as Eosser's ' Self-Instructor ' are

equally valuable in their way, but they seem to have been

written on the supposition that everything must be learnt

by heart and nothing understood by brain. So it occurred

to me that an attempt to give—conversationally—as if

Pupil and Teacher were talking— sufficient explanation

of navigational problems to throw some light upon the

meaning of the formulas used, and some additional in-

formation for the benefit of those desirous of obtaining it,

might be useful ; and, having myself started to study

Navigation somewhat ignorant of the sciences upon which

it is founded, I determined to try and impart to others in a

similar plight what knowledge I have gathered together.

My definitions and explanations may be sometimes

scientifically inaccurate. Let that pass. My purpose

is gained if they convey an accurate idea.

That portion of the work which treats of the ' Day's

Work,' the ' Sailings,' and so on, contains a very short

treatise on plane right-angled triangles, by the solution of

which all such problems are worked. The student need not

read it if he does not want to, and if it bothers him

he had much better not do so. The method of working

every problem is given, and for all practical purposes

it is sufficient if he learns and remembers that. The

learning is really easy enough ; it is the remembering
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that is difficult. But, if the imaginary person I am en-

deavouring to instruct will read the chapter on Plane

Trigonometry, I think it will help him greatly in

learning how to work the problem ; or if he learns the

working of the problem first, and then wants ' to know

the reason why,' a perusal of it may give him sufficient

insight to enable him easily to remember how every

problem is to be solved. If my reader wishes to obtain

an Extra blaster's certificate of competency he must

learn enough of Plane Trigonometry to enable him to

construct plane triangles and solve them, for that will be

required of him. Of course if he is well up in Trigonometry,

or has time to master that angular science, so much the

better ; but if such is not the case, I think he will find in

the follo'O'ing pages all the information necessary for his

purpose.

In the same way Xautical Astronomy is preceded by

a sketch of the movements of the heavenly bodies, and

contains a short chapter on Spherical Trigonometry ; it is

not the least necessary for the student to read it ; but if he

does so before or after tackhng the various problems, it

wiU, I think, help him to understand their nature and

the methods by which they are solved. Be it remembered

that even a verj- little and very hazy knowledge of this

kind is sufficient to ensure that you do not forget how

a problem is to be worked. Moreover, should a ' blue

ticket ' be the object of ambition, the aspirant to such

honours wiU have to solve some spherical triangles, and

to draw the figures appropriate to some of the problems.

In this instance also it is better that the subject should

be thoroughly studied and understood ; but if the pro-

spective Extra Master has not the time nor inclination



to do so, I think that the little I say will answer all the

requirements of the case.

Most problems can be solved in various ways. I have

given the formula which is, in my opinion, the simplest

;

but I claim no infallibility for my opinion.

Norie's Tables are used throughout, except in some

portions of the Double Altitude and Lunar problems,

because I happened to be taught with those Tables, and

have always used them ; every reference to a Table

therefore refers to Norie, but as many men prefer Inman

or Eaper a comparative • statement will be found on

page xxiii, giving the equivalent in Inman and Baper to

every Table in Norie.

I have treated what may be called the mechanical part

of the business—for instance, the use of the lead and the

log—very shortly. Such matters can be learnt only by

practice, and if information is required concerning them,

are they not fully and clearly explained in the Epitomes

and in manuals and books of instruction innumerable ?

I have not touched upon the Eule of the Eoad at sea,

though it is scarcely necessary to mention that it is of the

first importance that a seaman should be intimately

acquainted with it. Such knowledge comes only from

habit and experience. I would only say that before going

up for examination, a candidate should be thoroughly

drilled on this subject by a competent instructor. A man

whose knowledge and judgment may be perfectly reliable

at sea, may be much puzzled when he finds himself seated

opposite an examiner playing about with small toy ships

on a table. Captain Blackburne has published a little

book on the subject, which will be found of great service

to the student or candidate.
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I have endeavoiired to take the simpler problems first,

and lead gradually up to the more difficult ones ; but this

is not easy of accomplishment, as the problems overlap

each other so frequently. And I have treated of the whole

subject, from a Mate's to an Extra Master's work, which

has not, I think, been attempted in any single work.

I have also tried to explain, as far as possible, how

everj' portion of a problem is worked as the case crops up

in the problem; for nothing is more bothersome thanhaving

to constantl}' turn back and refer to some previous explana-

tion.

The explanation of every diagram is, wherever possible,

placed on the same page with the diagram or on the oppo-

site page, for I have found it very troublesome to have to

turn over pages to find what angle so-and-so, or line this

or that is ; and I opine that others also must have found

it equallj^ troublesome. This method of treating the sub-

ject involves much repetition, but repetition is not vicious ;

on the contrary, when something has to be remembered,

it is good, and I have taken some pains not to avoid

repetition.

I do not flatter myself that the difficulty of self-

instruction is entirely got over in this work, but I hope it

maj' go some way towards attaining that desirable end.

As far as practical work at sea is concerned, very little,

if an}', supplementary instruction would be necessary in

order to enable anyone to find his way about ; but for the

Board of Trade Examination the personal instruction of a

good master is certainly deshable, for in most cases the

problems, as given in the examination, are far more

puzzHng than as they present themselves at sea. For one

thing, at sea you know whereabouts you are, and any
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large mistake manifests itself in the working of a problem
;

but in the examination room no such check upon inaccuracy

exists.

As an amateur I have written mainly for amateurs

;

but if this book proves of any assistance to those whose

business is upon the sea, I shall indeed be pleased.

For convenience sake the book is divided into two

volumes, a big volume being cumbrous to handle. The

first volume contains Logarithms, the Sailings, a Day's

Work, the Use of the Compass, some chart work,

and the simpler nautical astronomical problems. The

second volume treats of other nautical astronomical pro-

blems, and magnetism ; it gives further information on

the subject of charts, and shows how the working

formulas are deduced ; and it contains numerous exercises,

together with the data from the Nautical Almanac of

1898 necessary to work them.



HIXTS TO CANDIDATES

Ko particular and regular sequence is, I believe,

followed in the examination papers in the order in which

problems are given ; but I fancy they generally come in

something like the following somewhat appalling pro-

cession :

For Mates and Masters

1. Multiplication by common Logs.

2. Division by common Logs.

3. Day's Work.

4. Latitude by Meridian Altitude of the Sun.

5. Parallel Sailing.

6. Mercator's Sailing.

7. Time of High Water.

8. AmpHtude.

9. Time Azimuth.

10. Longitude by Sun Chronometer and Altitude

Azimuth.

11. Time of Star's Meridian passage.

12. To find names of Stars from Nautical Almanac

within a given distance of the Meridian at a certain time,

and also the distance they pass North or South of the

Zenith.

13. Compute the Obs. Mer. Alt. of a Star for a given

place.

14. Latitude by Meridian Altitude of a Star.

15. Star Time Azimuth.

16. Latitude by Reduction to the Meridian.

17. Sumner.
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18. Latitude by Pole Star.

19. Latitude by Moon's Meridian Altitude.

20. Correction for soundings.

For Extra Master's Certificate

21. Longitude and Error of Chronometer by Lunar

Observation.

22. Latitude by Double Altitude.

23. Position of Ship by Double Chronometer Problem.

24. Great Circle Problem.

25. Error of Chronometer by Altitude of Sun or that

of any other heavenly body.

26. Solution of a right-angled plane triangle.

27. Solution of an oblique-angled plane triangle.

28. Solution of a right-angled spherical triangle.

The manner in vs'hich problems are presented is con-

stantly varied ; different expressions and different vs^ords

are employed to denote the same facts. You may be told

that the Sun is bearing North, or that the observer is

South of the Sun, or that the Sun is South of the Zenith.

You may be given the date in Astronomical Time, or in

Civil Time, in Apparent Time or in Mean Time at Ship

or at Greenwich. You may be given the absolute date

such and such a time. Mean or Apparent at Ship, or you

may be told that a Chronometer showed so many hours,

minutes, seconds, which Chronometer had been found to

be so much fast or slow on Apparent Time at Ship at

some earlier period, since when the Ship had run so many
miles on such and such a course, and you would have to

find the Ship date by allowing for the Difference of Longi-

tude due to the run. In fact, the Examiners ring the

changes as much as possible, and very properly so, for it

is but right that candidates should not only work the

problems but also show an intelligent knowledge of what

they are doing. Nevertheless, these changes are apt to
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be puzzling. They would not puzzle anyone in actual

practice at sea ; but the nervous condition of most men
is apt to fall below the normal, and the brain to become

unnaturally confused when they are shut up in an ex-

amination room for long hours, and so much depends

upon their efforts. Therefore, read the statement of each

problem very carefullj-, and if you notice anything un-

usual, anything you do not quite understand in the word-

ing, just think it over quietly until you quite understand

what you have got to do ; translate it, as it were, in your

head into the language you have been accustomed to.

Don't hurry over your work. Eemember that it takes a

long time to discover an error in a problem returned, and

that, having found it, you may have to do most of the

work over again.



ABBREVIATIONS

The points of the compass are indicated by their initial letters. Vide

the compass card.

'Log. .



XVI ABBREVIATIONS

.L.

N. L.

Moon's Upper 3— '

Limb.

: A Star or Planet. » —r

Far Limb.

: Near Limb. — <r

= Sun and Moon's

near Limb.

= Star and Moon's

far Limb.

= Star and Moon's

near Limb.

SYMBOLS

T- Plus. — Minns- = Equal, x Multiplication. -=- DiTision. -s^ Dif-

ference. : is to or to. : : so is. x An unknown quantity. 6 An unknown

auxiliary angle.

ABBP.ETIATIOXS OF TEIGOXOMETPJCAL P.ATIOS

Sin = Sine ; Cos = CJosine ; Tan = Tangent ; Cot = Co-tangent

;

See = Secant : Coscc = Cosecant : Vers = Versine ; Hav = Haversine
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PAET I

CHAPTEE I

ARITHMETIC

To become a competent navigator it is not, owing to a

fortunate dispensation, necessary to be an accomplished

mathematician or even a first-rate arithmetician. All you

have to knovs' is Addition, Subtraction, Multiplication,

Division, something about Proportion or Eule of Three,

and Decimal Fractions. I assume that you know how
to add, deduct, multiply, and divide, and that is the only

assumption I make.

But before proceeding let me make two observations

which may avoid confusion in the future.

1st. Under ordinary circumstances of subtraction, the

smaller quantity to be subtracted is placed below the

larger quantity from which it has to be taken ; but, in the

sums we shall have to do, the exigencies of time and space

compel us frequently to place the smaller quantity above

the larger quantity. You may have to add a lot of figures

together, say,
1234
5678
9011
1213

17136

and then you may have to subtract the result from say

VOL.

I

B

?
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18000. It would be mere waste of time and space to

make two sums of it, thus :

12^4 18000
5678 17136

1213
'^'-^

17136

So you would write it as one sum, thus :

1234
-5678

9011
1213

77136
18000

S64

•2nd. Under ordinarj' circumstances of multiplication

by Logs, one would put the numbers, or angles, or time on

the left, the Logs, equal to them on the right, and the

number, angle, or time equal to the resultant Log. to the

ricfht of it, thus :

123 Lost. = 2-089905
4.56 Log. = 2-6o896o

Log. l-748870 = 56090 (Xat. So.)

But the exigencies of space, and general convenience

frequently render it necessarj- to put the answer also on

the left, and the above sum would be written thus

:

123 Log. = 2089905
4-56 Log. = 2-658965

fSat. Xo.) -56090 = Log. 4-74^870

Proportion or Rule of ThFee

As ' time ' and ' arc ' are mentioned in the following

examples, it is well to state that time is counted in horns,

minutes, seconds (h. m. s.j, and arc in degrees, minutes,

seconds (' ' "
. There are sixty seconds of time or of arc
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in a minute, sixty minutes of time in an hour, sixty

minutes of arc in a degree.

A simple proportion takes the following form : As 2 is

to 4 so is 3 to 6, or substituting the abbreviations, as

2 : 4 : : 3 : 6.

All simple proportions consist of four parts or terms.

In this case these terms are 2, 4, 3 and 6. Of these 2 and

6 are called the ' extremes,' and 4 and 3 are called the

' means.'

The fact upon which the solution of problems in pro-

portion rests is, that the product of the ' means ' is equal

to the product of the ' extremes.'

For instance, in the above proportion, 4 and 3 are the

' means,' 2 and 6 the ' extremes.' And 4 multiplied by 3

equals 2 multiphed by 6. 4 x 3= 12 and 2 x 6= 12. This

form of simple proportion you will not have much
occasion to use ; but you will have to use simple pro-

portion to find an unknown fourth term from three

known terms. If you have any three terms of a propor-

tion you can find the fourth term by the following rules :

(1) If two ' nreans ' and one ' extreme ' are known, the

product of the ' means ' divided by the known ' extreme,'

gives the other ' extreme.'

(2) If two ' extremes ' and one ' mean ' are known, the

product of the two ' extremes ' divided by the known
' mean ' gives the other ' mean.'

This is easy enough. You must remember, however,

that the first and second terms in a proportion must be of

the same nature, that is, they must be multiples of the

same quantity or measure, and that the fourth term will

be of the same nature as the third. Thus, suppose you

were given the following proportion, x representing the

' extreme ' you want to find :

Aslh.lOm. : 18m.:: 12° 48': x.

B 2
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Before multiplying the two means together you must

make the first and second terms of the same nature, that

is, multiples of the same quantitj^ which in this case can

be easily done by turning 1 h. 10 m. into minutes of time.

Also, to avoid the trouble of compound multiplication,

it is best to reduce 12^ 48' into minutes of arc.

Xow to work out the problem :

—

As l"- lO- :l'i-^:: 12' 48' : x
60 60

As 70° : 18=^
: : 768'

18

6144
768

70 )
13824' ( 197' 29" or 3' 17' 29

"

70

682
630

"524

490

34'

60

70 ) 2040' f29"
140

~640

630

"K)

Here we multiply the two • means ' together, and the

product is 13824 : this we divide by the known ' extreme,'

70 m. which gives us as the other extreme 197' and*4 O'^fir.

Turn the 34' into seconds, and di^"ide by 70, and we have

197' 29"
; divide the 197' by 60 to tumtheminto degrees,

and we jret 3° 17' 29". Eemember always that what you

get in the fourth term is of the same nature as the third

term, whether it be degrees, miles, feet, tons, or anything

else.

You will find later on the utility of this rule in

determining, among other things, the amoimt a heavenly

body will rise or faU in a certain time if jou know how
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much it has risen or fallen in a given time. For example,

suppose at 9 h. 18 m. 28 s. the Altitude of some heavenly

body was 32° 18' 20", and that at 9 h. 35 m. 30 s. the

Altitude of the same body vi^as 35° 14' 18", and that you

wanted to know what its Altitude was at 9 h. 22 m. 14 s.

How would you proceed ? In the following way.

First find out how much the body rose in the first

interval.
Time Altitude

At 9" 18"' 28" 32° 18' 20"

At 9 35 30 35 14 18

Therefore in 17 2 it rose 2 55 58

Next you must find how much it would rise in the

second interval. What is the second interval ?

gh 22"! 14»

9 18 28

3 46 is the second interval.

Now you have three known terms, 17 m. 2 s. (the first

interval), 3 m. 46 s. (the second interval), and 2° 55' 58"

(the increase of Altitude in the first interval), and require

to find the fourth unknown term.

As 17'» 2> :
3'" 46' :: 2° 55' 58"

60 60 60

i022« 226- 175'

60

10558 sees, of arc.

226

63348
21116
21116

1022 )2386108(2334Jseos.ofarc.or38'55" (nearly)

2044

3421
3066

3550
3066

4848
4088

760



6 ARITHMETIC

Therefore 38' 55" is the amount the body will rise in

3 m. 46 s., and this amount added to 32° 18' 20", the

known Altitude at 9 h. 18 m. 28 s., gives the Altitude at

the time required, namely at 9 h. 22 m. 14 s.

Time Altitude

At 9'' 18" 28" the Altitude of the body was 32° 18' 20"

In 3 46 it rose 38 55

Therefore at 9 22 14 the Altitude was . . . 32 57 IS

This is a long sum, but by using proportional Logs.,

as will hereafter be explained, the work is very much
shortened.

Decimal Fractions

A vulgar fraction consists of two parts, the numerator

and the denominator ; the numerator is above the line and

the denominator below it. The denominator expresses

the value of each equal part into which any unit is divided,

and the numerator expresses the number of such parts.

Thus f is a vulgar fraction ; the numerator is 3 and the

denominator 4. The denominator shows that each part

is one-fourth of the whole, and the numerator shows that

there are three such parts. Take another fraction, f for

example. Here the unit is divided into 5 equal parts

—

the denominator shows this ; and there are 3 of these

parts, as indicated by the numerator ; the value of the

fraction is therefore three-fifths.

The denominator of a vulgar fraction maj' be any

number you like ; the denominator of a decimal fraction

raust be ten or some multiple of ten, and therein lies the

difference between a vulgar and a decimal fraction. In

decimal fractions the denominator is expressed by a dot,

thus :
'1 is one-tenth. The figures after the dot are

called decimal places. The number of decimal places
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shows the value of the denominator ; thus ! is -p'-g, '01 is

litr. 'OOl is YijVo. '12 is tVo- '123 is J„¥o. and so on.

You can always, of course, express a decimal fraction

as a vulgar fraction exactly, but you cannot always

express a vulgar fraction as a decimal fraction exactly.

The decimal equivalent of a vulgar fraction is often self-

evident ; thus
-J-

is evidently the same thing as /^r, and
~^i,

is written decimally as -5
; and even in those cases in

which the conversion is not self-evident, the process of

turning vulgar fractions into decimals is very simple. All

you have to do is to divide the numerator by the denom-

inator—this will give you the decimal exactly if the vulgar

fraction can be turned exactly into a decimal fraction,

and if it cannot the process will give you the decimal very

nearljr. Thus -j^ is a vulgar fraction, and can be expressed

exactly as a decimal fraction thus : '

—

Some vulgar fractions, as for instance ^, cannot be

expressed exactly as a decimal fraction.

3 ) 1-0 ( -333 etc. ad infinitum.

9

10
9

10

Such a decimal fraction is called a recurring decimal,

and is written thus, 3, with a dot over the 3.

In turning vulgar fractions into decimals, you may

arrive at a decimal containing three or more, and perhaps

a lot more figures. Console yourself by the reflection thai

.

for navigational purposes, one decimal place, or at any

rate two decimal places, are good enough. Thus -1234

would be called -12 or probably -1. If the figuj-e to the

right of the second or of the first decimal place is 5, or

bigger than 5, increase the second or first figure by one.
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thus : -126 should be called -13, and -36 should be called

•4, because in the first case '13 is nearer to the truth than

•12, and in the second place '4 is nearer to the truth

than S.

The immense advantage of the decimal system is, that

compound addition, subtraction, multiphcation, and divi-

sion are done away vsdth. Its weakness is, that some

fractions cannot be expressed absolutely by its means,

but they can be expressed quite nearly enough for all

navigational work. Decimals are wonderfully useful in

navigation, as you will appreciate fully later on ; in fact,

problems could not be worked without them.

Addition of Decimals

The quantities to be added together must be written

dovm so that the decimal points are all in the same

perpendicular Hne, under one another. Then proceed

to add as in ordinary arithmetic, and place the decimal

point in the sum in a line with and under the decimal

points in the quantities added.

For example, add together 1-789, 78-01, -026, 10000,

11-002, and 10001.
1-789

78-01

026
10000-

11-002

100-01

10190-837

There j"ou are. The 10190, being a whole mmiber, is

to the left of the decimal point, and the fraction 837 is

to the right of it.
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Subtraction of Decimals

Place the decimal points of the two quantities under

one another, and proceed to subtract as in ordinary

arithmetic. If the number of decimal places in the two

quantities are unequal, it is advisable to make them equal,

by placing as many zeros as may be necessary to the

right. Suppose, for example, you want to deduct 1'0065

from 17-9. In the former there are four decimal places,

namely '0065, and in the latter only one, namely -9

;

therefore place three zeros after the 9, and the sum

appears thus

:

17-9000
1-0065

16-8935 is the answer.

It must be clearly understood that placing zeros to

the right of a decimal fraction makes no difference to the

value of the fraction, as it is simply increasing both the

numerator and the denominator in the same proportion ;

thus -9 is ^, -90 is y^o^, and y%- and -fjj\ are the same.

Multiplication of Decimals

Decimal fractions and numbers containing decimal

fractions are multiplied together exactly as in ordinary

arithmetic. It is only in placing the decimal point in the

product that any difficulty can be experienced, and in

doing this the very greatest care must be taken. The

rule is, to point off from the right in the product as many

decimal places as are contained in both the factors (the

two numbers which are multiplied together), placing

zeros to the left of the product, if it is necessary to do so

in order to get the proper number of decimal places.
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Here are a few examples, to which I would ask your

closest attention :

(1) Multiply 18-5 by 19-2.

18o
19-2

370
1665
ISo

36o-2()

There is one decimal place in each of the two factors,

18-5 and 19-2, that is, two decimal places in all, so that

you point off two decimal place-b from the right of the

product, and the dot comes between the 2 and the 5. Of

course, zeros on the right of a decimal without any

digits to the right of them are of no value, but they must

never be struck off a product till the decimal point has

been placed.

(2j Multiply 1042 by 198.

1-(W2
Ifi-"

8336
'Ji'-i

1042

206-316

Here there are three decimal places in 104:2, and

none in 198. Therefore we point off three decimal places

from the right in the product.

(3j Multiply 79-89 by -0042.

-0042

1597 ~

319-56

•33.5538

Here there are two decimal places in 79-89, and four

in -0042, therefore .six decimal places are pointed off in

the product.
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(4) Multiply -0045 by 10.

•0045

10

•0450

Here we have altogether four decimal places to point

off in the product 450, and so a zero must be placed to

the left of 450 to make up the number. Zeros required

to make up the number of decimal places in a product

must be placed to the left of the left-hand digit.

Although the last zero is valueless, it must be counted

when pointing off the product.

(6) Multiply -0001 by -0002.

•0001

•0002

•00000002

This is rather an extreme case. We have eight

decimal places in the factors, and therefore we must add

seven zeros to the left of the product 2 before we can

place the decimal point.

(6) Multiply 79-89 by 121-2.

79-89

1212

15978
7989

15978
7989

9682^668

Three decimal places in the factors, therefore three in

the product.

In such a case as this, after the decimal place has been

put in according to the rule, you can check the result by

taking- two simple numbers nearly equal to those in the

question, and multiplying them in your head. Thus in this

case, instead of 79-89 take 80, and instead of 121-2 take 120.
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The product of 80 and 120 is 9600. This is sufficiently

near to 9682-668 to show that the decimal point has been

put in correctly. If you had made a mistake and put

down 9682668, you would have found it out.

So much for multiplication of decimals. You will

have to do plenty of it in the course of your navigational

studies, so I will pass on to

Division of Decimals

Bivision of decimal fractions is managed exactly in

the same way as division in ordinary arithmetic. As in

muItipUcation, the only difficulty consists in placing the

decimal point correctly in the quotient. You must place

in the quotient that number of decimal places which,

added to the number of decimal places in the divisor,

equals the number of decimal places in the dividend. It

is really the same rule as in multiplication, because the

product of the di^-isor and quotient is, of course, the

di-s-idend. Here are a few examples :

(1) Divide 4614-316 by 31-2-2.

312-2 ) 4614-316 ( 1478
3122

14923
1-2488

24.S.51

218-54

24976
24976

Here we have three decimal places in the dividend, and

only one in the divisor. It is necessarj- to add two

decimal places to those in the divisor to make them equal

to the number of decimal places in the dividend ; you

consequently have two in the quotient, and here it is,

14-78.
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As a check on the result, notice that, roughly speaking,

you are dividing 4600 by 300, so that 14 or 15 is evidently

pretty near the answer.

(2) Divide -702 by -009.

•009 ) -702 ( 78

Now you have three decimal places in the dividend,

and three in the divisor, therefore you want none in the

quotient, and the answer is 78.

(3) Divide -63675 by 84-9

84-9 ) -63673 ( 75
5943

4245
4245

Here are five decimal places in the dividend, and only

one in the divisor, therefore there must be four in the

quotient. But we have only two figures, and to make up

the four necessary places two zeros must be put to the

left of them, and then the decimal point. So the answer

is -0075. As in the product of a multiplication sum, so

in the quotient of a division sum, zeros to make up the

number of decimal places required must be placed to the

left of the left-hand digit.

Check.—If in doubt about the position of the decimal

point, multiply 84-9 by -0075, and the result -63675 shows

the decimal point is correctly placed.

(4) Divide 5 by 250.

250 ) 5-00 ( 2

In this case, in order to make five divisible by 250,

you must add two zeros after the decimal point, which

makes no difference to the value of the dividend. Then

you have two decimal places in the dividend, and none in

the divisor ; you must therefore have two in the quotient,

and here you are, "02.
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In all cases where the divisor will not go into the

dividend, add zeros to the dividend, placing them to the

right of the decimal point if there is no fraction, or to the

right of the fraction if there is one. These zeros make

no difference to the value of the dividend, but they count

as decimal places when placing the decimal point in the

quotient.

(5) Divide 1-7 by 50000.

•50000 ) 1-70000 ( 34
150000

200000
200000

Here there are five decimal places in the top line of

the dividend, and we borrowed another in the third line,

making six in all. But there are none in the divisor, so

we must have six decimal places in the quotient, and four

zeros must be placed to the left of the ri4, and the answer

is -000034.

(6) Divide 1 by -000001.

No decimal point in the dividend and six in the

divisor. Add 6 zeros to the right of the 1 in the dividend,

and divide out.
•000001 ) 1-000000 ( 1000000

Reduction of Decimals

You must understand the reduction of decimal frac-

tions. The subject naturally divides itself into two

branches, the one dealing with reducing ordinary quantities

into decimals, and the other with reducing decimals into

ordinary quantities. Let us first deal with turning

ordinary quantities into decimals.

SupxDose you were asked to tm-n 10^. l-2.s. 6d. into

pounds and decimals of a pound. The first step would

be to find what decimal of a shilling sixpence is, and the
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second to find what decimal of a pound the shilHngs and

decimal of a shilling is. In expressing a penny as the

decimal of a shilling, consider the penny as a vulgar

fraction of a shilling ; one penny is -^-^ of a shilling ; then

turn the vulgar fraction into a decimal by dividing the

numerator by the denominator as has been already ex-

plained.

First then turn the 6 pence into decimals of a shilling

by dividing them by 12, thus :

12 ) 6-0

•5

Sixpence is '5 of a shilling, and we now have 10

pounds and 12-5 shillings. Xext turn the 12-5 shillings

into decimals of a pound by dividing by 20.

20 ) 12-50 ( -625

120

~50
40

100
100

Here we have three decimal places in the dividend,

having borrowed a zero in addition to the two decimal

places in the first line ; and, as there are no decimal places

in the divisor, we must have three in the quotient, which

is therefore -625. 12-6 of a shilling is therefore '625 of a

pound, and tacking this on to the pounds, we find that

IQl. 12s. 6cZ.= 10-625Z.

Now suppose you want to reverse the process, and

turning decimals into ordinary quantities, require to find

the value of 10-62.5L You must first turn the decimals of

a pound into shillings by multiplying by 20, thus :

625
20

12-500

Therefore, -625 of a pound x 20= 12-5 shillings. Then
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turn the decimals of a shilling into pence by multiplying

by 12, thus

:

*-5

12

6-0

Therefore, o of a shilling x 12=60 pence. And you find

that 10-625Z.=10L 12.s. 6d.

It is not improbable that you will spend more time at

sea in dealing with arc and time than with money, unless

you happen to hit upon a treasure island, so I append a

few examples here.

(1) Turn 37° 48' 00" into degrees and decimals of a

degree.

In one degree there are 60'. Therefore, divide 48' by

60 to bring it into decimals of a degree. 48' -h 60=-8 of a

degree. The answer, therefore, is 37'8°.

To reverse the above and express 37'8° in degrees and

minutes. To turn -8 of a degree into minutes you must

multiply it by 60. -8° x 60= 480', therefore, 37-8°=
37° 48'.

(2) Find what decimal fraction of a day 14 hours

18 minutes is.

There are 60 minutes in an hour, therefore, to

turn 18 minutes into decimals of an hour, divide by 60.

18-;-60=-3. Therefore 18 minutes=-3 of an hour.

Xow to find what decimal fraction of a day 14-3 hours

is. There are 24 hours in a day, therefore divide 143 by

24.
24 ) 14-3 ( oa58

120

216

140
120

"200

192
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and 14'3 hours equals -5958 of a day, and we have found

that 14 hours 18 minutes equals -5958 of a day very

nearly.

As a very large proportion of the vs^ork you vs^ill have

to do with the help of decimals consists of turning seconds

of time into decimals of a minute, or m.inutes into decimals

of an hour, or in turning seconds of arc into decimals

of a minute, or minutes into decimals of a degree, it is

as well to point out that as sixties are the quantities in-

volved, the simplest way is to divide by 6, or to multiply

by 6, throwing away the useless zero. Thus, suppose

you want to find what decimal of an hour 18 minutes is.

Divide the 18 by 6 : 18h-6= 3, and 18 minutes is -3

of an hour. Similarly, to find the value of the decimal

of an hour, or of a degree, multiply it by 6. Thus, suppose

you require to know the value of -3 of an hour. Mul-

tiply it by 6, and you have the answer :
-3 x 6= 18, and

3 of an hour is 18 minutes.

Let us take a few more examples :

(1) Find the value of 12'45 degrees.

•45

6

The answer is 12° 27'.

(2) Again, what decimal of a degree is 27' ? Divide 27

by 6.

6)27

•45

The answer is ^45 of a degree.

A very little practice and consideration will enable you

in all these cases to place the decimal point properly.

You rarely or ever require to extend the decimal fraction

to more than two places, and generally one place is

ample.

VOL. I. c
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Thus, suppose you want to know what decimal fraction

of an hour ten minutes is. You proceed thus :

6 ) 10000

•1666 &B. &c.

is the correct answer. Well, '17 is near enough for you.

Eemember always to add 1 to the last digit if the next

one is 5 or more than -5. Thus -166 must be called -Vl,

because -17 is nearer the truth than -16.

It is generally easy to place the decimal point, even in

division, by using a little common sense. If the number

to the left of the decimal point in the divisor is less than

the number to the left of the decimal point in the dividend,

there must be at least one whole number in the quotient.

If, on the contrary, the whole number in the di^'idend is

less than that in the divisor, the decimal point must come

first in the quotient.

When the decimal place has been put in according to

the rule, look at the result and see that it is roughly about

the right amount.
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CHAPTEE II

LOGARITHMS

IjOGARithms are the invention of a most talented man,

John Napier, of Merchistoun. Logarithms, or, as they

are called for convenience sake. Logs., enable us to sub-

stitute addition for multiplication, and subtraction for

division— an immense boon to the mariner. If the

wretched sailor had to multiply and divide the long rows

of figures and the numerous angles which abound in great

profusion in his calculations, he would not be done work-

ing one set of sights before it was time to begin working

another set, and every sea-going ship would have to be

fitted with a private lunatic asylum. But with the help

of Logs., Navigation becomes easj% for addition and sub-

traction are simple operations, which do not consume

much time, or cause any great amount of chafe of the

brain.

Every ' natural ' number, that is to say every number

in the natural ordinary sense of the word, has a Log. ; and

per contra every Log. has a natural number. If you have

to multiply two numbers or two dozen numbers together,

or if you have to divide two numbers or two dozen numbers,

all you have to do is to find the appropriate Logs., and add

or subtract them ; the result will be the Log. of a natural

number, which is the result of the multiplication or

division of the numbers. What you have got to learn

therefore is : 1st, how to find the Log. of any natural
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number ; 2nd, how to find the natural number of any

Log. ; 3rd, how to add Logs, together ; 4th, how to

subtract Logs, from each other.

A Log. generally consists of two parts, a whole num-

ber containing one or more digits—this is called the ' Cha-

racteristic ' or ' Index '—and a number of digits separated

from the characteristic hj a decimal point ; this decimal

part of the Log. is called the ' Mantissa.' Though
' Characteristic ' is the proper term to employ, ' Index ' is

more generally used, and for the future I shall speak of

the 'Index.' For instance, take any Log., say 2-944483 :

2 is the Index, and 944483 is the Mantissa.

Natural numbers and Logs, are tabulated in Table

XXIV. headed ' Logarithms of Numbers.' In the left-

hand column, headed ' Xo.,' }'ou will find natural numbers

from 100 on page 137, to 999 on page 151. Zeros in

natural numbers make no difference to the Mantissa of a

Log. For instance, the Mantissa or decimal part of the

Log. of 1, of 10, of 100, of 1000, and so on, is the same;

the Log. of 15, of 150, of 1500, &c. is the same; the Log.

of 172, of 1720, of 17200, &c. is the same. Therefore

you need take no notice of that portion of ' Logarithms

of Numbers ' from 1 to 100 contained on page 136. It is

useless and confusing, so leave it alone.

To find the Log. of a natural number.—Remember

that the Table gives you the Mantissa only, and that

having first got that you must afterwards find the Index.

Suppose you require the Log. of a single number, say of 2.

Look for 200 in the left-hand column headed ' No.,' and

to the right of it, in column headed ' 0,' you will find

301030 ; that is the Mantissa of 2. Suppose you require

the Log. of a number consisting of two figures, say 23.

Look for 230 in the ' No.' column, and in column ' ' you

will find 361728 ; that is the Mantissa of 23. Suppose



LOGAEITHMS 21

you want the Log. of a number containing three figures,

say 234. Look for 234 in the 'No.' column, and in the

' ' column you will find 369216 ; that is the Mantissa

of 234. Suppose you want the Log. of a number contain-

ing four figures, say 2341. Look for 234 in the 'No.'

column, and in a line with it, in the column headed '1,'

you will find 369401 ; that is the Mantissa of 2341. If

you wanted the Log. of 2342 you would find the Mantissa

in the ' 2 ' column, by following along from 234 in the

'No.' column. If you wanted the Log. of 2343, the

Mantissa will be in the ' 3 ' column. If you wanted the

Log. of 2344, the Mantissa will be in the ' 4 ' column, and

so on to 2349. Now to find the Index.

The Index is always one less than the number of

figures in the natural number. If the natural number

consists of one figure the Index will be zero (0) ; if the

number has two figures the Index will be 1 ; if the num-

ber has three figures the Index will be 2, and so on.

Consequently, in the case of the natural number 2 which

I have used above, as 2 consists of one figure the Index

is 0. The Mantissa of 2 is 301030, therefore the Log. of 2

is 0'301030. It is useless expressing the zero, and you

would write the Log. of 2 as -301030.

23 contains two figures, the Index is therefore 1. The
Mantissa of 23 is 361728, therefore the Log. of 23 is

1-361728. The Mantissa of 234 is 369216, and the Log.

of 234 is 2-369216, because 234 contains three figures, and

the Index consequently is 2. The Mantissa of 2341 is

369401, and the Log. of 2341 is 3-369401, because 2341

contains four figures.

To find the natural numbers of Logs.—Look out the

Mantissa of the Log. in the table in the columns ' 0,'

' 1,' ' 2,' &c. &c., and, wherever it may be, you will find

its natural number in the same line with it in the ' No.'
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column. The value of the Index will show you how
many figures there are in the natural number. You
know that the Index of a Log. is always one less than

the natural number of the Log., and per contra the

natural number must always be one more than the Index

of its Log. Consequently, if the Index is 0, the natural

number wiU consist of one figure. If the Index is 1, the

natural number will contain two figures. If the Index is

2, the natural number will contain three figures, and so

on and so on. If the natural number belonging to the

Mantissa of a Log. does not contain one figure more than

the Index of the Log. you must add zeros till it does. If

the Mantissa of a Log. gives you more figures in the

natural number than there ought to be according to the

Index of the Log., then the natural number contains a

decimal fraction, and you must put a dot after the proper

number of figures as determined by the Index. Take any

Log., say -698970
; you want to know its natural number.

Look for 698970 in the Table in one of the columns

headed from ' ' to ' 9.' You will find 698970 in column

' ' on p. 143, and alongside to the left in the ' Xo ' column

you wiU see 500. Your Log. was '698970. It had zero

in the Index, therefore its natural number must consist

of one figure : therefore the natural number is 500, or 5.

Suppose the Log. to have been 1-698970. 1 in the

Index shows there must be two figures in the natm-al

number, therefore the natural number is 500, or 50. If

the Log. had been '2-698970 the natural number would be

500. If the Log. had been 3-698970, 3 in the Index

requires four figures in the number, but there are only

three in 500. You must therefore add a zero, and make

it 5000, and that is the natural number of 8-698970. And

so on.

Take another Log., say 2-662663. Look for the
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Mantissa 662663 in the Table—you will find it in column

9, p. 142—and alongside to the left, in the ' No.' column,

you will see 459. The Mantissa being in the 9 column,

of course 9 must be added to the number in the ' No.'

column, so 4599 is the natural number. The Index of

the Log. is 2, and there must be three figures in the

natural number ; therefore cut ofl; three figures by a

decimal point, and you have the natural number 469'9.

If the Index had been 3, the number would have been

4599. If the Index had been 1, the natural number would

have been 45-99. If the Index had been 0, the natural

number wojild have been 4'599.

Now, having seen how to find the Log. of a number

and the number of a Log., let us consider multiplication

and division.

Multiplication and Division by Logs.—To multiply

two numbers, find the Log. of each number, add them

together and find the natural number of the resultant

Log. To divide one number by another. Take the Log.

of the Divisor from the Log. of the Dividend, and find

the natural number of the resulting Log. For instance,

4 X 2= 8 by ordinary multiplication ; 4h-2 = 2 by ordinary

division ; now work the same sum by Logs. The Log.

of 4 is -602060. The Log. of 2 is -301030. Add them

together. ,

602060
-301030

908090

The natural number of 903090 is 800. Zero in the

Index gives one figure in the number, therefore the

number is 8-00, or 8.

Subtract -301030 from -602060.

•602060

-301030

•301030
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The natural number of 301030 is 200, and the Index

being zero, it is 2-00, or 2.

Suppose you wish to multiply 8197 by 5329, and also

to divide 8197 by 5329. The Mantissa of 8197 is 913655,

and the Index is 3, because there are four figures in the

number, therefore the Log. is 3-913655. The Mantissa of

5329 is 726646. The Log. will be 3-726646, because there

are four figures in the number.

3-913655

3-726646

7-640801

You will not find the exact number 640301 in the Tables,

but you will find something near enough to it, namely,

640283 in the ' 8 ' column on p. 142, and that will give you

436 in the ' No.' column ; the natural number, therefore, is

4368. 7 in the Index requires eight figures in the natural

number, but you have only four, and you must therefore

add four zeros ; and the natural number is 43680000,

Therefore 8197 x 5329 = 43680000 nearly. Now for the

division.
3-913655
8-726646

0-187009

You will not find 187009 in the Tables, but you will

.

find something near enough, namely, 186956 in the ' 8

'

column on page 137, with the number 153 in the 'No.'

column. The natural number, therefore, is 1538. Zero

in the Index gives one figure in the number, therefore the

natural number is 1-538. Therefore 8197 h- 5329 = 1-538,

or 1^ very nearly.

Whenever you can check the answers easily as far as

number of figures or position of the decimal point goes, do

so. For example, as in the last case you were multiplying

8000 by 5000 roughly speaking, the answer would be

40000000. This agrees with 43680000 sufficiently to
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show that you had the right number of zeros. Similarly

in the division the answer must be somewhere near 1'6,

because roughly speaking you were dividing 8000 by 5000,

and thus 1'538 is right, and you have made no mistake in

placing the decimal point.

The whole operation of finding the Log. of a number

and finding the number of a Log. and of multiplying and

dividing numbers by adding or subtracting their Logs, is,

you must admit, simple in the extreme. And for nearly all

practical purposes of Navigation enough has been said on

the subject, for you seldom have to deal with numbers

containing more than four figures ; and the Log. in the

Tables nearest to the Log. of which you want the number

is usually good enough. But the Board of Trade requires

you to know more about Logs. Yoa will in the examina-

tion room be given more than four figures to deal with,

and you may have minus quantities, and be required to

subtract a larger from a lesser sum, which seems absurd

but is not ; and it won't satisfy Examiners to take out

from the Tables the Log. nearest to your Log. when

you cannot find your Log. exactlj^ So some further

explanation and of a more complicated character is

necessary.

Logs, of numbers zvhich consist of more than four

figures.—Suppose you want to find the Log. of a number
consisting of more than four figures. Tick off the four

first figures with a little dot, so as not to make a mistake,

and take out from the Tables the Log. of the first four

figures as explained above, and write it down. In a line

with this Log., in the column marked ' Diff.,' you will

find a number ; multiply that number by the remaining

figures, that is, the figures exceeding four in your number

;

and from the product cut off from the right so many figures

as the multiplier consists of, then add the remaining figures
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to the Log. of the first four numbers already found, and

the result is the Log. required. Bemember that a zero

counts as a figure. For instance, suppose you want the

Log. of 123456. Tick off the first four figures thus,

1234'56, and find the Log., or, to be accurate, the Mantissa

of the Log. of 1234. It is 091315. In the same line in

the 'Diff.' column you will find 352. Multiply 352 by

56 (the remaining figures in your number).

352

56

2112
1760

19712

From the product 19712 cut off from the right as many
figures as the multiplier contained, namely two. That

leaves 197 to be added to the Log. of the first four figures.

091315
197

091512

091512 is the Log. required.

The reason for this process is very simple. The
numbers in the column ' Diff.' are the differences between

the Logs, of two consecutive numbers. The difference

between the two numbers is 100 ; the difference between

the number whose Log. you have taken out and the

number whose Log. you require is 56. The difference in

the 'Diff.' column between the Mantissa you have taken

out and the next larger is 352. It is a simple sum in

proportion, as 100 : 56 :: 352 : x.

Now for the Index. You must count all the figures

in your number. There are six figures, therefore the

Index is 5. Therefore the Log. of 123456 is 5091512.

In all questions of this kind it is advisable after

the answer has been obtained to check it by seeing that

the Log. found lies between the Log. of the right two

numbers. The Log. of 123456 should lie between Log.
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1234 and Log. 1235 ; and since 091512 is between 091315

and 091667 it is evident that no mistake has been

made.

To find the natural number corresponding to a Log. to

more than four figures.—Now suppose you are occupied

in the reverse process, and having the Log. 5-091512 you

want to find its natural number. Look for the Log. in

the Tables. You won't find 091512 anywhere. In such

a case you must take out the natural number to four

figures, for the nearest less Log., and write it down.

Then find the difference between this nearest less Log.

and your Log. ; divide this difference by the figure in the

' Diff.' column, adding as many zeros to the difference as

may be necessary, and add the quotient to the first four

figures of the natural number already taken out and

written down. You want the natural number of 5-091512.

The nearest less Mantissa in the Table is -091315, of

which the natural number is 1234 ; write that down.

Kext find the difference between 091315 (the nearest Log.)

and 091512 (your Log.).
091512
091315

197

The difference is 197. In a line with 091315, and in the

' Diff.' column, you will find 352. You have got to

divide 197 by 352, adding zeros to 197.

352 ) 1970 ( 56 nearly

1760^

2100
2112

66 is to be tacked on to the four figures already taken out,

namely 1234, and the natural number required is therefore

128456. You will note that the division of 197 by 352

did not come out exactly, but the product, 56, was much

more nearly correct than 55 ; and as you knew by the

Index that you only wanted two more additional figures.
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it was useless proceeding further. Had you proceeded

further, the sum would have worked out thus :

352 ) 1970 ( 559
1760

2100
1760

3400 /

3168

232

This would have given you 559 to tack on to 1234

already found, and your natural number would be

1234559. But as the Index of the Log. was 5, there could

only be six whole figures in the natural number, which

would therefore be 123455-9. All you wanted was a

number consisting of six figures, and 123456 is nearer

than 123455 with a useless -j^g-.

Here are some examples :

Find the Log. of 798412.

Mantissa of 7984 = 897297 Diff. = 55
Parts for 12 = 7 1^

Log. of 798412 = 5-897304 660 = 7 nearly.

Find the Log. of 548208.

Mantissa of 5482 = 738939 Diff. = 79
Parts for 08 = 6 _()8

Log. of 548208 = 5-738945 632

Find the Log. of 400006.

Mantissa of 4000 = 602060 Diff. = 108
Parts for 06 = 6 _06

Log. of 400006 = 5-602066 648

Find the number whose Log. is 4-902030.

4-902030

Nat. No. 7980 902003 Nearest Log.

Diff. 54 ) 270 ( 5

270

The number is 79805.

Find the number whose Log. is 6-012839.

6-012839

Nat. No. 1030 012837 Nearest Log.

Diff. 420 ) 2000 ( 005 very nearly

2100

The number is 1030005 very nearly.
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Find the number whose Log. is 5'639486.

5-639486
Log. 4360 = 639486

The number is 436000.

Hitherto we have considered and used numbers com-

posed entirely of integers or whole numbers, but you may

require the Log. of a number consisting partly of integers

and partly of decimals, such as 2-3, or composed entirely

of decimals, such as '23.

Logs, of numbers composed of integers and decwials.—
Use the whole of the number, decimals and all, to find

the Mantissa of the Log. Thus to find the Log. of 1'2 :
—

Look out the Mantissa of 12, which, as you know, is

the same as that of 120; it is 079181. Now for the

Index. You have only one integer, and therefore the

Index is zero and the Log. of 1-2 is -079181. In the case

of numbers composed of integers and decimals, the Index

is always either or a positive or plus quantity.

In the case of numbers consisting entirely of decimals,

the Index will be a negative or minus quantity. As one

integer gives zero in the Index, it is obvious that

no integer will give an Index one less than zero, or

minus 1. The Index of a decimal, say -2 or -23 or -234

and so on, is —1, and the Index of -02, or -023, or -0234,

and so on, is - 2, and the Index of -002, or -0023, or

00234 is —3, lI'c. &c. &c. But, as in adding and sub-

tracting, it would be awfully confusing to mix up minus

and plus quantities, the arithmetical complement (ar. co.) of

the minus Indices is always used. 10— 1 = 9; 10— 2= 8;

10— 3 = 7, and so on; therefore 9 is the arithmetical

complement (ar. co.) of 1 ; 8 is the ar. co. of 2 ; 7 is the

ar. CO. of 3, and so on ; and 9, 8, 7, &c. &c. in the Index

are always used instead of —1, —2, —3, &c. &c.

Log. of a decimal fraction.—Suppose you want the
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Log. of a decimal fraction. Very well. Look for the

figures in the decimal fraction in the Table in the same

way as if they were integers, and take out the Mantissa.

Bemember that zeros have no value in finding the Man-

tissa, unless they occur between digits. The Mantissa of

•2, or -20, or 200 is the same, namely 301030. The

Mantissa of "23, of '023, or '0023 &c. is the same, namely

361728. But introduce a zero or zeros among the digits

and the Mantissas are by no means the same ; the Man-

tissa of -203 is not 361728 but 307496, and the Mantissa

of -2003 is 301681.

Now for the Index. If the decimal point is followed

by a digit, the Index will be minus 1, which you will call

9. If the decimal point is followed by one zero, the

Index will be minus 2, which you will call 8. If the

decimal point is followed by two zeros, the Index will be

minus 3, which you will call 7, and so on. Thus the Log.

of -23 is 9-361728 ; the Log. of -023 is 8-361728, and so on.

What you do is, in fact, to borrow 10 for the use of the'

Index when it is minus, and call the balance plus. This

is the reason why, when you come later on to deal with

cosines and such things, you will have to drop tens in the

Index. You will be giving back tens, which you have

borrowed in order to turn minus Indices into plus Indices

for the sake of convenience ; but you need not bother your

head about this now.

Now suppose you want to reverse the operation, and

find the natural number of a Log., say 9-361728. 361728

gives you 23, the Index is 9. Therefore if the 9 is really

a plus 9, the natural number must have ten figures, and

would be 2300000000 ; but if the Index 9 represents minus

1, the natural number must be a decimal, -23. If your Log.

is 8-361728, the natural number is either 230000000 or

-023, and so on and so on. ' Well,' you may say, ' how
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am I to know which it is ? ' The nature of your work will

tell you. The difference between -23 (twenty-three hun-

dredths) and 2,300,000,000 (two thousand three hundred

millions) is so great that you cannot very well make a

mistake.

Here is how the Logs, of a natural number decreasing

in value from four integers or whole numbers to decimals

would look carried right through the scale.

Take any number, say 3456. The Mantissa or decimal

part of the Log. will of course always remain the same
;

the Index only will change.

3456 Log.
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Log. of the divisor exceeds the Log. of the dividend, you

will have to borrow 10 for the use of the Index of the Log.

of the dividend. If you paid the ten back, the Index

would be minus, but you keep the ten in order to make

the Index plus, as already explained.

Here are some examples :

—

I. Multiply 6-82 by 17-8, by Logs.

6-82 Log. 0-833784
17-8 „ 1-250420

2-084204

The nearest less Mantissa to -084204 is -083861, which

gives the natural number 1213, and the difference between

them is 343. This 343 divided by the Diff. in the Tables,

357, gives 9 to be tacked on to 1213, and the Index being

2, there must be three integers in the answer.

2-084204

Nat. No. 1213 -083861 Nearest Log.

Diff. 357 ) 3430 ( 9 to be tacked on to 1213
3213

and 121-39 is the answer.

Chech.—Decimal point is right, because 6 x 17 = 102,

and is pretty near 121.

It is unnecessary to go through all the steps in every

example for the future, as you must have got it well into

your head how to add and subtract Logs. If not, turn

back and study that question a little more. In the next

example, therefore, I merely give the figures.

II. Multiply 182-7 by 6-495.

182-7 Log. 2-261738

6-495 „ 0^12^79

, 3-074317

Nat. No. 1186 -074085 Nearest Log.

Diff. 366 ) 2320 ( 6 to be tacked on to 1186
2196

The answer is 1186-6.

Chech.—Answer should be somewhere near 200 x 6,

or 1200 ; thus decimal is evidently in the right place.
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III. Multiply 6-185 by 7-844.

6-185 Log. 0-791340
7-844 „ 0-894538

4-685878
Nat. No. 4851 .. 685831 Nearest Log.

"sg ) 470 ( 5 to be tacked on to 4851
8 445

-^48-515

The answer is 48-615.
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borrowed and not returned. So much for quantities

composed of integers and decimals.

To multiply and divide numbers consisting entirely of

decimals.—Under these circumstances the Indices are

always minus. You have, therefore, to borrow ten for

each Log. Pay back both the tens if you can, in which

case the Index of the result is a plus quantity. But if

you can only pay back one ten, the Index, though really

a minus quantity, is converted into a plus quantity by

retaining the ten.

I. Multiply -234 by -0234.

Log. of -234 is 9-369216 (the Index is really - 1,

because there is no integer in the number). The Log. of

•0234 is 8'368216 (the Index is really — 2, because, if such

an expression is permissible, there is one less than no

integer in the number).
9-369216
8-369216

17-73843-2

You have borrowed twenty, namely ten on each Log.

:

retain ten to preserve a plus Index, and pay back ten, and

you get the Log. 7-738432. 738432 gives you the natural

number 5476 nearly and near enough, which with 7 or — 3,

in the Index, gives you -005476 as the product of -234 x

-0234.

Chech.— '2. x -02 = -004.

II. Multiply -7 by -825.

7 Log. 9-845098
•825 „ 9-916454

Nat. No. -5775 9-761552

The answer is -5775.

Here also you have borrowed two tens and only

returned one, therefore the Index of the Log. of the

product represents a minus quantity.

Check. —-l X -8= -56.
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III. Multiply -049 by -0063.

•049 Log. 8-690196
•0063 „ 7799341

Nat. No. •0003087 6^489.537

The answer is -0003087.

For the same reason as in the two preceding ex-

amples the Index of the Log. of the product represents

a minus quantity.

Check.—-05 x -006 = -00030.

