A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. Vol. LXIX.—No. 12. ESTABLISHED 1845. NEW YORK, SEPTEMBER 16, 1893. \$3.00 A YEAR. #### THE McCONNELL GERM-PROOF FILTERS. Any exhibit designed to illustrate the facility with which water may be freed from possible disease germs, with tolerable certainty and at a moderate cost, was certain to command its full share of attention at the World's Columbian Exposition, where not a few of the visitors, at the beginning of the season, had most exaggerated fears of the quality of the water supplied. In the display of the McConnell Filter Co., of Buffalo, N. Y., are filters of simple construction designed to show a high degree of perfection in operation, adapted for attachment to the water pipe, and so made that it will be but little trouble to keep the filtering medium entirely clean and pure. There are also other styles, made as gravity filters, and as filter and cooler combined, the latter being so arranged that the melted ice does not contaminate the filtered water. The filtering material consists of a porous wall, made of a composition of the finest mineral flour, whose nature is not to paste or flint, but to remain sufficiently porous to allow only pure water and air to pass through it. The impurities are collected on the outer side, from which they are easily washed. These filters are made in all sizes, from those suitable for use in small families up to those of a capacity adapted for restaurant and hotel use. ### WINE MAKING REPRESENTED AT THE FAIR. The very fine showing presented at the Columbian Exposition by American wine makers has not been surprising to those who are familiar with the growth of this branch of business as an American industry within a few years past, however it may have been to those who have heretofore sup- THE WORLD'S COLUMBIAN EXPOSITION—EXHIBIT OF McCONNELL FILTERS. posed all our best wines were imported. The great variety and the number of high quality wines here exhibited, as well as the numerous large establishments represented, afford the best answer to such erroneous assumptions. Among the notable exhibits in this line is that of the Urbana Wine Company, of Urbana, N. Y., shown herewith, in connection with which we give also views of the "finishing room," and one of the champagne vaults at the works, as well as of the main buildings, as they were established in 1865, although they have since been greatly enlarged. It will thus be seen that in all wines which require "aging" to bring out their finer qualities this establishment has had the advantage of more than a quarter of a century's existence, during which period it has had a continuously large and prosperous business, its wines steadily growing in popularity in comparison with the most favorite brands of imported wines. As the first requisite in the making of a superior wine is to have the best quality and fine varieties of rich, ripe grapes, it was the obvious advantages presented in these particulars that originally led to the location of the works on the shores of Lake Keuka, or Crooked Lake, Steuben County, New York State. Here, besides the vineyards owned by the company, is a large grapeproducing country, which has been famous in this respect for many years. The soil is a gravel on calcareous rock, the ground is undulating and sometimes precipitous, but with a general southeast exposure toward the lake, and the location has been styled the Rheims of America. The principal varieties of grapes cultivated are the Catawba, Isabella, Delaware, Iona, Concord, and Manage Special Dry Exhibit at the Fair. "Finishing Room" at Urbana, N.Y. THE WORLD'S COLUMBIAN EXPOSITION-EXHIBIT OF THE URBANA WINE COMPANY, URBANA, N. Y. Elviras, and several others, and it is the proper selecting and combining of the fermented juices of these grapes, under carefully regulated conditions, that gives the high quality to the various still and sparkling wines made. The "Gold Seal" brand of champagne, prominently displayed in the company's exhibit, has been for many years a leading article of their production, and stands deservedly high in the wine trade and among connoisseurs throughout the country. The still wines of this company are deserving of especial attention, all being made from the most careful selection of grapes, and they are vouched for as "pure," which makes them particularly desirable with those who want pure goods, and desire to avoid adulterations. All stock is well aged, and sold at a low price, considering the quality. ### The Late Hayward A. Harvey. Hayward A. Harvey, the inventor of the Harveyized steel armor plate process, passed away August 29, at his home in Orange, N. J. Mr. Harvey was born in Jamestown, N. Y., January 17, 1824. His father was General Harvey, the inventor of the gimlet-pointed screw, the cam motion, and the toggle joint. Young Harvey entered the office of the New York Screw Company as draughtsman in 1844, he took charge of a wire mill at Somerville, N. J., in 1850, and in 1852 he became connected with the Harvey Steel and Iron Company, of which his father was president. In 1865 Mr. Harvey founded the Continental Screw Company, of Jersey City. The inventions of Mr. Harvey, up to this time, had nearly all been in the direction of automatic machinery: but he afterward devoted his energies to metallurgical processes, and in 1888 he took out his first patent on a process for treating steel. This invention has now made his name familiar all over the civilized world, and has added another word to our language. The new process is, briefly, a method of hardening steel on the surface, or carbonizing it, and raising steel of a low grade to a higher one. The first armor plate treated by the Harvey process was made in 1890. The Harvey Steel Company was organized in 1889, and works were established at Brill's Station, near Newark, on the Pennsylvania Railroad. Various improvements were introduced in the manufacture of armor plates, and to-day Harveyized steel armor plate stands without a rival. The tests made at the Indian Head Proving Grounds, a few weeks ago, proved conclusively that Harveyized steel plates are the best in the world. In a comparative test with English compound armor plate, Creusot all steel plate, and the regular United States nickel-steel plate, the Harveyized plate proved to be better than any of the others. The construction of battleships has been modified by the introduction of Harveyized armor, and the new process is being adopted by the principal manufacturers of Europe. Mr. Harvey, in the course of a long and eventful life, had 125 patents granted to him. ## The Lantern in Scientific Stage Effects. Some new scientific stage effects were introduced into a recent performance of Wagner's Die Walkure, at the Grand Opera House, Paris. The scene where the sons of Wotan, mounted on steeds and brandishing their lances, are seen in the clouds, is described as very realistic. The foreground is wild and rocky, and the clouds are seen to scud across the sky. This effect is produced by projecting the image of a cloudy sky by an electric lantern on a curtain of translucent blue cloth. The continuous movement of the clouds for half an hour is produced by painting them on the edge of the disk of glass twelve inches in diameter, and rotating the edge past the lens of the lantern. Three lanterns are employed to blend the clouds. The wild cavalcade of Wotan's heroes is produced by a line of mechanical horses, full sized, and carrying real performers. They are supported on a scaffolding, and drawn by means of a cable across the scene at a suitable elevation. The mounted men are strongly illuminated by the electric light, and thus rendered visible through the translucent curtain representing the heavens. The scene terminates by a conflagration, in which great flames run along the rocks, while thick fumes, reddened by Bengal fire, spread through the atmosphere. The flames are due to fulminating cotton, placed in advance on the rocks, and lit by the machinists. Lycopodium powder is also blown through holes in the stage. Weird cloud effects are produced by steam. THE latest use for aluminum is for street car tickets, and it must be conceded that the metal is singularly adapted for the purpose. A Michigan street railway has just made its first issue of these light and ornamental tokens, which are about the size of a silver quarter dollar. One is round for the ordinary fare, the other octagonal for children. The adult's ticket is sold by the railroad company to the public at the rate of six for a quarter and the child's ticket at the rate of ten for a quarter. The company does not allow its employes, either conductors or motormen, to sell the tickets to the public, but disposes of them in \$10 lots to the several storekeepers who handle them exclusively. # Scientific American. ESTABLISHED 1845. MUNN & CO., Editors and Proprietors. PUBLISHED WEEKLY AT No. 361 BROADWAY, NEW YORK. O. D. MUNN. TERMS FOR THE SCIENTIFIC AMERICAN. The Scientific American Supplement is a distinct paper from the Scientific American. THE SUPPLEMENT is issued weekly. Every number contains 16 octavo pages, uniform in size with SCIENTIFIC AMERICAN. Terms of subscription for SUPPLEMENT, \$5.00 a year, for the U. S., Canada or Mexico. \$6.00 a year to foreign countries belonging to the Postal Union. Single copies, 10 cents. Sold by all newsdealers throughout the country. See prospectus, last page. Combined Rates.—The SCIENTIFIC AMERICAN and SUPPLEMENT will be sent for one year, to one address in U. S., Canada or Mexico, on receipt of seem abiliars. To foreign countries within Postal Union, eight dollars and fifty cents a year. ### Building Edition. Building Edition. THE ARCHITECTS AND BUILDERS EDITION OF THE SCIENTIFIC AMERICAN is a large and splendid illustrated periodical, issued monthly, containing floor plans, perspective views, and sheets of constructive
details, pertaining to modern architecture. Each number is illustrated with beautiful plates, showing desirable dwellings, public buildings and architectural work in great variety. To builders and all who contemplate building this work is invaluable. Has the largest circulation of any architectural publication in the world. Single copies 25 cents. By mail, to any part of the United States, Canada or Mexico, \$2.50 a year. To foreign Postal Union countries, \$3.00 a year. Combined rate for Building Edition, Scientific American, to one address, \$5.00 a year. To foreign Postal Union countries, \$6.50 a year. Combined rate for Building Edition, Scientific American and Supplement, \$3.00 a year. To foreign Postal Union countries, \$11.00 a year. Spanish Edition of the Scientific American. Spanish Edition of the Scientific American. LA AMERICA CIENTIFICA E INDUSTRIAL (Spanish trade edition of the SCIENTIFIC AMERICAN) is published monthly, uniform in size and typography with the SCIENTIFIC AMERICAN. Every number of La America is profusely illustrated. It is the finest scientific, industrial trade paper printed in the Spanish language. It circulates throughout Cuba, the West Indies, Mexico Central and South America, Spain and Spanish possessions—wherever the Spanish language is spoken. \$3.00 a year, post paid to any part of the world. Single copies 25 cents. See prospectus. MUNN & CO., Publishers, 361 Broadway, New York. The safest way to remit is by postal order, express money order, The safest way to remit is by postal order, express money order, raft or bank check. Make all remittances payable to order of MUNN Readers are specially requested to notify the publishers in case of any failure delay, or irregularity in receipt of papers. #### NEW YORK, SATURDAY, SEPTEMBER 16, 1893. #### Contents. (Illustrated articles are marked with an asterisk.) | Air cooling by underground pipe 183 | Exposition, Columbian - Pens, | | |---|---|-----| | Aluminum tickets 178 | Esterbrook, exhibit of* 1 | 18 | | Ang-Kor, ruins of 182 | Exposition, Columbian - Pla- | | | Animal vocabularies 188 | tinum exhibit, a costly 1 | ıΩ | | Birds and animals, intelligence of 186 | Exposition. Columbian — Vase | ••• | | Brake valve, Pelham's* 180 | Exposition, Columbian — Vase, largest turned, at* | 12 | | Brazing (5356) | Exposition, Columbian-Wagons, | 10 | | Cattle stall, Aeberly's* | heavy, of Chatham Mfg. Co.* 1 | | | Comet, the Rordame* 183 | Exposition, Columbian-Notes. 1 | 171 | | Contractors, a chance for 178 | Fair. Midwinter, at San Francisco | | | Diamond, a monster* | Fire engine, a bicycle | | | Diver, northern* 184 | Flowers, out, how to preserve | io | | Vag hatchings 188 | Flowers, frozen, to ship | io | | Egg hatchings | Guns, the new 13-inch | ig | | Electric trolley wire finder, | Gun, the Brown wire | ĺΩ | | Jones'* 187 | Harvey, H. A. | 17 | | Exposition, Columbian-Ameri- | Inventions, recently patented | iο | | can wines shown at, by Ur- | Lantern. the, in stage effects | 175 | | bana Wine Co.* 177 | Lemon sirup | | | Exposition, Columbian—Awards | Manufacturing in the U.S | 10 | | at the | Metric equivalents | | | Exposition, Columbian—Cavern, | Money of the world | 8 | | marvelous, Black Hills, rep- | Navy, French, increase of the | 10/ | | resented at | Notes and queries | | | Exposition. Columbian — Drop | Olympia, the new cruiser | 10 | | forgings, exhibit of J. H. Wil- | Painting, seaside | | | liams & Co.* 180 | Patents granted, weekly record. | 100 | | Exposition, Columbian—Filters, | Plumbago as a lubricant | 10 | | the McConnell, at the* 177 | Printing press counter, Clayton's* | | | Exposition, Columbian—Grand | Pumps, well (5362) | 101 | | South Canal, view on the* 185 | Railroads, safety on | 170 | | Exposition, Columbian—Horse | Sawing, a large day's | 176 | | | Guran Manile | 10 | | powers, etc., of A. W. Gray's | Sugar, Manila | 10 | | Sons* 187
Exposition, Columbian — Pens | | | | and int Comic orbibit oft 101 | Valiant, the Vanderbilt yacht | 10 | | and ink, Caw's exhibit of 181 | Watch, a cheap* | 10 | | | | | # TABLE OF CONTENTS OF # SCIENTIFIC AMERICAN SUPPLEMENT No. 924. For the Week Ending September 16, 1893. Price 10 cents. For sale by all newsdealer | Trice to cents. For sale by all newsdealers. | | |--|---------------| | I. AGRICULTURENote on the Sugar Beet Cultivation | A G 1
1477 | | Polygonum Sachalinense.—A plant introduced into France from
Russia, of great possibilities as a forage plant.—1 illustration
Selection of Sorghum Seed.—How the United States Depart.— | 1477 | | ment of Agriculture selects sorghum seed at its Kansas station II. BOTANY.—Dragon's Blood.—Curious historical notes on this well | | | known resin III. CHEMISTRY.—Attempt at a General Method of Chemical Syn- | 1477 | | thesis.—By RAOUL PICTET.—Eight laws of chemical relation pro-
posed as a base for a general method of chemical synthesis
IV. CIVIL ENGINEERING.—Sinking a Siphon Trap.—A trap for | 1477 | | condensed moisture, for use in steam heating systems.—2 illus- | 1476 | | trations. The Ismuth of Corinth Canal.—Interesting ceremonies on the opening of the recently completed canal. The Opening of the Corinth Canal.—Notes on the construction | 1475 | | and engineering features of the great canal.—8 illustrations V. COLUMBIAN EXPOSITION.—Canada at the World's Columbian | 1475 | | Exposition.—Interesting features of the exhibit of Canada in Chicago.—1 illustration. | 1476 | | German Notes from the Chicago Exposition.—How the Fourth of July was celebrated at Chicago.—By a German observer.—I illustration. | 1476 | vi. ENTOWOLOGY.—Soap as an insecticitie.—The advantages of whale oil soap and results obtained with it in destroying insects on California trees, with formula. vii. ETHNOLOGY.—Among the Australian Aborigines.—Continuation of this interesting and graphic article on the Australian savage and his habits.—3 illustrations. The Hottentots of South Africa.—By NICOLAS PIKE.—Graphic and popular description of the characteristic race of Ethiopia. 14772 viii. GEOLOGY.—Theories of the Origin of Mountain Ranges.—By Prof. JOSEPH LE CONTE.—The president's address before the American Association at its August, 1833 meeting. 14768 IX. HYGIENE.—Music and Longevity.—By EPHRAIM CUTTER, M.D.—The good effects of music on the human system, with personal reminescences and examples. 14764 On Poisoning from Canned Fish.—By Dr. A. B. GRIFFITHS.—Analysis of a new ptomalne, with other ptomaines and their formulæ X. MECHANICAL ENGINEERING.—Improved Steam Striker.—A powerful type of steam hammer, giving 500 blows a minute.—2 illustrations. IX. MISCELLANEOUS.—The Great Populous Centers of the World.—By Gen. A. W. GREELY.—The 100 largest cities of the world, with their populations. Scientific Terms.—The philology of scientific words and their derivations. Scientific Terms.—The philology of scientific words and their fully scientific terms.—The philology of scientific words and their derivations.—The philology of Scientific words and their scientific Terms.—The philology of Scientific words and their derivations.—The philology of Scientific words and their scientific Terms.—The philology of Scientific words and their derivations.—The philology of Scientific words and their derivations.—The philology of Scientific words and their scientific Terms.—The philology of Scientific words and their derivations. 14763 XI. NAVAL ENGINEERING.—The British Protected Cruiser Grafton.—Recent trial of a British ship of high speed. 14776 14776 14776 14776 14776 14777 14777 14778 14778 14778 14779 14779 14779 14771 14771 14771 14771 1 practiced abroad. 14762 The Sucking Up of Dangerous Liquids by Siphon.—An apparatus for decanting sulphuric acid and similar liquids in factories.— 1 illustration. #### A CHANCE FOR AMERICAN CONTRACTORS. In another column will be found the advertisement of the Public Works Department of Cairo, Egypt, in which bids are called for relating to the construction of certain street railways in that city and vicinity. Here would seem to be an opportunity for some of our enterprising contractors. The administration of the Egyptian government under the English advisory auspices has been attended with great success. The financial condition of the country is stable and reliable. In all departments of the government valuable reforms have been made, and nearly everything is now conducted on modern methods. The Public Works Department of Egypt is especially noteworthy for its successful efforts in introducing new improvements. Splendid engineering works relating to the Nile irrigation have been constructed at vast cost, whereby the productive area of highly fertile lands has been greatly extended. Railways have been introduced, telephone and telegraph lines made universal, postal facilities increased and improvements of all kinds along the lines of modern progress brought in. The present proposals for tramway lines doubtless will be found worth looking into. ### SAFETY ON RAILROADS. Within a very recent period several fatal railroad accidents have been chronicled which were of a nature as to point to one conclusion—the futility of trusting to direct human agency for protection. A railroad is assumed to be of the highest standard when equipped with a block system. But as usually interpreted, the block system is far from affording absolute protection. It displays a danger signal and perhaps also a caution signal when a train is within a certain distance of the signal station last passed by it. A following train on the same track is supposed to be arrested by these signals, and the train in advance is thus protected. The signals may be entirely visual. Semaphores by
day and colored lanterns by night may be employed. A bell may also be used, which will ring as long as the block in advance is occupied, this constituting an aural signal, or one addressed to the ear. Torpedoes may also be used. Such is the block system, by which all first-class railroads are guarded. In some cases it is applied by operatives stationed in watch towers along the line of the road. In other cases the manipulation is entirely automatic, electricity, pneumatic and hydraulic power being employed to work the signals. The locomotive itself effects the changes of signals as it leaves one block and enters another. In any case its operation consists in working a signal system for the guidance of the engineer of the locomotive. If it is the watch tower system which is employed, the vigilance of the signalmen as well as of the engineer is an absolutely necessary factor for its working. If the automatic system is employed, then the engineer is the only one who is depended on. There seems to be less chance of error in the latter case The block system is designed to prevent collisions. Its defect is at once apparent. It relies absolutely on human agency to prevent accident. Its functions end with the display of a warning signal. It has been proposed to add to it an apparatus which would strike a lever or valve handle on the engine, thereby throwing the brakes into action or shutting off steam if the engine passed a danger signal. This appliance has not been adopted to any extent. Even the best block and signal system has proved so ineffective that when a train stops unexpectedly from any cause, an apprehension of rear end collision may always be felt. This has gone so far that it seems as if the passengers for their own safety should be directed to leave the cars in such contingencies. In 1853, on the New Haven road, a very bad accident, resulting in the loss of 46 lives, occurred at South Norwalk. A drawbridge was open and the danger signal, announcing this fact, was properly shown. Yet the engineer of an express train ran by the signal and the train plunged into the gap. It was a fearful illustration of the point we have been mak--the inefficiency of the human element in signal ing operations. The accident resulted in the passage of a law requiring every train to come to a full stop before crossing a drawbridge. This was certainly a confession of weakness. The law was next satisfied by the use of derailing switches at drawbridges. A derailing switch is one which, when opened, causes a train to leave the track and run along the surface until it stops. Such a switch connected with a drawbridge mechanism so as to be thrown into the derailing position when the bridge is open, will prevent the train from plunging through it. It eliminates completely the personal element and takes care of a danger point automatically. It represents the automatic stoppage of a train as contrasted with a simple danger signal designed to warn the engineer. Throughout the whole system of railroad signaling runs the element of uncertainty. A train is brought to a stop between stations, owing to some accident. A signalman with a lantern by night or flag by day walks back to warn any approaching train. It is quite problematical how far back he may go. He may seek the shelter of a station en route, thinking all is safe. He may be but a few car lengths back when an approaching train appears, in a few seconds colliding with the other one. An engineer may follow up a long line of hundreds of block signals, and when weary with their endless recurrence, may pass the critical one. Signal tower operatives may fail in giving the proper signal. It certainly seems as if there was room for invention in the elimination of the personal element from railroad signaling. It should be possible to devise some rational system by which a danger signal would absolutely stop a train, should the engine runner fail to do so. The electric current which is employed in the automatic block system might be made to do this, thus avoiding the clumsier mechanical methods. If a train is unexpectedly forced to stop, some efficient system of warning another train approaching from the rear should be practicable. It has been proposed to provide a little car to run upon a single rail, which car is to be driven by a rocket attached to it. It would carry a torpedo. On the stoppage of a train for an accident it would be dispatched from the rear. In a few seconds it would be a thousand feet or more away. An approaching train would run over it and explode the torpedo, thus warning the engineer. But to-day the slow-moving brakeman is the usual agent. Before he would reach a point even a thousand feet distant, an express would run several miles. One recent invention accepts the liability to collision, and constructs cars on a principle specially designed to withstand a shock, and not to telescope. Our inventors and engineers should go a step further, and make accidents all but impossible. To-day a rear-end collision should be an impossibility. But sad experience, involving many deaths and injuries, continually shows that it is a constantly menacing danger. The double-track road with fast and heavy traffic is now as | title, which for want of any other will have to be used dangerous as was the old-time single track with its limited number of slow trains. #### The Olympia. The Olympia, one of the finest protected cruisers ever constructed, is rapidly approaching completion at the Union Iron Works, San Francisco. The Olympia is the largest unarmored cruiser built for the navy, except the Columbia and the Minneapolis. She has a displacement of about 5,600 tons and a coal capacity of 1,300 tons, which gives her a radius, at 10 knots, of 13,000 miles. The guaranteed speed of the Olympia is 20 knots. She has already sustained a sea speed of 19 knots, which is far ahead of what is generally found in vessels of her class. The Olympia is 340 feet long, beam 53 feet, and 21½ feet draught. She has three complete decks and a large superstructure amidships. The vessel is provided with two masts with fighting tops and an electric light on each. She has a complete protective deck of 4¾ inches of steel on forward slope and 2 inches on the flat throughout. All around the ship is a belt of water-excluding substance. Coal is so stowed that the machinery will be protected as much as possible. The machinery consists of twin screw, vertical inverted, direct-acting, triple expansion, three cylinder engines, in two watertight compartments. The cylinder diameters are 42, 59, and 92 inches respectively, with a 42 inch stroke. The air and circulating pump engines are driven independently. The total horse power of the propelling and pump engines is expected to be 13,500 at 129 revolutions per minute of the screw engines. The main battery consists of four 8 inch and ten rapid-fire 5 inch guns, as well as a secondary battery of fourteen 6 pounder rapid-fire guns, six 1 pounders, and four Gatlings. There is a fixed torpedo tube in bow and stern, as well as two training tubes in each side. The Olympia is a fine vessel of the commerce destroyer type, and her high sea speed and her prolonged radius general expression is that of wonder and delight. of action make her a valuable ship for use in the Pacific Ocean. hours. This is said to be the largest amount of lumber ever turned out of a single circular sawmill in that This unique assemblage was the result of repeated exnumber of hours. The saw was driven by a Corliss engine, having a cylinder 22 inches in diameter by a 40 inch stroke, the drive wheel being 20 feet in diameter with a 30 inch face, the engine making 65 revolutions per minute, with an average steam pressure of 100 pounds. The mill was provided with a steam log turner and a twin feed engine, 14×24 , and steam log trippers. The saw mandrel was 4 inches in diameter, with water-cooled journal boxes. The saw was 54 inches in generated by sawdust taken direct from the saw. The credit of this feat is largely due to Mr. W. N. Elliott, saw filer, and Mr. Ed. Bullock, sawyer. We are indebted for these facts to Mr. W. S. Whitman, chief engineer of the mill. THE MARVELOUS CAVERN OF THE BLACK HILLS. BY H. C. HOVEY. The glazed dome of the Horticultural building is one of the most imposing of the numerous elegant structures to be seen at the World's Fair. It is 180 feet in diameter and 144 feet high and is approached through pavilions, halls and galleries adorned by countless exotics. Directly under this huge dome arises a miniature mountain that artistically conceals the heating apparatus. Along its flanks and crest grow the largest palms, tree ferns, bananas and bamboos that will bear transplanting. Amid this tropical greenery bloom hundreds of gay flowers and twine a myriad clinging vines. Underneath this floral wealth extends a marvelous reproduction of one of our most recently discovered and brilliantly decorated American caverns. Perhaps without sufficient reflection the owners have styled it The Mammoth Crystal Cave," which really trenches on the name for generations appropriated to the great cavern of Kentucky. But as no map or guide book has yet been published, and all the names of the new cave may be regarded as tentative, the ingenuity may wisely be taxed for wholly novel and suitable names. Even "Columbus Cavern," or "Colossal Cavern," would be an improvement on the present plagiaristic The idea of rock work under the dome originated with the directors, but the cave proprietors hit on the bold and original conception of substituting for mere rock work a reproduction of their subterranean marvel. These gentlemen, Messrs. Keith and Allabough, who are also on the grounds to look after their interests, assured me that they began preparation two years ago by setting some seventy men at work in unfrequented parts of the cavern, collecting materials in such a manner as should not mar or rob the cave of
