REINFORCED CONCRETE

THEORY AND PRACTICE

FREDERICK RINGS, M.S.A.,
Architect and Consulting Engineer

LONDON :
B. T. BATSFORD, 94 HIGH HOLBORN.

NEW YORK:
D. VAN NOSTRAND CO., 27 WARREN ST..

$$
<1910
$$

$$
\begin{aligned}
& 1+b^{8^{3}}< \\
& R^{5}
\end{aligned}
$$

Líw........... i Vul.iJ

PREFACE

Much has been written upon the subject of reinforced concrete, and the design of structures in this material no doubt still affords opportunity for invention and improvement. New systems, new bars, new details of various kinds are constantly being patented in many countries, but the leading features and ideas remain the same. Generally speaking, one may say that there are as many systems as there are specialists, each naturally insisting upon the superiority of his own favourite ideas.

The Author had occasion to see reinforced concrete constructions designed and executed for many years, and has closely followed its development. His principal object in writing this book was not to put forward any particular method of construction, but to collect in a concise form what seemed to him best of the many formulæ and systems used in various countries, and to deal with the subject in such a manner as to be intelligible to average students of architecture who have not been required to devote that amount of study to the theory of construction which is demanded of the young engineer. At the same time, it is hoped that the present volume may be useful also to the latter.

214843

As no mere series of unexplained formulæ can give any useful idea of the subject to a beginner, and as, as has. been indicated, the intention is to treat the subject in an elementary manner, an effort has been made to afford brief explanations of the calculations given and to further elucidate them by numerical examples. Thus it is hoped thereader will be enabled to acquire a methodical knowledgeof the principles upon the application of which all the varied systems alike depend.

No doubt the design and execution of reinforced con-crete work will always remain to a great extent in the hands of specialists, but the average architect or engineer should have sufficient knowledge of the subject to himself ${ }^{-}$ decide where this form of construction can be most usefully employed and what kind of reinforcement is most suitableto the particular case in hand. Each patent bar and system has its advantages, and after a careful study of ${ }^{-}$ the principles set forth in the following pages it should bepossible for the designer to himself decide which is themost suitable for use in any special case, and to hand over to the specialist only the task of properly working out thedetails upon general lines already laid down. Thus will beavoided the risks inherent in having to leave the wholedesign in the hands of one whose financial interests may incline him to use methods not quite the best for the special work under consideration.

The formulæ are based on the assumption that ordinaryround bars, such as are obtainable everywhere from stock ${ }_{\text {p. }}$
are used. Some tables and extracts are reproduced from the R. I. B. A. Report on Reinforced Concrete, by kind permission of the Institute. The history of reinforced concrete is partly compiled from the data given in Tozer's Handbook on the Lock Woven Mesh System, and facts relating to the manufacture and qualities of Portland cement and its use are chiefly from Everyday Uses of Portland Cement, published by the Associated Portland Cement Manufacturers (1900) Ltd. The author is indebted to the various specialists mentioned for the loan of interesting photographs, etc., dealing with work executed in reinforced concrete.

The Figs. marked ${ }^{1}$ are reproduced from Kersten's Der Eisenbetonbau, except where otherwise stated.

It is hoped that the tables at the end of the book, together with the Ready Reckoner, will be a help to designers and others for reference, calculation, and the checking of designs.

FREDERICK RINGS.

London, March, 19 io.

LIST OF SYMBOLS

BASED ON THE STANDARD NOTATION SUGGESTED BY THE SCIENCE STANDING COMMITTEE OF THE CONCRETE INSTITUTE.

$a \quad$ Area of the couple formed by compressive and tensile forces in a beam.
a_{c} Area of compressive force measured from neutral axis in ribbed slabs.
$a_{t} \quad$ Area of tensile reinforcement measured from neutral axis.
b Breadth generally in inches.
$b_{r} \quad$ Breadth of rib in a tee-beam in inches.
b_{s} Effective breadth of slab in tee-beam in inches.
c Compressive stress intensity on concrete.
$c_{s} \quad$ Compressive stress intensity on steel.
$\left.c_{x}\right\}$ Stresses in concrete of columns eccentrically loaded.
d Depth generally in rectangular sections.
d Effective depth of beam or slab from top to axis of tensile reinforcement in inches.
d Diameter in circular sections in inches.
$d_{c} \quad$ Depth or distance of centre of compressive reinforcement from compressed edge of beams in inches.
$d_{c} \quad$ Diameter of core of pillars in inches.
d_{c} Depth of arch ring at crown of arch in inches.
d_{d} Distance of bottom of reinforcement of rib from centre of gravity of reinforcement in inches.
$d_{r} \quad$ Diameter of a helical reinforcing rod in any compression piece in inches.
d_{l} Diameter of a longitudinal reinforcing rod of a pillar in inches.
$d_{n} \quad$ Deflection of a beam in inches.
$d_{r} \quad$ Distance of rods centre to centre in inches.
$d_{s} \quad$ Total depth of slab in tee-beam in inches.
$d_{t} \quad$ Total depth in inches.
Eccentricity of load in inches.
$e \quad$ Distance of centre of rod from axis of column in inches.
f Friction or adhesion of concrete and steel.
$h \quad$ Height generally in inches.
$i \quad$ Inset of centre of reinforcement from bottom of slab or rib in inches.
i Inset of rod centres from outer edge of column section in inches.
i Inset of centre of gravity of column section from outer edge in inches.
i Distance of eccentric load from outer edge of column section in inches. $i=d-e$ (diameter - eccentricity).
l Length generally in inches.
l Effective length or span of beam or arch.
m Modular ratio, i.e. the ratio between the elastic moduli of steel and concrete $=\frac{\mathbf{E}_{s}}{\mathbf{E}_{c}}$.
$n \quad$ Distance of neutral axis from compressed edge in inches.
$p \quad$ Intensity of pressure per unit of length or area.
r Radius in inches.
$s \quad$ Shearing stress intensity.
$s_{h} \quad$ Spacing of hoops round columns in inches.
$s_{r}=\frac{t}{c}$ Stress ratio in ribbed slabs.
t Tensile stress intensity on steel.
t_{c} Tensile stress intensity on concrete.
$\left.\begin{array}{l}t_{x} \\ t_{y}\end{array}\right\}$ Stresses in steel in columns eccentrically loaded.
v Versine or camber of a curve or rise of an arch in inches.
w Weight or load generally, per unit of length or area.
w Superimposed load uniformly distributed on arch.
w_{d} Dead load above arch ring at crown.
$\left.\begin{array}{l}x \\ y\end{array}\right\}$ Co-ordinates in arch calculations in inches.
x Distance of hangers or bending up of rods from support in inches.
$y \quad$ Height of shear triangle.
β Distance of compressive force from neutral axis in ribbed slabs in inches.
$\gamma=\frac{t}{c}$ In ribbed slabs.
$\pi \quad$ Ratio of circumference of a circle to its diameter.
O Perimeter of steel rods in inches.

A Total cross-sectional area of beam or pillar in inches.
A_{C} Area of compressive reinforcements of beams in inches.
A_{L} Cross-sectional area of longitudinal steel rods of pillar in inches.
A_{r}. Sectional area of one rod in ins. ${ }^{2}$
$A_{S} \quad$ Area of shear reinforcement in ins. ${ }^{2}$
$\mathrm{A}_{\mathrm{T}} \quad$ Area of tensile reinforcement in beams in ins. ${ }^{2}$
B Bending moment generally.
B Maximum bending moment of the external forces or loads on a beam.
B Bending moment at crown of arch.
$\mathrm{B}_{\mathrm{C}} \quad$ Bending moment at centre of beam.
B_{E} Bending moment at end of beam.
B_{L} Bending moment left half of arch.
$B_{R} \quad$ Bending moment right half of arch.
C Total compressive force or stress.
C_{C} Total compression on concrete.
C_{s} Total compression on steel.
E_{C} Elastic modulus of concrete in compression in lbs./in. ${ }^{2}$
$\mathrm{E}_{\mathrm{S}} \quad$ Elastic modulus of steel in lbs./in. ${ }^{2}$
G Centre of gravity of column section.
IC Moment of inertia for concrete.
IS Moment of inertia for steel.
N_{d}. Number of divisions in one half of arch.
$\mathrm{N}_{r} \quad$ Number of rods.
$\mathrm{P}_{\mathrm{H}} \quad$ Horizontal pressure.
$\mathrm{P}_{\mathrm{V}} \quad$ Vertical pressure.
R Moment of resistance of internal stresses in a beam at a given cross-section.
$\mathrm{R}_{\mathrm{L}} \quad$ Left reaction.
R_{R} Right reaction.
S Total shearing force across a section.
S_{C} Shear at crown of arch.
S_{C} Total shear taken up by concrete.
S_{s} Total shear taken up by steel.
$\mathrm{S}_{\mathrm{F}} \quad$ Safety factor.
T Total tensile force.
T_{C} Thrust at crown of arch.
W Weight or load.

CONTENTS

PREFACE
SYMBOLS
CHAPTER PAGE
I. INTRODUCTORY I
History of Reinforced Concrete and its Ad- vantages over other Systems of Building 5
II. MATERIALS I 2
A. PORTLAND CEMENT. Its Manufacture and Qualities, Strength, Testing, etc. I 2
B. CONCRETE. The Aggregate, Sand and Water, Proportions, Density, Mixing, Testing I4
C. STEEL. Its Properties, Connexions, Cutting and Bending, Distribution of Rods 30
III. EXECUTION OF WORK 36
Storing of Materials, Centering, Concreting, Work during Frosty Weather, Striking of Centering, Plastering, Tests 36
IV. LOADS, MOMENTS, STRESSES, AND VARIOUS APPLICATIONS OF REINFORCED CON- CRETE 47
CHAPTER PAGE
A. Floor Slabs 47
B. Ribbed Ceilings 52
C. Stanchions and Columns 54
D. Walls 54
E. Arches, Vaults, and Bridges 57
F. Foundations and Piles 61
G. Stairs 61
H. Pipes, Water Mains, Sewers, etc. 62
I. Roofs. 65
V. RESISTANCE AND SAFE STRESSES 67
VI. FORMULÆ FOR SLABS 75
Examples. 82
VII. FORMULÆ FOR DOUBLE REINFORCED SLABS 87
Example 89
VIII. FORMULÆ FOR RIBBED CEILINGS. 91
Example 98
IX. FORMULÆ FOR DOUBLE REINFORCED RIBBED CEILINGS 102
Example 103
X. SHEARING STRESSES AND ADHESION 105
Example 106
Calculation of Stirrups 108
Calculation of Bend up Rods. III
Example III
XI. AXIALLY LOADED 112
Examples I 16
ECCENTRICALLY LOADED II7
Example 121
XII. FORMULÆ FOR ARCHES 123
XIII. PATENT BARS AND SYSTEMS 127
MEMORANDA AND TABLES 148
Table for Calculating Slabs and T Beams 148
Table for Calculating Columns 149
Stock Sizes and Weights, etc., of Bars, Wire, ETC. 150
Stock Sizes of Patent Bars, etc. I5I
Sundry Useful Memoranda and Prices I 55
Roots, Squares, Cubes, etc. I 58
Symbols I8 1
INDEX 185READY RECKONER (IN POCKET).

REINFORCED CONCRETE THEORY AND PRACTICE

CHAPTER I

INTRODUCTORY

Reinforced concrete, although considered a modern building construction, is really very old in principle, and it has been proved that the Romans, many years before Christ, used it,-naturally only in a very crude form, but evidently fully understanding the principle of the combination of metal and concrete. There are examples of Roman reinforced concrete in many parts, the reinforcement consisting as a rule of bronze rods placed crossing each other in the centre of the slab. The concrete consisted of lime with occasionally other additions of hydraulic materials and aggregate, which latter was, as a rule, rather coarse. The Roman system of strengthening concrete with tiles is well known, and there are still many samples of their work in existence. The reinforced concrete of old times cannot, of course, be compared at all with our modern concrete as regards properties of strength and resistance, as the manufacture of Portland cement was not then known. In the Middle Ages concrete of lime mortar and stones was also used to a certain extent, but it was not before about the middle of the nineteenth century that the idea was more fully explored. About this time we trace various patents relating to the construction, like Louis Leconte's patent protecting the use of iron plate trusses for floors. He suspended iron rods from these plates, the rods carrying a meshwork of wire, which in its
turn supported the ceiling plaster. Other patents of this period are the Vaux and Thuasné systems. Vaux used round rods, hooked on flat iron bars placed edgewise in the concrete slabs. Thuasnés system consisted of small iron joists having hangers placed over them, with round iron bars suspended through a hole in the hanger. In these systems plaster of Paris was used. This material does, however, not protect the iron from rusting, and consequently the constructions were not lasting.

In these specimens of reinforcement no attention was paid to what is now the leading principle of reinforced concrete constructions, namely, to use the iron reinforcement to resist the tensile stresses while the concrete resists the compressive stresses.

No substantial improvement can be recorded before the invention of Portland cement. This was discovered in 1824 by Joseph Aspdin of Leeds, and improved by William Aspdin, who took out a patent relating to the manufacture of Portland cement in 1852. Wilkinson in 1854 used a layer of wet sand on the surface of fresh concrete, keeping the sand wet in order to get the concrete as hard as possible. The same inventor also took out a patent for hollow partition blocks and for fireproof floors. These latter he reinforced with flat iron bars placed on edge, and he described these bars as taking the tensile stresses, thus coming nearer to our modern ideas of reinforced concrete.

François Coignet of Paris invented about the same period his "Béton-Coignet," a concrete composed of hydraulic lime and aggregates mixed mechanically in certain proportions. In constructing slabs he put rods crosswise, similar to the Monier system. A good specimen of his work is the aqueduct of the River Vanne, which still exists at the present day.

In 1857 Dennett, a Nottingham contractor, introduced concrete arch floors between \perp iron joists.

In 1867 Scott took out a patent for a fireproof floor consisting of a lacework of rods, hoop irons or wire embedded in the concrete, and he states in his specification that the concrete takes the compression while the ironwork resists the tension in the slab.

Fig. 1.-Aqueduct
This remarkable Aqueduct for the Paris Water Supply was executed by the late Frar has a span of

he River Vanne.
(Reproduced from Coignet s Handbook.)
Coignet in moulded concrete. The principal arch shown in the above photograph 1) it 132 feet.

The introduction of reinforced concrete is usually attributed to Monier, who patented in France in 1867 a method for making large tubs for shrubs, using a meshwork of wires and rods embedded in concrete. Later on he took out further protection for other applications of his idea, and, on exhibiting his inventions at the Antwerp Exhibition, 1879, he came in touch with Wayss of Berlin, a civil engineer, who took Monier's patents up and worked them extensively. Wayss and his partner Koenen are responsible for the first method of calculating the strength of reinforced concrete floors. In these calculations they assumed the neutral axis to lie half-way up the beam and that the steel rods are equivalent to the bottom flange of an ordinary steel girder, while the concrete was considered to take the place of the top flange.

Lascelles in 1877 erected a number of cottages, the walls of which consisted of concrete slabs reinforced with iron rods placed diagonally.

The first reinforced concrete building in America was built by Ward of New York in 1875, the whole of the walls, floors and roof being composed of concrete reinforced with metal rods.

Further important inventions are the patents of Golding (1884) for expanded metal, Ransome (r884) for a twisted bar, and Lindsay's patent (1885) for reinforced concrete floors consisting of passing rods over and under the iron joists to form a continuous truss.

In 1894 Edmond Coignet published a booklet setting forth a theory of the distribution of stresses based on the different moduli of elasticity of iron and concrete, thus establishing the modern theory of calculating the stresses of reinforced concrete.

A further important advance was made by Wayss and Koenen of Berlin in 1892, who patented a reinforced concrete floor having the rods cranked up at the point of contraflexure.

About the same time Hennebique patented a construction of reinforced beams having stirrups to resist shear, and later, in 1897 , the same inventor introduced the system of rods cranked up placed one above the other to reduce the width of the beam.

Further important patents were taken out in quick succession in various countries-like the Ast patent largely in use on the Continent and many others; and the introduction of various patent bars, mention of which will be made later, rapidly put the important subject of reinforced concrete on strong bases, and the engineering and architectural professions of almost every civilized country were induced to look upon reinforced concrete as what it really means, viz., an ideal building construction tending to sound stability and, if properly designed, considerable economy as compared with solid brick and iron buildings, the most important feature being its fireproof properties.

It naturally became necessary for the building authorities in the various countries to safeguard the public against improper usage of the new method of building, and the German Government passed some very stringent building laws dealing with the calculating of stresses and the execution of the work, mention of which will be made in due course.

The Royal Institute of British Architects, recognising the great importance of the subject, appointed a committee who in 1907 issued a report laying down various recommendations and suggestions for the calculation of stresses, to which reference is made hereafter.

The leading idea of the construction is to use the concrete, the tensile resistance of which is considerably less than its compressive resistance, to take the compressive stresses of the combined material while the steel work resists the tensile and shearing stresses. Consequently round or square rods are placed in the concrete in such positions and in such dimensions as is necessary to resist the tensile and shearing stresses at the various points of stress, while the concrete is left to take the compression.

The three principal qualities of the two materials making it possible to gain the particular result are :-
r. The adhesion of the concrete to the steel is considerable (roo lbs. per square inch : see later).
2. The coefficient of expansion of concrete has been shown to be practically the same as that of steel.
3. The protection of the steel is such, that the formation of rust is quite impossible.

ADVANTAGES OF REINFORCED CONCRETE.

Reinforced concrete has been used so frequently and for so many purposes that practical conclusions can be arrived at, and it is now universally granted that the construction possesses many advantages over the method of building as used heretofore. There is hardly a branch of construction where reinforced concrete has not been used to decided advantage.

The principal recommendation is the fact that it is highly fireresisting.

The vast expansion of our big cities, the huge factories, where hundreds of people work in close proximity, the massing of people in theatres, schools, churches, and public buildings, make it imperative to study the prevention and spreading of fire and to use every possible means to this end in designing a building. Steel in itself, as used for stanchions, columns and girders, does not guarantee a protection at all; in fact, the contrary effect is more likely to happen, as the destruction by fire of a beam does not only involve the collapse of a floor or other superincumbent load, but very often the demolition of the walls as well. The heated steel loses its power of resistance and bends and fails altogether, bringing down everything with it. Various big fires have repeatedly shown this, where heavy girders were bent to all sorts of fantastic shapes. The failing naturally makes the extinction of the fire and the salvage almost impossible. It is absolutely necessary to consider the fire danger, even if everything in a room or building is carried by steel constructions. The only remedy is reinforced concrete, as the protection afforded by the concrete does away with the danger of the steel failing, and even if the whole building is burnt out, the carrying frame remains unhurt and rebuilding can start at once, be carried on at a greater speed, and the cost of rebuilding is reduced to the reconstruction of the fittings and decorations. The danger of collapse during a
fire is almost entirely removed and thus salvage operations made possible.

It is consequently necessary to protect all steel stanchions and girders with a fire-resisting material, and cement concrete has for some considerable time past been used for this purpose. In ordinary steel constructions, however, this is rather costly, as the concrete mantel does not take any stresses, and, therefore, does not make it possible to reduce the thicknesses and weights of the protected stanchions or girders. In fact, the material used is simply superfluous and only of use in case of a fire which may never occur. Reinforced concrete, on the other hand, does away with all heavy steel work and the concrete is made to do part of the duty of the member protected, thus effecting a considerable saving in cost, while at the same time affording full protection against fire.

The concrete does not crack nor split under the influence of fire, nor when water is thrown on while heated, thus effectively protecting the embedded steel from all dangerous influences.

It must be admitted that when exposed to great heat the concrete loses somewhat of its strength. The hardening of the material took place under the influence of water, and it is obvious that, if this is lost under fire, the concrete must become a little less compact and perfect, but this shortcoming is easily outbalanced by the advantage of keeping the whole structure intact, and as the influence of the heat can only be destructive to a very little depth, the various parts are easily repaired at small cost.

Furthermore, it has been repeatedly proved that the fire does not affect the complete adhesion of the concrete to the steel, so that, as far as the strength of the structure is concerned, little need be feared in consequence of a fire.