IV. Suppose you want to divide -0234 by •845. The

Log. of -0234 is 8^369216, and the Log. of ^345 is 9-.537819.

8^369216

9^537819

8^831397

831397 gives the natural number 6783. 8 in the Index

makes the number •06783, which is the quotient of

•0234 -=- -345.

In this case you have borrowed ten for each Log.

;

they neutralise each other ; and you have borrowed an

additional ten in order to be able to subtract, and you

retain this ten to provide a plas Index.

But if you do not require to borrow ten to preserve a

plus Index, it will be a positive one. Thus :

V. Divide -224 by -035.

•224 Log. 9^3S0248
•03.5 „ 8^-544068

Nat. No. 6^4 0^806180

Ten has not been borrowed, and the Index is zero, as

above.

The answer is 6 '4.

VI. Divide -1 by -0001.

•1 Log. 9^000000
•0001 „ 6^000000

Nat. No. 1000 3^000000

and 1000 is the answer.

To sum up. In division by Logs., (1) when the Index

of the Log. of the dividend is greater than the Index of

D 2
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the Log. of the divisor, the Index of the Log. of the

quotient is a plus quantity. (2) When the Index of the

Log. of the dividend is less than the Index of the Log.

of the divisor, the Index of the quotient is a minus

quantity, and has to be turned into a plus quantity by

borrowing a ten.

Proportional Log's, and how to Use them

Table XXXIV. gives Proportional Logs, for Time or

' Arc ' from h. m. or 0° 0' to 3 h. or 3°. The hours

and minutes, or degrees and minutes, are at the top,

and the seconds are given at the sides. Look out the

time or arc, and write down the appropriate Log.

Find the arithmetical complement of the Log. of the

first term. The arithmetical complement, or ar. co., is

found by taking the Log. from 10-0000. Then add

together the ar. co. Log. of the first term and the Logs,

of the second and third terms ; the result, rejecting tens

in the Index, is the Log. of the answer x.

For example, take the sum we have worked on p. 5,

namely :

As 17'" 2> :
3'" 46" : : 2° 55' 58" : x

IT" 2Log. 1-0240 r-'-5;°24o) = *'^'-<=°-^°g- ^"^'^^O

3'" 4G' Prop. Log. . . . 1-6793
2° 55' 58" Prop. Log. . . . 0098

38' 55" . . . Prop. Log. 0-6651

This, you will admit, is a simple and expeditious way

of working a sum in proportion.

That is all there is to be said about Logarithms, and

quite enough too. I could never see the object of requiring

such an intimate knowledge of Logs, in all their twists

and turns and subtleties on the part of candidates for a
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certificate of competency, seeing that all the problems

given for a master can be solved if you know how to find

the Log. of a natural nmnber of four integers, and to take

out the natural number of four integers of the nearest

Log. But so it is; the knowledge is required, and .must

be acquired. It is a puzzling subject, and the student

should work a lot of exercises in it. For this reason any

amount of exercises are given in the second volume.

In case you should like to hnoio now, or at some future

time, lohat Logarithms really are, here follows a very brief

description ; but don't bother to read it unless you have a

mind to.

The Logarithm of a number is the power to which the

base must be raised to produce that number. Any number

may be the base, but in all Nautical Tables 10 is the base.

With the base 10, suppose the Log. of 100 is wanted.

10 X 10 = 100 ; 10 X 10 is ten squared, or 10^, that is 10

raised to power 2 ; therefore 2 is the Log. of 100.

Suppose you want the Log. of 1000. 10 x 10 x 10

.= 1000 ; 10 X 10 X 10 is 10^, 10 raised to power 3

;

therefore 3 is the Log. of 1000.

Now you will see why addition of their Logs, is the

same as multiplication of numbers.

10 X 10 X 10 X 10 X 10 is 101 (10 x 10) x (10 x 10

X 10) is 10\ 10 X 10 is 101 10 x 10 x 10 is 10^

2 is the Log. of 10^ and 3 is the Log. of 10'. 2 + 3 = 5,

therefore the addition of the Logs, of 10 x 10 and of

10 X 10 X 10 produces the same result as the multiplica-

tion of the numbers 10 x 10 x 10 x 10 x 10, namely 10'.

Also you will see why subtraction of their Logs,

produces the same result as division of numbers.

Suppose you want to divide 1000 by 100. The Log.
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of 1000 is 3, and the Log. of 100 is 2. 1000 -r- 100 = 10'.

3 — 2=1, which is the Log. of 10.

The Log. of 1 is 0. 100 -^ 100 = 1. The Log. of

100 is 2. 2-2 = 0.

Suppose you want to raise a number to any given

power. All you have to do is to multiply the Log. of the

number by the given power. For instance, supj)ose you

wish to raise lO'^ to its fifth power, that is to say to 10^°.

The Log of 10^ is 2, and 5 is the power to which 10^ is to

be raised. 2 x 5 = 10. 10^ x 10^ x 10^ x 10^ x 102=10'".

So you see that 10^ multiplied together five times is 10'",

and that 2, the Log. of 10^ multiplied by 5 is the Log.

of 10'".

The Logs, of all numbers which are not tens or

multiples of tens are obviously fractional. From what

has been said it is also obvious that Logs, of numbers

between one and ten must lie between zero and one, and

that the Logs, of numbers between ten and one hundred

must be more than one and less than two, and so on.

Hence it is that the Index of a Log. is one less than the

number of digits in its natural number. The Logs, of

fractions must always be of a minus description. If you

divide the less by the greater, the result must be less than

unity. Ten divided by one hundred expressed in Logs, is

one minus two. 1 — 2 = — 1. Hence the minus Indices

already spoken about, which are for convenience sake

expressed as plus Indices by using their arithmetical

complements.

\ /
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CHAPTEE III

INSTRUMENTS USED IN CHART AND

COMPASS WORK

The instruments which are necessary for the purpose

of navigating a ship by Dead Beckoning are the follow-

ing:—

1. Mariner's Compass.

2. Instrument for taking Bearings in connection with

the Mariner's Compass.

3. Lead.

4. Log.

6. Parallel Eulers.

6. Dividers.

7. Protractors.

The following instruments, though not absolutely

necessary, are extremely useful, namely :

—

8. Pelorus.

9. Station Pointer.

The Mariner's Compass

The Mariner's Compass consists of a Compass Card

under which are secured one or more magnets lying exactly

parallel with a line joining the North and South points on

the Compass Card, and with their Positive or Eed Poles

towards the North point. This Card is fitted under its

centre with a cap of agate or some similar hard stone
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which rests upon the hard and sharp point of an upright

metal rod, firmly fixed to the bottom of the Compass

Bowl. By this means the card is accurately and

delicately balanced upon its centre. The Compass Bowl
is made of copper, because that metal does not affect the

Needle. The bowl is hung on gimbals, so arranged that

it always remains horizontal, no matter at what angle the

binnacle to which the gimbals are fastened may be canted.

The binnacle is generally a hollow wooden column, fitted

with slides inside for the compensating magnets, and

having some arrangement on either side at the same

height as the Compass Needles for supporting the soft

iron correctors ; it should also have perpendicular slots

on both its forward and after sides, in the fore and aft line

for placing a Flinders Bar, should it be required.

The essentials of a good Compass are, that its Magnets

should be extremely powerful, and as light as possible.

The cap in the Compass Card should be perfectly smooth,

not rough or cracked, and the pivot on which it is balanced

should also be quite smooth and free from rust. The

Card, if deflected mechanically, should return to exactly

the point from which it was twisted. It must be divided

into points, half points, and quarter points and degrees

with the greatest accuracy. The point of the pivot should

be in the same plane as the gimbals of the bowl when the

ship is upright. In the case of a Standard Compass, a

clear view of the Horizon all round should if possible be

obtainable, so that the bearing of any object can be

taken with the ship's head in any position. The vertical

line, called the Lubber Line, marked on the Compass

Bowl, must be exactly in the fore and aft line of the

ship.

In choosing a Compass go to a good maker, and pay a

good price for a good article.
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Azimuth Compasses

Por taking Bearings or Azimuths (bearings of heavenly

bodies), compasses specially fitted for the purpose are used.

Some Azimuth Compasses are fitted with a movable

ring round the outside rim of the Compass Bowl, on which

are two hinged frames, exactly opposite one another,

one containing a vertical hair, and the other a small cir-

cular aperture, below which is a small angular mirror

reflecting the degrees on the Compass Card, and above it

a narrow vertical slit in the frame. Hinged to the front

of the latter frame and in front of it, is a rectangular

piece of looking-glass, lying flat, which, working on the

hinge, can be moved in a vertical plane, so that the image

of the sun, or of any other heavenly body, can be seen

reflected in the mirror when looking through the circular

aperture. Coloured shade glasses can be placed between

the eye and the reflected sun.

To use this instrument, place your eye close to the

circular aperture in one of the vanes, then turn the ring

round till the vertical hair in the frame on the other side

of the bowl comes on with the object of which you wish

to get the bearing. When on, drop your eye a little, and

you will see the degrees on the rim of the Compass Card

reflected in the little reflector ; the degree which the hair

cuts is the bearing. This is the method to be pursued

when the object is on the Horizon or thereabouts. In

the case of an object much above the Horizon, move the

niirror up or down until you get the reflection of the

object in a line with the vertical hair, move the rim round

till it is exactly on, and read off the bearing as before.

This instrument has been to a very great extent super-

seded by the Azimuth Mirror, an invention of Lord

Kelvin's. It consists of a revolving prism by means of
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which the reflection of an object can be projected on to

the rim of the Compass Card.

To take a bearing with the Azimuth Mirror, turn the

instrument round until the object is roughly in a line with

your eye and the centre of the Compass Card. Then,

looking at the rim of the Compass Card through the lens,

revolve the prism till the image of the object falls on the

rim of the Compass Card ; read off the degree on which

the image appears, and you have the bearing of the object.

Some little difficulty may at first be experienced in using

the instrument ; in this case, as in so many others,

' practice makes perfect,' and after a few trials and the

exercise of a little patience you will find that you can get

the bearings of objects on shore, of ships, and of the sun,

moon, and stars with very great accuracy and ease. It is

not advisable to take the Azimuth of a star whose Altitude

exceeds 30°.

As the prism inverts the object observed, ships, objects

on shore, or a coast-line appear upside down, but you will

soon become accustomed to that.

See that the Compass is level by putting pennies, or

sovereigns if you have them, on the glass till the air

bubble is as near the centre as possible.

A shadow pin—a pin placed perpendicularly over the

pivot of the Compass—affords an easy way of getting

Azimuths of the Sun. Take the bearing of the shadow

of the pin and reverse it, and you have the bearing

of the Sun.

The Lead and Lead Line

There are two descriptions of ordinary Leads, namely.

Hand Leads and Deep Sea Leads. Their names indicate

the difference between them. Hand Leads are of different

weights, but they rarely exceed 9 lb. Deep Sea Leads
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often weigh 30 lb. and even more. Hand Leads are hove

by one man, and are no use except in shallow water.

When a ship is going 9 knots it takes a good leadsman to

get bottom in 9 fathoms.

Deep Sea Leads are for getting soundings in deep water,

100 fathoms and more sometimes. It is necessary when
using an ordinary Deep Sea Lead to heave the ship to. The
line is reeled off until there is a sufficient amount of loose

line to reach the bottom. The Lead, which has an aper-

ture in the lower end of it, in which grease is put (this

is called the arming), is taken on to the lee cathead or

fore tack bumpkin ; the end of the lead line is passed

forward from the lee quarter, where the reel is, outside

everything and secured to the lead. A line of men
is formed along the bulwarks, each of whom has a coil of

lead line in his hand. When all is ready the man at the

cathead heaves the Lead from him as far to leeward as

he is able, calling out 'Watch there, watch.' Each man
as his coil runs out repeats this to the next man astern

imtil the bottom is reached, or until all the line is run out

if the Lead has not reached the bottom.

This clumsy operation is nowadays almost completely

superseded by Lord Kelvin's Patent Sounding Machine.

It depends for accuracy upon the increase of pressure

in the sea as the depth increases, which the instrument

records thus :

A glass tube descends with the lead. It is her-

metically closed at the upper end and open at the

lower ; its interior surface is coated with a chemical pre-

paration, which becomes discoloured when salt water

touches it. As the depth of water increases the pressure

becomes greater, and the air in the glass tube is com-

pressed as the salt water is forced into it ; the discolora-

tion of the chemical coating shows exactly how high the
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water rose in the tube, and by means of a scale applied

to the side of the tube the -depth of water which causes

that pressure is read off.

To accelerate the descent of the Lead, piano wire is

used for the lead line ; the wire is wound upon a drum
fixed to one of the ship's quarters, which enables a few

men to haul in the Lead after a cast, instead of, as under

the old system, very often requiring the whole ship's

company. With Lord Kelvin's machine bottom can be

reached at 100 fathoms, with the ship going, it is said, as

much as 15 or 16 knots.

The old-fashioned lead line is marked as under :

At 2 fathoms a piece of leather with two ends

3
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In heaving the Hand Lead, the leadsman must use

his own judgment as to the depths obtained by reference

to the position of the marks. He reports the sounding

by the following cries :

Sounding Cries

5 fathoms ' By the mark five
'

6 „ ' By the deep six
'

6J ,, ' And a half six
'

7f ,, 'A quarter less eight

10|^ „ ' And a quarter ten '

and so on.

The Logship and Log" Line

The old-fashioned Logship is generally a piece of wood

in the form of the segment of a circle. It has lead run into

its circular part, so that when in the water it will float up-

right with the rim down. A hole is bored in each corner,

and it is fastened to the Log line with three cords, in such

a fashion that its plane is perpendicular to the pull of the

line. One of these cords is so fastened to the Logship,

that when a heavy strain is put upon it, it comes loose,

which allows the Logship to lie fiat in the water when it

is being hauled on board after use.

Sometimes a conical canvas bag is used for a Log-

ship, arranged so that it presents its mouth to the direction

of the pull of the Log line while the Log is being hove,

and its point when it is being hauled in.

The idea in each of these cases is to make the Log-

ship as nearly stationary as possible while the line is run-

ning out, and to offer the least possible resistance when

it is being hauled on board.

The principle involved in the Log line is a simple

proportion. The ordinary length of the Log glass is

28 seconds.

As 28 seconds : 1 hour : : the length of line : the length of line that
run out in 28" would run out in 1''
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Now, supposing the ship to be travelling one mile in

one hour, we have the following proportion :

—

28 seconds
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47 ft. 7 in. a piece with 3 knots is placed, and so on

generally up to about 7 knots. Halfway between these

knots a single knot is placed. So we have the following

marks, at a distance of the half of 47 ft. 7 in. apart : A
white piece of rag, 1 knot, 1 knot, 1 knot, 2 knots, 1 knot,

3 knots, 1 knot, 4 knots, 1 knot, 5 knots, 1 knot, 6 knots,

1 knot, 7 knots, 1 knot. If the 28-second glass is used,

the knots run out indicate the speed of the ship ; but if

the 14-second glass is used, the number of knots run out

must be doubled to give you her speed.

In practice the Log is hove thus :

A man stands with the reel, on which the Log line is

held above his head, so that it can run clear of everything.

Another man holds the Log glass, seeing that the upper

bulb is clear of sand. The man heaving the Log sees

that the Logship is properly fastened, and asks if the

Log glass is clear. He then throws the Log as far to

leeward as he can, and lets the Logship run the line off

the reel, till the white mark passes through his hands,

when he says ' Turn ' to the man holding the Log glass,

who instantly reverses it. When the sand has run out, the

man holding the glass calls ' Stop,' and the Log line is

seized and prevented from running out any more. The

number of knots run out gives the speed of the vessel, as

explained already.

Patent Logs, which indicate the number of miles the

ship has gone through the water, possess so great an ad-

vantage over the ordinary Log, which only tells you the

rate of the ship at the moment of heaving the Log, that

the latter has become quite out of date, patent Logs being

now invariably used at sea.

The patent Logs most commonly used are two in

number. One is called the Harpoon Log, and the other

the Taffrail Log.
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The Harpoon Log is shaped like a torpedo, and has

at one end a metal loop to which the Log line is fastened,

and at the other, fans which cause the machine to spin

round as it is drawn through the water. The spinning

of the instrument sets a clockwork machinery in motion,

which records the speed of the vessel upon dials, the

rotation of the instrument being, of course, dependent

upon the rate at which it is dragged through the water.

When you want to know the distance your ship has

run, you must haul in the Log and read it off on the

dial.

The Taffrail Log is called so because the dial which

contains the recording machinery is secured to the taffrail.

It is connected by a long line with a fan towing astern,

which revolves when dragged through the water, and

makes the line spin round. This causes the machinery in

the dial to indicate on the face of the dial the distance

travelled. The advantage of using the Taffrail Log is

that it can be consulted at any time without having to

haul the line in ; and, as it is usually fitted with a small

gong which strikes as every one-eighth of a mile is run

out, it is a simple matter to find out the speed of the ship

at any moment by noting the time elapsing between

two successive strokes of the gong.

Parallel Rulers

For chart work parallel rulers are indispensable.

They are simply rulers so arranged that you can move

them over a chart and their edges will always remain

parallel to any line from which they may have started.

Of course there is some danger, if the distance to be

moved is considerable, of the ruler slipping, particularly

when a ship is knocking about. And I strongly recom-
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mend Field's improved Parallel Eulers, by means of

whicli True Courses on charts can be measured without

shifting the rulers except to the nearest Meridian, and

which give more accurate results than those given by the

ordinary parallel rulers when referred to the Compass
Cards on the chart. Be careful in purchasing a pair of

Reed's Parallels, to see that the centre-mark is on the outer

edge of one of the halves of the ruler, and the radii on the

outer edge of the other. To find a True Course with a

pair of these rulers, lay one edge along the Course to be

measured, then move the rulers till the centre-mark on

the edge is exactly over the nearest Meridian ; keeping it

there, close the ruler tightly, and the degree cut by the

same Meridian on the edge of the ruler is the True Course

required.

The best sized rulers for all purposes are those

24 inches in length. It is of little consequence whether

they are made of ebony or boxwood. The wood least

likely to warp is the best.

Dividers

Dividers are necessary for measuring distances on the

chart. They should not, for sea work, be too delicate of

construction. The legs should move easily, but not too

freely, and the points need not be very sharp. Charts get

a good deal cut about when a hole or two is made every

time the dividers are used.

Callipers, or single-handed dividers, are very useful,

as with a little practice they can be used with one hand.

Micrometer dividers are not much use at sea ; they are

very pretty instruments, but too delicate for ordinary

chart work.

VOL. I. E
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Protractors

The most useful form of protractor for chart work is

made of horn or celluloid. It is very convenient to have

a thread or piece of silk attached to the centre, as the

measurement of angles is greatly facilitated thereby. The

ordinary protractor is divided into degrees radiating from

the centre. It is usually a semicircle, the horizontal line

passing through the centre being marked 90° at each

end, and the vertical line 0°.

To measure a Course ruled on the chart, place the

centre of the protractor on the point where the Course

cuts any Meridian, and see tha.t the zero on the vertical

line of the protractor is also on the same Meridian. You

can now read off the angle of the Course where it passes

under the semicircular edge of the protractor.

The above instruments are essential, and the following

will be found very useful

:

The Pelorus

A Pelorus is a dumb Compass Card—that is, a card

without a needle—fitted with sight vanes for taking bear-

ings. It is usually placed on a stand, and so mounted that

the Card can be turned round to any desired position, and

there fixed by means of a screw. The sight vanes can

also be turned round and fixed to the Card at any required

bearing.

It is a handy instrument for determining Compass

Error, and also for placing the Ship's Head in any position

that may be wished. Its use will be more fully explained

later on in the chapter on Magnetism and Compass Cor-

rection.
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Station Pointer

A Station Pointer is an instrument with three legs

by which, when used in conjunction with a chart, the

position of a ship can be quickly ascertained when the

angular distance between three objects on shore is known

either by measurement or by their bearings. With the

three legs measuring the angular distance between the

three objects and clamped, place the instrument on the

Chart in such a position that the legs are exactly even

with the three objects on the Chart ; the ship's position is

indicated by the centre of the Station Pointer.
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CHAPTEE IV

THE PRACTICAL USE OF THE COMPASS

A Compass Card is, like all other circles, divided into

360 degrees. Each degree (°) consists of 60 minutes ('), and

each minute contains 60 seconds ("). It has four Cardiual

Points, Xorth, South, East, and West ; four Quadrantal

Points, NE, SE, SW, and XW; and twenty-four inter-

mediate Points, as shown in the figure, thus making

thirty-two Points in all. As there are 360° in any circle,

each Point contains 11^ 15' ; that is, 360° divided by 82.

Each Point is subdivided into half and quarter Points.

As the Compass Card moves freely on its pivot, the

North Point of the Card is caused by the Compass Keedle

to point towards the North Pole of the earth.

In speaking of the direction of anj' object from the

ship, or of the direction in which a ship is proceeding, it

is equally accurate to use Points, half Points, and quarter

Points, or Degrees, jNIinutes, and Seconds ; but as in

many cases their use simplifies calculation very much,

it is advisable for the student to use Degrees and parts

of Degrees.

The Bearing by Compass of any object is the angle, at

the centre of the Compass Card, between the North and

South line on the Card and an imaginary straight line

drawn from the centre of the Compass Card to the object.

A Bearing is measured along the circumference of the

Compass Card, so many Degrees and parts of a Degree
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from the North or South Points on the Compass Card to

where the imaginary line cuts the circumference of the

Card.

On the inside of each Compass Bowl a vertical line is

marked, indicating the line of the keel of the vessel. This

is called the ' lubber line.' AVhatever Degree, Point, half

Fig. 1.

—

Compass Card

Point, or quarter Point is opposite the lubber line, is the

Compass Course you are steering.

Variation.—The Compass Needle is supposed to point

North and South with unswerving fidelity— ' true as the

Needle to the Pole ' is the idea. But unfortunately the

idea is inaccurate, for the Needle very rarely points to the

North and South Poles of the earth ; if it did, the mariner
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would be relieved of much anxietj- and bother. It points

towards what are called the North and South Magnetic

Poles of the earth, situated iu about Latitude 70° N and

Longitude 97° W, and in Latitude 74° S and Longitude

147° E. Why it points in that direction goodness only

knows ; but it does—that is to say, it does when no disT

turbing causes affect it.

'S\Tien the Needle does not point True North and

South it makes a certain angle vrith the Meridian or True

North and South line. This angle is called the 'Varia-

tion' of the Compass. A'ariation varies in different pai-ts

of the globe, and is also constantly changing, but as the

change is slow and the Variation is given on all charts,

you can always find what it is by looking at your chart,

unless you are using an antediluvian one. The Compass

Needle affected bj' A'ariation and by nothing else is said

to point Correct Magnetic.

Be elation.—But another and very inconvenient influ-

ence comes into operation in most ships, and in all vessels

built of iron or steel. The ship itself is a Magnet, and

its Magnetism affects the Compass Needle, causing it to

diverge from the Correct Magnetic Meridian. The angle

which it makes with the Correct Magnetic Meridian is

called the ' Deviation ' of the Compass.

Thus it will be seen that any object may have three

different bearings from a ship—namely, first, a True

Bearing. This is the angle formed by an imaginary Une

drawTi from the object to the Compass, and the True

Meridian which passes through the Compass. Second, a

Correct Magnetic Bearing, which is the angle formed by

an imaginary line drawn from the object to the Compass,

and the IMagnetic Meridian which passes through the

Compass. Third, a Compass Bearing, which is the angle

formed by an imaginary line drawn from the object to the
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Compass and the North and South Hne of the Compass

Card.

If yon want to know how an object bears for any

charting work, you must first take the Bearing by Compass,

and then correct the Compass Bearing for the Deviation

due to the position of the ship's head ; this correction will

give you the Correct Magnetic Bearing. This is suffi-

cient if you are using a Magnetic chart, that is to say, a

chart the Compasses drawn on which show the Magnetic

Points. But if you are using a chart showing only the

True Points, or if for any other reason you want the True

Bearing, you must correct the Correct Magnetic bearing

for Variation. This will give you the True Bearing of the

object, whatever it may be. The way of making these

corrections will be explained later on.

Now, as to Courses, the same facts and considerations

apply.

The True Course of a ship is the angle between her

track through the water and the Meridian—that is to say,

the True North and South line. To find it from a Com-

pass Course, three allowances—namely, for Leeway, De-

viation, and Variation—must be made. To a Correct

Magnetic Course, Variation only must be applied.

The Correct Magnetic Course of a ship is the angle

between the ship's track and the Magnetic Meridian, that

is, the line joining the North and South Magnetic Pole of

the earth. To find it from a Compass Course, Leeway

and Deviation must be applied.

The Compass Course of a ship is the angle between

the line of the ship's keel and the line of the North and

South Points on the Compass Card.

If you know the True Course between two places, and

want the Correct Magnetic Course, you must apply the

Variation to the True Course, and there you are. Then
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if you want the Compass Course the Deviation, if anj',

applied to the Correct Magnetic Course, will give it to

you ; and if your ship makes no Leeway, and there are

no currents, you \sdll get to your destination if you steer

}"our Compass Course thus found. But if j-ou are making

Leeway, or if tides or currents are setting you across yoiur

Course, allowance must be made for them.

It is in making these corrections and allowances that

the whole system of steering by Compass and using the

Chart consists.

The converse, of course, holds true. If you know

your Compass Course between two places, and want the

Correct Magnetic Course, you must correct the former

for Deviation ; and if you require the True Course you

must correct the Correct Magnetic Course for Variation.

Correction of Compass Courses

As in working all problems in the various saihngs True

Courses must be used, it is very necessary to understand

how to turn a Compass Course into a True Course.

To find a True Course from a Compass Course.—In

the first place bear in mind alwaj's that as the rim of the

Compass Card represents the Horizon, you must always

imagine yourself to be looking from the centre of the

Card out towards the rim in the direction of the Course

to be corrected.

The iirst thing to do is to correct your Compass

Course for Leeway if the ship has made any. Leeway is

the angle between the line of the keel and the track of

the ship through the water, and is caused by the wind

forcing the vessel sideways as well as forward. The

amount of Leeway can only be judged by experience.

The correction for Leeway must always be made in the
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direction towards which the wind is blowing ; therefore

on the Starboard Tack the allowance is made to the left,

on the Port Tack to the right. For instance, with the

wind North, you are steering NW, and are making one

Point of Leeway ; the real Course of the ship would be

NWb W.
Having corrected for Leeway, proceed to make the

other corrections. You have, of course, a Deviation Card,

or Table of Deviations, and you know the amount of your

Deviation for the direction of your ship's head by Com-

pass, and also whether it is Easterly or Westerly. If it

is Easterly, apply it to the right of j^our Compass Course,

as corrected for Leeway. If it is Westerly, apply it to

the left, and you now have your Correct Magnetic

Course.

To this Correct Magnetic apply the Variation, which

you can find on the Chart, to the right if it is Easterly,

to the left if it is Westerly, and you arrive at the object

of your ambition, the True Course.

Exactlj'' the same process must be gone through in

finding the True Bearing from the Compass Bearing,

with the exception that there is no Leeway to be allowed.

This is all very simple so long as you never forget

that you must consider yourself to be in the centre of the

Compass, looking outwards towards the Course or the

bearing to be corrected.

To find a Compass Course from a True Course.—But

the converse proposition, of finding a Compass Course

from a True Course, or a Compass Bearing from a True

Bearing, is not quite so simple, and demands your careful

consideration.

In this case the first step is to allow for Variation.

Apply the Variation to the True Course in the opposite

direction to which you applied it in turning a Correct
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Magnetic into a True Course—that is to say, if the

Variation is Westerly, apply it to the right ; if it is

Easterly, apply it to the left.

The next operation is to allow for Deviation, and here

comes the difficulty. You do know the Deviations on

every position of the Ship's Head by Compass, but you do

not know the Deviation for the Ship's Head on any given

Correct Magnetic Course, and you have to find it out.

The simplest plan is to find it by inspection—by drawing

a small portion of a Napier's curve, as explained later on,

and measuring off the Deviation from it ; but you must

also know how to calculate the Deviation, and the best

way of doing so is as follows. Judge, by reference

to your Deviation Card, whether the Deviation appli-

cable to the Correct Magnetic Course which you wish

to convert into a Compass Course will be to the right or

to the left ; then write down three Compass Courses,

within the limits of which the Compass Course to be

derived from the Correct Magnetic Course you are dealing

with is pretty certain to be included. To these Compass

Courses apply their respective Deviations, which, of course,

j'ou know. You have now three Correct Magnetic Courses.

If the Correct Magnetic Course you are correcting is the

same as one of these three Correct Magnetic Courses,

then the Deviation which you used to find that Correct

Magnetic Course is the Deviation to be applied to the

Correct Magnetic Course you wish to convert into a

Compass Course. Don't forget that in turning your

three Compass Courses into Correct Magnetic Courses,

you apply the Deviation directly, that is. East to the

right, West to the left ; and that in converting the

Correct Magnetic into a Compass Course, you apply

the Deviation indirectly, that is. East to the left. West to

the right.
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But it may, and probably will, happen that not one of

the three Compass Courses you have turned into Correct

Magnetic Courses coincides exactly with the Correct

Magnetic Course you have to turn into a Compass Course.

In such an event you must do a little sum in simple pro-

portion.

You have got three Correct Magnetic Courses, on

which you know the Deviation. You find that the

Correct Magnetic Course you have to convert to a

Compass Course lies between two of them. Take the

difference between these two Correct Magnetic Courses,

and call it A. Take the difference between one of them

and the Correct Magnetic Course you are dealing with,

and call it B. Take the difference between the Deviations

on the two Correct Magnetic Courses used, and call it

C. Then as A is to B so is C to the answer. Multiply

B by C and divide the result by A. The result gives you

the portion of Deviation to be added to or subtracted from

the Deviation belonging to that Correct Magnetic Course

from which B was measured ; whether it is to be added or

subtracted, will be apparent on the face of the case.

It may also happen that, having turned your three

Compass Courses into Correct Magnetic, you will find

that the Correct Magnetic you desire to turn into Com-

pass does not lie within their limits, but is less than the

least of them, or greater than the greatest of them ; in

which case you must select one or two more Compass

Courses to convert until you have two Correct Magnetic

Courses, one greater and the other less than the Correct

Magnetic Course you are dealing with, or, if you are

lucky, one of which coincides exactly with it. This is a

long explanation, and sounds complicated, but it really is

simple, and its simplicity will best be shown by one or

two examples, worked with the following Deviation Card.
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It will be seen that the Deviation is given for the Ship's

Head on every Point by Compass.

Deviation Cabd

Ship's Head by
Standard Compass
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the above Correct Magnetic Courses, namely, S 4° 57' W
and S 23° 26' W.

To proceed.

Find the difference be-

tween the two Correct

Magnetic Courses

S 4° 57' W
S 23° 26' W

Find the difference be-

tween the nearest Cor-

rect Magnetic Course,

namely, S 4° 57' W and
S 16° 52' 30" W

S 4° 57' W
S 16° 52' 30" W

Find the difference be-

tween the Deviations

due to the Compass
Courses you have con-

verted
6° 18' W
0° 56' E

18° 29' W 11° 55' 30"
i

7° 14'

Then, as 18° 29' : 11° 55' 30" :: 7° 14' : x.

To simphfy the sum, use the nearest decimals of a

degree, and say: as 18°-5
: ll°-9 :: 7°-2

: x.

Multiply the second and third term, and divide by the

first term.
^^.g

7-2

238
833

18-5 ) 85-68 (
4-6

740^

1168
1110

Therefore, 4°'6 or 4° 36' is the correction to be applied

to the Deviation on the nearest Course, which is S b W,
or S 11° 15' W, and it must be subtracted, because the

Deviation Westerly is decreasing.

Deviation on S 11° 15' W (Compass Course) = 6= 18' W
(Correction) _4° 36'

1!° 42' W
1° 42' is therefore the Deviation to be applied to the

Correct Magnetic -Course S b W ^ W.
S b W i W = S 16° 52' 30" W
Deviation 1°42' W

S 18° 34' 30" W
S b W I W is the Compass Course to steer.

Take another case. Suppose you find from the chart

that the Correct Magnetic Course to the place to which

you want to go is N 40° B, and you want to find out what

Compass Course to steer.
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Take two Compass Courses from the Deviation Card,

and correct them for Deviation.

Compass Courses Deviation Corr. Mag. Course

NE = N 45° E corrected for 2° 35' E = N 47° 35' E
NE b N = N 33° 45' E corrected for 6° 42' E = N 40° 27' E

Here you have hit so nearly upon the Correct

Magnetic Course that no sum in proportion is necessary,

and in steering NE b N by Compass, you will be within

1° of the Correct Magnetic Course you require, and

goodness knows that is near enough.

Again, suppose you want to find the Compass Course

to steer in order to sail S 42° B Correct Magnetic.

Compass Courses Deviation Corr. IVIag. Course

SSE = S 22° 30' E corrected for 26° 16' W = S 48° 46' E
S b E = S 11° 15' E corrected for 20° 58' W = S 31° 43' E

The Correct Magnetic Course you require to convert

into a Compass Course lies between these two, and a

sum in proportion must be done.

48° 46' 42° 0' 26° 16' W
31° 43' 31° 43' 20° 28' W
17° 3' 10° 17' 5° 48' W

Therefore, 17° 3' : 10° 17'
: : 5° 48' : x.

Or put for convenience sake decimally,

17 : 10-3 :: 5-8 : X

Multiply the second and third terms and divide by the

first

:

10-3

5-8

824
515

17 ) 59-74 (
3-5 = 3°-30' (the correction required)

51
~87~

85

Deviation on S 31° 43' E (Corr. Mag.) = 20° 28' W
(Correction) = + 3° 30'

Deviation on S 42° E (Correct Magnetic) = 23° 58' W
Correct Magnetic Course S 42° 0' E

Deviation 23° 58' W
Compass Course to steer = S 18° 2' E
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Now for Bearings. To turn a True Bearing into a

Compass Bearing, first convert True into Correct Mag-

netic, by applying the Variation, and then apply the

Deviation due to the position of the Ship's Head.

Eemember that the Deviation due to the Bearing has

nothing whatever to do with it. In all these cases

you will find it convenient to work with Degrees and

parts of a Degree, therefore accustom yourself to turn

Points and parts of a Point into Degrees and parts of a

Degree.

A Table of the Angles which every Point and Quaetee Point

OF THE Compass makes with the Meeidian

North



b"4 THE PRACTICAL L'SE OF THE COMPASS

The scale upon the preceding page shows you the

number of degrees due to any Point, half Point, or quarter

Point, and vice versa. At sea you have always a Compass

with you, with degrees indicated on the Card ; all the

Epitomes contain Tables giving degrees for points and

points for degrees, and the Board of Trade Examiners

will provide you vdth a compass card containing a Table

of Angles similar to the one overleaf, so calculation is

really unnecessary ; but at the same time there is no

harm in knowing how to calculate for yourself the

number of Degrees contained in any Course given in

Points and parts of Points, and the Points and parts of

Points equivalent to any number of Degrees.

To turn Points into Degrees, etc.—If you want to ex-

press Points in Degrees : as every Point contains 11° 15',

all you have to do is to multiply the Compass Course by

11° 15'. Eor example, if the Course is E | N—that is,

7i Points from North, or in decimals 7-25—this multi-

pHed by 11° 15', or in decimals ll°-25, vnll produce the

number of Degrees in E f N. Thus :

E } N = 7i Points from North = 7-25 Points
11° 15' = Hi Degrees = 1125 Degrees

3625
1450
725
725

81'5625 Degrees

•5625

But the -5625 must be turned into minutes: ^
33-7500 minutes.

•75

There remains '75 to be turned into seconds : ^
45-00

and 81° 33' 45" is the arc required. Therefore, E | N is

equal to N 81° 33' 45" E.

To turn Degrees etc. into Points.—Now for the reverse

of this problem—namely, to express Degrees in Points.
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To find what N 81° 33' 45" E is in Points etc. The first

thing is to turn Seconds into decimals of a Minute, and

Minutes and decimals of a Minute into decimals of a

Degree.

60 ) 450"

(

420
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Error is caused by Variation or by Deviation, or by

both combined. We will consider the effect of Error from

whatever cause it arises.

Consider yourself to be in the middle of the Compass,

looking towards its circumference. Suppose the North-

seeking end of the Needle to be from some cause or other

drawn to the right. The Error will be Easterly. You
can see this for j'ourself . Set the movable Compass Card

pointing true North ; suppose the Needle to be deflected

two Points to the right, the Error will be two points to

the right, and the Error is in scientific works called ^Zms ;

but I presume, because the Error is towards the East when

you are looking North, it is commonly called Easterly

Error. It is called Easterly Error when either end

of the Needle is drawn towards your right, even if it

is drawn towards the West ; for instance, leave the

Compass Card in the same position, and look toward the

South. The South-seeking end of the Needle has been

drawn towards your right hand, and the Deviation is

Easterly, though the South-seeking Pole of the Needle is

deflected towards the West. Hence the rule always to be

observed is, that when the Needle is drawn to the right,

Deviation is Easterly ; when the Needle is drawn to the

left, it is Westerly.

Another rule never to be forgotten is, that when the

True Bearing is to the right of the Compass Bearing,

the Error is Easterly. When it is to the left it is

Westerly. This sounds odd in connection with the fore-

going rule, but a glance at the Compass Card vdll show

it is true.

Make the North Point of the movable card to coincide

with the North Point of the fixed card ; now shift the

movable card round two Points to the right : the Needle

is now pointing to NNE (True), NNE is to the right of
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North, therefore the Error is two Points easterly. Shift

the card in any way you hke, say till the North-seeking

end of the Needle points to WNW. WNW is six

Points to the left of North, therefore the Error is six

Points Westerly. Now if you look the other way towards

the South, the South-seeking end of the Needle will point

to ESB (True). ESE is six Points to the left of South,

and the Error is of course six Points Westerly, although

the South-seeking end is actually drawn to the East.l]

The only thing to be absolutely remembered is, that ';

looking from the centre of the Compass towards any part

of the circumference, if True Bearing is to the right

of the Compass Bearing, Deviation is Easterly ; if it

is to the left it is AVesterly. And if the Needle is

drawn to the right of True it gives Easterly Deviation
;

,'

if it is drawn to the left of True it gives AVesterly

Deviation.

Supposing you know that with the Ship's Head in a

certain direction there is such and such an Error, and you

want to find out what Course to steer in order to counter-

act that error and make the required True Course. Let

us imagine you want to steerNE (True) , and you know that

with the Ship's Head NE you have 1^ Points Westerly

Error. Fix the movable card pointing North and South

(True), then the Compass NE will of course be pointing

NE (True) . But the Needle is deflected to the left, because

the Error is Westerly 1\ Points. Eevolve the Card till the

NE Point points to NE b N J- N ; if, therefore, you steer

NE by your Compass, you would be steering NE b N ^ N
(True), which would not do at all. You would have to

steer NE b B|E, or 14- Points to the right of NE by

your Compass. Therefore, it is plain that to allow for an

Error, if the Error is Westerly, you must steer the amount
of Error to the right of the Course wanted, as shown on

F 2
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your Compass. If the Error is Easterly, steer the amount

of Error to the left of j^our Compass. Here comes another

golden rule in finding what Course to steer. Knowing

the True Course and the Error of j^our Compass, Easterlj'

Error must be allowed for to the Left, Westerly to the

Eight.

Don't forget these three important facts. 1st, if True

is to the right. Error is Easterly ; and if True is to the left.

Error is Westerly. 2nd, if the needle is deflected to the

right of True the Error is Easterly, and if to the left of

True the Error is Westerly. 3rd, knowing the Error, steer

the amount of it to the left if the Error is Easterly, and

to the right if it is Westerlj^, in order to counteract the

Error.

(In the ordinary Masters' Examination it is required

that the candidate should be able to ascertain the Correct

Magnetic Bearing by taking the Compass Bearings of a

distant object with the Ship's Head in the Cardinal and

Quadrantal Points, and to draw and understand a Xapier's

Diagram.)

To Ascertain the Deviation

In order to ascertain the Deviation of your Compass,

it is necessary to know how to find the Correct Magnetic

Bearing of a distant object at sea, so as to compare it

with its bearing by Compass. The following method is

usually adopted.

Take the Compass Bearings of an object not less than

5 or 6 miles distant, with the Ship's Head on the four

Cardinal and on the four Quadrantal Points by Compass

by swinging the ship. If the Bearings are all the same,

the Compass has no Deviation. But if they differ, wTite

them down and turn them into degrees. If they are all in

the same Quadrant, their sum divided by 8 will give the
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Correct Magnetic Bearing of the distant object. For

example

:

No. 1

Ship's Head by
Standard Compass
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Thus N 90° E will of course be East, and N 100° E
will be S 80° E. Here is an example :

Xo. 2

ship's Head by
]
Compass Bearing of

Standard Compass Distant Object

North S 84° W
NE West
East N 81° W
SE X 76° W

Ship's Head by
Standard Compass
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No.
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then take the less from the greater. Thus S 80° E taken

from 180° is N 100° E. X 100° E - N 75° E is 25°,

which is the Deviation.

But, again, the Bearings may He on opposite sides

of the North or South Points. Suppose the Compass

Bearing of the distant object to be N 5° E, and its Correct

Magnetic Bearing X 13° AA^, obviously you must add

them together. You have 5° on one side of North, and

13° on the other side, therefore they are 18° apart, and

the Deviation is 18°.

To name the Deviation.—Fancy yourself situated in the

middle of the Compass Card and looking out to the rim

and tov?ards the Bearings ; then if the Correct Magnetic

is to the right of the Compass, the Deviation is Easterly

;

if Correct Magnetic is to the left it is Westerly.

Having thus found the Deviation and named it

correctly for the Ship's Head North by Compass, proceed

to find the Deviations, and name them with the Ship's

Head NE, East, SE, South, SW, AA^est, and NAA' . If

you can do one you can do all. It only requires a little

care in naming them correctly. Here are the examples

given above completed. No. 1 is :

Ship's Head by
Standard Compass
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Magnetic, N 35° 38' E, is to the left of the Compass Bearing

N 40° E, and so on for the rest.

Ship's Head
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Napier's Diag-ram

A Napier's Curve is a most ingenious and useful

invention, for vsrhich the author deserves the thanks of all

those who go down to the sea in ships, and especially of

those who go up for examination. It offers the simplest

of all methods of turning Compass Courses into Correct

Magnetic Coiuses, or Correct Magnetic Courses into

Compass Courses, and of ascertaining the Deviation of

the Compass with the Ship's Head in any position.

The principle of Napier's Diagram is very difficult to

explain, and I give up the attempt. You have got to

imagine as best you can the circular rim of the Compass

Card represented as straight.

The diagram consists of a straight line marked North

at the top and bottom, and South in the middle, and

divided into the thirty-two Points of the Compass. The

degrees are given from zero at the top to 90° at East,

from 90° at East to zero at South, from zero at South to

90° at West, and from 90° at West to zero at North at

the bottom. Lines are drawn forming an angle of 60°

with the medial line of the Diagram, and intersecting each

other at every Compass Point. The right-hand side of

the medial line is East, the left-hand side is West. The

lines drawn from right to left downwards are plain, those

from left to right are dotted. A glance at the accompany-

ing diagram (fig. 2) will show this at once.

To draw a curve of Deviation.—In practice you would

of course have first to find the Deviation on the four

Cardinal and the four Quadrantal Points ; but these will

be given you at the Board of Trade Examination.

With a pair of dividers measure anywhere on the

medial line the Deviation with the Ship's Head North

;

then, if the Deviation is Easterly, measure it on the dotted
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drawn to the
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line from North to the right, and irark the spot on the

diagram. Proceed to deal in the same way with the Devia-

tion for the Ship's Head on NE, Bast, SB, South, SW,
West, and NW back to North again : all you have to do in

each case is to measure the Deviation with a pair of dividers

anywhere on the medial line, marking it off on a dotted line

to the right if it is Easterly, to the left if it is Westerly

Deviation. The Eastej'ly Deviations will be all down-

wards, and the Westerly Deviations all upwards. Having

measured and marked the Deviation for the Cardinal and

Quadrantal Points, you will have nine dots upon the

diagram. Through these draw a curve with a pencil,

fairing it nicely with the eye, and then draw it in with ink.

This curved line represents the Deviation of the Compass

with the Ship's Head on every Point, half or quarter Point,

or degree. So much for drawing the curve; now to use it.

Use of Napier's Curve.—The curve can be used for

four purposes. 1st, to find the Deviation with the Ship's

Head on any degree by Compass. 2nd, to find the Devia-

tion with the Ship's Head on any degree Correct Magnetic.

3rd, to turn any Compass Course into a Correct Magnetic

Course. 4th, to turn any Correct Magnetic Course into a

Compass Course.

If you want to know the Deviation of the Compass
with the Ship's Head on any degree by Compass : from

that degree and along a dotted line if a dotted line passes

through it—or if no dotted line passes through it, then

parallel to the nearest dotted line—measure the distance to

the curve with a pair of dividers ; measure this distance

off on the medial line, and that gives you the Deviation

required : it is Bast if the curve is to the right of the

medial line. West if it is to the left of the medial line.

If you want to know the Deviation with the Ship's Head
Correct Magnetic instead of by Compass, measure from
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the medial line out to the curve along a plain line instead

of along a dotted one, and proceed as in the former case.

If you want to torn a Compass Course into a Correct

Magnetic Course : Place the point of one leg of your

dividers upon the Compass Course on the medial line and

measure out to the curve along a dotted line ; or if that is

impossible, then parallel to the nearest dotted line and, keep-

ing the point of the dividers down on the cur^-e, measure

back again to the medial line along or parallel to the

nearest plain line; the Course indicated on the medial

line will be the Correct Magnetic Course required.

On the other hand, if you want to find the Compass

Course to steer in order to make good a Correct Magnetic

Course, measure out in the same way along or parallel to

& plain line, and back along or parallel to a dotted line.

This is not difficult to remember, but the following

doggerel lines may help :

From Compass Course Magnetic Course to gain,

Go out by dotted, back again by plain ;

But if YOU want to steer a course allotted.

Go out by plain and back again by dotted.

If your courses are given you in Points and parts of a

Point the most accurate plan is to turn them into degrees

and proceed as above. But to avoid trouble and save

time you can use Points and half and quarter Points by

judging M'here they start from on the medial line. The
Points only are written on the medial line, so you must

estimate the position of the half and quarter Points.

You will be required in the Board of Trade Examina-

tion to draw a Xapier's Curve, the Diagram being furnished

to you, and the Deviations on eight Points. You will be

required to turn three or four Compass Courses into

Correct Magnetic Courses, and three or four Correct

Magnetic into Compass Courses. And j'ou will be



THE PRACTICAL USE OF THE COMPASS

required to find the Correct Magnetic bearing of tliree or

four objects, the bearing by Compass of which is given, as

is also the direction of the Ship's Head. Kemeniber in this

latter case that the Bearings have nothing to do with the

Deviation—that is due to the position of the Sliip's Head.

What you have to do is to find the Deviation due to that

position in the manner already described, and then apply

it to the bearings in precisely the same way as you turn

Compass Courses into Correct Magnetic Courses.

A few examples are given as they would be presented

to you in the Board of Trade Examination.

1 (a) In the following table, give the Correct Magnetic

bearmg of the distant object, and thence the Deviation.

Ship's Head
by Standard
Compass
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(6) Having found the Deviations, strike off the curve

on a Napier's Diagram (see No. 1 Curve, fig. 3).

(c) With the Deviations as above, give the Course

you would steer by the Standard Compass to make good

the following Correct Magnetic Courses.

Correct Magnetic Courses N 28° E S 3° W S 87° E N 57° W
Corresponding Standard

^ ^, ggo g g go -^y g ggio g j^- 7,0 -^y

Compass Courses 1 '
"'' ^ ^

The Compass Courses are arrived at thus. From the

point N 28° E on the medial line of the diagram go out,

with your di^dders parallel to the plain lines, to the curve,

and come back, parallel to the dotted lines, to the medial

line. You will reach the medial line at N '22° E, which is

the Standard Compass Course. Proceed in the same way

to deal with the other Magnetic Courses. (The lines by

which you go out and come back are marked on the

diagram.)

[d) With the Deviations as above, give the Correct

Magnetic Courses due to the following Standard Compass

Courses you have steered.

standard Compass Courses W b X i N SW J W SSE KE § E

Con-ect Magnetic Courses N 59" W H63i°W S 3'J° E N 50^E

Find the point W b N i N on the medial line x)f the

diagram. With your dividers go out to meet the curve

from this point along the dotted line, and come back

parallel to the plain lines, and you arrive at 301°, that

is, 360° - 59°, or N 59° W. Proceed in the same way for

the other Courses. (The lines marked in the diagram

indicate clearly the method.)

(e) The Ship's Head being SE ^ B by Standard

Compass, find the Correct Magnetic Bearings of two

objects which bore by Standard Compass S b E |- E and

SW I AV respectively.
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By the curve you find the Deviation with the Ship's

Head SE i E to be 1%° W.

standard Compass Bearings SbEJE=S14° E
Deviation = 19i° W

Correct Magnetic Bearings = S 33|° E

Standard Compass Bearing SW f W = S 53^ W
Deviation = 19* W

Correct IWagnetio Bearing = S 34° W

2 (a) In the following table give the Correct Mag-
netic Bearing of the distant object, and thence the

Deviation.

Sliip's Head
by Standard
Compass

North
NE
East
SE

Bearing of

Distant Object
by Standard

S80°E
N76°E
N70°E
N74°E

Devi!
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{b) Having found the Deviations, strike off the curve

on a Napier's Diagram (see No. 2 Curve, fig. 4).

(c) With the Deviation as above, give the Courses

you would steer by the Standard Compass to make good

the follovs'ing Courses Correct Magnetic.

Correct Magnetic Courses N 60° E W b S S 20° E N | W
Standard Compass Courses N 47° E N 78° W SE b S N 4° E

(The way the Courses are obtained is shown in the

diagram.)

(d) With the Deviations as above, give the Correct

Magnetic Courses due to the following Standard Compass

Courses you have steered.

Standard Compass Courses NW b W S | W E b N J N SE b S

Correct Magnetic Courses N 84° W S 20= W East S 20° E

(The working of these is shown in the Napier

Diagram.)

(e) The Ship's Head being NW i W by Standard

Compass, find the Correct Magnetic Bearings of two

objects which bore by Standard Compass NNW
-J-
W

and W b S |- S respectively.

Deviation, Ship's Head being NW |-W by Standard

Compass, is found by the curve to be 29° W.

Standard Compass Bearing NNW J W = N 28° W
Deviation = 29° W

Goriest Magnetic Bearing = N 57° W

Standard Compass Bearing W b S i S = S 76° W
Deviation = 29° W

Correct Magnetic Bearing = S 47° W

3 (a) In the following Table give the Correct Mag-
netic Bearing of the distant object, and thence the

Deviations.
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Ship's Head
by Standard
Compass



82 THE PRA.CTICAL USE OF THE COMPASS

Standard Compass Courses NE SE|S WbSJS NWbNiN
Correct Magnetic Courses N 30° E S 52° E N 80° W N 28° W
(The diagram shows how these results are obtained.)

(e) The Ship's Head being NW bW i W by Stan-

dard Compass, find the Correct Magnetic Bearings of two

objects which bore by Standard Compass NE -^ E and

NW 5-W respectively.

Deviation with the Ship's Head NWbW^-W by

Standard Compass is 10° E.

standard Compass Bearings NE i E = X 50^° E, and NW iW = N 48°W
Deviation 10° E 10° E

Correct Magnetic Bearings N 60^° E and N 38° W
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CHAPTER V

THE SAILINGS

Before showing how to work the various problems in

the Saihngs, it is necessary to explain how to use the

Traverse Tables and Table XXV.
The Traverse Tables.—These Tables are exceedingly

useful, for by their means all problems in Navigation which

consist of the solution of right-angled plane triangles (on

which more will be said in the Chapter on Algebra and

Trigonometry)—and there are many of them—can be

worked by inspection. All such cases consist of some com-

bination of Course, Distance, Difference of Latitude, and

Departure. If you know any two of them, the Traverse

Table enables you to find the other two.