its embellishments. The conditions forbade blasting. The crystals had to be patiently cut from the rock by pick and chisel. Thus 300,000 pounds were obtained of stalactites, stalagmites, onyx, geodic crystals, dogtooth spar and sparkling botryoidal masses; of cave pearls, flos ferri, aragonite and dripstone stained by oxidation in as many colors as the rainbow. Having gathered these materials, it was a question what to do with them. At first the directors of the Fair were inclined to regard the exhibit as a show and to relegate it to the Midway Plaisance. But this was firmly withstood by the proprietors, who finally, after a delay of five months, obtained, through the intervention of parties interested in growing plant life by electric light, the concession of the present admirable loca- When the grotto was first opened, admission was free and continued to be so for a month. But such crowds flocked to see it as to make it actually necessary to restrain them by fixing the nominal fee of five cents for admission: and even this small sum is refunded in case the visitor buys specimens. Although the exhibit was not intended to be remunerative, the fees and purchases made by a million visitors have already reimbursed the proprietors for their original outlay of nearly \$50,000 and met running expenses. As many as 20,000 persons explore the grotto daily, and the The grotto as constructed is in no sense a model of the original cavern, except as displaying specimens of its contents and some of the conditions under which they are found. It includes seven rooms with arched approaches and tasteful alcoves and ample space. At the sawmill of M. T. Jones & Co., of Lake Charles, every square foot of which is embellished by the La., recently, 191,323 feet of lumber were cut in eleven | brilliant crystal masses already described, varying in size from mere marbles to blocks weighing 600 pounds. periments, as no skilled labor in the line of cave making was to be had. Lighted as it constantly is by a profusion of electric lamps, the place is certainly an attractive and instructive feature of the Fair. The Mammoth Crystal Cave itself was discovered in South Dakota many years ago by miners for the precious metals. But it has never till recently been entered for more than 1,700 feet. In 1889 explorers began to break into new chambers, one after another, diameter, No. 6 gauge, with 80 teeth. The steam was the process going on gradually, until now 1,490 halls and rooms have been opened. Some of them are low and muddy, while others are spacious and dry. The largest room of all is estimated to be 600 feet long, 300 a camel that carries the mail on his back in the deserts feet wide and 100 feet high. The walls and floors of of the southeast; a mail sled drawn by reindeer as in all the rooms and passageways are composed of crystals. What digging and blasting has been done only serves to bring more of this crystalline mass to view, or to break through into new apartments, or to open pockets like huge geodes. The actual extent of the great cavern is unknown. Mr. Allabough assured me that about one-third of it had been accurately surveyed by chain, compass and level with reference to its being possibly lighted by electricity before long. This work was done by Mr. George S. Hopkins, United States mining engineer, of Deadwood, by whom a map was also prepared, which for prudential reasons has not been published, although I had the privilege of inspecting it. The total length of measured passageways approximates twenty miles. This seems to justify the statement that the whole caveway, as far as explored, is from forty to fifty miles long. There are eight different levels, or galleries, in the cave. The upper ones are extremely dry, the lower ones damp, and the lowest of all are so very wet at all seasons as to be styled "the rainy rooms." The owners are satisfied, however, that drainage level has not yet been reached. There are numerous pools, and three running streams, one of which has a waterfall sixty feet high—not a plunging fall, but a cascade flowing down a steep incline of travertine. The formation in which this remarkable excavation is made is the corniferous limestone, judging from the fossils displayed. It is supposed to owe its origin to a small stream named Elk Creek, which sinks at a point seven miles above, and emerges again about four miles below, thus having eleven miles of subterranean flow. This theory gets confirmation from the fact that, in digging for the railroad along the banks of Elk Creek, crystal masses and pockets of dog-tooth spar were found like that to be seen in the cavern. Some of the specimens taken out were very fine, individual crystals of dog-tooth spar exceeding eight inches in length and of remarkable purity of material. The station of the Chicago and Northwestern Railroad being vertically 413 feet below the cave entrance, the theory given above would indicate a corresponding depth of the cave. And this is not incredible, for at places the hills are known to rise as much as 1,800 feet above the galleries already explored. The surrounding region is densely wooded and highly picturesque. No interior vegetation of any kind has yet been noticed, nor any true cave fauna; nor have any Indian relics been found. Heaps of minute bones abound here and there, seemingly the remains of rats, mice, bats and other intruders from without. The temperature is cool, being said to be as low as 45° Fahr., which is hardly credible, as that would be 10° lower than the ascertained temperature of other great American caverns. By whatever name this new and splendid cavern is to be known, it certainly combines the grandeur of the Mammoth Cave with the loveliness of Luray, besides having peculiar features of its own. It is worthy to be counted among the wonders of the world. The total number of paid admissions for August was 3,515,493, and total number to date 10,000,906. The Fair is wonderful to the wisest, and when you see the farmer just come out of the woods, with his large lunch box, strapped up with a piece of a harness, examining a string of sleigh bells or a patent cow bell, you might hear him remark: "What the thunder is that thing for?" for he was positive he knew something about cow bells. He cares nothing about style; he left his paper collar at home, and brought his long whiskers. He also wears the squeaky boots and carries the seven days' layers of dust on the uppers. Next you might see him standing in front of the Electrical Welding exhibit; then if you could see the astonished expression, as he knows he sees a man dip a cold piece of iron in a pail of water and it immediately turns red hot, while under water. It is comical to watch him; even his whiskers seem to absorb wonder, as you hear him say "Gosh!" The Russian Government Pedagogic Museum displays scientific and other educational apparatus, together with cases of stuffed birds and animals: pictures of Russian life and specimens of mineral resources. The St. Petersburg School of Design contributes many fine specimens of lace and needle work done by girls, also samples of work done by boys in the Manual Training division. The Russian government displays in adjoining booths many sketches and diagrams of public engineering works. In the Imperial Post booth the various methods of carrying the mails is picturesquely shown. There is a model representing five men carrying the mails over the mountains through the snow in the Caucasus, where the footing has to be chopped out of the ice step by step. Another model represents three horses abreast in the usual Russian style attached to a two-wheeled mail cart. Near this three horses attached to a sleigh show this same route in winter. There is also a model of a mail cart drawn by two yokes of oxen; a special mail boat used in the Archangel district, rowed by women; ### A COUNTING ATTACHMENT FOR PRINTING PRESSES. This improved counter, which is adapted to automatically register each impression of the press, may be attached in such a way as to be easily thrown into operative position and easily tilted back out of the way, operating only when the press is actually printing, and not registering when the "throw-off" is used. The improvement has been patented by Mr. Herbert D. Clayton, of the Hill City Reveille, Hill City, Kansas. The counter is of the usual kind, with register- BROOKL THE WORLD'S COLUMBIAN EXPOSITION-DROP FORGINGS EXHIBIT OF J. H. WILLIAMS & CO. BROOKLYN, N. Y. ated by a lever which hangs down at a slight inclina- mers and Russell & Co.'s engines are showing with tion to the bottom of the case, the lever being bent especial pride smaller boards equipped with this comupward and laterally at one end, and finally entering pany's engineers' wrenches. a slot in the case, where its inner end is pivoted. A front view of the counter with its attachments is shown in the figure at the top of the picture, a side view being shown in the figure at the left, and the position of its attachment to the press on the right. On the top or back of the case containing the counting mechanism is a plate with projecting lugs pivoted to the upper end of a standard secured to one side of the frame of the press, the standard extending upward to a point near the path of the platen, so that when the chains to go with this watch are made case is swung into position for registering, its lever, A, will extend into the path of a finger or pin on the platen, B, of the press. If the counter is not to be ington, Lincoln, Grant and Sherman. used, it may be readily tipped over to the back side of These "Columbus souvenirs" are made the standard, out of the path of the finger. When the throw-off is used, the platen does not quite touch the type, and the finger and lever are so adjusted as not to come into engagement with each other except when an impression is actually made, or when the throw-off handle moves at the side of the platen the finger may be
attached to the handle. The device is very simple, compact and inexpensive, can be readily attached to any job press, and the figures are always in plain sight | Exposition in the of the pressman, who can at any time tell at a glance just how many sheets have been printed. # A Bicycle Fire Engine. Experiments with a bicycle fitted out with a small chemical tank and fire ax are being made by a South cial troubles. Pro-Boston fire company. The bicycle has cushion tires and, with its whole outfit, weighs about sixty pounds. The tank holds about two gallons of chemical, which bers of exhibits from amounts as an extinguisher to about twelve pails of foreign countries, #### DROP FORGINGS AT THE FAIR. Aside from the general commercial interest which attaches to an international exhibit, the displays that are distinctive by virtue of their arrangement and class leave enduring impressions. A large wall space in Section C, of Boiler House extension, Machinery Hall, has made for J. H. Williams & Co., Brooklyn, N. Y., an exceptional place for the display of drop forgings. Looking from the main floor through the arched ways leading to the extension, this exhibit, mounted on a highly polished selected sycamore board, 16×22 feet, immediately arrests the attention of sightseers and invites a closer inspection. In a central position is a splendidly executed water color illustrating the interior of one of the best and most completely equipped forges in the country. Here, too, in this painting, is partially accomplished the illustration of methods scarcely known to the uninitiated. Drop forging has become the commercial definition of this art; but if we said "blacksmithing by machinery," it would be a literal description of the product, and greatly aid an interested public in comprehending the advanced methods in this line of manufacture. In addition to the illustration of a forge equipment, J. H. Williams & Co. have not, as far as it seemed practicable, overlooked the means necessary to further develop interest in an industry so important and still so young. To this end, and in addition to the wall exhibit, will be found dies, showing the impress of different articles and the forgings themselves in various stages of finish. A little study of the special forgings in any of the four artistically arranged panels devoted to this depart ment of their wares suggests at once how it has been possible to manufacture the peerless and up-to-date ing wheels and knobs for setting them, and it is oper- American bicycle. Very much of the enviable repu- tation of this country for its unequaled sewing machines, guns and general small firearms, and, indeed, of all firstclass machinery. is largely attributable to uniformly excellent drop forgings of a class supplied by this firm. The display of Brock's chain wrenches, engineers' wrenches, lathe dogs, collars, machine handles, etc., their staple articles of manufacture, well illustrates the rapid advances made in this age of improved tools and machinery. The engineers of the Edw. P. Allis, Frazer & Chal- ## A WONDERFULLY CHEAP WATCH. dinarily keep good time, and which is sold at retail for \$1.75, is shown in the picture. It has a "Columbus case" of special merit in point of design and workmanship, finished to represent either plain or oxidized silver or gold. The of a series of embossed medallions representing the heads of Columbus, Washby Messrs. R. H. Ingersoll & Bro., Cortlandt Street, New York City. # The Midwinter Fair. Ground was broken August 24 in Golden Gate Park, San Francisco, for the California Midwinter International presence of 50,000 persons. It is determined to make this fair a success in spite of the present finanpagandists have already secured numand some of the buildings will, doubtless, be ready to receive exhibits by the time the Chicago Fair closes. #### AN IMPROVED BRAKE VALVE. The valve shown in section in the illustration is so made that it is not likely to clog or get out of order, and its construction is such that successive regular reductions may be easily made in the pressure of air in the train service pipe, it being adapted to automatically act on the governor of the air pipe from pressure either above or below the main valve. The improvement has been patented by Mr. Walter O. Pelham, of No. 313 West Munson Street, Denison, Texas. An elongated two-part casing forms upper and lower chambers of the valve, the parts having flanges held together by bolts, and the upper part of the casing having an inlet connecting with the main reservoir, while the lower part has an outlet pipe to be coupled to the train service pipe. A central stationary flat seat on PELHAM'S ENGINEER'S GRADUATING VALVE. which the main valve turns has a service port and an outlet port leading to the outer air, a face port in the valve registering with the service port, while a port leads from the face port to a chamber in the valve, the latter port being normally closed by a spring-pressed pop valve. A discharge port opening from the side of the chamber registers with the outlet port of the valve seat. An upwardly extending hollow stem secured to the valve is connected with a cap screwed to the casing, the cap being provided with a handle and turning with the main valve stem, and serving also as an abutment for the spring of the pop valve. The handle has a spring catch adapted to engage notches of a graduating plate marked off in the usual manner, as "full release," "running position," "laps," "service," and "emergency;" but between the lap and the emergency mark is a succession of five-pound marks, enabling a positive and accurate reduction of five pounds to be made in the pressure of the train pipe at each movement of the handle or lever from one notch to another. A connection with the governor is made through valve-controlled ports of both the upper and lower chambers in the main casing, giving an automatic double control, the excess of pressure in either part of the casing causing the governor to be acted upon. If the train parts, the pressure in the main reservoir will not be reduced, and excessive pressure is An American lever movement watch which will or- generated when the brake handle is in running posi- tion, the excess pressure acting on the governor of the pump. The improvement is designed to place the train brakes at all times under the complete and ready control of the engineer. A TELEGRAPH cable has lately been laid between Appledore, Island of Shoals, and the main land near Portsmouth, N. H. Dis- THE "COLUMBUS SOUVENIR" WATCH AND CHAIN. #### AN ELECTRICAL BINDING POST. An improved binding post for insertion in gas fixtures, for making connections between the house wires and the burner wires, is shown in the engraving, and has been patented by Mr. Arnold Kohl, of Centralia, Ill. Fig. 1 shows the improvement applied to an electrical gas lighter, Figs. 2 and 3 being transverse sections of double and single binding posts, the former being used where the return current is conveyed by a wire instead of the fixture itself. The body of the post is of hard rubber or other insulating material, bored axially to receive the wires, the end to be inserted in the gas fixture having an external thread, while the other end has an internal thread to receive the contact screw. The latter is threaded, and upon it is placed a metallic nut, between which and the binding post body the house wire is clamped, the wire leading to the electrical gas lighter being similarly KOHL'S BINDING POST FOR ELECTRICAL CONNECTIONS clamped by the nut of the binding post adjoining the burner. In the side of the post is a binding screw, for clamping the wire, and the inner end of the contact screw has an axial bore in which is received the exposed end of the wire in the fixed end of the fixture. Two such binding posts are necessary for completing the perfection and simplicity. The writing is done circuit through a gas fixture. # A STEEL PEN EXHIBIT AT THE FAIR. One can readily believe that even so small an article as an ordinary steel pen may be the basis of an industry of considerable importance on looking over the fine exhibit of the Esterbrook Steel Pen Company at the World's Columbian Exposition. The business was established in 1860, and the works of the company are at Camden, N. J., where over one hundred and fifty different styles of the Esterbrook pens are made, the pens finding a market in all parts of the world. The house is the oldest and largest manufacturer in the United States, and makes pens for every purpose, and to suit all writers. It is a business that cannot be successfully conducted in a small way, the process of manufacture being intricate and 1889, and expect to be equally successful in competition complicated, each pen being subjected to a high de- in Chicago. gree of heat four or five times, and going through from thirty to forty hands before it is completed. The quality of the Esterbrook pens is concededly of the highest class; hence their universal popularity. THE WORLD'S COLUMBIAN EXPOSITION-THE ESTERBROOK STEEL PEN EXHIBIT. manufactures that the cost of making these now powder and will weigh 1,100 pounds. As soon as the indispensable articles has been reduced to so small a projectiles can be constructed and the guns mounted a The coast survey of the United States was begun in ### THE CAW'S PEN AND INK COMPANY EXHIBIT. Among the exhibits in the great Manufactures and arranged showcase is devoted to the display of the of the animal. The improvement has been patented well-known Caw's pens and inks. These articles have by Mr. Jakob Aeberly, of St. Paul, Minn. The stalls become so popular from their large use by all who have any writing to do in every department of business and in all walks of life, as well as from the numberless unstinted indorsements of men prominent in the leading professions, that any detailed description would be superfluous. Fountain pens, for many years used almost
exclusively by reporters and traveling men, have within a comparatively short period become almost indispensable to the business man and to those whose avocations are of a literary character in any way. This is because these pens have of late been made so simple, clean, and thoroughly effective that one can now, with the least care, depend upon always having and conveniently carrying upon the person a pen in good working condition, without danger of soiling the clothes or fingers therewith, the ink carried in the holder, and readily replenished, being sufficient to do a large amount of work. In consequence, also, of this largely increased use, and of the improvements introduced in the manufacture, the prices of this class of pens have been very greatly reduced. In Caw's "Dashaway" fountain pen, a regular first quality gold pen of any standard shape or size may be used. In this respect it differs from all other fountain pens. Another difference is in its "double feed," one on each side of the gold pen, which insures a more uniform and reliable delivery of ink than can be obtained from a single feed. President Cleveland uses one of these pens, and has furnished the company with a handsome testimonial. In Caw's stylographic pens the inventor seems to have obtained the acme of with a circular point similar to a pencil, but being tipped with an alloy of iridium and platinum, making it almost as hard as diamond, it will last many years. The stylographic pen carries ink in the holder the same as the nary split pen. With both of these pens any good writing or copying ink may be used, but the ink manufactured by the Caw's Pen and Ink Company has as high reputation as the pens, and has had a very large sale in the stationery trade for many years. It is a good black when first used, and in its manufacture an especial point is made to produce an ink which will not fade or mould, and will not gum or corrode the pen. The company displays its medals from the New Orleans Exposition of 1884 and the Paris Exposition of # The New 13 Inch Guns. Twelve of the new 13 inch guns are needed for vessels now under construction. Four will be furnished to It is one of the wonders of our modern progress in each of the following vessels, Indiana, Massachusetts > and Oregon. It is now decided by the British Admiralty that guns of smaller caliber are better than the huge 110 ton guns, which are liable to many mishaps in firing and are entirely dependent upon machinery which might be disabled at a critical moment. The disaster of the Victoria, in which the guns playdiameter of 4 feet at the breech and 21 inches at the muzzle. It is constructed on the built-up principle, in which a central steel tube has bands or jackets shrunk on. The projectile will be fired with 550 pounds of series of tests will be made with Harveyized armor plates as targets. The Brown segmental gun has shown a remarkable ability to stand heavy charges producing a high velocity and to resist great pressures. great abilities as an instructor and writer. #### AN IMPROVED STALL FOR MILK CATTLE. The stall shown in the illustration is designed to enliberal Arts building at the Fair, one very beautifully hance the comfort and conduce to the regular feeding THE WORLD'S COLUMBIAN EXPOSITION-CAW'S PENS AND INKS. fountain pen, and by many it is preferred to the ordi | are preferably built in pairs, and have a transverse gutter at the rear of the stall flooring. The feed cribs are of such height as to readily permit the cattle haltered thereto to feed over their top edges, and at each wall of a crib are vertical stanchions, from the base of which a short vertical partition wall is extended rearwardly. The crib covers are hinged on pendent gates, whereby the cribs are not only closed at their tops, but the space above each crib is shut off from the stall. The AEBERLY'S CATTLE STALL. gates, to the lower edge of each of which is hinged a crib ed an important cover, are secured upon a rotatable transverse shaft, part, strengthens on the outer end of which is a transverse handle bar. this opinion. The 13 A cord extending upward from the outer edge of each inch gun is nearly 40 | crib cover connects with a transverse cord passing feet long and has a over a grooved pulley at the side, the covers being raised and folded against the gates by pulling upon the cord, when both the covers and the gates may be raised, as indicated in dotted lines in the outline figure, by rotating the handle bar, thus affording a clear opening from each stall into the crib opposite it. A latch piece is adapted to be swung across the path of the handle bar to hold the gate locked in elevated position. > Further information relative to this improvement may be obtained of the patentee or of Mrs. M. Schembri, No. 396 Van Buren Street, St. Paul, Minn. # Sir Benjamin Ward Richardson, M.D. The honors of knighthood have been conferred upon Dr. Benjamin Ward Richardson, of London, in recognition of his valuable discoveries in medicine and his #### Notes from the World's Columbian Exposition. (Continued from page 179.) the extreme north; and a mail sled drawn by a dog team, as in Siberia. The rest of this exhibit comprises a full set of government postage stamps and post office supplies. Several special days have been observed recently, but none have been more full of novelty or more picturesque than was the celebration by the Turks. A large number of representatives of this nation were present, and the procession from the Turkish village in the Midway Plaisance to the Ottoman building in the Exposition grounds was gorgeous and unique. It was made up largely of Bedouins mounted on spirited horses bedecked in their brightest garments and carry ing their long, villainous-looking weapons. There was also quite an escort mounted on camels and donkeys. Nearly every man in the procession wore a fez, and many officials were dressed in the bright-colored insignia of their offices. The day was the seventeenth anniversary of the accession of the present sultan to the throne. In the Mines building the "Statue of Salt" commands a wondering throng. It is said not a few elderly ladies go away believing that they have actually seen a replica of Lot's wife. The model of the United States Treasury in the Administration building is another object of unfading attraction. It is built of Columbian half dollars, and considerable ingenuity has been displayed in its construction. The coins for the model were minted under an act of Congress, August 5, 1892. The model of a prairie farm commands admiration. It was designed and partly executed by an Illinois girl, seventeen years of age. The principal materials entering into its construction are grain and grasses, and these have been handled with no small deftness and effect. In the Anthropological building are some of the most important prehistoric relics from Carson, Nevada, from a quarry in the north end of a low sandstone ridge, a short spur of the Pine Nut Mountains. They consist of casts and in most cases the originals of footprints discovered in 1882. There are mammoth tracks, human tracks, horse tracks, and bird tracks. The quarry excavation is about 4,950 feet above the sea level. The formation is thus described: First, sandstone, forming the walls of the quarry and from 22 to 32 feet in height; second, the strata containing the prints; and third, the bed rock. There were also found mammoth teeth in good condition, and portions of the tooth and two jaw bones of a horse. The deposit where these remains were discovered is supposed to be Quaternary or Upper Pliocene, for in the opinion of Dr. Joseph Le Conte there are no indications of "the tall horse or elephant in the American Miocene." The great liberty and peace bell for the Columbian Exposition, weighing 13,000 pounds, cast at Troy, N. Y., lately reached the Exposition. It is one of the largest bells ever cast in this country, is seven feet in height, seven feet four inches in diameter at the mouth, and the tongue and bolt weigh 700 pounds. Every ounce of the metal of which the bell is made has a historic value as having been connected with the deeds of the Revolution and of other great struggles in the field of war in which the honor of the country was at stake. There are in it, among other things, bullets taken from the battlefield and from the bodies of men who were wounded; wedding rings, thimbles, spoons, the remains of swords, bayonets. cannon and rifles, jewelry, coin and plate, and the pennies of more than a quarter of a million of Ameri can boys and girls. This bell is the outcome of an idea of the Sons and Daughters of the Revolution, and commemorates the celebration of this Columbian year. There are some inscriptions on the bell: "Proclaim liberty throughout all the land unto all the inhabitants thereof," "A new commandment I give unto you that ye love one another," and "Glory to God in the highest and on earth peace, goodwill toward men." The Tiffany Chapel in the Manufactures building is a grand exhibit. The altar is made of white mosaic inlaid with mother-of-pearl and jewels. The columns and windows are all of mosaic glass, in the style of the thirteenth century. The cross on the altar is of gold set with jewels. The altar window has a setting of peacock feathers in gold and natural colors. There are 280,000 pieces in the altar, which glisten in the subdued light of the candles which are kept burning on the altar. ## WASHINGTON'S RED CEDAR VASE. In the Washington building at the World's Fair is exhibited the largest piece of wood turning in the world. It is the work of J. L. Nygren, of Tacoma, an employe of the Tacoma Lumber and Manufacturing Company. Mr. Nygren spent about three months of his time making a special lathe and turning from a single log of cedar a huge vase, six feet high and four feet across the top. The vase is highly polished, and din Terra Cotta Company. shows to splendid advantage the coloring and graining