Objections:have been raised repeatedly that the moisture contained in the concrete during construction would cause the steel work to rust. But this supposition has been proved wrong over and over again. The famous French architect, Viollet le Duc, removed some iron clamps that had been built into the stonework

of the church of Notre Dame at Paris, and they, were found to be as bright as when they were put in some 500 years ago. Some reinforced concrete mortar pipes ($\mathrm{r} \frac{3}{8}$ in. thick) were constructed in Grenoble twenty-two years ago. After fifteen years two lengths of pipe were raised for inspection, and it was found that, although the water had been flowing through them and they had been embedded in soil for these fifteen years with only $\frac{3}{8} \mathrm{in}$. of Portland cement concrete protecting the steel, the metal was as bright as on the day it had been put in. Many other instances could be mentioned, and we might take it for granted that experience has shown how perfect is the protection afforded by the concrete.

The mixing of the concrete should be as perfect as possible with a sufficiency but not superabundance of water, as the latter has a weakening effect on the strength of the concrete. The proportion should be I part of water to 3 or 4 parts of solids; in no case less.

It is very important that the reinforcements should be fully protected against rust. Painting with oil would seriously interfere with the adhesion and must, therefore, not be employed. Many experts recommend painting the steel rods first with a thin mixture of cement and water, and this course is doubtless highly satisfactory. There is no necessity to free the rods from any rust as this is not detrimental at the initial stage, on the contrary, it may improve the adhesion. The point is to prevent the formation of rust after the rods are built in.

A further great advantage in using reinforced concrete is the rapidity of erection. The raw material is deposited on the site in a simple fashion and worked up by machinery in a very short time. In cases of large buildings, and particularly where it is of importance that they should be erected as quickly as possible, reinforced concrete will decidedly be preferable to brickwork.

The saving of space is another important item. The thickness of the external walls is much reduced, especially in cases of tall buildings, thus giving an increased floor area. Columns and stanchions can be spaced considerable distances apart, particularly where ribbed ceilings are used, while owing to the reduced weight
of the structure, supports need be less frequent than is the case with ordinary iron stanchions and girders. Furthermore, a reinforced concrete column, as a rule, takes up less room than an iron column or stanchion with its casing of concrete, besides affording greater protection against fire. A heavy iron stanchion is naturally liable to considerable expansion when exposed to fire, and the casing must be of appreciable thickness to resist this and protect the stanchion sufficiently to avoid expansion, quite apart from the consideration that a casing is very likely to crack under the influence of fire and the sudden exposure to water, when heated. In reinforced concrete stanchions the casing forms part and parcel of the stanchion itself, while the reinforcement is of such a small comparative sectional area that expansion is hardly possible.

The concrete lends itself to all irregular shapes and outlines, and there is no cutting as with brickwork, and perfect level and smooth surfaces are obtainable.

The carrying capacity of reinforced concrete beams and stanchions makes it possible to effect a great saving in the number of columns or stanchions required, and thus better light, more air, and better superintendence in case of factories are gained. This is particularly important where the heights of floors or the extent of buildings are limited.

The resistance against vibration or oscillation owing to the monolithic or homogeneous nature of the construction is also a very important feature. In case of factories this is particularly noticeable.

Experience has shown that sudden shocks such as, for instance, railway bridges or the like structures are subject to, cause no bad effects. While in solid masonry a crack is often caused which acts detrimentally on the structure, reinforced concrete constructions cause, through the elasticity and continuity of the steel work, the shock to be distributed evenly over a large surface instead of being taken up by a very confined portion only. This advantage is very important also in cases of fire, as the floors are able to resist any vibrations caused by falling machinery or débris much better than any other floors.

In comparing the cost of reinforced concrete buildings with that of brick or stone buildings the advantage is usually with the former. They naturally require less material and labour. The thicknesses of walls are considerably less, as brick walls must be increased in thickness according to their height to prevent bending or failure.

The only weak point in this respect is the considerable expense of centering and boarding and extra supervision. As the soundness and quality of the work very largely depends on good workmanship, it is essential that the supervision should be strict and general. It is also necessary that the superintending clerk of the works or foreman should be fully acquainted with the construction and alive to the great responsibility he incurs. The cost of centering and boarding is naturally appreciable, and although these materials may be reused three times or more according to quality of timber, full allowance must be made for cutting and waste. A judicious superintending of the work and looking after the workmen goes a long way towards reducing this item. Furthermore, the centering and boarding used should be of ample thickness and scantling. Although the initial expense in establishing the plant is thus increased, it will pay in the long run, as the plant can be reused oftener and splitting and consequent loss is avoided.

The expensive cartage of heavy ironwork and the haulage of heavy members into place is done away with, and it must not be overlooked that the encasing of ironwork becomes unnecessary.

The cost of maintenance is decidedly less than is the case with brick buildings. There is no pointing as with brickwork, nor repairs to stonework or any of the many costly items of repairs of an ordinary building, while the life of a reinforced concrete building is almost permanent, the structures being indestructible. Age has no bad influence, there is no decay; in fact, the work becomes stronger in course of time.

In order to avoid the necessity of repairing cracks great care should be taken to arrange for sufficient thickness of the concrete covering the reinforcements, particularly in external work exposed
to the influence of wet and frost. If the layers are made too thin, cracks are caused, and it will be a costly item to remedy this shortcoming by future repairs. It is decidedly more economical to avoid this by allowing ample thickness.

From a hygienic point of view reinforced concrete buildings are also preferable, particularly for hospitals and schools. Formation of fungus is impossible, and there are no hiding-places for insects or microbes and bacilli as is the case with wooden floors. The absence of projecting girder flanches prevents the accumulation of dust and the buildings are easily kept clean and sanitary.

As regards the architectural treatment of reinforced concrete, there are already many examples, as buildings, bridges, towers, etc., proving its adaptability for ornamental work. Artificial stone has been used for many years to the greatest advantage. There is no fear of sandholes, shales or other defects spoiling the appearance of many of our best designed buildings. Owing to the compactness and hardness of the material decay of delicate architectural features is almost impossible, quite apart from the saving in cost of material and workmanship. A great variety of designs is obtainable by removing the surface film of cement and showing the grain of the aggregate, thus overcoming the monotonous colour of the cement concrete. For the outer layers aggregate composed of small chips of any natural stone may be employed, giving plenty of opportunity for varied design. Mouldings and ornaments can be either cast in the moulds as the work proceeds or fixed in afterwards, and owing to the nature of the material it is possible to execute the most delicate designs.

For waterproofing concrete many methods have been advocated. It stands to reason that a greater proportion of cement tends to a more waterproof mixture. This is, of course, expensive, and a small addition of lime has been used with good results. A mixture of I part of Portland cement, $\frac{1}{2}$ part of lime and 3 parts of sand was found to be perfectly waterproof after six days. The usual method is to apply a wash of soft soap to the surface after the concrete has become set. This serves, at least, as a temporary
measure until the surface becomes hard enough in itself. It is not advisable to mix the soap with the concrete. The concrete very often shows fine surface or hair cracks, and in such cases mastic asphalte has often been used for waterproofing.

TEMPERATURE AND HAIR CRACKS.

Temperature cracks usually occur in large and bulky work, such as reservoir and dam construction, and arise from the effect of thermal variations. Although these cracks often appear to be of a serious nature, this is, as a rule, not so, and simple filling-in with mortar, lead or neat cement remedies the defect. As previously pointed out the reinforcements should be well distributed, and long walls or conduits require reinforcements in both directions to prevent cracks.

Fine surface or hair cracks are usually due to the circumstance that the surface of the work dries more rapidly than the bulk of the concrete. They are not, as is often supposed, due to faulty cement, but rather to a too rich mortar. All cement used in dressing concrete should be well mixed with sand or other very fine aggregate, and the surface work or veneer must be well rubbed down and washed.

CHAPTER II

THE MATERIALS

A. PORTLAND CEMENT.

Portland cement derives its name from its resemblance, when hard set, to Portland stone, and was invented, as before mentioned, by Joseph Aspdin in 1824. It was first commercially manufactured at Swanscombe, Northfleet, Faversham and Cliffe, at the works of J. B. White \& Bros., Robins \& Co., Knight, Bevan \& Sturge, Hilton, Anderson \& Co., Francis \& Co., and others.

While formerly the manufacturing process was somewhat crude, the superintendence is now usually in the hands of experienced chemists and the process of manufacture is carefully watched. Generally speaking, it may be taken that any modern Portland cement hailing from one of the recognised works is reliable, if properly treated and used. There is a great deal of so-called "natural" cement on the market, made principally in Belgium and sold as "Portland cement," and care should be taken that only best British Portland cement is used for reinforced concrete work to secure perfect results. The standard specification of Portland cement drawn up by the Engineering Standards Committee defines Portland cement as follows: "The cement shall be prepared by intimately mixing together calcareous and argillaceous materials, burning them at a clinkering temperature and grinding the resulting clinker". This definition shows that genuine Portland cement must be prepared by the mixture of separate raw materials. To ensure accurate results, great care
must be exercised in the mixing and a complete chemical combination during the process of calcination attained.

Another cement to be avoided is that made from blast furnace slag. This is of different composition and cannot be relied on. It is only satisfactory if used quite fresh, and quickly deteriorates.

Genuine Portland cement is made from chalk and clay or suitable limestone and shales. After being accurately proportioned and mixed the mixture is burnt to a hard clinker. This clinker is then finely ground and the result is the Portland cement. Very finely ground Portland cement will go further than a coarselyground Portland cement, as a more intimate and perfect mixture is obtained. Except for special work it is advisable to use either a "medium" or "slow" setting Portland cement. The Engineering Standards Committee defines the former as a cement which sets, when gauged neat, in not less than half an hour nor in more than two hours at normal atmospheric temperature ; the latter is one which takes not less than two nor more than seven hours to set.

To ascertain whether the cement is of good quality and condition in a rough and ready manner, a pat of cement $\frac{1}{2} \mathrm{in}$. in thickness should be gauged with about 25 per cent. by weight of clean water and placed on a piece of glass, iron or slate. At the end of twenty-four hours the pat on the glass should be placed in still water and left there for inspection during the progress of the work. If the cement continues to increase in hardness, and its appearance is satisfactory, the user may look to other causes if the work is not good.

Another rough test is to mix cement to the consistency of stiff treacle and fill a bottle with the mixture. If the bottle cracks the cement is over-limed or contains too much free lime. If the mixture shrinks or becomes loose it is over-clayed.

Portland cement should not expand to any great extent.
The initial setting of the cement is the commencement of the chemical action which is set up when the water combines with the cement; the hardening process is a much slower one. Care should be taken that the work is not disturbed during setting.

The atmospheric temperature greatly influences the setting. The warmer the weather and water, the more quickly will the cement set. A temperature below freezing point practically stops the chemical action, and many other causes may retard the setting. If, however, treated properly, the cement will set ultimately.

When Portland cement concrete is subjected to sea-water, particular care should be taken to get a close and compact mixture.

B. CONCRETE.

All aggregates used for mixing with Portland cement to form concrete should be perfectly clean and only clear water must be used. A good many materials are suitable for concrete, as ballast, broken stone, crushed granite, broken brick, burnt ballast and pumice stone.

Coke breeze is cheap and largely used, but must be carefully selected. Pan breeze or ashes are unsuitable. The coke breeze must be free from particles of coal dust, ammonia or sulphur and organic impurities. Pure vitrified furnace clinker is a good aggregate but makes a porous concrete. The concrete thus gained is light and cannot resist the same compression as that made with more substantial aggregate, as ballast, stone or brick.

Ballast concrete is likely to splinter, particularly when water is poured on it while heated, as in the case of a fire, and should, therefore, not be used for fire-resisting floors.

Pumice stone is also objectionable on account of its making very cellular concrete. It absorbs moisture and may induce rusting of the reinforcing steel work.

Ballast concrete resists a great crushing strain. For floor construction it should be crushed so as to be not larger than to pass through a mesh $\frac{3}{4} \mathrm{in}$. square; if reduced to $\frac{1}{2}$ in. the concrete will be more fire-resisting. For heavier work and foundations the size may be from 1 to 2 ins. mixed with smaller particles. It should be well washed before use to ensure best results. Angular
ballast will naturally give better concrete than that composed of round particles.

Broken, hard limestone makes a good concrete, if clean, but is not very fire-resisting, as limestone is subject to calcination at a high temperature.

Sandstone concrete is somewhat inferior in strength to limestone.

Diorites give a very good concrete.
Granite chips are to be recommended, particularly for floor constructions, giving a good wearing surface.

Broken brick is highly fire-resisting and an excellent aggregate for concrete. It affords plenty of adhesion and does not splinter at high temperatures.

Burnt hard clay ballast is also suitable for concrete but inferior to broken brick.

Pumice is a cellular volcanic product, and concrete made of this material is somewhat stronger than coke breeze or clinker.

The breaking of the aggregate is done either by hand or machinery. If broken by hand the results are somewhat better, but it is, of course, more expensive. If a stone-breaking machine is used, care should be taken that the fine dust produced in the breaking is eliminated, as the presence of this dust will naturally weaken the concrete.

The washing of the aggregate is done advantageously with a washing machine, which should be so constructed as to avoid any sediment.

In mixing the aggregate with cement there will naturally be a large number of voids varying according to the nature and size of the aggregate used. It has been proved that if sand be added sufficiently to fill up these voids, and only just sufficient cement is added to fill the interstices between the sand, a much smaller quantity of cement is needed than if the sand is omitted, while at the same time a strong, heavier and more impervious concrete is obtained. Very fine sand will make the concrete weak, but too coarse a sand is also a mistake, as more cement is required to fill
in the interstices or these remain and weaken the concrete. Medium sized sand is, therefore, the material to be used.

Particular attention must be paid to the selection of the sand. It must be perfectly clean, as any organic or loamy matter is detrimental to the strength of the concrete. If a loamy pit sand be used for economic or other reasons, it should be well washed. River sand is preferable to pit sand, and it is bound to be cleaner. Sea sand may be used without any bad effects. The presence of the salt will retard the setting of the cement to a certain extent and may cause discolorations, which can, however, be easily removed by a wash with a solution of sulphuric acid, much diluted with water.

The British Fire Prevention Committee carried out a number of tests with concrete floor slabs composed of slag, broken brick, granite, burnt ballast, coke breeze, clinker and Thames ballast, in order to find the most suitable aggregate to resist fire. The cement used was the "Ferrocrete" Brand, manufactured by the Associated Portland Cement Manufacturers (1900) Ltd. The results of these tests are set forth in Report No. Ioi of the British Fire Prevention Committee, the following "Object of Test " and "Summary of Effect" with table giving a concise view of the relative efficiency of the aggregates.

OBJECT OF TEST.

To record the effect of a fire of three hours' duration, the temperature to reach 1800° Fahr. $\left(982.2^{\circ} \mathrm{C}\right.$.) but not to exceed 2200° Fahr. ($12044^{\circ} \mathrm{C}$.) followed by the application of water for two minutes.

The area of the floor under investigation was to be divided into seven equal bays of different aggregates, the quantity and quality of Portland cement used being identical for each bay, and the nature of the concrete used being as follows :-

No.
Parts by Volume.

The total area of the floor under investigation was to be at least 200 ft . sup. ($\mathrm{I} 8 \cdot 58 \mathrm{sq} . \mathrm{m}$.).

The soffit of each bay exposed was to be about $10^{\prime} \cdot 0^{\prime \prime}$ by $2^{\prime} \cdot 7^{\prime \prime}$ ($3 \cdot 04 \mathrm{~m}$. by ${ }^{\circ} 787 \mathrm{~m}$.), the thickness being $5 \frac{1}{2}$ ins. (${ }^{\circ} 39 \mathrm{~m}$.).

The floor was to be loaded with 224 lbs . per ft. sup. ($1093^{\circ} 76 \mathrm{~kg}$. per sq. m.).

The centering was to be struck fourteen days after completion of the floor. The time allowed for drying was forty days (autumn).

Summary of Effect.

In ten minutes after the gas was lighted the plaster began to fall off the beams and continued to do so until the end of the test.

Towards the end of the test it was observed, from the top of the hut, that the edges of Bays, r, 6 and 7 were red-hot, No. 7 being the worst.

On the application of water, more plaster was washed off the beams than had fallen during the fire test, and some of the concrete from the underside of Bays Nos. 3, 4, 5, 6 and 7 was washed off. All the slabs remained in position.
-I

No. I.	No. II.	No. III.	No. IV.	No. V.	No VI.	No. VII.
Top: Slab cracked across in two places.	Top: Slab cracked across in three places; sllght curve downwards.	Top: Slab cracked across in three places; curved downwards about $\frac{1}{2} \mathrm{in}$.	Top: No cracks ; Not curved downwards.	Top: No cracks ; not curved downwards.	Top: Slab cracked across in two places; curved downwards about $\frac{3}{8} \mathrm{in}$.	Top : Slab cracked across in very many places; curved downwards about 2 in.
Underside : Curved downwards $\frac{1}{4}$ in. ; slight cracks visible.	Underside : Curved downwards $\frac{1}{4}$ in-; slight cracks visible.	Underside: Curved downwards $\frac{1}{2}$ in. ; no cracks visible; about I in. washed oft by water.	Underside: Not curved downwards; no cracks visible; about 3 in. washed off underside (in parts) by water.	Underside: Not curved: no cracks visible; about in. washed off underside (in parts) by water.	Underside: Not curved; one slight crack visible; pitted in places about I in. deep by water.	Underside: Curved downward $1 \frac{1}{4} \mathrm{in}$., and bad cracks all over in all directions, mainly longitudinally; much washed off by water.

Fig. 3.-The Seven Concrete Bays. Diagram and Table illustrating Summary of an official Fire Test of the British Fire Prevention Committee.
II.
III.
VII.

Bays Nos. 4, 5 and 6 were flat on the soffit, the others were convex on the underside, No. 7 (the worst) to the extent of $1 \frac{1}{2}$ in. On the removal of the load it was found that Bays Nos. I, 2, 3, 6 and 7 were cracked across, No. 7 being worst.

THE MANUFACTURE OF CONCRETE.

For the making of good concrete it is essential that the aggregate should be perfectly clean, and should vary in size from a Spanish nut to a hen's egg, at any rate it should not exceed this latter size. The sand should be clean, sharp and of medium coarseness to fill the voids between the aggregates, and, lastly, the Portland cement should be as finely ground as possible to fill the interstices between the sand and to be plentiful enough, in addition, to adhere properly to the aggregates.

The ideal concrete should be so composed as to give the best results as regards strength at the least expenditure.

Experience has shown that it is not feasible to lay down a hard and fast rule as to the proportioning of the components of concrete ; this largely depends on the aggregates and nature of the sand used.

The greatest possible density is more likely to secure perfect concrete than an increased portion of Portland cement. The various components must fit into each other to perfection, and it has been proved that a concrete well mixed with a moderate proportion of Portland cement is stronger than a concrete having cavities due to improper mixing, but containing a larger proportion of cement. Only by perfect density it becomes possible to distribute the pressure evenly throughout." Where great strength is desired, the proportion of cement may be increased, but it must not be overlooked that a mixture of perfect density having a small proportion of cement gives a stronger concrete than a mixture of less density having a greater proportion of cement. In the mixture there should be a certain amount of smaller stones to fill the voids between the larger stones, an amount of still smaller stones to fill the voids between the small stones, the sand filling
the voids between the latter and the Portland cement being added to bind the whole together and fill the voids in the sand. Attention should consequently be paid not only to the hardness of the aggregate, but to secure aggregate of such a nature that the particles are of various sizes proportioned so as to form themselves into a solid mass with the smallest voids possible. Naturally, the more angular and rough the particles of aggregate are, the better will be the adhesion and consequently the stronger the concrete.

The size of the aggregate depends largely on the work the concrete is destined for. For foundations, thick walls, etc., the size may be up to say $2 \frac{1}{2}$ ins. in diameter, while for floors, partitions, and walls less than 12 ins., the aggregate should not be more than $\frac{3}{4} \mathrm{in}$. in diameter. We may assume that each particle of aggregate is able to resist the same crushing strain proportionately as a bigger cube of the same material. The material should be well sifted so as to remove the loose dust. The dust resulting very largely from the crushing of the aggregate forms a coating round the small stones and thus prevents these coming in direct contact with the cement, thus preventing thorough adhesion. Particles of loam or mould will necessarily weaken the concrete, and must be removed in any case, but the coarser dust resulting from breaking up must be considered as forming portion of the sand to be incorporated and duly allowed for in deciding the rate of proportioning.