The Difference of Latitude and Departure due to every

Course from 1° to 89°, and for every Distance from 1 to

300, or from 1 to 600 miles, are tabulated. In Table I.

Courses are given from ^ Point to 4 Points at the top, and

from 4 Points to 7f Points at the bottom, and Distance is

given at the side from 1 to 300 in columns marked Dist.

And the Difference of Latitude and Departure are given

alongside the Distance column in two columns named Lat.

and Dep. respectively, in miles and decimals of a mile.

In taking a Course from the top of the page—that is to

say, any Course from a j Point to 4 Points inclusive—the

Difference of Latitude column lies next to the Distance,

and Departure to the right of Difference of Latitude. In

G 2
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Courses taken from the bottom—that is, from 4 Points to-

7f Points inchisive—Departmre hes next to the Distance

cohimn, and Difference of Latitude to the right of De-

parture.

Table II. is precisely the same, except that the Course

is given in degrees, from 1° to -io" at the top, and from 4.5°

to 89° at the bottom, and Distance is given up to 600

miles. It is much more convenient to use Degrees

than Points, and students should accustom themselves to

Table II.

To use the Tables.

—

From a known Course and Dis-

tance, to find the Difference of Latitude and Departure.—
Look out the Course at the top or bottom of the page, and

the Distance in a Distance column, and alongside of it

you will find the Difference of Latitude and Departure.

From a known Difference of Latitude and Departu?-e,

to find a Course and Distance.— Search in the Difference

of Latitude and Departure columns, until you find along-

side of each other your Difference of Latitude and

Departm'e ; alongside of them the Distance is given, and

the Course at the top or bottom of the page, as the case

may be. If j'oit can't find your exact Difference of

Latitude and Departure, take the two figures which agree

most nearly with them. Difference of Latitude and

Departure being given in minutes and decimals of a

minute, if you multiply the decimal part by 6 you will

have the seconds of Difference of Latitude, or Departure.

Other combinations may arise—for instance, you might

know your Course and Difference of Latitude, and might

want to know your Distance and Departm-e. It is

sufficient to say that in dealing with Courses, Distance,

Difference of Latitude, and Departure, if you know any

two of them you can find the others by the Traverse

Table.
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Table XXV.—la Table XXV. take no notice at

present of the first few pages headed ' Log. Sines to

Seconds of Arc,' but commence with the page headed

' Log. Sines, Cosines, &c.' In this Table degrees are given

from 0° to 44° at the top, and from 45° t.o 89° at the

bottom.

The ratios are given at the top in the following order,

starting from the left : Sine, Cosecant, Tangent, Cotan-

gent, Secant, Cosine ; and they are given at the bottom

in the same order, but from the right : Sine, Cosecant,

Tangent, Cotangent, Secant, Cosine. Thus it will be seen

that the Log. of any Sine between 0° and 45° is the Log.

of a Cosine between 45° and 89°, and so on with every

other ratio. Degrees are given at the top or bottom of the

page ; minutes and half-minutes in a column on the left-

hand side of the page from 0° to 45°, and on the right-

hand side of the page from 45° to 89°.

Suppose you want to find the Log. Sine of 21° 5^'.

Look out 21° at the top of the page, follow down the

minute column till you come to 5i, then to the right of it

in the column headed ' Sine ' you will find the Log. you

want, and following on the line to the right you will find

the Cosecant, Tangent, Cotangent, Secant, and Cosine

should you want them. The same Logs, will represent

the Sine, Cosecant, Tangent, Cotangent, Secant, Cosine,

of 68° 54^'.

Now suppose you want to find the ratios of an angle

containing an odd number of seconds—say, for instance,

the angle 21° 5' 38"—and let us assume you want the Log.

Sine. The Log. Sine of 21° 5f is 9-556135. Between the

columns of Sines and Cosecants you will find a column

headed ' Parts for seconds.' Look for the odd number of

seconds—8—and you will find that 44 parts are due to it.

These 44 parts are to be applied to the Log. Sine of
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21° 5' 30". 9-556135 + 44 = 9-556179 = the Log. Sine

required.

Proceed in the same waj' to find the Log. of any other

ratio, Cosecant, Tangent, Cotangent, Secant, or Cosine.

Eemember that the ' parts for ' are alwaj's to be added to

Log. Sines, Tangents, and Secants, because these Logs,

increase as the angles increase ; thej' are always to be

deducted from all the Log. Cosines, Cotangents, Cosecants,

because these Logs, decrease as the angles increase.

If the ' parts for ' are large, and you cannot mentally

add or deduct them from the Log., the best plan is to

commence writing the Log. down from the right, instead

of from the left, and add or deduct them as you go along
;

or if you prefer it, you can, in working any problem,

write down the ' parts for ' separately, marking them

+ or — , and then, ha%ang added your Logs, together,

allow for the balance of the ' parts for.' Thus, suppos-

ing you wanted to add together the Log. Secant of

68° 30' 12", the Log. Cosecant of 21° 22' 13", Log. Cosine

of 72° 39' 11", and Log. Sine of 15° 8' 14", you might

write them down thus :

68° 30'
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or you will be able to allow for the ' parts for ' mentally

when they are not very large, writing down the Log. in

the usual A\"ay, commencing at the left.

The first few pages of the Table preceding the page

with 0° at the top and 89° at the bottom, consist of Log.

Sines and Log. Cosines to seconds of arc, the Log. Sines

being given from 0° to 4°, and the Log. Cosines from

86° to 90°. These small Sines are very seldom used,

except in working Eeductions to the Meridian, but the

large Cosines are very frequently used.

Log. Cosecants, Tangents, Cotangents, Secants, are

not given to seconds of arc, nor are ' parts for ' given for

angles from 0° to 4°, and from 86° to 90°. Instead of

' parts for,' the difference in 30" is given in a column

headed ' Difi'.' In such a case multiply the Diff. opposite

the Log. bj' the number of odd seconds, and divide by 30,

and the result is the difference to be added to or deducted

from the Log. according to whether the Log. is increasing

or decreasing. For instance, suppose you want the Log.

Tangent of 3° 31' 14". The Log. Tangent of 3° 31' 0" is

8-788554. The appropriate difference is 1032. Multiply

1032 by 14, the odd number of seconds :

1032
14

ll28
1032

Divide by 30 ) 14448

482 to be added to the Log.

Log. Tangent 3° 31' 0" = 8-788554

482

!-789036 Log. Tangent of 3° 31' 14"

As it is very easy to make a mistake of sign in apply-

ing ' parts for,' it is advisable to check the work by seeing

that the answer is between the two right numbers. Thus,
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the Log. Tangent of 3° 31' 14" must lie between the Log.

Tangents of 3° 31' and 3° 31' 30". Now we will proceed

to ' the Sailings.'

Plane Sailing-

In the Sailings the angles and sides of the triangles

consist of Courses, Distances, Differences of Latitude, and

Departures.

A Coin:se is the angle which a ship's track through

the water makes with the Meridians or True North and

South lines.

A Distance is the number of nautical miles that a

ship travels in a given time, or it is the length from one

place to another in nautical miles.

Diiierence of Latitude is the difference between the

Latitude of two places, or the distance in nautical miles

North or South between two places, or it is the number

of nautical miles that your ship sails North or South in a

given time.

Difference of Longitude is the difference between the

Longitude of any two places, or it is the distance which

your ship travels East or West in any given time,

measured in Longitude ; but remember that this is never

the same thing as the distance sailed East or West expressed

in nautical miles except on the Equator, because as the

Meridians approach each other tiU they meet at the

Poles, the distance in a degree of Longitude gradually

decreases from 60 miles at the Equator, to nothing at the

Poles.

The Distance which a ship sails East or West in

nautical miles and parts of a mile is called her ' Depar-

ture.'

If a ship were to sail due North or South she would
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make no Departure, and the Distance she sails is the

Difference of Latitude she makes.

If she sails due East or West, she makes no Difference

of Latitude, and the Distance she sails is her Departure.

If she sails in any direction other than due North,

South, Bast or West, she makes both Difference of

Latitude and Departure. In such a case you would know

your Course and Distance by Dead Beckoning, and the

Plane Sailing Problem would be to find the Difference

of Latitude and Departure due to that Course and Dis-

tance.

To find the Difference of Latitude.—Add together the

Log. of the Distance and the Log. Cosine of the Course
;

the result (rejecting tens in the Index) is the Log. of the

Difference of Latitude.

To find the Departure.—Add together the Log. of the

Distance and the Log. Sine of the Course, and the result

(rejecting tens in the Index) is the Log. of the Departure.

Here follow a few examples of finding the Difference

of Latitude and Departure from a given Course and

Distance.

1. A ship sails N 48° E, 119 miles : find the Difference

of Latitude and Departure she has made.

Distance 119 miles Log. 2-075547 119 Log. . 2-075547

Course 48° Log. Cos 9-825511 48° Log. Sin 9-871073

Diff. Lat. Log. 1-901058 Dep. Log. . 1-946620

Diff. Lat. = 79-63 N Dep. = 88-43 E

2. A ship sails S 81° E, 98 miles : find the Difference of

Latitude and Departure she has made.

Distance 98 miles Log. 1-991226 98 Log. . 1-991226

Course 81° Log. Cos 9-194332 81° Log. Sin 9-994620

Diff. Lat. Log. 1-185558 Dep. Log. . 1-985846

Diff. Lat. = 15-33 S Dep. = 96-79 E
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3. A ship sails N 11° W, 3728 miles : find the Differ-

ence of Latitude and Departure she has made.

Distance 3728 miles Log. 3-o71476 3728 Log. . 3-571470
Course 11° Log. Cos 9991947 11° Log. Sin 9-280599

Difi. Lat. Log. 3-563423 Dep. Log. . 2-852075

Diff. Lat. = 3659 X Dep. = 711-3 W

These problems can also be solved by the use of the

Traverse Table.

Enter Table I. if your Course is in Points, or enter

Table II. if it is in degrees, and opposite your Distance

in the Distance column j'ou will find your Difference of

Latitude and Departure in the columns marked Lat. and

Dep.

In Example 1.—A ship sails N 48° E, 119 miles.

In the Traverse Table II. with 48° at the bottom and

119 in the Distance column, j'ou will find 79-6 in the

Difference of Latitude column, and 884 in the Departure

column ; and the Difference of Latitude is 79-6 miles N,

and the departure is 88-4 miles E.

In Example 2.—A ship sails S 81° E, 98 miles.

In the Traverse Table with 81° at the bottom and 98

in the Distance column, we have 15-3 in the Difference of

Latitude column, and 96'8 in the Departure column ; and

the Difference of Latitude is 15-3 miles S, and the

Departure 96-8 miles E.

In Example 3.—A ship sails N 11° AY, 3728 miles.

In the Traverse Table with 11° at the top, we find the

Distances are only given to 600 miles. To bring 3728

within this limit we must divide it by some number that

vdll, if possible, bring out an even result, and 8 is a

suitable number. 3728 -^ 8 = 466. Now 466 in the

Distance column gives us 457-4 in the Difference of

Latitude column, and 88-9 in the Departure column. As
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e have divided the Distance by 8, we must multiply

these results by 8, and we have

457-4 88-9

'\\

Diff. Lat. = 3659-2 N Dep. = 711-2 W

The following different combinations may be imagined :

(a) Given Course and Diff . Lat. Find Dist. and Dep.

(b) „ Course and Dep. „ Diff. Lat. and Dist.

(c) ,, Dist. and Diff. Lat. ,, Course and Dep.

(d) ,, Dist. and Dep. „ Course and Diff. Lat.

(e) „ Diff. Lat. and Dep. „ Course and Dist.

All these problems can be solved by Logs, or with the

help of the Traverse Tables. In the latter case all you

have to do is to find the place in the Tables where the

known parts occur together, and take out the required

unknown parts from their appropriate columns. But as

these problems are of little practical value in navigation

it is unnecessary to dwell on them further.

Now we will turn to Parallel Sailing.

Parallel Sailing-

Parallel Sailing is sailing along a Parallel of Latitude,

that is to say, due East or West. The ]oroblem is to find

out what Difference of Longitude you have made, the

Distance you have sailed being, of course, known to you.

This Distance is the Departure, as you have sailed due

East or West. You know your Latitude, and all you

have to do is to find out the Difference of Longitude due

to your Departure on the Parallel of Latitude you are

sailing on. The formula is :

Given Lat. and Dep., to find Diff. Long.—To the

Log. Secant of the Latitude add the Log. of the Depar-

ture ; the result (rejecting tens in the Index) is the Log.

of the Difference of Longitude.



92 THE SAILINGS

Here are a few examples in Parallel Sailing.

1. A ship in Latitude 52° X. sails 79 miles due East

;

what Difference of Longitude has she made ?

Lat. 52° Log. Sec 10-210658

Dep. 79 Log. . 1-897627

Diff. Long. Log. 2-108285

Diff. Long. = 128-3 East = ¥ 8' 18" E

•2. A ship in Latitude 37° 15' S and Longitude

17° 28' W sails due West 118 miles. Required her

present position.
Lat. 37° 15' Log. Sec 10-099086

Dep. 118 Log. . . 2-071882

Diff. Long. Log. 2-170968
Diff. Long. = 148-2' = 2"= 28' 12" W

Longitude left . 17° 28' 0" W
Diff. Long. . . 2" -28' 12" W

Longitude in . 19° 56' 12" W)
, , . , . '- Snip s Position

and Latitude m 37° 15' 0" S
I

This Problem can be worked by the Traverse Table,

thus. With Latitude as a Course, look for the Departure

in the Difference of Latitude column, and you will find

the Difference of Longitude in the Distance column.

Suppose the Problem is : To find the Distance beticccu

two places situated on the same Parallel of Latitude, the

Longitude of each of them heing known. Use the follow-

ing formula

:

To the Log. Cosine of the Latitude add the Log. of

the Difference of Longitude : the result is the Log. of the

Departure ; the Departure is the Distance required.

To work this by the Traverse Tables. With Latitude

as a Course and Difference of Longitude in the Distance

column, you will find the Departure in the Difference of

Latitude column, and the Departure is the Distance.

Be it noted that to find the Log. of a degree or number

of degrees either of Difference of Longitude or Difference
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of Latitude, it or they must be turned into minutes by

multiplying them by 60.

Find the Distance from A to b, both being situated

on the Parallel of 52° N Lat. ; the Longitude of A being

62° W, and that of B 84° 29' W.
Longitude of A = 62° 0' W

„ B = 84° 29' W
Diff. Long. = 22° 29' W

60

1349'

W

Diff. Long. = 1349' Log. . 3-130012

Lat. = 52° 0' 0" Log. Cos . 9;789342

Dep. Log. 2-919354

Departure or Distance = 830-5 miles, very nearly

Parallel Sailing is included in the examination for

Second Mate.

Middle Latitude Sailing-

Middle Latitude Sailing is exactly the same as

Parallel Sailing, except that for the purpose of finding

your Difference of Longitude from the Departure you

assume that the Departure has been made on your Middle

Latitude as a Parallel.

The Problem is : To find the Course and Distance

between tioo places, the Latitudes and Longii\ides of ivhich

are known.

Find the Difference of Latitude between the two

places, and also the Difference of Longitude. Add the

two Latitudes together and divide by two for the Middle

Latitude. Turn the Difference of Longitude into minutes.

Then 1st. To the Log. Cosine of the Middle Latitude

add the Log. of the Difference of Longitude ; the result

(rejecting ten in the Index) is the Log. of the Departure.

2nd. From the Log. of the Departure (with ten added

to the Index) take the Log. of the^Difference of Latitude
;

the remainder is the Log. Tangent of the Course.
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3rd. To the Log. Secant of the Course add the Log. of

the Difference of Latitude ; the sum (rejecting ten in the

Index) is the Log. of the Distance.

By the Traverse Table. 1st. With the Middle Latitude

as a Course and the Difference of Longitude, turned into

minutes, in the Distance Column, you vnll find the Depar-

ture in the Difference of Latitude column. 2nd. With this

Departure and the proper Difference of Latitude, take out

the corresponding Course and Distance. Here are some

examples

:

1. Find— (a) by Logs., (b) by inspection—the Course

and Distance from a to B by Middle Latitude Sailing.

Lat. A . 49° 18' N
Lat. B . 45° 38' N
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Traverse Table, I won't bother about the Logs, in the

remaining examples.

2. Find by inspection the Com'se and Distance from

the Lizard to Ushant NW Light by Middle Latitude

Sailing.

Lizard, Lat. 49° 57-7' N
Ushant, Lat. 48° 28-5'

N
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and Longitudes of two places, you want to find the

Course and Distance between them ; in most cases this

can be better done by Mercator's SaiHng, which we
will take next. A problem in Mercator's Sailing is given

in the Board of Trade Examination, whereas no Middle

Latitude problem is given.

MeFcatop's Sailing-

The most useful case that occurs in Mercator's Sailing,

and the one which will be given in the Board of Trade

Examination, is that mentioned in Middle Latitude Sail-

ing, namely : Given the Latitudes and Longitudes of two

places, required to find the Course and Distance between

them. This is a useful problem, as by its means j'ou

will generallj' find the bearing and distance from you of

the nearest point of land when you are approaching a

coast.

All Charts commonly used in Navigation are con-

structed on what is called Mercator's Projection. The

earth's surface is treated as if it were flat. The Meridians

are drawn parallel to each other, and to get over the con-

sequent geographical inaccuracy the distances between

the Parallels of Latitude are increased in proportion to

the exaggerated distance of the Meridians from one

another. In fact, as the distance between the Meridians

is too great, the distance between the Parallels is made

too great. This is a very rough-and-ready description of

Mercator's Projection, which is more fully explained on

page '216, but what I have here said is sufficient to indi-

cate the existence of and necessity for what are called

' Meridional Parts.' As the Parallels are drawn too far

apart, the artificial distance between them must be
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rectified, and this is done by using the Meridional Parts

tabulated in Table III. Now to proceed.

The Latitude and Longitude of two places being

knoiv7i, required to find the Course and Distance between

them.

Find the difference between the two Latitudes,, and

turn it into minutes. This Difference is the difference

between them if they are of the same name, both North

or both South, but is their sum if they are of different

names. Name the Difference North or South according

to whether you hfive to go North or South in sailing

from one place to another.

. Take out from Table III. the Meridional parts due

to each Latitude, and treat them precisely as you have

treated the Latitudes, taking their difference or sum as

the case may be, and call this the Meridional Difference

of Latitude, or Mer. Diff. Lat.

Find the difference between the two Longitudes, and

name it Bast or West as the case requires.

Take out the Logs, of the Difference of Longitude, of

the true Difference of Latitude, and of the Meridional

Difference of Latitude from Table XXIV.
Then from the Log. of the Difference of Longitude

(with 10 added to the Index) take the Log. of the

Meridional Difference of Latitude. The result is the

Log. Tangent of the Course.

Look out this Log. Tangent in Table XXV., and

you will find the True Course, at the top of the page if

your Tangent is taken from the top, at the bottom of the

page if your Tangent is taken from the bottom. Name
the Course N or S according to whether the true Differ-

ence of Latitude is North or South, and towards East or

West according to whether the Difference of Longitude

is towards the Bast or West.

VOL. I. H
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Eun your finger along, from the Log. Tangent which

you have got, to the Log. Secant, and take that out.

To this Log. Secant add the Log. of the true Difference

of Latitude, and the result is the Log. of the Distance.

Look this Log. out in Table XXIV. and take out the

natural number belonging to it, which is the Distance

required.

Here are a couple of examples

:

1. Find by Mercator's Sailing the Course and

Distance from Vancouver to Yokohama.

Latitude

Vancouver 50" 42-6' N
Yokohama 35° 26-4' N

Meridional Parts

3541
2276

Longitude

127° 25' W
139° 39-2' E

15° 16-2'

60
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Now the Diif . for 30" is 1004, so that corresponding to ' Diff.' 499 we have
4Qq
^K^T X 30" = 15" to be added to 86° 23'.
1004

Diff. Lat. . . 378-8 Log. . . 2-.578410

Course . . .86° 23' Log. Sec. . 11-200103

Parts for 15" + 500

Distance 6012 = Log. 3-779013

The answer is Course S 86° 23' 15" E Dist. 6012 miles.

The course found is a True Course, and you may
require to convert it into a Compass Course ; in the

Board of Trade Examination you will have to do so—the

Variation and Deviation being given you. The method

of finding a Compass Course from a True Course has

been fully explained in Chapter IV., and does not require

repetition.

(Mercator's Sailing is included in the examination for

Second Mate.)

Traverse Sailing- and a Day's Work

If a ship sails neither due North, South, Bast nor West,

she makes a Composite Course—a Course composed of a

certain amount of Northing, Southing, Basting, Westing,

as the case may be.

In such a case you can, with your Course and

Distance, find the Difference of Latitude and Departure,

and eventually the Difference of Longitude by the

methods already explained. But it may be that your

Course changes frequently in twenty-four hours. What
you have to do in such a case is :

(1) to find the Northing or Southing, that is to say,

the Difference of Latitude ; and the Easting or Westing,

that is to say, the Departure due to each Course.

(2) to resolve all this into one Difference of Latitude

and one Departure.

H 2
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(3) to find one Course and Distance from this Dif-

ference of Latitude and Departure. This is called

Traverse Sailing.

The final steps consist of turning Departure into Dif-

ference of Longitude, and by applying the Difference of

Latitude and Difference of Longitude made in twenty-four

hours to the Latitude and Longitude you were in at the

previous Noon, to fix the position of the Ship at Noon by

Dead Beckoning. The entire process is called ' A Day's

Work.'

Of course, you may only want to find what Course and

Distance you have made good, and consequently what

Difference of Latitude and Difference of Longitude you

have made during a period of time less than twenty-four

hours ; and you may want to know what change has taken

place in your ship's position, in reference to a position

ascertained by the distance and bearing of an object on

shore, the Latitude and Longitude of which is known

to you. In the Board of Trade Examination the Day's

Work problem will probably present itself in the shape of

giving you the Distance and Bearing of some object on

shore from which you take your Departure, and requiring

you to find j^our position at the next Noon by Traverse

Sailing, and we will consider the problem from that point

of view.

Traverse Saihng is worked by means of a Traverse

form, in which you enter the various Courses and the

Distances sailed on them, and the accuracy of the result

depends upon the accuracy with which the Courses

steered and Distances sailed on them are kept, and on

your making proper allowance for Leeway, the action of

currents, and for Deviation and Variation.

True Courses are used, and the Distance appro-

priate to each; the effect of current or tide is allowed
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for separately as a Course and Distance; and the bear-

ing and distance of the object on shore from which

you take your departure is treated as a Course and

Distance.

Draw a Traverse form as below—in the Board of

Trade Examination it will be given you printed on the

paper containing the problem.

Courses
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Difference of Latitude South, and name it of the same

name as the greater of the two. This difference is the

Difference of Latitude North or South as the case may
be, due to the whole of your Courses.

Add together all the Departures East. Add together

all the Departures West. Find the difference between

the sum of the Departures East and the sum of the

Departures West, and name it of the same name as the

greater of the two. This difference is the Departure

Bast or West as the case may be, due to all your

Courses.

You have now one Difference of Latitude and one

Departure ; look for them in Table II. until you find

them together. (If no Difference of Latitude and Departure

in the Table coincide exactly with yours, take those

which approximate most closely to them.) Then if the

Difference of Latitude is to the left of Departure, you

have your Course at the top of the page and your

Distance in the ' Distance column, alongside of and to

the left of your Difference of Latitude and Departure.

But if the Difference of Latitude is to the right of

Departure, you have your Course at the bottom of the

page, and your Distance in the Distance column along-

side, and to the left of Departure and Difference of

Latitude.

You have now a Ti-iie Course and Distance made good

during the twenty-four hours, and with that and the

position of the object on shore from which you took your

departure, you will presently find your position. But we

must stop for a moment to see how Courses are corrected,

and Leeways and currents allowed for.

A blank Day's Work form as given you in the

examination room will be of the following nature :

—
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H
I

Courses K T
I

Winds
,

Leeway Deviation Remarks &c

The Departure was
taken from a point
in

—

Latitude ° ' "

Longitude ° ' "

Bearing by Compass...
distant miles

Variation

A current set

Correct Magnetic
miles from the time
the Departure was
taken to the end of

the day

In the problem you are condemned to work you will

find every hour in the twenty-four set out in tabulated

form in the column headed H. The Compass Courses are

given to you in the column headed Courses. The speed

of the vessel in knots and tenths of knots in columns

K and T,

The direction of the wind on every Course under

Winds ; the amount of Leeway the Ship made on every

Course under Leeway ; the Deviation due to the direction

of the Ship's Head on every Course under Dev. ; and in

the column headed Remarks, the Variation will be given

you, and you will find it stated that Departure is taken

from a point in Latitude and Longitude so and so. Bearing

by Compass so and so, distant so many miles. Ship's Head

so and so. Deviation as per Log.—or the position of the

ship at the previous noon may be given instead of a point of
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Departure. You will also be told that a current set the

ship in such and such a direction Correct Magnetic, so

many miles during the twenty-four hours, or some lesser

period.

' Departure ' in the ' remarks ' column has nothing to

do with Easting and Westing, but is used simply in its

natural sense as indicating the point of land you leave or

depart from.

If the bearing of the point is given you ' by Compass,'

you must correct it for Variation and Deviation, as has been

explained on page 63, then reverse it, and enter it and the

Distance it is from you in the Traverse form as a Course

and Distance. Don't forget to reverse the bearing

;

obviously, if a point bears NW of you, and is distant ten

miles, it is the same thing as if you sailed ten miles SE
from it.

Next proceed to Correct the Compass Courses for

Leeway, Deviation, and Variation, and enter them as True

Courses in the Traverse form. Add together the knots

and tenths sailed on each Course, and enter the sum along-

side the Course in the Traverse form. Correct the

direction of the current for Variation alone, if it is given

you Correct Magnetic—if it be given True it will not

need correction—and enter it in the Traverse form as a

Course, and enter the number of miles the ship was set

by it as a Distance. Then proceed, by the method already

explained, to find the one Course and Distance resulting

from all these Courses and Distances made good in the

twenty-four hours.

The final process is to find your position—that is, your

Latitude and Longitude In.

Write down the Latitude of the point from which you

took your departure, and call it Latitude Left. Under it

write your Difference of Latitude, and by comparison of
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the two find your Latitude In. If your Latitude Left

is North and the Difference of Latitude is North, the

sum will be your Latitude In. If the Latitude Left

is North, and the Difference of Latitude is South, the

difference will be the Latitude In, because you are not

so far North as you were before, unless your Difference

of Latitude causes you to cross the Equator. But if

your Difference of Latitude causes you to cross the

Equator from North into South Latitude, take the Lati-

tude Left from the Difference of Latitude, and change the

name of the Latitude. Thus, if you were in 2° North

Latitude, and sailed 3° South, the Latitude In would be

1° South.

All these rules hold equally good, of course, in refer-

ence to South Latitude. If Latitude Left is South,

and Difference of Latitude is South, the sum will be

the Latitude In ; but if the Difference of Latitude is

North, the difference will be the Latitude In. If your

Difference of Latitude puts you across the Equator,

take Latitude Left from the Difference of Latitude, and

change the sign ; thus : if you were in 1° South, and

sailed 1° 30' North, your Latitude In would be 0° 30'

North.

So much for fixing your Latitude. Now to find your

Difference of Longitude.

Add the Latitude Left to the Latitude In, and if they

are both on the same side of the Equator, the sum divided

by 2 will give you the Middle Latitude. If they are on

different sides of the Equator, their difference divided by

2 will give you the Middle Latitude with the name of the

greater Latitude.

With the Middle Latitude as a Course in the

Traverse Table, look for your Departure in the Difference

of Latitude column, and the Distance belonging to it in
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the Distance column will be the Difference of Longitude

in minutes. Turn it, if it is over sixty, into degrees and

minutes, and apply it to your Longitude Left. The result

will be the Longitude In.

You have now got your Course and Distance made

good, and your Latitude and Longitude In, and that is

the whole of the problem in a Day's Work.

Though in most cases it is exceedingly easy to find the

Longitude In by applying the Difference of Longitude to

the Longitude Left, yet if the Difference of Longitude

carries you over 180° or 0°, the process may require a little

thought.

In ordinary cases if you are in East Longitude and the

Difference of Longitude is East, the sum will be the

Longitude In, East ; and if the Difference of Longitude

were West, the difference would be the Longitude In,

East. For instance if you were in, say, 50° Bast, and made
3° Difference of Longitude East, your Longitude In would

be 53° East ; and if you made 2° 40' Difference of Longi-

tude West, you would be in 47° 20' East. In the same

way if you were in West Longitude you would find your

Longitude In by adding the Difference of Longitude West

to the Longitude Left, or subtracting the Difference

of Longitude East.

But supposing your Longitude Left was 176° East

and your Difference of Longitude were 6° East, where

would you be ? 176° + 6° would put you in 182° East,

but there is no such thing. Take 182° from 860°, and

change the sign ; the result is 178° West Longitude,

which is your Longitude In.

Again, supposing you were in 2° West, and made 6° 30'

Difference of Longitude East
;
you would have crossed the

Meridian of Greenwich, and would have got into East

Longitude. Take the Longitude Left from the Difference
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of Longitude, and the result will be your Longitude In,

namely 3° 30' East. \
/ This matter of naming the Longitude correctly is

so apt to be puzzling, not of course at sea, but in the

Examination Room, that I append a diagram which may
be usefully kept in the head.

Fig. 6.

lOi

W 90

103'

90 -E

In this diagram you are supposed to be looking down

on the North Pole of the earth, t W G E is the Equator
;

T G the Meridian of Greenwich. It is clear that the

Longitude of places from g to t round by b are all East,

and that the Longitude of places in the other semicircle

—

that is, from g to t round by w—are West. Consider for

a moment that any person sailing in the direction of the
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fledged arrows will be making Easting, though in the upper

half of the circles he will be making from right to left ; and

that if he is sailing in the direction of the unfledged arrows

he will be making Westing all round the circle. If a ship

sails from A to B she will make Easting. She will do this

also if she sails from d to c. And of course if she sails in

the reverse direction—that is, from B to A, or from c to D

—she will make Westing.

Now the Longitude of A is 7° West, and a ship sails

from A to the Eastward, making 13° of Difference of

Longitude. She sails 7° to the Eastward to the Meridian

of Greenwich, and then 6° more, so she must be in 6° East

Longitude. If she sailed from B to A, when she had

made 6° Difference of Longitude she would have arrived

at the Greenwich meridian, and she would then have

made 7° Difference of Longitude more, which would

evidently put her in 7° West Longitude.

Now suppose a ship sails from D in Longitude 173°

East to c in Longitude 172° West. She will have made
7° Difference of Longitude to the Eastward to the

Meridian of 180°, and then 8° more Difference of Longitude

to c, altogether 15° Difference of Longitude. And although

she goes from right to left in the diagram, she sails East

and goes from East into West Longitude.

If she sails from c to d she will make 15° Difference

of Longitude to the Westward, and will sail from West

into East Longitude.

The practical rules whenyou want to find the Difference

of Longitude between two places are :

(1) If the Longitudes of the two places are of the same

name, their Difference is the Difference of Longitude

named East or West as the case requires.

(2) If the Longitudes of the two places are of different

names, their sum is the Difference of Longitude required.
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named East if you go from West into East Longitude,

and vice versa, except when the sum of the Longitudes

of two places, one being in Bast and the other in West

Longitude, or vice versa, exceed 180°, in which case it must

be subtracted from 360°, and the result is the Difference

of Longitude with the name of the Longitude Left.

Fig. 6.

i7zlJS0^n3

106

W 90^ 90•£

Thus, to find the Difference of Longitude between a

in 160° East and m in 150° West, 160° + 160°= 310° West,

and 860° -310°= 50° Difference of Longitude East from

A to B.

A Day's Work is really a simple affair, yet it is said

that more men are sent back over a Day's Work than over

any other problem in the Board of Trade Examination.
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It requires to be worked with great accuracy, or large

errors will arise, and to ensure accuracy it must be worked

slowly, carefully, and methodically. I would recommend

the learner to begin by writing down everything, and

making every correction separately.

On the left-hand margin of the Examination Paper

write down the Compass Course turned into degrees,

minutes, and seconds. Under it write the Leeway turned

into degrees, minutes, and seconds, and make that correc-

tion. Thus, suppose the Course by Coinpass to be NNW,
Leeway ^ point. WindW by N.

NNW is North 2 points West, and 2 points is 22° 30'.

} point is 2° 48' 45". The wind being W by N, Leeway

will be towards the North, and the Compass Course

corrected for it will be less Westerly than it was before.

Course N 22° 30' 0" W
Leeway 2° 48' 45"

N 19° 41' 15" W is the Compass Course corrected for Leeway.

Suppose the Deviation to be 12° Easterly. Look from the

centre of the Compass Card out towards N 19° 41' 15" W,
that is, towards NNW ; and as Deviation is Easterly, and

Correct Magnetic Course is consequently to the right of

Compass Course, you will see that Deviation must be

applied towards the North, and the Compass Course will

become less Westerly than it was before.

Compass Course corrected

for Leeway . . N 19° 41' 15" W
Deviation . . . 12°_0' 0" E

N 7° 41' 15" W is the Correct Magnetic Course.

Suppose Variation to be 23° 25' 0" Westerly. Look

out from the centre of the Compass Card towards

N 7° 41' 15" W, that is, towards N byW ; and as Variation

is Westerly, and the True Course is consequently to the

left of Correct Magnetic, you will see that the Variation
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must be applied towards the West, and the Correct

Magnetic Course will become more Westerly than it was.

Correct Magnetic . N 7° 41' 45" W
Variation . . .23° 25' 0" W

N 31° 6' 45" W, or NW by N J N is the True Course.

After a very little practice you will allow for Leeway

in your head before writing down your Compass Course,

and you will also in your capacious brain find the sum or

difference of Deviation and Variation, and write down the

sum or difference as error. The Error of the Compass

is the sum of Deviation and Variation, when both are

East or both West ; it is the Difference between Devia-

tion and Variation when one is East and the other

West.

You may discard seconds and minutes, eventually

writing the Course down in the Traverse Form to the

nearest degree, as you cannot get closer than that in the

Traverse Tables. If you have a half-degree, or any-

thing more than half-degree over, give the Course the

benefit of the doubt and write down the degree next

higher. Thus, if you have S 15° 30' E True, you would

call it S 16° E.

Hence, with a little experience, you would correct the

Course already alluded to, thus. You would say to your-

self :
' My Course by Compass is NNW, but I am not

making that good, as I have a \ point Leeway towards

North.' i point off NNW is N by W | W, or If points

from North. You would see on the scale appended

to the Compass Card furnished you, that If points is

19° 41' 15", and you would write that down in the

margin.

Then you would say to yourself, the Variation being

23° 25' 0" Westerly, and the Deviation being 12° 0' 0"



112 THE SAILINGS

Easterly, the error is 11° 25' 0" Westerly, and you would

write down the whole thing thus :

Compass Course corrected for Leeway . N 19° 41' 15" W
Compass Error 11° 25' 0" W

True Course N 31° 6' 15" W

If it should ever happen that you get beyond the

limits of the Traverse Table, all you have to do is to

halve the elements you are dealing with, and double the

results.

You may be given a sailing ship's Day's Work, with a

lot of Courses and Leeways and comparatively short Dis-

tances. Or you may be given a steamship's Day's Work,

with few Courses, no Leeways, and Long Distances.

Here are some examples of a ' Day's Work '

:

I.

—

Day's Woek

H
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Depa)
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/Sixth



THE SAILINGS 115

Departure Course

feSE . . . S 221° B
Deviation . . 13° W

S S5i° E
VariatioQ . . 19° W
True Course . S 54J° E

First Course

"WNW . . = N 67J= W
Deviatiou . . i:i° W

N 80J° W
Variation . . 19° W

N 99i° W
True Course, . S 801° W

Second Course

NW b W . = isr 56i° W
Deviation . . 11° W

N 67i° "W
Variation . . 20° W

Teaverse Foesi

True Course , N 87i° "W

Third Course

NW b W J W = N 02° W
Deviation . . 12° W

N 74° W
Variation . . 21° W

N 95° W
True Course . S 85° W

Fourth Course

W b N J N . = N 78° W
Deviation . . 14° \V

N 87° W
Variation . . 21J° W

X 108J° W
True Course .8 71 J° W

Current Coarse

NE . . = N 45° E
Variation . . 21J° W
True Course . N 23^° E

Distance SJ x 6 = 15 miles

True
Course

Dis-
tance

S54i°E 8-0

S801°W 122-0

N 87° W 121-0

S 85° Wj 125-0

S71i°Wj 123-0

N23i''E' 15-0 13-7

DifEerence of
Latitude
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The Answer is

:

Course S 83° W.
Dist. 472 miles.

Lat. in 49° 30' 19" N.

Long, in 17° 15' 43" W.

The problem of a ' Day's Work ' is included in the

examination for Second Mate.
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CHAPTEE VI

ALGEBRA AND TRIGONOMETRY

I do not advise anyone to read this chapter unless he

is working for an Extra Master's Certificate, or wants to

understand the theory upon luhich the solutions of the

various problems in the ' Sailings ' are based. The

beginner should content himself tvith learning theformulas

and working the probletns as explained in the preceding

pages. After he has become familiar with the practical

work, he may loith profit peruse this chapter.

As in all the Sailings except Great Circle Sailing, the

earth's surface is treated as if it were fiat, the various

problems consist of the solution of right-angled plane

triangles, and a few words on Plane Trigonometry, and

on Algebra, may be advisable. Those who understand

Trigonometry had better not read them, and those who

do not understand Trigonometry need not read them

unless they want to know the ' reason why ' for the

various formulas adopted in the Sailings, or unless they

want to take an Extra Master's Certificate. Some know-

ledge of Trigonometry is necessary for that purpose, as

the aspirant will be required to draw and solve plane

triangles. The more he knows of Trigonometry the

better ; but if he has not time nor inclination to study it,
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I think what I propose to say will be quite sufficient for

all purposes.

But before starting on Trigonometry, a word or two

on the Algebraical forms used are necessary.

An equation in Algebra means that two quantities, one

on each side of the symbol = , are equal, though expressed

in different terms. Thus 6 multiplied by 2 equals 12 ;

and 36 divided by 3 equals 12 ; therefore 6 multiplied by

2, and 36 divided by 3, are the same thing, and can be

written as an Algebraical equation, thus :

p o 36

o

The advantage attaching to an equation is that you

can do any mortal thing to one side of it, providing you do

the same thing to the other side, and the equation will still

hold ; thus you might multiply 6 x 2 by any number, or

you might divide it by any number, or add to or take from

it any number you like, and the equation would remain

true, providing that you did exactly the same thing to the

other side, which is 36 -f- 3. This is self-evident as

regards figures, but it is not so clear when letters are

used. Thus it is evident that 6 multiplied by 2 equals 12,

and 6x2x2 equals 24, and that 36 divided by 3 equals

12, and that 12 multiplied by 2 equals 24, and that, there-

fore, the proportion between them remains unaltered.

Letters are generally used in Algebra as expressing

some known or unknown quantity, known quantities

usually being represented by the first letters of the

alphabet, and unknown quantities by the last. The un-

known quantity is always placed, if possible, on the left

of the equation.

To show the advantage of using equations, and how
to do so practically : Let 2 be represented hj a ; 3 by & ;
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and 4 by c ; and let x represent an unknown quantity.

An equation might take the following form, namely :

a + 6 + c = re ; or, what is the same thing,

a; = a + 6 + c

The latter is the proper shape, for it is the rule, for

convenience sake, always to write the uiiknown quantity

on the left.

Now as a, b, and c rejpresent respectively 2, 3, and 4,

it is evident that x equals the sum of those figures, which

is 9.

Or the equation might take the following form :

X — a = 6 + c

The simplest way of dealing with this is to add an a to

X. If you add an a to a; minus a, the result obviously is

X. X minus 2 with 2 added is x. But as I have done

this to one side I must do it to the other to preserve the

equation, so I add an a to the other side of the equation,

namely to 6 + c ; and I now have on one side x, on the

other a + b + c. Stated Algebraically, what I have done

is this :

X — a = b + c

or in figures a; — 2 = 3 + 4

Now add a to both sides, and we have x — a + a =
b + c + a, or in figures a;— 2 + 2 = 3 + 4 + 2. The

minus 2 and plus 2 destroy each other, and we have x =
Z) + c + a, or in figures, a; = 3 + 4 + 2 = 9.

What I have practically done is to transfer a from one

side of the equation to the other, changing its sign from

minus to plus. This can always be done in any equation

;

any symbol or quantity on one side can be transferred to

the other side by changing its sign from plus to minus, or
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from minus to plus, or from multiplication to division, or

from division to multiplication.

Nov? supposing the equation stands thus : x equals a

multiplied by h, multiplied by c ; in equational form,

X = a X b X c

or in figures a; = 2 x 3 x 4

Therefore a; = 24

This is perfectly clear. But if the equation appears

thus : X divided by a equals b multiplied by c, which in

Algebraical form is,

— = b X c
a

or

or in figures — = 3x4, hov? is it to be solved ?
Ji

X is divided by a on one side ; if we multiply this

by a, then x divided by a and multiphed by a becomes

of course x ; but we have multiplied one side of the

equation by a ; it is therefore necessary to multiply the

other side by a, and the equation would stand thus

:

- X a = b X c X a. But x divided by a and multipHed by

a is X, and so we come iox = b x c x a. We have shifted

a from one side of the equation to the other, and have

changed its function from division to multiplication. To

show this in figures.



ALGEBEA AND TRIGONOMETRY 121

in Algebraical equations, the rule is, that if you transfer a

numerator from one side it becomes a denominator on the

other, and vice versa.

Take another instance of an equation.

= a, or in figures, = 2
b X c '

"^ '3x4
X

Here i x c is the denominator of the fraction
b X c

On the other side of the equation we have a, which we

can express fractionally as -, because the value of any

number divided by 1 remains unaltered. Well then, we

have,

X _a
b X c 1

Transfer the denominator & x c to the other side,

changing its sign, thus :

a X b X c

and transfer the denominator 1 to the other side, changing

its sign, thus

:

xxl=axbxc

or as multiplying by 1 makes no difference to x,

X = a X b X c

To show this in figures.
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In dealing with symbols it is very convenient to

bracket two or more of them together when those two or

more are collectively aflfected by some other sj-mbol or

quantity. If you are concerned with known quantities,

there is no particular object in bracketing. Suppose you

want to subtract 12 added to 5 from 18 ; or 12 less 5 from

18 ;
you would simply say 12 + 5 = 17, and 18 — 17 = 1

;

or 12 — 5 = 7, and 18 — 7 = 11. But suppose you want

to subtract a added to b from c ; or a less b from c : how

w"ould you represent it '? By bracketing a and b. Thus :

c — (a + b)

or c — {a — b)

When quantities or symbols are bracketed together,

thej' must be dealt with as a single quantity or symbol.

You can do anything with a set of figures in brackets that

can be done with a single figure or symbol. Figures or

sjTubols in brackets cannot be dealt n'ith separately, until

and unless the brackets are removed.

The numerators and denominators of fractions, if they

are composed of more than one term, must alwaj's be

dealt wdth as if they were bracketed.

Another method of indicating that quantities or

symbols are bracketed is by drawing a line over such

quantities. Thus (x + y) may be represented by x + y;

{a — b) hj a — b ; and {a + b — c) hy a + b — c.

AVhen removing brackets, it is necessary to remember

the following rules :

—

(a) AATien there is a j^ltis sign before the bracket, the

signs of the quantities or symbols bracketed do not

change when the brackets are removed.

(&) When there is a minus sign before the bracket, the

signs of the quantities or symbols bracketed must all be

changed when the brackets are removed.
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For example, take the following equation :— -

{x -y) - {z + s) = {a + 26) - (c + 26c - d)

Now removing the brackets we have

X —y —z — s = a + 26 — c — 26c + d.

The signs of s, 2bc, and d, are all changed, because there

were minus signs before the brackets in which they were

enclosed.

To show why when there is a minus sign before a

bracket the signs inside the bracket must be changed

when the bracket is removed : let us use the same

figures as before, and find the value of 18 — (12 — 5).

12 — 5 = 7, and 18 — 7 = 11. Now remove the bracket

without changing the sign and we have 18 — 12 — 6

= 1, which is all wrong ; but change the sign, and we

have 18 — 12 + 5 = 11, which is all right.

The terms ' plus ' and ' minus ' are not altogether

easy to explain. Speaking generally they represent

opposite facts or qualities. If + signifies North —
means South ; if + represents positive — represents

negative ; if + means lending — means borrowing, and

so on. Thus an Algebraic way of borrowing 6^. would

be to lend — 51., and going 10 miles North would be

going — 10 miles South. The use of the symbols ' plus
'

and ' minus ' in Algebra will not bother you much in

addition and subtraction ; but in multiplication and

division they may puzzle you. All you have to do is to

fall in with the rules and remember them. The rules

are : + x + gives + ;
— x — gives + ; + x —

gives — ;
— X + gives — . That is to say, multiplica-

tion of likes gives + , of unlikes gives — . The same rule

applies to division : + -h + gives + ; — -^ — gives + ;
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+ -H — gives — ;
— -7- + gives — . Likes give + and

unlikes give —

.

You vyill sometimes come across a letter or number

with a small 2 above it and to the right, thus

—

a?, V, 12',

AB^. These are called a squared, 7 squared, 12 squared,

AB squared respectively, and denote a x a, 7 x 7, 12 x 12

AB X AB, being in fact simply a short way of writing

these expressions.

The symbol V will occur sometimes. This is called

the square root. Thus 3 = -y/S : or 3 is the square root

of 9. Sometimes the number under the square root is not

a square num.ber. For instance, no number is exactly

equal to ^72 ; which is, however, approximately equal

to 1-4.

That is all the Algebra you need to know in order to

follow the formulas used in solving right-angled plane

triangles ; and by their solution all the problems in the

sailings are worked.

Trigfonometrical Ratios

(A knowledge of the Trigonometrical Eatios is required

of the candidates for Extra Master's Certificates.)

Before proceeding further, it is necessary that you

should understand a little about circles and angles. Take

a pair of dividers and describe a circle. You will see

that the bounding line is one curved line, and that every

point in this line is the same distance from the point where

the fixed leg of the dividers pricked the paper. Further,

the curve all lies on one flat sheet of paper, and does not

ever leave it as a curve like a corkscrew would. These

facts are all embodied in the following definition of a
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circle. A circle is a plane figure bounded by one curved

line, and such that all points in the boundary are at the

same distance from a certain point inside the figure called

the centre. Any line drawn through the centre will

divide the circle into equal halves or semicircles. When
these are divided into halves we obtain quadrants. The

bounding line of a circle is called the circumference, and

any portion of it is called an arc. Any straight line

from the centre to the circumference is called a radius,

and a straight line right through the centre from circum-

ference to circumference is called a diameter. Thus in

the diagram, c is the centre of the circle ; each of the

lines c p, c E, c V, c A, c B, c E, is a radius ; b p and v e are

diameters. The curved line p b v A b E p is the circum-

ference ; p B, E V, V A, A B, are arcs. The lines p c B and

V c E each divide the circle into semicircles ; p e v C;

V A B c, B E c, and c e p are quadrants.
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Next suppose the circle was described by the radius or

arm, c v revolving in the direction indicated by the arrows.

The arm goes through various positions, such as c R, c y,

c A, c B, c E, before it finally gets back again to the posi-

tion cp. The amount it revolves is called an angle.

Thus the amount the arm has turned from the position

c p to the position c R is called the angle p c R ; the

amount the arm turns in going from the position c R to

c v is the angle R c v. In revolving completely round

the arm c p traces out an angle of four right angles, or of

360° ; if it goes half round, say from c p to c B, the angle

described is two right angles, or 180° ; if it goes a quarter

round, it traces out one right angle, or 90°. Thus in the

figure p c V, V c B, b c e, e c p, and r c a are all right

angles.

An angle of 360°, therefore, corresponds to the total

circumference of a circle, an angle of 180° to a semicircle.
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and an angle of 90° to a quadrant, for while the point p

moves along the quadrant from p to v, the arm c p moves

round to the position c v. The arc p e is said to subtend

the angle p c B at the centre ; the arc p v consequently

subtends the angle p c v, so that a quadrant subtends an

arc of 90°= a right angle.

Any angle such as R c p, which is less than a right

angle, is an acute angle ; any angle such as p c A, which

is greater than a right angle, is an obtuse angle. The

complement of any angle is the number of degrees, minutes,

and seconds it wants of 90°. The supplement of any

angle is the number of degrees &c. &c. it wants of 180°.

Now in the above figure, the angle v c e is the

complement of the angle e c p. The angle a c b is the

supplement of the angle A c p ; also the angle E c E is

the supplement of the angle E c p.

A triangle is the figure formed by three straight lines

meeting in a plane. Thus the figure A b c is a triangle

;

Fig. S

its sides areAB, b c, c a, and its angles are cab, abc,

B c A respectively, or a,s they are called shortly. A, b, c. It

is proved by Euclid that in all triangles the sum of the

three angles A, B, c is equal to two right angle's.
"'

It may

happen that one of the angles is a right angle, in which

case the triangle is called a right-angled triangle, and this

is the kind of triangle you will generally have to deal

with.
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Let us consider any angle p c R, which we will call

the angle c. Take any point Q in the line c E, and draw

Q N perpendicular to c p. Then c Q n is a right-angled

Fig. 9

triangle, and c Q, the side opposite the right angle, is called

the Hypothenuse ; Q N, the side opposite c, is called the

Perpendicular ; c N, the side through c, is called the

Base.

In any right-angled triangle,

Perpendicular
j^ ^^^j^^ ^^^ ^.^^

Hypothenuse

Base

Hypothenuse
„ Cosine

Perpendicular
^^ ^^ _^ ^

Base

Hypothenuse

Perpendicular

Hypothenuse

Base

Base

Perpendicular
"

,, „ Cosecant

„ „ Secant

„ „ Cotangent
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Thus

-5— = Sm c —i = Cosec c
CQ QN

C N ^T C Q n— = Cos c —^=Secc
CQ CN

QZ=Tanc ^-^ = Coto
CN QN

These quantities are called the trigonometrical ratios

of the angle c, and the important point to notice about

them is that their value does not at all depend on where in

the line c e the point q has been taken.

If Q had been taken twice as far away from c, c n and

N Q would both have been doubled. Let us take another

point q', and draw q' n' perpendicular to c p. The two

triangles q c n and q' c n' are exactly the same shajjc, or

what Euclid calls similar ; and the three sides of each

triangle will have the same proportion to one another, no

matter what difference exist in the actual size of the

triangles. Suppose in one triangle the sides were 3, 4,

and 5 feet respectively ; the sides in the other triangle

must be in the same proportion. That is, they might be

3, 4, and 5 miles in length, or 3, 4, and 5 inches, or 3 x 5,

4x5, and 5x5 feet. The ratios—that is the proportion

to one another—of the sides to one another are the same

so long as the angle c is the same, and do not depend on

the scale on which the triangle Q c N is drawn. For

example, the ratio of the perpendicular to the base would

1, 3 u J.U -i. 3 miles 3 inches 15 feet
be -, whether it were -,— or ,—,—-— or ,——-— or

4 4 miles 4 inches 20 feet

1-^ inches

2 inches'

The whole value of plane trigonometry to the navi-

gator depends on the fact that these ratios have been

VOL. I. K
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tabulated for all angles, and what is more convenient, their

logarithms have been tabulated. You have already used

them in Table XXV. in the Sailings. The way in

which they are used is shown a little further on in the

chapter.

Since the sum of the three angles of a triangle is two

right angles or 180° (BucHd I. 32) it follows that in a

right-angled triangle where one of the angles is 90°, the

sum of the other two angles is also 90°

Fig. 10

Thus c + Q - 90°

or Q = 90° — c

That is to say, Q is the complement of c, and equally

G is the complement of Q.