of the red cedar. #### World's Fair Awards. In the Department of Artistic Manufactures the judges have passed upon nearly all of the exhibits, and medals have been awarded to many foreign as well as home exhibitors. The list is so long we can only find space for the American medalists as follows: New York—Brown's Amber Manufacturing Company, Bell & Barber, Leon Favre, M. J. Powers, Beyer & Schultzer, Tiffany Glass and Decorating Company, Tiffany Glass and Decorating Company, S. Strauss & Sons, Tiffany Glass and Decorating Company, Tiffany Glass and Decorating Company (5), S. Klober & Co., Tiffany & Co., Ed. Jansen, Sypher & Co., B. & W. B. Smith, Ed. Jansen, Hertz Bros. Chicago-Columbus Manufacturing Company, Winslow Bros., Healy & Millett, Wells Glass Company, Miss M. Heinnermaux, L. M. Hamline & Co., Mrs. W. M. Clarke, Mrs. B. B. Jinkins, F. Winter Co., Miss S. R. Little, A. E. Richter, Gensch & Hartman, E. B. Clarke Co., J. C. Wemple & Co., Winslow Bro. Co., Ehman & Simon Manufacturing Company, Bensinger Bros., Wind Folding Bed Co., Th. Kane & Co., George E. Androvetti, Rawson & Evans, McCully & Miles, Flanegan & Beidemorg, Horn Bros., Henry Dibblee Co., Dean & Co., A. H. Andrews & Co., American Bronze Company. Providence, R. I.-F. F. Pearce & Co., Gorham Manufacturing Company (several), O. C. Devereaux & Co., R. L. Griffith & Son, S. & B. Lederer, Reynolds & Co. J. H. Fanning & Co., New England Manufacturing Company, Arnold & Steere, Charles F. Prons, Payton LARGEST TURNED VASE IN THE WORLD. & Kelley, W. E. Webster & Co., Kent & Stanley Company, Otsby & Barton. Philadelphia-William Reith, J. W. Boughton, William Galloway. Toledo-Libby Glass Company, Gendron Iron Wheel Boston-H. R. Plimpton & Co., Derby & Kilnor Company Denver, Col.-Miss J. R. Pickney. Lyons, N. Y.-Manhattan Silver Plating Company, Manhattan Silver Plating Company. Meriden, Conn.—Meriden Britannia Company, Meriden Britannia Company. Newark, N. J.-Whitehead & Hoag, Stewart Hartshorn Company, Nymble. Geneva, N. Y.-Miss F. Crittenden. Kansas City, Mo.—F. D. Koehler. East Liverpool, O.-Knowles, Taylor & Knowles, Knowles, Taylor & Anderson. Cincinnati, O. - Reuld Moulding Manufacturing Company, Andrew Messwell & Co. Phonix, Ariz.-F. E. White Cactus Manufacturing Company, F. E. White Cactus Manufacturing Com-St. Paul, Minn.—Drake Manufacturing Company. Grand Rapids, Mich. -Gun Folding Bed Company, New England Furniture Company, Sligh Furniture Company, Royal Furniture Company. Milwaukee, Wis.—Miss A. S. Lodge. Freeport, Ill.-G. Dickens Filigree Company. Allegheny, Pa. -Conroy, Puigh & Co Company, Rockford Standard Company. Hartford, Conn.-Wm. Rogers Manufacturing Company (3). Attleboro, Mass.—R. F. Simmons & Company, W. & S. Blankington. Bridgeport, Conn.—Holmes & Edwards Silver Com- New Bedford, Mass.—Pairpont Manufacturing Company. Washington, D. C.-Mary and Emily Healy. Detroit, Mich.—George Le Roff. Columbus, O.-Kimmear & Yager Company. Pittsburg, Pa.—U. S. Glass Company. Trenton, N. Y.—Burroughs & Mountford Company. Baltimore, Md.—Edwin Bennett Pottery Company. Pawtucket, R. I.-G. H. Fuller & Son. Miscellaneous.—J. Hoare, William K. Potter, Alad- #### The Money of the World. Acting Director of the Mint Preston has prepared a table of the monetary systems of the world. The table shows that the aggregatestock of gold is \$3,582,005,000; silver, \$4,042,700,000; uncovered paper, \$2,635,873,000. Stock of gold possessed by principal countries is as follows: United States, \$604,000,000; Great Britain, \$550,000,000; France, \$800,000,000; Germany, \$600,000,-000; Russia, \$250,000,000. The stock of silver is as follows: United States, \$615,000,000; Great Britain, \$100,-000,000; France, \$700,000,000; Germany, \$211,000,000; Russia, \$60,000,000. The stock of silver is divided as follows: United States, \$538,000,000 full tender, and \$77,000,000 limited tender; Great Britain, no silver full tender, \$100,000,-000 limited tender; France, \$650,000,000 full tender, \$50,000,000 limited tender; Germany, \$103,000,000 full tender and \$108,000,000 limited tender; Russia, \$22,000,000 full tender and \$38,000,000 limited tender. The ratio prevailing in nearly all principal countries between gold and legal tender silver is 1 to 151/2. The ratio between gold and limited tender silver is, as a rule, 1 to 14:38. The respective ratios in the United States are 1 to 15.98 and 1 to 14.95. The various monetary systems as divided among countries: Gold and silver-United States, France, Belgium, Italy, Switzerland, Greece, Spain, Netherlands, Turkey, and Japan. Gold-United Kingdom, Germany, Portugal, Austria, Scandinavian Union, Australia, Egypt, Canada, and Cuba. Silver-Russia, Mexico, Central and South America, and India. Of the uncovered money, South America has \$600,000,000; Russia, \$500,000,000; United States, \$412,000,000; Austria, \$260,000,000; Italy, \$163,000,000; Germany, \$107,-000,000; France, \$81,000,000; and Great Britain, \$60,-000,000. The per capita circulation of gold is: United States, \$9.01; United Kingdom, \$14.47; France, \$20.52; Germany, \$12.12; Russia, \$2.21. Per capita of all classes of money is: France, \$40.56; Cuba, \$31.00; Netherlands, \$28.88; Australia, \$26.75; Belgium, \$25.53; United States, \$24.34; United Kingdom, \$13.42; and Russia, \$7.16. # The Ruins of Ang-Kor. Recent events have attracted attention to the great lake between Cambodia and Siam, Toule Sap, and to the two Siamese provinces of Ang-Kor and Baltambong which adjoin it. A few months ago the Progres de Saigon issued an account, illustrated by native wood engravings, of this great lake of the two provinces and of the famous ruins of Ang-Kor. The region is described as lying to the north of Cochin-China, between Siam, the ocean and the unknown Laos districts, and although now but thinly populated, it was in former times the abode of a race which was great among the peoples of the East, and which for long centuries was governed by a famous line of sovereigns. The great lake is formed during the rainy season by one of the branches of the Mekong, and is then navigable by large steamers, which go to Siemreap, at the head of the lake, and near the ruins of Ang-Kor, the greatest remains of Khmer civilization. These ruins were discovered by the Portuguese and Spaniards in 1564, and they were first described in a volume published in Barcelona in the following century. There are Chinese accounts of a much earlier period, and one of these, written in the thirteenth century by an ambassador sent to the Cambodian court, was made known to Europe by Abel Remusat. It includes descriptions of the two famous temples of Ang-Kor Wat and Ang-Kor Thom, which correspond with the ruins of the present day. Since then they have been investigated by French savants, and quite a splendid work on the subject has been published by M. Fournereau. It is thirty hours' steam to Pnom-Penh, the capitol of Cambodia, and thirty more to Siamreap. Ang-Kor Wat, or Ang-Kor the Great, the royal pagoda, is the best preserved of all the Khmer remains. Mouhot, who visited it in 1862, says it is more majestic than any other monument of antiquity that we possess. It occupies a large rectangular park, 1,087 m. long and 827 broad. The illustrations show numerous towers, vast terraces, everal subsidiary temples, innumera hle figure Rockford, Ill.—Royal Mantel Company, Middlecomb fantastic mythological animals, galleries, colonnades, avenues, lakes, bridges, etc. The surface of the large stones employed in the buildings are covered with pictures and engravings. These huge blocks are believed to have been conveved to the great heights at which some of them are found by means of inclined planes. Ang-Kor Thom, which is a few miles away, is still more ancient, and around it are the ruins of the old Khmer capital, Preathong, which have been invaded by the forest, giant banyans having their roots below the foundations and their branches among porticoes and pillars covered with bass-reliefs. These latter, which are especially well preserved in the underground galleries, represent the national sports, sacred ceremonies and historical events of the Khmers. These are the two main Khmer monuments, but there are hundreds of others scattered over a large area of the country in the midst of what looks like a primeval forest.—The Architect. ### Correspondence. Plumbago as a Lubricant for Steam Cylinders, To the Editor of the Scientific American: The engine on which the experiments were carried on was a compound duplex, high pressure cylinders 14 \times 12 and low pressure cylinders 20 \times 12, with a piston speed of 200 feet per minute. To obtain the best results, the common oil cup was exchanged for a goblet-shaped tallow cup, with a lid; after which, the piston follower and springs were taken out and cleaned before starting the engine. One-third ounce of finely pulverized plumbago was placed in the cup. When fairly under way the valve of cup was opened half way, and a little later was opened to its The piston rod became coated with plumbago soon after starting, and by noon the whole had passed from the cup into the cylinders. On starting up, in the afternoon, one-third of an ounce more was placed in cup, and the engine run till five o'clock with like result. There was no noise in cylinders, either in starting, running, or stopping the engine, and after two months' use, with the above amount twice a day, no noise has been heard in cylinders. Soon after beginning its use, a small amount of plumbago was left in cup. To obviate this, one ounce of water was poured in cup after the plumbago was put in, and a decided improvement was observed, in that it could be fed into the cylinders as readily as oil. After three weeks' use, the cylinder heads were taken off and the working parts were found coated with plumbago, so it could not be easily rubbed off with the finger. EARL GAINER. El Reno, O. T. #### Cooling Air by
Means of Underground Pipe. To the Editor of the Scientific American: Can you give us any information as to the construction of a cold storage apartment, which is built by means of sewer pipe being laid a certain depth below the ground, and for a certain length through! which the warm air passes, and by the time it reaches the apartment is sufficiently cooled, so as to dispense with the use of ice? The cool air is then carried away through a high chimney. We are informed that cold storage apartments are being built on this principle, and any information you may be able to give us as to their construction and practicability will be highly appreciated. THE ZOAR SOCIETY. Zoar, O., July 29, 1893. [The cooling of air, as indicated by our correspondent, has been proposed; but we do not call to mind any practical example now in operation. The principle seems correct, but the power of a natural circulation appears weak. The air, when it becomes cool in the subterranean pipes, is disposed to stay there, like the air in wells and cellars, and unless some positive means are employed to produce a fixed condition of circulation, the apparatus would be of little value. The natural draught of a chimney, without heat, is as liable to be downward as otherwise. Again, if artificial draught is produced, it should not be in excess, as a strong draught through the subterranean pipes would soon warm the passages and ground and destroy its cooling properties. Under any circumstances, the amount of cooling effect must be small, as the temperature of the ground in summer, at a depth of four feet, is seldom cooler than 55° Fah. In order to obtain a temperature of 60° in hot weather, the subterranean exposure should be very large; we should judge not less than one square foot for every cubic foot of space in the cool room, with a moist ground for the unglazed tile pipe. Then, if four inch tile pipe is used, it will require 1,000 feet for a cool room of 10 feet \times 10 feet \times 10 feet, which may be divided into two or more sections leading in different directions. In very dry ground, we should judge that fifty per cent more pipe should be used. For artificial draught, a small fan driven by electricity, a wheel train and weight, which may be wound up by a small windmill, will be the most available power; otherwise an up-draught ventilator may be made available when there is any wind. The use of fire for creating draught in the chimney will be troublesome and expensive, unless the cold room chimney could be warmed by a flue used for other purposes. The more porous the tile pipe can be made, the better results will ensue, as it must absorb the water of condensation from the cooling air and also be a partial feeder of air from the ground.—ED. S. A.] ## Lemon Sirup. Take 1 pint and a quart of juice, 2 pounds of sugar. Let the juice stand in a cool place to settle. When a thin film is formed on the top filter the juice, add the sugar, and finish in the bain-marie. If the flavor of #### THE RORDAME COMET. The accompanying diagram will give the unscientific reader some idea of the relation between the paths of the comet and earth. Suppose the circle representing the earth's orbit to lie in the plane of the paper, then the comet's path lies in a plane inclined 20° to that of the paper and intersecting the latter in the line NN', which is called the line of nodes. About June 26 the comet passed the point, N, its asnorth of the ecliptic. On July 7, it reached its near- DIAGRAM SHOWING RELATIVE POSITIONS OF COMET b 1893 AND THE EARTH. est point to the sun, and at almost the same time its nearest point to the earth. It was discovered therefore at the time of its greatest brightness, when it was almost directly between the earth and the sun, but at some distance above the line joining the two. The tail of the comet was directed toward a point almost directly over the earth. The apparent motion of the comet among the stars was very rapid, because of its nearness to the earth. This has been rapidly decreasing, as might be expected from the fact that the earth and comet are moving in opposite directions. Its course has been southeastward, passing by the feet of the Great Bear and between Leo and Coma Berenices. During August it moved very slowly southeast from a point 5° east of the star β Leonis toward the double star γ Virginis. A. and Astro. Physics. ## A MONSTER DIAMOND. We have received from Birmingham the plaster of Paris model of the great South African diamond, recently found in the Orange Free State, and which is claimed to be the largest ever discovered. The model was sent to the editor of the Birmingham Daily Post by Mr. Walter Lowe, a Birmingham man, now resident in South Africa. In a letter which he sent with the model, dated Jagersfontein, July 2, he says: "You may have noticed by cable that the largest diamond the world has ever seen has been found here. This place is all excitement about it, and it may make "The Largest Diamond in the World:" The "Jagersfontein Excelsior," recently discovered in the Orange Free State. (Exact Size.) a stir in the financial world. I am sending by this post a perfect plaster of Paris model of the diamond, which was found on June 30, 1893. This model was taken by me personally this morning, and is the only one which has been taken except one which I have sent this after noon to the President of the Orange Free State, by the peel is desired with it, grate off the yellow rind of special request. The diamond was found in the New the lemons and mix with the juice to infuse, or rub it Jagersfontein Company's mine. It is the most perfect off on part of the sugar and add it to the remainder large stone ever seen, its weight is 971 carats, its color when you finish it. Orange sirup is made in precisely is blue-white, and almost perfect. It has one black the same manner as lemon sirup.—Western Druggist. spot in it, which, however, the owners stated to me is required. will cut out. Its value, of course, cannot now be stated; but I think if £50,000 were offered for it now, or even double that amount, it would not be accepted. Some even declare that it will be worth half a million. It was found by a Kaffir, who was working in the mine, shortly after blasting. The Kaffir, in this case, was talking to his overseer, when he saw something shine, and he put his foot over it until his 'boss' had gone away, when he picked up the immense diamond and cending node, and since that time its path has been put it in his pocket. Afterward, in the compound, he handed it over to the manager, for which he has been given £150, a horse, saddle, and bridle, and has gone home in, no doubt, perfect happiness. An extraordinary circumstance is that one gentleman, or some gentlemen, I don't know which, were under contract to buy all stones, good, bad, or indifferent, at so much per carat. This contract terminated on the 30th of June, and this stone was almost, if not quite, the last stone found on that day." The model shows that the stone is in the form of a sloping cone flattened on two sides, and standing on an oval base, so flush as almost to appear to have been cut. Its height is about three inches, and its width about two, while the flat base measures nearly two inches by one and a quarter. The diamond itself, which has been named the "Jagersfontein Excelsior," is now in London.—London Daily Graphic. #### Seaside Painting. A paper was recently read on this subject by Paul F. Brazo before members of the Master Painters' Association of New Jersey. The author said: I will relate what I have observed, experienced, and practiced for the past thirteen years on the ocean front at Long Branch. In the first place we have to contend with a great amount of dampness and fogs, which always leave a residue of salt on the surface of the work to be painted or otherwise treated. So it follows that we must be on the alert to know that the work is perfectly dry; especially new work. It was only after I had several jobs badly blistered and spoiled that I concluded to seek a remedy, and my remedy was this: To leave all piazza ceilings, floors, and clapboards under piazzas and porches until ten o'clock, or later, in the day, if possible to do so. I have followed this rule, and have had no trouble in that direction since. As to the salt on the surface of the work—where it was practicable, and the work was not to be hurried, I had it washed thoroughly a day or so before applying the priming coat. I then primed with pure lead, used thinnings composed of one-third turpentine and twothirds raw oil, with one-half pint of good japan to the gallon, in shade of color as near to the finishing color as possible. My object in keeping the priming the same shade as finishing is that it makes the work more solid, and as the priming coat has to stand at least three days or more before applying the finishing coat, and as it generally makes its own color, or, in other words, the priming darkens, it follows where we put on finishing there is just enough difference to be perceptible and comfortable to work over without showing brush marks, etc. I have also observed that a combination of pure lead and French zinc is the best, using good japan and raw oil only as a binder. For finishing coats, the zinc and lead should be in the proportion of 25 per cent and 75 per cent pure lead—no pulp lead—as we have all the moisture on the surface that is necessary. At all times I use the French zinc, for the reason that it does not contain sulphur to such an extent as our American zinc, consequently does not bleach my coloring matter so quickly. I particularly avoid using others or other earth paints, except in priming coats, for I have observed that all buildings where ocher was used as a stainer, no matter what grade it was, or what lead was used in combination with it on the sea coast, were in all cases attacked with the painters' worst enemy-mildew; particularly when
painters were foolish enough to use boiled oil as a means of conveyance. On the contrary, I have observed that lead, zinc, chrome yellow, and their kindred pigments, with raw oil and japan as a binder are not molested by mildew, and that they wear longer, hold their luster better, and instead of bleaching in spots and mildewing, will wear uniform; in fact, grow darker in course of time, and in all cases give your customers good satisfaction. I have noticed that all, or nearly all, of those who come here from the cities or from towns away from the coast use boiled oil, and that all of their work goes wrong in the first six months, and makes a difficult job for the painter who follows them to do good work. A word about shellac work in our damp air may do some fellow craftsman good. Do not do any shellacking in the early morning. If you must do it in damp weather, or in the early part of the day, have your men take a piece of cheese cloth, dampened with raw oil, and rub dry, and the work will not turn white, as I see some of the cottages at present which I have been called in to remedy; that is if you cannot varnish immediately after shellacking, or if a shellac finish only # THE NORTHERN DIVER AT THE LEIPZIG ZOOLOGICAL GARDEN. I was very much pleased at the beginning of June to see, for the first time, the northern diver (Colymbus arcticus), which had just arrived at the zoological garden of Leipzig. The bird has a very characteristic appearance, owing to its strong neck and head, and particularly the strange arrangement of black, white, and gray feathers, which is of a very striking beauty, and may be clearly seen in the principal figure of the cut, so that a further description is not necessary. This extraordinary bird is very attractive, not only in appearance, but in its movements and habits. It is very interesting to see the bird, which but exceptionally leaves its natural element, the water, swimming and immersing its body more or less at will, which movement may be due to a particular action of the lungs. This ability of the bird can be observed in a very striking manner when the bird dives or swims below the surface. The bird rushes through the water at an appalling speed. It seems as if it could not swim slowly when fully immersed in water, and I could observe this very well, as Mr. Pinkert, the proprietor of the zoological garden, put the bird into a glass bowl, so that I was able to see it from the side, as shown in the small view, No. 3. It will be noticed that the bird swims with extended neck, tightly closed wings, and widely spread legs, employing the latter to propel itself under water. It is very interesting to see that nature achieves the same result in a quite different way in the lumme (shown in view No. 4), which swims under water with its head drawn back, the legs extended rearward and serving only as a rudder, while the wings are used after the fashion of fins. Both these aquatic birds follow their prey into the water, and their fishlike appearance is adapted to deceive the prey. Though very agile in water, the northern diver is very clumsy on the land. The legs are so near the end of the body that the bird is unable to stand or walk. It can only crawl on the ground, and I have often seen it in the posture shown in view No. 2, sitting on the shore; but it never remained out of the water but for a very short time. It is well known to ornithologists that the northern diver is a good flier, notwithstanding its comparatively small wings, and the bird I had the opportunity of seeing shows indications of this ability by agitating its wings, so as to almost rise out of the water (view No. 1), which probably is the manner it starts to fly from the water when it is in liberty. The name of the bird already indicates that it is an inhabitant of the northern regions, and it only occasionally appears on the German shores, where it is but seldom caught—generally in the nets of fishermen. The bird is fully the size of a large domestic duck, and the opportunity of studying its appearance and movements has been particularly valuable to me, as the ornithological reports on this bird are rather meager. Want of space has compelled me to give but a short description of this rare and beautiful animal. —H. Leutemann, in Illustrirte Zeitung. #### A TROLLEY WIRE FINDER FOR ELECTRIC RAILWAYS, A simple apparatus is provided by the improvement shown in the illustration for use with the ordinary trolley and pole of electric railways, whereby, on the trolley leaving the wire, it will be automatically re- JONES' TROLLEY WIRE FINDER. turned to its proper position. The improvement has been patented by Mr. Henry C. Jones, of Montgomery, Ala. (box 285). On the trolley pole, beneath the wheel contacting with the line wire, are clamps having outwardly projecting studs, which support the crossbar or bracket of a guide, the bracket being held in a vertical position by set screws projecting from the clamping pieces through a curved slot in a central depending portion of the bracket. At the outer ends of the bracket are sleeves, through which extend vertically movable posts affording bearings for a cross shaft, on each side of which are secured spools with spiral threads running toward the center, where they connect with a loosely running guide pulley. Washers arranged between the spools and pulley, and normally projecting above their meeting edges, prevent the wire from sliding upon the pulley until the guide has been raised sufficiently to permit the transfer of the wire to the guide pulley and the main trolley wheel. To effect this, the outer ends of the spools have bevel gears meshing with gears on the ends of vertical screw lations. shafts turning in threaded bearings in the bracket, whereby the friction of the wire as it turns the spool raises the guide, the wire at the same time being carried inward by the groove of the spool. The washers between the spools and pulley have central openings permitting of the vertical movement of the washers, which are normally pressed upward by springs. The lower edges of the washers and the free ends of the springs are connected by short chains, also secured to the bracket, which limit the upward movement of the spools and posts when the guide has been raised to the proper height. The pitch of the screws of the vertical screw shafts is such that, when the wire has been transferred to the main trolley wheel, the weight of the spools and other mechanism will cause the screws to turn back, permitting the guide spools to drop to their normal lower position. ### The Valiant. Mr. W. K. Vanderbilt's new yacht the Valiant is a veritable floating palace. The Valiant is of 2,400 tons measurement, 312 feet in length, 34 feet beam, and is propelled by twin screws, each driven by a 2,250 horse power engine. The yacht was built by Laird Brothers, of the Birkenhead Iron Works. The interior fittings of the beautiful vessel are not quite finished. Some of the doors, for instance, are merely primed and will remain so until the vessel reaches Nice, when she will be decorated. The metal work throughout the vessel is a silver alloy called Wilson's white metal. This metal stays very brilliant with little care. The saloon and library are fitted up by Messrs. Cauel, of Paris, in the most expensive style. The saloon is 18 feet long and is 34 feet in width. The design is Louis Quatorze, worked out in white and gold; the furniture is in the best Chippendale style, inlaid with brass, and is upholstered in crimson silk velvet. Each stateroom, and there are twenty, has a bathroom connected with it, and no two rooms are decorated alike. A hundred foot passageway, arched and beautifully decorated, connects the library with the saloon. The library is finished in dark unpolished walnut. Mr. Vanderbilt's stateroom is covered with special designs in Tynecastle tapestry. The wall spaces are paneled in light blue, with floral designs of rich blue silk. The Valiant left Liverpool August 16 and reached New York August 25, with her sailing master, Captain Henry Morrison, and a crew of sixty-two men. The Valiant is the property of an English syndicate, and among the five or six stockholders are Mr. Vanderbilt's private secretary and the sailing master. Of course this English syndicate is entirely controlled by Mr. Vanderbilt, and it is shrewdly surmised that the company was formed only to avoid annoying custom regulations THE NORTHERN DIVER AT THE LEIPZIG ZOOLOGICAL GARDENS. #### THE WORLD'S COLUMBIAN EXPOSITION-A VIEW ON THE GRAND SOUTH CANAL. We illustrate a view taken from the head of the Grand South Canal, looking north. It is a remarkable scene. Both the North and South Canals abound in picturesque architectural effects, but the view here given transcends them all. In front, at the right, rises a reproduction of the noble Egyptian monolith, Cleopatra's Needle, in Central Park, New York. Even the hieroglyphics are included, while the base of the obelisk is guarded by four spirited lions, the work of Mr. M. A. Waagen. Between the obelisk and the splendid Palace of Manufactures, on the right, will be seen one of the Roman rostral columns, decorated with the prows or beaks of galleys and surmounted by a statue of Neptune. The Palace of Manufactures, owing to its great size, could not be made so ornate as some of the smaller buildings; but the problem of erecting an immense exhibition structure without sac- Canals are embellished by many fine pieces of sculp- #### Increase of the French Navy. The French naval estimates for the year 1894 con template, says Engineering, the laying down of no fewer than thirty-two new vessels of various types, viz.: Three first class battleships, five second class cruisers, one third class cruiser, one sea-going torpedo boat, five first class torpedo boats, four second class torpedo boats, nine torpedo launches, one second class dispatch boat, and three gunboats. The battleships, which will be