The best aggregates to be used are, no doubt, crushed ballast or stone. Concrete of small aggregate is more fire-resisting than that composed of larger aggregate, and the smaller aggregate is also more suitable from a practical point of view, as it is easier to get it into all crevices round the reinforcements, and, furthermore, voids cannot so easily occur with the fine material.

As regards the proportion of Portland cement required, this depends largely on the nature of the sand. The sand should be clean and sharp and siliceous. Fine sand naturally means more voids and consequently more cement to fill same, while it is more difficult to fill the voids than with a coarser sand.

In deciding what aggregate should be used for a particular contract, it must from an economical point of view first be ascertained what in the nature of aggregate can be procured on the site or in the immediate neighbourhood, in order to cheapen the cost of the work. If the concrete is for walls or other exposed parts of the structure, care must be taken to select an aggregate which is able to resist frost, and for this reason no porous material should be used, quite apart from the fact that porous aggregate makes poor concrete. If, however, for purposes of economy it is necessary to use porous aggregates, these should be well soaked before using, so as to avoid the absorption of moisture from the cement mortar. A good and cheap aggregate very often met with on the site is gravel, and as it is found in various sizes mixed together, the proportion of cement required is not excessive. But the concrete composed of gravel can naturally not be expected to afford the same strength of resistance as such made of broken stone or granite. Gravel contains always a proportion of sand or material which must be considered as sand, and, if gravel is to be used, the proportion of this sand must be carefully ascertained and the decision of how the concrete should be composed made accordingly. This is done by passing and repassing the material through sieves of various mesh.

The sand is also often found on the site, and it should be decided if it is suitable and particularly if it is clean. This is easily ascertained by placing a quantity of sand into a glass tumbler and filling this with clean water. If the water remains clear after shaking, the sand is fit for use, but if the water becomes cloudy or dirty, the material must be washed until, on further testing it, the water remains clear.

The water used for the concrete must be clean, and free from impurities and of a medium temperature. If the water is too warm, the concrete sets too quickly, while very cold water delays setting. The quantity of water required depends partly on the nature of the aggregate-porous material requiring more water than compact and solid aggregate-and partly on the weather
conditions. If the atmosphere is damp, less water is required than on a hot, dry day. Too little water causes imperfect setting of the cement, while too much water forms small voids in the concrete, which later on will come up to the surface. A practical test is to take up a handful of the concrete, when mixed, and press it together. The water should then drip out and, on opening the hand, the sample should retain the shape thus given to it. Broadly speaking, the concrete should be of such consistency as to be easily workable for whatever purpose used.

As regards finding the proper proportioning of the various materials in order to get a dense concrete many methods are advocated.

The simplest form is to fill a tumbler with the aggregate decided upon, level it at top and then add as much water as possible, viz., until it runs over the brim ; the water to be taken out of a graded glass. The proportion of water thus used would be the amount of sand required, on the assumption that the water fills up the voids between the aggregate which, in the concrete, are to be filled with sand. The same process is then repeated with the sand by filling the tumbler again with the sand to be used and adding as much water as the tumbler will hold. The proportion of water used will represent the amount of Portland cement necessary. The difficulty here is that some aggregates, particularly those of a porous nature, will absorb a great deal of water, and in order to get as true a result as possible, the aggregate should be well wetted before being placed into the tumbler or measure used.

This method does not, however, accurately determine the true proportions required, owing to the fact that the various materials differ in compactness under various methods of handling. As the grains of sand tend to thrust the particles of the larger aggregate apart, and a portion of the sand is often too coarse to enter the! voids of the coarser material, the test has its drawbacks. Again, with some of the aggregates, the voids are smaller than the particles of sand, which, therefore, get between the larger
aggregate and thus increase the bulk of the mass. To obviate this, the following method is recommended : Determine the proportion of voids in the larger aggregate by filling a measure therewith and pouring in water as described above. Also determine the percentage of voids in sand by weighing a cubic foot of packed sand and subtracting from 165 lbs . (the weight of a cubic foot of quartz), multiplying by 100 , and dividing the product by r65. Then proportion the cement and sand so that the cement paste will be ro per cent. in excess of the voids in the sand, and allow sufficient of this mortar to fill the voids in the large aggregate with an excess of 10 per cent. Thus: Supposing a sand contains 3^{8} per cent. voids and the large aggregate 48 per cent. voids, then cement paste required per c. ft. of sand $=0.38+$ $\left(\frac{1}{10} \times 0.38\right)=0.42 \mathrm{c}$. ft. (approximately). By trial $1 \mathrm{c} . \mathrm{ft}$. of loose cement, lightly shaken, makes 0.85 c . ft. of cement paste, and requires $\frac{0.85}{0.42}$, or approximately, 2 c . ft . of sand, producing an amount of mortar equal to $0.85+2(1-0.38)=2.09 \mathrm{c}$. ft. Mortar required per c. ft. of large aggregate $=0.48+\frac{1}{10} \times$ $0.48=0.528 \mathrm{c}$. ft . Therefore 2.09 c . ft. mortar will require $\frac{2 \cdot 09}{0.528}=$ approximately 4 c . ft. of aggregate. The proportions are, therefore, 1 part of cement, 2 parts of sand, 4 parts large aggregate.

The foregoing method is recommended by the• Associated Portland Cement Manufacturers (1900) Ltd., and the following tables, etc., are taken from their book on Everyday Uses of Portland Cement.

As the principal object in proportioning the various materials is to get a concrete of maximum density, the proportioning should be found by trial mixtures.

The following table is fairly reliable as regards the percentage of voids in various materials, and may be used where it is not convenient to determine the exact percentage of voids. A box, whose weight has been ascertained, say $\mathrm{I}^{\prime} \cdot 0^{\prime \prime} \times \mathrm{I}^{\prime} \cdot 6^{\prime \prime} \times 2^{\prime} \cdot \circ$ (con-
taining 3 c . ft.), should be filled with the materials after they have been heated to $212^{\circ} \mathrm{F}$. to drive off any moisture. The materials should be put in the box loosely and the top levelled off with a straight-edge. The box should be weighed when full. Deduct the weight of box to ascertain net weight, and divide this by the number of cubic feet in the contents (viz., 3 in this case). The result is the actual weight of $\mathrm{I} c$. ft . of the concrete.

By reference to the table below, the percentage of voids may be ascertained. The table does not apply to fine materials, such as sand, or particles fine enough to pass a $\frac{1}{4} \mathrm{in}$. mesh sieve, and, therefore, an aggregate that contains fine particles must be sifted before its percentage of voids can be determined by the table. The finer particles must be figured as a portion of the mortar.

Percentage of Voids.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Weight per \\
c. ft. \\
\(\%\)
\end{tabular} \& Ballast.

$\%$ \& Sandstone.

\[
\%

\] \& | Limestone, medium soft. |
| :--- |
| $\%$ | \& | Limestone, medium hard. Sandstone, hard. |
| :--- |
| $\%$ | \& Granite. Blue stone. Limestone, hard.

$$
\%
$$ \& Granite, hard. Trap rock, medium. \& Trap rock, hard.

$$
\%
$$

\hline 70 \& 57 \& 53 \& 55 \& 57 \& 58 \& 60 \& 61

\hline 80 \& 51 \& 47 \& 49 \& 51 \& 52 \& 54 \& 56

\hline 90 \& 45 \& 40 \& 42 \& 45 \& 47 \& 48 \& 50

\hline 100 \& 39 \& 33 \& 36 \& - 38 \& 41 \& 43 \& 45

\hline 110 \& 33 \& 26 \& 29 \& 32 \& 35 \& 37 \& 39

\hline 120 \& 27 \& 20 \& 23 \& 26 \& 29 \& 31 \& 34

\hline 130 \& 20 \& 13 \& 17 \& 20 \& 23 \& 26 \& 28

\hline 140 \& 14 \& 6 \& 10 \& 14 \& 17 \& 20 \& 23

\hline
\end{tabular}

The stones having been measured loose, the percentage of voids is slightly more than would be the case in actually rammed or tamped concrete.

A convenient way of ascertaining the percentage of sand required is as follows :-

Moisten the sand intended for use, so that, when squeezed in
the hand, it will retain its form without pressing out any excess water. Measure 50 c.c. by tamping it into a graduated glass tube marked with cubic centimetres. From the character of the sand, estimate approximately the quantity of Portland cement required to make a concrete of the desired plasticity, density, or strength. If this estimate is, say, I part of cement to 2 parts sand, 25 c.c. of Portland cement will be required for admixture with 50 c.c. of sand. This quantity of Portland cement may be obtained by weighing, with reference to the weight of a specific volume of Portland cement. With another sample try another proportion, say, $2 \frac{1}{2}$ parts of sand to 1 part of Portland cement and so on. After each sample has been measured out and the cement thoroughly mixed with the sand, sufficient water should be added to each to make a mortar of about the same consistency as will be required for the concrete.

Each sample should then be experimented upon by placing a little at a time in a graduated glass and tamping as before, the space occupied by each sample being noted. If the total quantity in any case should be greater than the volume of sand, probably too much cement has been added.

If the concrete requires a dense, strong mortar, samples should be used which contain the most Portland cement. Should, however, a very dense or strong mortar not be required for the concrete, the proportions are determined by one of the samples containing the least Portland cement and sufficiently plastic to give a good bond in the concrete.

Dense mortar must be used to produce a concrete that shall be almost impervious to water.

The following table may be used to show the proportion of aggregates which will give the maximum density with the minimum of Portland cement, the unit of measurement being that 1 ft . of Portland cement weighs 95 lbs . The figures given for the proportions of mortar, such as $1: 3$, signify 1 Portland cement, 3 sand.

Voids in Aggregate.	Proportions of Aggregate. (Expressed in c. ft.)									
	Proportions of Mortar.									
\%	I : I	1:2	I : $2 \frac{1}{2}$	I : 3	I : $3^{\frac{1}{2}}$	I : 4	I : $4 \frac{1}{2}$	I : 5	I : $5 \frac{1}{2}$	I : 6
20	5	10	$12 \frac{1}{2}$	15	$17 \frac{1}{2}$	20	22, $\frac{1}{2}$	25	27글	30
22	$4^{\frac{1}{2}}$	9	$11{ }^{\frac{1}{3}}$	$13 \frac{2}{3}$	16	181	$20 \frac{1}{2}$	223	25	$27 \frac{1}{4}$
24	4	$8{ }_{3}^{1}$	$10 \frac{1}{2}$	1212	$14 \frac{2}{3}$	16 ${ }^{\frac{2}{3}}$	$18 \frac{3}{4}$	203	23	25
26	$3 \frac{3}{4}$	$7 \frac{2}{3}$	93	$1 \mathrm{I}_{\frac{1}{2}}$	$13 \frac{1}{2}$	$15 \frac{1}{3}$	$17 \frac{1}{3}$	194	214	23
28	$3 \frac{1}{2}$	74	9	103	$12 \frac{1}{2}$.	144	16	$17 \frac{3}{4}$	$19 \frac{2}{3}$	$2 \mathrm{I} \frac{1}{2}$
30	$3 \frac{1}{3}$	$6 \frac{2}{3}$	$8 \frac{1}{3}$	10	112 ${ }^{\frac{2}{3}}$	$13^{\frac{1}{3}}$	15	$16 \frac{2}{3}$	$18 \frac{1}{3}$	20
32	3	64	$7 \frac{3}{4}$	$9 \frac{1}{3}$	11	$12 \frac{1}{2}$	14	I5 $5 \frac{1}{2}$	$17 \frac{1}{4}$	183
34	3	6	$7 \frac{1}{3}$	83	104	$11 \frac{3}{4}$	134	$14 \frac{3}{4}$	- $16 \frac{1}{4}$	$17 \frac{2}{3}$
36	23	$5 \frac{1}{2}$	7	$8 \frac{1}{3}$	93	11	$12 \frac{1}{2}$	14	154	$16{ }_{3}^{2}$
38	$2 \frac{2}{3}$	54	$6 \frac{1}{2}$	8	94	$10 \frac{1}{2}$	$11 \frac{3}{4}$	$13 \frac{1}{4}$	$14 \frac{1}{2}$	15
40	$2 \frac{1}{2}$	5	61	$7 \frac{1}{2}$	83	10	117	$12 \frac{2}{2}$	$13^{\frac{3}{4}}$	15
42	$2 \frac{1}{3}$	4 $\frac{3}{4}$	6	$7 \frac{1}{1}$	$8 \frac{1}{3}$	$9 \frac{1}{2}$	$10 \frac{3}{4}$	12	13	144
44	$2 \frac{1}{4}$	$4 \frac{1}{2}$	$5 \frac{2}{3}$	63	8	9	104	118 ${ }^{\frac{1}{3}}$	$12 \frac{1}{2}$	$13{ }^{\frac{2}{3}}$
46	$2 \frac{1}{4}$	$4{ }^{\frac{1}{3}}$	$5 \frac{1}{2}$	$6 \frac{1}{2}$	$7 \frac{2}{3}$	$8 \frac{2}{3}$	$9 \frac{3}{4}$	103	12	13
48	2	4	54	61	$7{ }^{\frac{1}{3}}$	$8 \frac{1}{3}$	$9^{\frac{1}{3}}$	$10 \frac{1}{3}$	$1{ }^{\frac{1}{2}}$	$12 \frac{1}{2}$
50	2	4	5	6	7	8	9	10	11	12
52	2	23	$4 \frac{3}{4}$	$5 \frac{3}{4}$	63	7옹	$8 \frac{2}{3}$	$9 \frac{2}{3}$	$10 \frac{1}{2}$	$1 \mathrm{I} \frac{1}{2}$
54	13	$3 \frac{1}{2}$	$4 \frac{2}{3}$	$5 \frac{1}{2}$	$6 \frac{1}{2}$	$7 \frac{1}{3}$	$8 \frac{1}{3}$	$9 \frac{1}{4}$	104	II
56	$1{ }^{4}$	$3 \frac{1}{2}$	$4 \frac{1}{2}$	$5 \frac{1}{3}$	64	74	8	9	$9{ }^{\frac{3}{4}}$	$10 \frac{3}{4}$
58	13	$3 \frac{1}{2}$	$4^{\frac{1}{3}}$	54	6	7	$7 \frac{3}{4}$	$8{ }^{8}$	$9 \frac{1}{2}$	$10^{\frac{1}{3}}$
60	$1 \frac{2}{3}$	$3{ }^{\frac{1}{3}}$	4	5	$5 \frac{3}{4}$	$6 \frac{2}{3}$	$7 \frac{1}{2}$	81 $\frac{1}{3}$	$9 \frac{1}{4}$	10

Good mixing is absolutely essential, and it is best to use a machine mixer wherever the work is large enough to warrant it.

Practical experience has shown that the normal proportions for reinforced concrete work should be a part of Portland cement to 2 of sand to 4 of aggregate. In concrete used in foundations, walls, arches, stairs, floors, etc., $\mathrm{I}: 2 \frac{1}{2}: 5$. For heavy and bulky work like retaining walls, piers, abutments, etc., $1: 3: 6$. Where very bulky masses are used and the concrete is subjected to compression only, $1: 4: 8$ would be enough, and it is economy to mix up large stones well spaced out and thoroughly embedded in the concrete.

As regards the quantity of concrete obtained from various pro-
portions it must not be overlooked that the sand goes to fill the voids in the aggregate and the cement those in the sand; consequently it does not follow that concrete mixed of i part of cement to 2 of sand and 4 of aggregate gives 7 parts of concrete.

The following are results obtained with various mixtures at the construction of the Connecticut Avenue Bridge in Washington, U.S.A. :-

I : $2: 4 \frac{1}{2}$ concrete- 378.25 lbs . cement measuring 4.5 c . ft. loose, $9 \mathrm{c} . \mathrm{ft}$. sand, and 20.25 c . ft. broken stone, yielded 2 I .4 c . ft . of concrete when rammed in place.
I: $2 \frac{1}{2}: 6$ concrete- 378.25 lbs . cement measuring 4.5 c . ft. loose, $11.25 \mathrm{c} . \mathrm{ft}$. sand, and $27 \mathrm{c} . \mathrm{ft}$. broken stone (or in another case 13.5 c . ft . ballast and I 3.5 c . ft . stone), yielded 27.66 c . ft. of concrete when rammed in place.
I: 3 : io concrete- 378.25 lbs . cement measuring 4.5 c . ft. loose, $13.5 \mathrm{c} . \mathrm{ft}$. sand, and $45 \mathrm{c} . \mathrm{ft}$. ballast, yielded 45 c . ft. of concrete when rammed in place.

The Mixing of Concrete.

Portland cement must, until it is used, be kept in a dry place and not left in the open, and no concrete that is not absolutely mixed fresh should be used. Concrete that has begun to set may, however, be used as an aggregate.

To secure a good result the mixing must be thorough; all parts being carefully measured and weighed out. A box without top or bottom and of proportionate dimensions is the most convenient measure for aggregate and sand. The cement should be weighed and the water measured by a pail.

The mixing should take place on a clean wooden platform, the sand being measured first and spread over the platform in a layer of uniform thickness, and it should be dry, as wet sand does not
mix properly, except where the mixing is done by machinery. If a great quantity of

Fig. $4{ }^{1}$

Fig. 5. ${ }^{1}$ concrete is to be mixed by hand, the platform is best covered with a sheet of zinc or iron.

No more concrete should be mixed at a time than can be immediately disposed of, and the mixing should be done as near to the place of destination as possible.
When the sand is levelled down, the Portland cement should be evenly distributed over the surface and the whole turned over at least three times with the shovel and until the uniformity of colour indicates a thorough mixing. Then the aggregate should be added to the mixture, the whole turned over again three times, and water gradually added under constant turning over of the materials. The concrete should only be sufficiently wet

[^0]to show water on the surface when it is well rammed in position with a wooden or iron harnmer. The best way of adding the water is by sprinkling it over the mixture with a watercan having a proper rosehead.

Wherever the size of the job allows it, the use of a mixing machine is preferable. Figs. 4 and 5^{1} illustrate such ma-

Fig. 6. ${ }^{1}$ chines, many patterns of which are on the market.

In placing the concrete in position, it should not be thrown from a height, but carefully tipped out of a barrow or truck as the case may be. It should then be well and evenly rammed. Not sufficient importance can be attached to this proceeding, as it is of the greatest moment in order to get good results. Figs. 6

Fig. 7. ${ }^{1}$ and 7^{1} illustrate a handtip cart and a tipping truck used for the work.

Concreting during Frosty Weather and Hot Weather.
It is not advisable to execute concrete work during frosty weather, as the frost prevents proper and uniform setting. If, however, urgency makes this necessary, it is well to add to the water 1 per cent. by weight of salt for every degree Fahr. below the freezing-point.

During the erection of a building at Rochester, N.J., the water

$$
{ }^{1} \text { From Everyday Uses of Portland Cement. }
$$

was heated to about 90° Fahr. and salt added in about the proportion of $\mathrm{i} * 6 \mathrm{lb}$. per c. ft. of Portland cement. The water was heated by passing live steam through perforated pipes in storage tanks, and the sand and gravel were heated in the storage bins by means of steam pipes and hot air pipes.

Certain experts on the Continent advise the addition of a small percentage of soda or chlor. calcium.

On the other hand, exposure to intense heat is also detrimental. The heat causes the upper layers of the concrete to set quicker than the lower and, naturally, withdraws the moisture too quickly. In hot weather it is therefore advisable to keep the surface of the concrete damp by sprinkling water or by covering it with a layer of wet sand, which will counteract the heat of the sun rays and cause the concrete to set in due time.

In the United Kingdom cases of extreme heat or cold rarely happen and, as a rule, only last a very short time, so that the work can be suspended.

C. STEEL REINFORCEMENTS.

The committee appointed by the R. I. B. A. in their report on reinforced concrete recommended as follows :-

The metal used should be steel, having the following qualities :-
(a) An ultimate strength of not less than $60,000 \mathrm{lbs}$./in. ${ }^{2}$
(b) An elastic limit of not less than 50 per cent. or more than 60 per cent. of the ultimate.
(c) An elongation of not less than 22 per cent. in the lengths stated below.
(d) It must stand bending cold 180° to a diameter of the thickness of pieces tested without fracture on outside of bent portion.