Now since c N is the side opposite Q, Sin Q = ^.
C Q

But — = Cos c.
CQ

Therefore Sin q = Cos c, that is to say, the sine of an

angle is the cosine of its complement. Similarly, the tangent

of an angle is the cotangent of its complement, and the

secant of an angle is the cosecant of its complement.

These results will be useful later, but the main point

to grasp is that in the trigonometrical tables the ratios
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between the sides of right-angled triangles are tabulated

under the heading ' Sine, Cosine, &c.,' for all angles from

0° to 90°. With their help, and the knowledge of the

length of one of the sides, it is possible and very easy to

find the lengths of the other sides.

So far angles between 0° and 90° have been considered,

but you will sometimes come across angles between 90°

and 180°, and want to know their Trigonometrical Ratios.
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applies to the angles a o b, and a o s. In fact all these

angles have the same Trigonometrical Katios, if no

account is taken of the sign.

In order to distinguish the quadrants, the following

rule of signs is made. p the radius is always counted

+ . When a point is to the right of bod, its distance

from B o D is counted + , but when to the left it is counted

— . Similarly when a point is above A o c, its distance

from ADC is counted + , and when below A o c it is

counted —
. Thus in the diagram the signs are as

follows

:

1st Quadrant
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In the 1st Quadrant, since the Trigonometrical Eatios

are — , they are all +

.

In the 2nd Quadrant, the Sine is = +

.

+ OQ

The Cosine is ^^ = —

.

+ OQ

The Tangent is -i-^Z = _.
— ON

The Cosecant is +-^ = +

.

+ QN

The Secant is + ^ ^^ -

The Cotangent is

— ON
— ON
+ QN

You can examine the signs in the 3rd and 4th

Quadrants for yourself. You will find the following :

Sine Cosine Tangent Cosecant Secant Cotangent

1st Quadrant + + + + + +'
2nd Quadrant + — — + — —
3rd Quadrant — — + — — +
4th Quadrant — + — — + —

In most cases yoii will know that the angle you want

is between 0° and 180°, so that you will only need to

consider the 1st and 2nd Quadrants. Suppose you know

that the Cosine of an angle is — ; the angle you find in

the tables will not be the angle you want, but all you

will need to do is to find the corresponding angle in the

2nd Quadrant, and to get this you must dedixct the angle

you have taken out from 180°.

For instance : Suppose you want an angle whose

Cosine was — and whose Log. Cos = 9'918574. Reference

to the Tables gives 34° as the angle corresponding to

Log. Cos 9-918574. But Cosine 34° is + and 34° cannot

therefore be the angle required, but 180° — 34° = 146°.
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and Cos 146° is — and is numerically the same as Cos

34°. Therefore, evidently, 146° is the angle you want.

Take the converse case. What is the Log. Cos of 150° ?

150° is not in the Tables, but 180° - 150° or 30° is in

the Tables; and Log. Cos 150° = Log. Cos 30° =
9-937531, but do not forget that Cos. 150° is -.

You may be interested to know how the Trigono-

metrical Eatios got their names of Sine, Cosine, Tangent,

etc. These names were not given in the first instance to

the Eatios, but the old Mathematicians who invented

Fig. 12

Trigonometry drew a figure like the above. They called

A i? the Arc, because it is like a bow ; a t the Tangent,

because it touches the circle at A ; and T o the Secant,

because it cuts the circle at p ; and p M the Sine, because,

corresponding to the string of the bow, it touches the

breast (sinus) of the Archer. The angle pob is the

complement of p o a, and the corresponding lines be-

longing to this angle they called by the same names

with Co- put before them. Thus pn is the Cosine,



ALGEBEA A'SD TRIGONOMETRY 136

s B the Cotangent, and s o the Cosecant. The Eatios

of the Unes p m, p n, t a, s b, to, s o, to the radius

of the circle are equal to the Eatios defined on p. 128 as

the Trigonometrical Eatios.

Sine
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join AD. In the two, triangles abd and A CD, the side

A B equals the side A c ; the side B D equals the side D c
;

and the side A d is common to hoth triangles, they are

therefore equal in every respect (Euclid I. 8) . The angle

B A D is equal to the angle cad, and as the angle bag
equals 60°, the angles bad and cad are each equal to

30°. Now the Sine of bad =— , but B d is one half
ab

Fig. 13

of b c by construction, it is therefore also the half of B A,

since B A and b c are equal : let B D be equal to 1, then

A B must be equal to 2. Now we have

SineBAD=?-^=^ = 4AB 2bD *

That is Sine 30° = i.

In any right-angled triangle the square of the side

opposite to the right angle is equal to the sum of the

squares of the other two sides (Euclid I. 47)

.

Therefore A B^ = A D^ + B D^.
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A B = 2 B D, therefore A b'-' = 4 B d", and substituting

this value of A b'' in the equation, we have

4 B D^ = A D^ + B D^

therefore A D^ = 4 B d^ — b D^ = 3 B D^

or A D = B D /\/3

AD VS
or — = " —
BD 1

and A D : B D : : \/3 : 1

We have aheady seen that

BD : ab:: 1 : 2

We have therefore the proportion between all three sides,

namely

:

ab:bd:ad::2:1: V3,

and no matter what size the right-angled plane triangle

may be, the sides are in proportion to one another so long

as the angle B A d is 30°.

Let us now see what the actual values of the other

Trigonometrical Eatios of this angle are.

Cos 30° or Cos BAD =^='^^ = 1^3

Tan 30° or Tan bad

Cot 30° or Cot B AD =^ = '^^ = V3

Sec 30° or Sec BAD

Cosec 30° or Coeec bad

Trigonometrical Batios of 60°.—You know that 60° is

the complement of 30°, and therefore that Sin 60° = Cos

ad _
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30°, and so on. All you have to do then is to write them

down from the ratios of 30° already given, thus :

Sin 60° = Cos 30°

Cos 60° = Sin 30°

Tan 60° = Cot 30°

Cot 60° = Tan 30°

Sec 60° = Cosec 30°

Cosec 60° = Sec 30°

1— 2

= V3
1

V3
2

2

V3
Trigonometrical Batios of 45°.—In the triangle ab c

let A = 45° and c ^ 90°.

Fig. 14

By Euclid because the angles A and B are equal, each

being 45°, the sides A c and B c are equal. Let us suppose

them to be each equal to 1. Because c is a right angle

AB^ = AC^ + B c^

= 1^ + 1^

= 1 + 1

= 2

and A B = \/2
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Therefore ab : B c : AC -v/^ : 1 : 1-

Sin 45°, or Sin A

Cos 45°, or Cos A

B c _ 1

AB \/2

AC _ 1

AB ^/2

Tan 45° or Tan a = —= ^ = 1
AC 1

Cot 45° or Cot A = if = 3: = 1
BC 1

Sec 45°, or Sec A =^ = ^^ = ^2
AC 1

Cosec 45°, or Cosec A = — = '^
-. = a/2

BC 1

The ratios of all other angles are also deduced from

right-angled triangles, and are tabulated for our con-

venience. The methods by which they are found are

more complicated than in the simple instances given here,

but this does not concern us. The main thing is to know^

how to use the Tables.

It may interest you to show how the Logarithms of

these ratios are found.

Let us take a few of the ratios we have just written

down.
Sin 30° = -

Log. Sin 30° = Log. 1 - Log. 2

1 Log. 0-000000

2 Log. 0-301030

30° Log. Sin 9-698970
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Look in Table XXV. and you will find that this is right.

Tan 30° = 1

Log. Tan 30° = Log. 1 - i Log. 8

1 Log. 0-000000

V3 Log. 0-238560

30° Log. Tan 9-761440

Sec 30°

Log. Sec 30°

2 Log. 0-301030

a/3 Log. 0-238560

2

V3
: Log.

3 Log. 2)0-477121

^3 Log. 0-238560

2 - i Log. 3

8 Log. 0-477121

^/S Log. 0-238560

30° Log. Sec 10-062470

You will notice that in Table XXV. 10 is always

borrowed to add to the Index of the Logs, of ratios of

angles to avoid minus quantities.

Cos 45° = ,-

Log. Cos 45° = Log. 1 - ^ Log. 2

1 Log. 0-000000

V2 Log. 0-150515
2 Log. -301030

a/2 Log. -150515

45° Log. Cos 9-849485

The advantage to be derived by the use of these ratios

is that they establish for us certain proportions between

Fig. 14

the sides. For example, in the right-angled plane triangle

A B c let the angle A be 45° and the side B c 1,780 yards ; to
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find A B. You know that the Trigonometrical Ratio of the

Cosecant of 45° is ^ -, and that the sides ab and b c are

in the same proportion
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solving plane triangles other than right-angled, all the

work required to obtain an Extra Master's Certificate

can be done, as far as plane surfaces are concerned.

In addition to the above ratios, there are two others

which are commonly used in solving trigonometrical

problems. These are the Versine and Haversine, or Half

Versiue.

The Versine of an angle is the difference between one

and its Cosine, that is 1 — Cosine.

The Haversine of any angle is the half of its Versine.

Solution of Right-angled Triangles

(The solution of Eight-angled Plane Triangles is re-

quired in the Examination for Extra Master's Certificate.)

It is usual to denote the angles by capital letters, and

the sides by the same letter in ordinary type. Thus in

the triangle A B c, of which c is the right angle, c is the

side opposite to it, a and B are the other angles, the sides

opposite to which are respectively a and h.

Fig. 15

To find two sides, knowing the third side and an angle.

Suppose we know the side a and the angle B in the right-
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angled triangle c A B of which c is the right angle, and

want to find the sides b and c.

1. To find b.

rp _ Perpendicular _ b

Base a

Multiply both sides by a, which reduces — to b, and we
Co

have Tans x a = b.

2. To find c.

q _ Hypothenuse _ c

Base a

Multiply both sides by a, and we have

Sec B X a = c.

In the same way any two sides can be found, assuming

that one side and an angle are known. It is always

advisable to place your unknown quantity as numerator

of the fraction, that is in the upper place.

To find an angle, two sides being hnotvn.

In the above triangle let a and b be the known sides,

and B the angle to be found.

m Perpendicular b i. j. • xi .i
•

Tan B = £=; = ~ or, what is the same thmg,
Base a

—= Tan B, and so you get the angle required.

Let us take every possible case.

1. Supposing sides a and b are known, to find the

angles A and b, and the third side c.

(a)
• TanA = ^P^^^^^^ = ^

(6) b = 90° - A

(c)
c Hypothenuse ^-= _.

'^—=n—=— = Gosec A
a Perpendicular

Therefore c = a x Cosec A
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2. Supposing sides a and c are known, to find the

angles a and B, and the side h.

(a) SinA = ^^"P^°5"^^'=-
Hypothenuse c

(b) B = 90° - A

, , b Base ^ ,

(c) - = = Cot A
a Jrerpendicular

Therefore b = a x Cot A

3. Supposing sides b and c are known, to find the

angles a and b, and the side a.

(a) Cos A = -
c

(b) b = 90° - A

(c)
g Pei-pendicular^^^^^

x5ase

Therefore a. = 6 x Tan A

4. Supposing side a and angle A are known, to find the

angle B and the sides b and c.

(a) B = 90° -A

,, b _ Base _ p f

a Perpendicular

(c)

Therefore b = a x Cot A

Hypothenuse ^= ^^— ,. , = Cosec ^

a Perpendicular

Therefore c = a x Cosec A

5. Supposing side b and angle A are known, to find

angle B and sides c and a.

(«) B = 90° -A

(&)
«^ Perpendicular ^^^^^

Therefore « = 6 x Tan A
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Base

Therefore c = b x Sec A

6. Supposing side c and angle A are known, to find

angle B and sides a and b.

(a)

(b)

(c)

B = 90° -A

a _ Perpendicular_ q-

c Hypothenuse

Therefore a = c x Sin a

Base = Cos A
c Hypothenuse

Therefore b = c x Cos a

7. Supposing side a and angle B are known, to find

the angle a and the sides b and c.

A = 90° -B
b _ Perpendicular _ m
a Base

Therefore b = a x Tan B

c ^ Hypothenuse ^ g^^ ^
a Base

Therefore c = a x Sec b

VOL. I. L

(a)

(&)

(c)
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8. Supposing side b and angle B are known, to find

the angle A and the sides a and c.

(«) A = 90° -B
a Base

b Perpendicular

Therefore a = b x Cot B

£ _ Hypothenuse _ „
b Perpendicular

Therefore c = b x Cosec B

Fig. 15

CO
,B

9. Supposing side c and angle B be given, to find the

angle A and the sides a and b.

(rt) A = 90° -B

n\ a Base ^
(6) - = ^- = Cos B

c Hypothenuse

Therefore a — c x Cos B

. . b _ Perpendicular _ n-

c Hypothenuse

Therefore b = c x Sin b

As it would be exceedingly cumbersome and incon-

venient to multiply and divide the voluminous figures

and fractional ratios, Logarithms are always used, as they
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permit of the substitution of addition and subtraction for

multiplication and division. The method of using Loga-

rithms having been explained, it is only necessary here to

observe that in practice you have never to deal with more

than four figures in any natural number of which you wish

to find the Logarithm, and that in finding the natural

number of a Logarithm it is quite sufficient to take out

the number belonging to the nearest Log.

Here follow a few examples of the solution of right-

angled plane triangles

:

If a = 11-7 and h = 13'9, to find the other parts.

To find B
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I have found c in two different ways to show that in

using the trigonometrical ratios we are never bound to

use any but the most convenient. Let us solve one more

triangle. ^^^ ^ ^ ^-^^^^ ^^^ ^ ^ 320 2r 25"

To find B

A + B = 90° 0' 0"

A = 32° 27' 25"

B = 57° 32' 35"

To find b

CotA=-
a

b = Cot A X a ^"^

A = 32° 27' 25" Log. Cot 10-196533

a = 1178 Log. 3-071145

6 = 1852 nearly. Log. 3-267678

To find c

GosecA =—
a

c = Cosec i. y a r^

A = 32° 27' 25" Log. Cosee 10-270297
a = 1178 Log. 3071145

c = 2195 nearly. Log. 3-341442

Solution of Plane Triangles

(Solution of Triangles is required in the Examination

for Extra Master.)

Let A B c be a triangle : the angles are called a, b, c

respectively, and the sides opposite to them a, b, c, and for

shortness the half-sum of the sides, , is called s.

Fig. 16
If you know any three of

the six quantities, a, b, c,

A, B, c, where at least

one of the sides is

among the three quan-

tities given, you can

find the remaining

three. This is what is

meant by the solution of

oblique-angled triangles.

You could, of course, do

this roughly by drawing the triangle carefully to scale

;

but if you want an Extra Master's Certificate you should

learn how it is done by Trigonometry.
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The different cases which arise are included in the

following four. In each case the formula is given, and an

example solved.

(1) Given the three sides of any plane triangle, to find

the angles.

The formula is: Cos - == ^/'^-^~—I; or using Logs.

:

A V ^ c

Log. Cos 5 = i {Log. s + Log. (s — a) — Log. 6 — Log. c ]••

In the triangle a b c, a = 114, h = 128, c = 212, find

A, B, and c.

First find s, which is half the sum of the three sides.

Fig. 17

a = 114

6 = 128

c = 212

a + 6 + c = 454

a + 6 + c
227

To find the Angle c

Log. Cos? = 4 {Log. s + Log. {s- c) - Log. a- Log. 6}

s = 227 s = 227 Log. 2-356026 a = 114 Log. 2056905

c = 212 s- c = 15 Log. 1-176091 b = 128 Log. 2-107210

. c = 15 t3-532117 4-164115

2 ) 19-368002

Log. Cos5= 9-684001 5= 61° 6' 52-5"

= 122° 13' 45"
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To find Angle b

Cos V a

-b)

.-. Log. Cos ? = i {Log. s + Log. (s - fc) - Log. a - Log. c[

s = 227 s = 227 Log. 2-356026 a = 114 Log. 2-056905

fc = 128 s-b = 99 Log. 1-995635 c = 212 Log. 2-326336

- 6 =~99 4-B51661 4-383241

4-383241

2 ) 19-968420

Log. Cos
I
= 9-984210 | = 15° 21' 24-5"

B = 30° 42' 49"

Fig. 17

Co;

To find Angle a

2=V^a)

Log. Cos
'

s = 227

2 'V 6 c

= J {Log. s + Log. {s — a) - Log. 6 - Log. c[

s = 227 Log. 2-356026 6 = 128 Log. 2-107210

: 114 s - a = 113 Log. 2-053078

113 4-409104
4-433546

2 ) 19-97555"8

Log. Cos - 9-987779

c = 212 Log. 2-326336

4-43B546

= 13° 31' 43-0"

A = 27° 3' 26"

Now the three angles of any plane triangle are

together equal to 180°, and if the angles found above

equal this amount, it proves that the working is correct.

c = 122° 13' 45"

B = 30° 42' 49"

A = 27° 3'^6"

A + E + c = 180° 0' 0"
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- 2. Given hvo angles and one side of any plane triangle,

to find the other parts.

Two angles being given, the third is known, because

it is the difference between the sum of the two angles

given and 180°.

Further, the sides of any plane triangle are propor-

tionate to the Sines of the opposite angles. Thus :

Sin A : Sin b : Sin c

Therefore ^ =

a : b : c

Sin A b

Sin B

Sin B n a Sm A
_^ and -=
Sm c

In the triangle a B c,

let A = 37° 20', B = 82° 27',

and c = 1178. Find c, a,

and b.

To fiiid c
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3. Given two sides and the angle opposite to one of them.

Fig. 19 If the given

A angle is opposite

the greater of the

two sides, the tri-

angle can be solved

as in the preceding

case.

Thus in tri-

angle ABC, let B =
119° 18', h = 11-89

"C and c = 7-21.

To find c

Sin c _ c

Sin B ~ 6

• Sin c = ^'""•'^ = Sin 119° 18' « 7-21

6 11-89

Log. Sin c = Log. Sin 119° 18' + Log. 7-21 - Log. 11-89

B = 119° 18' Log. Sin . 9-940551
c = 7-21 Log. . . 0-857935

10-798486
h = 11-89 Log . . 1-075182

Log. Sin c = 9-723304 c = 31° 65' 31"

To find A

B = 119° 1«' 0" A = 180"= - (b + c)

c = 31° 55' 31" = 180° - (119° 18' + 31° 55' 31")

B + c = 151° 13' 31" = 28° 46' 29"

180° 0' 0"

A = 28° 46' 29"

a _ Sin A

6 Sin B

6. Sin A
• • "' = —FT-Sm B

because —— = Cosec b
Sm B

To find a

b. Sin A. Cosec b

. Log. a = Log. 6 + Log. Sin a + Log. Cosec b — 20

6 = 11-89 Log. . . 1 075182
A = 28° 46' 29" Log. Sin . 9-682476
B = 119° 18' 0" Log. Cosec 10-059449

Log. a = 0-817107

a = 6-563 very nearly
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In working this problem you must bear in mind that

the greater angle is always opposite the greater side ; and

that Sin A = Sin (180° — a), so that every Log. Sine in

Table XXV. represents two angles which are supplements

of one another. You must take the greater value if it is

necessary, in order that the greater angle may be opposite

the greater side.

In the previous example the known angle was opposite

the greater of the given sides, and only one solution was

possible. But in the event of the angle given being

opposite to the less given side, there are two solutions,

and this state of affairs is known as the ambiguous

case.

Fig. 20

C

For instance, in the plane triangle abc, let A =
31° 28', a = -564, and b = -9. Make c Bi = c b. We now
have two triangles, abc and aBjC, in which the angle A

and the sides a and b are equal.

There are therefore two values for the angles c and b,

and for the side c. Now with regard to angles B and B^

;

Euclid tells us that the angles at the base of an isosceles

triangle are equal. An isosceles triangle is a triangle

which has two of its sides equal to one another, c B and

CB, are equal to one another, and therefore cBjB is an

isosceles triangle, and the angles c B B, and c BjB at its

base are also equal. Angle c B B, is the supplement of
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angle A B c, and therefore angle c BjE is also the supplement

of angle abc. Angle B in the triangle abc = 180°

— angle b, ; and if you can find B^ you will know B, which

is its supplement.
To find B,

Sin B, _ 6

aSin A

. Sin B, =
Sin A

Log. Sin B, = Log. b + Log. Sin a — Log. a

6 = -9 Log. . . 9-954243

A = 31° 28' Log. Sin . 9-717673

•564 Log.

19-671916
9-751279

Log. Sin B, = 9-920637 b, = 56° 24' 23-5"

Fig. 20

In the triangle ab^c, b, is 56° 24' 23-5". B in the

triangle A B c is the supplement of B,, therefore B = 180°

- Bj = 180° - 56° 24' 23-5" = 123° 35' 36-5".

You have now the values of B and Bj, or the two values

of B. Let us next get the two values of angle c, that is

the angles A c B and A c B,.

In the triangle abc you know the angles A and B, but

c = 180° - (A + B) = 180° - (31° 28' + 123° 35' 36-5")

A = 31° 28' 0"
B = 123° 35' 36-5"

+ B 155° 3' 36-5"

180° 0' 0"

In triangle a b o, c = 24° 56' 23-5"
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And in the triangle A c Bj, you know the angles A and

B| ; to find c, or the angles a c B.

A = 31° 28' 0"

B, = 56° 24' 23-5"

A + B, = 87° 52' 23-5"

180° 0' 0"

In triangle a b, c, c = 92° 7' 36-5"

In the triangle a c Bj, we have now the three angles

and two sides.

To find the third side, a b, or c

c _ Sin a c B,

a Sin A

_ a. Sin A c B,

~STnT" p F:

Log. c = Log. a Log. Sin a c b, + Log. Cosec a. '

a = -564 Log. . . 9-751279

A c B, = 92° 7' 36-5" Log. Sin . 9-999701

A = 31° 28' 0" Log. Cosec 10-282327

Log. c = 0-033307 c = 1-0797

We have all the parts ot the triangle aBiC. Now to

solve the other triangle ab c.

A B _ Sin A C B

a ' Sin A

a. Sin A c B

Sin A

Log. A B = Log. a + Log. Sin a c b -t-Log. 6oseo-A.

a = -564 Log. . . 9-751279
A c B = 24° 56' 23-5" Log. Sin . 9-624969

A = 31° 28' 0" Log. Cosec 10-282327

Log A^B = 9-658575 a b = -45559

Thus we have solved the two triangles, and here are

the results :

In Triangle a b, c In Triangle A e c

B, = 56° 24' 23-5" b = 123° 35' 36-5"

c = 92° 7' 36-5" c = 24° 56' 23-5"

c = 1-0797 c = -45559

With the data as given, either of the two triangles

fulfil the conditions, and so both must be solved.
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4. Given two sides and the included angle, to find the

other parts.

In the triangle a b c, let A = 31° 28', h = 900, and

c = 455-6. To find the other parts.

Fig. 21 ^

A B

We first find the two remaining angles by using the

following formula

:

Tani(B-c) = l^Cot|

.•. Log. Tan J (b — c) = Log. (6 — c) + Log. Cot " — Log. (6 + c)

A = 31° 28' 0" 6 = 900 6 = 900

c = 455-6 c = 455-6

6 + c = 1355-6 6 - c = 444-4

- c = 444-4 Log. . 2-647774

- = 15° 44' 0" Log. Cot. 10-550190
2

13-197964

6 + c = 1355-6 Log. 3-132132

Log. Tani (b - c) = 10-065882i (b-c) = 49°19'34"

Now as B + c = 180° - a .-. J (b + c) = J (180° - a)

180° 0' 0"

A = 31° 28' 0"

B + c = 148° 32' 0"

i(B + c) = 74-^ 16' 0"

And i(B + c)+J{B — c) = iB + |c + jB-ic = B

also J(B + c)-i(B — c)=iB + ic — iB + ^C = C

i (b + c) = 74° 16' 0" i (b + c) = 74° 16' 0'

J (b - c) = 49° 19' 34" i (b - c) = 49° 19' 34"

B = 123° 35' 34" c = 24° 56' 26"
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Now to find a

a _ Sin A . _ _ t- Sin a

b Sin B '

*

Sin b

Log. a = Log. b X Log. Sin a x Log. Coseo b

b = 900 Log. . . 2-954243

A = 31° 28' 0" Log. Sin . . 9-717673

B = 123° 35' 34" Log. Coseo. . 10-079360

Log. a = 2-751276 a = 563-996

And SO the triangle is solved, the parts found being

B = 123° 35' 34"

c = 24° 56' 26"

a = 568-996

If you commit to memory the following formulas, and

accustom yourself to working them as above, you can

solve any plane triangle, always remembering that the

larger side must be opposite the larger angle ; and that

when two sides and the angle opposite the less side are

given there are two solutions because two triangles fulfil

the conditions.

a b c
1.

Sin A Sin B Sin c

2. Cos ^= >/ ii^^—^ where s =^{a + b + c)

o m B — C b — C ^ ,A
3. Tan -—^—= , Cot -

2 b + G 2

Some examples are given in the exercises at the end

of Vol. II. which, if you wish to obtain an Extra Master's

Certificate, it would be well to work.

Explanation of Formulas used in the Sailings

With the help of the little Trigonometry in this

chapter it is easy to see the reason for the formulas used

in the Sailings.
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Plane Sailing.—Let a be the position on the Meridian

N s from which a ship starts, and B the place at which she

arrives

Fig. 22

N

The Hne A B represents the Distance.

The angle x a b „ ,, Course.

The hne a c „ ,, Difference of Latitude (un-

known).

The line CB „ „ Departure (unknown).

Therefore in the right-angled triangle A c B you know

the angle cab and the side a b, and wish to find the sides

A c and c B.

^T n Base AC Diff. Lat.Now Cos c a B = .= = = .^- .

Hypothenuse ab Distance
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Therefore Cos cab x ab = ac,

or Diff. Lat. (Ac) = Dist. (ab) x Cos Course (cab).

Therefore

(1) Log. Diff. Lat. = Log. Dist. + Log. Cos Course.

In a similar way we have

Q' p A -R
— Perpendicular _ B c _ Departure

Hypothenuse ab Distance

Therefore Sin cab x a b = b c,

or Departure (b c) =Dist. (ab) x Sin Course (cab).

Therefore

(2) Log. Dep. = Log. Dist. + Log. Sin Course.

And these are the formulas used to work the problem

on page 89.

You will find it a useful exercise to work out the

formulas for the various combinations of Course, Distance,

Departure, and Difference of Latitude, mentioned on

p. 91. This is easily done by reference to the figure given

above. You will find them to be as follows :

(a) Log. Dist. = Log. Diif. Lat. + Log. Sec Co.

Log. Dep. = Log. Diff. Lat. + Log. Tan Co.

(b) Log. Dist. = Log. Dep. + Log. Cosec Co.

Log. Diff. Lat. = Log. Dep. + Log. Cot Co.

(c) Log. Cos Co. = Log. Diff. Lat. — Log. Dist.

Log. Dep. = Log. Dist. + Log. Sin Co.

{d) Log. Sin Co. = Log. Dep. — Log. Dist.

Log. Diff. Lat. = Log. Dist. + Log. Cos Co.

(e) Log. Tan Co. = Log. Dep. — Log. Diff. Lat.

Log. Dist. = Log. Diff. Lat. + Log. Sec Co.

Parallel Sailing.—Here the problem is either to find

the Difference of Longitude corresponding to a known
Departure or the Departure due to a known Difference of
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Fig. 23

Longitude. The rales given on pp. 91-92 are founded on

the following formulas

:

(1) Difference of Longitude = Departure x Secant

Latitude.

(2) Departure = Difference of Longitude x Cosine

Latitude. To obtain these formulas draw a figure in

which p is the Pole, and p c

and PD the two Meridians.

Let AB be the Parallel of

Latitude upon which you

have sailed from A to B.

Let c D be a portion of the

Equator between the two

Meridians p c and p D, then

c D is the Difference of Lon-

gitude due to your Departure

A B. In any sphere, as will

be proved in the next para-

graph, the arc c D of a Great

Circle, divided by the arc a b

of a Small Circle, enclosed

between the same Meridians

and parallel to the Great

Circle, is equal to the Secant

of the arc A c, which is the Latitude. Or in Equational

form

:

CD
AB
= Secant Arc a c.

or ^^—

—

^ = Secant Latitude
;

Departure

and multiplying both sides by Departure, we have Dif-

ference of Longitude = Departure x Secant Latitude ; and

by Logarithms,

(1) Log. Sec Lat. + Log. Dep. = Log. Diff. Long.
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If we knew the Diff. Long., and wished to find the

Departure, we should transpose Log. Sec Lat. to the other

side of the equation, giving us the formula,

(2) Log. Dep. = Log. Diff. Long. — Log. Sec Lat.

and since Secant is the same as -

—

,
— we can write this

Cosme
formula

Log. Dep. = Log. Diff. Long + Log. Cos Lat.

To show that— = Secant Arc a c in Fig. 23, draw a
AB ^

figure in which the parallel A b and the part of the Equator

c D are extended to go all round the Earth. Let o be the

Centre of the Earth and k the Centre of the Parallel on

which we are sailing.

Fig. 24
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Further, the circumferences of two circles have the

same ratio to one another that their radii have ; and the

radii of these two circles are k a and c o respectively.

Thus
c D

AB
CO
AK

Now o A = o c, since all points on the Earth's surface

are at the same distance from the centre. Also the angle

A K is a right angle.

Therefore — = —^ = Cosec a o K=Cosec Arc a p
AK AK

And since Arc a p + Arc c a = 90°

Cosec Arc a p = Sec Arc A c

= Sec Lat.

Therefore — = Sec Lat. and converselyAB •'

AB
CD

= Cos Lat.

And since A B is the Departure corresponding to the

Diff. Long, c D, we obtain the formulas given above.
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Middle Latitude Sailing.—Here we have a combina-

tion of the Plane Sailing and the Parallel Sailing formulas.

The Trigonometrical formulas for its solution are

(1) Dep. = Diff. Long, x Cos Mid. Lat.

(2) Tan Co. = Dep. ^ Diff. Lat.

(3) Dist. = Diff. Lat. x Sec Co.

Let p represent the North Pole, p H and p G two

Meridians on which are situated the point of departure A

and the point of des-

tination B respec-

tively. G H is a por-

tion of the Equator,

and is also the Dif-

ference of Longitude

between A and B.

D A, B F, and B c are

portions of Parallels

of Latitude, D A being

the Parallel upon

which A is situated,

B c the Parallel upon

which B is situated, and E f, midway between D A and B c, a

portion of the Parallel of Middle Latitude between a and

B. Therefore E F is the Departure you want to find, and

you do so by the formula already given for Parallel Sail-

ing, namely.

Departure = Difference of Longitude x Cosine Middle

Latitude.

Or E F = G H X Cosine Arc E g or f h.

Then, with the Departure thus found, and the Differ-

ence of Latitude between a and b, find the Course and

Distance by the second and third formulas given above.

M 2
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The solution of a Middle Latitude problem bj'

means of the Traverse Tables is exemphfied in the

Sailings.

Mercator's Sailing.—The meaning of the formulas

employed in Mercator's Sailing can be best explained by

the help of a diagram.

Fig. 26

In the above diagram let n s be a Meridian, a and B

t-svo places on the earth's surface, a c the Difference of

Latitude, B c the Departure, and cab the Course. Now
in a Mercator's Chart the Parallels of Latitude are drawn
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too far apart in the same proportion as the distance

between the Meridian is exaggerated in order that they

may be drawn parallel to one another ; and the distance

between two such Parallels is called the Meridional

Difference of Latitude. Let a d represent this exaggerated

Meridional Difference of Latitude ; than D e drawn

parallel to c B and cutting a b extended at e will represent

the Difference of Longitude, because (see chapter on

Charts) as Departure is to Difference of Latitude, so is

Difference of Longitude to Meridional Difference of

Latitude.

Here, then, we have two right-angled triangles cab
and DAE having an angle a common to each. By right-

angled Plane Trigonometry

:

a 1 Tan i = ??a- = ?-? = ?y^- ^°M^
^

''
" Base A D jler. Dig. Lat.

Therefore
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In the diagram a b is the distance, the angle cab the

Course, a c the Difference of Latitude, and B c the Depar-

tui'e. The Traverse Tables give the values of AC and

.B c corresponding to aU values of the angle cab from

1° to 89°, and to all lengths of a b from 1 to 300.

Fig. 27

The application of the Traverse Tables to Plane

SaiUng requires no further explanation, but the use of

the Traverse Tables is much more extensive than this.

In fact, any problem in right-angled Plane Trigonometry
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can be solved by these Tables, by considering any angle to

be a Course, any Hypothenuse to be a Distance, any Base

to be a Difference of Latitude, and any Perpendicular a

Departure. If you want to solve any such problem, all

you have to do is to draw a figure showing Hypothenuse,

Base, Perpendicular, and angle, and the Traverse Tables

will do all the work for you.

Take first the case of Parallel Sailing. As shown on

p. 160, the formulas on which the solutions of problems

in Parallel Sailings are based are

Departure = Diff. Long, x Cos Lat.

and Diff. Long. = Departure x Sec Lat.

In the diagram we will now take the angle c A B to

be the Latitude. Then A c = A b x Cos. Lat. and A B =
A c X Sec. Lat., and therefore A c stands for Departure

and A B for Diff. Long. To use the Traverse Tables for

Parallel Sailing, therefore, it is only necessary to take the

Latitude as a Course, and with the Departure in the

Diff. Lat. column, the Diff. Long, will be found in the

Distance column ; and vice versa with the Diff. Long, in

the Distance column, the Departure will be found in the

Diff. Lat. column.

Next consider the Middle Latitude problem. Here

there are three formulas :

(1) Dep. = Diff. Long, x Cos Mid. Lat.

(2) Tan Co. = Dep. h- Diff. Lat.

(3) Dist. = Diff. Lat. x Sec. Co.

The first of these is identical with the formula of

Parallel Sailing. When the Departure has been found,

it is only necessary to find the place in the Tables

where the known values of the Dep. and Diff. Lat. occur

in their appropriate columns, and to take out the Course

and Distance you wish to find.
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In Mercator's Sailing the formulas are

(1) Tan Co.

(2)

Diff. Long.

Mer. Diff. Lat.

Dist. = Diff. Lat. x Sec Co.

Fig. 27

In the diagram Tan. Co. = — ; if, therefore, we take
A. G

B c to be Diff. Long., and A c to be Mer. Diff. Lat., we

have formula (1). So, to use the Traverse Tables, find

Mer. Diff. Lat. in the Diff. Lat. column, and Diff. Long.
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in the Departure column, and take out the Course.

With this Course and the Diff. Lat. you find the distance

in the Distance cohimn just as in Plane Sailing.

As a further instance of the way in which the Traverse

Tahle can be used in a problem which has nothing to do with

sailing. Suppose you want to ascertain your distance from

a lighthouse, the height of which you know. Measure the

angular height of the lighthouse above the sea level with

a sextant. Enter the Traverse Table with this angle as a

Course, and the height of the lighthouse, that is the Per-

pendicular, as a Departure. The Base of the triangle,

that is your distance from the foot of the lighthouse, is in

the Difference of Latitude column.

For example, let us suppose that you want to know your

distance from a certain lighthouse which is 180 feet high

from the lantern to the sea level. With your sextant

measure the angle from the lantern of the lighthouse to

the sea level, which we will suppose to be 4°. Look in the

Traverse Table under 4° ; in the Departure column the

largest number is only 41-9. Well, the best plan is to turn

your feet into yards, that is 180 feet equal to 60 yards, and

as this is still too big, take the half of it, namely, 30. Oppo-

site 30 in the Departure column we find 428-9 in the

Difference of Latitude column, and this multiplied by 2

gives us the distance we are in yards from the lighthouse,

428-9 X 2= 857-8 yards.
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CHAPTEE VII

TIDES

Practical

Foe coasting, and indeed for many other purposes, it

is essential that the mariner should be able to ascertain

the time of High Water at any Port. Manj' excellent

Tide Tables are in use, but none are better than those

published by the Admiralty, and, as they will be furnished

to you in the Board of Trade Examination, we will work

out the problems with their help. A candidate for

Second Mate's Certificate is required to find the Time

of High Water at any Port.

To find the time of High Water at a given place, a.m.

and P.M., on a given day of a given month.—Proceed

thus :—If the given place, which for the future I will call

the Port, for the sake of brevity, is a Standard Port, look

for it among the Standard Ports on pages 2 to 97a of

the Admiralty Tide Tables for 1898, and alongside the

given day, which, for convenience sake, I will in future

call the day, you will find the time of the a.m. and p.m.

Tides—if there is an a.m. and a p.m. tide ; if a blank (—

)

occurs it means that on that day there is no a.m. tide, or

that there is no p.m. tide, as the case may be. The height

of each tide is also given.

If the Port is not a Standard Port, then look for it

among ' Tidal Constants ' on pages 101-5 of the Tables.

If you find it there you will also find in a line with it

a Port of reference, which is a Standard Port ; and
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the difference, + or — , between the times of High

Water at the Port and at the Standard Port will be given.

This difference is called the ' Constant for Time.' Look

out the Standard Port of reference, and take out the

times of a.m. and p.m. tides for the day ; apply the Con-

stant + or — to the time of High Water at the Standard

Port, and you have the times of High Water at the Port,

provided that there is an a.m. and a p.m. tide at the

Standard Port, and provided also that the application of

the difference does not convert an a.m. into a p.m. tide, or

a p.m. into an a.m. tide at the Port.

But suppose there is no a.m. tide at the Standard Port,

what then ? Why, apply the Constant to the p.m. tide of

the day before, and, if the result is more than 12 hours,

reject 12 hours, and the balance is the a.m. tide on the

day. If the result is less than 12 hours there is no a.m.

tide that day at the Port.

Again, suppose there is no p.m. tide given at the

Standard Port. Apply the Constant to the a.m. tide.

If the result is less than 12 hours it is the a.m. tide at the

Port, and there is no p.m. tide ; but if the result is more

than 12 hours, reject 12 hours, and the result is the p.m.

tide at the Port. In that case apply the Constant to the

p.m. tide of the Standard Port of the j)revious day, and if the

result is more than 12 hours reject 12 hours—the balance

is the A.M. tide at the Port ; but if the result is less than

12 hours there is no A.M. tide at the Port.

If you find that the application of the Constant to the

A.M. tide at the Standard Port makes the time exceed

12 hours, you have the p.m. tide at the Port by rejecting

12 hours, and you must look for an a.m. tide b}^ applying

the Constant to the p.m. tide of the previous day.

If you find that the application of the Constant to the

P.M. tide at the Standard Port tu.rns it into an a.m. tide,
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take that out as the a.m. tide at the Port, and look for a

P.M. tide by applying the Constant to the a.m. tide of the

next day at the Standard Port. All this is much more

clearly seen in examples. Here are some :

—

1. Find the Time of High Water a.m. and p.m. at

Queenstown on August 18th, 1898.

Turn to the Index of the Admiralty Tide Tables on

the page immediately after the Title Page, and you will

find Queenstown ; it is therefore a Standard Port, all the

Ports mentioned on this page being Standard Ports. In

the same line as Queenstown, under August, you will find

64a. This is the page on which you will find the A.M.

and P.M. times of High Water at Queenstown for the

month of August.

Turn to page 64a and you will find that the times of

High Water at Queenstown on August 18th were

5.28 A.M. and 5.44 p.m.

These times are given in Mean Time at place, and if

you want the time of High Water by your Chronometer

or by a watch keeping Greenwich Time, you must, of

course, apply the Longitude in Time.

Thus:

M. T. at Place 5" 28" a. 31. 5" 44"' p.m.
.

Longitude in Time W 33 33

M. T. G. 6 i A.M. 6 17 P.M.

That is to say, your clock will show 6 h. 1 m. a.m., and

6 h. 17 m. P.M., when it is High Water at Queenstown.

Should you be keeping Dublin Time on board you

must add 8 minutes to Queenstown time, Queenstown

being 8 minutes West of Dublin.

On looking through the Tide Tables for the Standard

Ports you will notice that for Irish Ports these corrections

in time are given for Dublin Time, while those for the

English and Scotch Ports are given for Greenwich Time.
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2. Find the Time of High Water a.m. and p.m. at

Portishead on March 15th, 1898.

On page 24 you will see that the Time of High Water

A.M. at Portishead is 11 h. 35 m., and that there is no

P.M. Tide.

3. Find the Time of High Water a.m. and p.m. at

Inverary on November 20th, 1898.

Inverary does not appear in the index, so it is not a

Standard Port. Turn to pp. 101-5. On p. 103 you will

find Inverary, and in the column nearest to it, under Time,

the constant Oh. 8m. is given ; and in the last column

you will note that Greenock is the Standard Port.

Now turn to the index, and find out on what page to

look for Greenock in the month of November. It is p. 87.

On that page j'ou will find that at that place on Novem-

ber 20th the times of High Water were at 4.14 a.m. and

4.55 p.m. Proceed thus :

High Water at Greenock . . i' 14"' a.m. 4'' 45™ p.m.

Constant for Inverary ... — 8 — 8

High Water at Inverary . . .46 a.m. 4 37 p.m.

4. Find the Time of High Water a.m. and p.m. at

Portland Breakwater on March 13th, 1898.

Portland Breakwater is not a Standard Port, and you

will find, on referring to the Tidal Constant, that its Port

of Reference is Portsmouth, and that its Constant of Time

is—4h. 40 m.

High Water at Portsmouth March 13th 2" 23" a.ji. 2" 44"' p.m.

Constant for Portland . . . - 4 40 -4 40

High Water at Portland March 12th . 9 43 p.m. 10 4 a.m. on
March 13

We have thus far only succeeded in finding the a.m.

Tide of the 13th, and for a P.M. Tide we must look to the

A.M. Tide of the next day.

High Water at Portsmouth on March 14th . . 3'' C"' a.m.

Constant for Portland -4 40

High Water at Portland on March 13th . . 10 26 p.m.
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In this case the Constant brings the a.m. Tide on the

13th into a p.m. Tide on the l-2th. The p.m. Tide on the

13th becomes an a.m. Tide ; and the a.m. Tjde at Ports-

mouth of the 14th gives the p.m. Tide at Portland on the

13th. In all cases where a Constant for Time is given a

Constant for Height is also given, and the height of a Tide

is fomid in the same way as the time of that Tide.

Yoh may want to find the time of High "Water at

some Port which has not got a Constant on any Standard

Port in the Admiralty Tables. You can do so if the time

of High Water at Full and Change is given. The

time of High Water at Full and Change is called the

' EstabHshment,' and the Establishment is given in the

Admiralty Tide Table, in the Nautical Almanac, and in

Table LVII. for a great number of Ports aU over the

world. Proceed by one or other of the two following

methods

:

From page IV of the Nautical Almanac take out the

time of the Moon's Meridian Passage on the given day.

It is given in Mean Time. Find the Longitude of the Port.

Take out the Moon's Semi-Diameter from page III.

of the month in the Nautical Almanac. Take out the

Equation of Time from page II. of the Nautical Almanac.

Then find the Apparent Time of the Moon's Meridian

Passage or Transit at the Port in the following way

:

Owing to the Moon's proper motion the Time of Transit

is in East Longitude, earlier, and in West Longitude later,

than the Time of Transit at Greenwich ; a correction for

Longitude has therefore to be applied to the Green-s^dch

Time of Transit. If you are in East Longitude find the

difference between the Times of the Moon's Transit at

Greenwich on the day and on the day before. If you are

in West Longitude find the difference between the Times

of Transit on the day and on the day after. Enter
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Table XVI. with this difference to the nearest minute

at the top, and the Longitude to the nearest degree

in the left-hand column, and take out the correction.

Apply the correction to the Greenwich Time of Transit,

deducting it if you are in East, and adding it if you are

in West Longitude. The result is the Mean Time of

Transit at the Port. To this apply the Equation of

Time, and you have the Apparent Time of Transit at the

Port. Enter Table XVI.* with the Apparent Time of

Transit in the left-hand column, and the Moon's Semi-

Diameter at the top, and take out the correction. Apply

this correction to the Mean Time of Transit, and to the

sum or remainder add the Establishment—that is the time

of High Water at full and change—of the Port. The

result is the time of the p.ii. Tide of the given day. If

you want the a.m. Tide subtract 24 minutes from the p.m.

Tide.

The objection to this method is that it is decidedly

faulty, and may land you in an error of an hour. The
most accurate plan is to make a Constant for your-

self on any Standard Port and apply it as explained

before. It is a very simple matter. You take out from

the last Table in the Admiralty Tide Tables, pp. 210-254,

the High Water Full and Change for the Port for

which you require to know the time of High Water, and

the High Water Full and Change at the Standard

Port you select. The difference between these is the

Constant for Time. You then take out the times of High

Water for the Standard Port on the day, and apply your

Constant. You must then enter Table XVI., and with the

Difference of Longitude between the two Ports, and the

Difference of Meridian Passages as explained above, take

out the correction, and apply it to the times already

found, and there you are. Here are some examples :
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1. Find the Times of High Water a.m. and p.m. at

Port Natal on May 4th, 1898.

Port Natal High Water Full and Change . 4" 30"
Moon's Transit May 4th ... . 10" 38-3"

„ May 3rd .... 9 46-9

Difference of Transits . . . 51-4

Moon's Semi-Diameter 16' 11" Equation of Time S"" 22» + on Mean Time

Moon's Transit on 4th 10" 38-3'°

n i- t I Long. 31° E 1 ,Correction for
I jj;g_°^^.^^^_5^,^„,

I
. . -4

Mean Time of Moon's Transit
Equation of Time ....
Apparent Time of Transit .

Mean Time of Moon's Transit

„ ,. , f Moon's S.-D. 16' 11" ]
Correction for

| ^^ ^ ^^ ^^.^^^ ^g, g^^ |
.

High Water, Full and Change at Port Natal 4 30

High Water Port Natal May 4th .

High Water Port Natal May 4th .

And here it is worked out the other way—let us take

Brest for the Standard Port

:

Brest High Water Full and Change . . . 3'' 47'°

Port Natal „ „ „ „ ... 4 30

Constant . . . + 43

. 10 34-3

+ 3-4
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2. Find the Times of High Water a.m. and p.m. at

Nelson, New Zealand, on October 12th, 1898.

Brest H. W., P. and C. . S"- 47"'

Nelson „ ,, „ .9 50
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Soundings

You must be able to ascertain the amount of

correction to be applied to the depth of water ob-

tained by soundings, conditional upon the state of the

tide when you took a cast of the lead, for it must

be remembered that soundings are given on the chart

for low water ordinary springs, and that in many places

the rise and fall of tide is so great as to make it very

desirable to ascertain what correction to make to the

depths upon the chart.

The correction is always to be deducted from sound-

ings, except in the very rare case of the water being lower

at the time when soundings were taken than at low water

ordinary springs.

You proceed thus : ascertain, 1st, the time of high

water at the Port you are nearest to; 2nd, the height to

which that Tide rises above low water ordinary springs
;

3rd, the Mean Level of the sea, or, as it is called, the

' Half Mean Spring Eange,' which is given in the

Admiralty Tide Tables under the columns of times of

tides for the Standard Ports ; 4th, the difference between

sea-level at the time the cast was taken, and the mean

sea-level.

Find the time of high water by the method already

explained under ' Tides,' pages 170-177, and take the

difference between this time and the time at which you

took a cast of the lead, so as to get the interval between

time of high water and time of sounding. Find the height

of Tide in the manner already explained under ' Tides ' in

the same pages. Take out the Half Mean Spring Eange

from the Tide Tables, or find it by halving the rise of

tide at Full and Change.

Then from the height of Tide subtract the Half Mean
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Spring Range ; the result is the height that that particular

Tide rises above the mean level of the sea. Enter Table B
(p. 98) in the Admiralty Tide Tables with the height of

Tide above the mean level of the sea in the column on

the left, and the time of soundings from high vi^ater on

the top, and take out the corresponding correction. Add
this correction to, or subtract it from, the Half Mean
Spring Eange, according to the directions in the Table,

and the result will be the height of the Tide above low

water ordinary springs at the time of soundings. This

height above low water is of course to be subtracted

from soundings.

Or you can use the Traverse Table instead of Table B,

thus : Find the interval between the time of high water

at the place and the time of soundings, as in the previous

case, and double it ; if it exceeds 6 hours, take it from

12 hours, and use the balance. Call this the Difference.

Turn this Difference into arc. Express the height of water

above the mean level of the sea in feet and decimals of a

foot. Call this the ' Height.' Enter the Traverse Table

with the Difference turned into arc as a Course, and the

Height as a Distance, and you will find the correction in

the Difference of Latitude column. The correction will

be expressed in feet and decimals of a foot ; turn it into

feet and inches. Add the correction to the Half Spring

Eange when the doubled time is less than six hours
;

subtract the correction from the Half Mean Spring Eange

when the doubled time is more than six hours. The Half

Mean Spring Eange thus increased or diminished is to be

deducted from soundings unless the correction is larger

than the Half Mean Spring Eange; in that case take

the Half Mean Spring Eange from the correction, and

add the result to soundings.

The following diagram will serve to explain the

N 2
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meaning of some of the expressions used in connection

with the correction for soundings.

Fig. 28

5
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The soundings on an Admiralty chart are given as

taken at low water ordinary springs, so that the sounding

on the chart in this case would be R M. Now suppose

you had taken your cast at high water at Full and Change

of the Moon, that is at Spring Tides, you would have to

deduct the distance s e, that is the whole of the Spring

Eange, from your cast before comparing it with the chart.

Three hours after high water the level of the sea would

be at L, and you have in that case only to deduct L E, the

Half Mean Spring Eange.

At Springs the rise of the tide is E s, at Neaps it is

TN. The height above low water ordinary springs of

any given tide on any day must lie between en and

E s, and these are the heights tabulated for the Standard

Ports.

Suppose on a certain day the tide rises to f, the height

of that tide is E F. Jt will fall to H at low water, l f being

equal to lh. From ef, which is the position of that

particular tide, you deduct E L, the Half Mean Spring

Eange, and you get L F, or L H ; this is the position to which

that tide rises above and falls below the mean level of the

sea at l. With this and the time of sounding we find

by the aid of Table B, or by that of the Traverse Table,

what proportion of L F is to be added to or deducted from

L E, the Half Mean Spring Eange, in order to find the

position of the level of the sea at the moment of sounding

above its level at low water ordinary springs, and this

height above must be deducted from the sounding taken.

As I have already mentioned, when extraordinary Spring

Tides occur, and the level of the sea rises above and

sinks below the level of ordinary Spring Tides, your

sounding might be taken with the level of the sea between

E and M, in which case the correction would have to be

added.
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2. On February 18th, 1898, being off Cherbourg, at

10 p. M. took a cast of the lead.

Cherbourg is not a Standard Port, and consequently

the first proceeding is to find the Port of Reference and

the time and height of High Water there. The second

step is to find the time and height of the nearest High

Water at Cherbourg by applying the constants. On
looking at the Table of Constants you will find that Brest

is the Port of Reference for Cherbourg.

The constant for Cherbourg on Brest is, for time,

+ 4 h. 13 m.; and for height — 1 ft. 6 in.

On February 18th the time of High Water at Brest is

2 h. 10 m. P.M., and as the constant is + 4 h. 13 m., the time

of High Water at Cherbourg is 6 h. 25 m. p.m., which is

evidently the nearest High Water to 10 p. M.

The height at Brest is 16 ft. 10 in., and as the

constant is — 1 ft. 6 in., the height at Cherbourg is

15 ft. 4 in. So we have

Time of H. W. at Brest

Constant for Cherbourg

Time of H. W. at Cherbourg

Height of that Tide at Brest

Constant for Cherbourg

Height of that Tide at Cherbourg 15 4

To find the Half Mean Spring Eange at Cherbourg,

you must look in the last Table in the Admiralty Tide

Tables, and on page 217 you will find the whole Spring

Rise given as 17f ft. ; the half of this, that is 8| ft. is the

Half Mean Spring Eange required.