built two in the dockyards and one by contract, will have a displacement of 11,000 tons and engines of 14,500 horse power, giving a speed of 18 knots. The armament of each will be four 11.8 inch, ten 5.5 inch, six 3.9 inch, sixteen 1.85 inch, ten 1.45 inch, and eight revolving guns. The second class cruisers, one of which will be built in a government yard and knots speed. The torpedo launches, which are intended to be carried on the deck of the new torpedo depot ship Foudre, will be 62 feet 4 inches long, displacement 14 tons, having engines of 210 horse power, and being capable of a speed of 16.3 knots. It is expected that they will be built at Creusot, where the plans have been prepared. The gunboats, of which particulars are not made public, are believed to be river gunboats for colonial service. #### A Costly Fair Exhibit of Platinum, etc. The exhibit at the World's Columbian Exposition of Messrs. Johnson, Matthey & Co., of London, is valued at over \$100,000, and besides iridium, ruthenium, rhodium, osmium, palladium, pure and in various combinations, includes a remarkable and very valuable display of platinum, of exceptional purity. The international standard meter and kilo, as adopted after long experiment by the Paris International Commission, is from an alloy THE WORLD'S COLUMBIAN EXPOSITION-A VIEW ON THE GRAND SOUTH CANAL. successfully solved by the architect, Mr. George B. | which is to include the vessels provisionally known as | per cent, and eminent experts reported the platinum Post. The roof of this gigantic building affords the best E4, E5, and E6, will be of 3,990 tons displacement, 9,000 of a degree of purity heretofore considered commercial coign of vantage from which to view the manifold horse power, and 19 knots speed, carrying four 6.2 inch, ally impossible, being 999 98773 per 1,000. In making beauties of the great White City. Access to the roof ten 3.9 inch, fourteen 1.85 inch, and four 1.45 inch the standards, 8,000 ounces, troy, were employed. is had by means of the electric elevators. On fête days, when the building is decorated with flags and clude the vessels provisionally known as G3 and G4, pennants, the contrast of the warm color of the bunting with the pure white of the exterior is superb. Beyond the bridges, which are beautifully proportioned, is the Wooded Island, above which rises the dome of the Illinois State building. The Palace of Electricity will be noticed at the left, just beyond the second bridge. Messrs. Van Brunt & Howe, of Kansas City, were the architects. The effect of the Corinthian pilasters and the campaniles is very fine, repetitions of the electro-magnet and lamp are freely used, as well as conventional ornament. The south front, facing the Court of Honor, is broken by a great hemicycle, in which stands Carl Rohl-Smith's statue of Franklin. At the extreme left is seen the central and cornerpavilion of the Palace of Machinery measure 144 feet long. The first class torpedo boats -a very successful composition in the best style of the will be of 80 tons displacement, 1,350 horse power, and Spanish Renaissance. Messrs. Peabody & Stearns, of 23.5 knots speed. The second class torpedo boats will Boston, were the architects. The North and South be of 53 tons displacement, 700 horse power, and 20.5 quick-firing guns. The second type, which is to inwill be of 3,800 tons displacement, 9,100 horse power, and 19.25 knots speed, carrying six 6.2 inch, four 3.9 inch, eight 1.85 inch, and twelve 1.45 inch quick-firing guns. These five vessels are improved Chasseloup-Laubats. The third class cruiser, which is to be built in a government yard, will be a modified Galilee, of 2,300 tons displacement, 6,600 horse power, and 20 knots speed, carrying four 5.5 inch, two 3.9 inch, eight 1.85 inch, four 1.45 inch quick-firing guns, and four revolving cannon. The sea-going torpedo boat, which will probably be built by M. Normand, of Havre, will be a repetition of the Forban, which is now under construction, and will be of 3,260 horse power and 30 knots speed. She will Various forms of platinum apparatus are also shown, that for the concentration of sulphuric acid being especially interesting. ## Metric Equivalents. The metric nomenclature is coming into such common use, especially in scientific articles, that the following formulas will be found valuable: ## WEIGHT EQUIVALENTS. | To convert grains into grammes multiply by | 0.06 | |---|---------------| | To convert grammes into grains multiply by | 15.5 | | To convert drachms into grammes multiply by | 3.9 | | To convert ounces (avoir.) into grammes multiply by | 28.4 | | To convert pounds (avoir.) into grammes multiply by | 4 53·6 | | | | # MEASURE EQUIVALENTS. | To convert cubic centimeters into grains multiply by | 1 5·5 | |---|--------------| | To convert cubic centimeters into drachms multiply by | 0.2 | | To convert cubic centimeters into ounces (avoir.) multiply by | 0.0 | | To convert pints into cubic centimeters multiply by | 473 | | To convert liters into ounces (avoir.) multiply by | 35.3 | | To convert collons into liters multiply by | 3.8 | Intelligence of Birds and Animals, Especially appearance. The waves for several yards from the his rival, when the Ghazi, being a short distance bethose that are Susceptible to the Cholera and Contagious Diseases. BY NICOLAS PIKE. The intelligence of animals now claims, more than ever, the attention of the naturalist. Many believe that most of them possess, to a certain degree, the faculties of man, and there is no doubt that there exists an intimate connection between the organization and the intellectual faculty. Dr. Lindsay, in an essay which he published, and which has excited some attention, takes the ground that the mind of the lower animals does not differ in kind from that of man, and that they possess the same affections, virtues, moral sense, and capacity for education, and are liable to the same kinds of mental disorders. If we should study them more closely than we do, the conclusion which many scientists like Lindsav have arrived at would enable us to fix in our minds these facts without a doubt. It is said that birds are very susceptible to the cholera, and oftentimes fly from this much dreaded disease. As the cholera has been much dreaded the past season, it would be well for the ornithologist and scientist to watch these birds and some of the lower orders of animals, and confirm what is accredited to them in is said, never fails to come. The natives of Ceylon relation to this disease In the year 1854, the cholera appeared at Mauritius, an island in the Indian Ocean. It was in a violent form, and the inhabitants became much alarmed, as the deaths ran up to the frightful figures of two hundred and fifty a day in the city of Port Louis, with a population of eighty thousand persons. During this pestilence there were many reports about the disease being conveyed to fish, flesh, and fowl, which was doubted by many persons, and it was considered merely a whim of the large population of Indians, who are very superstitious. But when accounts began to accumulate from men of veracity it became a fixed fact. and generally believed, that birds were leaving the city and suburbs, particularly one called the "mina," Paradiseus tristes (Cuvier). This bird was formerly introduced into the island from Pondicherry for the purpose of destroying an insect which was troublesome. It became numerous, more so than any other species. They assemble in vast numbers in undisturbed woods and thickets, but show a decided fondness for the proximity of human habitation. They may be seen going out in the morning and returning in the evening, like rooks, but do not fly in large num- Mr. George Clark, a government schoolmaster, residing at Mauritius, informed the writer of the result of his investigation, which can be relied upon, as he was an excellent naturalist, close observer, and a reliable man. In speaking of the "mina bird," he thought it a most remarkable fact that they should leave the city of Port Louis while the cholera was raging, both in 1854 and and 1856. Such was a fact, and he knew it to be true, and his statements were confirmed by many persons from different parts of the island. The keeper of the large cemetery near the city of Port Louis stated that the birds used to be very numerous before the outbreak of the cholera. Scon after the disease appeared in the city the birds commenced to leave, till not one could be found in the large grove of trees which surrounds the grounds. When the violence of the disease had much abated they began to return, but were not so numerous as usual, till it had entirely disappeared. Captain Rupel and a number of prominent gentlemen of veracity confirmed the statements. During my residence at Mauritius I conversed with many persons in relation to the above, and all testified to the fact that the statement was true, and that some of the fresh water fish were affected and died. This I do not state as having come under my own observation. We have well authenticated accounts that during the terrible epidemic of cholera which almost entirely destroyed the inhabitants of the town of Basse Terra, Gaudaloupe, some years ago, the cats and many birds left the to the upper regions of the atmosphere, is because they place, for parts unknown, and did not return for are freer from vapors and more suited to them, and besome weeks, till the disease abated. Some of them cause the lower regions, being more loaded with vapors, remained away permanently. A similar case happened afford them less pleasure than those above, also the at Malme, in Sweden, on the approach of cholera in insects which they pursue for food take then, perhaps The Boston Herald published a short account of a statement of Major C. C. Creagh, of H. B. M. Regiment "The Royal County
Downs." He states that he during the prevalence of the cholera in France, in was present during the unusually severe visitation of the cholera in the town of Kurrachee, in Sinde, in 1846. His regiment lost, in the space of ten days, about two hundred and forty men, and it was particularly remarked that the vultures and other birds of prey entirely disappeared almost simultaneously with the outbreak of the cholera, returning generally after the first few days, when the virulence of the disease began to abate. Major Creagh also mentioned a singular circumstance, from which it would seem that the inhabitants of the sea are by no means exempt from the mysterious disease. On the second or third day after the appearance of the cholera the bay to the south of former was riding and was joined by the Ghazi, who Kurrachee was strewed with myriads of dead fish, which were left on the beach by the receding tide. At high versation and shortly afterward put their horses to a shore seemed to be composed of an almost solid mass of dead fish, chiefly of the sardine species, among gash on Lieut. Robertson's neck, and otherwise which, however, there were not wanting others of considerably larger size. This belief in the prescience of birds is almost universal in India, and it is imputed to their power of diving into the secrets of futurity. It he is at present being treated. The young Ghazi was is common to the kites and the lizards, and has been acknowledged by some in all ages. We are aware that there are thousands of persons who watch the migration of birds and note their departure from our northern clime to that of the more genial south; also the hibernation of animals, the time of their entering the hibernaculem, as this denotes an early or late winter. The early flight of wild geese denotes a storm or an early spell of cold weather. The people of Africa, India, Japan, and China watch with interest the movement of birds. The natives of Ceylon, when about to make a journey of two or three days, are governed by a certain bird. They proceed to the woods and seek this bird. If there is to be a change in the course of twenty-four hours, the bird will be found perched on the topmost branch of the tree, pouring forth his melodious notes, which indicates rain, and, it have the most implicit confidence in this sign. In the warm days of July the cat bird may be seen perched on the low branches of the dogwood tree, uttering peculiar low notes, which are always sure indications of a thunderstorm in the afternoon or evening. These notes are never heard except at this time. We were acquainted with a celebrated statesman who informed us he had never known this to fail, and had the most implicit confidence in this sign. Dr. Meyer says he has never seen birds oil their feathers from their oil glands in order to secure them from rain: but he has seen many do so when the weather was over cast, and when there were indications of rain. It is said that the English robin is termed the naturalist's barometer; for on a summer's day, though the weather may be rainy and unsettled, he sometimes takes his stand on the topmost twig that looks up to the sky, or on a housetop, singing cheerfully and sweetly. When this is observed it is an unerring promise of succeeding fine days. Sometimes, though the atmosphere be dry and warm, he may be seen, melancholy, chirping, and brooding, in a bush or low hedge. Bears, wolves, and other animals scent the coming rain. The wolves set up a terrible howling, and, raising their heads, point their noses in the direction in which it is coming, oftentimes twelve hours or more before it falls. The large Gallapagos tortoise always searches for a place under cover, into which he may go twenty-four hours or more before the rain falls. At one of the islands of the African coast which I visited there was a large tortoise farm, where they were breeding these animals for food. On a bright, clear morning not a cloud could be seen, everything indicated a bright, warm, clear day. Nearly all the tortoises in the inclosure were heading in one direction, toward some overhanging rocks, where there was a pen. The proprietor informed me that rain would certainly fall during the day, and, sure enough, it came down in torrents in the afternoon. These animals, and I believe all the family, have a great antipathy to rain drops falling upon their carapaces. The expression of animals which show a pre-sensation of rainy weather may be explained, partly from the increasing weight of the atmosphere, partly from their manner of living, and partly from the want of moisture, which is necessary to their existence. Man, in a sound state of health, is subjected, on the approach of stormy weather, to heaviness of body and mind, a want of capacity to perform his usual occupations, a yawning and relaxation, which are highly disagreeable. These are accompanied also with a sensation of heat. The high flight of birds, which hasten a higher flight At a meeting of the members of the French Academy, held at Paris in July, 1850, evidence was shown that the district of the city of Paris where the disease was most prevalent, it was noticed that the horses became uneasy and were affected with the disease in a like manner with man, and that often, in the case of other epidemics, a common liability of men and horses had been noticed. Horses surely have a reasoning power. They become attached to each other, especially to their keepers, if kindly treated and petted. Here is a remarkable instance which occurred but a few months ago, showing the intelligence of the horse. Lieut. Robertson, of the Royal Engineers, was attacked by the Ghazi of Gullston, India. It appears that the was on horseback. Both entered into friendly conwater the shores of the bay presented a most singular trial of speed, in which Lieut. Robertson outstripped there unpacked. hind, suddenly drew his tulwar and inflicted a severe wounded his hand, which he had raised to ward off the Ghazi's attack. Lieut. Robertson was brought into Quetta, and taken to the station hospital, where arrested and identified by Robertson, and his guilt proved, was tried, and sentenced to be hanged and his body afterward burned. The sentence was carried into effect at once. It is stated that when Lieut. Robertson fell from his horse and was lying on the ground bleeding profusely, the faithful animal protected his master from further injury by kicking at the Ghazi and attempting to bite him. But for this remarkable behavior on the part of Lieut. Robertson's horse, it is supposed that the Ghazi would have probably hacked Lieut. Robertson to death. There are many instances of cats, that had been made pets of, deserting the house at the time of sickness and death. One case came under our own observation, that of a full-blooded Maltese cat, who was a great favorite of the lady of the house, and was fond of lying on a cushioned chair when she was reading or sewing. The lady was taken suddenly ill, and was removed to her room. On the day this took place, the cat left the house, and remained away for ten days. No one knew where she was hiding. During this time the lady died, and was buried. It was some days before the cat became reconciled to the absence of its mistress. The great intelligence of the archer fish, Chelmo costratus, is really wonderful! It swims near the banks of streams in search of prey. As soon as an insect is seen on the overhanging branch, he at once fills his mouth with water, and throws it out in a small stream with such great precision that he seldom misses the object, and it falls into the water and is instantly devoured. The Chinese keep these fish in confinement and amuse their friends by placing live insects on a bough over the water so that they may see the great intelligence of the fish. The gouramie builds a nest for its young and will defend them with its life; is a remarkably intelligent fish. I have had them in confinement, and would frequently call them from their hiding places among the rocks in a large basin, and they would come and feed from my hands. The stickleback of our own country is an intelligent and wonderful fish in many respects. They build a nest for their ova, and will not allow any other fish to There is a species of the belone or garfish called aiguille that deposits its spawn in a way, so far as I know, that is very singular and unique. It selects some floating body, to which it attaches the end of the long membrane in which the ova are enveloped, and then it winds off just as a person winds cotton thread round a spool or any other substance. I have seen several bodies thus coated, some of which had a length of fifteen or sixteen feet, in which the eggs, many thousands in number, about the sixteenth of an inch in diameter, were interspersed. This depositing the ova is effected by the fish leaping over and diving under the body on which it deposits its spawn. I have seen a common wine bottle completely covered with spawn floating on the ocean. From what is here shown of birds and animals evincing a fear of the terrible disease the cholera, may it not be caused by something in the atmosphere that affects them the same as it affects man, and may not the great intelligence given them by their Creator who governs everything cause them to flee from malarial districts, and other places, which are injurious to them. Intelligence in animals I think one of the most wonderful gifts of the Creator. There are many instances which we could record of higher degrees of intelligence that would be impossible to deny, that animals arrive at a knowledge of cause and effect. The great steamships plying between Australia and which mutton, frozen, is preserved and delivered in London in fine condition. Australian flowers preserved in ice are also carried to London. Recently at a special meeting of the committees of the National Chrysanthemum Society held in London, some frozen blooms of chrysanthemums
sent from Sydney, New South Wales, were exhibited. Four large incurved and other Japanese blooms, inclosed in great blocks of ice, 18 inches square and 8 inches deep, had been sent by Mr. R. Forsyth, of Sydney, a well known grower, and were a portion of the group with which he gained the silver cup of the Sydney Horticultural Society in April last. These fine examples of the perfection to which the British gardeners in Australia have brought the Chinese and Japanese flora were shipped to England on the P. and O. steamer Ballarat, and, after being stored at Messrs. Sweeting's and the Cold Storage Depot at Blackfriars, were sent to the Aquarium and #### HEAVY WAGONS SHOWN AT THE FAIR. In the display of wagons for heavy work at the Exposition, the exhibit of the Chatham Manufacturing Co. (Limited), of Chatham, Ontario, Canada, occupies a prominent position, and has attracted much attention. These wagons, though not so tawdrily got up as some, are among the best and most mechanically constructed of any wagons shown for the hard usage such wagons get in actual service. The exhibit there being used on both the peculiar style of arms or thimble skeins patented by Mr. D. R. Van Allen, the president of the company. This thimble skein or arm strengthens the axle through what was formerly its weakest portion, and practically does away with the old time breaking point of axles, also dispensing with the use of truss rods. The arm admits of the sand board and front axle and bolster and hind axle being combined, forming a complete and solid truss, the one reacting upon the other in such a way as to strengthen all the parts. By means of this improvement the wagons of the company adapted to carry the heaviest loads are yet so light that the gearings weigh only one-eighth of their carrying capacity, and the three by ten inch cast thimble skeins or arms have carried five to five and a half tons without straining. Another noticeable feature of this display is the Simpson patent malleable adjustable stake, used on the world ever advanced in population and wealth according to the ports from which it is shipped. None wagons or farm trucks not intended for logging. These stakes on narrow track wagons are adjustable from thirty-eight to forty inches merely by slackening two nuts to a stake, admitting of very much stronger wagon bolsters, because there is no big mortise through the ends, and the iron plating on top of the bolsters runs from end to end. The upper box and seat of the complete wagon is quarter-sawed sycamore, and the lower box is quarter-sawed white oak. ## A. W. GRAY'S SONS EXHIBIT OF "HORSE POWERS." The exhibit made by A. W. Gray's Sons, of Middletown Springs, Vt., at the World's Columbian Exposition is an especially fine one in a line in which manufacturers in this country have always held a leading position. It comprises horse power, grain thrashing and wood sawing machines, the horse chinery in wagon shops, bakeries, dairies, for pumping, grinding apples for cider, cutting feed for stock. operating grist mills, etc. The planks of the platform on which the horse walks, in the horse powers, are fastened together on the under side by a steel gear, connected by steel rods, which serve as axles for rollers. moving with the platform, the gear meshing with pinions on a shaft from which power is furnished to the various kinds of machinery. speed of the band wheel with horses walking ordinarily fast is ninety revolutions per minute. These horse powers with grain thrashing outfits may be conveniently moved from place to place to do thrashing on different farms as desired. Drag saws and machines for sawing logs, and circular saw machines, adapted for most convenient and efficient operation by these horse powers, have also been for many years a leading specialty with the firm, which was established over fifty years ago, the present proprietors having been brought up as boys in the shop. Besides having a practical familiarity with every part of the work, they have invented and perfected many of the devices in use in the machines. The illus- full detailed information of the construction and operation of the machines. # The United States Leads. The United States is now the leading manufacturing country in the world. We have far outstripped all other nations in the magnitude of our industrial operations. It is almost incomprehensible that in ten years the increase in capital invested in manufactures should exceed the total invested only twenty years ago. The value of our manufactured products increased about they labor, they are practically bankrupt. In all of tively little demand for such merchandise, would have \$12,700,000,000 in 1900—but that is too much to expect. The same rate of growth in mining interests in this decade as in the last would make our mineral output in 1900 nearly \$1,200,000,000, while a smaller percentage of gain, only equaling in volume the total increase in 1890 over 1880, would bring the figures to over \$950,000,000. If our coal miners add to the output of scarcely be limited.—Engineering Magazine. 1890 as many tons as they added to that of 1889, ignorconsists of one "Chautauqua Giant" farm wagon ing in this the percentage of growth, 317,000,000 tons gearing and one complete "Chatham Giant" wagon, will be the production of 1900. No other country in THE WORLD'S COLUMBIAN EXPOSITION-EXHIBIT OF HEAVY WAGONS OF THE CHATHAM MANUFACTURING COMPANY. as the United States is doing. The progress of the past of the sugar is of very high grade, owing to the absence shows no signs of halting. In fact, the development of high class machinery. Each district produces what of our industrial interests is steadily broadening out. Contrast our position and condition with Europe: with resources surpassing those of all Europe, with wealth-creating possibilities in soil, minerals, timber, and climate unequaled by Europe, and practically without limit to their profitable utilization, with a homogeneous population of 65,000,000 people unvexed by the arbitrary regulations of half a dozen different governments, and free from the drain of standing armies, the United States justly commands the wonder and admiration of the world. Great Britain is no longer the manufacturing center of the world, for we have taken the foremost position in that line. Its vast iron and steel business is powers being used for running a wide variety of ma-l yearly increasing in cost of production, while ours is the white and dark sugars are mixed together in certain THE WORLD'S COLUMBIAN EXPOSITION-"HORSE POWERS," THRASHING MACHINES, ETC., SHOWN BY A. W. GRAY'S SONS, OF MIDDLETOWN SPRINGS, VT. trated catalogue which they send on application gives decreasing. It cannot meet the world's growing de-calibers length insures a longer and more thorough mand for iron and steel, because it cannot increase its production to any great extent. It produces less pig iron now than it did ten years ago. Much of its ore it imports from distant countries. Its cotton is all imported. It spends about \$750,000,000 a year for foreign foodstuffs. On the Continent every nation is burdened with debt, and none of them can hope to pay off its obligations. Measured by their natural resources and advantages for continued growth against their debts, and the many disadvantages under which 60 percent; add 60 percent to the output of 1890 and we them the cost of production and living must steadily increase. In the United States we have scarcely laid the foundation for our future greatness. In natural resources we are richer than all of Europe; we are paving off our debts faster than they are due, we have barely scratched the ground in the development of our mineral wealth, and our agricultural growth can #### Manila Sugar. In a paper on the Philippine Islands by Mr. H. A. McPherson, and published in The Sugar Cane, it is stated that the canes of that country are very rich. and that with better appliances the product, which is now very poor, might be made equal to any in the world. Agriculture is carried on almost entirely on the metayes or share system, the owner of the land providing the implements, animals, machinery and seed, and the produce is divided between the owner and the laborer, and it is said that the latter rarely gets a fair share. The laborer is generally in debt to the landlord for advances and there is usually a balance against him at the end of the year. The landlord, however, also suffers in the same way, he working on borrowed capital, advanced by local capitalists. The cultivation of sugar is practically confined to four islands, Luson, Panay, Negros and Cebu, the first supplying what is known as Manila sugar, the second and third Ilo Ilo and the last Cebu sugar of our foreign and domestic trade and commerce and is called dry and wet sugar, the former being divided into various grades. The Manila sugar is what is called clayed, which means that after the juice is boiled in open pans the mass is poured into an earthenware receptacle like an inverted cone and a thin layer of liquid mud is then put on top, the moisture of which gradually percolates through the mass, washing the molasses from the crystals and carrying the bulk of it through an aperture at the bottom into earthern jars below. After standing for some weeks or months, the sugar is ready for further manipulation on the dry grounds, which are entirely in the hands of the Chinese, who purchase the raw material from the planters. When they are opened the sugar is almost white at the top and gradually becomes darker toward the bottom; > proportions according to the grade which is to be produced. It is then spread on mats to dry in the sun, for which one day is sufficient in dry, hot weather. When dried, it is packed in mat bags and is ready for shipment. ## The Brown Wire Gun. First Lieutenant G. N. Whistler, U. S. A., gives some interesting details in regard to the Brown segmental wirewound gun, over the tests