In the case of round bars the elongation should not be less than 22 per cent. measured on a gauge-length of eight diameters. In the case of bars over one inch in diameter, the elongation may be measured on a gauge of four diameters, and should then be not less than 27 per cent. For other sectional material the tensile
and elongation tests should be those prescribed in the British Standard Specification for structural steel.

Before use in the work the metal must be clean and free from scale or loose rust. It should not be oiled or painted, but a wash of thick Portland cement grout is desirable.

Welding should in general be forbidden ; if it is found necessary, it should be at points where the metal is least stressed, and it should never be allowed without the spècial sanction of the architect or engineer responsible for the design.

Figs. ${ }^{11}$ and 9^{1}.

The reinforcements should be placed and kept exactly in the positions marked on the drawings, and apart from any consideration of fire-resistance, ought not to be nearer the surface of the concrete at any point than I inch in beams and $\frac{1}{2}$ inch in floor slabs or other thin structures.

As regards rust, experience shows that, if not loose, it has the tendency to increase the adhesion to the steel of the mortar. Dirt or fat, on the other hand, acts detrimentally. Wherever the rods have to resist tensile stresses, it is advisable to bend the ends over to form hooks, so as to prevent any sliding tendency and give a better fixing in the concrete.

In columns or stanchions, where rods are continuous, and it is

Fig. 10. necessary to join them, it is a good practice to form a cup at the end of the lower rod, the upper rod finding its base in the cup. Rods are usually jointed by lapping
them 3 or 4 ins. and winding wire round the joint (see Figs. 8 and 9). The ends should be well bent over and well incased with concrete.

The cutting of the rods is done by hand, with a chisel, stouter rods being heated first.

Fig. II. A very handy little machine (Figs. Io and II) for round and square bars is now on the market (The Concave Floor Co., i Hawstead Road, Catford, S.E.) by means of which rods can be cut in a cold state with great rapidity. The machines are screwed down to a bench or other firm platform. The same firm supply also a machine for bending rods (Fig. 12) for various purposes by means of which it is easy to bend the rods in exactly the same places uniformly. These machines can easily be taken from one job to another, and thus do away with the necessity of preparing the rods beforehand and facilitate transport and handling before use.

The small waste pieces, which amount to some io per cent., can be utilised for hangers, straps and other connexions (see Figs. 13, 14, 15, 16), and machines for these purposes are also supplied by this company.

The advantages are obvious. The rods can be delivered on the
site in stock lengths and the cutting and bending be done on the spot from dimensions taken on the site and under the direct supervision of the clerk of works or foreman, and mistakes are avoided.

The rods designed to resist the tensile stresses may be termed tension rods. In case of a slab supported on all sides these rods are best placed in the direction of the shortest span. If the slab is approximately square, it is advisable to let them cross each other. The selection of the diameter depends on the load to be carried, the spacing, and the span of the slab. Round rods are commonly used, spaced certain distances apart. The distance can easily be ascertained according to formulæ mentioned hereafter. Care must be taken not to join rods where great bending moments occur.

Another series of rods, termed distributing rods, connect the tension rods in the opposite direction and are designed to give the tension rods a better hold, to distribute the stresses uniformly over the

tension rods, and to increase the strength of the slab against shear. These rods are usually selected of a smaller diameter and

Figs. $13-16$. placed over the tension rods so that the latter come as close as possible to the fibres in greatest tension. Fig. 17^{1} shows the arrangement of rods in a single reinforced slab, Fig. 1^{18} those in a double reinforced slab. At the points of crossing the two sets of rods are connected alternately with wire so that the whole reinforcement forms an iron netting. The width of the mesh varies according to circumstances. As a rule, in case of ordinary floor slabs, the rods are spaced from 4 to 12 ins. apart and of various diameters. Where the span is large and there are great loads to carry, the slab must either be

Fig. $17 .{ }^{1}$

Fig. $18 .{ }^{1}$ thicker or the reinforcing rods stouter, as the case may be. From a practical point of view it is always more advisable to choose thin rods, closely spaced, rather than stout rods, spaced very much apart. The round rods are the more frequently used, they facilitate the escape of air-bubbles and the tamping of the concrete; furthermore, they have no sharp arrises cutting into the concrete. On the other hand, the circular section offers a smaller coefficient of adhesion than is the case with square rods. Square bars, flat or hoop irons are
also used, often twisted, in order to get better adhesion. Other sections used are of $+\perp$ LS \triangle shape, and many patent bars of peculiar sections, twists and bends, of which more will be said hereafter. Expanded metal, wire meshing, dove-tailed sheeting, etc., are also used for floors, foundations, roofs, etc., and will be dealt with in due course.

CHAPTER III

EXECUTION OF WORK

It has already been mentioned, that it is essential to store the Portland cement in a dry place and protect it from the action of moisture in the atmosphere, until it is to be used.

It is also advisable to keep the sand and gravel or other loose materials under cover, as they will get wet, and it is then difficult to accurately ascertain the proper amount of cement and water required.

While the centering is being prepared and erected in place, there is opportunity and time for testing the cement, deciding the proportions of aggregates and sand to be used and make all the preliminary investigations and tests before mentioned.

The centering and moulds, usually termed "forms," are necessarily an expensive item, and special consideration should be given to their design, and all unnecessary cutting avoided.

Well-seasoned timber is not particularly suitable, as it is likely to swell and warp and absorb the moisture from the concrete. For this reason green, or almost green, timber is preferable. Any kind of timber may be used, fir, yellow pine or spruce, or indeed any timber most cheaply and conveniently obtained.

To secure a smooth surface the boarding next to the concrete should be planed. Where forms are required to be used several times over, the inside surface of the timber is coated or painted with a mixture of soft soap, linseed oil or crude petroleum oil. Others recommend limewhiting to prevent the sticking of the concrete to the forms and thus causing rough surfaces of the
work. Where it is intended to plaster the concrete afterwards, no oily or fatty matter should be used, and, in fact, for that purpose the concrete is best left rough, so as to form a key for the plaster, and it is sufficient to wet the forms before concreting begins.

Forms are constructed of timber, boards and battens of small scantling. The boarding is usually from 1 in. to 2 ins. thick, and, according to the thickness used, the battens are spaced. Roughly speaking, the studding should not be more than 2 ft . apart for inch boarding nor more than 5 ft . for 2 in . boarding. The battens must be thoroughly braced to withstand the pressure of the soft concrete and the stress of ramming and tamping. Tongued and grooved boards are better than square-edged boards. For walls the boarding should be $1 \frac{1}{2}$ or 2 ins. thick, 1 in. boards being used for small panels
 only and for beams, girders and small floor panels, although, if there is a good deal of flooring to be done and the boarding

Fig. 2I. ${ }^{1}$
used over and over again, it is naturally more economical to use thicker stuff. Wherever great weights are temporarily to be

[^1]carried-as in the case of the underside of beams and girders, and in forming centering for columns or posts- 2 in. boards should be

used. Timber ends may be run beyond the work they enclose so as to save waste caused by sawing.

Fig. 23.
By nailing arris rails to the boarding the external walls are given the appearance of a building built with heavy masonry. See Figs. 19, 20.

UNIVERSITY

The Associated Portland Cement Manufacturers (1900) Ltd. in their book on Everyday Uses of Portland Cement illustrate some useful forms for reinforced concrete work. Fig. 21 shows forms for low wall and cellar wall, Fig. 22 form for a low wall, Fig. 23 form for a hollow wall with Fig. 24, a detail of longitudinal joint moulding; Fig. 25 is a form for a solid wall.

For girder forms hardwood wedges should be used at top and bottom of each strut, as these can be loosened for resting if there is any deflection. If possible, the wedges should be loosened 24

Fig. 25. ${ }^{1}$
hours in advance of the struts. As a rule, light joists, 2 by 8 ins. or 2 by 10 ins. are used in preference to heavier timbers. Experience has shown that the maximum unsupported distance for I in. boards is $2^{\prime} \cdot 0^{\prime \prime}$, for $\mathrm{I} \frac{1}{2} \mathrm{in}$. planks $4^{\prime} \cdot 0^{\prime \prime}$, and for 2 in . planks the studding usually varies from $3^{\prime} \cdot 0^{\prime \prime}$ to $4^{\prime} \cdot 6^{\prime \prime}$ apart, according to circumstances.

Fig. 26^{1} shows the arrangement of a beam form and Fig. 27^{1} that of a column form.

[^2]The same author gives the safe strength of struts for floor forms in lbs. per sq. in. of section for different sized timber.

Length of Strut $14^{\prime} \mathrm{o}^{\prime \prime}$
$12 \mathrm{o}^{\prime \prime}$
$1 \mathrm{o}^{\prime \prime}$
$\mathrm{o}^{\prime \prime}$
$8^{\prime} \mathrm{o}^{\prime \prime}$
$6^{\prime} \mathrm{o}^{\prime \prime}$
$3^{\prime \prime} \times 4^{\prime \prime}$
500
600
700
850
1,000
$4^{\prime \prime} \times 4^{\prime \prime}$
700
800
900
1,050
1,200
$6^{\prime \prime} \times 6^{\prime \prime}$
900
I,ooo
I,100
I,200
1,200

$\left.\begin{array}{c} 8^{\prime \prime} \times 8^{\prime \prime} \\ 1,100 \\ 1,200 \\ 1,200 \\ 1,200 \\ 1,200 \end{array}\right\}$	

Special care must be taken that the forms are quite strong

SECTION THROUGH COLUMN FORMS.
Note.-This column form is made in 8 separate parts which consist of 4 corner moulds and 4 intermediate sides.

Figs. 26^{1} and 27. ${ }^{1}$
enough to do all the work they are called upon to do, and furthermore, that they are not removed too early, as accidents might very easily happen on account of this. The time for the centering to remain under a floor should be from one week to six weeks or longer according to the composition of the concrete, and the conditions, atmospheric and otherwise, under which it was prepared.

[^3]Broadly speaking, the centering should remain for twenty-eight days, by which time the concrete has gained about 60 per cent. of its ultimate strength. Fig. 28^{1} shows form for circular work and Fig. $29{ }^{1}$ the setting out of the same.

The report of the R. I. B. A. Committee recommends as to striking of centres as follows :-

Figs. 28^{1} and 29. ${ }^{1}$
The time during which the centres should remain up depends on various circumstances, such as the dimensions or thickness of the parts of the work, the amount of water used in mixing, the state of the weather during laying and setting, etc., and must be left to the judgment of the person responsible for the work. The casing for columns, for the sides of beams and for the soffits of floor slabs not more than 4 ft . span must not be removed under

[^4]eight days, soffits of beams and of floors of greater span should remain up for at least fourteen days, and for large span arches for at least twenty-eight days. The centering of floors in buildings, which are not loaded for some time after the removal of same, may be removed in a short time; the centering for structures which are to be used as soon as completed must remain in place much longer. If frost occurs during the setting, the time should be increased by the duration of the frost.

As before mentioned, the concrete should not be too wet nor too dry when being brought in. It should be placed in layers of from 6 to 8 ins. in depth and of such consistency that, when it is tamped lightly with a wooden or iron rammer, the water shows on the top and the tamping should continue until every particle of the aggregate is entirely covered with mortar. In preparing the concrete no more material must be made than can be disposed of at once, and in no case should any concrete lie longer

Fig. ${ }^{30}{ }^{1}$ than one hour before being used.

In warehouses, factories or other bigger buildings the mixing machines, etc., are most conveniently placed in the basement or lowest story, as the materials are thus at once protected. The saving of labour should be studied as much as possible. If the ground varies in level, the mixing should be done at a high level, so that barrows run down the hill when full and up the hill when empty, thus saving labour and energy.

As soon as the concrete is placed in position, the tamping and ramming begins. Fig. 30^{1} shows a rammer made of cast iron with wooden shaft. The tamping should be carried out with the object in view of consolidating the mass, bringing up any air, and getting the various particles to slip into their proper places and filling the voids. The outer portions require special attention, as they have to resist the tensile stresses. For

[^5]this reason it is also advisable to take care that no larger aggregates come to the outside, unless they are well covered with the cement mortar.

Arches or vaults should be tamped in the direction of the stress curves, working up from the springing. The weight and size of the rammers depend on the nature and size of the work. They should have preferably a square base from 4 to 7 ins. and varying weight, according to the purpose they are used for. For light work wooden rammers are often employed.

Where the concrete is brought in in layers, it may be necessary to roughen the surface of the first layer before placing the second, to form a key and attain better adhesion of the whole. It is also recommended to make the bottom layers somewhat wetter than the upper ones, to avoid the draining of moisture out of the concrete. Should the work have to be interrupted temporarily, as at meal times, the concrete should be covered over with wet sacks and cleaned down before work is resumed. It is also of advantage to step the concrete in case of foundations or walls, as the solidity will thus be improved. If the interruption is more than an hour or two a thin layer of Portland cement mortar is advisable on top of the layer last brought in.

When the tamping and ramming is finished, the concrete should be left to set undisturbed, and it is advisable to wet it at intervals, particularly in warm or dry weather. It should also be protected from strong winds.

Care should be taken not to leave openings and holes for piping in places where great bending moments occur.

The striking of the centering has already been dealt with. Should it be decided to plaster the concrete, it should be done immediately after striking the centering. In any case the concrete should receive its final treatment on the surface before it becomes too hard, although it is even then difficult to prevent hair cracks in the plaster. It is, therefore, better to give the concrete the desired appearance en bloc without plastering it over. In case plastering is decided on, the surface should be well wetted before this is done.

As has already been said, various finishes can be given to the concrete by treating the centering in a special way. If it is desired to give the concrete a rough appearance, the surface is washed and rinsed as soon as the forms are removed. The thin cement film on the surface comes off and the aggregate is thus laid bare. The roughness depends, of course, on the size of the aggregate used and the mixing of the whole concrete. In cases where a very rough aggregate must be used, yet a finely coarse surface is required, a special mixture of small aggregate, sand and cement may be put in first against the forms, before the main body of concrete is brought in, care being taken to get a perfect union of the two.

Mineral oxides may be added to give a colour effect.
To get the appearance of a washed surface, it is also possible to chip the surface with a sharp hammer and wash off with diluted spirits of salts, which must of course be well rinsed off afterwards.

Fig. $3 \mathrm{I}^{1}$ shows a finished surface of concrete, composed of 1 part of Portland cement, 2 parts of yellow sand, and 3 parts of $\frac{3}{8} \mathrm{in}$. screeded stone, after being scrubbed.

Fig. $3^{2}{ }^{1}$ shows yellow bar sand mortar, composed of I part of Portland cement to 3 parts of yellow sand.

The expansion and contraction of concrete, specially if the areas are large, is considerable and the occurrence of cracks should be avoided by expansion joints. These are made by inserting greased boards between the various sections of the work and withdrawing them just as the concrete is setting and filling the cavity with sand. Several thicknesses of tarred paper may also be inserted between the different sections and left in the concrete. The presence of the iron reinforcement largely prevents cracking, or at least causes the cracks to be so small as to be barely visible. For this reason the more meshwork there is in a slab, the more perfect the concrete surface is likely to be.

[^6]

Fig. 3r.-Surface Finish.

Fig. 32.-Surface Finish.

Floors of reinforced concrete are finished by screeding in the usual way. Battens are embedded in the concrete, a few feet apart, and on top of these a board moved backwards and forwards. If a fine finish is required the surface is steel trowelled.

The surface may be made rough to give a better foothold, and for this purpose an indenting roller (Fig. 33^{1}) is used. Or the surface may be cut up into squares by means of a joint cutter (Fig. 34^{1}). As regards the testing of the concrete. The report of the R. I. B. A. Committee says as follows:-

Before the detailed designs for an

Fig. $33 .{ }^{1}$ important work are prepared and during the execution of such a work, test pieces of concrete should be made from the cement, sand and aggregate to be used in the work, mixed in the proportions specified. These pieces should be either cubes of not less than 4 ins. each way, or cylinders not less than 4 ins. diameter, and of a

Fig. $34{ }^{1}$ length not less than the diameter. They should be prepared in moulds, and punned as described for the work. Not less than 4 cubes or cylinders should be used for each test, which should be made twenty-eight days after moulding. The pieces should be tested by compression, the load being slowly and uniformly applied. The average of the results should be taken as the strength of the concrete for the purposes of calculation, and in the case of concrete made in proportions of 1 cement: 2 sand: 4 hard stone, the strength should not be less than $2,400 \mathrm{lbs} . / \mathrm{in} .^{2}$

[^7]Loading tests on the structure itself should not be made until

Figs. 35 and 36. at least two months have elapsed since the laying of the concrete. The test load should not exceed one and a half times the accidental load. Consideration must also be given to the action of the adjoining parts of the structure in cases of partial loading. In no case should any test load be allowed which would cause the stress in any part of the reinforcement to exceed $2 / 3$ of that at which the steel reaches its elastic limit. There is a decided tendency in this country to impose tests greatly exceeding all practical contingencies.

Figs. 35 and 36 illustrate an apparatus for measuring the deflection of floors under test, which is in general use on the Continent (Agent, The Concave Floor Co., I Hawstead Rd., Catford, S.E.). The same apparatus can also be used for measuring horizontally, as for instance in loading tests of walls or other upright structures.

The same firm also supply a very handy patent bracket which supports centering and thus saves a great deal of cutting (Fig. 37).

Fig. 37.

CHAPTER IV

LOADS, MOMENTS, STRESSES AND VARIOUS APPLICATIONS

A. FLOOR SLABS.

Assuming the crushing strength of the concrete to be 2,400 to $3,000 \mathrm{lb} . / \mathrm{in} .^{2}$ after twenty-eight days, and the steel to have a tenacity of not less than $60,000 \mathrm{lb} . / \mathrm{in} .^{2}$, the following stresses may be allowed:-

If the concrete is differently proportioned than stated above ($1: 2: 4$) the stress in compression allowed in beams may be taken at $\frac{1}{4}$ and that in columns at $\frac{1}{5}$ of the crushing stress of concrete cubes of sufficient size at twenty-eight days after gauging. If stronger steel is used, the allowable tensile stress may be taken at $\frac{1}{2}$ of the stress at the yielding point of the steel. The " yieldpoint " or yielding point is determined by careful observation of the drop of the beam or belt in the gauge of the testing machine. In mild steel the yielding point (the true elastic limit being several thousand pounds lower) is safely taken at $30,000 \mathrm{lbs} . / \mathrm{in} .^{2}$

High carbon steel has a yielding point of 50,000 to $55,000 \mathrm{lbs}$./in. ${ }^{2}$ The cold-rolling or drawing of mild steel increases the yielding point, $65,000 \mathrm{lbs}$. often being obtained.

As has been previously stated, the fundamental principles of reinforced concrete are that the concrete resists the compression and the steel the tension, the tensional resistance of concrete being neglected.

An ordinary floor slab is the simplest form of a structure exposed to tension and compression, yet it depends very much whether the slab is freely supported or continuous or built in at both ends, and the reinforcement must be placed in such positionand be of such strength as to fully do its required work.
If the slab is supported at both ends and uniformly loaded the following facts must be considered: The bending moments at

Fig. $39 .{ }^{1}$

Fig. $40 .{ }^{1}$

Fig. 4 I. ${ }^{1}$ the supports are o, they increase towards the centre and are greatest at the centre, or the compressive stresses above the neutral axis and the tensile stresses below it increase towards the centre (Fig. 38).

Fig. 39^{1} shows the simplest form of a concrete slab; the reinforcement is placed in the line of tension and all the compressive stresses are taken by the concrete. The reinforcements are best placed as near to the most stressed fibre as possible.

Fig. 40^{1} shows another form of simple reinforcement, the latter following the line of stress, which increases from the supports
towards the centre. Wire mesh reinforcements in floors are placed in this fashion.

The bending up of rods towards the supports is most important,

Fig. 42.
Fig. 43.
as will be explained later on, to resist the shearing stresses.
Fig. $4 \mathrm{I}^{1}$ shows an arrangement to be used where economy of concrete and reduced thickness is desired, the rods not only taking the tension but also supporting the concrete to resist compression, although the latter effect is not very great.