Now you have

Time of H. W. at Cherbourg e"" 23-" p.m.

Time of Sounding 10 00 p.m.

Interval between H. W. and Time of Sounding . 3 37

ft. in.

Height of that Tide at Cherbourg . . . . 15 4

Half Mean Spring Range at Cherbourg ... 8 lOj

Height of that Tide above the Mean Level of the Sea 6 5^

. 2'>
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The height above the mean level of the sea is 6 ft. 5^ in.,

but ignore the odd i in., and treat the height as if it were

6 ft. 6 in. ; take out from Table B the correction for the

mean betvsreen 6 ft. and 7 ft. at 3 h. 30 m. and 4 h. intervals

from High Water, and then find by proportion the exact

amount of correction for 3 h. 37 m.

At 3 h. 30 m. time from High Water, the correction

for the mean between 6 ft. and 7 ft. is 1 ft. 8^ in. At 4 h.

the correction for the same height is 3 ft. 9 in.

ft. ill.

At S' 30" the correction to subtract is 1 8f
,, 4 00 ,, ,, ,, ), J) o V

Between S"" SO"" and 4" the Tide feU 2 Oi

What will it have fallen in 7 minutes ?

We have the proportion sum :

As 30 m. : 7 m.- : : 2 ft. OJ in. : x

6 inches is the answer nearly enough.
ft. in.

At S'' 30" the correction was 1 8^

In 7 minutes it fell . 6

At 3'' 37" the correction is 2 2|
(to be subtracted from the Halt Slean Spring Eange).

ft. in.

Half Mean Spring Eange .... 8 lOg
By Tables correction for 3" 37" and GJ ft. . 2 2|

Correction to be subtracted from Sounding 6 8

By the Traverse Table :

ft. in. iu.

Interval . . .3'' 37" Height above Mean Level of Sea 6 oj = 77J

^
Double Intei-val or Dift. 7 14

12 00

Difference . . 4 46 in time or ,71^° in arc.

With 71i° as a Course, and 77i as a Distance in the

Traverse Table, you will find 24 (very nearly) in the

Difference of Latitude column as the correction to be

applied to Ihe Half Mean Spring Eange. Half Mean
Spring Bange 8 ft. 10^ in. — 24 in. correction = 6 ft. 10^ in.,

to be subtracted from soundings; practically the same as

the correction found by Table B.
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In dealing with a foreign Port, the time of High Water

must be found by the method explained in Tides on

page 174 ; a Constant for Height must be ascertained by

taking the difference between the Spring Eange at the

Port in question, and that of some Standard Port, gener-

ally Brest. The Half Mean Spring Eange is found as in

the previous example, and then you have all the requisite

data. Here is an example :

3. On September 27th, at 11.30 p.m., being oft' Haute

Isle, Bay of Fundy, took a cast of the lead. Eequired the

correction to be applied to the sounding before comparing

it with the chart.

In the last Table in the Admiralty Tide Tables, on

page 226, you will find the following :

High Water at Full
and Change Spring Eis

ft. in.

Page 226 Haute Isle . 11" 21"- Haute Isle . . . 33

„ 215 Brest . . 3 47 Brest .... 19 6

Constant for Time . + 7 34 Constant for Height . + 13 6

Long, of Brest . . 4*° W Moon's Transit Sept. 27th . 10'- 7'"

Haute Isle. 65° W „ „ „ 28th . 10 55

Diff. of Long. ; . 604° ^ Difi. of Transit . . . 48

High Water at Brest on Sept. 27th . . 1" 49"' p.m.

Constant for Haute Isle + 7 34

9 23

p .. f f Diff. Long. 60°W ) , aCorrection for
I p;g^^^^^_4g„

t . . . ^^8
High Water at Haute Isle .... 9 31 p m.

Time of Sounding . . . . . . 11 30 p.m.

Interval between H. W. and Time of Sounding 1 59

ft. in.

Height of that Tide at Brest . . . 17 6

Constant for Haute Isle . . . . + 13 6

Height of that Tide at Haute Isle . . 31
Half Mean Spring Eange 38 -^ 2 . . . = 16 6

Height of that Tide above the Mean Level of the Sea 14 6

ft. ill. ft. in.

Table B. Corr. for 2" (the nearest to l" 59'°) and 14 6+73
Half Mean Spring Eange 16 6

Correction to be deducted from Sounding . . . 28 9
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Using Traverse Table instead of Table B

Interval

Double Interval

. 1" 59°

2

58 in time = 59i° in arc.

Height of that Tide above the Mean Level of Sea 14 ft. 6 in. = 1-1-3 ft.

With 60° as a Course, and 14-5 as a Distance, you will find 7'36 or 7 ft.

4 in. in the Diff. of Lat. column, which is within an inch of the correction

to be apphed to the Half llean Spring Eange as found by Table B.

4. On May 7th, 1898, at 6 p.m., being off Liverpool,

I took a cast of the lead.

By Admiralty Tables

:

Liverpool, Time of High Water . . . . 0'' 1'" a.ji. May 8th

„ „ „ Sounding . . . .60 p.m. May 7th

Interval between High Water and Time of Sounding 6 1

Height of that Tide
Half Mean Spring Range ....
Height of that Tide above the Mean Level of the Sea 14 2

ft.
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interpolation, which may throw you out a Httle. But an

inch or two is of no consequence, and as the Admiralty

Tables afford a more expeditious and less troublesome

method of finding the correction I recommend you to use

them.

Theoretical

Having now discussed Tides practically, that is to say,

having shown how to find the time of high water, and

height of high water at different places, and to correct

soundings, a few words on the theory of tides, and on their

general direction round about the coasts of the British

Island-, may be useful. But there is no necessity for you

to read them unless you are so inclined.

Cause of Tides.—Tides are caused by the action of the

Sun and Moon, which, according to the law of gravitation,

affects every portion of the Earth, both solid and fluid.

The portions of the Earth which are nearer the Moon are

attracted more than the portions further away, because

the force of gravitation decreases with the distance. In

Fig. 29

the figure, c is the centre of the Earth, A the point directly

under the Moon, and B the point furthest away from it.

A portion of the Earth at A is pulled with a greater
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force than a portion at the centre c, and a portion at b is

pulled with a less force than a portion at c. But the solid

portion of the Grlobe moves bodily, as no part of it can yield

to the Moon's attraction without the rest. With the fluid

portion it is different ; at A, the fluid yields to the excess

of the Moon's attraction and bulges out towards her. At

B the fluid, not being so much affected by the Moon's

attraction as is the solid, is, as it were, left behind, and

bulges out. Consequently there is a rising of the water on

the side of the Earth under the Moon, and also a rising

of the water on the opposite side.

Fig. 29

fjtoon\

I speak chiefly of the Moon, because her attractive

power is much greater than that of the Sun in this regard,

being in the ratio of about 1\ to 1, and she is therefore the

chief factor in causing tides. The Sun, however, has an

effect, and when it is in conjunction and pulls in the same

direction as the Moon, that is to say at New Moon, the

tidal undulation is increased by the joint action of both

Bodies, and we have Spring Tides. Also when the Sun

is in opposition, that is at Full Moon, and pulls in the

opposite direction, the same effect is produced, because its

action causes the water to be raised both under it and on

the opposite side of the Earth—that is, at exactly the
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places where the Moon's action also causes the water to

be raised—and Spring Tides occur. When, on the other

hand, the Sun's attraction acts at right angles to that of

the Moon, as is the case at the time of the first and third

quarters, the position of the Bodies tends to neutralise

the effects of their attraction ; the tides do not rise high,

and we have Neap Tides.

The diagrams here appended show the effect of the

attraction of the Sun and Moon at New and Full Moon,
and at the first and third quarters.

In diagram No. 30 let f b G d represent the Earth,

and H M K L its watery envelope ; A the position of the

Moon, and b that of the Sun. When the Sun and Moon
are in conjunction—that is, in a line on the same side of

the Earth—their gravitation pulls together; the height of

the water at b h and k d is at its maximum, while at l F

and G M it is at its minimum, and we have Spring Tides

at New Moon. Also when the Moon is in opposition at n

her attraction raises the water at D K and B H, where the

Sun's attraction also raises the water, and we have Spring

Tides at Full Moon.
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Diagram No. 31 shows a different state of affairs. The

Sun being at B and the Moon at a, their gravitations act

at right angles to each other, and tend to balance each

other; in consequence of this, the tide neither rises as

high at B H and k d, nor falls so low at L F and G M as it

does in the former instance, and we have Neap Tides.

Fig. 31

Tides ^ and Tidal Streams.—The Moon, owing to the

Earth's rotation on her axis combined with the Moon's

own motion, appears to revolve round the Earth in about

24 hours 48 minutes, thereby causing two tidal waves to

sweep round beneath her, so that we have two high tides

and two low tides in that time. These tidal waves are

simply a rising and falling of the water, for little or no

horizontal motion is imparted to it until, owing to the

shape of the land, or the decrease in the depth of the

water, this perpendicular movement is converted into a

horizontal one.

Imagine yourself to be standing on the pier-head on a

day when there is no wind, and the sea is glassy in its
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smoothness, but when a swell is heaving in from seaward.

As you stand at the end of the pier where the water is

deep, you will notice that as each roller comes in the

water rises, and as it passes away the water falls, there

being hardly any horizontal movement. Now go to the

beach, and there you will see that as a roller comes in its

crest gathers velocity, and a stream of water pours rapidly

in to your feet. This gives a rough illustration of a tidal

wave and a tidal stream. Evidently, therefore, tidal

phenomena consist of two factors, first the undulation or

rise and fall of the water—what is commonly called High

Tide and Low Tide ; second the stream, or horizontal

movement of the water, which attends the tidal undula-

tions. These two divisions of tidal phenomena must be

considered quite independently. To know the amount of

rise and fall of tide when wanting to take your ship over

a bar, or into a tidal harbour, is a matter of great import-

ance. To know how the tidal stream sets at any par-

ticular time, when you are in narrow waters and the

weather is thick, is equally necessary.

I have spoken of the tidal undulations as waves, for in

many respects they exactly resemble other waves ; the

only difference being the enormous distance between their

crests. The biggest wind waves measure about 800 ft. to

1,000 ft. from crest to crest ; but tidal waves would, if no

land interfered with their regular progression, measure

about 12,000 miles apart, or half the circumference of the

globe, from crest to crest. These tidal waves follow the

Moon round as far as is practicable, but the great conti-

nent of North and South America, and the enormous

mass of land extending from the Cape of Good Hope to

the Arctic Ocean, prevents them from obeying their

natural impulse ; and consequently, while proceeding more

or less regularly in the South Atlantic and South Pacific
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Oceans, where land does not obstruct them, they act

quite irregularly everywhere else.

The tidal wave which sweeps round the Cape of Good

Hope from Bast to West spreads in every direction, and

a portion travels up the South Atlantic Ocean, proceeds

onward up the North Atlantic Ocean, and finally arrives

on our coast from the South-westward. That is to say

the tidal wave, which, if there were no land to intervene,

would always travel from East to West, reaches us from

quite a different direction.

Let us consider for a moment the effect produced by

this tidal wave approaching our coast from the Atlantic.

At about 4 P.M. upon the day when the Moon is on the

Meridian of Greenwich at about Noon, or as it is called

technically at Full and Change of the Moon, the crest of

the great tidal wave stretches from the West coast of

France to the North-westward, curving to the North-

ward, and trending parallel to, and at a short distance

from, the West coast of Ireland. It is quite clear that a

line drawn along the crest of this wave will be the line of

high water. Therefore, at all places and on any part of

the sea traversed by this line, it will be high water at the

same time. This line is commonly called the Co-tidal

Line. At 5 p.m. on the same day this tidal wave has

reached the South and West coasts of Ireland, and it

curves up the Bristol Channel till within a few miles of

St. Bride's Head, when it recurves South to the Scilly

Islands and Land's End, and continues along the South

coast of England as far as Start Point, when, after bellying

out a little to the Eastward up the English Channel, it

trends Southerly to the coast of France.

The tidal undulation would on the Equator, if there

were no obstruction by land or from any other cause,

travel at the rate of about a thousand miles an hour, but
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in our waters it advances only at the rate of from twenty

to fift}' miles an hour. It is divided by the coast of

Ireland into two portions ; the Northern portion is again

divided by the coast of Scotland into two parts, one of

which goes to the Northward round the Northern

extremity of Scotland, while the other finds its way

through the North Channel into the Irish Sea. The

Southern portion passes the South coast of Ireland, and

divides itself into three parts ; one part goes up the Irish

Channel and meets the tidal wave from the North in the

centre of the Irish Sea ; another part swells the water

in the Bristol Channel ; and the third part gives high

water in succession to the ports of the English Channel.

This latter portion at length meets in the Straits of Dover

with the other tidal wave which has come round the

North coast of Scotland, and made its way to the South-

ward along the East coasts of Scotland and England.

A glance at the position of affairs at 11 p.m. on the

same day will be interesting. Two tidal waves have

travelled up the Irish Sea, one coming from the South-

ward and the other from the Northward. A tidal wave

has gone up the Bristol Channel, another up the English

Channel, and another has swept round the Northern

extremity of Scotland and has run down the East

coasts of Scotland and England. The tidal waves have

met in the centre of the Irish Sea, giving high water from

Dublin to Carlingford Bay on the coast of Ireland, and

from Liverpool Bay on the coast of England to the

South of Scotland. It is also high water in the Straits

of Dover, and at the mouth of the Thames, where the

English Channel and North Sea tidal waves have met.

And another tidal wave causes it to be high water about

the North-eastern coast of Scotland. At the same time it

is low water on the South-west and South coasts of

VOL. I.
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Ireland, on the South coast of England from the Scilly

Islands, and Land's End to the Start, and on the East

coast of England about Flamborough Head.

So much for the tidal waves at Full and Change ; now

let us turn our attention to the tidal streams. The

Northern tidal wave enters the Irish Channel about

7 P.M., that from the South coming in one hour earlier.

The tidal streams, however, which accompany these

waves, have no such difference in their time of flow and

ebb in any part of the Irish Sea, but are found to

commence and cease simultaneously. The current sets

to the Northward in its Southern portion during the flow

of the tide, and the current runs to Southward in its

Northern half during the same period. The exact reverse

of this occurs during the ebb of the tide. A little to the

Westward of the Isle of Man there is an area of between

fifteen and twenty miles where no tidal stream manifests

itself.

In the Irish Sea tides are referred to Liverpool,

because it is a Standard Port ; but as the times of slack

water in the Irish Sea correspond with the times of high

and low water at Fleetwood and Morecambe Bay, which

occur twelve minutes earlier than at Liverpool, it is

simpler in considering the tides to refer to Fleetwood.

For nearly six hours after low water at Fleetwood and

Morecambe Bay the tidal streams are pouring into the

Irish Sea, both from the Northward and Southward, and

then for nearly six hours afterwards they are rushing

outwards. Their velocity is about two-and-a-half knots

an hour on an ordinary spring tide, except when the

narrowing of the Channel, as at the Mull of Cantire, or

the shoaling of the water in other parts, causes the speed

to vary.

In the Enghsh Channel, and in the North Sea as far
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as the parallel 54° North, the time of the ebb and flow of

the tide is referred to the time of high and low water at

Dover. These streams run simultaneously throughout a

considerable portion of the English Channel and the

North Sea. The regularity of the tidal stream to the

westward of a line joining the Bill of Portland and Cape

La HogTie is, however, interfered with by currents

running into and out of the Gulf of St. Malo.

When the tide is rising in Morecambe Bay, a power-

ful stream will be found running out of the Bristol

Channel, and a South-westerly current exists on the

North Cornish coast. When the tide is falling in More-

cambe Bay, there is a flow into the Bristol Channel, and

the current on the North Cornish coast is reversed. When
this Bristol Channel stream is setting to the Northward,

the stream from the Irish Channel is setting to the South-

ward. They meet off the entrance to the Bristol Channel,

and both run into it. So that when the water is falling at

Fleetwood and Morecambe Bay, the stream will be

setting to the Eastward in all the sjiace to the Eastward

of a line joining Scilly and Tuskar.

Off the West coast of Scotland the tidal streams may
be divided into two parts, whose line of separation is the

Isle of Skye. With regard to that portion extending from

the Isle of Skye to the Mull of Cantire, the tidal stream

is running to the Northward from one hour before high

water at Greenock to low water at Greenock, and to the

Southward for the rest of the time. To the Northward

of Skye the tide runs to the Northward and Eastward

from three hours after high water to two hours before

high water at Greenock, and runs the other way from

two hours before high water to two hours after high water

at that port.

It is well to recollect that slack water generally lasts

Q 2



196 TIDES

about three-quarters of an hour ; that the actual time

during which the tidal streams run either way is about

five hours and forty minutes, and that their greatest

velocity is nearly always attained about three hours after

slack water. As the speed gradually increases to its

maximum, and as gradually decreases to its minimum, it

is possible to roughly estimate its velocity at any given

time, but it is advisable to ensure accuracy by consulting

the Admiralty Tidal Charts.

The tidal wave in the Atlantic, as we have already

seen, strikes the South-west coast of Ireland, and divides

into three portions, one running up the English Channel

to the Eastward ; another running along the West coast

of Ireland and Scotland to the Northward, and thence

round by the Shetlands and Orkneys to the Southward,

along the East coast of England ; and the third entering

the Irish Sea by way of St. George's Channel. The

general direction of the tidal stream during the flood is to

the Eastward in the English Channel, to the Southward

in the Northern portion, and to the Northward in the

Southern portion of the Irish Sea, to the Northward along

the West coast of Ireland and Scotland, to the Eastward

off the Shetlands and Orkneys, and to the Southward

along the East coast of England.

In order to explain more easily the direction of the

tidal streams in the English Channel, it is convenient to

divide it into four imaginary parts, the first part lying to

the Westward of a line joining the Land's End and

Ushant, the second between this line and a line joining

the Start and Casquets, the third between this line and

a line drawn from Beachy Head to Point d'Ailly, the

fourth from that line to a line joining the North Foreland

and Dunkerque.

In the first of these divisions the tides run in all
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directions right round the compass during each twelve

hours.

In the second division the tidal streams are , irregular,

as the main Channel tide is interfered with by currents

flowing into and out of the Gulf of St. Malo, and also by

variable currents to the Westward of the Land's End.

While the water is falling at Dover, the tidal stream

sets directly into the Gulf of St. Malo on the French

side of the Channel, curving round Cape La Hogue, and

setting South-westerly to South-easterly on either side

of the bay. The reverse takes place when the water is

rising.

In the third division, or ' Channel proper,' the tides are

fairly regular, flowing to the Eastward while the water is

rising at Dover, and to the Westward when it is falling at

that port. The tide is slack over all this section at the

same time.

The tides in the last division, known as the ' Straits

of Dover ' tides, demand most careful consideration.

While the tide is rising at Dover, the Channel stream, and

the streams in the Xorth Sea, to the Southward of a line

joining the Wash and the Texel, meet ; but their line of

meeting is not stationary, it shifts continually between

Beachy Head and the North Foreland. When the water

is falling at Dover, the Channel and North Sea streams

separate, but the line of separation also shifts continually

between Beachy Head and the North Foreland.

When it is high water at Dover, it is slack water at

Beachy Head and Point d'Ailly and to the Westward.

Eastward of the line between Beachy Head and Point

d'Ailly the stream runs Easterly as far as the North Pore-

land, where it is also slack water.

One hour after high water at Dover the stream is

going to the Westward in the Channel from the ' Royal
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Sovereign ' lightship Westward ; but to the Eastward of

the lightship the current sets Easterty.

Two hoiirs after high water at Dover, the line of

separation of the streams is between Hastings and Tre-

port, that is to say, West of this line the water runs to the

Westward and East of the line it runs to the Eastward.

Three hours after high water at Dover, the hne of

separation is between Hastings or Eye on the English

coast and Caj'eaux on the French coast.

Four hours after high water at Dover the line has

shifted to a line between Folkestone and Cape Grisnez ;

five hours after high water at Dover to a line between

the South Foreland and Calais, and six hours after high

water at Dover to a line between the Korth Foreland and

Dunkerque.

When it is low water at Dover the line of separation

is from Eamsgate to the Texel, and the stream is very

nearly slack. One hour after low water at Dover the

stream is Easterly West of a line between Beachy Head

and Point d'Ailly. Two hooi's afterwards it commences

to run to the Eastward off Hastings, and three hours

afterwards off Bye and Cayeaux, four hours afterwards off

Dungeness and Cape Grisnez, four and a half hours after-

wards off Dover and Gravelines, five hours afterwards off

the South Foreland and Dunkerque, six hours afterwards

off the North Foreland and a little to the Westward of

Dunkerque.

You will observe that the direction of the stream is

not always indicated by the time of high water. At

Dover, for instance, the tide commences to flow to the

Eastward one and a half hours before high water, and

continues to run in that direction until four and a half

hours after high water. As has already been stated, it is

slack water in the Channel to the Westward of Dover
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when it is high or low water at that Port, and it is well

worthy of notice that a vessel may, if she be at the Owers

at slack water—that is at time of low water at Dover

—

carry with her a twelve hours' tide to the Eastward if she

maintains a speed of eight knots through the water.

Close in shore and in the bights the stream generallj'

turns one or two hours earlier than in the offing. This is

very useful knowledge to the Channel groper turning up

or down Channel ; but in standing in to cheat the tide he

must remember, especially in thick weather, that there is

an indraft on both the flood and the ebb into all the

bights on the English coast.

Strong winds from the South-west and West naturally

tend to prolong the flood tide in the Channel, and Easterlj'

winds to retard it ; and this sometimes occurs to a

remarkable extent.

With regard to the Solent and the waters generally

inside the Isle of Wight, we find two conditions of things.

To the Westward of Cowes the Westerly stream makes

from about 1 h. 20 m. before, until about 4 h. 20 m. after

high water at Dover ; then the stream sets to the East-

ward until 1 h. 20 m. before high water at Dover.

To the Eastward of Cowes the Westerly stream com-

mences about two hours before high water at Dover, and

runs for about five hours. The Easterly stream makes

about three hours after high water at Dover, and generally

runs for seven hours. At Spithead the tides are referred

to Portsmouth ; the stream runs to the Westward from

two and a half hours before high water at Portsmouth,

running about North-west by North for five hours and

South-east by South for seven hours.

Before leaving the subject of the Tides in the English

Channel, it is worth mentioning that when it is high

water at Dover it is low water at Penzance, and vice
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versa—in other words the tide takes about 6 hours to

traverse that distance ; that the rise of tide at Dover at

Springs is 18f ft., and that it is at 16^ ft. at Penzance ;

that at Portland Breakwater there is only a rise of 6-| ft.,

while at Poole it is only 6 J- ft. In fact, the water in the

English Channel seems to see-saw between Dover and

Penzance, where the rise and fall of the tide are greatest,

and midway between these two places there is very little

rise and fall. This fact accounts for the rapid tidal

streams in the Channel, or the rapidity of the streams

accounts for the fact—whichever way you like to take it.

It is quite evident that when the tide at Penzance is, as

we have said, 16^ ft. above its lowest level, and in the

succeeding 6 hrs. falls that 16;^ ft., while at the same time

the water at Dover is rising 18f ft., there must be a very

large body of water shifted from one end of the Channel

to the other.

In the North Sea the flood tide is still making at the

mouth of the Thames when it is high water at Dover.

From the Thames to the parallel of 54° North it is slack

water. From 54° to 56° North there is a slight Northerly

set, and from 57° to 59° North, a drift to the Southward

exists.

At one hour after highwater at Dover, the state of affairs

is as follows : At the mouth of the Thames slack water

;

from the mouth of the Thames to 54° North a Northerly

stream of from 1 to 2 knots ; on the parallels of 55° to 56°

the water is more or less slack ; but to the Northward of

this there is a slight Southerly set.

Two hours after high water at Dover it is ebb tide at

the mouth of the Thames, and the other streams remain

unaltered.

Three hours after high water at Dover, tide still

ebbing at the mouth of the Thames. A Northerly cur-
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rent as far as 53° North, and Westerly and Southerly

currents from 54° to 57° North.

Four hours after high water at Dover, tide continues

to ebb at the mouth of the Thames. Stream sets to the

Northward as far as 54° North. To the Northward of

this currents are irregular, and we have a Southerly

ciirrent close in along the coast from St. Abb's Head
nearly to the Wash, and a Northerly current along

the coast of Scotland from the Firth of Forth to

the Orkneys. Six hours after high water tide still

ebbing at the mouth of the Thames, slack water off

Harwich, a Northerly stream sets as far as the 54th

parallel, except close in to the coast of France and

Belgium, where it runs to the South-westward ; the

Southerly stream close in to the East coast of England

now comes down as far as the Wash.

Five hours before high water at Dover, we have slack

tide at the mouth of the Thames. There is a Southerly

stream along the coast of England, from the River Tyne

to the Straits of Dover. To the Northward of 54° N
the stream is Easterly, and further to the Northward it is

Northerly.

Four hours before high water at Dover the flood

begins to make at the mouth of the Thames. To the

Southward of 63° North there is a Southerly set, but

close in to the coast of England and Scotland a stream

sets to the Northward, and in the remainder of the North

Sea the streams are irregular.

Three hours before high water at Dover the flood is

still running rapidly at the mouth of the Thames, and

the general condition of affairs is much the same as at

four hours, except that the Northerly stream close to the

coast now extends South to the Wash. A North-easterly

stream, however, sets close in along the French coast.
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Two hoiars before high \Yater at Dover the flood

tide is still running rapidly at the mouth of the Thames,

and the state of affairs is much the same as that which

existed at three hours, as previously described. One

hour before high water at Dover the flood is still running

at the mouth of the Thames, and the streams in the

North Sea are very much as they were at two hours.

In the Irish Sea the tidal streams begin to flow

through the North and South ends at one hour after low

water at Morecambe Bay. The current from the South

runs up until it passes Holyhead, when the greater

portion of it sweeps round to the Eastward, passing to

the Southward of the Isle of Man, and there meeting

with the current from the Northward, they together flow

with considerable velocity into Morecambe Bay, where,

by their combined action, immense piles of sand are

thrown up. The smaller Western portion of the current

from the South runs along the East coast of Ireland, till

it is brought up by meeting with a portion of the current

from the North ; this meeting takes place a little to the

AVestward of the Isle of Man, where a large surface of

water some 25 miles in diameter exists with no perceptible

current at any time, though the rise and fall at Springs is

considerable, amounting to some sixteen feet.

When it is high water in Morecambe Bay, there are

no tidal streams in the Irish Sea, the water being slack

over everj^ part of it.

When the water begins to fall at Morecambe Bay, the

tidal streams in the Irish Sea are all reversed, and run

out of it as fast as they ran in while the water was rising,

and in opposite directions.

In the Bristol Channel there is a North-easterly

current off the North-west coast of Cornwall and Devon,

and an Easterly current off the South coast of Wales,
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when the water is falling at Morecambe Bay. At the

time of high or low water at Morecambe Bay, the water

is slack in the Bristol Channel, but when the tide is rising

at Morecambe the above-mentioned streams are all

reversed.

On the AVest coast of Scotland the tides are referred

to Greenock ; they run with great velocity where the

channels are narrow. Here, as in the English Channel,

the tidal streams have their lines of meeting and separa-

tion.

At high water at Greenock the line of meeting is in

about 56° 30' N. The streams set to the Southward,

North of this line, and to the Northward, South of it.

One hour after high water at Greenock, the line of

meeting is about 57° 30' N.

Two hours after high water at Greenock, it is nearly

in the same place as at the previous hour.

Three hours after it is in 58° N.

Pour hours after this Northerly stream extends right

along the West coast of Scotland.

At low water at Greenock the stream commences to

set to the Southward from 56° 15' N, but it is still

running to the Northward, North of that parallel which

now becomes the line of separation.

Six hours before high water at Greenock, the line of

separation is in Latitude 56° 30' N.

Five hom-s before it is in 57° 20' N.

Four hours before it is in 57° 30' N.

Three hours before it is in 58° N.

Two hours before high water the stream runs to the

Southward, all the way down the West coast except in

the Firth of Clyde and in Jura Sound, where it sets to the

Northward.

One hour before high water the line of meeting is in
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about 56° 30' N. The stream is, however, still running

into the Irish Sea through the North Channel.

With regard to the velocity of tidal streams, it is

utterly impossible to give anything like an accurate

estimate of their rate. Every gale of wind affects their

rapidity, and in fact every breeze of wind, no matter how

light, creates a small surface current, which, though

having little effect upon Atlantic liners, may have a very

serious effect upon vessels of light draught. Eoughly, on

our side of the English Channel the streams run at from

1^ to 2^ knots. On the French side, particularly in the

neighbourhood of the Galf of St. Malo, the streams are

both irregular and very rapid.

In the Irish Sea the velocity of the tidal streams is

from
1-J-

to 24- knots. In the North Channel, however,

they often attain a speed of 5 knots.

With regard to the tidal streams in the Bristol

Channel, on the West coast of Scotland, on the East

coast of England, and in the North Sea it may be said in

a general way that the rate varies between ^ knot at Neaps,

and 2 knots or more at Springs, that near headlands and

in narrow channels it may and does sometimes reach a

rapidity of 5 knots. On the West coast of Scotland,

between the Mull of Cantyre and the Island of Mull, the

streams are both rapid and irregular, and this is character-

istic also of the tidal streams in the Channels between the

North coast of Scotland and the Orkney and Shetland

Islands. This information doubtless seems somewhat

vague, but it is the best I can give you.

When the navigator cannot ascertain the place of his

ship by cross-bearing or by a knowledge of the land in

sight, he should make an allowance for the tidal streams

as above indicated when working out his Dead Beckoning.

He should, however, never place implicit faith in the
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position of his ship so arrived at, but in every case should

constantly check it by the use of the lead.

The Admiralty Tide Tables, an admirable work, should

be on board every vessel, and should be carefully studied.

The information contained therein is compiled from the

most reliable sources, and is as accurate as is possible

under the ever-varying conditions of our wonderful

climate. But when all is said and done, even the best

information should be mistrusted, for tides are most pre-

carious things, as every man knows who has had much
experience of fishing off our Channel coasts. Such a one

will not unfrequently perceive that the tide will, from

causes quite unknown, run to the Eastward or the West-

ward, as the case may be, much longer than it ought to

according to the highest scientific authorities, and, which

is still more remarkable, according to the knowledge

of the best local experts. In thick weather the cautious

mariner will be very chary of placing too much reliance

upon information as to the set, strength, and duration of

tidal currents, even though derived from the best authori-

ties on the subject.
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CHAPTEE VIII

CHARTS

Place a chart before you on a table, with the Northern

end away from you. You will observe that on all charts

of small surfaces of the Globe, there are here and there

Compass Cards having their North points directed to the

Magnetic North, a direction which generally makes a

certain angle with the Meridians. When this is the case,

the chart is what is called a 'Magnetic Chart.' When,

as is usually the case with charts representing large

portions of the Earth's surface, such, for instance, as a

chart of the North Atlantic, the Compass Cards have

their North points coinciding with the Meridians, the

chart is called a ' True Chart.' You must remember that

the Meridians in either case are always North and South

TriLC.

Under the title of the chart, information is given with

regard to the meaning of certain abbreviations used,

and also whether the soundings are given in fathoms

or in feet ; and, in the Admiralty Charts, the time of

High Water, Eull and Change, for the principal places

and harbours on the chart is given.

The figures scattered all over that part of the chart

representing the sea are the soundings at Low Water

Ordinary Spring Tides ; the small letters in italics under

the sounding represent the nature of the bottom ; a line
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drawn under the figure means that at the sounding given

there is no bottom ; a httle red dot surrounded by a yellow

halo is the usual mark for a lighthouse or light-ship, and

its character is in nearly all cases given under its name.

Dotted lines round the coast hne and in other places arc

drawn to indicate 5 fathom lines, 10 fathom lines, 20

fathom lines, etc. Eocks are indicated by little black

crosses, and shoals by shaded patches if they dry at low

water ; but rocks and shoals are surrounded by a dotted

line with the sounding given inside if they are always

below the surface. Waved lines show the existence of

strong currents or races.

Lines are often drawn from certain points or from

landmarks placed to enable the mariner to steer clear of

some dangerous rock or shoal, or to direct his course

into some port or harbour of refuge ; and views showing

the appearance that the coast presents on entering certain

harbours are given on most charts. The Variation is

given on every Compass Card. When laying off a course

from one place to another on the chart, use the Compass

Card which has the mean of the Variations occurring

along the course, or make allowance for the change of

Variation as you proceed. The time of High Water at

Pull and Change is, in many charts, indicated in Roman
letters close to the names of places.

This is about as much as can be said in explanation

of charts, but verbal instructions are of but little service,

for close study and constant use and practice alone will

enable a man to confidently navigate strange waters with

the help of a chart. And now a few words on the principal

uses to which a chart is put.

To find the Latitude of a place on the cliart.—With
your dividers measure the distance between the place

and the nearest Parallel of Latitude ; apply the distance



208 CHARTS

on the dividers to the graduated Meridian on the right or

left of the chart, and read off the Latitude.

To find the Longitude.—Measure the distance from

the place with your dividers to the nearest Meridian, and

apply that distance to the graduated Parallel at the top

or bottom of the chart, and you have the Longitude.

Tomark the ship's position on the chart.—The position

of the ship is the point vs^here a line representing your

Latitude and a line representing your Longitude cut.

Lay the edge of the parallel ruler on the Parallel

nearest to the place. Shift it to the exact Latitude of the

place as marked on the graduated Meridian (if your ruler

will not reach the graduated Meridian measure the

Latitude of the place North or South of that Parallel with

your divider, and make a dot on the chart in such a

position that your rulers will reach it : work them up to the

dot, and leave them there) . The edge of the ruler is now
on the Latitude of the ship. Then with the dividers

measure on the graduated Parallel the distance Bast or

West from the nearest Meridian. From the same

Meridian apply that distance to the edge of the parallel

rulers, and you have the Longitude of the ship.

To find your place by Bearings of the land.—The

simplest method is by cross Bearings, that is to say by

simultaneous Bearings of two objects so situated that the

Bearings will cut each other at an angle sufficiently broad

to make the point of intersection clean and clear. Take

the Compass Bearing of two objects which are marked in

the chart. Turn them into Correct Magnetic Bearings.

Place your parallel rulers on the Correct Magnetic Bear-

ing on the nearest Compass Card on the chart, and move

them up to the first object, and draw a line. Proceed in

the same way with the second object, and draw another

line. The point of intersection is the ship's position.
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In diagram No. 32 let A and B be two points of land

bearing from the ship NW and NE ^ N respectively.

Then o, the point of intersection of the two Bearings, is

the position of the ship.

Fig. 32

-4-.

QO

It may be that you cannot get a Bearing by Compass

of the second object—some portion of the ship may inter-

vene. In such a case measure the angle between the first

object and the second object with a sextant. By applying

this angle to the Bearing of the first object you will get

the Bearing of the second object. Thus if the Bearing of

the first object was North, and the angle between the

first and second object was 60°, the Bearing of the second

object will be N 60° E if it is to the right of the first ob-

ject, and it will be N 60° W if it is to the left of the first

object.

To find the ship's position by two Bearings of the same

object, and her distance from it at the time the second

Bearing was tahen.—Take the Bearing by Compass of an

object, say a ; turn it into Correct Magnetic, and draw a

VOL. I. p
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line from A as in the preceding case. After the ship has

run a sufficient distance to make a good broad angle, take

another Compass Bearing of a, turn it into Correct

Magnetic, and draw another line from A on that Bearing.

Find the Correct Magnetic Course, and the Distance run

hy the ship in the intervalbetween taking the two Bearings.

Put the Distance on your dividers, lay your parallel rulers

on the Ship's Course, by the nearest Compass Card on the

chart, and move them backwards or forwards along the

lines of Bearings till the Distance on your dividers measures

the Distance between the two Bearings along the edge of

the rulers, and draw a line ; the spot where this line inter-

sects the line of the second Bearing is the position of the

ship. Then take off the Latitude and Longitude of the

ship's position from the chart. Measure the Distance from

the ship's position to the object on shore along the second

line of Bearing, and there you are.

Fig. 33

In diagram No. 33 let A be the point of land and suppose

the Course of the ship to be W ^ S and the distance run

ten miles. The first Bearing taken of A is WNW, then

after the ship had run ten miles on her Course A bore N b E.
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Rule these two Bearings of a on the chart, then, with the

edge of your paraUel rulers on W -j S, find out where ten

miles will be subtended between the two Bearings : it

is between b and o, and c is the position of the ship

when the second Bearing was taken. Measure with your

dividers its distance from A. The simplest way of thus

finding the ship's position is by doubling the Bow
Angle, because in that case the run is the Distance

from the object at the time of taking the second Bear-

ing. For instance, suppose your course is NE and a

point of land bears North, and that when it bears NW
you have run ten miles, you will have doubled the Angle,

and the point of land will bear NW distant ten miles.

This is true of any Angle provided it be doubled.

Fig. 33a

Let o be a point of land, and ab the Course of a ship.

Suppose at c the angle between the track of the ship and

the Bearing of the point is 30° ; the run of the ship is

carefully noted till she arrives at D, where the angle

between the track of the ship and the Bearing of the point

is 60° ; in fact. Bow Angle has been doubled. Then c D,

the Distance run between the observations, = d o, the

Distance of the ship from the point o when she is

at D.

P 2
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If a ship is sailing in the direction A B c she can deter-

mine at what distance on that course she will pass from

the headland d by noting the run between the two posi-

tions A and B, v/hen the headland bears 26° and 45° on

the bow respectively. Then A b is equal to c d, or the

run of the ship is equal to the Distance at which she will

pass from the headland.

Fig. 34

To find the Course and Distance from one place to

another on the chart.—Lay the edge of the parallel rulers

on the two places, work the edge of the parallel ruler till

it cuts the centre of a Compass on the chart, and read

off the Course, which on a Magnetic chart will be Correct

Magnetic; correct it for Deviation to get a Compass

Course. If you are using a True Chart, the Cour-se you

will obtain will be a True Course, and must be corrected

for Variation also. Measure the Distance by the dividers,

taking care if it involves much Difference of Latitude to

measure it off on such a portion of the graduated Meridian

as will lie about half-way between the Latitude of the

two places.

The Examination for Second Mate requires the candi-
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date to find the Course to steer on either a True or a

Magnetic Chart, and the distance from one point to

another ; and to fix the position by Cross Bearings or from

two Bearings of the same object, with the Eun between.

To allow for a current.—If you know that the tide or

any other current will set you so much an hour in such

and such a direction, allowance must be made for it,

which can only practically be done by assuming that you

will traverse the whole distance at a certain rate. Draw

Pig. 35

<F.

a line between the two places, say from a to B, and

ascertain the Course. If the current sets directly towards

your destination b, steer the same Course ; and, to

ascertain the ship's position, add whatever Distance the

current has set you to the Distance run by the ship. If

the current is setting directly from b towards a, steer the

same Course, and your position at any time will be the

run of the ship less the Distance that the current has set

you. But if the current sets across your Course, proceed

as shown in the above diagram.
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From A, your point of departure, draw a line in the

direction in which the current sets. Measure along this

line the Distance the current will have set you in four

hours, and mark that spot c. Open your dividers to the

Distance you will have sailed in the four hours ; then,

with one point of the dividers on c, sweep the other round

till it cuts the line of the Course. Call that point of

intersection D. Then c D is the Course to steer in order

to reach b, and ad is the Distance made good in four

hours.

Fig. 35

The Course will be a Course Correct Magnetic if

you are using a Magnetic chart, or True if you are

using a True chart ; and must in either case be converted

into a Compass Course.

The Examination for Ordinary Master requires the

candidate to find on a chart the Course to steer to

counteract the effect of a given current, and to find the

Distance the ship will make good towards a given point in

a given time.
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The way these charting problems will probably be

given you in the Board of Trade Examination is as

follows :

1. You will be given a Deviation Table, and, if a

True chart is used, the Variation also. You will be

required to find the Compass Course and Distance between

two positions of which the Latitude and Longitude are

given you, or between two places marked upon the chart

whose Latitude and Longitude you will have to find out.

The chart may be either True or Magnetic.

2. Sailing on that Course, you will be required to find

your position by the Cross Bearings of two objects which

may be given on the chart ; or the Latitude and Longitude

of two objects and their Compass Bearings may be given

you.

3. Sailing on the same Course you will have to find

your position by two Compass Bearings of one object,

the run of the ship between the observations being

given.

4. You will be told that in sailing from a to B a

current set the ship in such and such a direction, so many
miles an hour ; the rate at which the ship is sailing will

be given, and you will be required to find the Compass

Course to steer in order to counteract the current, the

position of the ship after a certain specified time and the

Distance made good from A.

Be very careful to remember that the Deviation is the

same in the first three cases, the Ship's Head being always

in the same direction. But in the fourth case a new

Course must be steered ; and the Ship's Head consequently

being in a new direction, you will have to find what the

Deviation applicable to that new position is. The only

circumstance in which this does not occur is when the

current sets exactly in a line between A and B.
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Charts (Theoretical)

You need not read this unless you are interested in the

subject or are contemplating taking an Extra Master's

Certificate.

The Earth being a sphere, the representation of any

portion of its surface as a flat surface must necessarily in-

volve a distortion. For the convenience of navigators and

travellers, however, it is necessary that the spherical sur-

face of the Earth should be represented or projected on a

flat surface. There are two such projections commonly

used, namely, Mercator's Projection, and the Gnomonic,

or Polar Projection.

With regard to the latter, as it can only be used when

in very high Northern or Southern Latitudes, and I don't

expect my readers to become polar explorers, it may be

dismissed in a very few words. The Pole is taken as the

centre from which radiate the Meridians, and the Parallels

of Latitude are drawn as circles round the Pole at distances

such as are proportionate to the exaggerated distances apart

of the Meridians, as they increase their distance from the

Pole. That is the principle of the Gnomonic Projection,

with which we have nothing further to do.

The charts in universal use are those drawn on

Mercator's Projection.

In a Mercator's Chart the Meridians are drawn parallel

to one another, whereas, as you know, they are not really

so, being farthest apart at the Equator and meeting at the

Poles. The immense advantage derived from drawing

the Meridians parallel to each other is that a ship's Course

—the angle it makes with the Meridian—is drawn as a

straight line, whereas on a sphere it would have to be

drawn as a curve, as the following diagrams show.
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In both of the figures the angles a.t cd efg, that is the

angles formed by the Course A b cutting the Meridians, are

all equal to each other. The angles being equal the Course

in fig. 36, which represents the converging Meridians, must

be drawn as a curved line A B, and all the angles formed by

the Course and Meridians would be spherical, and problems

on a sphere can only be solved by Spherical Trigonometry.

Fig. 36 Fig. 37

A-

*.--"

c--"

3.^-^

But in fig. 37 the Meridians are represented as

parallel lines upon a plane surface, and the Course is

drawn as a straight line upon it ; all the angles are there-

fore plane angles, and all problems on a plane can be

solved by the much simpler processes of Plane Trigono-

metry. The 'Sailings,' a 'Day's Work,' and all the

problems solved by the help of Traverse Tables, would be

impracticable on the supposition that the Earth was what

it really is, a sphere. Mercator's Projection is therefore

invaluable to the mariner.

Now the Meridians being drawn parallel to each other,

on a Mercator's Chart, it is evident that everywhere except

on the Equator they are too far apart, the exaggeration

becoming greater and greater as the Pole is approached.

To preserve the relative proportions between the Difference

of Latitude and Departure, the distance between the

Parallels of Latitude is increased in the same proportion
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as the distance between the Meridians has been exagger-

ated. In other words, the following proportion is made.

As the Departure in any given Latitude is to the corre-

sponding Difference of Longitude, so is the Difference of

Latitude to the difference between any two Parallels

required. Thus in Latitude 60°, the Departure corre-

sponding to 1° of Difference of Longitude equals 30'.

Suppose you want to know how far apart the Parallels of

59° 30' and 60° 30' must be drawn on a Mercator's Chart.

Then as 30' is to 1° so is 1° to the distance required.

As 30 : 60 : : 60 : x

60
60

30 )3600

120 answer

The answer is 120, and these Parallels must be drawn

120' apart. I would impress very strongly upon you that

though these Parallels are drawn 120' apart, yet they are

of course only 60 nautical miles apart, and will measure

only 60' apart on the graduated Meridian on the side.

Each degree of Latitude on the graduated Meridian at the

side of the chart is divided into 60'. Also that the

Meridians, although 60' of Longitude apart, are really only

30 nautical miles apart. This is why it is so important

to remember that Distances on a Mercator's Chart, which

is drawn with North and South at the top and bottom,

are always measured on the side of the chart, and as far

as possible in a line with the positions whose Distance

apart is required, because with every degree of Latitude

the length of the nautical mile on the chart alters.

Remember that this is always the case except with some

charts which for convenience sake are drawn with the

Meridians running from side to side, and the Parallels

from top to bottom ; in which case of course the Distance

must be measured at the top or bottom.
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Take a few more examples.

Supposing you are in Latitude 45° and you want to

know the distance apart that the Parallels of 44° 30' and

45° 30' should be drawn.

By the Traverse Table the Departure due to 60' of

Diff. Long, in Latitude 45° is 42-4'. Then

42-4 : 60 :: 60 -.x

42-4) 30000 (84-7 very nearly
3392

2080
1796

2840

The answer is 84'7'

Again, supposing that in Latitude 75° you wish to

know the distance apart of 74° 30' and 75° 30'.

The Departure due to 60' in 75° is 15-5'. Then—
15-5 : 60::60 :a:.

60

60

15-5) 3600-0 (232-3 nearly

310

500
465

350
310

400

The answer is 232-3.

Now I would draw your attention to these results.

In Lat. 45° the Parallels are 84-7' apart

„ „ 60°. „ „ „ 120-0' „

;) )> '5 ,, ,, „ 2o2'o „

This shows that the Meridians converge much more

rapidly as the Pole is approached. In 15° of Latitude,

namely, from 45° to 60°, there is only a difference of -35 -3',

(120 - 84-7) while in the 15° of Latitude between 60° to

75° there is a difference of 112-3' (232-3-120-0).
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The theory, in case you would like to know, is :

In Latitude x the distance between the Parallels is

drawn as 60 x Sec x, or in other words the scale of the

chart is greater in Latitude x than at the Equator in the

proportion of Sec x: \. This means that the same length

on the earth is represented by a hne on the chart longer

in this proportion. Eeference to the diagram shows why
this is the right proportion.

Fig. 38

The Parallel a 6 c cZ is represented by the same length

as the Equator abcd; that is, the scale of the chart

is increased in the Departure direction (and, of course,

equally in the Latitude direction to balance this) in the

,• ABCD rni, ^- ABCD 00 ,

proportion —=—-. The proportion —=—^ = — because
abed abed oc

the circumference of a circle is always proportional to

the radius. And o c = o c, so that abed is represented

o c
by a line too long m the proportion — = Cosec coo

= Sec c c which is Sec Latitude.

So much for the theory on which a chart is constructed.
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In the Board of Trade Examination a candidate for

an Extra Master's Certificate is required to draw a chart

on Mercator's Projection, and even if you are not an

aspirant for extra honours an explanation of the method

may help you to understand a chart, and anyhow you need

not read it if you don't like.

The easiest way to construct a Mercator's Chart is in

the following manner. First draw a horizontal line to

represent that Parallel of Latitude in your proposed chart

which is nearest to the Equator. Divide this Parallel

into any convenient number of equal parts, and draw,

upwards if in North Latitude, and downwards if in South

Latitude, lines at right angles to the Parallel. These

lines will, of course, be the Meridians. Next with a

protractor lay off from either end of the Parallel, and

in a direction away from the Equator, a line at a

certain angle to the Parallel ; in order to find what this

angle should be, add together the Latitudes of the Parallel

you start from, and of the Parallel you wish to draw, and

divide by two ; this mean is the angle required. Measure

with the dividers the distance along the line so drawn,

from the end of the first Parallel to the point where the

line intersects the next Meridian ; this distance measured

along any Meridian from the first Parallel will give you

the position of the second Parallel, and similarly each

successive Parallel is found.

Suppose you want to construct a Mercator's Chart

between the Parallels of 50° and 52° North, and the

Meridians of 1° East and 5° West on a scale of one inch

to a degree of Longitude. Proceed as follows :

The Parallel of 50° N is first drawn. Then it is

divided into six parts, and the Meridians are drawn

perpendicular to the Parallel. Next the angle 50° 30', the

mean of Latitudes 50° and 51°, is laid off from the end of
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the Parallel, and the place where the line cuts the next

Meridian gives the distance between the Parallels of 50°

Fig. 39

5°W t'W / 3°W

5/'

SO'

a/*

.-'.'xo'*

5'W ^'tf

;?•»»' /"ty

3'\¥ zrw rw

52°

51'

-J 50°
/•£

and 51°. Thus the fifty-first Parallel is found ; and from

the fifty-first the fifty-second is found, and so on. To

divide the degrees into minutes is a mere matter of detail,

but perhaps it would be well to suggest a method.

If you want to divide ab into six equal parts, the

readiest method is to lay off a line a c at any angle with a b.

Fig. 40

Open out four dividers to any length approximately correct,

and with them dot down along the line a c six equal
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divisions ; lay the edge of the parallel ruler on 6, the last

division of the line A c, and the point b at the end of the

line AB. Work the ruler along to every position on the

line A c, and make dots vphere the ruler cuts A B : these

dots will divide the line A b into the six equal parts

required. If A b is one degree, each of these divisions

is 10 minutes, and it is easy to subdivide them into 5

minutes by the dividers, and each 5 into five divisions by

the eye.

(The Examination for Extra Master requires the Con-

struction of a Mercator's Chart.)





PART II

NAUTICAL ASTRONOMY

CHAPTEE IX

DEFINITIONS NECESSARY IN NAUTICAL ASTRONOMY

Most of the definitions collected here will be found in

earlier or later chapters, but they are given here for con-

venience of reference.

A Second Mate is required to write a short definition

of Astronomical and Nautical terms, and to draw a rough

sketch or diagram to illustrate their meaning.

A plane is the real or imaginary flat surface contained

within the real or imaginary bounds of any figure. For

instance, take a flat round looking-glass. The surface

of the glass is the plane of the circle enclosed by the frame

of the glass, and the frame is the circumference of the

circle. A plane may be indefinitely extended in all

directions.

A circle is a plane figure bounded by a line called the

circumference, every part of which is equidistant from a

point inside the circle called its centre. The diameter

is any straight line passing through the centre, and

dividing the circle into two equal parts.

A radius is any straight line drawn from the centre of

a circle to its circumference. Every circle, no matter

VOL. I. Q
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what its size, is divided into 360 degrees. Any portion of

the circumference of a circle is called an ' arc ' of the

circle. The two radii joining the extremities of an arc

with the centre form an angle at the centre, which always

contains the same number of degrees as the arc and

measures the arc. This is true, whatever the size of the

circle and length of the radii may be.

Any arc is said to be subtended by the angle formed by

the radii drawn from its extremities to the centre of the

circle.

Each degree is divided into 60 minutes of arc, and

each minute into 60 seconds of arc. Half a circle is

called a semi-circle, and contains 180 degrees. A quarter

of a circle is called a quadrant. The angle subtended by a

quadrant is one of 90 degrees, and is a right angle. The

angle subtended by an arc less than a quadrant is an acute

angle, and is of less than 90 degrees. The angle sub-

tended by an arc greater than a quadrant, but less than a

semi-circle, is an obtuse angle, and is of more than 90

degrees.

The complement of an angle is what it wants of 90°.

The supplement of an angle is what it wants of 180°.

A sphere is a solid body, every portion of the surface

of which is equidistant from a point inside called its

centre. The Earth is not a sphere, being slightly flat-

tened at the Poles, but for nearly all Navigational purposes

it is treated as a sphere.

The axis of the Earth is the imaginary line on which

it rotates. The extremities of the axis are the Poles.

The Equator is an imaginary line drawn round the

Earth, every portion of which is equidistant from the Poles.