of which, on August 25, at Sandy Hook, he presided. The muzzle velocity was 2,875 foot seconds. The muzzle velocity of 2,875 feet per second, Lieutenant Whistler says, shows a muzzle energy of 3,557 foot tons, or 856 foot tons per ton of gun. This is the highest record, he declares, ever obtained with any gun. The muzzle energy per pound of powder is 169 foot tons, according to Lieutenant Whistler, and which, he savs, has never been exceeded so far as he knows in a 45 caliber gun under similar conditions of loading. gun which was tested fired a projecilte weighing 62 pounds. The gun is a 5 inch weapon, 45 calibers long. This is 5 calibers longer than the most highpowered ordnance rifle now in use in the navy. Long calibers are unhandy, particularly at sea; but the increased burning of the powder, so that the chances of unignited grains of powder being thrown out are reduced to a minimum. The record of the Brown wire gun, so far, shows that the projectile fired with Leonard smokeless powder would penetrate 1608 inches of wrought IN New York all the bonded warehouses are at present packed solid with foreign goods, waiting the improvement of the times, there being now compara- #### Some Egg Hatchings. BY C. H. BENNETT Some years since, by way of recreation, I became interested in microscopy, and, having secured a suitable outfit, I decided to turn my attention along the line of entomology and kindred subjects. Having a wide-range battery of objectives, including several high powers, I was prepared to observe the minutest forms of organic life, and had soon trespassed (my work was so unsystematic and unscientific that I can but call it trespassing) on the field of insect oology. My ambitious watchfulness soon made me quite expert in gathering and mounting a variety of eggs, ranging in size from silkworms' to mosquitoes'. Each new acquisition yielded a rich harvest of delight, for my microscope revealed a diversity in size, form, color, and markings fully equal to those larger varieties we are accustomed to find in the nests of birds. I had frequently noticed on the flanks and legs of horses that were not thoroughly groomed a profusion of bot fly (Æstrus equi) eggs, and, awaiting the proper time (August), I picked from the legs of a patient nag a number of hairs each ornamented at the end with one of these minute yellowish specks, with a view of submitting them to microscopic examination as a means of satisfying my curiosity. No sooner had I focused my instrument on these almost invisible objects than they instantly developed into forms of most marvelous dispositions, and thus control them by kindness and So entirely unique were they, differing from anything that had previously come under my observation in every detail, that I at once determined to mount them for preservation. I therefore carefully folded them in a bit of paper and placed them in my pocket, where they remained a month before I found leisure to mount them. On removing them from the wrapper I once more placed them under the microscope, that it might assure me they were just as I left them a month before. Convinced that they were in their normal condition, I then proceeded to arrange them in an orderly position before sealing them in their crystal tomb, and, large returns in both pleasure and profit.—Charles B. to make it less tiresome for my eyes, I condensed the light of the lamp on the objects with an ordinary reading glass. While thus manipulating them I was annoyed by a slight motion among the hairs to which the eggs were attached, and turned my breath away, under the impression that it was the cause of the disturbance. This, however, seemed to make no difference in the embryonic commotion, and for a moment I was thoroughly mystified. Without waiting for further developments of a spiritualistic nature, I again appealed to my microscope to satisfy my curiosity. Placing the whole collection under a two-thirds objective, I was inexpressibly delighted to see fully one-fourth of the larvæ in the very act of opening their shells. It instantly occurred to me that in using the reading glass in arranging the ing, dip the bunch head downward into the water eggs I had not only condensed the light, but also the | and give it a gentle shake. This is very efficacious in heat of the lamp sufficiently to produce the wonderful result which my faithful microscope had revealed. It is needless to add that I lost no time in hermetically sealing the objects of my delight in the glass cells prepared for their reception, where all signs of life soon special rules for different plants. If the wistaria is to ceased; and, as a result of this simple accident, I have a slide showing part of the eggs unopened just immersed in spirits. The hydrangea and the lespedeza as they were gathered, while others show the grub with should also have the cut ends burnt to charcoal before his head and half his body protruding from the shell. It may also be interesting to the young student of nature to know that the egg of the bot fly is not the ends of their stems with fire or hot water. Land broken at all in hatching. The grub simply pushes a cap or lid from one end of his little cell and crawls out. Indeed, the shells are so strong that I have found it quite impossible to crush them between thumb and finger.—The Outlook. ## Animal Vocabularies. A good deal has been said about the probable existence of definite vocabularies in the language of the lower animals, and I believe one has gone to Africa to study simian speech. This is all well enough, but the colored maple is employed, the leaves are immersed time, thus subjecting every part of the wire to a unithere is no need of going beyond the barn yard to hear in water for an hour before using. The very dark form chilling temperature. of words. Hear the rooster's warning cry when he sees lighter ones are more enduring. The willow has its or hears indications of danger. It is a definite sound, and perfectly understood by every hen and chick. Drop food to the mother hen. She quickly inspects it, and if approved tells the little ones to eat, by uttering her well known "Coot, coot, coot!" If she decides that it is not fit to eat, she as plainly tells them to let it alone. The other day a green worm fell from a tree near a brood of chickens. Every chick ran to seize the morsel. The mother gave one quick glance at the insect and said, "Skr-r-r-p!" Every chick stopped instantly. But one willful child, loth to believe his mother's assurance that it wasn't fit to eat, would make him sick, etc., started a second time, to pick up the worm. "Skr-r-r-p!" commanded the hen sharply. Even the willful child obeyed this time, and the whole dipped deeply in cold water, after which it is ready. brood walked off contentedly. Discuss as we will the The same treatment is applied to Senecio Kaempferi. particular reason for the hen's cackle before and after laying, the fact remains that it is a definite utterance, by having its stem tightly tied around with soaked manufacture of their instruments. as plainly understood by both gallinæ and homines as any expression in human speech. My horse has a low whinny which means "water." and a higher-keyed, more emphatic neigh means food. When I hear these sounds I know as definitely what she means as if she spoke in English. This morning, passing along the street, I heard that same low whinny and, looking up, saw a strange horse regarding me with a pleading look. I knew he was suffering from thirst, and no language could make it plainer. The language of the lower animals is not all articulate. It is largely a sign language. The horse does a deal of talking by motions of the head and by his wonderfully expressive looks. He also, upon occasion, talks with the other extremity. A peculiar switch of the tail and a gesture, as if threatening to kick, are equine forms of speech. The darky was not far wrong who said of the kicking mule, "It's just his way of talking!" The dog can not only "look volumes," but can express whole sentences by wags of the tail more readily than can the waving flags of the signal corps. All that is necessary is to learn his code. We expect our domestic animals to learn our language, and punish them cruelly if they fail to both understand and obey our commands; yet, notwithstanding our higher intelligence, we fail to learn their language, by means of which we might better understand their wants and sympathy, instead of by harsh and arbitrary treatment. I see horses passing along the street, which are saying by every look and motion that they are suffering acute torture from a too short check rein. Their drivers are often people who would be shocked if they could comprehend their own cruelty. But they do not understand horse language, and some of them do not seem to have horse sense. The language of animals is a neglected subject. The facilities for its study are within the reach of all, and no previous preparation is required. The study can be pursued without interfering with other occupations, and even a little systematic observation will bring Palmer, in Science. #### How to Preserve Cut Flowers. In the hot, dry days of summer one often finds the flowers in vases, although freshly gathered, in a droop ing condition, the result, it may be, of plucking them at the wrong hour, or of improper attention afterward. They who would keep their bouquets bright and vivid throughout the day should rise betimes, for there is no freshener like the dew of the morning, whether for blossom or complexion. Poppies, fleeting and frail, if plucked before the sun has dried the dewdrop at their hearts, and quickly placed in water, will last sometimes for two days without falling, and the same is true of other tender garden flowers. Should the basket of cut flowers show signs of droop reviving flowering shrubs brought from a distance, when they become wilted before reaching home. The Japanese have made a special study of this
branch of the art of flower arrangement, and have be used in decoration, its cut stem is burned and then immersing in water. All flowers which suck up water with difficulty are improved in vitality by treating plants derive benefit from burning, but water plants require boiling water. When the Japanese use the bamboo in decoration, which is their frequent custom, they cut it at a very early hour, four in the morning, and remove the bottom division or knot, leaving the upper division untouched. They then fill the tube with fifty-eight grains of cloves stewed in hot water and seal up the bottom. It is then laid horizontally until the liquor inclosed is cool, after which it is ready for use. When red ones are particularly hard to preserve, but the cut stems spliced off and then bound up with a drug they call senkin, the branch afterward being left in water overnight. The morning glory, of which the Japanese make reat use, is carefully cut in the evening after the flowers are tightly closed. The sleeping buds are then gently wrapped in soft paper by their dexterous fingers, and this is not removed until the following morning, when the arrangement is made. Begonia Evansiana should be cut in the early morning, the buds removed with a sharp knife, and the whole immersed in water before arranging. Monochoria vaginalis, when cut, should have about one inch of the end immersed in hot water until the color changes, and it must then be The prickly poppy (Argemone Mexicana) is treated paper at a point five or six inches above the cut end. This end should then be burnt with a flame, after which the paper is removed, and the flower is ready to The yellow water lily (Nuphar Japonicum) should be selected from a shallow spot, and cut during the heat of the day. A liquid composed of cloves boiled in tea should then be blown into the cut stem, and thus the vitality of the flower is prolonged. Whether this treatment is also desirable for the white pond lily, Mr. Conder, who is my authority for Japanese practices, does not state, but it would be worth while to experiment, if thereby this lovely flower could be longer retained in perfection. The great Japanese irises, if cut while in bud, will open freely in water, and last longer than if allowed to open out of doors, where the sun promptly wilts their beautiful blossoms and curls the tender petals almost before they have expanded. Nasturtiums, too, suffer from being gathered while the sunlight is hot upon them, but in the early morning, with the dew still damp upon their leaves, they can be found nestling in the shadow with half-open heads just in the right condition for our vases. The fragile heliotrope plucked at this hour will retain its freshness, whereas if culled when the sun lies fierce upon it, it will droop and turn black in the shadiest parlor. Flowers and plants wilt because water is transpired by leaves and petals more rapidly than it is taken up through the stem. On a dry, hot day leaves and flowers often wilt on the plant. Even when not actually wilted they may contain barely moisture enough to hold them in shape, and when cut under these circumstances they wither at once unless they are put into water instantly, when they will often become more plump than they were before cutting. The stems of plants when cut begin immediately to change structure, and form a callus at the wound, which interferes with the absorption of fluids. It is advisable, therefore, to cut the stems off a second time while under water, so that all the channels through which water rises may be without any obstruction. As there are many substances besides water in the juice of plants, some of these odd Japanese practices may have some value. At least, they are worth trying.—M. C. Robbins, in Garden and Forest. ### Tempering Mainsprings. For some time past an Illinois concern has been engaged in a series of experiments in tempering mainsprings with a view of reducing the defects in their manufacture to a minimum. As the result of these experiments, a new process has been devised which is said to make these small springs almost perfect. Thin sheet steel rolled to a suitable thickness for the manufacture of the desired spring is split into ribbons, considerably wider than the finished spring. They are then carefully and solidly wound on arbors against a face plate, so that they resemble solid disks. The face plates are then placed upon a lathe and the edges of the spring ground until all cracks, no matter how minute, have been removed, leaving the wound ribbon a perfectly smooth and polished disk of metal. The other side is treated in the same way, and the result is a ribbon of thin steel perfectly solid on its edges and the same thickness throughout. As the thickness of a mainspring is between 0.008 and 0 009 of an inch, the degree of heat at which this bit of steel will take a proper temper is a fine point. To secure the even temperature required, a clever electrical apparatus has been invented. A vertical tube. thoroughly packed by asbestos to prevent its being affected by the outer air, is heated by means of an electric current, which is governed by a rheostat to regulate the temperature. An opening at the top of this tube is just large enough to admit the steel to be tempered. At the lower end of the heating tube is placed the chilling bath, which is supplied with oil from a pipe, the flow being steady and even. By an ingenious arrangement, the oil is fed to the bath on both sides of the moving ribbon of steel at the same The metal passes through the heating tube into the chilling bath without exposure to the air, the intervening space between the tube and the chilling medium being covered by a second tube with an air-tight connection, which forms a muffle. In this way there is secured a ribbon of steel without cracks on its edges or scales on its surface, perfectly even and straight and of uniform temper. As the wire is heated by radiation and has no opportunity to become oxidized, "pitting" is altogether prevented. Experts speak highly of this new process, and it would seem as if the days of the perfect watch spring were near at hand.—Bos. Jour. OLD SPRUCE FOR VIOLINS.—The ancient Hammond house in Marblehead, Mass., is being torn down, and some of its spruce timbers, which have been protected from rain and wind for more than 200 years, are being eagerly sought after by violin makers for use in the #### RECENTLY PATENTED INVENTIONS. Engineering. STEAM BOILER.—Philip J. and Fred. W. Doll, La Salle, Ill. This is an upright tubular boiler, with tubes leading from the fire box in the lower part of the casing to a smoke box in the upper part below the water line. The smoke box is shaped like the frustum of a cone, and supports a conoidal bonnet of cast iron, which does not radiate much heat and may be easily removed when burned out, the smoke box proper being protected by the water, and the products of combustion therein assisting to generate steam. The boiler is designed to be inexpensive, extremely durable, and very effective. FURNACE DOOR.—Charles W. Reneau, Meridian, Miss. The door opening, according to this invention, has a lining provided with transverse ribs on its sides, whereby air spaces are formed between the sides and the wall of the opening, and the door itself has an air inlet and an air space opening into the air spaces at the sides of the lining, a shield covering the interior opening of the lining. The sides and ends of the door lining are made separate, to facilitate replacing any of the sections as they may be burned out, without disturb ing the others. MOTOR.—Frank W. Clark, Mount Desert, Me. A vertical shaft connected with the machinery to be driven has a forked upper end supporting a plate engaged by a shaft provided with a weighted arm and adapted to swing, the upper end of the latter shaft being journaled in a swinging lever and pressed upon by springs. The device is designed to uniformly transmit motive power, through a continuous rotary motion, from the driving machinery to machines to be driven. VALVE.—Thomas P. Ford, Brooklyn, N. Y. This is an improvement on a former patented invention of the same inventor, providing a valve of simple construction which works automatically to introduce a lubricant when the pump is running. The invention compries a valve carrying a piston controlled by fluid pressure, and a lubricator having a valve controlled by the piston, so that when the valve is seated the lubrica tor is-shut off, and when the valve is unseated the lubri cator feeds the lubricant. ### Electrical. CONDUIT FOR BUILDINGS.-James J. Powers and Robert Van Buren, Brooklyn, N. Y. This is a conduit of baked clay forming an integral part of the wall, floor, or ceiling, and is of built-up sections, each having apertures to receive wires, collars around the apertures at one end of a section being received in recesses at the opposite end of each section. The conduit may be placed in a building and the wire omitted for any length of time, the sections being made of suitable pro portion for laying along with the brick in a wall, and left unglazed on the exterior, with a rough surface to adapt it to receive and hold mortar. The construction admits of readily changing the wiring when nece ELECTRIC BELT.—Adolf Stephenson and Jonas Backstrom, Stromsburg, Neb. This is a belt to be worn on the person for remedial purposes, and is formed of elastic webbing, with a lining of flannel, provided with a series of studs or buttons of copper and zinc, the metals alternating with each other, and the larger portions of the buttons being in contact between the flannel linings and the elastic webbing. The shoulder straps connected with the belt are also provided with similar buttons, the convex portions of which are in contact with the skin when the belt is worn, and there being electrical connections to complete the circuit. TREATING REFRACTORY ORES. Charles J. Fauvel, London, England. This is a
method of treating ores having precious and other metals, to oxidize and eliminate the associated sulphur, arsenic, antimony, and tellurium compounds, by subjecting the crushed ore in a fine, free-falling stream to increasing degrees of radiant heat and a reversely flowing current of hot air and steam, out of reach of contamination with the furnace gases, the particles of incandescent ore being then quenched in cold water to split up the particles, remove scale, and generate steam to assist the oxidizing and desulphurizing action of the air. The improved process is preferably carried out by means of a furnace formerly patented by the same inventor. MAKING SULPHURIC ACID.—Francis B. Hacker, Charleston, S. C., and Peter S. Gilchrist, Baltimore, Md. A sulphuric acid apparatus is provided by this invention with improved connections between the several lead chambers, the lead chambers and the Glover tower and between the chambers and the Gay Lussac tower, to reduce the usual chamber space and cost of plant, increase the quantity of acid, carry off the excess sive heat caused by the mixing of the gases, and provide for the quick and thorough mingling of the gas molecules as they pass from chamber to chamber. SHUTTER WORKER.—Thomas N. Lupton, Winchester, Va. This invention provides a simple and compact construction whereby the shutter may be opened or closed from within the room, and locked and unlocked in both its open and closed positions without requiring the window to be opened. A shaft extending through the window frame, and provided with a handle within the room, has a connection with the hinge of the shutter involving a novel construction and combination of parts, whereby the shaft may be easily turned to open or close the shutter. The construction is such that the shutter may be easily lifted off when WOOD TILE FLOORING.—Antonio Salvatico, Garessio, Italy. The tile, according to this improvement, is preferably of wood, and may be of any desired shape or thickness, the tiles being laid close to one another at their upper faces, and tongued and grooved on their edges, and also grooved or channeled on their lower faces in such manner as to receive a cement or glue to hold the blocks firmly on any bed prepared to receive them, the engagement between the tiles and their support being such that the floor will be CLOTHES POUNDER.—Samuel and rederick G. Davis, Las Vegas, New Mexico. This is a device having a circular, apertured, bell-shaped body, not to be used as a pounder, but to be alternately pressed down upon and raised from the clothes, forcing and drawing the water through them, the action being facilitated by the arrangement of the air chamber and holes. so that a brisk circulation is kept up as long as the device is operated, thus washing or rinsing the clothes without injuring them. OVEN DOOR.-Walter R. Webster and James Hamilton, Pine Grove, Cal. This is a door with a window, especially designed for stove and range ovens. It is so made that the edge of the glass will be kept comparatively cool, and the whole body of the glass will be evenly heated, and thus prevent breaking. With this view the glass is supported and held in an asbestos or other non-conducting flexible packing, in such manner as to allow for its expansion and contraction, while a free circulation of air is provided for around the edges of the glass, which nowhere comes in direct contact with the REED PUFF FOR FURNITURE.—Charles Bush, Newburg, N. Y. A strong, durable, and inexpensive ornament for furniture is provided by this inven-tion. It is a reed puff fabric made by clamping a series of reeds around a former to bend them into proper shape, and while the reeds are so clamped beveling their inner faces at the ends, finally flexibly connecting the beveled ends of the series. The construction is such that a piece of the fabric of suitable length may be made to inclose a rod or other part of a piece of furniture and form an ornamental puff or figure thereon. HOLDER FOR CUFFS, ETC.—Richard Katzer, Brooklyn, N. Y. This is a compact case of durable construction more especially designed for the use of travelers, for conveniently holding cuffs, collars, scarfs, neckties, handkerchiefs, etc. Supported on its folding or bellows sides is a series of longitudinal partitions forming separate compartments for the articles to be stored, which are thus kept in a flat condition, room being provided for a large number of articles without rendering the holder bulky. BICYCLE.—George F. Case, Medina, N. Y. A spring-cushioned connection between the frame of the machine and the driving wheel is provided by this invention, to render the riding more comfortable over a rough road, while the driving wheel is held at all times in proper alignment with the frame with which it is Note.—Copies of any of the above patents will be furnished by Munn & Co., for 25 cents each. Please send name of the patentee, title of invention, and date # SCIENTIFIC AMERICAN # BUILDING EDITION. SEPTEMBER, 1893.-(No. 95.) TABLE OF CONTENTS. - 1. Elegant plate in colors, showing a residence at Greenwich, Conn., erected for Miss E. L. Kirtland. Floor plans and two perspective elevations. An excellent design. Mr. W. S. Knowles, architect, New York - 2. Plate in colors showing the Queen Anne residence of W. H. McKnight, at Springfield, Mass., erected at a cost of \$11,500 complete. Perspective views - and floor plans. An attractive design. 3. A colonial dwelling erected at Rutherford, N. J. Perspective view and floor plans. A model design. Cost \$3,476 complete. Mr. H. G. Ten Eyck, architect, Newark, N. J. - cottage erected at Bridgeport, Conn., at a cost of \$2,775 complete. Floor plans, perspective view, etc. Mr. A. M. Jenks, architect, Brooklyn, N. Y. An excellent design. - 5. Engraving and floor plans of a Queen Anne dwelling recently erected for W. Q. Taylor, Esq., near Boston, Mass. Samuel J. Brown, architect, Boston, Mass. - A cottage at Allston, Mass., erected at a cost of \$2,500. Floor plans and perspective view. A pleasing design. Mr. A. W. Pease, architect, Boston, Mass. 7. Floor plans and perspective elevation of a cottage at - Allston, Mass., costing about \$2,000. Mr. A. W. Pease, architect, New York. - 8. A tasteful design for a smithy or blacksmith shop. 9. Illustration of a new English villa at Worcester. - View of an Italian courtward. - 11. The Fifth Avenue Theater, New York. View showing a section of the proscenium arch and a portion of the family circle, also an engraving of the old Fifth Avenue Theater, burned in 1891. - Miscellaneous contents: Wood pavements as a coating for iron and other metals.-White in house painting. — Ontario metallic paint.—Deadening floors.-Tropical roofs.-Purification of air.-Sessoning stone.—Stone under the microscope Housekeepers should remember. - The Climax solar water heater, illustrated -Roofs and roof covering.—Litharge cement. — Tower supported tanks, illustrated.—Larsen's improved refrigerator illustrated.-The New York Aquarium.-Adjust able bevel-band saw machine, illustrated.—United | Dund. 3. What is the rule to find the fifth root of a States pitch pine industry.—The Cook patent illustrated. - The Howard combination heaters illustrated The Scientific American Architects and Builders Edition is issued monthly. \$2.50 a year. Single copies, Queries of your valuable paper the relation between the 25 cents. Forty large quarto pages, equal to about two hundred ordinary book pages: forming, practically, a large and splendid MAGAZINE OF ARCHITEC-TURE, richly adorned with elegant plates in colors and with fine engravings, illustrating the most interesting examples of Modern Architectural Construction and allied subjects. The Fullness, Richness, Cheapness, and Convenience of this work have won for it the LARGEST CIRCULATION of any Architectural Publication in the world. Sold by MUNN & CO., PUBLISHERS, all newsdealers. 361 Broadway, New York. ## Business and Personal. The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office as early as Thursday morning to appear in the following week's issue Order pattern letters & figures from the largest varie ty. H. W. Knight & Son, Seneca Falls, N.Y., drawer1115. "U. S." metal polish. Indianapolis. Samples free. Improved iron planers. W. A. Wilson, Rochester, N.Y. For stone quarry engines. J. S. Mundy, Newark, N. J. Shingle machinery. Trevor Mfg. Co., Lockport, N. Y. Microbe Killer Water Filter, McConnell Filter Co. Buffalo, N. Y. Geo. T. McLauthlin & Co., 120 Fulton St., Boston, Mass Steam Hammers, Improved Hydraulic Jacks, and Tube Expanders. R. Dudgeon, 24 Columbia St., New York. Screw machines, milling machines, and drill press The Garvin Mach. Co., Laight and Canal Sts., New York Centrifugal Pumps. Capacity, 100 to 40,000 gals. per minute. All sizes in stock. Irvin Van Wie, Syracuse, N.Y. Emerson, Smith & Co., Ltd., Beaver Falls, Pa., will end Sawyer's Hand Book on Circulars and Band Saws free to any address. Guild & Garrison, Brooklyn, N. Y., manufacture steam pumps, vacuum pumps, vacuum apparatus, air pumps, acid blowers, filter press pumps, etc. The best book for electricians and beginners in elec tricity is "Experimental Science," by Geo. M. Hopkins. By mail, \$4; Munn & Co., publishers, 361 Broadway, N. Y. For the original Bogardus Universal Eccentric Mill, Foot and Power Presses, Drills, Shears, etc., address J.S. & G. F. Simpson, 26 to 36 Rodney St., Brooklyn, N. Y. Patent Electric Vise. What is claimed, is time saving. No turning cf handle to bring jaws to the work, simply one sliding movement. Capital Mach. Tool Co., Auburn, Competent persons who desire agencies for a new popular book, of ready sale, with handsome profit, may apply to Munn & Co., Scientific American office, 361 Broadway, New York. Send for new and complete catalogue of Scientific and other Books for sale by Munn &