If the slabs are so arranged that both ends are fixed the effect is much more favourable. The tension is considerably less and the elastic line shows two turning-points, viz., the bending moment is in two places $=0$. There are in this case positive and negative moments, and the former is greatest in the centre while the greatest negative moments are at the
 fixed ends. Consequently in the centre portion of the slab the
lower fibres are in tension and the upper fibres in compression, while at the fixed ends the tension is in the upper and the compression in the lower fibres. See Figs. 42 and 43.

Fig. 44^{1} shows a simple arrangement of reinforcements for such a slab. The reinforcement is placed at top as well as bottom. If the turning point can be ascertained, that is, if it can be shown at what point in the upper fibres the tension ceases and the compression begins, the reinforcement as shown in Fig. 45^{1} can be adopted.

Figs. 46^{1} and 47^{1} show a very good arrangement of the reinforcements. Only one rod is used, which, however, resists the tensile stresses in the upper fibres as well as those in the lower fibres. The arrangement in Fig. 47 gives a better fixing and better results.

Figs. 48^{1} and 49^{1} show other forms of reinforcement,

Fig. $48 .{ }^{1}$

Fig. 49. ${ }^{1}$ the arrangement in Fig. 48 being very useful for slabs supported at both ends as well as those securely fixed. In the latter case the moments towards the supports become theoretically $=0$, and consequently only a part of the rods calculated for centre of slab is necessary in the lower fibres. The other parts are bent upwards and considerably strengthen the slab against shear.

If the slabs are designed as continuous over several supports negative moments are created over these supports and conse-
quently reinforcements must be arranged at these points near the outer fibres to resist the tension (Fig. 50^{1}).

In the case of cantilevers the slabs are considered as securely fixed at one end (Fig. $5 \mathrm{I}^{1}$). The stresses are opposite to the stresses in slabs supported at both ends ; the upper fibres are in tension and the lower in compression. Consequently the reinforcements must be arranged in the upper

Fig. 51. ${ }^{1}$ fibres. If the projection is considerable as compared with the section of the slab, it is advisable to place the reinforcement also in the compressed fibres (Fig. 5^{1}). Fig. $53{ }^{1}$ shows another arrangement which at the
 same time effects saving of material.

In ordinary reinforced slabs the rods are simply arranged to run through the slab, but where any tension rods are used, it is advisable, particularly in cases of

Fig. 53. ${ }^{1}$ greater spans, to build in straps or hangers as shown in Fig. 54^{1},

Fig. $54 .{ }^{1}$
and where compression as well as tension rods are used, they can

Fig. 55. ${ }^{1}$
be joined together by means of straps (Fig. 55^{1}), the straps in either case resisting the shearing stresses.

B. RIBBED OR BEAM CEILINGS.

These are used when larger rooms are to be covered in. The beams are arranged parallel to the shorter side of the room and connected with slabs. If the spans are too great, the beams are supported at intervals with columns or piers.

Fig. 56^{1} shows the arrangement of an ordinary beam ceiling.

Fig. $5^{6.1}$
The shearing stresses between slab and beam are considerable,

Fig. 57. ${ }^{1}$ and consequently the section a to b is usually strengthened with straps or hangers (see Fig. 57^{1}).

As regards the reinforcement of beams, the same rules apply here as previously laid down for slabs, the reinforcement depending on the means and kind of support, viz., whether the beam is freely supported at both ends, continuous, or fixed at ends. When positive moments occur, the rods are, therefore, placed in the lower part as close to the most stressed fibre as possible, and where negative moments are to be dealt with in the upper fibres.

The distance of the beams depends on the dimensions of the room, the spans, and the loads to be carried. If spaced short distances apart, the slabs can be made thinner, while with large distances stronger slabs are necessary. If large rooms have to be covered, main beams and subsidiary beams may be arranged, the slab being continuous over both. The slabs as well as the beams are continued and built into the brickwork, the same as is the practice with ordinary steel girders and fireproof floors. The

centering for beam ceilings is somewhat more expensive than that for simple slab ceilings, but the former will, as a rule, be more economical.

Fig. 58 shows a typical arrangement of a beam ceiling with main and secondary beams and continuous floor slabs, the main beams being supported by reinforced concrete columns.

C. STANCHIONS AND COLUMNS.

These are, as a rule, required to take up as little room as

Fig. 59. ${ }^{1}$ possible. They are reinforced with square or round rods, placed near the quoins and usually made with a square section and chamfered corner. The columns have to support, generally, simply a crushing load. The tendency to burst outward is resisted by placing steel horizontally in the columns in the shape of hoops. The upright rods are designed to resist partly the compression and thus reduce the thickness of concrete. Very often a spiral reinforcement is used. Fig. 59^{1} shows the arrangement of a column. Sufficient concrete must be between the outside and the steel reinforcement to protect the latter from moisture and fire.

D. WALLS.

Walls are constructed with an arrangement of rods placed lattice-wise and are otherwise constructed on the same principles as columns or slabs.

Mention must be made of the spandrel patent system of reinforced brickwork (The Fireproof Partition and Spandrel Wall Co., Bank Chambers, 92 Tooley Street, London Bridge, S.E.). These walls are particularly useful for enclosing buildings. The whole area of the wall is divided into squares (about 18 ins.) formed by hoop iron netting, without penetration or fixing at the points of crossing. The squares thus formed are filled with concrete in situ or with slabs.

In case of dwelling-houses it has often been found that conVERTICAL HOOP IRON

Fig. 62.
crete walls are cold and may cause condensation, and for this reason the hoop iron netting work is often filled in with brickwork instead of concrete. As the netting practically forms a lattice-girder, the walls support themselves between stanchions or piers and a great saving in excavating and foundations is effected. The peculiar arrangement of the hoops give maximum strength and resistance against side pressure (Fig. 62).

Fig. 63 illustrates a self-

Fig. 63. supporting wall 3 inches thick unsupported for 30 feet, and Figs. 60 and 6 I a building on this system during erection.

Fig. 64. ${ }^{1}$

Fig. 65. ${ }^{1}$

Fig. 66. ${ }^{1}$

Fig. 67.

Retaining zwalls are usually designed as slabs between the buttresses (Figs. 64 and 65^{1}). For bigger walls a section as shown in Fig. 66^{1} is often adopted by means of which the soil is made to act on the groundplate and thus strengthen the construction. The groundplate is connected with the wall slab by means of reinforced struts, the reinforcement of the slab being calculated to resist the pressure of the earth.
The striking illustration of a retaining wall (Fig. $6 \gamma^{1}$) is taken from the Indented Steel Bar Co. handbook and forms part of Selfridge's Stores Building,Oxford Street, London.
Fig. 68^{1} shows a reinforced concrete wall in the Monier system. The reinforcement

Fig. 68. ${ }^{1}$ consists of strong wire and is, as a rule, placed in the centre of wall. Where exceptional stresses, such as wind pressure, must be resisted, a double system of wire-netting is used, placed near the outsides of the wall. In case of hollow walling the outer wall is made thicker than the inner wall.

E. ARCHES, VAULTS AND BRIDGES.

The axis of arches may occur in different planes, horizontal, vertical or at an inclination (Figs. 69, 70, $7 \mathrm{I}{ }^{1}$).

Fig. 69. ${ }^{1}$

Fig. 70. ${ }^{1}$

Fig. 7r. ${ }^{1}$

If the spans and loads to be carried are not appreciable, rein-
forcement of the lower fibres near the soffit is sufficient, special

Fig. 72. ${ }^{1}$

Fig. 73. ${ }^{1}$ care being taken that the rods are well fixed in the abutment.

For heavier work the upper fibres are also reinforced (Figs. $72,73^{1}$), but it is often sufficient to reinforce the upper fibres only towards the supports (Figs. $74,75^{1}$).
The reinforcement can be arranged at equal distancès through-

Fig. 74. ${ }^{1}$

Fig. 75. ${ }^{1}$
out, but for heavier work it is advisable to increase the thickness

Fig. 76. ${ }^{1}$
towards the supports (Fig. 76^{1}). A still stronger arrangement is

Fig. 77. ${ }^{1}$ shown in Fig. $77{ }^{1}$, where stirrups further strengthen the arch and take the shearing stresses. A similar arrangement as used in ribbed ceilings may also be adopted with main and subsidiary beams and a continuous slab.

[To face page 58.]

Fig. 8o.-Railway Bridge over the River Sée

Avranches, France. Total Length, 28i feet.

Figs. 8i and 82.

Figs. 83 and 84 .

Fig. 85.

Fig. 86.

Fig. 88.

Fig. 87.

Fig. 89.

For bridge building reinforced concrete is now being fairly generally adopted owing to the great stability obtained and the great saving in up-keep and repair. Figs. 78, 79 illustrate a bridge reinforced with Kahn bars.

F. FOUNDATIONS AND PILES.

Reinforced concrete is now largely used for foundation work.
Piles are made similarly to columns; they usually receive a wooden cap during driving operations to prevent splintering. There are a great variety of systems and constructions. Figs. 83 and 84 show a Coignet pile as used in the foundations of a tobacco warehouse at Bristol. It is interesting to note that these piles, weighing 5 tons each, and being some 45 feet long by 15 ins. in diameter, could be lifted at one end, the other resting on the ground, thus demonstrating the great strength and resistance of the construction. Figs. 81, 82, 85 illustrate a Hennebique pile. 1

For ordinary level or raft foundations wire meshing or expanded metal are extremely useful. Wherever the columns, piers or concentrated loads occur, the rods must be so arranged as to resist the compressive or tensile stresses as the case may be (Figs. 86, 87).

A Hennebique column base is shown in Fig. 88, and a boiler foundation in the Coignet system in Fig. 89.

> G. STAIRS, ETc.

Concrete stairs are reinforced as shown in Figs. 93-95. ${ }^{1}$ The tension and distributing rods are placed in the lower fibres and the stairs are either cast in situ or made independently before fixing. In the latter case the steps are built into the walls and the rods placed near the surface, the tension being in the upper fibres. If resting on strings, the tension is again in the lower fibres and the reinforcements placed accordingly.

An interesting piece of work is the Stadium at the FrancoBritish Exhibition (Figs. 90-92), the reinforcement used being the indented steel bar.

Figs. 93^{1} and $94 .^{1}$

Fig. 95. ${ }^{1}$
H. PIPES, WATER MAINS, SEWERS, ETc.

The reinforcement is similar to that of columns, expanded metal or wire reinforcement being also largely used. Fig. 96 shows reinforcement for a water main.

Fig. 96.
Telegraph poles, fence posts, etc., are also made of reinforced concrete and are constructed in a similar manner.

Fig. 97^{1} illustrates a simple reinforcement for water tanks. The rods are spaced closer towards the bottom where the stresses increase.

I. ROOFS.

The construction of flat roofs is done on the same principles as that of floor slabs. The material opens up a new field for the design of curved and ornamental roofs of any shape desired, very fine examples of which are to be found in Indian architecture. Concrete being a non-conductor, an even temperature is maintained in buildings. Sheet and wire re-

Fig. 97. ${ }^{1}$ inforcements are naturally most economical and practicable as the concave system, expanded metal or lock-woven mesh, Fig. 98 illustrating a roof constructed in the latter system.

The Visintini system lends itself particularly well for great spans, and Fig. 99 is a photo of a roof constructed on this principle, during erection, the span being 1 I .80 metres or about 38 ft ., and the distance of principals 4.68 metres or about 15 ft . 6 ins.

Figs. 100-107 ${ }^{1}$ illustrate details and connexions of the various roof members to the reinforced concrete which is constructed in the Monier system, and Fig. 108^{1} is a flat roof self-supporting without principals or binders.

When deciding on the roof covering, the material used must secure protection from change of temperature and extreme heat and cold. It is advisable to arrange for some isolating layer of cork, roof felt or the like, and openings should be left at bottom of rafters to create a constant current of air and ventilation to prevent condensation.

For flat roofs a hollow construction like the concave system (p. 134) is to be highly recommended. The air space effectively counteracts the influence of extreme heat and cold and secures a

perfect ventilation and constant circulation of air. The Vulcanite

Fig. 107. ${ }^{1}$
system of roofing is also largely used, but can necessarily not give the same advantages as a hollow roof construction.

Fig. 108. ${ }^{1}$

CHAPTER V

RESISTANCE AND SAFE STRESSES, ETC.

The various factors to be taken into account when designing reinforced concrete work are the following :-

As regards loads :-
I. The weight of the structure.
2. The permanent load to be carried.
3. The accidental load or the imposed load in addition to the weight of the structure.
4. The vibration, oscillation and shock.

In calculating the stresses, the member under consideration must be taken under the worst conditions, viz., the calculation must be based on the greatest straining action the member may be subjected to.

The weight of reinforced concrete may be taken at $\mathbf{I} 50 \mathrm{lbs} . / \mathrm{ft} .^{3}$ (many advocate to allow $156 \mathrm{lbs} . / \mathrm{ft} .^{3}$).

In structures subjected to very varying loads, together with a certain amount of vibration and shock, like factories, public, halls, etc., the factor for shock should be taken equal to half the accidental load.

Where machinery has to be carried and the structure is, therefore, under considerable vibration and shock, the factor for shock should be taken equal to the accidental load.

For columns and piers of buildings having several stories, the structures carrying the top floor should be calculated to take the full accidental load of floor and roof. For the story below 10 per cent. less than the figure allowed for the top floor, for the floor below this 20 per cent. less, and so on to the floor at which the reduction
amounts to 50 per cent. of the assumed load on the floor. For all lower floors the accidental loads on columns or piers should be taken at 50 per cent. of the loads assumed in calculating these floors.

As regards spans:-
Measure the spans as follows :-
For beams, the distance from centre to centre of bearings.
For slabs supported at ends, the clear span and the thickness of slab.
For slabs continuous of over more than one span the distance from centre to centre of beams.

As regards bending moments :-
The bending moments in case of a uniformly distributed load of $w \mathrm{lb}$. per inch run of span are as follow:-

For beams or slabs supported at the ends, the greatest bending moment at centre of span of l inches is equal to $\frac{\mathbf{w l}^{2}}{8}$.

For beams continuous over several spans or fixed in direction at each end, the bending moments are at the ends of span, and the beam should be reinforced at its upper side near the ends. If continuity can be relied on, the bending moment at the centre of span is $\frac{\mathrm{wl}^{2}}{24}$ and that over the supports $=\frac{\mathrm{wl}^{2}}{\mathrm{I} 2}$. If the continuity is not quite perfect, the bending moment at the centre will be greater, and that at the supports less. Generally speaking, the centre bending moment should not be taken less than $\frac{\mathrm{wl}^{2}}{\mathrm{I} 2}$. These values are recommended by the R.I. B. A. Committee and now largely adopted in this country.

The Prussian Government regulations for continuous slabs or beams are as follows :-
"Slabs and beams, continuous over several spans, may, if the actual moment and the reactions at supports are not statically ascertained according to the rules for continuous beams freely supported in the centre and at the ends or proved by experiments, be calculated with a bending moment equal to four-fifths of the value, which would be applicable to a slab freely supported at
both ends. The negative bending moment over the supports is to be taken equal to the moment of span for slab freely supported at both ends. Slabs and beams can only be considered as continuous if they rest on firm stanchions or reinforced concrete beams, level throughout. In arranging the reinforcing rods the possibility of negative moments occurring must be carefully considered. Beams may be considered fixed at the ends, only if special structural arrangements guarantee secure fixing.

In calculations the continuity must not be considered as extending to more than over 3 spans. Where the live load exceeds

Fig. IIo. 1
$1,000 \mathrm{~kg}$. per sq. metre (I ton per $10 \cdot 76 \mathrm{ft} .^{2}$ or $208 \cdot 18 \mathrm{lbs} . / \mathrm{ft} .{ }^{2}$), a calculation for the most unfavourable position of the load must also be made.

This would give the following values for the moment for a uniformly distributed load $\mathrm{W}=g+p$ where g represents the self load and p the live load. (See Figs. IO9 and 110. ${ }^{1}$)

As mentioned before, it is advisable to reinforce floor slabs over rectangular or nearly rectangular rooms diagonally, particularly strengthening the centre of the slab. This method is advantageous if the slab is quite square or one side slightly longer than the other, but does not give special advantages as soon as one side of the square becomes nearly double or more than double the other side.

Where the slab is quite square, experience has shown that the centre bending moment may be taken with safety at $\frac{\mathrm{wl}^{2}}{\mathrm{I} 6}$, the factor 16 being reduced gradually to 12 in cases where one side measures 2 of the other side; always provided that the slab is uniformly loaded and supported all round.

Foundation slabs are considered as beams supported at both

w
Fig. ili. ${ }^{1}$

Fig. $112 .{ }^{1}$ ends and uniformly loaded. The walls or columns to be supported represent the supports and the soil pressure the load. Thus negative moments are created between the supports and positive moment near the supports. (See Figs. III and III2. ${ }^{1}$)

As the concrete may be very differently proportioned according to the aggregate and sand used, it is impossible to adopt a uniform coefficient of elasticity. The strength of the material should be ascertained by tests in every case.

At any rate it is not advisable to operate with a factor of safety less than 6 , that is, where reinforced concrete is exposed to compressive stresses it should not be loaded or stressed more than to the extent of one-sixth of its breaking moment, while in cases of columns or stanchions it should not be stressed more than onetenth of its breaking moment.

The resistance of concrete to tension is very difficult to determine, and is so small that in reinforced concrete construction it is, as a rule, not taken into consideration at all.

The resistance of concrete to shear is also very difficult to ascertain. Tests have proved that it is at any rate greater than its resistance to tension and depends very much on the composition of the concrete. Broadly speaking, tests have shown it to be about $300 \mathrm{lbs} . /$ in. ${ }^{2}$, so that allowing for a factor of safety of 5 a stress of $60 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$ may be adopted in case of concrete mixed $\mathrm{I}: 2: 4$.

The adhesion of the concrete to the steel is best proved by tests with ordinary concrete slabs compared with such reinforced with steel. It has been found that the latter resist a much greater tension, which can only be attributed to the adhesion between the two materials. The cause is probably a purely mechanical effect, resulting from the circumstance that the concrete in setting contracts and thus gets a firmer grip on the iron or steel. Certain experts attribute it to a chemical action. Whatever the cause may be, the fact certainly remains that concrete is considerably strengthened on account of this adhesion. It increases proportionately with the percentage of reinforcing rods and the circumference of same. Consequently it is better to use more rods of a small diameter than a reduced number of a greater diameter. Small diameter rods are also more easily manipulated. Experiments
have proved that the surface of the reinforcement has very little to do with the amount of the adhesion. Rods with smooth surfaces exhibited almost the same adhesion as those with a rough surface. As a rule, round rods showed a better adhesion than rods of another section. The amount of adhesion depends also largely on the quality and composition of the concrete and the proportion of water used, and it may be taken that the adhesion is the greater the stronger the composition, the slower the setting of the cement takes place, and the older the concrete is. It also is increased with coarser grain of sand and reduction of the quantity of water used. Practical experience has also shown that vibrations and similar shocks do not interfere with the adhesion.

The adhesion is greater than the resistance of concrete to shear, as in testing operations where rods were pulled out of the concrete, small particles of the concrete still adhered to the steel. The adhesion has been ascertained to be some $500 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$, so that allowing a safety factor of 5 , $100 \mathrm{lbs} . /$ in. ${ }^{2}$ may with confidence be adopted. This is really more than ample, considering that in calculations the resistance of the concrete to tension is neglected, and, as a rule, only the straight rods are taken into account while the bent rods and stirrups or hangers are also neglected. Furthermore, the ends of the rods, if bent over, as a matter of course considerably increase the resistance to sliding of the rods through the concrete.

As before mentioned, particular care must be taken that all reinforcements are perfectly embedded in the concrete and no voids left. It is not always necessary to join the ends of the rods except where great bending moments occur. As a rule, it is advisable to effect the joins as shown in Fig. 8, page 31. Wherever necessary or desirable the free ends should be well bent over or so arranged as to make slipping impossible. Many of the patent bars (Kahn, Indented steel bar, etc.) are designed to prevent this slipping and to get better adhesion and hold on the concrete by means of wings or indentations in the rods.

As regards expansion and contraction, concrete, if the setting
takes place in the open, will contract, while, if under water, it will expand. There are in consequence certain stresses in reinforced concrete during setting. In the first case tensile stresses are created in the concrete and compressive stresses in the steel, while in the second case (under water) the stresses are opposite, compressive in the concrete and tensile in the steel. This circumstance often causes fine cracks, but the stresses are so small that they are not considered in calculations except in special cases like water tanks, etc.