A circle whose plane passes through the centre of the

Earth and divides it into halves is called a Great Circle : the

Equator is therefore a Great Circle.
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Meridians, circles whose planes pass through the centre

of the Earth and the Poles, are Great Circles.

Parallels, circles parallel to the Equator, are Small

Circles.

A Rhumb line is a line drawn so as to cut all the

Meridians at the same angle ; it is consequently a spiral

curve gradually approaching the Pole. A Rhumb line,

though a spiral on the Globe, is a straight line on a

Mercator's Chart.

The Equinoctial is the plane of the Equator extended

indefinitely to the celestial concave or heavens. Celestial

Meridians are terrestrial Meridians extended indefinitely

to the celestial concave.

When the Meridian is spoken of, it means a Meridian

passing through both Poles and the person or place.

The Zenith is the point in the celestial concave directly

over the head of a person situated anywhere on the

surface of the Globe.

The visible Horizon is the circle which bounds the

vision of an observer at sea. The sensible Horizon is a

circle whose plane is perpendicular to a line drawn from the

Zenith to an observer, and touches the surface of the Globe

at the point where he is situated. The rational Horizon

is a circle, parallel to the plane of the sensible Horizon,

whose plane passes through the centre of the Earth ; it is

therefore a Great Circle.

The rational Horizon being perpendicular to a line

dropped from the Zenith to the centre of the Earth, the

angle at the centre of the Earth between the Zenith and

the rational Horizon is a right angle, 90°.

The plane of the Equator being perpendicular to a

plane passing through both Poles, the angle formed by these

at the centre of the Globe is a right angle, 90°.

Circles of Altitude or vertical circles are Great Circles

Q 2
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passing through the Zenith and perpendicular to the

Horizon.

The Altitude of a Heavenlj' Body is the arc of a circle

of Altitude between the centre of the body and the rational

Horizon ; or it is the angle at the centre of the Globe

between the rational Horizon and a line from the centre

of the body to the centre of the Globe ; or it may be called

the angular height of the centre of the body above the

rational Horizon.

The Azimuth of a Heavenly Body is the angle the ver-

tical circle through it makes with the Meridian.

The Latitude of a place is the arc of the Meridian

between the Equator and the place.

Latitude is measured in degrees, minutes, and seconds

of arc, from 0° 0' 0" at the Equator, to 90° at the Poles,

and is named Xorth if Xorth of the Equator, and South

if South of the Equator.

The Longitude of a place is the arc of the Equator be-

tween the Meridian of Greenwich and the Meridian of

the place. It is named East for 180° to the eastward of

the Meridian of Greenwich, and AYest for 180° to the west-

ward of the Meridian of Greenwich.

A degree of Longitude on the Equator is 60 nautical

miles or knots in length. As Meridians converge and meet

at the Poles, degrees of Longitude become gradually

shorter until they disappear at the Poles. The length

therefore of a degree of Longitude depends upon the Lati-

tude.

TheEcliptic is really the track of theEarth's orbit round

the Sun ; but it is looked upon, for Navigational purposes,

as the path that the Sun describes in the heavens in the

course of a year.

Owing to the fact that the Earth's axis is inclined to

the plane of her orbit, the Ecliptic and Equinoctial cut
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each other at two opposite points. One of these points,

and the only one with which we have to deal, is called the

' First Point of Aries.'

The Declination of a celestial body is the arc of a

celestial Meridian between the Equinoctial and the centre

of the body, or it is the angle at the centre of the Earth

between the Equinoctial and a line drawn from the centre

of the body to the centre of the Earth. Declination is

named North or South according to whether the body is

North or South of the Equinoctial. As the Equinoctial

is an indefinite extension of the plane of the Equator, De-

clination corresponds in all respects to Latitude.

The Polar Distance of a celestial body is the arc of a

celestial Meridian intercepted between the elevated Pole

and the centre of the body. In North Latitude the

North Pole is the elevated Pole ; in South Latitude the

South Pole is the elevated Pole.

The Eight Ascension of a Heavenly Body is the arc of

the Equinoctial intercepted between the First PointofAries

and the celestial Meridian passing through the centre of

the body, or it is the angle formed at the celestial Pole by

the Meridian of the body and the Meridian passing through

the First Point of Aries. It is measured from the First

Point of Aries to the eastward right round the Equinoctial.

As Eight Ascension is measured from a natural position,

namely the First Point of Aries, right round the circle, and

Longitude is measured from an arbitrary position, the Meri-

dian of Greenwich, half round the circle in opposite direc-

tions. Eight Ascension and Longitude are in no way
connected. Eight Ascension is always measured in terms

of time.

The best way of understanding clearly what is meant

by these various terms is to follow them out with

English's ' Globe Star-finder,' described in Chapter XL
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You will then see exactlj' what is meant by Great Circle,

Small Circle ; Altitude, Azimuth ; Latitude, Longitude
;

Bight Ascension, Declination ; Meridian, Parallel, Zenith,

Horizon, etc.

Dip, Semi-Diameter, Horizontal Parallax, Parallax in

Altitude and Eefraction are all fully explained later on,

with explanatory diagrams.
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CHAPTBE X

INSTRUMENTS USED IN NAUTICAL ASTRONOMY

The essential instruments used for navigating a ship by

observations of the Heavenly Bodies are the Sextant and

the Chronometer. The follovv^ing instruments should also

be on board a ship, namely, an Artificial Horizon and a

Star-finder Globe.

The Sextant

A Second Mate must be acquainted with the use and

adjustments of the Sextant ; he must be able to read on

and off the arc, and find the Index Error by both Horizon

and Sun.

The Sextant is an instrument for measuring angles by

reflection. It consists of a metal fram.e in the form of a

segment of a circle of sufficient rigidity not to bend when

being handled. Underneath the centre of the frame is

fixed a handle. A strip of aluminium, or of some, hard

metal, is let into the arc and is divided into about 125°,

from zero on the right to 125° on the left. About 2° are

marked to the right of zero. Every tenth degree is

numbered, and every fifth degree is distinguished by a long

line, and each degree by a shorter line. Every degree is sub-

divided into six parts.

The arc of a Sextant is cut to double the number of

degrees due to its true angular value, because otherwise
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the arc would measure only half the altitude or angle

observed. The explanation of this is given later on.

Ametal arm, pivoting on the centre of the circle ofwhich

the Sextant is a part, rests on the top of the frame,

and moves freelj' on its pivot. This is called the Radius

Bar. Its outer end is fitted with a vernier which fits close

down on the graduated arc. The vernier is an ingenious

device, named from its inventor, for determining with

increased accuracy the position of the arrow-head which

defines the position of the arm, relatively to the divisions

on the arc. This is done by dividing it so that each

division is gV^h part less than one division of the arc.

The bar has two screws ; the one underneath the frame is

used to clamp the movable arm to the arc, and is called the

Clamp screw ; the other, called the Tangent screw, is

fitted on the outer end of the bar, and is used for moving

the vernier very slowly over the arc.

On the arm on top of the centre pivot is fixed a small

mirror perpendicular to the plane of the frame, and

in the same line as the metal arm : this is the Index

Glass.

On the frame, and perpendicular to it and parallel to the

Index Glass when the vernier is set to zero on the arc, is

fixed another glass. The half of this glass nearest to

the frame is quicksilvered at the back, in order to make a

mirror of it, while the other half is left transparent

:

this is the Horizon Glass.

Opposite to the Horizon Glass, and parallel to it, is a

metal collar on a stem. The stem, which is perpendicular

to the plane of the instrument, fits into a female screw

fixed through the metal frame, which enables the observer

to raise or lower the collar to a limited extent by means

of a milled ring underneath. Two sets of coloured glass

shades are fitted on pivots above the frame, and are so
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placed as to enable the observer to shade both or either of

the mirrors.

Small screws are fitted to the Horizon Glass and

Index Glass for the purpose of making certain adjustments,

of which I will speak later on.

A Sextant is a delicate instrument, and should be

handled with care. It should never be held by the arc or

by either the Index or Horizon Glasses. It should be lifted

out of its box by part of the frame, and then taken hold of

by the handle underneath. It should never be put down

with the handle up ; and legs are fixed to the frame to

support it on the handle side. The navigator who is worth

his salt will cherish and take the utmost care of this in-

valuable instrument, and he will find himself richly repaid

by the confidence he will gain in the observations taken

with it. A nautical instrument maker in a lajge way of

business once stated that he could tell instantly by the way

in which a man handled a sextant whether he was a good

navigator or the reverse, and I can well believe him.

A few words on the practical use of the instrument

may be useful. Let us suppose that you are going on

deck to observe the Meridian Altitude of the Sun for the

purpose of ascertaining your Latitude.

Take your sextant out of the box, and hold it hj the

handle with your right hand (if you are left-handed you

may be obliged to have a sextant specially made) face up.

Take hold of the vernier end of the arm with your left

hand, and having first slackened the clamp screw, move

it till the arrow on the vernier is nearly at zero. Next,

having, if circumstances require it, adjusted some of the

shades so as to dull the brilliancy of the image of the

Sun, and if necessary of the Horizon also, look through the

collar and Horizon Glass towards the Sun, and you will see

a shaded image of the Sun in the quicksilvered part of the
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Horizon Glass. Now, holding the sextant vertical, push the

radius bar away from you, and the image of the Sun will

fall—follow it down by turning the sextant in a vertical

plane, till the reflected Sun is brought down to the Horizon

line, which you will see through the transparent part of

the Horizon Glass ; then turn the sextant horizontal, and

screw tight the clamp screw. Take from your box one of

the small brass telescopes ; focus it to your sight as you

would any other telescope, and screw it into the collar

;

look at the Horizon under the Sun, holding the sextant

vertical, and you wiU see the reflected Sun and the Horizon.

Your object is to make one edge of the Sun, either the

lower or the upper limb, touch the Horizon exactly, and

you accomplish this by turning the tangent screw with

the second finger and thumb of your left hand until exact

contact is made, at the same time supporting the arc

with the fore-finger of the same hand. To give greater

steadiness it is a good plan to grasp the handle of the

sextant with the fingers of your right hand, and place the

thrmib round the collar screw ; makers object, but I

never found that it injures a sextant. Keep the Sun

touching the Horizon till it ceases to rise—you then have

the Meridian Altitude on your sextant. After a little

practice learn to use the inverting telescope.

The next step is to read off the angle. A small micro-

scope is fitted on top of the radius bar, so as to pivot over

the vernier. On looking through this, having first focussed

it to your sight, you will see the aluminium arc and the

vernier. The aluminium arc is divided into degrees and

sixths, every sixth part of a degree being of course ten

minutes of arc ; and the vernier is divided into minutes

and sixths, every sixth part of a minute being of course ten

seconds of arc. Every fifth degree is numbered 5, 10, 1.5

and so on up to 160, or whatever number of degrees



INSTRUMENTS USED IN NAUTICAL ASTRONOMY 235

the arc is cut to. Every ten minutes is marked by a

short Hne, every thirty minutes by a longer line, and every

degree by a still longer line, thus :

Fio. 41

I I I I I I I I I I I rr I I I I I I I I I I I I I I I
I I I I I I I I I I I I I

Every minute on the vernier is numbered ; every ten

seconds is indicated by a short line, and every thirty

seconds by a longer line, thus :

Fig. 42
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On the vernier is an arrow which points to the angle on

the arc ; it will either coincide exactly with one of the

divisions on the arc, or else will cut between two of them.

If the arrow on the vernier points to a degree on the arc,

that is the angle on the sextant. If the arrow does not

point to a degree but points to one of the lines into which

degrees are divided, count the number of ten minutes from

the nearest degree on the right of the arrow, and that

degree plus the number of ten minutes is the angle.

If the arrow does not point exactly to any degree or to

any ten minutes, but lies between two ten minutes, you

must use the vernier. Note the number of degrees and

ten minutes on the arc, then carry your eye to the left

along the vernier, till a line on the vernier is exactly in

the same line as one of the lines on the arc. That line

on the vernier indicates the number of minutes and ten

seconds to be added to the angle on the arc. Thus, sup-

pose the line on the vernier that coincides with a line on
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the arc is two divisions to the left of five minutes, j'ou

woiild add 5' 20" to the angle on the arc. For example,

suppose the arrow cuts between 27° 20' and 27° 30', that

is to say that the angle is more than the former and less

than the latter, and that the line on the vernier which

coincides exactly with a line on the arc is 7' 20". Your

angle is 27° 20' + 7' 20", that is 27° 27' 20".

It is not easy to explain this \\-ithout a sextant, but

if you will take one in youi- hand and shift the index bar

to different angles, you will, with the help of the above

explanation, find little difficult}-, I think, in learning how
to read the sextant.

Here are a few more cases

:

(1) The arrow on the vernier coincides exactly with

20° on the arc.

The angle measured is 20° 0' 0".

(2) The arrow on the vernier coincides exactly with

the fourth division to the left of 49° on the arc.

The angle measured is 49° 40' 0'

(3) The arrow on the vernier lies between the 72° and

the next division to its left, and the line on the vernier

which coincides exactly with a line on the arc is the fifth

division on the vernier to the left of 9'

The arc gives you . . . . 72° 0'

The vernier gives you ... 9' 50'

The angle is .... 72° 9' 50"

These are all readings ' on the arc,' that is to the left

of zero.

For certain purposes it is necessary for you to know
how to read an angle ' off the arc,' that is to the right

of zero. To do this you must note the number of

divisions to the right instead of to the left on the arc, and

if the arrow on the vernier coincides with a line on the

arc, you have the angle. If the arrow on the vernier does
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not coincide with a line on the arc, count from the left of

the vernier till you come to a line coinciding with a line

on the arc, and deduct from 10, so that 9 is one, 8 is

two, and so on.

Suppose the arrow on the vernier cuts between the

fourth and fifth divisions off the arc to the right of 1°, the

angle lies between 1° 40' and 1° 50' ; and suppose that

the line on the vernier which coincides exactly with a line

of the arc is the first to the right of 2' on the vernier :

deduct 2' from 10', which gives you 8', and one division

to the right gives you 10". The angle of the arc is there-

fore 1° 48' 10".

Practice alone can enable you to measure Altitudes

and other angles with a sextant accurately, and whenever

you have time and opportunity you should be constantly

taking angles, both vertical and horizontal.

The Board of Trade Examiners will require you to

know how to make the three following adjustments of a

sextant. The first is to see that the Index Glass is per-

pendicular to the plane of the instrument. To do this

you must place the vernier at about the centre of the arc,

then holding the sextant face upwards with the arc away

from you, look in the Index Glass and you will see the

reflected image of the arc. If this is exactly in a line with

the arc itself, which you can also see, the adjustment is

good, and the Index Glass is perpendicular to the plane of

the instrument, but if it is not you must make it so by

means of a little screw at the back of the Index Glass.

The second is to make the Horizon Glass perpendicular

to the plane of the instrument. Place the vernier at zero,

and holding the sextant obliquely, look at the Horizon

through the collar and the Horizon Glass. If the reflected

image of the Horizon is exactly in a line with the Horizon

the adjustment is perfect. But if they are not in a line
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the Horizon Glass must be made perpendicvilar by means of

the Httle screw at the back of it which is furthest from the

frame of the sextant. This adjustment may also be made

by the Sun in this way. Place the vernier at zero, and

having interposed the necessary shades, screw in the

inverting tube and look at the Sun through the Horizon

Glass, then by means of the tangent screw make the

reflected image of the Sun pass over the real Sun ; if they

exactly cover one another when doing so the adjustment

is correct.

The third adjustment is to make the Horizon Glass

exactly parallel to the Index Glass when the vernier is at

zero. Set the vernier exactly at zero. Screw in the

inverting tube and look at the Horizon through the

Horizon Glass. If it appears in one unbroken line the

adjustment is perfect ; if not, the screw at the back of

the Horizon Glass nearest to the frame of the sextant must

be turned till the adjustment is made.

As a rule, if you possess a good instrument you will

have little bother with the first and second adjustments

—

the makers take care that the sextant leaves their hands

with the Index and Horizon Glasses accurately perpendi-

cular to the plane of the instrument ; and if through an

accident the sextant gets a blow, and is thereby put out of

adjustment, it is best to send it to the maker to be put to

lights.

Any error in the angle measured by the sextant due

to imperfection in the third adjustment is called in books

of instruction the ' Index Error
' ; it is generally small, and

in preference to eliminating it by means of the screw at

the back of the Horizon Glass you should ascertain its

amount and allow for it. You can do this by the Sun,

or by a Star, or by the Horizon, by the following

methods :
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To find the Index Error by the Sun.—Screw in the

inverting tube and set the vernier at about zero. Then

look at the Sun, properly shaded, and by means of

the tangent screw make a limb of the reflected image

of the Sun, say the upper limb, exactly touch the lower

limb of the Sun itself. Read off the angle and note

it ' off ' or ' on ' as the case may be. Again look at the

Sun, and with the tangent screw cause the image to pass

over the Sun and make an accurate contact of the other

edges. Again note the angle on your sextant. If the two

readings are alike there is no Index Error. If they are

not alike, half the difference between the readings is the

Index Error, to be added if the ' off ' reading is the greater,

to be subtracted if the ' on ' reading is greater.

For example, suppose the reading ' on ' was 33' 10"

and the reading ' off '
29' 40", you proceed thus :

on 33' 10"

off 29' 40"

2 ) 3' 30" Difference

Index Error 1' 45" to be subtracted

Again, if the reading ' on ' was 28' 0" and the reading

'off' was 34' 10".
on 28' 0"

off 34' 10"

2 )
6' 10" Difference

Index Error 3' 5" to be added.

The sum of the readings ' on ' and ' off ' divided by four

ought to be equal to the Sun's Semi-Diameter for the day

as given in the Nautical Almanac, and it is well to test

the accuracy of your observations by making this com-

parison.

In the first example above

on 83' 10"

off 29' 40"

4 )
62' 50"

15' 42"
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and 15' 42" would be the Sun's Semi-Diameter on the day

the observation for Index Error was taken if the observa-

tion were accurate.

To find the Index Error by a Star.—Screw in the

inverting tube, set the vernier at zero, then look at a

Star, and with the tangent screw cause the reflected image

of the Star to coincide exactly with the Star as seen

through the Horizon Glass. If the vernier is then at zero

there is no Index Error. But if it is not, the angle on

the sextant is the Index Error, which if it is ' off ' the

arc is additive, if ' on ' the arc subtractive.

To find the Index Error by the Horizon.—Screw in a

tube, set the vernier at zero, and look at the Horizon, hold-

ing the sextant obliquely. If the Horizon presents one un-

broken line there is no Index Error. If the reflected

Horizon is above or below the real Horizon, bring them

into one unbroken line with the tangent screw, and the

angle on the sextant is the Index Error, which is named

in the same way as when it is taken by a Star or by the

Sun.

The last method of finding the Index Error—namely,

by the Horizon—is the least reliable, and cannot be de-

pended upon. The first method, by the Sun, is the best, and

a very good result can be got by a bright Star. The Moon

is very seldom of any use for this purpose, because,

except at full Moon, her disc is not perfect ; and the

Planets are not so reliable as the Stars, because they have

sensible Semi-Diameters.

The Index Error of a sextant should frequently be

determined, more particularly after observing a Lunar

Distance, which requires such great nicety that every

second makes a difference.

Another error, known as collimation error, is due to the

line of sight or axis of the tube not being parallel to the
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plane of the instrument. You can test this in the fol-

lowing way. Screw in an inverting tube, in which are

two wires parallel to each other, and turn the tube till the

wires are parallel to the plane of the instrument. Then

measure with the sextant an angular distance of not

less than 90° between two Heavenly Bodies, making a

perfect contact with both objects on with one of the vnres
;

then by moving the sextant slightly bring them on to the

other wire : if the contact remains perfect there is no col-

limation error ; if the contact is broken there is collima-

tion error, and you had better send the instrument to the

maker for adjustment. If that is not possible you can

make the adjustment yourself by tightening the screw of

that part of the collar nearest to the instrument, and

loosening the screw on that part of the collar furthest

from the instrument, or vice versa ; but the operation is

a delicate one, and should be entrusted to professional

hands.

A good modern sextant is as near perfection as human

ingenuity can make it ; but there is almost always a

small error in the measurement of large angles caused by

what is called centreing error. It is due to the fact that

the centre of the arc and the centre of the index bar are

not absolutely identical. At the Kew Observatory sex-

tants are tested, and certificates issued giving the in-

strument error. The error due to this cause should

never, even in the largest angles, amount to 1' in a good

instrument.

The Theory of the Sextant

You are not required by the Board of Trade to explain

the theory of the sextant, hut I give it here, as it may he

interesting to you.

VOL. I. E
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The following diagram will explain better than any

amount of verbiage :

Fig. 43

Let AB be the arc of the sextant whose centre is i.

Let zero be at a. Let i i^ be the Index Glass, h h^ the

Horizon Glass, and i c the radius bar. If a ray of light

comes from a Heavenly Body at x in the direction x E, it

will impinge upon the Index Glass at i and will be

reflected by it at an angle equal to that at which it strikes

it in the direction of the line i L. Being intercepted by the

Horizon Glass, it is again reflected in the direction of the

line G E. Let H be the Horizon. If the eye of an

observer be at B, it is evident that the reflection of the

Heavenly Body as reflected by the mirror portion of

the Horizon Glass, and the Horizon, as seen through the

transparent part of the Horizon Glass, will appear to

be in one. Draw G D parallel to i A, a being the zero on

the arc. Then the arc A c measured by the angle a i c is

one half the angle x E h, which is the Altitude of our
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Heavenly Body above the Horizon. Here follows the proof

of this statement.

By a law of optics the angle at which a ray of light

leaves a flat reflecting surface is equal to the angle at

which it strikes it ; in other words, the angle of reflection

is equal to the angle of incidence. Therefore the angle

XI i is equal to the angle g 1 1^ ; and the angle hai is

equal to the angle /i^ge. But the angles XI i and JiGi

are equal respectively to their opposite angles C i B and L G D

(Euclid, Book I. Prop. 15). The angles marked a are

therefore equal to one another, as also are the angles

marked b.

Now in the triangle G i E the two interior and opposite

angles G i e and i E G are equal to the exterior angle L .G E

(Euclid I. 32).

LGE=GIE+IBG
or 2a = 26 + iEG

therefore a = & + ^ i e G . . . (i)

and in the triangle GDI,

the exterior angle a = b + GVi . . . . (ii)

therefore equating (i) and (ii) we have

& + i IE G=6-|-GD I.

Taking b away from both sides, we have ^ ieg= gdi.

But G D is parallel to ia, therefore gdi=dia. But

I E G is the Altitude of our Heavenly Body, and D i A or c i a

is the angle which measures the arc AC.

Wherefore ^ Altitude = arc A c.

The arc of a sextant is therefore cut to double the

number of degrees due to its angular value, in order that

the reading of the angle observed may be correct.

B 2
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The Chronometer

This invaluable instrument is simply a wonderfully

accurate watch, whose balance wheel is so constructed

that changes of temperature do not affect, or only very

sHghtly affect, its times of oscillation. This compensation

is achieved by the following means : the rim of the

balance wheel is composed of two metals, the outer part

being made of brass, and the inner part of steel, and it is

cut into two nearly semicircular halves. One end of each

of these halves is fastened to the opposite end of a stout

metal diameter of the wheel. Weights are fastened to

the outside of the two semicircles in such positions as to

produce as nearly as possible a perfectly equal period of

vibration at different temperatures on the following

principle : When the temperature rises, the two halves of

the rim, supported as they are on the two ends of one

diameter, curve inwards because their outer parts are

made of brass, which expands more than the inner parts,

which are made of steel ; and thus the attached weights

are carried inwards. The whole mass of the wheel, com-

posed of axle, diameter, rims, and attached weights, be-

comes less in diaraeter under a rise of temperature, and

consequently the spring has less work to do in keeping up

the vibration at the same speed ; but the increase of speed

is balanced by the fact that under a rise of temperature

the hair spring loses its elasticity slightly, and the result

consequently is that the time of oscillation of the balance

wheel does not vary.

On the other hand, as the hair spring becomes more
elastic and has more resisting force under a fall of

temperature, the vibrations of the wheel would be re-

tarded were it not that the expansion of the wheel and
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carrying outward of the attached weights give the spring

more work to do.

The first chronometer was made by John Harrison,

and it was his hfe-work, occupying him some fifty years
;

for the invention he received 20,000Z. from the British

Government in 1765. He died in 1776.

The Artificial Horizon

(An Extra Master must be able to use the Artificial

Horizon.)

An artificial Horizon is simply a trough containing any

fluid. Quicksilver is, however, generally used, because it

gives the best reflecting surface. The principle on which

the artificial Horizon is founded is the well-known law of

optics, that the angle at which a ray of light strikes a

reflecting surface is the same as that at which it is

reflected from it ; in other words, that the angle of

incidence is equal to the angle of reflection.

In the diagram let H K represent the surface of the

mercury, which is of course horizontal ; x o a ray of

light from the body x ; then b o x is the angle of incidence

and B A is the angle of reflection. It follows that their
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complements, the angles x o k and a o h, are also equal.

To an observer the reflected image of s would appear at

T, and the angle x o t equals t^-ice the angle x o k, because

the angle x o k equals the angle a o h, and the angle a o H

equals the angle koy (by Euclid), it being opposite to it,

and therefore the angle x o k equals the angle K o T

;

therefore the angle x o t equals twice x o k. Xow x o k

is the angular distance the body is above the Horizon,

that is, it is its Altitude.

Remember, therefore, that when you measure the

angular distance between the Sun, or any other Heavenly

Body, and its reflection in the quicksilver, the angle you

have taken is twice the Altitude ; and remember also that

there is no Dip to be allowed for. Index Error is to

be allowed for on the whole angle before halving it to get

the observed Altitude.

English's Star-finder

This instrument is of great use to the navigator in

finding and identifying Stars. Its description is given at

the end of the next chapter, as its use could not be pro-

perly appreciated till you are acquainted with the move-

ments of the Heavenlv Bodies.
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CHAPTER XI

MOVEMENTS OF THE HEAVENLY BODIES

The Earth is spherical in shape, but it is not a sphere,

being sHghtly flattened at the Poles. For practical pur-

poses of navigation it is, however, always regarded as a

sphere, except in the case of the Moon's Horizontal Paral-

lax. In that instance Parallax is sensibly affected by the

flattening at the Poles, and deduction has to be made

for Latitude.

The axis of the Earth is the imaginary line on which

it rotates. The Celestial Poles North and South are very

nearly indicated by the indefinite prolongations of the

Terrestrial Poles. The position of a Heavenly Body may

be spoken of in reference to the Celestial North or South

points. For instance, the Pole Star is nearly due North,

and some other star may be said to be East or West of the

Pole Star, or at any angle with the indefinite prolongation

of the Axisof the Earth. But such a fixing of positions

would be correct only on the supposition that you were

viewing the Celestial concave as a flat projection, and from

a fixed point. It would be incorrect to say that the posi-

tion of a Heavenly Body is indicated by its Bearing by the

Compass Card, because that Bearingvaries according to the

position of the observer on the Globe, and as far as some

Bodies are concerned, according to the position of the

Earth in her orbit. Compass Bearings are applicable to
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Heavenly Bodies only as indicating tlieir Bearing from

the observer, or the Bearing of one Body from another.

Though North and South may be called fixed and definite

positions, East and West can in astronomy be used merely

as arbitrary expressions to indicate the direction in

which a Heavenly Body moves in reference to some

other Body; usually the Sun or the Earth.

To ascertain whether the movement of a Body is

Easterly or as it is called Direct, or is Westerly, or as it is

called Eetrograde, imagine yourself facing North and

looking at the orbit of the Body edgeways, and assume

that the Body starts from where you are. If the Body

moves off towards your right, its movement is Easterly or

Direct ; if it moves off to your left, it is Westerly or Eetro-

grade. Or put it this way : Easterly raotion is contrary

to the direction in which the hands of a watch move

when held face uppermost ; Westerly motion is in the

same direction as that in which the hands of a watch

move.

The Earth rotates on her axis from left to right, that is

from West to East ; her rotatory movement is Easterly.

To an observer above the North Pole looking down upon

her, she would be rotating in a direction contrary to that

in which the hands of a watch move.

The Earth moves round the Sun in her orbit in an

Easterly direction, also contrary, to the direction in which

the hands of a watch move. All the other planets revolve

round the Sun in the same direction. The Moon revolves

round the Earth in the same direction, and rotates on her

axis from left to right, or from West to East, in the same

direction as the Earth does. If the observer were looking

South, the movement of the Earth would appear to be

from right to left ; for instance, if you face the Sun when
you are North of it, it rises to the left, and sets to the
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right of you. If the observer were suspended above the

South instead of above the North Pole, the movements of

the Heavenly Bodies would be with instead of against the

hands of a clock. In speaking therefore of Heavenly

Bodies moving from left to right, or right to left, you

must remember that the expressions are used arbitrarily,

to signify directions in which bodies move supposing

you to be situated on the Globe facing North. East and

West are not affected by the direction in which you are

facing, but are also arbitrary expressions. The best

way of understanding what Easterly or Westerly means is

to remember that Easterly is contrary to the movement

of the hands of a watch, and Westerly is with it, as seen

from above the North Pole.

Eor all purposes of nautical astronomy the centre of

the Earth is considered to be a fixed immovable point,

and all angles, distances, positions, movements, &c. &c.

are referred to it as a fixed point. Eor all purposes of

calculating Polar or Hour Angles the Meridian of the

observer is considered to be fixed and the Heavenly Body

is assumed to be moving.

The Earth revolves on its axis once in 24 hours,

turning from W to B, thus giving the Heavenly Bodies

the appearance of travelling from East to West, rising in

the East and setting in the West.

The Earth travels round the Sun ; it makes a complete

revolution of the Sun once in a year, moving in an Easterly

direction. The path of the Earth does not form a circle

with the Sun in the centre, but an ellipse, with the Sun in

one of the foci. The Earth is consequently much nearer

the Sun at some seasons than at others. In Northern

Latitudes it approaches the Sun nearest in midwinter, and

its furthest point is reached in midsummer.

The annual revolution of the Earth round the Sun causes
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the Sun to appear to move in an Easterly direction among

the stars. This apparent path of the Smi in the heavens

is called the Ecliptic.

The Earth's axis does not stand upright, that is to

say the axis of the Earth is not at right angles to the

plane of the Ecliptic. It is inclined to it at an angle of

about 23° 28'. A consequence of this arrangement is that,

as the Earth swings along her path round the Sun, the

Poles are at different times inclined at different angles to-

wards the Sun—a larger portion of the Northern Hemi-

sphere, for instance, is exposed to the Sun's rays at one

time of the year than at another. In other words the

Sun appears to move to the Northward and to the South-

ward during the year. On March 20th the Vernal

Equinox occurs ; the Sun is then right above the Equator,

shining vertically down ; the dividing hne between hght

and shade passes through both Poles, and there is equal

day and night all over the Globe. The Sun then appears

to move Northward ; it rises higher and higher, and our

days in the Northern Hemisphere get longer and longer

until June 21st, when the longest day occurs. The Sun is

then verticallj" over the Tropic of Cancer in 23i°N, and

the Arctic Circle, that is a circle extending to \^A^° round

the North Pole, is constantly illuminated. The Sun then

appears to retrace its steps and moves Southward, imtil

on September 22 it is again directly over the Equator,

and the Autumnal Equinox occurs. The Sun continues

its Southward Course until December 21st, when it is

over the Tropic of Capricorn in 23g° South, and the

shortest day occurs in the Northern Hemisphere. Then

the Sun turns, and proceeding to come North again,

repeats the process described.

The diagram shows how this occurs. The Sun is

shown in the centre and the Earth is drawn in four
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positions. The direction of the axis, which never changes,

but is always parallel to itself, is indicated by the arrow.

The position E, corresponds to June 21st ; here the

angle se,p,, that is the angle the Sun makes with the axis,

is an acute angle, or the Sun is directly over some point

North of the Equator.
Fig. 4.5

Similarly Ej corresponds to Sept. 22nd. Here SE2P2 is

a right angle, that is the Sun is directly over the Equator.

This bowing of the North Pole towards the Sun, and

consequently greater exposure of a greater portion of the

Northern Hemisphere to the Sun's rays during summer
;

and the bowing of the Pole from the Sun, and consequently

lesser exposure of a smaller portion of the Northern Hemi-

sphere to the Sun's rays in winter, is the reason why
summer is hotter than winter, although at that season the

Earth is further from the Sun than she is in winter.

These processes are, of course, all reversed in the Southern

Hemisphere, winter occurring during our summer, and

so on.

Parallels of Latitude are small circles parallel to the

Equator. Latitude is measured along a Meridian from

the Equator, which is degrees, towards either Pole, which

is 90 degrees.
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A Meridian is a Great Circle passing through both

Poles of the Earth. The Meridian of an observer is a

Great Circle passing through the position of the observer

and both Poles.

Longitude is measured along the Equator from the

Meridian of GreeuM'ich, which is Zero (0). Longitude is

not counted right round the circles from at Greenwich

to 360 at GreenvsTLch, but from at Greenwich to

180 degrees East, and from at Greenwich to

180 degrees West. The position of a ship on any spot

on the Globe can be fixed by finding its Latitude, that is,

its angular distance North or South of the Equator,

measured along a Meridian, and its Longitude, that is, its

angular distance measured along the Equator East or

West from the Meridian of Greenwich.

As the axis of the Earth passing through the Poles,

prolonged indefinitely, forms the Celestial Poles, so the

Great Circle—the Equator—prolonged indefinitely, forms

the Celestial Equator. This is also called the Equi-

noctial.

The Equinoctial and the Ecliptic (the apparent path

of the Sun) are not in the same plane. They are inclined

to each other at an angle of 23° 28'. They must there-

fore cut each other at two places. They do so at what

is called the Eirst Point of Aries and at the Eirst Point

of Libra. These are called the Equinoctial Points,

because when the Sun is in either of them day and night

are equal all over the Globe.

Just as the position of a terrestrial place is determined

by its Latitude and Longitude, so is the position of a

Heavenly Body determined by its Declination and Eight

Ascension.

Declination is measured along a celestial Meridian North

or South of the Equinoctial, just as Latitude is measured
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along a terrestrial Meridian North or South of the

Equator.

Eight Ascension is measured along the Equinoctial, just

as Longitude is measured along the Equator, hut starting

at from the First Point of Aries it is counted right

round the whole circle Easterly, that is against the hands

of a clock, for 360 degrees back again to the First Point

of Aries.

Declination is expressed in arc ; in degrees, minutes,

and seconds of arc. Eight Ascension is usually expressed

in time ; in hours, minutes, seconds of time, for conveni-

ence sake. For the same reason Longitude is first

determined and expressed in time.

As the Sun appears to move round the Earth in 24 hours,

we say naturally that he makes a complete revolution in

24 hours, half a revolution in 12 hours, and a quarter

of a revolution in 6 hours, and so on. At apparent noon

the Sun is on the Meridian of the observer, it is hours :

the Sun makes no angle at the Pole. In 6 hours the Sun

has made a Westerly angle of 6 hours at the Pole ; 6 hours

later he makes a 12 hours' Westerly angle, and it is mid-

night ; he is exactly opposite where he was at noon. 6 hours

later he is making a Westerly angle at the Pole of 18 hours,

or what is the same thing, an Easterly angle of 6 hours,

and after 6 more hours he is back again at the Meridian

;

he makes no angle at the Pole, and it is apparent noon.

It is plain, therefore, that ' Apparent Time ' is the

angle at the Pole between the Meridian passing through

the Sun, and the Meridian passing through a place ; and

this polar angle can bs expressed in terms of arc or of time,

as you please, but it is more conveniently expressed

in time. The position of the Sun in respect of the

Meridian of Greenwich, which is the starting-point

from which Longitude is counted, is the angle at the Pole
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between the Meridian of Greenwich and the Meridian

passing through the Sun at any moment. It is more

convenient to speak of the Sun as so many hours, minutes,

seconds of time East or AA^est of Greenwich, than to speak

of him as so many degrees, minutes, seconds of arc East

or AVest of Greenwich. In finding Longitude you could

use Apparent Time (the angle made by the Apparent Sun)

,

if you compared it with Apparent Time at Greenwich ; but

you use Mean Time (the angle made by the Mean Sun)

and compare that with Mean Time at Greenwich

—

because chronometers keep Mean Time. The difference

between the angle made at the Pole by the Meridian

passing through the Mean Sun and the Meridian passing

through the observer, and the angle made at the Pole

by the Meridian passing through the Mean Sun and the

Meridian of Greenwich is Longitude in Time. AVhen you

come to fix your position on the Globe, Longitude in

Time has to be converted into Longitude in Arc.

In the same way the position of a Heavenly Body in

respect to the First Point of Aries, which is the starting

point from which Eight Ascension is counted, is the

angle at the Celestial Pole between the Meridian of the

Body and the Meridian of the First Point of Aries, and it

is best expressed in terms of time. Just as the position

of any place on the Globe is fixed by its Latitude and

Longitude, so is the position of a Heavenly Body fixed by

its Declination and Right Ascension.

The positions of the fixed stars vary but very slightly.

Their distance from us is so enormous that their Eight

Ascension and Declination are not affected by the changing

position of the Earth in her orbit. The Eight Ascen-

sion and Declination of a star do vary a little, they change

slightly owing principally to the fact that the place in the

sky to which the North Pole points is slowly changing.
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It circles round about the Pole of the Ecliptic. A star

goes through its utmost change of Declination in about

twenty-seven thousand years, but by that time different

methods of navigation will probably be in common use,

and we need not worry about it. The change in a star's

position in Eight Ascension is more important than its

shift in Declination ; but as it only amounts to about

50" per annum we need not bother our heads about

that either. For all practical navigational purposes the

stars show no change of Declination or Eight Ascension.

Of course, owing to the rotation of the Earth, the stars

appear to rise in the East and move across the heavens to

the West.

It goes without saying that the visibility of a star

depends upon its being above the Horizon in the dark.

An ordinary day, that is a Solar day, consists of twenty-

four hours ; that is the average time that the Sun takes

from the moment of his departure from a Meridian to

travel round back to that Meridian again. A Sidereal day

is the time taken by a star to make his round from any

Meridian and back to it again ; but the two days are not

of the same length. The star takes a little less time than

the Sun, and the Sidereal day consists of about 23 hours

and 56 minutes of Solar time. The cause of this difference

is the Easterly movement of the Earth along her orbit.

A result of it is that a star rises a little earlier every day,

and the obvious consequence of this is that the star rises

in the daytime during some portion of the year. This is

a pity in some respects, for we lose sight of the most

beautiful constellation in the heavens, Orion, for some

time during the summer months ; but it cannot be helped,

it is too late to make any amendment of 'the Universe

now. On the other hand, it is owing to this same differ-

ence that the various constellations are in turn visible to
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US, for if the Solar and the Sidereal day were of equal

length, some constellations would be permanently in-

visible ; so perhaps the original arrangement is after all

the best.

Some stars never set. A star whose Declination is of

the same name as the Latitude, and is greater than the

Colatitude, is always above the Horizon of a person on

that Latitude. Stars whose Declinations are of the same

name as Latitude, but less than the Colatitude, and

stars whose Declinations are of opposite name to the Lati-

tude, but less than the Colatitude, are above the Horizon

of a spectator on that Latitude during some period of the

'24 hours. Stars whose Declinations are of the opposite

name to the Latitude, and greater than the Colatitude,

never rise above the Horizon of a spectator on that

Latitude.

If you change your Latitude you will of course corre-

spondingly change the Altitudes of the stars. Southern

stars sinking lower till they disappear, and Northern stars

rising higher and higher as you move North, and vice versa.

Planets are not as satisfactory as fixed stars to deal

with, on account of their rapid motion ; and the motion of

the Moon is so much more rapid than that of the planets

that she is a difficult and obnoxious body to observe.

The Earth is a planet, and all the planets move round

the Sun in various orbits, but all in the same direction,

Easterly.

Venus and Mercury are called inferior planets because

they are nearer the Sun than we are ; their orbits are

consequently considerably smaller than the orbit of the

Earth. Owing to this fact they always appear pretty

close to the Sun as viewed from the Earth, and are visible

only about sunrise or sunset. Mercury and Venus are

morning or evening stars.
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Mercury is too near the Sun to be of value for naviga-

tional purposes ; but Venus, from her brilliancy and from

the fact that she is pretty nearly East or West in the

mornings or evenings—in other words is in the best

position at the best time of day for observational purposes

—

is most useful to the mariner.

Mars, Jupiter, and Saturn are called Superior planets.

Their orbits lie outside our orbit, and consequently

they can occupy any and every position in respect to the

Sun. As all the planets are moving round the Sun, they

change their position in the heavens relatively to the fixed

stars, consequently their Eight Ascension changes, and

sometimes rapidly. As they all move, each in its own

particular orbit, and the planes of their orbits are inclined

at various angles to the Equinoctial, their Declinations

also change.

As all the planets, the Earth included, move round

the Sun in the same direction, they may overtake and pass

each other going in the same direction, but they can

never approach from opposite directions and pass each

other.

As the planets, the Earth included, are constantly

passing each other, and as their relative positions change

according to their position on their respective orbits, it

follows that, as viewed from the Earth, planets some-

times appear to have a retrograde movement, and to

describe curious spirals and curves.

The Moon revolves on her own axis from West to

East, as does the Earth. She revolves round the Earth

in an Easterly direction, making a complete revolution in

the sky in 27 days 7 hours 43 minutes ; and, hanging

on to us, she makes a complete revolution round the Sun

in a year.

The orbit of the Moon is very nearly in the same

VOL. I. s
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plane as that of the Ecliptic, or orbit of the Earth. The

Moon is full when she is opposite to the Sun, in other

words when the Earth is between her and the Sun. In the

summer time in Northern Latitudes the North Pole of

the Earth is inclined towards the Sun, therefore it is in-

clined away from the Moon when she is full ; in other

words, the Moon has then a large Southern Declination.

The opposite of this occurs in the winter season. The

consequence of this is that the full Moon rides high in

the heavens and remains a long time above the Horizon

during our vyinter months, and is comparatively low in

the heavens and remains comparatively a short time

above the Horizon during our summer months.

When the Moon is directly between the Earth and the

Sun, her illuminated face or side is away from the Earth,

and her dark face towards the Earth. She is invisible,

and it is new Moon. As she clears the Earth as it were,

a larger and larger portion of her illuminated surface

becomes visible from the Earth, until she is exactly

opposite the Sun, when the whole of her illuminated face

is towards the Earth, and it is full Moon. As she proceeds

on her course, she shows less and less of her illuminated

face to the Earth, until she becomes invisible, and it is

new Moon again. If the Moon waltzed round us exactly

in the plane of our orbit round the Sun, she would, when

full, be in the Earth's shadow, and invisible, and she

would when new intercept the Sun's light, and the Sun

would be invisible ; but the plane of the orbit of the Moon
being inclined to the plane of the orbit of the Earth at an

angle of about 5", the Moon is nearly always above or

below the plane of the Earth's orbit, when she is full or

new. If she happens to be in the plane of the Earth's

orbit when full, there is an eclipse of the Moon. If she

happens to be in the plane of the Earth's orbit when she
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is between the Earth and the Sun, she intercepts the Sun's

light, and there is an echpse of the Sun.

As the Moon has to scramble round the sky in about

27^ days, her movement in Eight Ascension is extremely

rapid. She gets through the whole circle of 24 hours in

this time, making an average change of between 2 m. and

3 m. an hour.

The plane of the Moon's orbit being inclined to the

Equinoctial at a large angle, the Moon's Declination

changes very rapidly also. She rises on the average as

far as 23|° North, and sinks as low as 23^° South of the

Equinoctial in 27| days, making an average change of

Declination amounting to 8^' an hour.

During the winter months in Northern Latitudes, the

elevated Pole of the Earth is inclined away from the Sun

and, as the Earth is between the Sun and the Moon
at full Moon, the Pole is inclined towards the Moon.

Hence it follows that the Moon when full in the winter

months, just when her light is most needed, has high

northern Declination, a good business for mariners navi-

gating the wintry narrow seas.

The length of time that the Sun is above the Horizon

at any given place depends entirely upon the inclination

of the Earth's axis towards the Sun, or, in other words,

upon the Sun's Declination. When the Sun is moving

North, the days get gradually longer, the Sun rises earlier,

and sets later day by day in the Northern Heinisphere

;

and when the Sun is moving South the days get gradually

shorter and the Sun rises later and sets earlier day by day.

But the length of time that the Moon is above the Horizon

and her rising and setting depend not only upon the in-

clination of the Earth's axis towards her, but also upon

her movement in her orbit round the Earth. Her move-

ment in Declination causes her to be above the Horizon

s 2
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for a gradually increasing length of time, as she moves

North, and for a gradually decreasing length of time as

she moves South ; but her movement along her orbit

causes her to rise later and later every day. The effect of

her movement in Declination never overcomes the effect

of her orbital movement—the Moon never rises earlier on

one day than she did on the day before ; but the effects of

the two movements may nearly balance each other. In

September at full Moon the Moon is coming North so

rapidly that her increasing Declination almost makes up

for her movement in her orbit. She, so to speak, rises

later on account of her proper motion round the Earth,

and rises earlier on account of her apparent motion in De-

clination. The consequence is, that the Moon rises about

the same time for three or four days in succession, and we

have what is called a ' Harvest Moon.'

In dealing with the fixed stars, with the exception of

the Sun, an observer need not bother himself about

correcting Eight Ascension and Declination ; he can take

these elements straight out of the Nautical Almanac. In

dealing with the planets he must bother himself a little

—

their Eight Ascensions and Declinations may require

correcting. But if he tackles the Moon he must bother

himself a good deal, for her Eight Ascension and Declina-

tion must be very accurately corrected. The Sun, though

a fixed star, is so close to us that his Declination, Eight

Ascension, and also Semi-Diameter, and our Horizontal

Parallax require correction.

In conclusion be it always remembered that all correc-

tions must be made for the Greenwich time at which

your sights were taken.

Eight Ascensions, Declinations, Semi-Diameters,

Horizontal Parallax, Times of Transit, and everything

else to do with Heavenly Bodies, Equation of Time in-
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eluded, are calculated and given you in the Nautical

Almanac for Greenwich Noon. Therefore the first thing

to do in working any problem, from observation of a

Heavenly Body, is to find out what time it was at

Greemvich when your sights were taken ; and the next

step is to correct the Eight Ascension, Declination, or

whatever it may be that requires correction, of the body

observed, for the change that has taken place in the

interval of time elapsing between the Greenwich date of

your observation and the Greenwich noon. Greemvich is

all you have got to think about.

English's Globe Star-finder

To anyone not thoroughly acquainted with the Stars,

this little instrument is invaluable, and it is very useful

also to those who know the aspect of the heavens well.

It enables you to find the places of all the Stars from the

first to the third magnitude, at any time, and viewed

from any place on the Globe, with sufficient exactitude for

all practical purposes. By means of it you can identify

any Star of which you have snapped the Altitude in cloudy

weather. You can see at a glance those Bodies which are

most suitable for double chronometer work at any time

you desire, and you can tell by inspection when any

Heavenly Body will rise or set, or be on the Prime Vertical,

&c., &c. For instructing yourself or others it is much to

be preferred to Star charts.

The Star-finder consists of an ordinary celestial globe,

on which are marked all the Stars of the first, second, and

third magnitudes. It is fitted with a brass meridian

having degrees of Declination marked on it, and also with

movable Vertical Circles marked to degrees of Altitude.

Eight Ascension is read on the Equinoctial of the globe,
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and the Horizon is marked in degrees of Azimuth. The

method of using it is simple.

To adjust the instrmnent for Latitude.—Turn the

brass meridian, which is graduated in degrees from 0° at

the Equator to 90° at either Pole, round until the degree of

Latitude of the observer is directly under the Zenith,

which is the point of intersection of the Altitude Circles
;

or until the degree of Colatitude is on the Horizon ; the

North Pole being elevated in North Latitude, and the

South Pole in South Latitude.

To adjust the instrument for time.—The Equinoctial

is marked in time from the First Point of Aries (which is

XXIV hours or hours) to the Eastward right round the

globe.

The adjustment is made by turning the globe round

on its axis till the hours and minutes of the Sidereal Time

of observation is brought exactly under the brass meridian.

Sidereal Time for this purpose is found by either of

the following formulas :

—

(1) Sidereal Time (E. A. Mer)=E.A.M.O + M.T.S.

(2) Sidereal Time (E. A. Mer)=E.A.A.O +A.T.S.

The instrument being adjusted for Latitude and Time,

all the Stars represented on the globe are in their correct

positions. Their Altitudes and Azimuths can be ascer-

tained by turning the Altitude Circles round in Azimuth

till the gra.duated leg is immediately over any desired Star,

when its Altitude can be read on the graduated Altitude

Circle above it, and its Azimuth on the Horizon where the

same leg cuts it. The globe can be used also to find the

position of the Sun, Moon, and Planets.

To find the position of the Sun.—Take from the

Nautical Almanac the Eight Ascension and Declination

of the Sun at the desired time in the usual manner. Turn
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the globe round till the hour and minute of Eight Ascension

on the Equator is directly under the brass meridian. The

position of the Sun will be under the degree of Declination

shown on the brass meridian.

To find the position of the Moon or of a Planet.—Pro-

ceed in exactly a similar way as for the Sun.

To find the time lohen any Heavenly Body is on the

Meridian.

(1) Set the globe for Latitude.

(2) Bring the Body under the brass meridian.

(3) Prom the Eight Ascension of the Meridian (which

is shown on the Equator immediately under the brass

meridian) deduct the Eight Ascension of the Mean Sun,

which will give the Mean Time at Ship when the Body is

on the Meridian.

To find the time of rising or setting of any Heavenly

Body.

(1) Set the globe for Latitude.

(2) Bring the Body on to the Eastern Horizon if time

of rising is required, or on to the Western Horizon if the

time of setting is needed, and note the Sidereal Time in

each position, whence the Mean Time at Ship in either

case can be found.

To find lohen a Heavenly Body is on the Prime Ver-

tical.

(1) Set the globe for Latitude.

(2) Bring the Body under a leg of the Altitude Circles

which is resting on the Bast or West point of the Horizon.

Its Altitude can be read off, and the time found from the

Sidereal Time.

N.B. The globe will show at once that no Body can

be on the Prime Vertical whose Declination is of a dif-

ferent name from the Latitude.

To find the approximate time when a Heavenly Body
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%oill have a certain Altitude and its Hour Angle at that

time.

(1) Set the globe for Latitude.

(2) Turn the globe round on its axis till the given Body

is rnider the degree of Altitude as shown by one of the

Circles of Altitude.

Then the Sidereal Time less the Eight Ascension of the

Heavenly Body is the Hour Angle of the Body ; and the

Sidereal Time less Eight Ascension of the Mean Sun

is Mean Time at Ship.

The above are a few of the uses to which the Star-

finder may be put ; but perhaps its greatest advantage is

in connection with twilight Stars and double chronometer

work.

In using the globe for this purpose the Moon's position

should always be found, as she might happen to be in the

way of one of the Stars you wish to observe.

Also the Planets should not be neglected if above the

Horizon at a suitable time, which can be easily ascertained

by glancing at the time of their Meridian Passage in the

Nautical Almanac.

To determine ivhat Heavenly Bodies can be advanta-

geously observed for the purpose of double chronometer

loorh at twilight.

(1). Find the Sidereal Time of observation (about one

hour before sunrise or one hour after sunset).

(2). Set the globe to Latitude and Time.

(3). Turn the Altitude Circles round till two adjacent

legs rest as nearly as possible over two Stars having

suitable Altitudes. Eead off their Altitudes and Azimuths.

Then put the Altitude on the sextant, and at the time

fixed upon look through the sextant at the Horizon on the

Bearing ascertained, and the Star will be seen.
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If three Stars (I mean by Stars Moon and Planets

also if in suitable positions), two nearly East and West

and one nearly North or South, are visible, excellent

results can be obtained ; the East and West Stars check

one another for Longitude, and the South or North Star

gives a capital Latitude.