Co., 361 Broadway. New York. Free on application. HINTS TO CORRESPONDENTS. Names and Address must accompany all letters, or no attention will be paid thereto. This is for our information and not for publication. References to former articles or answers should give date of paper and page or number of question. Inquiries not answered in reasonable time should be repeated; correspondents will bear in mind that some answers require not a little research, and, though we endeavor to reply to all either by letter or in this department, each must take his turn. Special Written Information on matters of or in this department, each must take his turn. Special Written Information on matters of personal rather than general interest cannot be expected without remuneration. Scientific American Supplements referred to may be had at the office. Price 10 cents each. Books referred to promptly supplied on receipt of price price. Minerals sent for examination should be distinctly marked or labeled. (5355) P. J. L. writes: I am making an instrument in which I wish to use a magnetic force of some distance attraction. It is desirable to have this attractive force of as even draught as possible. I find that by removing the core from a magnet (coil) I have a magnetic force exerted upon a piston head of soft iron working through this core hole which observes the center of the coil hole, but the force is weak. Will you inform me whether I can increase this force by use of a hollow iron core, and how this core should be made? Should it be a omplete cylinder or be slotted or severed in the side? Should it have head on closed end? A. In Thomson's 'Electromagnet" you will find the subject of obtaining a long range for a magnet discussed. In general terms use a long magnet core. The easiest way is to employ equalizing levers or cams. We can supply the book, mall edition, \$1; last edition, enlarged, \$6 by mail. (5356) B. C. W. says: I have an amount of steel fittings that I have to braze with brass spelter, and I have great difficulty in cleaning the borax off after ward, that I use as flux, as the work is of an awkward kind to get at. Is there any other kind of flux that can be used, or is there any kind of acid that will soften the borax in any way? A. There is nothing so good as borax for brazing. The borax can readily be dissolved and removed by boiling the articles in sulphuric acid pickle, 1 part acid, 4 parts water, in a copper pan for a few minutes, then wash with clean hot water and dip in hot soda or lime water to keep the articles from rusting. (5357) H. C. L. asks: 1. I have heard other. What is it called? How much would 36 inches expand to a degree of heat? A. Zinc is the best accessible metal for expansion by heat. A bar 36 inches long will expand 0.0006 inch per degree. 2. What is the price lithium per pound? A. \$1 per grain, or \$7,000 per number? A. Take the square root of the cube root. It is better to do it by logarithms. (5358) Deutsche Continental - Gas - Gesellschaft in Dessau write: Please tell us in Notes and B. T. U. of heat and the calorie as being in general use in this country. We learn from an article in your contemporary, American Gas Light Journal, that the Pittsburg gas has a heating power of 4343 B. T. U. of heat per cubic foot. Now, what we want to know is, how much is that in calories per cubic meter? Is it that the B. T. U. of heat means the quantity of heat needed to raise the temperature of one pound avoirdupois of water 1º Fah.? Also the relations between the electrical units used in the United States and our ohm, kilowatt, farad. and others? A. The calorie in terms of the British 1.222. Then a cubic meter being 35.31 cubic feet multi plied by 434.3 B. T. U. per cube foot= calories per cubic meter. The B. T. unit being 1 pound of water raised 1° Fah. The electrical units are identical for all countries. (5359) W. S. W. asks (1) if there is such thing as vegetable ivory. A. Vegetable ivory is part of nut; the nuts are a regular article of importation. 2. What can be used to dissolve it? A. It cannot be dissolved. (5360) H. W. D. writes: Will you please inform me in your Notes and Queries the candle power of the light used in the largest of the search lights on the Manufactures and Liberal Arts building at the World's Fair, Chicago? A. The large search light on the Manufactures building gives a light equal to 45,600 candles. (5361) B. & H. ask: Will you kindly nform us through the columns of the Scientific Ameri-CAN how paper is made that the atmosphere will cause to change color? A. Saturate paper with a solution of cobalt chloride. The color will change with the hange of moisture in the air. (5362) S. G. S. writes: 1. Please tellne what makes my well pump squeak and howl so. I am using an all-brass cylinder and only a stuffing box at top of connecting pipe, instead of a pump standard. It is attached to a windmill, and in spite of all I can do it howls whenever it moves. I thought it was in the stuffing box, but I at last located it in the cylinder. The rod that connects plunger of pump and mill is perfectly straight and no crooks in side of pipe. It has been told me that the brass being sonorous caused this noise in some kinds of water. A. The squealing of deep well pumps is generally due to the pressure of the cupped leather packing against the sides of the cylinder and possibly to hard water for the lubricant. A long connecting rod also adds to the noise by its elasticity, giving a jerky motion to the piston. 2. Can a 21/4 inch cylinder draw water 1,500 feet through a 1 inch pipe when the rise is only 15 feet? A. The 21/2 inch pump cylinder should draw the water through 1,500 feet of 1 inch pipe if well charged with water to start with. No more than 3½ gallons per minute can be drawn through it, from the increased head due to friction. We recommend a larger pipe, 11/4 or 11/4 inch. 3. I have a range boiler back of my stove, and the tank that supplies said boiler is only about 5 feet above the top of boiler, and an air trap has formed somewhere, so at times I get no hot water in bath room. The pipes are air tight. How does this air get in and how can I get it out? How high should my supply tank be above the boiler in order to have pressure enough to overcome the air trap? A. The air in the boiler is liberated from the incoming fresh water by heat and probably accumulates in a siphon leading to the bath tub. The tank is too low and does not give pressure enough to vercome the air trap. No details of the run of the pipe being given, we cannot decide as to proper height of tank to overcome the air trap. 4. Where can I get suitable tables or books to give me the amount of friction of water in the pipes? A. Haswell's "Engineer's Pocket Book" gives details of computation for friction in water pipes, \$4 mailed. (5363) J. G. H. writes: I have a launch, hull 22 feet over all, 19 feet l.w. l., 4 feet 10 inches beam, and about 18 inches draught. I wish to fit her up for steam and would like to know the following: What horse power will I require to get a fair speed out of her, and what speed do you suppose I will get with the norse power recommended? What should be the size of engine, simple slide valve, and also size of steeple compound? I have a 4×4 simple slide valve offered me. but did not know what horse power would be required. Also would you recommend one of the boilers mentioned in Supplement, No. 702, which one, and how much arger it would have to be made to get the horse power equired? Also the diameter and pitch of propeller for this size boat and about the number of revolutions. Also about the weight of the boiler recommended, and bout what would be the extreme weight allowable for this size boat, for boiler and engine. As the boat is made of galvanized sheet iron, would ask if the hull will affect the compass? If so, how can I remedy the same? A. For power you will need 4 indicated horse power with steam at 100 pounds pressure to make 8 miles per hour. Single cylinder, 31/4 inches diameter, 4 inches stroke, making 320 revolutions per minute, propeller 20 inches diameter, set as low as possible or just under water at light load. Pitch of propeller 36 inches, 3 blade. We do not recommend a compound engine for so small a boat. It is too complicated for comfort. The 4×4 will be a good engine, if it is light and compact. It will give the required power with less pressure than 100 pounds. The boilers in Scientific American Supplement, No. 702, if made large enough, would occupy too much room. A submerged vertical tube boiler, 22 inches diameter, 36 inches high above the base, 33 tubes 1½ inch, weighing about 330 pounds, which with the engine and water in boiler will bring the weight up to about 650 pounds. The iron hull and machinery will deviate the compass to a considerable extent, which will be counteracted by setting the compass within an iron ring. (5364) Conductor, Galveston, writes: Will you kindly give a receipt for making a dip for reewing uniform brass buttons that have become tarnished? A. Remove all traces of lacquer and dirt from the buttons with strong caustic soda water. Wash in hot water and dip in strong nitric acid for from 3 to 6 seconds and immediately dip in boiling hot water, dry and lacquer while hot with thin shellac varnish. (5365) W.G. R. asks: What horse ower boiler will be required to heat a house 45×38 and ell 18imes30, two stories high,and two rooms in attic 14imes18 imesAlso amount of steam pressure. How do you compute the above? Is there any way of maintaining a pressure on water pipes so as to have running water in second story without having a supply tank overhead? If so, what is it? A. Assuming that your ceilings average ter feet high and for the winter climate of Vermont, you will need a 5 horse power boiler having a fire heating surface of 75 square feet. From absence of details we assume the house to contain 50,000 cubic feet of space, which requires one
square foot of radiating surface in rooms lunits is 18° Fah. and 2% pounds water, or a ratio of 1 to | for each hundred cubic feet of space, variable according #### TO INVENTORS. # INDEX OF INVENTIONS | AND EACH BEARING THAT DAY | TE. | |--|--| | [See note at end of list about copies of these pater | | | Advertising apparatus, S. Kuh | 04,421
04,453
04,324
04,325
04,508
04,678 | | Autographic register, H. Cook. 5 Bake pan, C. Schifferly. 5 Bale tek, W. A. Kilmer. 5 Baling press, G. Schubert. 5 Band cutter and feeder, C. H. Zishka. 5 Barrel or crate, Dare & Hall 5 Battery. See Secondary battery. Storage battery. Beams mechanism for handling. A. E. Rhoades | 04,467
04,480
04,436
04,481
04,383
04,445 | | tery. Beams, mechanism for handling, A. E. Rhoades, 504,456, 5 Bed, folding, J. Christ | 04,458
04,328
04,515
04,333
04,557
604,336
604,633
604,663 | | mann 55 Boiler cleaner, G. E. Truax 55 Boiler tube cleaner, J. M. Dunn 55 Boiler tube closer, steam, G. C. Hicks 55 Book, shipping receipt, J. D. D. Mortimer 58 Box covering machine, W. Brandstaedter 58 Brace, G. S. Miller 57 Brake. See Car brake. Vehicle brake. Wason | 504,317
504,426
504,569
504,582
64,360
504,551
604,604 | | brake. Brake beam, H. B. Robischung. Brick or tile cutter, H. A. Riggs. Brick perfractory, A. E. Hunt | 504,621
504,364
504,584
504,559
504,452
504,526
504,358
504,693 | | Busbing, J. B. Snider. 5 Button, W. L. King 6 Call box, H. H. Cutler 5 Camera shutter, O. Schramm 6 Can. See Measuring can. 6 Can bottom, W. C. Winfield. 5 | 504,460
504,437
504,488
504,425
504,547 | | Camera shutter, O. Schramm. Cam. See Measuring can. Can bottom, W. C. Winfield. Can opener, E. B. Williams. Car brake, Anderson & Daugherty. Car coupling, J. R. Avery. Car coupling, J. R. Cadenhead. Car coupling, G. Ker. Car coupling, G. Ker. Car coupling, Triplett, Jr. & Fry. Car lighting system, electric, I. N. Lewis. Car lighting system, electric, I. N. Lewis. Car mailway, T. E. Pope. Car stack, B. C. Hicks. Car, stock, B. C. Hicks. Car, stock, B. C. Hicks. Car wheel, G. W. Eddy. Card flat clothing fastener, Fawcett & Jones. Cart for transporting telegraph poles, etc., J. & W. Titus. Cash register and indicator blind, L. Ebrlich. | 504,381
504,313
504,690
504,556
504,697
504,637
504,408
504,485 | | Car ingitting system, electric, I. N. Lewis. Car mover, P. H. Jacobus. Car, railway, T. E. Pope. Car, railway, T. E. Pope. Car, stock, B. C. Hicks. Car, stock, B. C. Hicks. Car wheel, G. W. Eddy. Card flat clothing fastener, Fawcett & Jones. Cart, for transporting telegraph poles etc. J. & | 504,529
504,529
504,616
504,520
504,692
504,416
504,572 | | W. Titus. Cash register and indicator blind, L. Ehrlich | 504,377
504,470
504,409
504,322
504,477 | | W. Titus. Cash register and indicator blind, L. Ehrlich. Cash registering machine, F. L. Bailey. Casting ingots, H. A. Brustlein. Cement, C. F. Le Fevre. Centrifugal separator and regulating the supply thereto, F. Ludloff. Chain, drive, W. H. Hart. Chair seat and back, B. H. Dodd. Chatelaine, J. C. Hayden. Chatelaine, J. C. Hayden. Churn, W. W. Himman. Clock, calendar, H. Grunberg. Clothes wringer, W. Thornton. | 504,494
504,446
504,580
504,579
504,385
504,432
504,483 | | Clothes wringer, W. Thornton. Coal or ore bins, discharge apparatus for, R. W. Ericson. Coal or ore docks, discharge apparatus for, R. W. Ericson | 004,673 | | Confessions massline for moralding C II Cook | UUT,010 | | contections, machine for mounting. C. H. Grei- enstein. Cooler. See Liquid cooler. Water cooler. Copy holder,W. O. Crane. Coupling. See Car coupling. Hoop coupling. Crate or carrier, fruit or vegetable, J. E. Routh. Creamer, centrifugal, J. E. Folk. Crib, folding, Abbott & Robinson. Crossite and railway construction, metallic, J. M. Price. Cultivator W. H. Tranbagen | 504,623
504,430
504,646
504,540
501,406 | | Price. W. H. Traphagen. Cuttivator, W. H. Traphagen. Cuttain ring and pin, combined, J. Lines. Cut-out, thermal, W. M. Goodridge. Cutter. See Band cutter. Brick or tile cutter. Finger or toe nail cutter. Cutting-off and forming tool, G. E. Witherell. Cycle wheel, A. C. Brown. | 504,532
504,344
504,688
504,413 | | Cutter. See Band cutter. Brick or tile cutter. Finger or toe nail cutter. Cutting-off and forming tool, G. E. Witherell Cycle wheel, A. C. Brown. Damper regulator, J. H. Blake Deflector, automatic wind. B. V. Crumrine. Dental engine, B. S. Brown Dental engine, C. Doriot | 504,659
504,563
504,487
504,491
504,489
504,647
504,689 | | Doll, F. B. Schultz. Door check, D. H. Haywood. Door hanger, W. Kees. Door or shutter opener, J. Birkey. Door securer, J. N. Beall. Drier for cereals, etc., P. Borgarelli. | 504,627
504,581
504,591
504,318
504,653
504,320 | | Driving mechanism, reversing, H. C. Baker. Driving mechanism, safety, E. W. Ross. Dust pan, A. L. Hollander paratus for regulating alternating current, H. Lemp. Eggs, preserving, C. E. McClure Electric arc lighting system, T. Spencer. | 504,651
504,479
504,474
504,497
504,535
504,632 | | Electric light pendant, incandescent, Johnston & Davidson. Electric lock, L. B. Tinkham. Electric motors by alternating currents, operating, A. Siemens. Electric switch, A. B. Herrick. | 504,475
504,462
504,630
504,528 | | Electric conductor, J. W. Marsh | 504,355
504,407
504,629
504,680
504,332
504,338
504,339 | | | | | رتع | |---|---|--|--| | to exposure and situation of rooms. This will make 500 square feet of pipe surface, and the boiler should have | Envelope opener, I. W. Heysinger | 504,352 | Rol
Rol
Rol | | one-eighth of the radiating surface in its heating surface, or 62 square feet. It is safe to make it 75 square feet. | ing, Mather & Smith | 504,602
504,574 | Rol
Rot
Rul | | Pressure in water pipe can only be maintained from an overhead tank or the continued action of a pump. | Fence, flood, F. B. Greer. Fence machine, I. M. Warner. Fence machine, slet and wire, N. F. Stanton | 504,346
504,642
504,671 | Rul | | TO TANKEN MODEL | Fence post, W. M. Black. Fibers, machine for hackling and preparing, T. B. | 504,658
504 648 | San
San
Sas | | TO INVENTORS. An experience of forty-four years, and the preparation of more than one hundred
thousand applications for patents at home and abroad, enable us to understand the | Fifth wheel, Wagner & Penquite. Filter, E. P. Hunt. Finger or toe nail cutter. E. T. Mason. | 504,640
504,434
504,601 | Sav | | tents at home and abroad, enable us to understand the laws and practice on both continents, and to possess un- | Fire engines, cut-off for steam, C. E. Bensel
Fire escape, J. L. Gregory
Fire extinguisher nozzle, D. Curell | 504,654
504,576
504,564 | Sav
Sca
Scr | | tents at nome and abroad, enable us to inheristant unless and practice on both continents, and to possess unequaled facilities for procuring patents everywhere. A synopsis of the patent laws of the United States and all foreign countries may be had on application, and persons contemplating the securing of patents, either at home or abroad, are invited to write to this office for prices which are low, in accordance with the times and our extensive facilities for conducting the business. Address | Fence post, W. M. Black Fibers, machine for backling and preparing, T. B. Allen. Fifth wheel, Wagner & Penquite. Fifth except of the steam, C. E. Bensel. Fire except of Cregory. Fire engines, cut-off for steam, C. E. Bensel. Fire excinguisher nozzle, D. Curell Fireproof construction, W. Orr Flour bin and sifter, A. K. Gibson. Flying machine, E. B. Sowers. Finges machine for making and knotting, B. Arnold. Fruit press, C. Wegmann. Furnaces, gas valve for blast, W. Rotthoff. Furrower and marker, combined land, J. Ramey. Fuse lighter, W. C. Matthews. Gauge. See Water gauge. Garter, G. H. Blakesley. Gas engine, C. W. Pinkney. Gas heater F. P. Ziegler. Gas lighting or extinguishing apparatus, automatic, P. Everitt. Gas, tile for use in apparatus for the manufacture of, J. B. Archer. Gate. See Elevator gate. End gate. Gate, J. Loosey. Gase. C. H. Lucss. | 504,537
504,342
504,631 | Sea
Sec
See | | abroad, are invited to write to this office for prices which are low, in accordance with the times and our extensive facilities for conducting the business. Address | Fringes, machine for making and knotting, B. Arnold | 504,316
504,545 | See | | tensive facilities for conducting the business. Address MUNN & CO., office Scientific American, 361 Broadway, New York. | Furnaces, gas valve for blast, W. Rotthoff
Furnower and marker, combined land, J. Ramey
Fuse lighter. W. C. Matthews. | 504,622
504,617
504,603 | Sev | | INDEX OF INVENTIONS | Gauge. See Water gauge.
Garter, G. H. Blakesley | 504,415
504.614 | Sha | | INDEX OF INVENTIONS | Gas heater F. P. Ziegler. Gas lighting or extinguishing apparatus, automatic, P. Everitt. | 504,382
504,447 | Shu | | For which Letters Patent of the
United States were Granted | Gas, tile for use in apparatus for the manufac-
ture of, J. B. Archer.
Gate. See Elevator gate. End gate. | 504.314 | Sig
Sip
Slic | | September 5, 1893, | Gate. See Elevator gate. End gate. Gate, J. Losey. Gate, C. H. Lucas. Gear casing, Forbes & Shepley. Gearing, J. Zimermann. Glass by sand blast, decorating, M. Suess. Glass, mosaic art. A. Verhaghen. Glassware, manufacture of, J. J. Brannagan. Governor, electric automatic steam, E. A. Edwards. | 504,392
504,357
504,338 | Sm
Sns
Sol | | AND EACH BEARING THAT DATE. | Gearing, J. Zimermann | 504,645
504,543
504,506 | Sol
Spi | | [See note at end of list about copies of these patents.] | Glassware, manufacture of, J. J. Brannagan
Governor, electric automatic steam, E. A. Ed-
wards | 504,552
504,492 | Spr
Sta
Sta | | Advertising apparatus, S. Kuh | wards. Governing device for compound engines, M. C. Bullock. Governing gas, steam, or other motive power en- | 504,691 | Sta | | Advertising apparatus, S. Kuh. 504,421 Alkaline phosphate, making, T. Meyer. 504,453 Aluminum compounds, making, W. E. Case. 504,324 Aluminum fluosulphate, making, W. E. Case. 504,324 Aluminum fluosulphate, making, W. E. Case. 504,325 Amalgamating machine, J. C. Wiswell. 504,508 Amalgamator, W. M. Fuller. 504,508 Amalgamator, W. M. Fuller. 504,4508 Amalgamator, W. M. Fuller. 504,450 Autographic register, H. Cook. 504,470 Autographic register, H. Cook. 504,470 Bake pan, C. Schifferly. 504,480 Baling press, G. Schubert. 504,481 Band cutter and feeder, C. H. Zishka. 504,383 Barrel or crate, Dare & Hail. 504,485 Battery. See Secondary battery. Storage battery. | Bullock Governing gas, steam, or other motive power engines, apparatus for, C. W. Pinkney. Grain binder, J. F. Steward. Grain sinder, automatic, J. F. Steward. Grain sparator, J. C. Benson Grain shocks, device for use in binding, P. Kiefer Grapple, Manning & Wilson Grate, fire, A. Strob. | 504,613
504,373
504,372 | Sta
Ste
Ste | | Amalgamating machine, J. C. Wiswell | Grain separator, J. C. Benson
Grain shocks, device for use in binding, P. Kiefer
Grapple, Manning & Wilson | 504,466
504,592
504,600 | Sto | | Morrow 504,401 Autographic register, H. Cook 504,467 Bake pan, C. Schifferly 504,480 | Grate, fire, A. Stroh
Grinding and polishing tool, J. F. Budke.
Grinding cutlery, apparatus for, A. Johnston.
Grinding disk cutters and apparatus therefor, A. | 504,635
504,519
504,387 | Sto | | Bale tie, W. A. Kilmer. 504,481 Baling press, G. Schubert. 504,481 Band cutter and feeder, C. H. Zishka. 594,383 | Grinding disk cutters and apparatus therefor, A. Johnston | 504,386
504,389 | Str | | Barrel or crate, Dare & Hall 504,445
Battery. See Secondary battery. Storage bat-
tery. | Johnston. Grinding machine, A. Johnston. Grinding machine, saw, J. B. Rhodes. Grinding rotary cutters, machine for, D. E. Bice. Grindstone, W. H. Clapp. Gun feed, machine, Broderick & Vankeirsbilck. Gun, machine, Broderick & Vankeirsbilck. Gun sight, T. E. Armitstead. Guns, telescopic sight for ships', B. A. Fiske. Hair cleaning machine, F. Hall. Hammock support, N. G. Reynolds. Harrow, folding, C. L. Burnett. Harrow tooth, L. D. Corser. Harvester, beet, H. B. Martin. Heater. See Gas heater. Oil heater. Water heater. | 504,404
504,655
504,329 | Sui | | Beams, mechanism for handling, A. E. Rhoades, 504,458, 504,458, 504,458 | Gun feed, machine, Broderick & Vankeirsbilck
Gun, machine, Broderick & Vankeirsbilck
Gun sight, T. E. Armitstead | 504,516
504,517
504,696 | Sw | | Bed, 10Iding, J. Christ. 904,328 Bed, invalid, A. Boden et al. 504,515 Bed, invalid, Dawdy & Herren. 504,335 Bedstead attachment, W. B. Carter. 504,353 Belt, electric, W. C. Ekholm. 504,336 Bicycle, O. W. Squires. 504,633 Billiard cue tips, securing, N. Bosmann. 504,663 Bin. See Flour bin. 504,663 Binder for loose sheets of paper, etc., O. Ass- | Guns, telescopic sight for ships', B. A. Fiske
Hair cleaning machine, F. Hall
Hammock support, N. G. Reynolds | 504,337
504,348
504,618 | Та
Та | | Belt, electric, W. C. Ekholm. 504,633 Bicycle, O. W. Squires. 504,633 Billiard cue tips, securing, N. Bosmann. 504,633 | Harrow, folding, C. L. Burnett. Harrow tooth, L. D. Corser. Harvester, beet, H. B. Martin | 504,428
504,444
504,423 | Te
Te
Te | | Bin. See Flour bin. Binder for loose sheets of paper, etc., O. Assmann 504,317 | Heater. See Gas heater. Oil heater. Water heater. Heel stiffener machine, Chase & Foster | 504,327 | Те | | Binder for loose sheets of paper, etc., O. Assmann | heater. Heel stiffener machine, Chase & Foster. Hat, C. Harkins. Hinge, gate, C. M. Lamb. Hinge polishing machine, E. A. Moore. Hinge, spring, L. R. Pomeroy. Hitch, halter, R. H. Bacot. Hoisting and conveying apparatus, D. Donahue. Hoof trimmer or parer, J. Matteson. Hook. See Snap hook. Whiffetree hook. Hoop coupling, H. W. Ford. Horseshoe calk sharpener, S. R. Brooks. Hose, bridge, F. Kruckeberg. Hose carriage, W. T. Y. Schenck. Hot air register, W. M. Dyas. House. See Sanitary house. | 504,350
504,451
504,498 | Th
Tie
Tie | | Book, shipping receipt, J. D. D. Mortimer. 504,330
Box covering machine, W. Brandstaedter. 504,551
Brace, G. S. Miller. 504,604 | Hinge, spring, L. R. Pomeroy | 504,403
504,650
504,522 | Til
Til
Tr | | Brake. See Car brake. Vehicle brake. Wagon brake. Brake beam, H. B. Robischung | Hoof trimmer or parer, J. Matteson. Hook. See Snap hook. Whiffletree hook. Hoop coupling, H. W. Ford | 504,677 | Tr.
Tr | | Brick or tile cutter, H. A. Riggs. 504,554
Brick, refractory, A. E. Hunt. 504,554
Bridge, cantalever, T. C. Clarke. 504,559 | Horseshoe calk sharpener, S. R. Brooks. Hose, bridge, F. Kruckeberg. Hose carriage, W. T. Y. Schenck. | 504,553
504,530
504,624 | Tr
Tr | | Brush or tool holder, C. H. Lewis. 504,452 Bucket and trap, combined minnow, L. W. Hemp 504,558 Bucket, lunch, L. Manguine. 504,358 | House. See Sanitary house.
Hydrant, W. H. Bootman | 504,662 | Tu
Tu
Ty | | brake. Brake beam, H. B. Robischung | Hydrant J. Knickerbacker
Hydraulic motor, F. B. Cole
Hydrocarbon burner for stoves, furnaces, etc., | 504,594 | Ty
Va
Va | | Button, W. L. King 504,487 Call box, H. H. Cutler 504.488 Camera shutter, O. Schramm 504,425 | Hot air register, W. M. Dyas. House. See Sanitary house. Hydrant, W. H. Bootman. Hydrant J. Knickerbacker. Hydraulic motor, F. B. Cole. Hydroarbon burner for stoves, furnaces, etc., W. S. Chilton. Hydropeumatic motor, W. Cooper. Ioe cream freezer, J. K. Patterson. Indicator. See Temperature indicator. Injector and exhauster, combinedair, S. R. Earle Jack. See Smoke Jack. | 504,667
504,670
504,363 | Ve
Ve
Ve | | Camera shutter, O. Schramm. 504,425 Can. See Messuring can. 504,425 Can bottom, W. Winfield. 504,547 Can opener, E. Williams. 504,331 Car brake, Anderson & Daugherty. 504,331 Car coupling, J. R. Avery. 504,637 Car coupling, J. R. Cadenhead. 504,556 Car coupling, G. Ker. 504,637 Car coupling, C. H. Taylor. 504,638 Car coupling, Triplett, Jr. & Fry. 504,408 Car life guard, street, T. Barnes. 504,452 Car life guard, street, T. Barnes. 504,529 Car mover,
P. H. Jacobus. 504,615, 504,616 Car, railway, T. E. Pope. 504,615, 504,616 Car, stock, B. C. Hicks. 504,629 Car, stock, B. C. Hicks. 504,620 Car wheel, G. W. Eddy. 504,416 Card flat clothing fastener, Fawcett & Jones. 504,512 Car for transporting telegraph poles, etc., J. & Marchael Card for transporting telegraph poles, etc., J. & Marchael Card for transporting telegraph poles, etc., J. & Marchael Card for transporting telegraph poles, etc., J. & Marchael Card for transporting telegraph poles, etc., J. & Marchael Card for transporting telegraph poles, etc., J. & Marchael Card for transporting telegraph pol | Indicator. See Temperature indicator.