A great objection to the new method of building, namely, that in case of fire the expansion of concrete and steel would be very different and thus cause failure of the structure, has now been proved entirely erroneous. Many experiments and tests have shown that the coefficient of expansion of the two materials is practically the same. That of steel is about 0000066 per degree Fahrenheit. Concrete mixed 1: 2: 4 expands between 0000060 and -0000065 per degree Fahrenheit, and it is this circumstance particularly that makes reinforced concrete so desirable for fireproof buildings.

As regards the elasticity of the reinforcement, wrought-iron rods have practically gone out of use, and been replaced by mild steel, high carbon steel and cold drawn steel. Mild steel is usually used now. The elastic limit of mild steel is about $30,000 \mathrm{lbs}$./in. ${ }^{2}$, that of high carbon steel about $55,000 \mathrm{lbs}$., while that of cold rolled or drawn mild steel is about $65,000 \mathrm{lbs}$. It is largely a question of price against quantity of material. The modulus of elasticity of all three steels is about $30,000,000 \mathrm{lbs} . /$ in. ${ }^{2}$, or 15 times that of concrete.

Subjoined is an extract from the report of the R. I. B. A. Committee on reinforced concrete showing the various values. The subsequent calculations are based on these figures adopted by the Institute.

The internal stresses are determined, as in the case of a homogeneous beam, on these approximate assumptions :-
(a) The coefficient of elasticity in compression of stone or gravel
concrete, not weaker than $1: 2: 4$, is treated as constant and taken at one-fifteenth of the coefficient of elasticity of steel.

$$
\begin{aligned}
\text { Coefficient for concrete } & =\mathrm{E}_{\mathrm{C}}=2,1 \mathrm{lbs} / \mathrm{jin}^{2} \\
;, \quad \text { steel } & =\mathrm{E}_{\mathrm{s}}=30,000,000 \\
\frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{C}}} & =15 .
\end{aligned}
$$

It follows that at any given distance from the neutral axis, the stress per square inch on steel will be fifteen times as great as on concrete.
(b) The resistance of concrete to tension is neglected, and the steel reinforcement is assumed to resist all the tension.
(c) The stress on the steel reinforcement is taken as uniform on a cross-section, and that on the concrete as uniformly varying.

Working stresses.-If the concrete is of such a quality that its crushing strength is 2,400 to $3,000 \mathrm{lbs}$./in. ${ }^{2}$ after twenty-eight days, and the steel has a tenacity of not less than $\mathbf{6 0 , 0 0 0} \mathrm{lbs} . / \mathrm{in} .{ }^{2}$, the following stresses may be allowed :-

When the proportions of the concrete differ from those stated above the stresses in compression allowed in beams may be taken at one-fourth, and that in columns at one-fifth of the crushing stress of cubes of the concrete of sufficient size at twenty-eight days after gauging. If stronger steel is used than that stated above, the allowable tensile stress may be taken at one-half the stress at the yield point of the steel.

CHAPTER VI

FORMULAE FOR FLOOR SLABS AND BEAMS (SINGLE REINFORCEMENT)

If a concrete slab or beam, supported at both ends, is loaded, the various particles comprising the slab are shifted and the shape of the slab is consequently slightly altered. The upper fibres of the slab are compressed and the lower fibres stretched. These stresses are greatest in the external fibres (top and bottom of slab) and become less towards the centre of slab, until they become $=0$ at the line of the "neutral axis" (see Fig. II $3{ }^{1}$).

Fig. $113 .{ }^{1}$
All the fibres remain parallel to the neutral axis, which, owing to the stress, takes the form of a curve.

If we consider the slab first as a simple concrete slab without reinforcement and of a rectangular section, we find that, although all the various sections of the slab remain even, the sections are

Fig. $114 .{ }^{1}$

Fig. $115{ }^{1}$
not parallel to one another. There is a turning action with the neutral axis as the turning point. Figs. II4 and II5 illustrate this;

Fig. 1 I4 shows the slab before the stresses attack it, and Fig. II 5 shows the same slab under stress. NN is the neutral axis, namely, the layer of fibres neither in compression nor tension. The originally parallel sections $m n$ and $o p$ are moved into the places $m^{\prime} n^{\prime}$ and $o^{\prime} p^{\prime}$. The distances st have remained the same, as the neutral axis has been neither lengthened nor shortened.

To counteract these stresses it is clear that steel should be inserted in the portion of the beam which is in tension, and it may also be desirable to reinforce the compressive layers.

The forces cause a variation of the fibres, the fibres of the compressive area becoming shorter and those of the tensile area longer.

The relative elasticity of the materials is quite different, the comparison being made by the ratio of the "coefficients of elasticity," which is the stress per sq. in. that would be necessary to stretch a material to double its original length, or compress it to half its original length if it retained its true elasticity up to that stress.

The elastic coefficient, E_{s}, for steel is constant until the elastic limit is reached, and in case of mild steel is taken at $30,000,000$ lbs./in. ${ }^{2}$

The elastic coefficient, E_{C}, for concrete, however, has a varying

Fig. ilf. value, but for stresses up to 400 or $600 \mathrm{lbs} . / \mathrm{in}^{2}{ }^{2}$ - the maximum safety stresses allowed - may be taken as constant at $2,000,000 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$, or $\frac{1}{15}$ th that of steel.

The ratio m of the two materials is, therefore,

$$
m=\frac{\mathrm{E}_{\mathrm{s}}}{\overline{\mathrm{E}}_{\mathrm{c}}}=\mathrm{I} 5
$$

In Fig. 116 the stresses are graphically illustrated. If the two fibres f and f^{\prime} are at the distances s and s^{\prime} from the neutral axis and under stress are altered in length to the extent ϵ and ϵ^{\prime}, we get

$$
\epsilon: \epsilon^{\prime}=s: s^{\prime}
$$

that is, the stresses are proportional to the distances from the neutral axis.

As before stated, the resistance of the concrete to tension is neglected for many reasons. Being of a very varying nature, true and reliable results are not available at present. Furthermore, the omission simplifies calculations very much, while practically giving an extra factor of safety. It stands to reason that only the fibres of concrete close to the neutral axis can be relied upon to resist the tension, and as this depends very largely on the workmanship in placing the concrete in position so that the cement perfectly embeds the reinforcements, it is better to allow for some errors of judgment and small voids which may occur.

Consequently we omit the stress diagram below the neutral axis from con-

Fig. 117. sideration (Fig. II7).

As the calculation of the stresses depends largely on the position of the neutral axis, it becomes necessary to show how this position can be ascertained.

Supposing d to be the effective thickness of slab in inches, n the distance of the neutral axis from the top of slab in inches,
b the width of strip of slab under discussion in inches, c the compressive stress intensity on concrete, t the tensile stress intensity on steel, A_{T} the area of tensile reinforcement,
we get the compression,

$$
\begin{equation*}
\mathrm{C}=\frac{\mathrm{c} \cdot \mathrm{n}}{2} \cdot \mathrm{~b} \tag{I}
\end{equation*}
$$

and the tension,

$$
\begin{equation*}
\mathbf{T}=\mathrm{t} \cdot \mathbf{A}_{\mathbf{T}} \tag{2}
\end{equation*}
$$

The internal resisting forces in compression and tension must
 balance each other, so that (Fig. 118)

$$
\begin{equation*}
\frac{c \cdot n}{2} \cdot b=t \cdot A_{T} \tag{3}
\end{equation*}
$$

The bending moment must equal, the resistance of the concrete or reinforcement multiplied by the lever arm of the resisting forces, namely -

$$
d-\frac{n}{3}
$$

therefore (Figs. 119-120)

Fig. 120.

$$
\begin{gather*}
B=\frac{c \cdot n \cdot b}{6}(3 d-n) \text { or } \tag{4}\\
B=\frac{t \cdot A_{T}}{3}(3 d=n) \tag{5}
\end{gather*}
$$

As before illustrated, the stresses are proportional to the distances from the neutral axis multiplied by the coefficient of elasticity, or

$$
\begin{gather*}
c: t=n \cdot \mathrm{E}_{\mathrm{C}}:(d-n) \mathrm{E}_{\mathbf{s}}, \text { or } \\
\quad \mathbf{t}=\mathbf{m} \cdot \mathbf{c} \frac{\mathbf{d}-\mathbf{n}}{\mathbf{n}} \tag{6}
\end{gather*}
$$

Substituting this value in the former equation (formula 3), we get

$$
\begin{gather*}
\frac{n^{2} \cdot b}{2}=m \cdot \mathrm{~A}_{\mathbf{T}}(d-n), \text { from which } \\
\mathbf{n}=\frac{\mathrm{mA}_{\mathbf{T}}}{\mathrm{b}}\left[\sqrt{\mathrm{I}+\frac{2 \mathrm{bd}}{\mathrm{~mA}_{\mathbf{T}}}}-\mathrm{I}\right] \tag{7}
\end{gather*}
$$

If the values of c and t are to be checked in work already designed, the value for n may be inserted in the above formulæ 4 and 5 .

The formula 7 thus fixes the position of the neutral axis, and it is clear that this position depends on the sectional area of the reinforcements and not on the load to be carried.

To ascertain the greatest stress of the concrete, c, we put the greatest bending moment B in $\mathrm{lbs} . / \mathrm{in} .{ }^{2}$ equal to the moment of resistance R, so that

$$
\begin{align*}
& \mathrm{B}=\frac{c \cdot n}{2} \cdot b\left(d-\frac{n}{3}\right) \text { or } \\
& \mathrm{c}=\frac{2 \mathrm{~B}}{\mathrm{~b} \cdot \mathrm{n}\left(\mathrm{~d}-\frac{\mathrm{n}}{3}\right)^{2}} \mathrm{lbs} / / \mathrm{in} .^{2} \tag{8}
\end{align*}
$$

To find the stress of the steel we equate the moments of the outer and inner forces.

$$
\begin{gather*}
\mathrm{B}=t \cdot \mathrm{~A}_{\mathrm{T}}\left(d-\frac{n}{3}\right) \text { or } \\
\mathrm{t}=\frac{\mathrm{B}}{\mathrm{~A}_{\mathrm{T}}\left(\mathrm{~d}-\frac{\mathrm{n}}{3}\right)} \mathrm{lbs} \cdot / \mathrm{in} .^{2} \tag{9}
\end{gather*}
$$

In designing a structure the values of n, c and t are, of course, not known, as, to arrive at their values, the thickness of slab and sectional area of steel must be available. Consequently, it is necessary to find means of calculating the values from the bending moment or other values given.

The following formulæ enable us to design a slab without these data.

The greatest bending moment is ascertained as before described. We know that

$$
\frac{c}{\mathrm{E}_{\mathrm{C}}}: n=\frac{t}{\mathrm{E}_{\mathrm{S}}}:(d-n)
$$

As we have decided to adopt the various values recommended by the R. I. B. A. Committee's report, we have $\frac{\mathrm{E}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{c}}}=m=\mathrm{I}_{5}, c=$ $500 \mathrm{lbs} . / \mathrm{in} .{ }^{2}, t=\mathrm{I} 5,000 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$, so that

$$
\begin{gather*}
\frac{c(d-n)}{\mathrm{E}_{c}}=\frac{t \cdot n}{\mathrm{E}_{s}} \\
c(d-n) \mathrm{E}_{s}=t \cdot n \cdot \mathrm{E}_{c} \\
c(d-n) \mathrm{r}_{5}=t \cdot n \\
500(d-n) \mathrm{I} 5=15,000 n \\
\mathrm{~d}=3 \mathrm{n} \tag{IO}
\end{gather*}
$$

or the effective depth of a slab is 3 times the distance from the top of slab to the neutral axis. To get the total depth d_{t}, sufficient thickness of concrete must be added to protect the steel from fire as before described (see page 31).

If the effective depth d is to be calculated immediately from the bending moment, we insert the values $c=500 \mathrm{lbs} . / \mathrm{in}^{2}{ }^{2}, b=$ 12 inches, $n=\frac{1}{3} d$ in the formula 8 , and get

$$
\begin{gather*}
\qquad=\frac{2 \mathrm{~B}}{b \cdot n\left(d-\frac{n}{3}\right)} \text { or } \\
\mathbf{d}=0.0335 \sqrt{\mathbf{B}} \text { and } \tag{II}\\
\mathbf{A}_{\mathbf{T}}=0.066 \mathrm{~d} \text { and } \tag{12}\\
\text { from formula }(9) \mathbf{A}_{\mathbf{T}}=0.00226 \mathrm{I} \sqrt{\mathbf{B}} \tag{I3}
\end{gather*}
$$

The value A_{T} may also be ascertained from the distance n, as follows :-

$$
\begin{gather*}
\mathrm{C}=\mathrm{T} \\
\mathrm{c} \cdot \frac{\mathrm{n}}{2} \cdot \mathrm{~b}=\mathrm{A}_{\mathrm{T}} \cdot \mathrm{t} \tag{I4}
\end{gather*}
$$

or if $b=12$ inches, $c=500$, and $t=15,000$,

$$
\begin{gather*}
\frac{500 n}{2} \cdot 12=A_{T} 15,000 \\
A_{T}=\frac{1}{5} n=0.20 \mathrm{n} \tag{ㄷ5}
\end{gather*}
$$

If the total thickness of slab is calculated and found to be less than $3 \frac{1}{2}$ ins., it should be made that thickness, as from a practical point of view anything less in substance is not reliable enough.

Note. The Prussian Government regulations fix the least allowable thickness of floor slab at 8 cm . (or $3^{\circ} \mathrm{I}_{5}$ ins.)

The number of rods required and their distances d_{r} apart is derived from the formula

$$
\begin{equation*}
\mathrm{N}_{r}=\frac{\mathrm{A}_{\mathbf{T}}}{\mathrm{A}_{r}} \tag{I6}
\end{equation*}
$$

where A_{r} is the sectional area of the rod selected.
If, therefore, by the previous formulæ the value of A_{T} has been found, the section is selected from the tables at end of book, and the above equation (r 6) gives at once the number of rods required for the width of slab $=12$ ins., and from this and the total width of slab the distance from centre to centre is fixed.

Having thus provisionally fixed the area of steel required, the stresses c and t must be ascertained by means of formulæ 8 and 9. If on investigation these stresses are found to exceed the allowable figures, either the sectional area A_{T} can be increased, keeping the dimensions of slab as found, or the thickness of slab d may be increased and the value of A_{T} adhered to, or, lastly, both may be increased. In either case the tensile stresses are reduced, particularly if the slab is made thicker.

If it is found that neither of the two materials is stressed to its allowable figure, viz., $c=500 \mathrm{lbs} . / \mathrm{in} .{ }^{2}, t=\mathrm{I}, 500 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$, it is economical to increase the stress of one to its full limit, thus reducing the other in quantity.

Note. Sectional areas and weights, etc., of sundry reinforcements are given in the tables at end of book, where also other useful information relating to loads, etc., will be found.

A table is attached giving the comparative values for the various dimensions based on various allowable stresses of steel and concrete.

A ready reckoner for slabs and beams is added to the book, which will be found extremely useful for designing and checking of slabs and beams.

Example I.

A floor slab is to be designed over a room I 2 ft . wide. The live load is to be taken at $60 \mathrm{lbs} . / \mathrm{ft}{ }^{2}$, the weight of flooring at 10 $\mathrm{lbs} . / \mathrm{ft} .^{2}$, the weight of floor slab at $150 \mathrm{lbs} . / \mathrm{ft} .^{3}$

Assuming a depth for the slab of 6 ins., we get the span as $144+6=150 \mathrm{ins}$.

The total load is then Live load 60 Flooring . 10 Slab • 75 $145 \mathrm{lbs} . / \mathrm{ft}{ }^{2}$, or $145 \cdot \mathbf{1 2 . 5}=18 \mathrm{I} 3 \mathrm{lbs}$.
for a strip 12 ins. wide.

Fig. 121.

Fig. 122.

If we consider this as a slab freely supported at both ends, the greatest bending moment is

$$
\begin{gathered}
\mathrm{B}=\frac{\mathrm{W} l}{8}=\frac{\mathrm{i} 8 \mathrm{i} 3 \cdot 150}{8}=33994 \mathrm{lbs} . / \mathrm{in} .^{2} \\
\sqrt{33994}=184.38 \\
d=0.033 \sqrt{\mathrm{~B}}=0.033 \cdot \mathrm{I} 84.3^{8}=6.08 \\
\mathrm{~A}_{\mathrm{T}}=0.066 .6 .08=0.40 \mathrm{in} .^{2} \\
\mathrm{~N}_{r}=\frac{0.40}{0.1104}=3.62
\end{gathered}
$$

if we select rods of $\frac{3}{8} \mathrm{in}$. diameter with an area of $0.1104 \mathrm{in} .^{2}$, that is, we space the rods $3 \frac{1}{3}$ ins. apart centre to centre and the slab would be $6 \cdot 08+1=7$ ins. thick.

Figs. 121 and 122 illustrate the slab thus designed.

In order to see that this section is correct, viz., that neither of the materials are stressed beyond their limit, we ascertain the stresses as follows :-

$$
\begin{aligned}
& \text { Live load . . . } 60 \\
& \text { Flooring . . . } 10 \\
& \text { Slab } 150.0 .58=\frac{87}{157} \mathrm{lbs} . / \mathrm{ft.}^{2} \\
& \mathrm{~B}=\frac{w l^{2}}{8}=\frac{\mathrm{r} 57 \cdot \mathrm{I} 25^{2}}{8} \cdot \mathrm{I} 2=36797 \mathrm{lbs} . / \mathrm{in} .{ }^{2} \\
& d=6.08 \text { ins. } \\
& \mathrm{A}_{\mathrm{T}}=0.40 \mathrm{in} .^{2} \\
& b=12 \text { ins. } \\
& m=15
\end{aligned}
$$

To fix the position of neutral axis we use formula 7.

$$
\begin{gathered}
n=\frac{m \mathrm{~A}_{\mathrm{T}}}{b}\left[\sqrt{\mathrm{I}+\frac{2 b d}{m \mathrm{~A}}}-\mathrm{I}\right] \\
n=\frac{\mathrm{I} 5 \cdot 0.40}{\mathrm{I} 2}\left[\sqrt{\mathrm{I}+\frac{2 \cdot \mathrm{I} 2.6 \cdot 08}{\mathrm{I} 5 \cdot 0.40}-\mathrm{I}}\right] \\
n=0.5\left[\sqrt{\mathrm{I}+24^{2} 3^{2}}-\mathrm{I}\right]=0.5\left[\sqrt{25^{\circ} 3^{2}}-\mathrm{I}\right] \\
n=0.5[5.03-\mathrm{I}]=0.5 \cdot 4.03=2.0 \mathrm{I} 5 \\
d-\frac{n}{3}=6.08-0.67=5.4 \mathrm{I}
\end{gathered}
$$

According to formulæ 8 and 9,

$$
\begin{gathered}
c=\frac{2 \mathrm{~B}}{b \cdot n\left(d-\frac{n}{3}\right)} \text { and } t=\frac{\mathrm{B}}{\mathrm{~A}_{\mathrm{T}}\left(d-\frac{n}{3}\right)} \\
c=\frac{73594}{12 \cdot 2 \cdot 0 \cdot 15 \cdot 5 \cdot 4 \mathrm{I}}=\frac{73594}{\mathrm{I} 30}=566 \mathrm{lbs} . / \mathrm{in} .{ }^{2} \\
t=\frac{36797}{0 \cdot 40 \cdot 5 \cdot 4 \mathrm{I}}=\frac{36797}{2 \cdot 164}=\mathrm{I} 7000 \mathrm{lbs} . / \mathrm{in} .^{2}
\end{gathered}
$$

The stresses allowable for concrete and steel in beams being 600 $\mathrm{lbs} . / \mathrm{in} .{ }^{2}$ and ${ }^{5} 5000$ to ${ }^{1} 7000 \mathrm{lbs}$./in. ${ }^{2}$ respectively, the slab may be carried out as designed.