In my humble opinion twilight observations of Stars,

V4'hereby a definite position can be obtained—not vitiated

by an incorrect run, as is the case too often with forenoon

and afternoon sights—are far and away the best method

of determining a ship's position, and for this purpose

English's Star-finder is certainly very useful.
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CHAPTEE XII

LATITUDE BY A MERIDIAN ALTITUDE

OF THE SUN

In order to solve any problem certain facts and posi-

tions must be known. In the ' Sailings ' you find an un-

known Latitude and Longitude from a known Course and

Distance, or you find an unknown Course and Distance

from a known Difference of Latitude and Longitude, and

so on. You must have something definite to start with.

Well, in working an observation for Latitude you have

always two things with you from which you cannot pos-

sibly divest yourself, namely, the Horizon and the Zenith.

With these fixed facts and the Declination, which you can

easily discover in the Nautical Almanac, you can find your

Latitude by a Meridian Altitude of the Sun.

The best way of explaining the problem is by the help

of diagrams. Diagrams and Figures are said to be

drawn upon a certain 'Plane.' The two planes we

have to deal with at present are the plane of the Meridian

and the plane of the Horizon. To understand a figure

drawn on the plane of the Meridian, imagine yourself look-

ing towards the centre of a Great Circle standing vertically

over against you. If studjdng a figure drawn on the

plane of the Horizon imagine yourself looking down upon

a G-reat Circle spread out horizontally below you.

To ascertain Latitude by observation of the Meridian
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Altitude of the Sun is a simple matter. You have to find,

1st, the Altitude of the Sun ; 2nd, the Declination of the

Sun.

Then, 1st, 90° minus the Sun's Altitude gives you

the Sun's Zenith Distance—North if the Sun is South

of jon, South if the Sun is North of you. 2nd, (a) the

sum of the Zenith Distance and Declination is the Lati-

tude if Zenith Distance and Declination are both of the

same name, and the Latitude is of that name
;

(b) the

difference between the Zenith Distance and the Declina-

tion is the Latitude when Zenith Distance and Declination

are of different names, and the Latitude has the name

of the greater of the two.

For instance, suppose the Sun's Altitude to be

50° 0' 0" South of the observer, and the Declination

to be 10° 0' 0" N ; the Latitude would be found as follows

:

G Alt. . 50° 0' 0" s
90

Zen. Dist. . 40° 0' 0' N
Dec. . . 10°0 N

Lat. . . 50° N

or suppose the Sun to be North of you. Then you would

have
O Alt. . 50° 0' 0" N

90

Zen. Dist. . 40° 0' 0" S
Dec. . . 10 N

Lat. . . 30 S

As I have said, and as you vdll admit, this is a very

simple operation. But certain corrections have to be made,

in order to get the Sun's True Altitude and Correct

Declination, which you must learn how to make, and the

nature of which you should comprehend. You ought also

to understand the principle of the problem.

The Meridian Altitude of the Sun is the Altitude of
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the Sun at Noon, and is, of course, the highest Altitude

to which it attains.

The Altitude of the Sun's lower or upper rim, or as it

is called, ' limb,' above the Visible Horizon, is measured

with a sextant, and noted down. But that is by no means

the True Altitude. The True Altitude is the angle sub-

tended at the centre of the Earth between the centre of

the Sun and the Eationai Horizon.

What is the Bational Horizon, and how is it derived

from the Visible Horizon ?

The Visible Horizon requires but little explanation
;

it is the circle bounding our vision at sea.

The Sensible Horizon is the plane of a circle perpen-

dicular to a line drawn from the Zenith to the observer,

and touching the surface of the Globe at the point on

which he is situated.

The Bational Horizon is a Great Circle, whose plane

passes through the centre of the Globe, and is parallel to

the plane of the Sensible Horizon.

Now for the various corrections to be made to the

Altitude of the Sun's Lower or Upper Limb as observed

with the sextant. The first correction is for Index Error,

if any exists : the Index Error, if plus, is to be added to

the Observed Altitude ; if the error is minus it is to be

taken from the Observed Altitude.

After allowance has been made for Index Error the

next correction is for Dip.

The Observed Altitude of the Sun is its angular

distance above the Visible Horizon, and as the extent of

the Visible Horizon increases according to the height of

the observer above sea level, the first correction of Observed

Altitude consists in a reduction of Altitude proportionate

to the depression of the Visible Horizon due to the height

of eye above sea level. This is called the ' Dip.'
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In diagram No. 46 let A B be an observer on the

surface of the Earth, whose centre is o ; let x be a Heavenly-

Body, and L the Visible Horizon ; then the angle x b L is

the Altitude of x above the Visible Horizon, and x A h its

Altitude above the Sensible Horizon at H ; the difference

between these two angles is the Dip. The height of the

observer A B is so utterly insignificant in comparison with

Fia. 46

the distance of any Heavenly Body, that a x may be con-

sidered to be parallel to b x, and the angle x b t equal

to the angle xah. But the Dip equals the difference

between the angles xbl and xah, and as xah and

X b T are practically equal, it is the difference between the

angles xbl and x B t, namely the angle T b l ; t b L

therefore is the Dip.
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The Dip is always to be deducted from the Observed

Altitude, and the result gives us the Altitude of the Sun

above the Sensible Horizon.

But we have observed one of the Limbs of the Sun, not

the centre, and therefore the Semi-Diameter of the Sun

must be allowed for. If the Upper Limb is taken, the

Semi-Diameter must be subtracted. If the Lower Limb

is observed, as is always done except in very rare cases,

the Semi-Diameter must be added. The Semi-Diameter

will be found for every day of the year on p. II. of each

month in the Nautical A.lmanac.

Fig. 47

In diagram No. 47 let A be the observer, o the Sun,

and H the Sensible Horizon. If you take the Altitude of

the Lower Limb of the Sun you will get the angle D A H,

and as you require to know the Altitude of the Sun's

centre, it is evident that you must add the angle subtended

from the Earth by the Semi-Diameter of the Sun, namely

the angle GAD.

The diagram also shows that if you observe the Sun's

Upper Limb you get the angle e A h, from which you

must subtract the angle subtended from the Earth by the

Semi-Diameter of the Sun, namely the angle e a o.

This correction gives the Altitude of the Sun's centre
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above the Sensible Horizon. This is called the Apparent

Altitude.

The Sun's rays, however, do not reach us travelling in

a straight line from the Sun : they are bent or refracted

by the atmosphere of the Earth, and as the rays traverse

more atmosphere when the Sun is low down than is the

case when it is high in the heavens, the amount of Refrac-

tion, and consequently the correction for it, varies accord-

ing to the Altitude of the Sun.

Diagram No. 48 requires but little explanation. The
rays of hght from any Heavenly Body are bent or refracted

when passing through the Earth's atmosphere, and the

consequence is that, as shown in the diagram, a body at

X appears to an observer at a to be at y, the ray of light

from X striking his eye from that direction. Naturally the

lower the body is in the sky the more atmosphere its

rays have to pass through before reaching the eye of an

observer, and the more they are refracted. In the case of

a body right overhead there is no Refraction.
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This correction, which is always to be deducted, gives

us the real Altitude of the Sun's centre above the Sensible

Horizon.

But as we require the Altitude of the Sun's centre

above the Eational Horizon, a further correction, due to

the Earth's Semi-Diameter, is necessary. This is called

Parallax.

Fig. 49

Let F H be a portion of the celestial concave ; o the

centre of the Earth ; A an observer on its surface ; x the

position of a Heavenly Body ; h a point on the Eational

Horizon; s a pomt on the Sensible Horizon. Draw A b

parallel to o c, and as a s and o h are parallel the angles b as

and c o H are equal. The angle b a s equals the sum of the

angles e a x and x a s ; the angle E A x equals the angle

a X o because the lines a b and o x are parallel to one

another, x o H is the True Altitude of x. But in conse-

quence of the height of the observer above the centre of the

Earth o, the Altitude of x appears to be x A s. Now the True

Altitude X H is the sum of the two angles x A s and.E a x.
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B A X equals a s o, which is the Parallax (the angle at a

Heavenly Body subtended by the radius of the Earth

between the observer and the centre of the Earth) and

X A s is the Apparent Altitude, therefore Parallax added

to Apparent Altitude gives the True Altitude.

This correction is always additive, and having been

made, we at last have the True Altitude, that is to say,

the Altitude of the centre of the Sun above the Rational

Horizon. So far so good. The only other datum required

is the Declination of the Sun.

The Declination will be found for the day required at

Apparent Noon at Greenwich in page I. of each month in

the Nautical Almanac, and alongside is the variation in

one hour. As the Sun is moving North or South all the

time, and its Declination is therefore constantly changing,

and as Declination is given in the Almanac for Greenwich

Noon, it is necessary to find out what time it is at

Greenwich when it is Noon at Ship, so as to be able to

correct the Declination for the interval of time that has

elapsed since Noon at Greenwich. All you have to do is

to find your Longitude by Dead Reckoning, and turn it

into time. As a circle contains 360 degrees of arc, or 24

hours of time, one hour is equal to 15 degrees, and in

order to turn arc into time it must be divided by 15.

The best way of doing so is to divide the arc by 5

and then the quotient by 3 ; but the whole thing is

calculated for you in Tables, and the simplest plan of

all is to look out your Longitude in Arc in Table A, and

take out the equivalent in Time.

Having obtained your Longitude in Time, if you are

West of Greenwich, it will be that much past Noon at

Greenwich when it is Noon with you. To find the cor-

rection for Declination due to this interval of time, the

VOL. I. T



274 LATITUDE BY A

variation in one hour must be multiplied by the interval.

It is not necessary to be accurate in this operation. It is

quite sufficient to multiply the minutes and nearest deci-

mal of a minute of variation by the nearest decimal of

an hour, or by the hour or hours and nearest decimal

of an hour of your Longitude in Time. This correction

is to be added to or taken from the Declination, as

the case requires. If it is past Noon at Greenwich

at the time it was Noon at Ship, and if the Declina-

tion is increasing, the correction must of course be

added, but if the Declination is decreasing, it must be

subtracted.

But suppose you are in East Longitude—East of

Greenwich. It will not yet be Noon at Greenwich when

it is Noon at Ship, and your Longitude in Time East

will be the interval before Greenwich Noon. In this case

you can proceed in two ways. Either you can take your

Longitude in Time from 24 hours and treat the balance

as an interval past Noon, of the preceding day ; or you

can correct the Declination for the interval of time before

Noon at Greenwich on the day. The first process is un-

necessarily laborious, and you should accustom yourself

to the second method ; all you must remember is, that in

such a case, if the Declination is increasing, the correction

is to be deducted from the Declination as given for Noon

at Greenwich, and if the Declination is decreasing the

correction is to be added.

Having now obtained the two data necessary to work

the problem, namely, the True Altitude of the Sun,

and its Declination at the time the sight was taken,

namely, when the Sun was on your Meridian—Appa-

rent Noon at Ship—we will proceed to find the

Latitude.
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To find the Latitude according to the method required

by the Board of Trade.

(A Second Mate must be able to find the Latitude by

a Meridian Observation of the Sun.)

(1) Correct the Altitude on the sextant for Index Error,

if there is any, adding or deducting it, according to

whether the Index Error is + or — . Of course in the

Examination Boom this Index Error + or — will be

given you.

(2) From the Altitude corrected for Index Error deduct

the ' Dip ' as ascertained in Table V.

(3) Add the Sun's Semi-Diameter as taken from the

Nautical Almanac, p. II. This gives the Apparent

Altitude.

(4) From the Apparent Altitude take the Eefraction

as given in Table IV., and

(5) To the result add the Parallax from Table VI.

Eemember Index Error is 4 or — as the case may be.

Semi-Diameter is -I- if you observe the Lower, — if you

observe the Upper Limb. Dip is always — , Eefraction

always — , Parallax always -|-
. The result of these cor-

rections is the True Altitude.

True Altitude from 90° = the Zenith Distance Xorth

if the Sun is South of you, South if the Sun is North

of you.

If the Zenith Distance and Declination have the same

name, their sum is the Latitude ; if they have opposite

names, their difference is the Latitude. The Latitude is

of the same name as the Zenith Distance and Declina-

tion when they are of the same name ; and is of the

name of the greater of the two when they are of opposite

names.

In practice all the corrections, except of course for

T 2
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Index Error, can be taken out in one fell swoop from Table

TX., whicb saves some trouble, but this will not do for the

Board of Trade Examination.

It is well to mention that some difficulty may be ex-

perienced in correcting Declination at the time when it

changes its name at the Equinoxes.

"We all know that, in the Northern Hemisphere, the

Sun moves North, or, to be accurate, its apparent motion

is North from the shortest to the longest day, and it

moves South from the longest to the shortest day. It

changes its Declination from North to South of the

Equator at the Autumnal Equinox, and from South to

North at the Spring Equinox. About the Equinoxes it

may well happen that the Sun crosses the line from North

to South Declination or from South to North Declination

during the interval between Noon at Ship and Noon

at Greenwich. For instance, suppose you observe the

Meridian Altitude of the Sun on March 20th, 1898, in

Longitude 90° 0' 0" West. Longitude in Time is 6 hours,

variation in one hour is 59-3", which multiplied by 6

equals 5' 56".

59-3

6

00)355-8(5' 56"

300

55-8

DecHnation at Greenwich Noon is 0° 1' 57" South. As the

Sun has gone North 5' 56" in the 6 hours, and was only

0° 1' 57" South at Greenwich Noon, it is evident that it

must have crossed the Equator. The Declination at Noon,

0° 1' 57" South, must be deducted from the distance the

Sun has moved to the Northward to ascertain the Declina-

tion at the time the sight was taken. Therefore 5' 56' —
1' 57"= Declination 3' 59" North.



MERIDIAN ALTITUDE OF THE SUN 277

Here are some examples of Latitude by Meridian

Altitude of the Sun :

Examples

1. On January 6th, 1898, in Longitude 135° W, the

Observed Altitude of the Sun's Lower Limb was 71° 27' 20",

bearing South, Index Error + 1' 20", Height of Eye 18 feet.

Required the Latitude.

Long, in Time i Declination

Long. 135° W = 9" W (Table A) ^^^ ^^ ^^^ Noon -|

To correct Dec.
i

Greenwich, Jan. 6th

Var. in 1'' = 18-4"
' (P- I-. Naut. Al

Long, in Time x 9 j

manac) (decreasing) J

'1.22° 27' 46" S

60) 165-6 (2- 46"
j

Correction.
.

-2 46

120
J

Dec. at App. Noon
T5 ;

at Ship . . 22 26 S

Obs. Mer. Alt. 71° 27' 20' S

I. E. . ". . + 1' 20"

71° 28' 40"

Dip 18 feet .
4' 9" Table V.

71° 24' 31"

Semi-Diameter 16' 17" p. II. Naut. Almanac.

Apparent Altitude 71° 40' 48"

Eefraction . 18" Table IV,

71° 40' 30"

Parallax . . 3" Table VI.

True Altitude 71° 40' 33" S
90° 00' 00"

Zenith Distance 18° 19' 27" N
Declination . 22° 25' 0" S

Latitude . . 4° 5' 33" S

Note.—If you use Inman's Tables no Parallax

must be applied, because Table 16 gives you Eefraction

diminished by the Sun's Parallax.

2. On March 20th, 1898, in Longitude 157° 20' W, the

Observed Meridian Altitude of the Sun's Lower Limb was
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30° 20' 10", bearing South, Index Error- 0' 50", Height

of Eye 35 feet. Required the Latitude.

Long. 157° 20' = 10" 29'" 20" (Table A)

Correction for Dec.
Var. in 1'' = 59-3

Long.inT.= 10-5

2966
5930
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which is more than 90°, from 180°, and so get the True

Altitude from the Southern instead of the Northern, or

from the Northern instead of the Southern Horizon. Here

is an example ;

3. On September 23rd, 1898, in 178° 15' East Longi-

tude, the Observed Meridian Altitude of the Sun's Lower

Limb was 89° 48' 20", bearing North, Index Error + 3' 40",

Height of Eye 14 feet. Eeqixired the Latitude.

178° 15' B = 11'' 53- (Table A) Deo. on 23rd . . 0° 11' 9" S
Correction . . 11' 36"

Deo. Deo. at time of obs. 0° 0' 27" N
Var. in l^ = 58-5"

Long, in T. = 11-9 Obs. Mer. Alt. ) . 89° 48' 20" N

526^
I-^- +^'^«"

585 89° 52' 0"

585 Dip for 14 feet .
3' 40" Table V.

) 696-15 89° 48' 20"

Semi-Diameter . 15' 58" p. II. Naut.

Cor. for Dec. 11' 36" Almanac
Apparent Altitude 90° 4' 18"

Eefraction . . 0' 0"

90° 4' 18"

Parallax. . . 0' "

True Altitude . . 90° 4' 18" N
180° 0' 0"

True Altitude . . 89° 55' 42" S
90° 0' 0"

Zenith Distance . 0° 4' 18" N
Declination . . 0° 0' 27" N

Latitude . . 0° 4' 45" N

You will observe that the Altitude was taken to the

Northern Horizon, but when the corrections were applied

it became evident that the Sun's centre was to the South-

ward, as the True Altitude was more than 90° from the

Northern Horizon. By deducting this True Altitude from
180° we obtained the Sun's True Altitude from the

Southern Horizon, and then proceeded as in an ordinary

case.

Notv perhaps you luould like to knoic the principle
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involved in the problem ; but don't bother about it unless

you feel so inclined.

Diagrams No. 50, 51, 52 are on the plane of the Celes-

tial Meridian Hi B z D c. Let z be the Zenith of an ob-

server on the Earth at A, and H H, his Eational Horizon.

Let p Q P,Q, represent the Earth, p p, being the Poles

and Q Q, the Equator ; D is therefore the spot where the

Equinoctial cuts the Celestial Meridian, and B and c are

the Celestial Poles. Let x be the Sun on the Meridian of

the observer at a.

The arc x to h, or what is the same thing, the angle

X o H is the True Altitude of the Sun at Noon, that is

when on the Meridian of the observer. The Zenith being

perpendicular to the Horizon, the arc z H, or angle

z o H = 90°. The Zenith Distance, that is to say the arc

z X, which is the distance of the Sun from the Zenith, is

90° less the True Altitude, that is 90°-x H.
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We have now got the position of the Sun in reference

to a fixed point, the Zenith of the observer. The De-

chnation of the Sun, i.e. its angular distance North or

South of the Equator, must be considered.

The Latitude of the observer is Q A, that is his distance

Fig. 51

from the Equator, measured by the angle Q o A. This

angle obviously also measures the distance D z, vrhich is

therefore equal to the Latitude of the observer. If the

Sun has no Declination, that is to say if he is at x as in

fig. 50, the Latitude vs^ill be equal to the Zenith Distance,

as obviously the angles z o x and Q o A are the same.

But if the Sun has Declination North, as in fig. 51, it

must be taken into consideration. If the observer and the

Sun are both on the same side, either both North or both

South of the Equator, the sum of the Zenith Distance

and Declination is the Latitude. Thus, in fig. 51 z x (the

Zenith Distance) + x D (the Declination) = z d, v^hich
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has already been shown to be equal to the Latitude A Q.

But suppose the Sun and the observer to be on opposite

sides of the Equator, as in fig. 52.

D X is the Declination South of the Equator, A is the

position of the observer North of the Equator, z x (the

Zenith Distance)— d x (the Declination), gives D z, which

equals the Latitude A q, because the angular distances z d

and Q A are the same, as they are both measured by the

same angle at o.

The gist of the whole matter is this. Your observa-

tion gives you the angle between the Sun and the Zenith

:

the Nautical Almanac gives the angle from the Sun to

the Equator, and by these two facts by addition or sub-

traction you deduce the angle from the Equator to the

Zenith, which is your Latitude.

This may be seen perhaps more clearly in a figure con-

structed on the plane of the Horizon, as in fig. 53.
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NWSE is the Celestial Horizon represented by H o H,

in figs. 50, 51, 52. z is the Zenith, and n z s the Meridian

of the observer, whose Zenith is z. p is the elevated

Pole, and w Q E the Equator. x is the Sun on the

Meridian, with Northern Declination xq, and y is the

Sun on the Meridian with Southern Declination Q Y.

z X (the Zenith Distance of the Sun North of the Equator)

+ Q 2 (the Declination of the Sun North of the Equator)

= z Q, the measure of the Latitude. z Y (the Zenith

Distance of the Sun South of the Equator) — qy (the

Declination of the Sun South of the Equator) =zq, the

measure of the Latitude.

The reasons why Meridian Altitudes are usually used

for finding Latitude are, because an accurate knowledge of

time is not necessary to obtain accurate results, because,
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owing to the slow movement of the Body in Altitude

when near the Meridian, very accurate contact can be

obtained, and because the problem is so simple.

So much for Latitude by a Meridian Altitude of the

Sun.

Latitude can be found by a Meridian Altitude of a

fixed star, a planet, or of the Moon ; also by Altitudes of

circunipolar stars above and below the Pole and by Double

Altitudes. All these problems -n-ill be dealt vdth later on.

Having learned how to find the Latitude by the ordinary

method of a Meridian Altitude of the Sun, let us proceed

to find our Longitude with the help of the same luminary.
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CHAPTBE XIII

LONGITUDE

Longitude by Sun and Ghronometer

.

—This problem con-

sists in comparing the Time at Ship as found from obser-

vation with Greenwich Time as found by referring to

your Chronometer.

Longitude is measured along the Equator, and

is counted East and "West from the Meridian of

Greenwich. The Meridian of Greenwich is 0° 0' 0",

and Longitude is counted so many degrees, minutes,

and seconds of Arc East up to 180°, and West up to

180°, thus completing a circle ; a circle always contains

360 degrees.

Longitude must be first expressed in terms of Time

—

so many hours, minutes, and seconds of Time East or

West—and is then converted into Arc—or so many degrees,

minutes, and seconds of Arc East or West.

It may not be amiss to recur a little to the important

subject of Time.

Three sorts of Time are in ordinary use : Sidereal

Time, which we need not discuss now ; Solar Apparent

Time ; and Solar Mean Time. Apparent Time is derived

from the Apparent Sun, that is the real actual Sun

;
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Mean Time is derived from the Mean or imaginary

Sun.

Apparent Time is an expression which may possibly

be misleading ; it is in fact real Time—the Time by the

Sun, and the Sun lies at the foundation of our concep-

tion of Time. The apparent motion of the Sun from East

to West round the Griobe in 24 hours, due to the real

rotation of the Earth from AVest to East in 2-i hours,

gives us day and night, and, so to speak, manufactures

Time. The term ' Apparent ' is correct and quite satis-

factory provided it is understood that it is the real

time derived directly from observations of the 7-eal

Sun.

But the Sun is in one sense a bad timekeeper, for the

length of the Solar Day—that is the interval of time

between the instants when the Centre of the Sun is on

the Meridian on two successive days—is not uniform.

There are two reasons for this. 1st, owing to the

inclination of the Earth's orbit round the Sun, part of

the Sun's apparent Motion is North and South, and it is

onlj' the East and West part of its Motion which gives

us the measure of the Solar Day. 2nd, the shape

of the Earth's orbit round the Sun being elliptic, and the

speed of the Earth varying according to its proximity to

the Sun, the Sun appears to move faster at some times

than others. To get over the difhculty thus arising a

Mean Sun keeping Mean Time, and giving us a Mean

Day calculated on the average length of the Solar Days

in the Year, has been invented.

This artificial measure of Time is called ' Mean

'

Time. The difference between Mean Time and Apparent

Time is called the 'Equation of Time.' The Equation

of Time is given with directions as to how it is to be
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applied to Apparent Time on page I., and to Mean Time

on page II. of the Nautical Almanac for every day at

Greenwich Noon during the Year ; and in a column

alongside on page I. the variation for one hour is also

given.

Tvi^o methods of using Solar Time, which for the future

will be simply spoken of as ' Time,' are in customary use:

1st, the Civil method, which beginning at Midnight counts

Time from Midnight to Noon through 12 hours as a.m.,

and from Noon till Midnight through 12 hours, as p.m.
;

2nd, the Nautical, or as it is usually called the Astronomical

method, which starting from Noon computes Time through

24 hours to the next Noon. This last method is always

used in Nautical Astronomy. Hence it follows that when
it is so many hours p.m. by Civil Time on any day it is the

same number of hours Nautical Time of the same day.

But when it is so many hours a.m. by Civil Time on any

one day, it is, in Nautical Time, that number of hours on

the day before with twelve added. For instance, 6 p.m. on

Tuesday Civil Time is 6 hours on Tuesday Nautical Time
;

but 6 a.m. on Tuesday Civil Time is 18 hours on Monday
Nautical Time. Don't forget this relation of Civil to

Nautical Time. Here are a few instances :

Civil Time Nautical Time

10'" 28'" P.M. on January 17 is 10'' SS" on January 17

1 A.M. on January 17 is 13 on January 16

2 12 P.M. on June 14 is 2 12 on June 14

2 12 A.M. on June 14 is 14 12 on June 13

10 15 P.M. on November 10 is 10 IS on November 10

10 15 A.M. on November 10 is 22 15 on November 9

Longitude is, as I have said, counted along the Equator

East or West of the Meridian of Greenwich, as the

following diagrams exemplify.
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In diagram No. 54, let p q Pj Q^ be the Earth, p being

the North Pole, p, the South Pole, Q L Qj the Equator.

Let G be the position of Greenwich and p g l p, the

Meridian of Greenwich, let a B c and d be places on the

surface of the Earth situated on the Meridians pmp,,

p N p„ p o Pj and p B Pj respectively. Then the arc L M is

the Longitude of A, East of Greenwich ; the arc L N is the

Longitude of B, East of Greenwich ; the arc L o is the

Longitude of D, West of Greenwich ; and the arc L h is

the Longitude of c. West of Greenwich.

In diagram No. 55, let T Qj L Q be the Earth and p

the North Pole, p m and p e the Meridian of a and c,

and p N and p o the Meridians of B and D in the diagram

No. 54, which, as they are South of the Equator, you

cannot see in this diagram. The Longitudes of all these

places are represented in both diagrams by the same arcs,

and all the places are in less than 90° of Longitude.

Now let K, s, and F be three other places in the Northern
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Hemisphere. f is in Longitude 180° E or 180° W,
whichever you please; k is in Longitude LX Bast ; and

s is in Longitude l y West.

You will notice that all these positions are measured

by the angles at the Pole. Longitudes are determined in

the problem you are about to consider by finding the

polar angles in certain triangles. The Polar Angle of the

Sun is called the Horary Angle or Hour Angle ; the latter

expression being the better English of the two, I shall

use it, and, for the future, when referring to the Sun's

Polar Angle I shall call it the ' Hour Angle.'

It is 360° right round the Equator, as it is round any

and every circle ; and, as the Sun moves round the Earth

in 24 hours, it is also 24 hours round the Equator.

Longitude may therefore be computed in Time just as

well as in Arc, up to 12 hours East and 12 hours West of

Greenwich.

VOL I. u
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Apparent Time at Ship is the "Westerly Hour Angle of

the Apparent, that is the real, Sun ; or it is the arc

of the Equinoctial intercepted between the Meridian

of the observer and the ^Meridian passing through the

centre of the Sun ; and it is measured to the Westward

from the Meridian of the observer right round the

Equinoctial.

Longitude is found by the aid of the Sun and a

Chronometer : 1st, by ascertaining by obser\'ation and

calculation the Sun's Hour Angle, which is Apparent

Time at Ship at the moment the sight is taken ; 2nd, by

turning Apparent Time into Mean Time by applying the

Equation of Time, and 3rd, by comparing INIean Time

at Ship thus found with Mean Time at Greenwich, as

ascertained from your Chronometer. The difference

between the two is the Longitude in Time.

As the Sun moves from East to "West it is obvious

that Greenwich Time will be greater than Ship Time if

the Ship is in West Longitude, and i-ice versa. "When

the Sun is rising at Greenwich, it will be still below the

Horizon W^est of Greenwich, and will be above the Horizon

East of Greenwich. As an instance : Bombay is in

Longitude 72° 49' 40" East, and New York is in Longi-

tude 74° 0' 0" West; or, converted into Time, Bombay is

4 h. .51 m. 19 s. East of Greenwich, and Xew York is

4 h. -56 m. s. AYest of Greenwich. W^hen it is Xoon

at Greenwich say on Tuesday, it is 4 h. 51 m. 19 s. p.m.

at Bombay, or expressed nautically it is Tuesday

4h. 51 m. 19 s. ; and at the same instant of Xoon at

Greenwich it is 7 h. 4 m. a.m. on Tuesday at Xew York

by Civil Time or expressed nautically it is Monday
19h. 4 m.

Therefore if Greenwich Time is greater than Ship

Time name your Longitude West ; if Greenwich Time is
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less than Ship Time name your Longitude East. ' Green-

wich Time best Longitude West ; Greenwich Time least

Longitude East ' is the law.

Having found the difference in Time between the

Time at Ship and the Time at Greenwich, turn Time into

Arc (Table A ), and you have the Longitude of the

Ship.

With these preliminary observations let us tackle the

problem which is required of a Second Mate. An expla-

nation of it is given later on for the benefit of those who

sigh for an Extra Master's Certificate or who are curious

on the subject. It is sufficient to say here that Ship Time

is the angle at the Pole between the Meridian passing

through the Sun and the Meridian passing through the

Ship, and that to find that angle you have the following

elements or fixed facts to work with : 1st, the Latitude of

the Ship found by Dead Beckoning ; '2nd, the True Alti-

tude of the Sun derived from the Observed Altitude
;

3rd, the Sun's Polar Distance, which you get from the

Sun's Declination. I need not repeat how to correct

Declination or how to find True Altitude from Observed

Altitude, for you have learned all that in working a Meri-

dian Altitude of the Sun for Latitude, but you have not

yet found the Polar Distance from the Declination. It is

a Quadrant or 90° from the Equator to the Pole ; if your

Latitude is of the same name as Declination, that is to

say, if you are in North Latitude and the Declination is

North ; or if you are in South Latitude and the Declina-

tion is South, obviously 90°— Declination is Polar Dis-

tance ; but if Latitude and Declination are of different

names equally obviously 90° -f Declination is Polar Dis-

tance. Having found the necessary elements, use one

or other of the following formulas, whichever you

prefer.

u 2
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First formula :

Altitude + Latitude + Polar Distance = the sum.

Sum -f- 2 = the ^ sum.

i sum — Altitude = Remainder.

Log. Secant of the Latitude + Log. Cosecant of the

Polar Distance + Log. Cosine of the 5 sum + Log.

Sine of the remainder = Log. of the Hour Angle.

The word ' Alp,' composed of three initial letters, may

serve to remind you of Altitude, Latitude, Polar Distance

;

and Secant, Cosecant, Cosine, Sine is not very difficult

to remember.

The problem presents the following appearance :

Alt.

Lat. Log. Sec .

P. D. Log. Cosec — — —
Sum 2 )

^ sum Log. Cos .

Eemainder — Log. Sin . — — —
Log. H. A. —

The sum of the four Logs, is (rejecting tens in the

Index) the Log. of the Hour Angle. It is an angle

East if the Sun is East of the Meridian, as in the case

of a forenoon sight ; it is an angle West if the Sun is

West of the Meridian, as in the case of an afternoon

sight.

Second formula :

Find the sum of Latitude and Dechnation if they are

of different names, or their difference if they are of the

same name. To the result so obtained apply the Zenith

Distance, finding both the sum and the difference. Add

together the Log. Secant of the Latitude, the Log Secant

of the Dechnation, the ^ Log. Haversine of the sum, and

the ^ Log Haversine of the difference : the result is the

Log. Haversine of the Hour Angle.
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The problem presents the following appearance :

Lat.

Dec.

Sum or Diff.

Z. D.

Sum
Diff.

Log

Log. Sec
Log. Sec

i Log. Hav
5 Log. Hav

Hav of Hour Angle =

If you adopt this formula use Inman's Tables, in

which Log. Haversines and ^ Log. Haversines are given

in Tables 34, 33. Take your choice of these two formulas

—I personally prefer the former, probably because I learned

it first—and having made your choice commit it to

memory and stick to it.

In order to work a Longitude by Chronometer pro-

blem you must understand how to use Tables XXXI. ^ and

XXXII. Table XXXI. gives the Logs, for finding Hour

Angles or Apparent Time. The hours are at the top and

bottom of the page, the minutes are on the left and right

in columns headed M. The seconds are given for every

five seconds at the top and bottom in columns headed

0^ 5^ 10' &c., &c., and the ' proportional parts ' every inter-

mediate second are on the right in a column headed

' Pro. Pts.' You need never take anything out from the

bottom of the page, the Hour Angles from the bottom

being merely what the Hour Angles at the top want of

24 hours.

To find an Hour Angle from a Log.—Look for the

Log. and take out the hour at the top, the minute on the

left and the second on the top appropriate to it. If you

cannot find your Log. exactly, look at the Log. nearest to

it, greater or less, and take out the hour, minute and

second appertaining to it. Find the difference between

' In the 1900 edition of Norie a complete table of Log. Haversines is

given from 0' to 12''.
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the Log. taken out and your Log. ; from the Pro. Pts.

Column on the right take out the seconds belonging to

the difference, and add these seconds to the Hour Angle

if the Log. taken out is smaller than your Log., or deduct

them from the Hour Angle if the Log. taken out is greater

than your Log.

To find the Log. corresponding to an Hour Angle.—
Look for the hour at the top, the minute on the left, and

the second—or nearest second—on the top, and take out

the corresponding Log. If you have an odd number of

seconds in your Hour Angle find the proportional parts

belonging to them, and add them to or take them from

the Log., according as the case requires.

To return to our problem. If the sight be taken

before Noon you get, of course, an Hour Angle East.

Twentj'-four hours being the time taken by the Sun in

travelling from anj^ Meridian right round to the same

Meridian, it follows that an Hour Angle East can be

converted into an Hour Angle West by taking it from

24 hours and setting the date back one day. For instance

the Sun having an Hour Angle East of four hom's on

Monday has an Horn- Angle West of 20 hours on Sunday.

Therefore in the case of a forenoon sight take the Easterly

Hour Angle from 24 hours, and the result is the Hour

Angle West, that is to say Apparent Time at Ship on the

day before. If the sight be taken in the afternoon the

Hour Angle is West, that is, it is Apparent Time at Ship

on the day the sight is taken. In both cases apply the

Equation of Time to the Westerly Hour Angle, and you

have Mean Time at Ship. Find the difference between

the Mean Time at Ship and Mean Time at Greenwich,

and you have your Longitude in Time. But remember

this in applying your Ship Mean Time to Greenwich

Mean Time : if you have taken a forenoon sight you have

obtained an Easterly Hour Angle which you have turned
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into a Westerly Hour Angle by taking it from 24 hours

and putting your date back to the day before, equally,

therefore, you must put your Greenwich date back to the

day before. It stands to reason that you cannot find the

difference between the time at the same instant at any

two places in different Longitudes unless you count it

from the same Noon in each case ; therefore be very

careful to refer your Ship date and the Greenwich date

to the same Noon.

Suppose, for instance, your Chronometer shows that it

is 11 P.M. at Greenwich on Monday—that is to say that

Monday 11 hours is the Greenwich date— at the instant

when you take an observation of the Sun on board Ship

on Tuesday morning which gives you an Hour Angle of

3 hours East ; well, an Easterly Hour Angle of 3 hours

makes it 9 a.m. on Tuesday, or 21 hours on Monday,

and the difference between the 11 hours after Noon at

Greenwich and the 21 hours after the same Noon at

Ship, namely 10 hours, is the Longitude in Time. Again,

suppose you take an observation on Wednesday p.m. at

Ship and find the Sun's Hour Angle to be 5 hours

;

your Ship date is Wednesday 5 hours ; and suppose at

the same time your Chronometer shows 2 a.m.. on

Thursday
;
your Ship Time is counted from Noon on

Wednesday, and therefore before taking the difference

between it and the Greenwich Time you must make

the latter count from Noon on AVednesday also. 2 a.m.

on Thursday is 14 hours from Noon on Wednesday.

Then take the difference between 14 hours and 5 hours,

that is 9 hours, and you have the Longitude in Time.

Chronometers, by a very stupid arrangement, only

show 12 hours on the dial, and you may be situated in

Longitudes that make it necessary to roughly ascertain

the Greenwich date by applying your Dead Beckoning

Longitude in Time to the Approximate Time at Ship, in
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order to find out whether the Chronometer is showing

Greenwich Time a.m. or p.m.

For example, suppose that in Longitude 16.5° W, you

take a sight at about 8 a.m. on January 18th, and that

your Chronometer corrected for error on M.T.G. shows

7 h. m. 26 s., what does it mean ? Proceed to find

out in this way :

Approximate Ship Time on the 17th 20'" O" 0'

Long, in Time W . . . . 11

Approximate Greenwich Time 17th . 31

24

„ 18th . 7

and it is clear that your Chronometer indicated M.T.G. on

the 18th 7 h. m. 26 s.

Take another case.

Suppose that in Longitude 145° E you took a sight

at about 4 p.m. on June 1st, when the Chronometer cor-

rected for error on M. T. G. showed 6 h. 19 m. 42 s., what

does it mean ?

Approximate Ship Time on June 1st . 4'' O" 0'

Long, in Time E 9 40

Approximate Greenwich Time May 31st . 18 20

In this case Longitude being East you have to deduct

the Longitude in Time from Ship Time in order to get the

Greenwich date, and to do so you must mentally borrow

24 hours and add it to the Ship Time. Ship Time is

4 hours after Noon on June 1st, which, with 24 hours

added, is 28 hours after Noon on May 31st ; deducting

9 h. 40 m. from 28 h. you have a Greenwich Date of

18 h. 26 m. on May 31st, or, approximately, what was

shown on the Chronometer, nameh', 6h. 19 m. 42 s. a.m.

on June 1st.

To get an accurate Longitude it is of course absolutely

necessary to be able to ascertain the exact Time at

Greenwich by inspection of your Chronometer. You must

know how much your Chronometer is fast or slow of
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Greenwich Time ; and months, or anyhow weeks, may

have elapsed since an opportunity occurred of comparing

your Chronometer with Greenwich Time. But you will

know your Chronometer's rate—how much it is gaining or

losing every day—and by that means jon can ascertain

the difference between your Chronometer Time and

Greenwich Time. At sea the rate will be allowed for

every day, and there is practically no difficulty in finding

the correction of your Chronometer, provided, of course,

it has a regular rate.

But in the Board of Trade Examination you will

have to find out what the rate is, and the question is

presented in a rather puzzling way. It may take some-

thing like the following form :

' On August 23rd, 1898, a.m.. Chronometer showed

8 h. 32 m. 17 s.' ; and it may go on to say that ' On May 7,

1898, the Chronometer was 3 m. 47 s. fast of M. T. G., and

on November 13th, 1897, it was 1 m. 16 s. slow of M. T. G.'

What you would be required to discover is how much fast

or slow on M.T.G. your Chronometer was on August 23.

Proceed as follows :

Take the last date on which the difference of the

Chronometer was ascertained. On May 7th it was 3 m. 47 s.

fast ; apply that to the time shown by the Chronometer :

8" 32"' 17'

-3 47

8 28 30

So far so good ; you have reduced the date for the error

known to exist on May 7th, but what about the unknown

error that has accrued since May 7th— in other words, what

is the Chronometer rate ? Well, on November 13th, 1897,

it was Im. 16 s. slow, and on May 7th, 1898, it was 3 m. 47 s.

fast. It has obviously, therefore, gained 5 m. 3 s., because

1 m. 16 s. + 3 m. 47 s.= 5 m. 3 s.
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The Chronometer has gained 5 m. 3 s. in the interval.

Of how many days was the interval composed ?

November
December
January
February
March
April

13 days
31 „
31 „
28 „
31 „
30 „
7 „

171 „

Your Chronometer has gained 5 m. 3 s. in 171 daj's.

Turn 5 m. 3 s. into seconds and divide by the 171 days.

5"' 3'

60

171) 303 (1-77- gain
171

1320
119 7

1230

that is to say, as nearly as possible 1'77 s. a day gaining is

your Chronometer's rate.

Now the last date on which the Chronometer's differ-

ence was ascertained was on May 7th, and j^our sight was

taken on August 23. How many days have elapsed ?

May . . .24 days
June . . . 30 „
July . . . 31 „
August . . . 23 „

108 „

108 days have elapsed; therefore the rate for one day

multiplied by 108 days will give you what your Chrono-

meter has gained in the interval since Ma)'' 7th.

108
VT!

756
7S6
108

60) 191-16 ( 3" 11-16"(3» 11' is of course near enough)
180

11

3m. lis. is what is called the accumulated rate, that is what

j'our Chronometer has gained since its difference with

Greenwich Time was last ascertained, namely on May 7th.
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You have already corrected the Chronometer for its

error on May 7th, and have only now to correct the date so

ascertained for the error accumulated since May 7th.

The whole process would appear thus :

On August 23rd Chronometer showed S^ 32'° 17"

It was 3"' 47" fast on May 7th . .
- 3 47

Corrected up to May 7th . . . 8 28 30

Since May 7th it has gained 3" 11" - 3 11

Corrected up to August 23rd . 8 25 19

August 23rd, 8 h. 25 m. 19 s. is the Greenwich Date, or

M. T. G.

Kememberif your Chronometer is fast on one date and

faster on a later date, the difference divided by the number

of days between the two dates is the rate gaining. If the

Chronometer was slow on one date and fast on a later

date, the rate is a gaining one. If Chronometer was fast

on one date and not so fast on a later date, the rate is a

losing one ; and if the Chronometer was fast on one date

and slow on a later date, the rate is a losing one. Should

you happen to get fogged over this rating business

in the Board of Trade Examination, keep cool, and

do a little simple computation in your head, thus :

say to yourself. If my watch were one minute fast on

Monday, and two minutes fast on Tuesday, what would

its rate be? Obviously one minute a day gaining. Or

if it were one minute slow on Monday and one minute

fast on Tuesday, what would the rate be ? Obviously

two minutes a day gaining. Or if it was two minutes

fast on Monday and one minute fast on Tuesday, what

would its rate be ? Obviously one minute a day losing.

Or if it was one minute slow on Monday and two minutes

slow on Tuesday, what would its rate be? Obviously a

minute a day losing. One of these simple propositions

must be illustrative of any case of finding a rate which

can possibly be presented to you.
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Having explained all the processes of the Longitude

by Sun and Chronometer problena, let us work a few

examples, and not particularly easy ones. In the first

two examples every process is worked out separately

;

subsequently the work is done in the way it should be

done in practice or in the examination room, with the

subsidiary calculations on the left-hand margin of the

paper. In real practice at sea you should not bother

about decimal places, for it is absurd to waste time and

trouble in calculating to great accuracy the results of

observations which are bound to be inaccurate ; but it is

well to accustom yourself to decimals, and in the examin-

ation room accuracy to at least one place of decimals is desir-

able and necessary. But before working the examples, 1

will repeat the elements necessary, and the formula, for

repetition is often useful. The elements you require are :

The correct Green-w-ich Date of your sights (found by

correcting the time shown on your Chronometer) ; the

correct Declination (found by correcting the Declination,

taken out of the Nautical Aknanac, for the time of sights

from Greenwich Noon) ; the True Altitude (found by cor-

recting the Observed Altitude) ; the Latitude (found by

Dead Beckoning) ; the Polar Distance (found from the

Declination) ; the correct Equation of Time (found by

correcting the Equation taken out of the Almanac for the

time of sights from Greenwich Noon).

.The formula is Altitude + Latitude + Polar Distance

= the sum. The sum -^ 2 = the half sum. The half

sum — the Altitude = Eemaiader. Then Log. Sec of

Latitude + Log. Cosec of Polar Distance -f- Log. Cosine

of half sum + Log. Sine of Eemainder gives you the

Log. of the Sun's Hour Angle.

If the Sun is West of the Meridian (afternoon), the

Hour Angle is a "Westerly Angle, and is Apparent Time at
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Ship. If the Sun is East of the Meridian (forenoon), the

Hour Angle is an Easterly Angle, and must be converted

into a Westerly Hour Angle by taking it from 24 hours

and setting the date back a day. To the Westerly Hour

Angle (Apparent Time at Ship) apply the Equation of

Time, and so get Mean Time at Ship. To Mean Time

at Ship apply Mean Time at Greenwich (derived from the

Chronometer), and the Difference is Longitude in Time

West if Greenwich Time is greater than Ship Time,

East if Greenwich Time is less than Ship Time. Turn

time into arc and you have the Longitude. Be sure and

remember that the Equation of Time is always to be

applied to the Sun's Westerly Hour Angle.

In the following examples and throughout this book

problems are worked to the greatest accuracy, up to three

or four places of decimals in the corrections, but please

remember that such accuracy is absurd in practice, and is

not required by the Board of Trade ; it is necessary in order

to avoid confusion in the mind of the student when com-

paring the data in the problem with the Nautical Almanac.

Example I.—On March 18th, 1898, at about 8 h. 10 m.

A.M., inLatitude 37° 20' N and Longitude (D. E.) 178° 50' E,
a Chronometer, showed 8 h. 28 m. 19 s. ; the Chronometer

was 1 m. 27 s. slow on M. T. G. on October 10th, 1897

;

and it was 3 m. IS'Ss. fast on M. T. G. on January 81st,

1898. The Observed Altitude of the Sun's Lower Limb
was 24° 27' 30". Index Error + 1' 80", Height of the Eye
18 feet. Eequired the Longitude by Chronometer.

(a) In order to make sure what date the Chronometer

was showing in this case, it is advisable to find a rough

Greenwich Date by applying the Longitude in Time to

the approximate Ship Time.

Approximate Ship Time March 18th . W' 10"' 0' a.m.

Approximate Ship Time March 17th . 20 10
Longitude in Time . . . . 11 55 20 E
Approximate Greenwich Time March 17th 8 14 40
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The Chronometer was therefore obviously showing

March 17th, 8 h. 28 m. 19 s.

(b) To find the exact Mean Time at Greenwich from

the Time as shown on the Chronometer.

1st. Ascertain the rate from the knowledge you have

that on October 10th, 1897, the Chronometer was 1 m. 27 s.

slow, and on January 31st, 1898, it was 3 m. 15-5 s. fast.

In October . .21 days

,, November . . 30 ,,

„ December . . 31 ,,

,, January . . 31 „

October 10th, 1897, to 1
~

January 31st, 1898 J
"

On October lOtli, 1897, the Chronometer was . 1'° 27" slow

„ January 31st, 1898, „ „ ,, .3 l-5-o fast

The Chronometer gained in the interval of 113 days . 4 42-5

60

282--5 seconds

Therefore 282-5" 4- 113 = Chronometer's Daily Eate

113) 282-5 (2-5

226

565
565

Chronometer's Daily Eate is 2-5 seconds gaining

2nd. Find the amount the Chronometer gained from

January 31st to March 17th, the date of sights.

January 31st to February 28th = 28 days
February 28th to March 17th at Si" = 17^

Total interval = 45
Daily Eate = 2-5

225

90 _
60 ) 112-5

Accumulated Eate = 1" 52-5' gained

3rd. Correct the Chronometer Time.

Chronometer showed . . S"! 28'" 19"

Error on January 31st, 1898 —3 15-5 fast

8 25 3-5

Accumulated Eate . . — 1 5'2-5 gained

JI.T.G. on March 17th . 8 23 1^1

(c) To correct the Sun's Declination and the Equation

of Time. For convenience sake express the Greenwich
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date in hours and decimals of an hour. 8 h. 23 m. is

8'4 hours as nearly as possible, and quite near enough.

Var. in Dec. in one hour
T. of sights from Noon

59-3"

8-4

2372

4744

Var. in E. T. in one hour

498-12

8*T8"12'

Sun's Declination

On 17th . . 1° 13' 14"

Correction . -8' 18"

At Time of Obs. 1° 4' .56'' S At Time of Obs. 8 18-7 + on A. T. S.

P. D. . . 91° 4' 66"

•73"

8-4

292

58^
0-132

Equation of Time
On 17th .

8"' 24-8'

Correction . — 6-1

The Nautical Almanac tells you that the Equation of

Time is to be subtracted from Mean Time or added to

Apparent Time, and as you are dealing with Apparent Time,

the Equation of Time must be added, therefore mark it + .

(d) To correct the Observed Altitude and so find the

True Altitude.
Obs. Alt. Q .

I. E.

Dip 18 ft. . , .

Semi-Diameter

App. Alt. .

Befraction

Parallax .

True Alt. . . .24° 39' 0'^

(e) To calculate the Sun's Hour Angle, that is Apparent

Time at Ship, and thence the Longitude.

Alt. .

Lat. . . . 37° 20' 00" Log. Sec . -099567
P. D. . . 91° 4' 56" Log. Cosec . -000078

24°
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Example II.—On June 22nd, 1898, at about 4 h. 45 m.

p.M.in Latitude 53°-47'N, and Longitude (D.E.) 179° 50'E,

the Chronometer showed 4 h. 41 m. 19 s. The Chrono-

meter was on March 31st, 1898, 10 m. 18 s. slow of M. T. G-.

;

and on June 1st it was 10 m. 49 s. slow of M. T. Gr. ; the Ob-

served Altitude of the Sun's Lower Limb was 28° 32' 0",

Index Error- 1' 40", Height of Bye 29 feet. Eequired

the Longitude by Chronometer.

Hitherto we have used intervals composed of whole

days, but it may be that the interval between dates at

which your Chronometer's error was ascertained would

consist of so many days and so many hours. In such a

case turn the hours into decimals of a day, as is shown in

this example.

(a) To find Approximate Greenwich Date.

Ship Time on 22nd . . . 4''> 45"° 0' p.m.

Longitude in Time . . . . 11 59 20 East

Approximate Greenwich Date 21st 16 45 40

Obviously the Chronometer was showing 4'' 41" 19' a.m. on the 22nd.

(b) To find accurate M. T. G. from Chronometer.

Error on March 31st . 10° 18" slow

June 1st . 10 49 „

Lost in interval . . 31

March 31st to April 30th . 30 days
Chronometershowed 4'. 41" IQ-

April 30th to May Blst . 31 „
^™' °° '^"'^^ 1^'

' tlli.^
^^"^

May 31st to June 1st 1 day 4 52 8

Total Interval . . 62 days
Accumulated Eate

. +^0 lost

^T > o-,. / c J -I i 1 • 4 52 18 A.H.on22nd.
62 ) 31' ( -5 daily rate losing

Greenwich Date on i 1^
June 1st to 21st = 20 days j^j,g .^Isi \ 16 52 18

IT"- . = -7 ofaday

20-7 days

Daily rate ... "5

Accumulated rate . 10'4" lost
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(c) To Correct the Sun's Decimation and the Equation

of Time.

Var. in Dec. in 1 hour 1-1"

T. of sights from Noon 7-1

Tl

J77
Correction . . 7-81

Sun's Dec.

Dec. Noon 22ncl . 23° 26' 56-4"

Correction . .
7'8''

At Time of Obs. . 23° 27'

Pol. Dist. . 66° 32' 56'

Var. in E. T. in 1 hour 543'
7-1

543
3801

Correction .

E. T. Noon 22nd
Correction .

3-8553

' 43-7'

3-9

4" N E. T. at T. of Obs. 1 39-8 + on A. T.

{d) Correct the Observed Altitude and so find True

Altitude.
Obs. Alt. Q . 28° 32' 0"

I.E. .
-1'40"

Dip 29 ft.
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Example III.—On October 19th, a.m. at Ship, in Lati-

tude 50° 12' N, when the Time by a Chronometer was on

October 18th, 20 h. 51 m. 17 s. Correct M.T.G.,the Observed

Altitude of the Sun's Lower Limb was 18° 42' 0", Index

Error + 1' 20", Height of the Eye 14 feet. Eequired the

Longitude by Chronometer.

Subsidiary cal-

culations for cor-

rection of Dec.
and E. T.

54-15"

315

27075
5415

16245

170-5725

2' 50-6"

44'

3-15

1260
1260

1-3860

II. T. G. October 18th 20'' 51" 17'

Dec. on 19th
Correction

Cor. Dec.