Injector and exhauster, combined air, S. R. Earle
Jack. See Smoke jack. | 504,334 | Ve
Ve
Ve | | Car brake, Anderson & Daugherty. 504,630 Car coupling, J. B. Avery. 504,650 Car coupling, B. F. Cadenhead. 504,556 | Jack. See Smoke Jack. Keyhole guard, G. Hisgen. Kitchen utensil, J. M. Tilman. Knitting machine, circular, E. Franck. Lace fastener, shoe, Drake & Higgins. Lamp burner, G. A. Burtner. Lamps, burner atfachment for lighting, J. H. | 504,583
504,376
504,417 | Vi
Vi
W | | Car coupling, G. Ker. 504,637 Car coupling, C. H. Taylor 504,637 Car coupling. Triplett, Jr., & Fry 504,408 | Lamps, burner attachment for lighting, J. H. | 504,554 | W | | Car life guard, street, T. Barnes. 504,851 Car lighting system, electric, I. N. Lewis. 504,851 Car mover, P. H. Jacobus. 504,529 | Lathe gearing, H. Binsse Lathe taper attachment, D. Currie. | 504,471
504,657
504,565 | W | | Car, railway, T. E. Pope | Lamps, burner attachment for lighting, J. H. Flood, H. Binsse Lathe taper attachment, D. Currie. Lemon juice extractor, J. Roberts. Liquid cooler, W. F. Kausen Liquids from barrels, apparatus for drawing, H. E. Bailey. Loading or piling machine, G. S. Kaime. Lock See Electric lock. Seal lock. Time lock. Lock and latch, combined, F. F. Swanson. | 504,500 | WW | | Card flat clothing fastener, Fawcett & Jones 504,572
Cart for transporting telegraph poles, etc., J. &
W. Titus 504,377 | Loading or piling machine, G. S. Kaime. Lock. See Electric lock. Seal lock. Time lock. | 504,589 | W | | W. Titus | Locomotive, electric, A. I. Ambler. Locomotive, pneumatic hydraulic, W. Cooper, 504,668 | 505 484 | $\begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix}$ | | Cement, C. F. Le Fevre. 504,477 Centrifugal separator and regulating the supply thereto. W. Ludloff 504,429 | Locomotive sand box, T. F. O'Friel. Locomotive, tramway, C. D. Scott. Loom jacquard mechanism, G. Bürkle. | . 504,503
. 504,541 | i W | | Chain, drive, W. H. Hart. 504,494
Chair seat and back, B. H. Dodd 504,446
Chatelaine, J. C. Hayden 504,590 | Loom shuttle binder, H. E. Hamilton. Loom shuttle tension device, E. Domenge | 504,349
504,567
504,449 | W W | | Chatelaine, umbrella, J. C. Hayden. 504,579
Churn, W. Hinman 504,385
Clock calendar H Gruphers 504,485 | Lubricator. See Windmill lubricator, Mail marking machine, Bowman & Rice. | 504,664 | WW | | Clothes wringer, W. Thornton | Loom Jacquard mechanism, G. Burkle. Loom shuttle binder, H. E. Hamilton. Loom shuttle tension device, E. Domenge. Loom warp beam, A. J. Seybert. Lubricator. See Windmill lubricator. Mail marking machine, Bowman & Rice. Malting apparatus, G. J. Meyer. Mattress, W. Staab. Measuring can, liquid, L. W. Hemp. Medical compound, J. Schmid. Mixer and stirrer, A. Hancock. Motor. See Hydraulic motor. Hydropneumatic motor. Steam motor. | 504,448
504,525
504,527 | § ₩ | | Ericson 504,673 Coal or ore docks, discharge apparatus for, R. W. Ericson 504,674 Coin-controlled apparatus, H. H. Buxbaum 504,575 Coin holder and counter, F. W. Smith 504,505 | Mixer and stirrer, A. Hancock Motor See Hydraulic motor Hydropneumstic | 504,626
504,472 | 3 | | Coin holder and counter, F. W. Smith 504,504
Coin tray, W. H. Staats.
Coke and carbonizing oven, Bauer & Mendheim 504,584 | Mower chitch operating mechanism lawn T | | 1 Cc | | Confections, machine for moulding, C. H. Greb- | Coldwell Mower, lawn, C. H. Braithwaite. Mowing and harvesting machinery, cutting apparatus for. P. T. Walton. | 504,411
504,641 | i Jig
Ki
St | | enstein | Mowing machine push bar, J. H. Jones | . 504, 41 9
. 504,671
. 504,463 |) V | | Cooler. See Liquid cooler. Water cooler. Copy holder, W. O. Crane. 504,414 Coupling. See Car coupling. Hoop coupling. Crate or carrier, fruit or vegetable, J. E. Routh. 504,623 Creamer, centrifugal, J. E. Folk. 504,430 Crib, folding, Abbott & Robinson. 504,646 Crosstie and railway construction, metallic, J. M. Price. 504,540 Cultivator, W. H. Trabbagen. 504,466 | Mower, lawn, C. H. Braithwaite. Mowing and harvesting machinery, cutting apparatus for. P. T. Walton. Mowing machine push bar, J. H. Jones. Musical instrument, C. Doriot. Musical instrument case, J. A. Weser. Net making machine, J. Knox. Nut lock, Cohen & Tharp. Nut lock, D. A. Leonard. Nut lock, I. Nappin. Obstetrical appliance, J. H. & I. N. Leyda. Oil heater, A. G. Glasgow. Oil from crank pin journals of connecting rods device for catching, R. M. La Touche. Ore separating machine, H. Bradford. | . 504,596
. 504,561
. 504,5 | 5
1
96 | | Cristic and railway construction, metallic, J. M. Price | Nut lock, I. Nappin
Obstetrical appliance, J. H. & I. N. Leyda
Oil heater, A. G. Glasgow | . 504, 60
. 504,596
. 504,524 | 08 Bi
1 Bi | | Cultivator, W. H. Traphagen 504,508
Curtain ring and pin, combined, J. Lines 504,532
Cut-out, thermal, W. M. Goodridge 504,344
Cutter. See Band cutter. Brick or tile cutter. | Oil from crank pin journals of connecting rods device for catching, R. M. La Touche Ore separating machine, H. Bradford | . 504,391
. 504,665 | 1 Ce | | Cutter. See Band cutter. Brick or tile cutter. Finger or toe nail cutter. Cutting-off and forming tool, G. E. Witherell 504,688 | Ore separating machine, H. Bradford. Ore, separating or concentrating, H. Bradford. Painting, varnishing, etc., machine for, Dow & Crane. | . 504,666
. 504,672 | ⁵ Ch
2 Ci | | Cutter. See Band cutter. Brick or tile cutter. Finger or toe nail cutter. Cutting-off and forming tool, G. E. Witherell. 504,688 Cycle wheel, A. C. Brown 504,413 Damper regulator, J. H. Blake 544,658 Deflector, automatic wind. B. V. Crumrine 504,563 Dental engine, B. S. Brown 504,563 Dental engine, C. Doriot 504,490 Dental plugger, C. Doriot 504,564 Disheloth holder, C. Abell 504,687 Disheloth holder, C. Abell 504,687 Disheloth Published For H. S. Albrecht 504,688 | Pan. See Bake pan. Dust pan. Paper, cardboard, etc., machine for cutting, G W. Zeigler | 504,509 | Di
Fr | | Dental engine, B. S. Brown | Paper, cardboard, etc., machine for cutting, G. W. Zeigler. Paper cutting machine, G. W. Zeigler. Phonograph, J. H. White Photo-engravings, holder for plates in the manufacture of, M. Levy. Photographers' use, flash-light apparatus for. J | . 504,510
. 504,380 | L | | Disinction honer, C. Abell. 004,041 Disintegrating clay, ores, etc., machine for, H. S. Albrecht. 504,689 | Photographers' use, flash-light apparatus for. J
N. & H. J. Harrison. Pile fabrics, apparatus for cutting the pile of | . 504,578
. 504,578 | 8 Pa | | Albrecht 54,692 Doll, F. B. Schultz 54,692 Door cheek, D. H. Haywood 54,591 Door hanger, W. Kees. 504,591 Door or shutter opener, J. Birkey 54,318 Door securer, J. N. Beall 54,692 Drier for cereals, etc., P. Borgarelli 504,320 Drilling machine, E. R. Lockwood 54,599 Drip trough, J. A. Knisley 54,429 | weft, G. Roger | 5/14/447 | PI
Po
Pi | | Door or sutter opener, J. Brkey 904,318 Door securer, J. N. Beall 504,653 Drier for cereals, etc., P. Borgarell 504,320 | Pine. See Salety pin. Pipes or tubes, machine for making, G. H. Win- | . 504,687 | Ra
Ra
Sc | | Drilling machine, E. R. Lockwood. 584,598 Drip trough, J. A. Knisley. 594,598 Driving mechanism, safety, E. W. Ross. 594,651 Driving mechanism, safety, E. W. Ross. 594,651 Driving mechanism, safety, E. W. Ross. 594,652 Dust pan, A. L. Hollander. 594,591 Dust pan, A. L. Hollander. 594,593 Dust pan, A. L. Hollander. 594,462 Engs alsernating current, H. Lemp. 594,463 Electric arriving system, T. Spencer. 594,533 Electric arriving system, T. Spencer. 594,533 Electric light pendant, incandescent, Johnston & 594,463 Electric lock, L. B. Tinkham. 594,463 Electric motors by alternating currents, operating, A. Siemens. Electric switch. A. B. Herrick. 594,363 Electric switch. A. B. Herrick. 594,363 Elevator bucket, T. Long. 594,363 Elevator bucket, T. Long. 594,363 Elevator safety device, Shuriz & Swan. 594,463 Embresing and printing press, J. Y. Johnston. 594,863 extrager or bucky ton. Z. T. Wowler. 594,833 | Plane, joiner's, J. M. Cole. Planter, corn, D. J. Bowser. Plow heel sweep, H. D. Terrell. Plow, wheel, H. Lindestrom. Pole switch, double, Gartside & Wood. Polishing tools, feeding-up machine for, L. W. Kimble. | . 504,32
. 504,37
. 504,37 | 1
1
1
1
1 | | Dust pan, A. L. Hollander. 504,478 Dynamos, method of and apparatus for regulating alternating aurent H Journ | Pole switch, double, Gartside & Wood | . 504,52 | 1 To | | Eggs, preserving, C. E. McClure 504,595 Electric arc lighting system, T. Spencer 504,635 Electric conductor I. W. Morsh | Kimble. Press. Sce Baling press. Embossing and print ing press. Fruit press. Pressure regulator, E. Webb. | - | ar | | Electric light pendant, incandescent, Johnston & Davidson | Pulley, C. A. Johnson Pulley, F. H. Romans. | • 504,507
• 504,588
• 504,360 | 7 25
6 0f
6 Br | | Electric motors by alternating currents, operating, A. Siemens. 504,602 | Pumping engine, direct-acting, C. C. Worthing. | 504,644 | 4 ve | | Elevator bucket, T. Long. 504,325 Elevator gate, W. H. Traphagen. 504,407 Elevator gafety davice Schude F. Schude F. | Pressure regulator, E. Webb. Pulley, C. A. Johnson Pump, F. H. Romans. Pump, oil well, Gibson & Sutton. Pumping engine, direct-acting,
C. C. Worthing. ton. Puzzle, W. P. Groves. Railway, B. S. Henning. Railway, conduit electric, B. Bidwell. Railway conduit, electric, S. H. Flagg. Railway signal, electric, F. E. Seagra ve. Railway switch, V. Angerer. | . 504,35
. 504,549 | i go | | Embossing and printing press, J. Y. Johnston. 504,688 Embroidering machine, E. & R. Cornely 504,333 Emery Wheels, construction of granding A | Railway signal, electric, F. E. Seagra ve. Railway switch, V. Angerer | . 504,549
. 504,649 | 9 Y | | Emery wheels, construction of grinding, A. Johnston. 504,388 Enamel, carriage or buggy top, Z. T. Fowler. 504,388 End gate, wagon, G. C. Flagg | Railway signal, electric, F. E. Seagra ve Railway switch, V. Angerer. Railway tie, metallic, E. Siskron. Begister. See Autographic register. Cash register. Hot air register. Registering machine, barrel, A. W. Oppmann | . 504.814 | 0 | | Engine. See Dental engine. Gas engine. Pumping engine. Rotary engine. Steam engine. Envelope, mailing, J. T. Clark | Regulator See Damper regulator Feedwater | • 003'0T/ | | | Mary Clope, maning, J. T. Clark 509,000 |) \ Ring. See Curtain ring. | | • | | Roll truing machine, D. J. Davidson. dolling mill feed table, W. H. Maddock. Rolling mill feeding mechanism, W. H. Maddock Rolling mill transfer mechanism, W. H. Maddock Rolling mill transfer mechanism, W. H. Maddock Rotary engine, J. F. McElroy. Rubber article, hollow, E. L. Perry. Rubber article, hollow, E. L. Perry. Rubber article, hollow, E. M. Perry. Ritt. Rafety pin, C. E. Stevens. | 504,566
504,393
504,395
504,394
504,536
504,612 | | |--|--|--------------------| | ritt. afety pin, C. E. Stevens. sample, cloth or dress goods, J. M. Bostwick. sanitary house, W. Van der Heyden. sash operating mechanism, P. S. Riddelle. saw set, E. W. Dillon. | 504,341
504,634
504,550
504,544
504,620
504,521 | H | | tule, bevel, and square, combined, W. H. H. Garritt. afety pin, C. E. Stevens. ample, cloth or dress goods, J. M. Bostwick. anitary house, W. Van der Heyden. ash operating mechanism, P. S. Riddelle. aw set, E. W. Dillon. aw set, ague, and jointer, combined, E. M. Bickerstaff. aw tooth, W. E. Brooke. cale, letter, C. A. Miller. crew blank feeding mechanism, H. K. Jones. seal lock, O. E. Wheaton. secondary battery, W. L. Silvey. seeder, F. S. McWhorter. seeding machine, I. F. Parks. separator. See Centrifugal separator. Grain separator. | 504,656
504,412
504,584
504,435
504,643
504,370
504,500
504,362 | ti
m
re
m | | separator.
Sewing machine quilting attachment, W. H.
Chapman
Sewing machines, guide for double needle. L. | 504,558 | | | | 504,571
504,431
504,628
504,575 | | | Signal. See Railway signal.
Siphon, bottling, F. Barthold | 504,513
504,429 | _ | | Lunke: Lunke: Lunke: Signal. See Railway signal. See Railway signal. Siphon, bottling, F. Barthold. Slicing mechanism for bread, etc., J. Fallows, 2d Smoke jack, A. R. Anderson. Snaphook, A. A. Page Soldering iron, electrically heated, G. R. Meitzler (r). | 504,511
504,539 | Ι | | Soldering Iron, electrically heated, G. R. Meitz- ler (r). Sole, A. A. Blandy. Sole, A. A. Blandy. Sole, A. B. Nagle. Sprocket wheel, V. Belanger. Sample, band, K. E. Wiberg. Stamping machine, D. F. Ollver. Stamping machine, D. F. Ollver. Stamping, inking and cleaning apparatus for die, A. G. Beater. Stachion, cattle, W. Morgan. Staves, machine for dressing bucked, C. Sommer. Staves machine for dressing bucked, C. Sommer. Steam engine, G. Marshall. Steam motor, E. A. Edwards. Steel founding, J. G. McRoberts. Stool, cane, A. L. Chapman. Stool, piano, J. R. Peartree. Stovage battery, C. J. Reed. Stovepipe and thimble fastener, Scott & Wisner. Stovep protector, J. F. Bliven. | 504,660
504,607
504,486
504,546
504,682 | S | | A. G. Beater | 504,465
504,605
504,461 | | | Steam engine, G. Marsuan Steam motor, E. A. Edwards Steel founding, J. G. McRoberts | 504,399
504,493
504,361
504,386 | | | Stool, piano, J. R. Peartree | 504,683
504,455
504,356 | | | Stovepipe and thimble fastener, Scott & Wisner.
Stove protector, J. F. Bliven.
Strainer for rain water pipes, C. H. Dodge
Strainer, pump spout. B. H. Messler | 504,369
504,319
504,384 | | | Strainer, pump spout. B. H. Messler | 504,438
504,424
504,661 | | | Stovepipe and thimble fastener, Scott & Wisner. Stove protector, J. F. Bliven. Strainer for rain water pipes, C. H. Dodge. Strainer, pump spout. B. H. Messler. Surgical catheter, O. De Pezzer. Suspender end, W. Bloomberg. Switch. See Electricswitch. Poleswitch. Railway switch. Switch movement, locking, J. T. Powers. Switchboard apparatus, multiple, W. M. Goodridge. Tank. See Measuring tank. Tap, E. Hazlehurst. | 504,502 | | | Tank. See Measuring tank. Tank. Hazlehurst. | 504,433 | | | Tap, E. Hazlehurst. Telegraph system condenser, C. H. Rudd. Telephone apparatus, Stromberg & Carlson Telephone transmitter, N. Parks Telephoning purposes, switchboard for, U. H. | 504,636
504,454 | | | Balsley Temperature indicator, Egan & Bailey Thrashing machine, bean or grain, T. A. Miller Tie. See Cross tie. Railway tie. Tights, equestrienne, J. H. Pike. Time lock, I. G. Blake. | 504,464
504,335
504,359 | l | | Tights, equestrienne, J. H. Pike | 504,402
504,427
504,468 | | | Time lock, I. G. Blake. Tire, pneumatic, Dobbins & McKenney. Trace or rein supporter, J. J. A. Van Patten. Transporting receptacle, Rogers & Hofman. Trimmer. See Hoof trimmer. Trolley wire cleaner, M. Shaaber. Trough. See Drip trough. Truck, M. S. Kelley. Trunk, J. J. Bisel. | 504,503
504,405 | ۱ | | Trough. See Drip trough. Truck, M. S. Kelley. Trunk, J. J. Bisel. Thub. See Washtub. Turfing implement, J. C. Greenfield. Trype production, relief, J. W. Hoke (r). Type production, relief, J. W. Hoke (r). Type writing machine, L. D. Hitchcock. Vacuum apparatus, M. Swenson. Valve reseating machine, C. L. Morse. Vehicle brake, C. Goelz. Vehicle spindle, R. M. McBride. Vehicle wheel, J. E. Frist. Vehicle wheel, J. E. Frist. Vehicle wheel, H. Moore. Vehicle wheel, H. Moore. Vehicle wheel, H. Schmid. Vise and bench hook, E. G. Bailey. Vise, bench, T. B. Jackson. Wagon brake, J. Vanderveer. Wall, fireproof building, P. A. Deslauriers. Warping machine, A. E. Rhoades. Warping machine, A. E. Rhoades. Washtub, E. Keith. Washing machine, J. A. Garrett Water cooler, J. Hymans. Water cooler, A. W. Meyer. Water gange, T. W. Miller. Water gange, T. W. Miller. Welding apparatus, electric, H. Lemp. Well boring apparatus, Electric, H. Lemp. | 504,476
504,514 | j | | Turfing implement, J. C. Greenfield | 504,577
11,363
504,473 | t | | Vacuum apparatus, M. Swenson
Valve reseating machine, C. L. Morse
Vehicle brake, C. Goelz. | 504,374
504,606
504,343 | N | | Vehicle spindle, R. M. McBride | 504,499
504,573
504,440 | | | Vehicle, wheeled, R. SteelVelocipede, ice, J. SchmidVise and bench hook, E. G. Bailey | 504,685
504,625
505,652 | I | | Wagon brake, J. Vanderveer | 504,639
504,415 | C | | Warping machines, mechanism for handling
beams of, A. E. Rhoades | . 504,457
. 504.495 | C | | Washing machine, J. A. Garrett Water cooler, J. Hymans Water cooler, A. W. Meyer | . 504,418
. 504,585
. 504,439 | 1 | | Water gauge, T. W. Miller | . 504,694
. 504,587
. 504,496 | I | | Wheel. See Car wheel. Cycle wheel. Fifth wheel. Sprocket wheel. Vehicle wheel. Whiffletree hook W. J. Stowe | 504,619
504,686 | | | Water gauge, T. W. Miller. Water heater, F. Jakel. Water heater, F. Jakel. Welding apparatus, Rickey & Fietel. Well boring apparatus, Rickey & Fietel. Wheel. See Car wheel. Cycle wheel. Fifth wheel. Sprocket wheel. Vehicle wheel. Wick, lamp, H. Pleper, Jr. Wind instrument, J. L. Maher. Wind instruments, self-acting water key for, J. Lindstrom. Windmill lubricator, O. H. Orton. Winder, J. D. Winder. | . 504,501
. 504,396
. 504,354 | | | Windmill Inbricator, O. H. Orton | . 504,611
. 504,638
. 504,320 | | | Lin dstrom Wire splicer, J. D. Thomas. Wire splicer, J. D. Thomas. Wire springs, machine for making, S. Konz. Wire stretcher, A. Ide. Wire stretcher, Schalk & Weinandy Wrench handles, making, W. E. Brooke. Wringer. See Clothes wringer. | . 504,353
. 504,368
. 504,518 | | | DESIGNS. | | | | | 22,769
22,766 | | | Coffin plate, G. H. Ford.
Hat, lady's, J. D. Stange
Jigger, C. P. Dungan.
Knee protector, A. C. Bull.