As has been previously described, it is more economical to put
the rods diagonally if the slab is nearly square. The present example being thus, we could make

$$
\begin{gathered}
\mathrm{B}=\frac{\mathrm{Wl}}{\mathrm{I} 6} \text { or } \\
\mathrm{B}=\frac{\mathrm{r} 8 \mathrm{r} 3 \cdot \mathrm{I} 50}{\mathrm{I} 6}=16997 \mathrm{lbs} . / \mathrm{in} .{ }^{2} \\
d=0.033 \sqrt{\overline{\mathrm{~B}}=130.67}=0.033 \cdot 130.67=4.3 \mathrm{I} \mathrm{in} . \\
\mathrm{A}_{\mathrm{T}}=0.066 .4 .3 \mathrm{I}=0.284 \mathrm{in} .{ }^{2} \\
\mathrm{~N}_{r}=\frac{0.284}{0.1104}=2.57
\end{gathered}
$$

So that $\frac{3}{8} \mathrm{in}$. rods would have to be spaced $4 \frac{3}{4} \mathrm{in}$. apart by a depth of slab $43 \mathrm{I}+\mathrm{I}=5^{\frac{1}{2}} \mathrm{in}$.

For practical reasons the rods should be spaced somewhat closer towards the centre of the slab, while the distances may be increased towards the end of the diagonals, viz., near the supports.

Example II.

To construct a reinforced concrete ceiling between iron girders 6 ft . apart. The live load to be $100 \mathrm{lbs} . / \mathrm{ft} .{ }^{2}$

Fig. 123.
Assuming a thickness of slab of 4 ins.

$$
\begin{gathered}
\mathrm{W}=(\mathrm{I} 00+50) \cdot 6 \cdot 0=900 \mathrm{lbs} . \\
\mathrm{B}=\frac{900.6 \cdot 0}{\mathrm{IO}} \cdot \mathrm{I} 2=6480 \mathrm{lbs} \cdot / \mathrm{in} . .^{2} \\
\sqrt{\mathrm{~B}}=\sqrt{6480}=80.49 \\
d=0.033 \cdot 80^{\circ} 49=2.66 \mathrm{ins} . \\
\mathrm{A}_{\mathrm{T}}=0.066 \cdot 2 \cdot 66=0.18 \mathrm{in} .^{2} \\
\mathrm{~N}_{r}=\frac{0.18}{0.049 \mathrm{I}}=3.68
\end{gathered}
$$

$\frac{1}{4} \mathrm{in}$. rods spaced $3 \frac{1}{4} \mathrm{in}$. apart by the thickness of slab $=$ $2 \cdot 66+\mathrm{r}=$ say $3 \frac{3}{4} \mathrm{ins}$.
The stresses are as follows :-
$\left.\begin{array}{lr}\text { Live load roo } \\ \text { Slab } & 47\end{array}\right\}=147 \mathrm{lbs}$.
$\mathrm{B}=\frac{w L^{2}}{8}=\frac{147 \cdot 6 \cdot \circ^{2}}{8} \cdot 12=7938 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$
$d=2.66$ ins.
$\mathrm{A}_{\mathrm{T}}=0.18 \mathrm{in} .^{2}$
$b=12$ ins.
$m=15$
$\begin{aligned} n=\frac{15 \cdot 0 \cdot 18}{\mathrm{I} 2}\left[\sqrt{\mathrm{I}+\frac{2 \cdot 12 \cdot 2 \cdot 66}{\mathrm{I} 5 \cdot 0 \cdot 18}-\mathrm{I}}\right]= & 0.225[\sqrt{24 \cdot 65}-1]= \\ & 0.225 \cdot 4 \cdot 96 \mathrm{I}=\mathrm{I} \cdot \mathrm{I} 2\end{aligned}$
$d-\frac{n}{3}=2.66-0.37=2.29$
$c=\frac{15876}{12.1 \cdot 12 \cdot 2^{2} 29}=515 \mathrm{lbs} . / \mathrm{in} .^{2}$
$t=\frac{793^{8}}{0.18 .2 .29}=1936 \mathrm{Ilbs} . / \mathrm{in} .^{2}$
This latter being too high, we must increase the sectional area of the steel. We can easily effect this by spacing the rods somewhat closer. If we space them 3 ins. apart we get a A_{T} of $0^{\circ} 20$, which would give us a greatest stress of $17235 \mathrm{lbs} . / \mathrm{in} .^{2}$ The spacing should, therefore, be' slightly less than 3 ins., or a stronger section of rod with a wider spacing may be used.

Example III.
A window lintel to be designed over an opening 8 ft . clear, the thickness of wall to be 14 ins. and the load to be carried 12 tons.

Assuming the depth of the lintel for architectural effect to be restricted to 9 ins.

> Span $8^{\prime} o^{\prime \prime}+9^{\prime \prime}=8^{\prime} 9^{\prime \prime}$
> Load 12 tons $=26880 \mathrm{lbs}$.

Lintel $9^{\prime \prime} \cdot \mathrm{r}^{\prime} 2^{\prime \prime} \cdot 8^{\prime} 9^{\prime \prime} \cdot 150=\frac{1050 \mathrm{lbs}}{27930 \mathrm{lbs}}$.

Load to be carried by a strip $12^{\prime \prime}$ wide $=\frac{1}{6}$ less or

$$
=23275 \mathrm{lbs} .
$$

$$
\frac{23275 \cdot 8 \cdot 9}{8} \cdot 12=305484 \mathrm{lbs} . / \mathrm{in}^{2}
$$

FIG. 124.

$$
\begin{gathered}
\sqrt{\overline{\mathrm{B}}}=55^{\circ} \cdot 7 \mathrm{I} \\
\mathrm{~A}_{\mathrm{T}}=\mathrm{I}^{\cdot} 20 \mathrm{in} . .^{2} \\
\text { or for } b=\mathrm{I}^{\prime} 2^{\prime \prime}=\mathrm{I}^{\circ} 40 \mathrm{in} . .^{2}
\end{gathered}
$$

The reinforcement required is therefore,
No. $5 \quad \frac{5}{8} \mathrm{in}$. rods.

CHAPTER VII

FORMULAE FOR SLABS WITH DOUBLE REINFORCEMENT

Where positive as well as negative bending moments are bound to occur, it is advisable to have distributing rods as well as tensile rods. The distributing rods resist then the negative moments. Double reinforcement is also useful where it is desirable to restrict the height of construction, and, lastly, where on ascertaining the

Fig. 125.
Fig. 126.
stresses after calculating it is found that the concrete is put under too great a compression.

If the sectional area of the tension rods is less than 0.5 to 0.6 per cent. of the total section, it is not economical to use distributing rods.

The calculation of a slab with double reinforcement is similar to that of a slab with single reinforcement.
$d=$ effective depth of slab,
$n=$ distance of neutral axis from top of slab,
$A_{T} \& A_{C}=$ the sectional area of reinforcements in in. ${ }^{2}$,
$t \& c_{s}=$ the stresses of reinforcements in lbs./in. ${ }^{2}$,
$c=$ the stress of concrete in lbs./in. ${ }^{2}$
The position of neutral axis will be found as before by the formula,

$$
\mathrm{C}_{s}=\mathrm{A}_{c} \cdot c_{s}
$$

acting at a distance d_{c} from top of slab.
As before, the compression of concrete,

$$
\mathrm{C}_{\mathrm{c}}=\frac{c \cdot n}{2} \cdot b
$$

acting at a distance $\frac{n}{3}$ from top of slab.
Both forces C_{8} and C_{c} together must be equal to the tensile force T, or

$$
\begin{gathered}
\mathrm{C}_{s}+\mathrm{C}_{c}=\mathrm{T} \\
\frac{c \cdot n}{2} \cdot b+\mathrm{A}_{c} \cdot c_{s}=\mathrm{A}_{\mathrm{T}} \cdot t \\
\frac{c}{\mathrm{E}_{c}}: \frac{t}{\mathrm{E}_{s}}=\frac{n}{d-n} \text { and } \frac{c}{\mathrm{E}_{c}}: \frac{c_{s}}{\mathrm{E}_{s}}=\frac{n}{d-d_{c}} \\
\frac{\mathrm{E}}{\mathrm{E}_{c}}=m \text { and } \frac{c \cdot m}{t}=\frac{n}{d-n}, \text { therefore } \\
t=\frac{c \cdot m(d-n)}{n} \text { and } c_{s}=\frac{c \cdot m\left(n-d_{c}\right)}{n} \\
\mathrm{n}=\sqrt{\left(\frac{c \cdot n}{2} \cdot b+\mathrm{A}_{\mathbf{C}} \frac{c \cdot m\left(n-d_{c}\right)}{n}=\mathrm{A}_{\mathbf{T}} \frac{c \cdot m(d-n)}{n}\right.} \\
\left.\left.\mathrm{b}+\mathrm{A}_{\mathbf{c}}\right)\right)^{2}+\frac{2 \mathrm{~m}}{\mathrm{~b}}\left[\mathrm{Ac}_{\mathbf{c}} \cdot \mathrm{d}_{\mathbf{c}}+\mathrm{A}_{\mathbf{T}} \cdot \mathrm{d}\right]- \\
\frac{\mathrm{m}\left(\mathrm{~A}_{\mathbf{T}}+\mathrm{A}_{\mathbf{c}}\right)}{\mathrm{b}}
\end{gathered}
$$

To ascertain the greatest stresses of the concrete, we again put the greatest bending moment B equal to the moment of resistance R , and find

$$
\begin{gather*}
c=\frac{B}{\frac{b \cdot n}{2}\left(d-\frac{n}{3}\right)+m \cdot A_{c} \frac{n-d_{c}}{n}(d-d c)} \tag{18}\\
t=\frac{c \cdot m(d-n)}{n} \tag{19}\\
c_{s}=\frac{c \cdot m\left(n-d_{c}\right)}{n} \tag{20}
\end{gather*}
$$

As regards formulæ for the design of slabs with double reinforcements, the moment B and thickness of slab d_{t} is usually known. If we assume certain maximum stresses c and t and from these find B° and $\mathrm{A}_{\mathrm{T}}{ }^{\circ}$, using the figures given in the table annexed for slabs with single reinforcement, we find

$$
\begin{gather*}
A_{T}=\frac{B}{B^{0}} \cdot A_{T}{ }^{\circ} \tag{2I}\\
A_{C}=3\left(\frac{B}{B^{0}}-\mathbf{I}\right) \cdot A_{T}{ }^{\circ} \tag{22}
\end{gather*}
$$

As a matter of fact, n is constant for fixed values of c and t such
 From this it follows that if we are restricted to a certain depth of beam or slab, we need only find the amount of reinforcement in tension which can be used for the required depth, and from this the bending moment it will resist. All that is needed then is to calculate the extra amount of steel required for the excess of bending moment, and this will be the section of steel required for the distributing rods.

Example.

A slab ceiling of 6 ins. effective depth has to support a moment of $40,000 \mathrm{lbs} . / \mathrm{in}^{2}{ }^{2}$; the materials are to be stressed to their full limit, viz., the concrete to $500 \mathrm{lbs} . / \mathrm{in} .^{2}$ and the steel to 15,000 lbs./in. ${ }^{2}$ What sectional areas are the two sets of rods to receive?

According to table, page 148 ,

$$
\begin{aligned}
d & =0.0335 \sqrt{ } \sqrt{\mathrm{~B}^{\circ}} \text { or } \\
6 & =0.0335 \sqrt{\sqrt{\mathrm{~B}^{\circ}}} \\
\sqrt{\overline{\mathrm{B}}^{\circ}} & =18 \mathrm{I} .8 \mathrm{I} \text { or } \mathrm{B}^{\circ}=32955 \mathrm{lbs} . / \mathrm{in}^{2}{ }^{2}
\end{aligned}
$$

According to the same table,

$$
\mathrm{A}_{\mathrm{T}}{ }^{\circ}=0.00226 \mathrm{I} \sqrt{\mathrm{~B}^{\circ}}=0.40 \mathrm{in} .^{2}
$$

Formula 2I $\mathrm{A}_{\mathrm{T}}=\frac{40000}{32955} \cdot 0.40=0.488 \mathrm{in} .^{2}$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{c}}=3\left(\frac{40000}{3^{2} 955}-\mathrm{I}\right) \circ \cdot 40=0.25 \mathrm{in}^{2}{ }^{2} \\
& \quad \text { for a width } b=\mathrm{I} 2 \text { inches. }
\end{aligned}
$$

CHAPTER VIII

FORMULAE FOR RIBBED CEILINGS OR T BEAMS

According to the position of the neutral axis, there are 3 cases possible (Fig. 127^{1}).

Fig. 127. ${ }^{1}$

1. The neutral axis falls within the slab.
2. ,, " ,, " at bottom of slab.
3. " ", ", below the slab.
4. If the neutral axis falls within the slab the conditions are the same as in the case of slabs with single reinforcement.

The section to be considered is $b_{s} d_{s}$, but whereas we have dealt so far with a width of slab $b=12$ ins., we have now various values for b_{s}, according to circumstances as explained hereafter.

If d_{s} is the depth of slab in inches,
d the effective depth in inches,
b_{r} the width of rib,
A_{T} the sectional area of steel in in. ${ }^{2}$,
c) the stresses of concrete and
t \} steel respectively, we get

Fig. 128.

Fig. 129.

$$
\begin{array}{rlr}
n=\frac{m \cdot \mathrm{~A}_{\mathrm{T}}}{b} & {\left[\sqrt{\mathrm{I}+\frac{2 b_{s} \cdot d}{m \cdot \mathrm{~A}_{\mathrm{T}}}}-\mathrm{I}\right]} & \text { (formula 7) } \\
c & =\frac{2 \mathrm{~B}}{b_{s} \cdot n\left(d-\frac{n}{3}\right)} & \tag{formula8}\\
t=\frac{\mathrm{M}}{\mathrm{~A}_{\mathrm{T}}\left(d-\frac{n}{3}\right)} & \text { (formula 8) } \\
& \text { (formula 9) }
\end{array}
$$

2. If the neutral axis falls at bottom of slab (Fig. 130), the distance n becomes $=d_{s}$, consequently,

Fig. 130.

$$
\begin{gather*}
n=d_{s}=\frac{m \cdot \mathrm{~A}_{\mathrm{T}}}{b_{s}}\left[\sqrt{\mathrm{I}+\frac{2 b_{s} \cdot d}{m \cdot \mathrm{~A}_{\mathrm{T}}}}-\mathrm{I}\right] \tag{formula7}\\
\mathbf{c}=\frac{2 \mathrm{~B}}{\mathrm{~b}_{\mathbf{s}} \mathrm{d}\left(\mathrm{~d}-\frac{\mathbf{d}_{\mathbf{s}}}{3}\right)} \tag{23}\\
\mathbf{t}=\frac{\mathrm{B}}{\mathrm{~A}_{\mathrm{T}}\left(\mathrm{~d}-\frac{\mathbf{d}_{\mathbf{s}}}{3}\right)} \tag{24}
\end{gather*}
$$

3. If the neutral axis falls below the slab, the small compressive stresses in the rib may be neglected (Figs. 132, 133).

Fig. 13 I.

Fig. 132.

Fig. 133.

$$
\begin{gather*}
\mathrm{C}=\frac{c+c_{1}}{2} \cdot d_{s} \cdot b_{s} \\
\mathrm{~T}=\mathrm{A}_{\mathrm{T}} \cdot t \text { or } \mathrm{C}=\| \mathrm{T} \text { and } \\
\frac{c}{c_{1}}=\frac{n}{n-d_{s}} \text { or } c_{1}=c \frac{n-d_{s}}{n} \\
\mathrm{C}=\frac{\mathbf{c}+\mathbf{c} \frac{\mathrm{n}-\mathbf{d}_{\mathbf{s}}}{\mathrm{n}}}{\mathbf{2}} \cdot \mathbf{d}_{\mathbf{s}} \cdot \mathbf{b}_{\mathbf{s}} \text { and } \tag{25}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{t}=\mathrm{m} \cdot \mathrm{c} \frac{\mathrm{~d}-\mathrm{n}}{\mathrm{n}} \tag{26}
\end{equation*}
$$

Inserting the values for c_{1} and t in formula 25 , we find

$$
\frac{c+c \frac{n-d_{s}}{n}}{2} d_{s} \cdot b_{s}=\mathrm{A}_{\mathrm{T}} \cdot m \cdot c \frac{d-n}{n}
$$

from which it follows that

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{m} \cdot \mathrm{~A}_{\mathbf{T}} \cdot \mathrm{d}+\frac{\mathrm{d}_{\mathbf{s}}{ }^{2} \cdot \mathrm{bs}}{2}}{\mathrm{~d}_{\mathbf{s}} \cdot \mathrm{b}_{\mathrm{s}}+\mathrm{m} \cdot \mathrm{~A}_{\mathrm{T}}} \tag{27}
\end{equation*}
$$

If we call $a_{c}=$ the distance of the compressive force from neutral axis (Fig. 133), we find that

$$
\begin{align*}
& n-a_{c}=\frac{d_{s}}{3} \cdot \frac{c+2 c_{1}}{c+c_{1}}, \text { and as } \\
& c_{1}=c \cdot \frac{n-d_{s}}{n}, \text { it follows that } \\
& n-a_{c}=\frac{d_{s}}{3} \cdot \frac{3 n-2 d_{s}}{2 n-d_{s}}, \text { or } \\
& \mathbf{a}_{\mathrm{c}}=\mathrm{n}-\frac{\mathrm{d}_{\mathrm{s}}}{2}+\frac{\mathrm{d}_{\mathrm{s}}^{2}}{6\left(2 \mathrm{n}-\mathrm{d}_{\mathrm{s}}\right)} \tag{28}
\end{align*}
$$

If $n=d_{s}$, that is, if the neutral axis falls at bottom of slab, $\beta=$ $\frac{2}{3} d_{s}$.

The greatest stresses of steel and concrete are ascertained again by putting the greatest bending moment equal to the moment of resistance.

$$
\begin{gather*}
\mathrm{B}=\mathrm{T}\left(d-n+a_{\mathrm{c}}\right)=t \cdot \mathrm{~A}_{\mathrm{T}}\left(d-n+a_{\mathrm{c}}\right), \text { or } \\
\mathrm{t}=\frac{\mathrm{B}}{\mathrm{~A}_{\mathbf{T}}\left(\mathbf{d}-\mathbf{n}+\mathrm{a}_{\mathbf{c}}\right)} \text { and } \tag{29}\\
\mathbf{c}=\mathrm{t} \frac{\mathbf{n}}{\mathrm{~m}(\mathbf{d}-\mathbf{n})} \tag{30}
\end{gather*}
$$

As regards formula for designing the slab.
The neutral axis usually falling within the depths of the slab (case 1), the thickness of slab and the area of steel required are easily calculated from the bending moment.

$$
\begin{gather*}
\frac{c}{\mathrm{E}_{\mathrm{c}}}: n=\frac{t}{\mathrm{E}_{s}}:\left(d_{s}-n\right), \text { or } \\
n \cdot \frac{t}{c}=\left(d_{s}-n \frac{\mathrm{E}_{s}}{\mathrm{E}_{\mathrm{c}}} \text { and as, } \frac{\mathrm{E}_{s}}{\mathrm{E}_{c}}=m=\mathrm{r}_{5}\right. \\
\text { and calling } \frac{t}{c}=s_{r}, \text { we get } \\
\mathrm{n}=\frac{\mathbf{m}}{\gamma+\mathrm{m}} \mathrm{~d}_{\mathbf{s}} \tag{3I}
\end{gather*}
$$

And as $\mathrm{C}=\mathrm{T}$ and $\frac{c \cdot n}{2} \cdot b_{s}=\mathrm{A}_{\mathrm{T}} \cdot t$, it follows that

$$
\begin{equation*}
A_{T}=\frac{c \cdot n \cdot b_{s}}{2 t}=\frac{b_{s} \cdot n}{2 S_{r}} \tag{32}
\end{equation*}
$$

Inserting these values in formula 9 , we get

$$
\begin{align*}
& t=\frac{\mathrm{B}}{\frac{b_{s} \cdot m \cdot d}{2 s_{r}\left(s_{r}+m\right)}\left[d-\frac{m-d}{3\left(s_{r}+m\right)}\right]} \text { from which } \\
& \mathbf{d}=\sqrt{\frac{2 \mathbf{S}_{\mathbf{r}}\left(\mathbf{S}_{\mathbf{r}}+\mathbf{m}\right)}{\mathbf{b}_{\mathbf{s} \cdot \mathbf{m}} \cdot \mathbf{t}\left[\mathbf{I}-\frac{\mathrm{m}}{3\left(\mathbf{S}_{\mathbf{r}}+\mathbf{m}\right)}\right]}} \cdot \sqrt{\mathbf{B}} \tag{33}
\end{align*}
$$

and from formulæ 3 I and 32 ,

$$
\begin{equation*}
A_{T}=\frac{m \cdot b_{s}}{2 S_{r}\left(S_{r}+m\right)} d \tag{34}
\end{equation*}
$$

With the aid of the following formulæ, A_{T} and d may be calculated direct from B:-

$$
\begin{gathered}
t=\frac{\mathrm{B}}{\mathrm{~A}_{\mathbf{T}}\left(d-\frac{n}{3}\right)} \\
d=\frac{n\left(s_{r}+m\right)}{m} \text { and } \\
n=\frac{2 s_{r} \cdot \mathrm{~A}_{\mathbf{T}}}{b_{s}} \\
t=\frac{\mathrm{B}}{\mathrm{~A}_{\mathbf{T}}\left[\frac{2 s_{r} \cdot \mathrm{~A}_{\mathbf{T}}\left(s_{r}+m\right)}{m \cdot b_{s}}-\frac{2 s_{r} \cdot \mathrm{~A}_{\mathbf{T}}}{3 \cdot b_{s}}\right.} \text { or } \\
\mathbf{A}_{\mathbf{T}}=\sqrt{\frac{\mathbf{b}_{\mathbf{s}}}{2 \mathbf{S}_{\mathbf{r}} \cdot \mathbf{t}\left[\frac{\mathbf{S}_{\mathbf{r}}+\mathbf{m}}{\mathbf{m}}-\frac{\mathbf{I}}{3}\right]}} \sqrt{\mathbf{B}}
\end{gathered}
$$

In designing a ribbed slab construction it is first necessary to decide the span. This should be taken at about one-twentyfifth more than the clear width of the room to be covered in.