.

P. D.

. 10° 5' 50-5" S
2' 50-6"

. 10° 3' 0" S

.100° 3' 00"

Obs. Alt. Q
I. E. .

E. T. 19th . 14°' 59-3-

CoiTection . 1-4

Cor. E. T. . 14 57^9

18° 42' 0"

+ 1' 20"

Dip

© S.-D.

App. Alt.

Bef. .

Par .

Tr. Alt.

. 18° 53' 9"

. 50° 12' 0"

. 100° 3' 0"

2)169° 8' 9"

. 84° 34' 4''

18°
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tember 22nd, 12 h. 30 m. whose error on M. T. G. was
4 m. 19 s. slow, the Observed Altitude of the Sun's Lower
Limb was 25° 28' 20", Index Error + 2' 10", Height of

the Eye 26 feet. Eequired the Longitude by Chronometer.
Subsidiary

calculations

58-45"

12-6

35070
70140

60) 736-470

12' 16-5"

87'
12-6

522
1044

iF962

Chronometer Time 22ncl 12' 30'" 0"

Error of Chronometer slow + 4 19

M. T. G. 22nd . . 12^34^9

Dec. E T
On 22na .

0° 12' 14-8" N On 22nd '. 7"' 21-6'

Correction . ] 2' 16-5" Correction . 11-0

Corr. Dec. . 0° 0' 1-7 S Corr. E. T. 7 32-6

Obs. Alt

I.E.

Alt. .

Lat. .

Pol. Dist.

Sum

i sum

Dip 26 ft.

S.-D. .

App. Alt.

Eef.

Parallax .

Tr. Alt.

25° 39' 38"
49° 28' 0"
89° 59' 58"

2)165° 7' 36"

25°
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required, it is necessary to know how to find the Log.

of an Hour Angle and how to find the Hour Angle

of a Log. which exceed the limits of the Tables.

To find the Log. of an Hour Angle which exceeds the

limits of Table XXXI.—1st, turn Time into Arc ; 2nd,

halve the Arc ; 3rd, take out the Log. Sine of half the

Arc from Table XXV. ; 4th, double this Log. Sine.

The result is the Log. required.

To find the Hour Angle corresponding to a Log. which

exceeds the limits of Table XXXI.—1st, halve the Log.

;

2nd, take out the angle of which this halved Log. is

the Log. Sine from Table XXV. ; 3rd, double the angle

and convert it into time. The result is the Hour Angle

required.

That, I think, is all there is to be said about finding

Latitude and Longitude bj' the ordinary means. At sea

the customary way of fixing your position at Noon is to

take a forenoon sight of the Sun when it is as nearly

as possible on the Prime Vertical. The object of taking

it when East or as nearly East as possible, is that when

the Sun is in that position, a considerable error in Latitude,

amounting to 10', or even more, creates no appreciable

error in Time. Work your a.m. sight vsdth the best Lati-

tude you have, either with a Latitude derived by Dead

Reckoning from the preceding Xoon, or from any reliable

Latitude taken later—the less you have to do with Dead

Reckoning the better, for even in the best regulated

families it is uncertain. Eind your Latitude at Xoon by

Meridian Altitude of the Sun ; ascertain the Difference

of Latitude and Difference of Longitude due to the run

of the ship between a.m. sights and Noon. Apply the

Difference of Latitude backwards to see if the Latitude

used for your a.m. sight was correct. If you find it

incorrect you must either work your Chronometer sight
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over again with the correct Latitude or you must fall back

upon Johnson's or some other Tables ; then bring your

Longitude at a.m. sights up to Noon, by applying the

Difference of Longitude due to the run of the ship, and

with that and the Latitude by Meridian Altitude you

have the ship's position at Noon.

Mr. A. C. Johnson supplies you, in ' How to find the

time at sea in less than a minute,' with a simple method

of ascertaining the error of Longitude due to an error in

Latitude, which saves you all the trouble of working your

A.M. sight over again.

To use Johnson's Tables : find the Sun's Azimuth at

the time of your a.m. sight, by using the Hour Angle,

found from your sight and Burdwood or Davis' Tables as

hereafter described ; or you may find Apparent Time at

Ship from your Chronometer Time, or you may get the

Sun's Bearing by Compass corrected for Compass Error.

Enter Table E with Latitude at the top and True

Azimuth on the side, and take out the corresponding

number, which is the error of Longitude in minutes and

decimals of a minute of arc due to one minute of arc error

in Latitude. Multiply your ascertained error in Latitude

by the number taken out of the Tables, and you have the

error in Longitude.

To know how to apply the error : draw on any bit of

paper a line representing your Parallel of Latitude,

and mark with a dot your approximate position. From
this dot draw a line roughly in the direction of the

Sun's True Bearing, and through the dot draw a line at

right angles to the line of the Sun's Bearing ; this is

called the Line of Position, and the ship must be some-

where on it. You know whether your incorrect Latitude

was too much to the North or too much to the South,

and the figure shows at once whether the correction of
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Longitude is to be applied to the Eastward or to the

AVestward. Thus

:

Fig. 56

Let WE be a Parallel of Latitude, and p the position

of the ship derived from your a.m. sight worked with that

Latitude. Let p s represent the line of the Sun's Bearing.

A B, at right angles to it, is the Line of Position some-

where upon which the Ship must be. Let the lines

c D and F G be Parallels say 10' on either side of we. If

the Latitude used in working your a.m. sight was correct

your ship would be at p. If it was incorrect, and was say 10'

too much to the Northward, the Ship's position must be

at H, and the correction of Longitude obviously is to be

applied to the Westward. If on the contrary the Latitude

was say 10' too much to the Southward, the position of

the Ship must be at k, and the correction of Longitude is

to be applied to the Eastward. Having corrected your

Longitude, then to the corrected Longitude at a.m. sights

apply the Difference of Longitude due to the run of th e Ship,

and you have your Longitude at Noon. Lines of Position
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and a good deal about them will be entered into more

fully later on.

In the Chronometer problem, as given in the Board of

Trade Examination, you will be furnished with a correct

Latitude and with the run of the Ship. All you have to

do is to find the Chronometer rate and Greenwich date,

and the Hour Angle and Longitude, and to bring the

Ship's position up to Noon if an a.m. sight is given, or

back to jSToon if a p.m. sight is given, by applying the

Difference of Longitude due to the run of the Ship.

Here is an example of the work you would have to

do at sea in finding your position by the most ordinary

means at, let us say, Noon on August 19th, 1898, assuming

that on the 18th at Noon the Ship had been found to be

in Lat. 54° 26' N and Long. 30° 14' W.
Here follows a copy of the Ship's log-book from

Noon on August 18th to Noon on August 19th :

H
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D. K. at 8.30 a.m. in order to obtain a Lat. to use in

working out the observation taken at that time to find

the Long. ; and here it is :

To ascertain position of Ship by Dead Reckoning at

8.30 A.M. on August 19th.

First (
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1898, August 19th, a.m. at ship, in Lat. D. E. 56° 4' N,

when the time by Chron. was on the 18th 22 h. 17 m. 30 s.,

whose error on M.T.G. was slow 1 m. 23 s., the Obs. Alt.

was 31° 0' 0", I.E. -1' 15", Height of the Eye 18 feet.

Required the Long.

Dec.

Tar. in 1' 4914"
1-7

34398
4914

60 ) 83-538

1' 23-5"

E. T.

Var. in 1" -57'

1-7

•969

Dec.

Time by Chron. W 17" 30" Augustl9th 12° 41' 46-8" N
1 23 1' 23-5"Error

M.T.G. on 18th 22 18 53 Corr. Deo. 12° 43'

90° 0'

O P. D. . 77° 16' 50"

Obs. Alt. ,

I.E.

Dip .

S. D.

E.-P.

31° C 0"
1' 15"

E. T.

August 19th 3» 25-62'

•97

30° 58' 45"
4' 11"

30° 54' 34"

15' 50"

81° 10' 24"
1' 29"

Corr E. T. . 3 26-59

Tr. Alt. . 31° 8' 55"

Lat.. . 56° 4' 0" Sec .

P. D. . 77° 16' 50" Cosec
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The next operation is to bring the D. E. position of

the ship up to Noon on the 19th, by working a little

Traverse from 8 h. 30 m. a.m.

E b N . N 79° E Distance run from 8" 30" a.m. to Noon is 41-2

Dev.

Var.

. N 79° E
5°E

N84°E
. 22° W

Tr. Course N 62° E

By Traversa Table

N 62° E 41-2' 19-3' N 36-4' E =Diff. Long. 65'

At S"" 30" A.M. Lat. D.E. 56° 4' Long. D.E. 26° 15' 30" W
19'18"K" DUE. Long. 1° 5' 0"E

At Noon

DM. Lat.

Lat. D.R. 56° 23' 18" N Long. D.R. 25° 10' 30" W

Now to find the Lat. by the Mer. Alt. of the Sun.

Here is the problem stated :

1898, August 19th, in Long. D. E. 25° 10' 30" W, the

Obs. Mer. Alt. bearing South was 46° 15' 50", I. E.

-1' 15", Height of Bye 18 feet. Eequired the Lat.

49-14 '
I A.T.S. 19th 0'' 0" 0- Obs. Alt. 46° 15' 50"

1-7

34398
4914

60) 83-538

l'23-5"

Long, in T. 1 40 42 I. E.

A.T.G. 19th 1 40 42

-1' 15" ©Dec.

Dip
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therefore -87 x 8-33 gives the error in Long, due to 8-33'

error of Lat.
8-33'

•87

6831
6664

7-2471'

60

14-8260"

and T 15" is the error iu Long, due to 8-33' error in Lat.

And now which way is the error to be apphed?

Fig. 57 shows that as the Lat. used was to the North-

ward the Long, found was to the Eastward of the true

position, and the error must therefore be allowed to the

^^^estward.

Fig. 57

A is the position found by the Latitude used, and b is

the true position which is to the Westward of A.

Long found with incorrect 1 350 gg, 45., ^y
Lat. at 8'' 10'" a.m. . . J

Correction. . . . '7'15^'W

True Long, at 8" 30'" a.m. . 26° 4' 0" W

The final step is to bring the Long, at 8.30 a.m. up to

Noon by applying the Diff.Long, due to the run of the ship.

Long, at 8' 30'" a.m. 26° 4' 0" W
Difi. Long. . . 1° 5' 0" E
Long, in . . .24° 59'' 0" W

01.- , -4- .TvT ifui, u T^x, I
Lat. 66° 23' 18" N

Ship s position at Noon 19th, by D.K. i
j^^^g 25° lO' 30" W

„ „, I Lat " 56° 15' 0" N
^yO^^-iLong.24 59' 0" W
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You might possibly enter on the Log, if you prided

yourself on the accuracy of your Dead Reckoning, that ' a

current set the ship ten miles North-westerly.'

Now perhaps you might like to know something of the

nature of the problem you have ivorked ; but don't trouble

yourself about the matter unless you feel so ijiclined.

Fig. 58 is supposed to represent half the Globe,

a hemisphere; AAA is the Meridian of an observer at

Greenwich, a c A, a b a, A D a, a e a are other Meridians.

Suppose you are taking the Sun's Time at Greenwich.

When the Sun is on the Meridian A B A it will be 6 o'clock

in the forenoon, when it is on the Meridian a c A it will

be 9 o'clock in the forenoon, when it is on the Meridian

A A A it will be Noon, when it is on the Meridian A d a it

will be 3 o'clock in the afternoon, and when it is on

the Meridian a E A it will be 6 in the afternoon, and so

on round the other side of the sphere, 9 in the after-

noon, midnight, and 3 in the morning. It will be

obvious from this that Time is the angle which the
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Sun makes at the North Pole of the Earth. At 6 a.m. it

makes the angle 'a a b East ; at 9 a.m. it makes the angle

A A c East ; at noon it makes no angle ; at 3 p.m. it makes

the angle A ad West ; at 6 p.m. it makes the Angle A ae
West, and so on and so on.

Solar Time, therefore, is the Polar Angle of the Sun,

and that angle is usually called the Horary, or Hour Angle.

Fig. 59

N

s

Fig. 59 is drawn on the plane of the Horizon.

Let N s be the Meridian of the observer, p being the

elevated Pole (the North Pole in North Latitude), z

the Zenith of the observer ; w q e the Equator ; x the

position of the Sun. Then x d is the True Altitude of

the Sun, found by the sextant, and z x is his Zenith

Distance ; z q is the Latitude. As the angular distance

of the Equator from the Pole is 90°, if you deduct the
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Latitude from 90° you get the Colatitude, p z. Also, as

the Equator is 90° from the Pole, 90° + the Declination

if the Declination is South, or 90° — the Declination if

the Declination is North, gives the Polar Distance of the

Sun p X ; by finding the True Altitude of the Sun and his

Polar Distance, and knowing your Latitude, you know the

three sides p x, p z, z x of the triangle z p x which are

Fig. 59

N

the Polar Distance, Colatitude, and Zenith Distance

respectively. The angle at p = the Angle z p x is the

Sun's Hour Angle Bast, and, deducted from 24 hours it

is Apparent Time at Ship Astronomical Time. The dotted

lines represent the position with the Sun West of the

Meridian. The angle at the Pole z p Y is the Hour Angle

West = Apparent Time at Ship.

If you know the three sides of any spherical triangle
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any of the angles can be found by the following formula :

Log. Cos-=H Log. Oosec f+Log. Cosec b + Log. Sin J ((;+6+(f)+ Log. Siii|t (c-t-i + a)— a)
|

It is worked practically in this fashion :

Write the three sides down one under the other, the

side opposite the required angle last. Add them together.

Divide the sum by 2. From this half-sum deduct the

side opposite the required angle. To the Log. Cosecants

of the two sides containing the required angle add the

Log. Sine of the half-sum, and the Log. Sine of the

difference between the half-sum and the side opposite

the required angle. The sum of these Logs, divided by

2 is the Log. Cosine of half the required angle.

Here is an example :

In the above spherical triangle let a = 79° 18' 20",

b = 95° 14' 40", and c = 111° 27' 30". Find c

a = 79° 18' 20" Log. Cosec -007610

b = 95° 14' 40" Log. Cosec -001822

c = 111° 27' 30"

Sum 286° 0' 30"

i sum 143° 0' 15" Log. Sin . 9-779421

I sum - c 31° 32' 45" Log. Sin 9-718651

2 ) 19-507504

55° 26' 36" = Log. Cos ?- = 9-753752

- = 55° 26' 36"
2 2

c = 110° 53' 12"
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To find B you would deduct b from the half-sum and
take out the Log. Cosecants of a and c.

To find A you would deduct a from the half-sum and
take out the Log. Cosecants of h and c.

The object of remembering this formula is that the

value of any angle in any spherical triangle of which the

three sides are known can be found by it, and it is equally

applicable to several other problems ; but it does not

offer the speediest method of finding the Sun's Hour
Angle, and as speed is an object the formula already given

and worked is generally used.

Should you be required in the Examination Eoom to

draw a figure showing the nature of the problem and how
the Hour Angle is found, draw a figure like No. 59, that

is of course supposing you to be in North Latitude. If the

problem assumes an observer in South Latitude the figure

must be drawn as in fig. 61. For working the problem,

it is really sufficient to show the three sides, namely p x

(the Polar Distance), pz (the Colatitude), and zx (the

Zenith Distance), and to state that the Angle at the Pole

(p) is the Hour Angle required ; but it is better to draw

the whole figure complete, and showing approximately the
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positions and Altitude of the Body observed. You will

not be asked to explain how the working formula you use

to find the Hour Angle is derived ; but if you want to

know you will find it deduced from the rigid formula- at

the end of Vol. II. The plain lines in figs. 59 (represent-

ing North Latitude) and 61 (representing South Latitude)

show an Easterly Polar Angle, the dotted lines a Westerly

Polar Angle. Of course you will be careful in drawing a

figure to make it in conformity with the problems you are

illustrating.

So much for ' Longitude hy Sun and Chronometer.'

The converse of the problem is useful in practice, and will

probably be given you in the Examination Eoom.

VOL. I.
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To find the error of the Chronometer by an Hour

Angle, the Long-itude being- known.

I have shown how to find an unknown quantity—the

Longitude, from a known Greenwich date ; the converse

problem consists of finding an unknown quantity—the

error of the Chronometer, from a known Longitude. It is

likely that in the Examination Room you will be asked

to find your Chronometer's error by an Altitude of the

Sun, the Longitude being given you, and the operation

is one which you may frequently have to perform at

sea.

In the problem we have just done you know your

Latitude and the Greenwich date
; you take the Dechna-

tion and the Equation of Time out of the Almanac;

you calculate Apparent Time at Ship and turn it into

Mean Time, and by comparison with Mean Time at

Greenwich, ascertained frona your Chronometer, you find

your Longitude in Time, and thence your Longitude in

Arc. In the problem under consideration you know your

Latitude and Longitude, you take Declination and Equa-

tion of Time out of the Almanac, you calculate Apparent

Time at Ship, turn it into Mean Time at Ship, apply the

knovpn Longitude in Time to it, deducting if you are East

of Greenwich, adding it if you are West of Greenwich,

and so you get Mean Time at Greenwich. The difference, if

any, between Mean Tune at Greenwich so found and Mean

Time at Greenwich as shown by your Chronometer is the

error of the Chronometer.

The problem will probably be given you in this

shape : you will be told that a rock, island, lighthouse or

whatever it may be, in Latitude so and so, and Longitude

so and so, bore in such and such a direction from you
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SO many miles distant. The first step is to fix the

Latitude and Longitude of the ship.

Turn the Bearing into degrees if it is given you in

points, reverse it and call it a Course. Then enter

Traverse Table II. vi'ith the Course and Distance and take

out the Difference of Latitude and Departure appropriate

to them. Next w^ith the Latitude as a Coiirse, and the

Departure in the Difference of Latitude column, find the

Difference of Longitude in the Distance column. Finally

apply the Difference of Latitude to the given Latitude,

and the Difference of Longitude to the given Longitude,

and you have the Latitude and Longitude of the ship.

This you have already learned how to do, in the ' Sailings
'

and ' Day's Work.'

Then take out the Declination and Equation of Time

from the Almanac, and correct them for the Greenwich

date. From the Declination find the Polar Distance.

From the Observed Altitude of the Sun find the True

Altitude. Find the Sun's Hour Angle—Apparent Time at

Ship—in the same way as in the Sun Chronometer Longi-

tude problem, namely. Altitude, Latitude, Polar Distance;

Sum, Half Sum, Remainder ; Secant, Cosecant, Cosine,

Sine. To Apparent Time at Ship apply Equation of Time,

and so get Mean Time at Ship. Turn your Longitude

into Time and apply it to Mean Time at Ship, adding it if

you are in West Longitude, deducting it if you are in

East Longitude, and you have Mean Time at Greenwich.

Compare that date with the time shown by your Chrono-

meter, and you have the error of the Chronometer.

Here is an example :

On December 2nd, 1898, at about 7.20 a.m.. Cape Horn

Bearing N 20° E (true), distant .5 miles, when a Chrono-

meter showed h. 12 m. 18 s., the Observed Altitude of

the Sun's Lower Limb was 29° 16' 0", Index Error

Y 2
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-1' 40", Height of Eye 32 feet,

the Chronometer on M. T. G.

Required the Error of

Bearing reversed S 20° W 5 miles

;

1-7. Dep. 1-7 in Lat. 56° = Diff. Long

Lat. Cape Horn 55° 59' S
Diff. Lat. . .

4' 42" S

Lat. in

Dec.

Var. in. 1" = 22"
2

Ti
!•:. T.

Var. in l' = 1"

•2

. 56° 3' 42" S

I
A. T. S. 1st 19'' 20" 0»

Long, in Time 4 29 16

i

A. T. G. 1st 23 49 16

Obs. Alt. fl 29° 16' 0"

, L E. . . - 1' 40"

29° 1

Dip 32 ft.

© S.-D.

App. Alt

Eef. .

Par. .

True Alt . 29° 23' 31"

20° and 5 miles = Diff. Lat. 4-7 Dep.
.
3'

Long. Cape Horn 67° 16' W
Diff. Long. . . 3'

Long, in . . 67° 19' W
© Dec. E. T.

Dec. 2nd 22° 0' 57-4" E. T. 2nd lO- 21-0'

Corr. 4-4" Corr. -2

Corr.Deo. 22° 0' 53" S Corr. E. T. 10 21-2

P. D. . . 67° 59' 7"^

29°
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CHAPTEE XIV

OBSERVATIONS USED FOR MAKING COMPASS

CORRECTION

Unless you desire to pile your ship up on a rock or sand-

bank on the first favourable opportunity, you will not

neglect any chance of ascertaining the Deviation of your

Compass at sea bymeans of Amplitudes andAzimuths. The

principle is the same in both cases. You take the Bearing

of the Sun or some other Heavenly Body by Compass and

note the direction of the ship's head—that is the Course

you are steering, and you find by calculation the true

Bearing of the Heavenly Body. By applying the Varia-

tion—which you will find on the chart, to the True Bearing,

you get the Body's Correct Magnetic Bearing. The

difference between the Correct Magnetic Bearing and the

Compass Bearing is the Deviation of the Compass on the

Course the ship is steering. Or put it this way : the dif-

ference between True Bearing and Bearing by Compass is

the Error of the Compass ; the error is composed of

Variation and Deviation ; allow for Variation, and the

balance is Deviation.

To name the Deviation. If Correct Magnetic is to

the right of Compass the Deviation is Easterly; if Correct

Magnetic is to the left of Compass the Deviation is

Westerly.
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Amplitude

(A Second Mate must find the True Amplitude of the

Sun, and being given the Variation, deduce the Compass

Error and the Deviation.)

An Amplitude is the angle at the Zenith, or what is

the same thing, the angular distance on the Horizon

betv^een a Body when rising or setting, and the Prime

Vertical Great Circle ; in other words between the Body

and the true East or West points.

Fig. 62

To find the True Bearing of the Sun when rising or

setting, use the following formula : Log. Secant Lati-

tude + Log. Sine Declination=Log. Sine of the True

AmpHtude or True Bearing of the Sun from the East or

West point. Of course the Amplitude is measured from

the East point if the Sun is rising and from the West
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point if it is setting, and it is named towards the North if

the Declination is North, and towards the South if the

Declination is South. Fig. 62 shows the principle

involved.

This figure is projected on the plane of the Horizon,

z is the Zenith, p the Pole, N b s w the Horizon. © is

the position of the Sun at rising. Consider the triangle

p z © . z © is 90°, p © is the Sun's P. D., and p z is the

Colatitude. These three sides are known, and we have

to find the angle p z , which is the Sun's Bearing from

the North.

Theoretically Amplitudes of the Stars and Moon are

quite possible—their True Bearing when rising or setting

can be easily calculated ; but as it is practically impossible

to get their Compass Bearing when on the Horizon, find-

ing your Compass Correction by means of an Airiplitude

is confined to the Sun. Here are some examples :

1898, March 20th, at about 6 a.m., A. T. S. in Lat.

50° 28' N, Long. 44° 20' W, the Sun rose, Bearing by

Compass E b N, the Variation being 11° W ; required

the Compass Error and the Deviation for the position of

the Ship's Head.

Dec.

Var. in 1" = 59"
Time from Noon 3

60 ) 177

Corr. 2' 57"

A.T. S.19tli 18" O"' 0" Dec. Noon 20th 0° 1'. 57" S
Long, in Time 2 57 20W Corr . .

0° 2' 57"

A. T. G. 19th 20'> 57'° 20' Dec. at Sight . 0° 4' 54" (say 0° 5')

Lat. 50° 28' N Log. Sec -196183

Dec. 0° 5' S Log. Sin 7-162696

0° 8' = Tr. Amp. Log. Sin 7-358879

Tr. Amp. . . E 0° 8' S
Comp. Bearing E 11° 15' N

Error of Comp. 11° 23' E
Var. . . 11° 0' W
Dev. . . 22° 23' E
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1898, July 16th, at about 5.10 p.m., A. T. S. in Lat.

29° 18' S, and Long. 118° B, the Sun set. Bearing by

Compass NW b N, the Variation being 21° E ; required

the Error of the Compass, and the Deviation for the

position of the Ship's Head.

Dec. Var. in V = 25"
Timefrom Noon = 3
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The problem may be presented to you with the date in

civil time A. T. S., as in the preceding examples, in which

case Longitude in Time must be applied in order to get a

Greenwich date wherewith to correct Declination ; or the

Time by Chronometer may be given, in which case the

Chronometer Time corrected for Error is, of course, the

Greenwich Date. Here is the last example given with

Chronometer Time :

Var. Deo. in V' 58-2"

Time from Noon 5-38

4656
1746

2910

60 ) 313-116

5' 13-1"

Chron. T. 1st SI- 21" 10" ©Dec. 1st Noon 3° 18' 8-1" S

Error . . 1 22 Corr. . . 5' 13-1"

M. T. G. 1st 5 22 32 © Dec. at Sights 3° 23' 21-2" S
= 5-38 hours.

Lat. 47° 10' 0" Log. Sec 10-167575

Dec. 3° 23' 21" Log. Sin 8-771717

Tr. Amp. Log. Sin 8-939292 = 4° 59' 10"

Tr. Amp. . E 4° 59' 10" S

Comp. Bearing E 16° 52' 30" S

Comp. Error .
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b}' calculation based either on its Altitude or upon its

Polar Angle. The first method is called an Altitude

Azimuth, the second a Time Azimuth.

Let us tackle Altitude Azimuths first, and take the case

of the Sun. Find the Sun's True Altitude by observation,

take out the corrected Declination, and use the best Lati-

tude available.

The formula is very similar to that used in finding the

Sun's Hour Angle. Add together Altitude, Latitude, and

Polar Distance ; divide the sum by 2 for the half-sum

;

take the difference between the half-sum and the Polar

Distance, and call it the remainder.

Then add together Log. Secant of the Altitude, Log.

Secant of the Latitude, Log. Cosine of the half-sum, and

Log. Cosine of the remainder, leaving one 10 in the

Index ; the result divided bj' 2 is the Log. Sine of half

the Azimuth. Take out this angle, multiply it by 2, and

you have the Azimuth. In the Longitude Chronometer

problem you took the Altitude from the half-sum to get

the remainder ; in the Altitude Azimuth problem you find

the remainder by taking the difference between the half-

sum and the Polar Distance. In the former problem it

was Secant, Cosecant, Cosine, Sine ; in the latter problem

it is Secant, Secant, Cosine, Cosine ; the difference be-

tween the two formulas is not great.

To name the Azimuth. Name it from South if in

Xorth Latitude, and from North if in South Latitude,

towards the East if the Sun is rising, towards the West

if the Sun is falling.

Prom the Azimuth or True Bearing of the Sun so found,

get the Correct Magnetic Bearing by applying the Varia-

tion as given on the chart, and the difference between the

Correct Magnetic Bearing and the Sun's Bearing by
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Compass is the Deviation ; or, as explained in the case of

an Amplitude, find the Error of the Compass and thence

the Deviation by applying the Variation.

Do not be confused if the Sun's Azimuth is more

than 90° East or West of North or South. For instance,

if the Sun bore by Compass North 80° East, its True

Bearing might very well be North 110° East. All

j^ou have to do is to take the difference between the

Bearings, which is the Error of the Compass. The Error

is, as you know, the sum or difference of the Variation

and Deviation. Neither need you be alarmed if, in the

Examination Eoom, you find an enormous Compass Error,

for you may be given a problem involving an amount of

Deviation exceeding anything likely to exist on any

decently conducted Compass.

And do not be disturbed in your mind if the Compass

Bearing is from North and the True Bearing is from

South, or vice versa. Either convert the True Bearing

to suit the Compass Bearing, or convert the Compass

Bearing to suit the True Bearing, whichever is most

convenient, so that both shall be from either North or

South. Eor instance, if the Sun bore by Compass North

80° East, and its True Bearing was South 110° Bast, either

take North 80° East from 180° and call the Compass

Bearing South 100° East, in which case the difference is

10° ; or take the True Bearing South 110° East from 180°,

and call it North 70° East, in which case the difference is

of course also 10°.

If the Sun is at all near the Meridian, and the Devia-

tion is large, it frequently happens that when the Compass

Bearing is towards the East, the True Bearing is towards

the West, or vice versa. In this case the sum of the two

Bearings is the Error of the Compass. Eor instance.



332 OBSERVATIONS USED EOR

suppose the Compass Bearing is South 10° Bast, and the

True Bearing South 2° West, 12° will be the Error of

the Compass.

The only other thing to do is to name the Deviation.

If the Correct Magnetic Bearing is to the right of the

Compass Bearing, the Deviation is Easterly ; if it is to

the left, it is Westerly.

Don't forget that in Azimuths and Amplitudes and in

all problems involving ascertaining Compass Error, in

ascertaining whether True or Correct Magnetic Bearing is

to the right or left of the Bearing by Compass, you must

consider yourself to be looking from the centre of the

Compass out towards the circumference.

To explain the process which has taken place, the

diagram employed to illustrate the method of finding

Longitude by Sun Chronometer will be useful. Here it

is reproduced.

In the Longitude problem we had to find the

unknown angle z p x, which is the Hour Angle, from the

three known sides p x, z x, p z, that is to say from the

Polar Distance, the Zenith Distance, and the Colatitude.

In the present case of an Altitude Azimuth, the problem

is to find the unknown angle p z x, which is the Azimuth,

from the three same known sides.

In both cases the rigorous method of solution and

formula are the same. The difference in the formula

recommended for practical working is due to the fact that

in finding an Hour Angle the Polar Distance and Colati-

tude form the two enclosing sides, whereas in finding an

Azimuth the Zenith Distance and Colatitude form the

two enclosing sides. Should you be required in the

examination to illustrate the Alt. Azimuth problem by a

figure, draw one precisely similar to the figures illustrating

the Sun and Chronometer problem on p. 318, remem-
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bering of course that in the Longitude problem you

require to find the angle at the Pole (the Hour Angle),

whereas in the Alt. Azimuth problem you require to find

the Angle at the Zenith (the Azimuth).

The True Bearing or Azimuth of a fixed Star or

Planet or of the Moon is found in precisely the same way

as that of the Sun, and is equally useful for ascertaining

Compass Error and Deviation. They will be discussed

later on.

So much for working out an Altitude Azimuth of the

Sun. Here are some examples :

1898, January 15th, at about 9.10 a.m., in Lat.

40° 20' N, and Long. 121° 24' B, Obs. Alt. Q16° 46' 0",

I. E. — 1' 40", Height of the Bye 16 ft., when the Sun bore

by Compass S 40° E, Variation 22° E ; required the Error
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of the Compass, and the Deviation for the position of the

Ship's Head.

Dec.Var.ini'' = 27"

Time fromNoon = 13-1

27

81

27

60 ) 353-7

5' 54"

Ship Time 14th . 21'' 10™ 0' © Dec. 21° 15' 1" S
Long, in Time . 8 5 36 Corr. 5' 54"

GreenwichDatel4thl3'' 4'° 24" Corr. Dec. 21° 9' 7" S

P. D. 111° 9' 7"

Obs. Alt. 16° 46' 0"

I. E.

Dip

S.-D. .

Eef. .

Parallax

Tr. Alt.

Lat. .

P. D. .

1' 40"

16° 44' 20"

3' 56"

16° 40' 24"

16' 17"

16° 56' 41"

3' 5"

16° 53' 36"

16° 53' 44" Sec
40° 20' 0" Sec

111° 9' 7"

•019162

•117879

Sum . 2 ) 168° 22' 51

iSum 84° 11' 26" Cos 9-005268

Eemainder. 26° 57' 41" Cos 9-950030

2 ) 19-092339

20° 35' 30" = i Azimuth Sin 9-546169

1 Azimuth
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Var. 11° W; required the Error of the Compass, and

the Deviation for the position of the Ship's Head.

Dec. Var. in 1" = 41-8"

TimefromNoon= 8

Ship Time 6th . 5''20"'0" Deo. . 16° 37' 16-4' N
Long, in Time . 2 37 OW Corr. . 5' 34-4"

) 334-4

5' 34-4"
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the Var. 25° W ; required the Error of the Compass, and

the DeYiation for the position of the Ship's Head.

Deo. Var. in I'' = 58-3"

Time from Noon = -4
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Time Azimuth

(A Second Mate is required to be able to take out the

True Azimuth of the Sun from the Time Azimuth

Tables.)

A Time Azimuth consists of taking the Compass Bear-

ing of a Heavenly Body, and noting the Apparent Time

at Ship. You then find the True Bearing of the body at

that time, and from the True Bearing and Compass Bear-

ing you find the Deviation as in an Altitude Azimuth.

The Azimuth of any body at any time can be found by

calculation. It can also be taken out from various tables

compiled for the purpose, and as the method by calcula-

tion is long and the method by tables is short, and suffi-

ciently accurate, the latter is alv^ays adopted both in

practical sea-w^ork and for the Board of Trade Examina-

tion. In case any reader is curious on the subject, the

calculation formula is mentioned later on. Let us use

the tables to start with, and begin vs^ith the Sun.

To find the Deviation of your Compass by a Time

Azimuth of the Sun.—Note the time shown on your

Chronometer when you take the Sun's Bearing by

Compass, correct it for the Chronometer Error, turn the

Greenwich Mean Time so found into Apparent Time at

Greenwich by applying the Equation of Time, and convert

Apparent Time at Greenwich into Apparent Time at Ship

by applying the Longitude in Time. Or get your Apparent

Time at Ship by finding the Sun's Hour Angle, which is

Apparent Time at Ship, by the method already described

in the Longitude by Chronometer problem.

To find the Sun's Azimuth.—If your Latitude lies

within 30° and 60° North or within 30° and 60° South, use

Burdwood's Tables. Eind the Sim's Declination for the

Greenwich date corresponding to Apparent Time at Ship.

VOL, I. z
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If Latitude and Declination are both North or both

South, use the pages of the tables marked ' Declina-

tion—same name as—Latitude.' If your Latitude and

Declination are one North and the other South, use the

pages marked ' Declination— contrary name to—Latitude.'

Find the page containing your Latitude to the nearest

degree. Enter the table with your Declination to the

nearest degree at the top, and your Apparent Time at Ship

A.M. or P.M., to the nearest minute, at the side, and take

out the Sun's Azimuth in degrees and minutes. At the

bottom of the page you will find directions how to name

the Azimuth, whether from north to east or north to

west, or south to east or south to west. If the Azimuth

is over 90° take it from 180°, changing the sign from north

to south or from south to north as the case may be, and

you have the Sun's True Azimuth or Bearing. Compare

this with the Bearing by Compass and you have the Error

of the Compass ; to this apply the Variation, and you

have the Deviation of the Compass.

If your position lies between Latitude 30° North and

Latitude 30° South, use Davis' Tables, which are con-

structed on the same plan as Burdwood.

In both Burdwood's and Davis' Tables, Latitude and

Declination are given in degrees only, and a.m. and p.m.

time is given for every hour and every four minutes. If

your Latitude lies between two Latitudes in the tables, or

if your Declination lies between two Declinations given,

or your time does not exactly correspond with the hour

and minute in the tables, you must roughly average the

Azimuth. For instance, your Latitude may be 50° 30', in

which case you should average the Azimuth for Latitudes

50° and 51°. Or your Declination may be 18° 40', in

which case you should average the Azimuth for De-

clination 18° and 19°. Or your time may be 8 hours
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37 minutes, while the neareist time in the table is 8 hours

36 minutes, in which case you should average the Azimuth

for 8 hours 36 minutes and 8 hours 40 minutes. The

difference in Azimuth due to any part of a degree or to

any minute of time is but small, and the averaging can be

done quite roughly and approximately enough in your head.

If your Latitude is higher than 60° North or 60° South

you must have recourse to Towson's, Johnson's, or some

other similar tables.

So much for the Sun, but before leaving him I may
mention that the Sun's Azimuth is useful for many pur-

poses besides ascertaining Compass Error, and a learner

would do well to familiarise himself with the tables by

finding the Sun's Azimuth whenever he finds its Hour

Angle. Here are some examples of Time Azimuths of

the Sun :

1. Feb. 10th, 1898, in Lat. 51° 15' N, Long. 48° 30' W,
when a Chronometer showed 9th, 23 h. 54 m. 10 s. whose
error on M. T. G. was 5 m. 50 s. slow, the Sun bore by

Compass S 30° B, Var. 25° W; required the Error of

the Compass, and the Deviation for the position of the

Ship's Head by Time Azimuth.

Chron. 9th .
23i" 54" 10" E. of T. 14'" 26' - on M. T.

Error . . 5 50 Dec. 14° 14' 31-5" S

11. T. G. 9th 24'> 0»' 0-

M. T. G. 10th
E. T. . . - 14 26
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2. June 18th, 1898, in Lat. 31° 20' S, Long. 162° 10' E,

Time by Chronometer 17th 15 h. 31 m. 50 s., whose error

on M. T. G. was 2 m. 18 s. slow, the Smi bore by Compass

NW b N, Var. 21° E ; required the Error of the Compass,

and the Dev. for the position of the Ship's Head by

Time Azimuth.

Deo. Var. in l'' = 3"

Time from Noon = 8-4

25-2

E. T. Var. in l"" = -55'

8-4

440

^620

Dec. on 18th 23° 25' 25"

25

Corr. Deo. .
23° 25' X

E. T. 18th. 0"" 51-3'

4-6

Chronom. 17th 15" 31" 50'

Error . . + 2 18

Corr. E. T. O" 46-7' - on M.T.

M. T. G. 17th
E. T. .
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By Davis

Lat. 15° 48' N, Dec. 10° 52' S, and 9" 32" a.m. gives the True Azimuth as

N 123° 20' E = S 56° 40' E.

True Azimuth . S 56° 40' E
Comp. Azimuth S 41° ' E
Comp. Error . 15° 40' W
Var. . . 19° 30 ' W
Dev. . . 8° 50' E

Time Azimuths of Stars, Planets and the Moon may
sometimes be taken out from Burdwood's and Davis'

Tables. But as in these tables Declination is not given

above 23°, other tables must be used v?hen the Declination

of the Heavenly Body observed exceeds 23°.

In finding the Azimuth of a Heavenly Body other

than the Sun by Burdwood's or Davis' Tables, you must

get rid of the idea of a.m. and p.m. time. Remember that

in the case of the Sun p.m. time is merely the Hour Angle

west and a.m. the Hour Angle east.

In the case of a Star.—Take out the Star's Declination

from the Nautical Almanac and find its Hour Angle west

in the usual way. If the Star's Westerly Hour Angle does

not exceed twelve hours, enter the table with your Latitude,

and the Star's Declination, and its Hour Angle as p.m. time,

and take out the Azimuth. If the Star's Westerly Hour

Angle exceeds 12 hours, deduct 12 hours from it, and look

for the balance as a.m. time in the table. Burdwood's and

Davis' Tables would have been simpler if astronomical

time had been used instead of civil time, and time had

run from to 24 hours. As it is, a.m. time + 12 hours is

the Sun's Westerly Hour Angle, and consequently a star's

Westerly Hour Angle— 12 hours is the same thing as a.m.

time as far as Burdwood's and Davis' Tables are concerned.

If the star's or other Heavenly Body's Declination ex-

ceeds 23°, use Johnson's or Towson's Tables. Johnson's

Tables are contained in a small book entitled ' The Bearings
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of the Principal Bright Stars,' which will be found very

useful for practical work. A good explanation of the

method of using the tables is contained in the book, and

therefore no further explanation is necessary here. But

as Johnson's Tables are not, I believe, permitted in the

Board of Trade Examination, a learner must familiarise

himself with Towson's Tables, which are permitted. The

advantage of Towson's Tables is that the Azimuth of all

Navigational Heavenly Bodies, Sun included, can be found

by them. Their disadvantage lies in the fact that they

are somewhat complicated. A very full explanation of

their use is given in ' Towson's Tables ' which cannot, I

think, be condensed or simplified. As the use of the tables

minus the explanation of them is alone permitted in the

Examination Room, the aspirant for a Master's Certificate

must commit to memory and should thoroughly under-

stand the various ways in which the tables are used for

finding the Azimuth of the Sun, Stars, Planets, and the

Moon.

(A First Mate is required to find the True Azimuth of

a Star by the Time xlzimuth Tables.)

I promised the formula whereby the Time Azimuth of

any Heavenly Body maj' be calculated. Here it is. Use

the same figui-e that has been given to illustrate how to

find an Hour Angle, or an Altitude Azimuth. To avoid the

trouble of turning back it is reproduced on the next page.

In the case of an Hour Angle, the problem was to find

the unknown angle z p x, having the three sides p z,

p X, z X, given ; in the case under consideration the

problem is to find the unknown angle p z x—which is the

Azimuth, the angle z p x and the two sides including that

angle, namely p z, p x, being known.

To avoid any possible ambiguity the best plan

is to find the opposite side z x first. This is done
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as follows : We have got tvs^o sides, p x, vz, and the in-

cluded angle z p s. To the Log. of the angle z p x add the

Log. Sines of the two sides p x, p z. The sum is the Log.

of auxiliary angle 6 (theta) which take out. Find the

difference of the two sides p x, p z. To the natural Versine

of this difference add the natural Versine 0. The result

Fig. 64

is the natural Versine of z x, the Zenith Distance. The

problem presents itself thus :

h in H

z p X Log. . — — —

P X

P z
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require to find the
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CHAPTEE XV

REDUCTION TO THE MERIDIAN

It may frequently happen that though the Sun is obscured

at Noon, and consequently a Meridian Altitude is unattain-

able, it is visible shortly before or after Noon. In such a

case Latitude can be obtained by an Ex-Meridian, that

is to say, by an Altitude taken before or after the Sun is

on the Meridian. This problem is usually called ' a Ee-

duction to the Meridian.' The term ' reduction,' is

classically correct, but remember that it is not used in the

customary sense of implying making the Altitude less.

On the contrary, the reduction always makes the Altitude

greater, for obviously if the Altitude is taken before Noon it

will be less than the Altitude to which the Sun will attain

at Noon, and if it be taken after Noon it is less than the

altitude to which the Sun had attained at Noon.

The problem consists simply in finding the exact

interval of time elapsing between Noon and the moment

the Altitude was obtained—in other words, in finding the

' Time from Noon ' and in adding to the angle of the

true Altitude derived from the observation an angle

depending on the time from Noon. The angle to be

added is calculated ; the diagram which follows presently

will explain the theory, but no one need bother about

the theory unless he is theoretically inclined.

The method of finding the reduction is as follows :

(1) Find the ' Tiviefrom Noon.'— ' Time from Noon ' is

of course the Sun's Polar Angle. To obtain this, note the
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time of taking the Altitude by Chronometer and correct it

for error. This gives the Greenwich date (M. T. G.) of the

sight ; to this apply your Dead Reckoning Longitude in

time, thus obtaining Mean Time at Ship ; take out the

Equation of Time from the Nautical Almanac for the

Greenwich date, and appi)' it, with the sign given in

the Nautical Almanac, and you have Apparent Time at

Ship, or ' Time from Noon.'

(2) Find the Sun's Declination.—Take the Declina-

tion out of the Nautical Almanac and correct it for the

Greenwich date of your sight.

(3) Find the Approximate Meridian Zenith Distance.—
Use your Dead Reckoning Latitude, and if Latitude and

Declination are of the same name take their difference, if

of different names take their Sum ; the result is the

Meridian Zenith Distance.

Then use the following formula :

Log. H. A. (Time from Noon) + Log. Cosine of the

Latitude + Log. Cosine of the Declination + Log. Co-

secant of the Meridian Zenith Distance = Log. Sine of

half the Reduction.

The sum presents itself thus :

Time from Noon Log.
Lat. . . . Log. Cos .

Dee. . . . Log. Cos .

Mer. Z. D. . . Log. Cosec
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take the sum from 90° for the Zenith Distance, and to

the Zenith Distance add the DecHnation if Latitude and

Dechnation are of the same name, or take the difference

between the Zenith Distance and the Declination if Lati-

tude and Dechnation are of opposite names.

The small arc of half the Eeduction will be found in

the first few pages of Table XXV. headed ' Log. Sine

to Seconds of Arc'

The nearer to Noon that j'our observation is taken the

better ; and there is a limit in time from Noon beyond

which fairly accurate results cannot be obtained. This limit

varies according to your Latitude. In high Latitudes good

results can be obtained from sights taken 30 or 40 minutes

before or after Noon. In low Latitudes the time from

Noon should not be more than 5 or 10 minutes. The

rule is that minutes of elapsing time should not exceed

in number the degrees of Zenith Distance.

When the Time from Noon and the Altitude are

both large, another correction called the second Bediiction

must be applied. You are not required to use the second

Eeduction in the Examination for a Master's Certificate,

but you must use it for an Extra Master's Ticket, and, as

it is quite simple, it maj' as well be explained here and

now. The second Eeduction is, unlike the first, always

subtractive from the Altitude. It is found by the follow-

ing process. Add together twice Log. Sin of first Eeduc-

tion, Log. Tan of Meridian Altitude corrected for first

Eeduction, and 9-6990 (a constant Log.)

The sum of these Logs, (neglecting tens in the Index)

is the Log. Sine of the second Eeduction.

Here are some examples worked of a ' Eeduction to

the Meridian ' in the shape in which the problem will

present itself to your admiring eyes in the Examination

Eoom, when a candidate for a Eirst Mate's Certificate :
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Example I.—March 19th, 1898, a.m. at Ship, Lat. D.E.

38° 38' N, Long. 47° 28' W, a Chronometer showed on the

19th 2 h. 57 m. 30 s.. Chronometer slow 1 m. 19 s. on

M.T.G., Obs. Alt. Sun's L.L. 50° 50' 50", Bearing South,

Height of Eye 14 feet. Eequired the Latitude by Ex-

Meridian.

Dec. Var. in l" 59-28"

T. from Noon 3
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true 24 miles, Obs. Alt. Sun's L. L. 60° 53' 30", Bearing

South, I. B. - 1' 10", Height of Eye 21 feet. Eequired

the Latitude by Ex-Meridian. Let us work this to a

second Eeduction.

Run
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In No. 1 Problem Chronometer Time is used, and the

Sun's Polar Angle or Time from Noon derived from it.

In No. 2 Problem the time is taken by a watch whose

error on Apparent Time at Ship was determined probably

when the morning sights were taken. But if you change

your Longitude you change your time ; for instance, if

you set your watch to London time and then go to New
York without altering your watch, you would find it to

be nearly 5 hours fast of New York time. But if you

went to St. Petersburg instead it would be 2 hours slow,

and the reason for this is that for every 15° of Longitude

you go to the Westward you lose an hour in your time,

and for every 15° of Longitude you go to the Eastward

you gain an hour, and so on. Now in Problem No. 2

your ship has sailed N 66° W 24 miles, and by doing so

has altered her Longitude 34' to the Westward, and 34'

of Longitude equals 2 m. 16 s. of Time that you have

lost. Hence these 2 m. 16 s. must be subtracted from

your time by watch. If your run had been to the

Eastward the Diff. Long, in Time would have had to be

added.

An Ex-Meridian is an extremely useful problem, and

that it is a simple one must be admitted ; moreover the

second Eeduction need not be found unless the Time from

Noon is very large or the Sun passes the Meridian very

near the Zenith. A good rough rule is that the number

of minutes of time from Noon should never exceed the

number of degrees in the Zenith Distance. For instance,

if the Meridian Altitude of the Sun is 50°, the Zenith

Distance is of course 40°, and the time from Noon should

not exceed 40 minutes.

There is, however, a rigorous method of working

these problems by right-angled spherical trigonometry
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which gives very accurate results, and here it is in case

you care to know it

:

O Polar Angle Log. Cos . Log. Sin .

Polar Distance Log. Tan . Log. Sin .

Arc I. Log. Tan . — Arc II. Log. Sin . — — —
Arc IL Log. Sec . — — —
Zenith Distance Log. Cos .

Arc III. Log. Cos . — — —
Colatitude = Arc I. — III.

The only thing to remember is that if the Polar

Distance of the Sun exceeds 90°, Arc I. must be subtracted

from 180°.

Ex-Meridians of Fixed Stars, Planets, or the Moon are

worked in precisely the same way as Ex-Meridians of the

Sun, except that, of course, you have nothing to do with

Noon. You have to find the time the Star, Planet, or

Moon is off the Meridian and then discover the Eeduction

to be added to the Altitude. These problems will be

explained later on. An Ex-Meridian below the Pole is

worked much in the same way as above the Pole ; but,

as the Sun is practically excluded from problems of that

nature, the method of working will be explained later.

Latitude by Meridian Altitude of Star

(A First Mate is required to find Latitude by a Mer.

Alt. of a Star.)

Latitude by Meridian Altitude of a Star properly

belongs to ' Stellar Navigation,' treated of in a later

chapter ; but the problem is so extremely simple, that I

also give it here. A Meridian Altitude of a Star is worked

precisely in the same way as a Meridian Altitude of the

Sun, with the exception that the Star is so far off that
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Observed Altitude requires no correction for Semi-Dia-

meter or Parallax. Here is an example :

1898, Jan. 21st, the Obs. Mer. Alt. of the Star Sirius,

South of Observer, was 23° 18' 20", I. E. -i-
1' 10", Height

of Eye 17 feet. Required the Latitude.

Obs. Mer. Alt.

I.E.
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Lat. by Meridian Alt. of the Sun.—Find True Alt.

from Obs. Alt. and find Corr. Dec.

90° - True Alt. = Z. D., N if Sun is S of you, S if Sun

is N of you. The sum of Z. D. and Dec. is the Lat. if Z. D.

and Dec. are of the same name. The difference between

Z. D. and Dec. is the Lat. if Z. D. and Dec. are of

different names, and Lat. is of the name of the greater

of the two.

Amplitude. To find the True Amplitude of the Sun,

and thence the error of the Compass and the Deviation.^

Find A. T. G. and Sun's Corr. Dec. To Sec. Lat. add Sin.

Dec. ; the result is Sin. of True Amplitude.

Name the Amplitude, E if a.m.,W if p.m., and towards

N if Dec. is N, or towards S if Dec. is S.

The error of the Compass is the difference between the .

True Amplitude and the Sun's Bearing by Compass.

The Dev. of the Compass is the error with Var. elimi-

nated.

Longitude by Sun and Chronometer.—Find M. T. G.

(Chron. corrected), Corr. Dec. and Corr. E. T.

To find the Sun's Hour Angle. Alt. + Lat. +
P. D. = Sum. Sum -^ 2 = i Sum. i Sum - Alt. = Ee-

mainder.

Add together Sec Lat., Cosec P. D., Cos | Sum, Sin

Eemainder ; the result is the Log. of the H. A. and the

Hour Angle is A. T. S.

A. T. S. + or - E. T. is M. T. S. Difference between

M. T. S. and M. T. G. is Longitude.

AUittide Azimuth of the Sun. To find the Sun's True

Azimuth and thence the error of and Deviation of the

Compass.—mnA Corr. M. T. G. Dec. and E. T.

Alt. + Lat. + P. D. = Sum. Sum -^ 2 = a Sum.

Difference between \ Sum and P. D. = Eemainder.

Add together Sec Alt., Sec Lat., Cos ^ Sum, Cos

VOL. I. A A
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Eemainder ; the result is Sin of half the True Azimuth.

Multiply by 2 and you have the True Azimuth.

Name the Azimuth from N in Lat. S, from S in Lat.

N, towards E if a.m., towards W if p.m.

The error of the Compass is the difference between the

True Azimuth and the Sun's Bearing by Compass. The

Dev. is the error with Var. eliminated.

Beduction to the Meridian.—'Find Corr. Dec. and E. T.

Eind A. T. S., that is time from Noon of your observation.

Find estimated Mer. Z. D.

Add together Log. Time from Noon, Cos Lat. (byD. E.),

Cos Dec, Cosec Mer. Z. D. ; the Eesult is Sin of half the

Eeduction. Multiply by 2 and you have the Eeduction.

Add Eeduction to True Alt. as observed, and you have the

True Mer. Alt. To find Lat. proceed as in a Mer. Alt. of

the Sun.
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