Stove, cooking, C.W. Wipfler | 22,768
22,767
22,770 | | | TRADE MARKS. | | |--|--------| | icycles, tricycles, and velocipedes, Stover Bicycle | | | Manufacturing Companyronzes and silver and plated ware, Tiffany & | 23,594 | | ronzes and silver and plated ware, Tiffany & | 00 570 | | Companyement, hydraulic, Portland-Cement-Fabrik "Ger- | 20,012 | | mania.'' H. Manske & Co | 23,587 | | hains, sash, Smith &
Egge Manufacturing Com- | • | | pany
igarettes, American Tobacco Company 23,580, | 23,590 | | rugs. L. Sollmann | 23,583 | | ruits, W. H. Westervelt & Co | 23.575 | | um, chewing, Sultan & Wellington | 23,574 | | ewelry and watches, Tiffany & Company
ocks and keys, Smith & Egge Manufacturing | 40,010 | | Company | 23,589 | | adjoining cortain named I P Watking | 92 501 | | Company Comp Scales, weighing, E. & 1. La. 23,052, 20,052, 20,052 Peas, green and black, Reid, Murdoch & Company, 23,579 23,579 23,562 23,562 A printed copy of the specification and drawing of any patent in the foregoing list, or any patent in print saued since 1863, will be furnished from this office for the patent desired, and remit to Munn & Co., 351 Broadway, New York. Those who are engaged in any branch of industry robably will find in this book much that is of practical value in their respective callings. Those who are engaged in any branch of industry robably will find in this book much that is of practical value in their respective callings. Those who are engaged in any branch of industry robably will find in this book much that is of practical value in their respective callings. Those who are engaged in any branch of industry robably will find in this book much that is of practical value in their respective callings. Canadian patents may now be obtained by the in-rentors for any of the inventions named in the fore-going list, provided they are simple, at a cost of \$40 ext. of complicated the cost will be a little more. For full natructions address Munn & Co., 361 Broadway, New York. Other foreign patents may also be obtained. # Mdvertisements. #### ORDINARY RATES. nside Page, each insertion - - 75 cents a line tack Page, each insertion - - - - \$1.00 a line For some classes of Advertisements, Special and ligher rates are required. The above are charges per agate line—about eight ords per line. This notice shows the width of the line, not is set in agate type. Engravings may head adversements at the same rate per agate line, by measurement, as the letter press. Advertisements must be seeived at Publication Office as early as Thursday norning to appear in the following week's issue. Foot Lathe Swings 9x25 in. Screw Cuting Automatic Cross Feed, etc. LATHE Scroll Saws, Circular Saws, Lathes Mortisers. Catalogue Free of all our Machinery. Seneca Falls Mfg. Co. 695 Water St., Seneca Falls, N.Y. IMPROVED LATHES MODERN ENGINE LATHES DESIGNS Also Foot Lathes, Tools and Supplies. Catalogue Free Sebastian Lathe Co. 120-122 Culvert Sire et Control Nati, onio. # SPECIAL NOTICE! Two handsome photo-engraved display sheets entitled, "Recent Improvements in Air Compressors," "Recent Improvements in Rock Drills," mailed free to any one who will cut out this advertisement and mail it to us with his name and address. INGERSOLL-SERGEANT DRILL CO. Havemeyer Bldg., Cortlandt St., New York, U.S.A. LIQUID FUEL FOR STEAM MAKING. —By F. R. Hutton. A paper pointing out the advantages of partially refined and crude petroleum for boiler firing. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, NO. 896. Price 10 cents. To be had at this office and from all newsdealers. # Barnes' Hand, Foot & Steam Power ron & Woodworking Machinery Examine our Exhibit at the WORLD'S FAIR. Complete line of 30 machines. Machinery Hall, Section 14, Column J-36 Catalogue on application. W. F. & John Barnes Co., ROCKFORD, ILLS. # A New and Valuable Book. 12,500 Receipts. 708 Pages. Price \$5. 12,500 Receipts. 708 Pages. Price \$5. Bound in Sheep, \$6. Half-Morocco, \$6.50. This splendid work contains a careful compilation of the most useful Receipts and Replies given in the Notes and Queries of correspondents as published in the Scientific American during the past fifty years; together with many valuable and important additions. Over Twelve Thousand selected Receipts are here collected; nearly every branch of the useful arts being represented. It is by far the most comprehensive volume of the kind ever placed before the public. The work may be regarded as the product of the stud- The work may be regarded as the product of the stud-ies and practical experience of the ablest chemists and workers in all parts of the world; the information given being of the highest value, arranged and condensed in concise form convenient for ready use. Almost every inquiry that can be thought of, relating to formulæ used in the various manufacturing industries, will here be found answered. Instructions for working many different processes in the arts are given. Those who are in search of independent business or employment, relating to the home manufacture of sample articles, will find in it hundreds of most excellent suggestions. Send for Descriptive Circular. MUNN & CO., Publishers, SCIENTIFIC AMERICAN OFFICE, 361 Broadway, New York. OHIO STATE UNIVERSITY, COLUMBUS, OHIO. SCHOOL OF ENGINEERING. Four-year courses in Civil, Mining, Mechanical and Electrical Engineering and in Industrial Art. Each department is well equipped with appliances for instruction. A catalogue will be sent on application. Founded by Mathew Carey, 1785 HENRY CAREY BAIRD & CO. Industrial Publishers, Booksellers, and Importers, 810 Walnut St., Philadelphia, Pa., U. S. A. 237 Our new and Revised Catalogue of Practical and Scientific Books. 88 pages. 8vo, and our other Catalogues and Circulars, the whole covering every branch of Science applied to the Arts. sent free and free of postage to any one in any part of the world who will furnish his address. Now Ready. Royal 8vo. Cloth. Price 31s. 6d. 474 pages of letter-press and 334 full page illustrations. # ARTILLERY, Its progress and present position. By S. W. Lloyd, late Commander, R.N., and A. G. Hadcock, late R.A., dealing fully with all points connected with modern practi-cal Gunnery, whether for Naval or Land service, as well as with theoretical gunnery. J. GRIFFIN & CO., Military and Naval Publishers (to her Majesty the Queen), 2. The Hard, Portsmouth, England. New York Agents, D. VAN NOSTRAND & CO., Limited The distribution of your power is as important as its application. I know a good deal about the economical distribution of power. Perhaps I could give you a few pointers. Inquiries answered free, catalogues sent free. Catalogues: A, woodworking mach'y; B, mach'y for rass, ivory, horn, etc.; C, shaft'g, pulleys, hangers, etc. P. PRYIBIL, 488-500 W. 41st St., NEW YORK. VANDUZEN STEAM PUMP THE BEST IN THE WORLD. Pumps Any Kind of Liquid. Always in Order, never Clogs nor freezes. Every Pump Guaranteed. 10 SIZES. 200 to 12000 Gallons per Hour. Cost \$7 to \$75 each. Address THE VANDUZEN 9. TIET CO THE VANDUZEN & TIFT CO., 102 to 108 E. Second St., Cincinnati, o. Catalogues Wanted,—Messrs Segrove & Lord, Mechanical Engineers of Retalhuleu, Guatemala, Central America, solicit catalogues, prices, and discounts from American manufacturers; especially of Engines, Boilers, Water Wheels, Electric Plants and Power Transmission, Sugar and Coffee Machinery. #### GRAVER TANK WORKS. (INCORPORATED.) Manufacturers of Iron and Steel STORAGE TANKS 3d Floor, Rookery Bldg. CHICAGO, ILL. ICE-HOUSE AND COLD ROOM.—BY R. G. Hatfield. With directions for construction. Four engravings. Contained in SCIENTIFIC AMERICAN SUP-PLEMENT, NO. 59. Price 10 cents. To be had at this office and from all newsdealers. GRAPES: HOW TO KEEP.-METHOD of preserving grapes by the use of bottles of water and by water tubes. With 5 illustrations. Contained in SCI-ENTIFIC AMERICAN SUPPLEMENT, NO. 890. Price 10 cents. To be had at this office and from all newsdealers. # GATES ROCK & ORE BREAKER Capacity up to 200 tons per hour. Has produced more ballast, road metal, and broken more ore than all other Breake's combined. Builders of High Grade Mining Machinery. Send for Catalogues CATES IRON WORKS, 50 C So. Clinton St., Chicago 136 C, Liberty Street, New York, 237 C, Franklin St., Boston, Mass PATTERN MAKER, 144 Centre St., N. Y. A perfect pulverizer of all refractory substances by either the wet or dry process. It works better and at less expense than any other Mill, and is conceded to be the only perfect pulverizing Mill manufactured. For FREE Illustrated Pamphlet address BRADLEY FERTILIZER CO., 92 STATE ST, BOSTON SCIENTIFIC AMERICAN SUPPLE-MENT. Any desired back number of the SCIENTIFIC AMERICAN SUPPLEMENT can be had at this office for 10 cents. Also to be had of newsdealers in all parts of the country. # **Astronomical Telescopes** of superior defining power, Photographic Lenses, etc. Manufactured by W. & D. MOGEY, Bayonne, New Jersey. Send for catalogue. Best and Cheapest for Pumping and All Farm Work, NO BOILER! NO FIRE! Send for cata ogue. SAFETY VAPOR ENGINE CO., 16 Murray St., N. Y ### OIL WELL SUPPLY GO 91 & 92 WATER STREET, PITTSBURG, PA. Manufacturers of everything needed for ARTESIAN WELLS for either Gas, Oil, Water, or Mineral Tests Boilers, Engines, Pipe, Cordage, Drilling Tools, etc. Iliustrated caudogue, price itsts, and discount skets on request, PATENT of New Street Sweeper for sale at a reasonable price. Address BOX 88, Branford, Conn. # MASON & HAMLIN SCREW STRINGER One of the greatest improvements in the history of the Plano Forte. Keeps the Plano in Tune. Much More Durable. Quality of Tone Purer. Fully litustrated Catalogue sent on application. Mason & Hamlin Organ & Piano Co. 152 TREMONT ST., BOSTON, MASS. # ARMSTRONG MACHINES No.1cuts off No. Scuts off and threads 1 to 6 inch. Our aim is to make these machines as good as our Stocks and Dies, which are universally acknowledged to be THE BEST. EF Send for catalogue. THE ARMSTRONG MFG. CO., Bridgeport, Ct. THE COPYING PAD.-HOW TO MAKE and how to use; with an engraving. Practical directions how to prepare the gelatine pad, and also the aniline ink by which the copies are made, how to apply the written letter to the pad, how to take off copies of the letter. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 438. Price il cents. For sale at this office and by
all newsdealers in all parts of the country. # PETROLEUM MOTORS. BENZINE PETROLEUM MOTOR BOAT. plications. A valuable and interesting article by G. L. Addenbrooke. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, NO. 859. Price 19 cents. To be had at this office and from all newsdealers. AGENTS \$50 to \$100 WEEK Ladies or Gents. Best seller known. Needed at every house, place of business or farm the year round. "Home" Electric Motor runsal kindsorightmachinery. Cheapest or sewing machine, corn sheller, pumps, fans, lathes, jeweler's or dentist's machinery, &c. Clean, Noiseless, lasts a life-time. No experience needed. To-show in operation means a sale. Guar, anteed. Profits immense, Circulars free. W. P. HARRISON & CO., Columbus, O ALUMINUM: ITS \$10.00 to \$50.00 per night. A light and pro-ness. Magic Lanterns and Views of popular sub-jects. Catalogues on application. Part 1 Optical, 2 Mathematical. 3 Meteorological. 4 Mayie Lanterns etc. Stationary Petroleum Motor. Mathematical, 3 Meteorological, 4 Magic Lanterns, etc. L. MANASSE, SS Madison Street, Chicago, Ill. # Perfect Newspaper File The Koch Patent File, for preserving Newspapers, Magazines, and Pamphlets, has been recently improved and price reduced. Subscribers to the SCIENTIFIC AMERICAN and SCIENTIFIC AMERICAN SUPPLEMENT can be supplied for the low price of \$1.50 by mail, or \$1.25 at the office of this paper. Heavy board sides; inscription "SCIENTIFIC AMERICAN" in gilt. Necessary for every one who wishes to preserve the paper. Address MUNN & CO., Publishers SCIENTIFIC AMERICAN DELANEY'S Expansion Packings for Steam, Water & Ammonia are best and cheapest. DELANEY'S Metallic Gaskets and Flanges make everlasting joints. H. J. Delaney & Co. Mfrs. Third & Fowler Sts., Milwaukee, Wis. The Orcuit Comp'y Leading Lithographers W. B. ORCUTT, GENL, MGR. Corresp'd'oo Solicited. Chicago. "ECONOMY IS WEALTH." Agents wanted to sell the Improved Hall Typewriter. The only standard machine made for a reasonable price. Prints all languages, interchangeable type. Address N. TYPEWRITER CO. Address N. TYPEWRITER CO. 611 Washington Street. Boston. Mention Scientific America USES AND AP- THE PEARY EXPEDITION: AN INteresting narrative of.—With 8 illustrations. Contained in Scientific American Supplement, No. 882. Price 10 cents. To be had at this office and from all newededlers. If so, we can supply you. All sizes mounted and unmounted always kept in stock. Remember, we make a specialtyof selecting stones for all special purposes. Ask for catalogue. The CLEVELAND STONE CO. 2d Floor, Wilshire, Cleveland, O. N IDEAL STUB PEN-Esterbrook's Jackson Stub, No. 442 A specially EASY WRITER, a QOOD INK HOLDER and a DELIGHT to those who use a STUB PEN. ASK YOUR STATIONER FOR THEM. Price, \$1.00 per gross. THE ESTERBROOK STEEL PEN CO., 26 John St., New York. PERFORATORS OF ALL METALS: For Cotton, Oil and Rice Mills, Sugar Houses, Distilleries, Phosphate and Fertilizer Works, Mining and Concentrating, Gas and Water Works, Elevators, Threshers, Separators, Corn Shellers, and all kinds of Grain Cleaning Machinery. Heavy steel and Iron Plates and Cylinders for Screening Ore, Coal, Stone. For Filters, Strainers, Ventilators, Oil, Gas and Vapor Stoves and all special purposes. Special sizes for Coffee Cleaning and Roasting Machinery. Perforated Tin and Brass. The Harrington & King Perforating Co., Chicago, and 284 Pearl St., N.Y # NOW READY! Fourteenth Edition of # Experimental Science REVISED AND ENLARGED. 120 Pages and 110 Superb Cuts added. The unprecedented sale of this work shows conclusively that it is the book of the age for teachers, students, experimenters, and all others who desire a general knowledge of Physics or Natural Philosophy. In the new matter contained in the last edition will be found the Scientific Use of the Phonograph, the curious optical illusion known as the Anorthoscope, together with other new and interesting Optical Illusions, the Optical Projection of Opaque Objects, new experiments in Projection, Iridescent Glass, some points in Photography, including Hand Cameras, Cane Cameras, etc. Systems of Electrical Distribution, Electrical Ore Finder, Electrical Rocker, Electric Chimes, How to Color Lantern Slides, Study of the Stars, and a great deal of other new matter which will prove of interest to scientific readers. 840 pages, 782 fine cuts, substantially and beautifully bound. Price in cloth, by mail, \$4. Half morocco, \$5. 🗷 Send for illustrated circular. MUNN & CO., Publishers, Office of the SCIENTIFIC AMERICAN, 361 BROADWAY, NEW YORK. # PUBLIC WORKS DEPARTMENT, CAIRO, EGYPT. Several applications having been made for the establishment and working of tramway lines in the City of Cairo and its environs, this Ministry decided to authorize the laying of the lines and branches indicated in Art. I. of the Act of Concession. Offers will therefore be received at this Ministry up to noon on the 1st February, 1894. Persons tendering for the construction of these lines must indicate the width, the dimensions, and all other dispositions of the line and the rolling stock, as well as the amount of annual compensation to be paid to Government. the amount of annual compensation to be paid to Government. The fare per maximum trip (given in Art. 13 of the Act of Concession) to be charged is also to be stated in the offer. Copies of the Act of Concession will be forwarded to those who apply for them by letter, addressed to the Minister of Public Works. The Egyptian Government reserve to themselves the right of selecting and accepting whichever offer they prefer, or even of not accepting any offer, whatever its advantages may be. # FOR SALE: SECOND HAND DYNAMOS & MOTORS WATER JAMES LEFFEL & CO., SPRINGFIELD, OHIO, U.S.A. Send for our fine WHEELS If you want the best CHUCKS, buy Westcott's Little Giant Double Drill Chucks, Little O Drill Cl Combination Lathe Chucks, Plain Universal Lathe Chucks, Independent Lathe Chucks. Made by Westcott Chuck Co., Oneida, N. Y., U. S. A. Ask for catalogue in English, French, Spanish, or German. ## STEEL TYPE FOR TYPEWRITERS Stencils, Steel Stamps, Rubber and Metal Type Wheels, Dies, etc. Model and Experimental Work, Small Machinery, Novelties, etc., manufactured by special contract. New York Stencil Wks, 100 Nassau St., N.Y WIFE SAYS SHE CANNOT SEE HOW TO UND TO THE HORKY. 12 Bays a \$65.00 Improved Oxford Singer 12 Sewing Machine; perfect working 'Reliable, finely finished, adapted to light and heavy work, with a complete set of the latest improved attachments free, Each machine guaranteed for o years. Buy direct from our factory, and save dealers and agents profit. Send for FERE CATALONUE, DEFORD MEG. COMPANY, DEPTD. 18 JHICAGO, LLLO ### Advertisements. #### ORDINARY RATES. Inside Page, each insertion, - 75 cents a line Back Page, each insertion, - - \$1.00 a line For some classes of Advertisements, Special and Higher rates are required. The above are charges per agate line—about eight words per line. This notice shows the width of the line, and is set in agate type. Engravings may head advertisements at the same rate per agate line, by measurement, as the letter press. Advertisements must be received at Publication Office as early as Thursday morning to appear in the following week's issue. #### COLD FORGED PRODUCT. # Forged Wood Screw Patented May 10, July 19, 1887; Oct. 29, 1889 Aug. 19, Oct. 21, 1890; April 7 May 12, 1891; #### Its Advantages are: - 1. Stronger than a common screw. - 2. Uniform and wide slot. 3. Requires the use of but one bit in hard wood. - 4. Inserted easier. - 5. Centralized point. - 6. Superior holding power. - 7. The screw being Cold Forged. instead of Cut, leaves on its entire surface a metallic skin. Send for samples to AMERICAN SCREW CO. PROVIDENCE, R. I. # Scientific Book Gatalogue RECENTLY PUBLISHED. Our new catalogue containing over 100 pages, including works on more than fifty different subjects. Will be mailed free to any address on application. MUNN & C(1., Publishers Scientific American, 361 Broadway, New York #### **ACCOUNTANTS** who use the Comptometer have no trouble with their trial balance. Has it ever oc-curred to you that by getting one you might save lots of time, avoid mistakes and not ruin your nerves? Write for Pamphlet. FELT & TARRANT MFG CO. 52-56 ILLINOIS ST., CHICAGO. # Parsons Horological Institute. earn the Watch Trade Engraving and Jewelry Work. Der Oircular free. PARSONS, IDE & CO. ELECTRO MOTOR, SIMPLE, HOW TO make. By G. M. Hopkins.—Description of a small electro motor devised and constructed with a view to assisting amateurs to make a motor which might be driven with advantage by a current derived from a battery, and which would have sufficient power to operate a food lathe or any machine requiring not over one man power. With 11 figures. Contained in SCIENTIFIC AMERICAN SUPPLEMENT. No. 641. Price 10 cents. To be had at thisoffice and from all newsdealers. MESSRS. MUNN & CO., in connection with the publication of the SCIENTIFIC AMERICAN, continue to examine improvements, and to act as Solicitors of Patents for Inventors. In this line of business they have had forty-five years' experience, and now have meanied facilities for the preparation of Patent Drawings. Specifications, and the prosecution of Applications for Patents in the United States, Canada, and Foreign Countries. Messrs. Munn & Co. also attend to the preparation of Caveats, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements of Patents. All business intrusted to them is done with special care and promptness, on very reasonable terms. A pamphlet sent free of charge, on application, containing full information about Patents and how to procure them; directions concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues, Infringements, Designs, Patents in all the principal countries of the world. We also send, free of charge, a Synopsis of Foreign Patents in all the principal countries of the
world. MUNN & CO., Solicitors of Patents, MUNN & CO., Solicitors of Patents. 361 Broadway, New York. BRANCH OFFICES.—Nos. 622 and 624 F Street, Pacific Building, near 7th Street, Washington. D. C. Fine Calf Dress Shoes, \$3.50, \$4.00 and \$5.00. Very Stylish. Policemen's, Farmers' and Letter Carriers' \$3.50 Shoe. Three Soles, Extension Edge, \$2.50 and \$2.00 Shoes for General Wear. Extra Value. Page and Youths wear the \$2.00 and \$1.75 School Shoe. For Ladies, \$3.00, \$2.50 and \$2.00 Shoes. Best Dongola. W. L. Douglas Shoes are made of the best material, in all the latest styles, and sold by shoe dealers everywhere. Do You Wear Them? W. L. Douglas' name and price is stamped on the bottom before they leave the factory, to protect you against high prices. Doing the largest advertised shoe business in the world we are contented with a small profit, knowing that the extra value put in W. L. Douglas Shoes will give a continuous increase to our business. The dealer who sells you unstamped shoes makes the price to suit himself. He will charge you from \$4 to \$5 a pair for shoes of the same quality as W. L. Douglas \$3 Shoe. The stamped name and price system is the best for you, because it guarantees full value by the manufacturer, for the money faid, and saves thousands of dollars annually to those who wear W. L. Douglas Shoes. If you wish to economize in your footwear it will pay you to examine W. L. Douglas Shoes when next in need. Sent by Mail, Postage Free, when dealers cannot supply you. Take no substitute. Send for Catalogue with full instructions how to order by mail. Address W. L. DOUGLAS, Box 551, Brockton, Mass. # \$6.00 \$100.00 Eastman Kodak Company, Rochester, N. Y. Motor of 19th Century Can be used any place, to do an work, and by any one. No Boil er! No Fire! No Steam! N Ashes! No Gauges! No Engineer! A perfectly safe Moto for all places and purposes. Coof over attention, about one center. nour to each indicated horse pow-er. For circulars, etc., address CHARTER GAS ENGINE CO. P.O. Box 148. Sterling, III. EPIDEMIOLOGY OF.-CHOLERA: OHOLERA: EFIDEMIOLOGY OF.— By Dr. G. Archie Stockwell. An interesting and valuable paper on the dissemination of the Asiatic Cholera, showing what does and what does not spread the disease. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. SSS. Price 10 cents. To be had at this officeand from all newsdealers. SCIENTIFIC EXPERIMENTS. — DE SCIENTIFIC EAPERIMENTS. — DEscription of some simple and easily performed scientific experiments. Foucault's pendulum, exchange of water and wine, the bird in the cage, the five-pointed star, the sum of the angles of a triangle, surface of the sphere, with 6 illustrations. Contained in SCIENTIFIC AMERICAN SUPPLEMENT, No. 875. Price 10 cents. To be had at this office and from all newsdealers. # NICKEL ELECTRO-PLATING Apparatus and Material. THE Hanson & VanWinkle Co. Newark, N. J. 81 Liberty St., N. Y. 23 S. CANAL STREET, CHICAGO. Columbian Exposition Electrical Bldg., Section L, Col. 4 # "IMPROVEMENT THE ORDER OF THE AGE." The Smith Premier Typewriter Embodies the most Progressive Mechanical Principles. All the Essential Features Greatly Perfected. Perfect and Permanent Alignment. Easiest Running, and Nearly Silent. All type cleaned in Ten Seconds without Soiling the Hands. The Smith Premier Typewriter Co., Syracuse, N. Y., U. S. A. We have 20 branch offices in the principal cities throughout the United States. ## **GREENERD ARBOR PRESS** DURABLE AND EFFICIENT, Saves marring, upsetting, or springing to arbor. Saves cleaning out the centre and taking off the dogs. No. 2, Weight 42 lbs., Net price, \$13. No. 3, " 90 lbs., " " 16. Illustrated circular on application CHANDLER & FARQUHAR. 179 Washington St., Boston, Mass ARKANSAS Is the COMING State. Buy 40 acres there on Installments. Improved farming land rents for from \$3.00 to \$7.00 an acre. Address W. B. BEACH, Bridgeport, Conn AGENIS WANTED FOR FINE TOOLS IN EVERY SHOP. CATALOGUE 'ANDAGENCY. CHICAGO, ILLUS.A. Mechanical Help for Inventors. There is nothing like a first-class machine shop, organized for and adapted to miscallana ous jobs to carry out ventor's ideas and make the most of them. Primer to send. THE JONES BROTHERS ELECTRIC CO. CIN'TI. O. The AUTOGRAPHIC REGISTER. A Labor-Saving Business System. Enforcing Honesty and Accuracy. Chicago Autographic Register Co. 150 E. Monroe Street, CHICAGO, ILL. Send for catalogue & price list. # Rubber Rolls and Wheels. inging Machines, Drying and Ventilating tyles of Trucks made to order. Catalogues GEORGE P. CLARIS, Box I., Windsor Locks, Conn. STOW FLEXIBLE SHAFT. PORTABLE DRILLS. CENTRE GRINDERS. TAPPING & REAMING STOW MFC.CO. 440 STATE ST BINGHAMTON, N.Y. EXPERT MODEL MAKING. Established 1867. J. C. SEYL, Prop. Chicago Model Works, Chicago, Ill. 179 E. Madison St. Write for Catalogue of Model Supplies. ## MECHANICS' TOOLS. If you are interested in Tools as a manufacturer or amateur, you should have a copy of our new catalogue. Our ISS2 edition is a very elaborate and complete book of 704 pages, handsomely bound in cloth. The book will be sent to any part of the world, prepaid, on receipt of \$1.00, and the money thus paid will be refunded with the first purchase amounting to \$10.00 or over. Every manufacturer and amateur should have this catalogue, even if they do not intend buying their Tools and Supplies of us. MONTGOMERY & CO., Fine Tools, 105 Fulton Street, New York City, N. Y. # ELECTRIC LIGHTY OUT EXHIBIT OF ELECTRIC LIGHTY APPARATUS At the WORLD'S FAIR is the most complete and comprehen there. We illuminate the Tower of Light, the Electric Fountains, the Manufactures Building and Electricity Building. Write for our World's Fair Fold 4 Broad Street. Chicago, Ill. O 599 Arch Street. Philadel Fifth and Race Streets Cincinnati, O. Equitable Building. Atlanta. Ga. 1828 F Street N W. PAID for all kinds of good Second-hand Iron and Wood-Working Machinery. Address W. P. DAVIS, ROCHESTER, N. Y. # The American Bell Telephone Company 125 MILK ST., BOSTON, MASS. This Company owns the Letters Patent No. 186,787, granted to Alexander Graham Bell, January 30, 1877, the scope of which has been defined by the Supreme Court of the United States in the following terms: "The patent itself is for the mechanical structure of an electric telephone to be used to produce the electrical action on which the first patent rests. The third claim is for the use in such instruments of a diaphragm, made of a plate of iron or steel, or other material capable of inductive action; the fifth, of a permanent magnet constructed as described, with a coil upon the end or ends nearest the plate; the sixth, of a sounding box as described; the seventh, of a speaking or hearing tube as described for conveying the sounds; and the eighth, of a permanent magnet and plate combined. The claim is not for these several things in and of themselves, but for an electric tel-ephone in the construction of which these things or any of them are used. This Company also owns Letters Patent No. 463,569, granted to Emile Berliner, November 17, 1891, for a Combined Telegraph and Telephone; and controls Letters Patent No. 474,231, granted to Thomas A. Edison, May 3, 1892, for a Speaking Telegraph, which cover fundamental inventions and embrace all forms of microphone transmitters and of carbon telephones. THE # CIDENTIDAKE AN MUERIKGAN EF ESTABLISHED 1845 The Most Popular Scientific Paper in the World Only \$3.00 a Year, Including Postage. Weekly-52 Numbers a Year. This widely circulated and splendidly illustrated paper is published weekly. Every number contains six-teen pages of useful information and a large number of original engravings of new inventions and discoveries. original engravines of new inventions and discoveries, representing Engineering Works, Steam Machinery, New Inventions, Novelties in Mechanics, Manufactures, Chemistry, Electricity Telegraphy, Photography, Architecture, Agriculture, Horticulture, Natural History, etc. Complete list of patents each week. Terms of Subscription.—One copy of the SCIEN-TIFIC AMERICAN will be sent for one year—52 numbers postage prepaid, to any subscriber in the United States, Canada, or Mexico, on receipt of three dollars by the publishers; six months, \$1.50; three months, \$1.00. Clubs.-Special rates for several names, and to Post Masters. Write for particulars. The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside of envelopes, securely sealed, and correctly addressed, seldom goes astray, but is at the sender's risk. Address all letters and make all orders, drafts, etc., payable to MUNN & CO., 361 Broadway, New York. # Scientific American Supplement This is a separate and distinct publication from THE SCIENTIFIC AMERICAN, but is uniform therewith in size. every number containing sixteen large pages full of engravings, many of which are taken from foreign papers and accompanied with translated descriptions. THE SCIENTIFIC AMERICAN SUPPLEMENT is published weekly, and includes a very wide range of contents. It presents the most recent papers by eminent writers in all the principal departments of Science and the Useful Arts, embracing Biology, Geology, Mineralogy, Natural History, Geography, Archæology, Astronomy Chemis-try, Electricity, Light, Heat, Mechanical Engineering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography, Technology, Manufacturing Industries, Sanitary Engineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh and valuable information obtainable in no other publication. The most important Engineering Works, Mechanisms, and Manufactures at home and abroad are illustrated and described in the SUPPLEMENT. Price for the SUPPLEMENT for the United States. Canada, and Mexico, \$5.00 a year; or one copy of the SCIENTIFIC AMERICAN and one copy of the SUPPLE-MENT, both mailed for one year to one
address for \$7.00. Single copies, 10 cents. Address and remit by postal order, express money order, or check, MUNN & CO., 361 Broadway, New York, # Building Edition. THE SCIENTIFIC AMERICAN ARCHITECTS' AND BUILDERS' EDITION is issued monthly. \$2.50 a year. Single copies, 25 cents. Thirty-two large quarto pages, forming a large and splendid Magazine of Architecture, richly adorned with elegant plates in colors, and with other fine engravings; illustrating the most interesting examples of modern architectural construction and allied subjects. A special feature is the presentation in each number of a variety of the latest and best plans for private residences, city and country including those of very moderate cost as well as the more expensive. Drawings in perspective and in color are given, together with Plans, Descriptions, Locations, Estimated Cost, etc. The elegance and cheapness of this magnificent work have won for it the Largest Circulation of any Architectural publication in the world. Sold by all news 2.50 a year. Remit to MUNN & CO., Publishers, 361 Broadway, New York # PRINTING INKS.