The weight of the ribbed slab has also to be assumed in order to get the bending moment, and for this purpose the contents of a plain slab of B width and $\mathrm{I}^{\circ} 5$ to $2 d_{s}$ depth ($2 d_{s}$ in case of deep ribs and small thickness of slab), d_{s} being the thickness of the slab. Usually d_{s} is a known value, through calculating the continuous slab over the ribs for B span. If the thickness d_{s} is not known, it must be assumed from 3 to 6 ins., according to the load and spans.

A ribbed slab is practically a T beam, the slab or part of the slab being the table of the T. Opinions vary as to what extent the slab may be assumed to form part of the T.

Fig. $134{ }^{1}$
The Prussian Government regulations stipulate that the width of the slab forming part of the T for calculating purposes measured from the centre of the rib on either side must not exceed onesixth of the length of beam.

If, for instance, the span $l=30 \mathrm{ft}$. and the ribs are 12 ft . centre to centre, the whole of the 12 ft . must not be considered the width of the T but only $2 . l / 6=10 \mathrm{ft}$. In ascertaining the bending moment the full width of 12 ft . is of course retained.

If half the distance between ribs is less than $\frac{1}{6}$ of the span, b_{s} must be taken equal to B . If the width between the ribs is optional it is economical to make it $\frac{1}{3}$ of the span.

Care should be taken that the width of rib is not taken too small. It depends largely on the strength of the reinforcement. In ordinary cases 7 to 12 ins. and for heavy work II to 16 ins.,
suffice. The thickness of concrete from bottom of reinforcement to bottom of beam should in no case be less than I in.

From an economical point of view, it is, of course, desirable to make the ribs as deep as possible, as the deeper the rib the less reinforcement required. In many cases, however, the depth is governed by the height of construction and dimensions of building, and thus it merely remains to ascertain the section of steel required. To stress the concrete to its limit is not often possible, as it would mean low ribs and consequently heavy steel reinforcements. Where the neutral axis falls into the bottom line of slab the most economical use of the concrete is secured.

If B is the bending moment in inch pounds, the distance of the centre of reinforcement from top of slab in inches, and d_{s} the thickness of slab in inches, the following formula is very useful for the design in ordinary cases :-

$$
\begin{equation*}
A_{T}=\frac{B}{t\left(d-\frac{d_{s}}{2}\right)} \tag{36}
\end{equation*}
$$

To provisionally determine the bending moment, we again take the contents of a plain slab of B width and $\mathrm{I} \cdot 6$ to $2 \circ \circ d_{s}$ thickness.

If, however, it is desired to at once ascertain definite stresses, the following formulæ may be used for the thickness d and the sectional area A_{T} of steel required, assuming

$$
\begin{gather*}
s_{r}=\frac{t}{c}, \text { the effective depth, } \\
\mathbf{d}=\mathrm{d}_{\mathbf{d}}+\sqrt{\mathbf{d}_{\mathbf{d}}{ }^{2}-\beta} \tag{37}
\end{gather*}
$$

d_{d} being the distance of bottom edge of reinforcements from centre of gravity of reinforcements in rib.

$$
\begin{gather*}
d_{d}=\frac{\mathrm{B}}{2{ }^{c} \cdot d_{s} \cdot b_{s}}+\frac{d_{s}}{4}\left(\mathrm{r}+\frac{\mathrm{I}}{a}\right) \text { where } \\
a=\frac{m}{m+s_{r}} \text { and } \beta=\frac{d_{s}^{2}}{3^{\alpha}} \\
\mathbf{A}_{\mathbf{T}}=\frac{6\left(2 \alpha \cdot \mathrm{~d}-\mathrm{d}_{\mathbf{s}}\right)}{3\left(2 \alpha \cdot \mathbf{d}-\mathrm{d}_{\mathbf{s}}\right)\left(2 \mathbf{d}-\mathbf{d}_{\mathbf{s}}\right)+\mathrm{d}_{\mathbf{s}}{ }^{2}} \cdot \frac{\mathrm{~B}}{\mathrm{t}} \tag{38}
\end{gather*}
$$

In cases of fixed slabs negative moments occur near the supports, and in continuous slabs over the supports, so that tensile stresses are in the slab and compressive stresses in the lower fibres of ribs. Double reinforcements are useful here as they reduce the depth of rib.

As the span l, the widths B and b_{s} and the load are usually known, the design of ribbed slabs can easily be accomplished in various ways with the help of the different formulæ given, as for instance-

The weight of slab may be assumed and the greatest bending moment calculated accordingly, from which the values d, n and A_{T} are then ascertained; or

The slab dimensions may be calculated first, then the weight of same, and after that the greatest moment from which d and A_{T} are obtained; or

The slab is calculated, assuming a certain thickness, b_{s} and d are selected to suit the particular case under calculation, and then the greatest moment fixed, A_{T} being found by means of formula 36 ; or

Lastly, if it is apparent that the neutral axis must be below the slab, the formulæ 37 and 38 may be used.

Example.

To construct a ribbed ceiling over a room 20 ft . wide. The distance of ribs to be 5 ft ., the live load including weight of flooring and ceiling plaster to be $75 \mathrm{lbs} . / \mathrm{ft} .{ }^{2}$

As the distance of ribs is less than $\frac{1}{3} l, b_{8}=5^{\circ} \circ$.
Width $l=\mathrm{r} \cdot 04, l=20.80$.
If we assume the thickness of slab to be 5 ins., the approximate weight of ribbed slab is
$5^{\prime} \mathrm{o}^{\prime \prime} \cdot\left((\right.$ say $\left.) 1 \cdot 75 \cdot 5^{\prime \prime}\right) \times 150=3.65 \times 150=548 \mathrm{lbs}$. per foot run.

Live load $75 \cdot 5=375 \mathrm{lbs}$.
Total load $2 \mathrm{o}^{\prime} 8^{\prime \prime}(5481+375)=19198 \mathrm{lbs}$.

$$
\begin{array}{r}
B=\frac{19198 \cdot 20 \cdot 8}{8} \cdot 12=59^{8} 978 \mathrm{lbs} . / \mathrm{in} .{ }^{2} \\
\sqrt{\bar{B}}=773^{\circ 94}
\end{array}
$$

Taking $t=15000$ and $c=500$, we get from (33)

$$
\begin{gathered}
d=\sqrt{\left.\frac{60 \cdot(30+15)}{60 \cdot 15 \cdot 15000\left[1-\frac{15}{3(30+15)}\right.}\right]} \cdot \sqrt{598978}= \\
n=\frac{15}{30+15} \cdot 11 \cdot 6 \mathrm{I} \text { from }(3 \mathrm{I})=3.87 \mathrm{ins} . \\
\mathrm{A}_{\mathrm{T}}=\frac{60 \cdot 3.87}{60} \text { from }(34)=3.87 \mathrm{in.}{ }^{2} \\
\frac{7}{8} \text { rods with } 0.60=3.60 \mathrm{in} .^{2}
\end{gathered}
$$

If we select No. 6, we get the following dimensions of ribbed slab :-

Fig. 135.
The greatest moments are then as follows :-
Live load $75 \cdot 5=375 \mathrm{lbs}$.
Weight of ribbed slab $=\frac{60 \cdot 5+9 \cdot 7}{144} \cdot 150=377 \mathrm{lbs}$.

$$
20 \cdot 8 \cdot(375+377)=15642 \mathrm{lbs}
$$

$\mathrm{B}=\frac{\mathrm{I} 5642 \cdot 20 \cdot 8}{8} \cdot \mathrm{I} 2=488028 \mathrm{lbs} . / \mathrm{in} .^{2}$
$c=\frac{\neq 488028}{8 \phi \cdot 3 \cdot 87\left(\mathrm{II} \cdot 6 \mathrm{I}-\frac{3 \cdot 87}{3}\right)}=\frac{488028}{\mathrm{II} 6 \cdot \mathrm{I} \cdot 10 \cdot 3^{2}}=\frac{488 \mathrm{O} 28}{\mathrm{II} 9^{8}}=$ 407 lbs./in. ${ }^{2}$

$$
t=\frac{488028}{37}=13189 \mathrm{lbs} . / \mathrm{in} .^{2}
$$

This result is somewhat too extravagant,-the cause being that in estimating the weight of slab we have taken the figure 1.75 while $I^{\circ} 5$ would have been enough. We could, therefore, reduce the area of steel without detriment.

If we adopt 6 rods of $\frac{13}{16} \mathrm{in}$. diam., which would give us a A_{T} of $3^{\circ} \mathrm{II}, t$ would become $\mathrm{I}_{5} 250 \mathrm{lbs}$. $/ \mathrm{in} .{ }^{2}$ This would be quite safe enough.

Example.

A floor to be constructed over a room 32 ft . wide; live load including flooring $250 \mathrm{lbs} . / \mathrm{ft} .^{2}$ The ribs to be 8 ft . apart and the floor 7 ins. thick.

Span 1.04. $3^{2}=33^{\circ} 28^{\prime}$
Width of $\mathrm{T}=8 \cdot 00^{\prime}=96 \mathrm{ins}$.
Approximate weight of ribbed slab:-
$\frac{96 \cdot(1 \cdot 9 \cdot 7)}{144} .150=1320 \mathrm{lbs}$. per foot run.

$$
\begin{aligned}
& \text { Live load }=2000 \mathrm{lbs} . \text { per foot run. } \\
& \text { Total load } \left.=33^{.28(1320}+2000\right)=110490 \mathrm{lbs} . \\
& \mathrm{B}=\frac{110490 \cdot 33^{.28}}{8} \cdot 12=5515656 \mathrm{lbs} . / \mathrm{in}^{2} . \\
& \sqrt{\mathrm{B}}=2349 \cdot \sqrt{b_{s}}=9.8
\end{aligned}
$$

According to the table on page 148, we get the following values:-

$$
\begin{aligned}
& d=0.116 \sqrt{\frac{\mathrm{~B}}{b_{s}}} ; d=0.116 \cdot \frac{2349}{9 \cdot 8}=27.7 \text { inches. } \\
& \mathrm{A}_{\mathrm{T}}=0.00064 \sqrt{\mathrm{~B} \cdot b}=0.00064 \cdot 2349 \cdot 9 \cdot 8=14.73 \mathrm{in} .{ }^{2} \\
& n=0.333 d=0.333 \cdot 27.7=9.2 \text { inches. }
\end{aligned}
$$

If we select No. 4 rods $1 \frac{3}{4}$ diam. $=9.620$ and
No. 3 rods $\mathrm{I} \frac{1}{2}$ diam. $=5.301$ we get
Area of steel $A_{T}=14.92 \mathrm{I} \mathrm{in}^{2}{ }^{2}$

This would give the section of ribbed ceiling as below :-

Fig. 136.
This gives a weight of ribbed slab :-

$$
\begin{aligned}
& \frac{96.7+25 \cdot 11}{144} .150=987 \\
& \text { Live load }=2000 \\
& \text { Total load }=\frac{2907}{297} \cdot 33 \cdot 28=99407 \text { lbs. } \\
& \mathrm{B}=\frac{99407 \cdot 33^{\cdot 28}}{8} .12=4962396 \mathrm{lbs} . / \mathrm{in} .^{2} \\
& a_{c}=9.2-3.5+\frac{49}{6(18.4-7)}=6.41 \text { (formula 28). } \\
& t=\frac{49^{62396}}{14.9\left(277-9^{\circ} 2\right)+6 \cdot 4 \mathrm{I}}=13376 \mathrm{lbs} . / \mathrm{in} .^{2} \text { (formula 29). } \\
& c=13376 \frac{9^{\circ} 2}{15\left(27.7-9^{\circ} 2\right)}=44^{2} \mathrm{lbs} . / \mathrm{in} .^{2} \text { (formula } 30 \text {). }
\end{aligned}
$$

CHAPTER IX

FORMULAE FOR RIBBED SLABS WITH DOUBLE REINFORCEMENT

Double reinforcement of ribbed slabs is advantageous where the height of construction is very limited. Necessarily, the cost is greater as more steel is required.

Fig. 137.
When ribbed slabs are built in all round and where they are continuous, negative moments occur over the supports. These are, as a rule, greater than the positive moments. Consequently the lower part of the beam or slab resists compression. The advantages of the compressive steel reinforcements can mostly be utilized and taken into account when calculating the steel re-
quired, and it is not always advisable to neglect this as we have done before.

The greatest stresses are again depending on the position of neutral axis, which may be within, at the bottom, or below the slab.

In the former two cases the conditions are the same as described for double reinforced slabs, and the formulæ $17,18,19$ and 20 may be used.

If the neutral axis falls below the slab and we neglect the compressive stresses in the rib, we get

Fig. 138.
$\mathrm{n}=\frac{\mathrm{b}_{\mathbf{s}} \cdot \mathrm{d}_{\mathrm{s}}^{2}+2 \mathrm{~m}\left(\mathrm{~A}_{\mathbf{T}} \cdot \mathrm{d}+\mathrm{A}_{\mathrm{c}} \cdot \mathrm{d}_{\mathrm{c}}\right)}{2\left[\mathrm{~m}\left(\mathrm{~A}_{\mathbf{T}}+\mathrm{A}_{\mathrm{c}}\right)+\mathrm{b}_{\mathbf{s}} \cdot \mathrm{d}_{\mathbf{s}}\right]}$
a_{c} according to formula 28 , and
B.n
$c=\overline{\left(n-\frac{d_{s}}{2}\right) d_{s} \cdot b_{s} \cdot a_{c}+m\left[A_{T}\left(d_{s}-n\right)^{2}+A_{c}\left(n-d_{c}\right)^{2}\right]}$
t according to formula 19 ,
t_{c} according to formula 20 .
The sectional area of steel is then found as follows:-
The values for $b_{s}, d_{s} b d_{s}$, are fixed from practical considerations, the weight of ribbed slab is ascertained and a value for B found.

The relation $s_{r}=\frac{t}{c}$ is decided on and values for d_{c} and i determined.

$$
n=d^{2} \frac{15}{s_{r}+15}
$$

a_{c} according to formula 28 ,
c according to formula 25 .
Compressive stress of steel C_{8} from the equation

$$
\begin{gather*}
\mathrm{B}=\mathrm{C}_{e}\left(d_{s}-n+a_{\mathrm{c}}\right)+\mathrm{C}_{s}\left(d-d_{c}\right) \\
\text { Tensile stress } \mathrm{T}=\mathrm{C}_{s}+\mathrm{C}_{c} \text { and } \\
\mathrm{A}_{\mathbf{T}}=\frac{\mathrm{T}}{\mathrm{t}} \tag{4I}
\end{gather*}
$$

Stress in the compressive reinforcement from formula 20 and

$$
\begin{equation*}
A_{c}=\frac{C_{s}}{t_{c}} \tag{42}
\end{equation*}
$$

CHAPTER X

SHEARING STRESSES AND ADHESION

If a slab is loaded, two different kinds of shearing stresses occur, some of which are parallel to its length and some parallel to its width.

It is clear that the shearing stresses are smallest in the centre of the slab and increase towards the supports where they become greatest.

Consequently, it is necessary under certain conditions to reinforce slabs near the points of fixture or support so as to prevent the slab being destroyed by shear.

If the slab consisted of uniform material, like ordinary concrete, the shearing stress would be

$$
s=\frac{\mathrm{S}}{\mathrm{~A}}
$$

where S is the greatest shearing moment in lbs./in. ${ }^{2}$ and A the section of slab, S being also in lbs./in. ${ }^{2}$

In reinforced concrete the slab is composed of two materials having different moduli of elasticity, and as the shearing moment is attacking both in the same proportion the shearing stress of the concrete must be

$$
\begin{gather*}
\frac{s_{c}}{\mathrm{E}_{\mathrm{c}}}=\frac{\mathrm{S}}{\mathrm{~A} \cdot \mathrm{E}_{\mathrm{c}}+\mathrm{A}_{\mathrm{T}} \mathrm{E}_{\mathrm{s}}} \text { or } \\
\mathrm{S}_{\mathbf{c}}=\frac{\mathrm{S}}{\mathrm{~A}+\mathrm{mA} A_{\mathrm{T}}} \tag{43}
\end{gather*}
$$

The shearing stress of the steel is then,

$$
\begin{equation*}
S_{s}=\frac{S}{A_{T}+\frac{A}{m}}=m \cdot S_{c} \tag{44}
\end{equation*}
$$

A and A_{T} are expressed in in. ${ }^{2}$, and for m the value 15 is to be taken as before.

It is not necessary to calculate the shearing stresses in the direction of the width of slab, at least in cases of ceilings, as the stresses in these cases never reach the allowable greatest stresses for the two materials.

The shearing.stresses in the direction of the length of slab must, however, be taken into account. They have the tendency to cut the slab into two as shown in Fig. 139. ${ }^{1}$ The two fibres $m n$ and

Fig. I39. ${ }^{1}$
$m^{\prime} n^{\prime}$ show after destruction different lengths. The fibre $m n$ is subjected to tension and the fibre $m^{\prime} n^{\prime}$ to compression, while before they were of equal lengths and equally stressed. The form of the shear diagram is seen from Fig. 140. At the upper surface of slab the shear $=0$ and also at the bottom surface. The shearing stresses increase from the outer surfaces towards the centre and reach their greatest moment at the line of the neutral axis. Consequently, the greatest shearing moment must be equal to the adhesion of the iron and the concrete, and the shear is greatest at the points of fixing.

If the slab Fig. 139 is cut vertically at a distance x from point A of fixing or support,

$$
\mathrm{C} \cdot a=\mathrm{S} \cdot x
$$

If we make $x=$ I we get

$$
\mathrm{C}=\frac{\mathrm{S}}{a}
$$

as the greatest shear is in the neutral axis and must be equal to the moment of resistance.

$$
\begin{align*}
\mathrm{C} & =s \cdot \mathrm{I} \cdot b \\
\mathbf{s} & =\frac{\mathrm{S}}{\mathrm{~b} \cdot \mathbf{a}} \tag{45}
\end{align*}
$$

As shown, the shearing stresses must be equal to the adhesion f of steel to concrete, viz., these stresses affect the circumference of the reinforcement only. If we again make $x=1$ in. and the circumference of all rods in C width of slab $=O$, we get

$$
\begin{align*}
& s . \mathrm{I} \cdot b=f . \mathrm{I} \cdot \mathrm{O} \\
& \mathrm{f}=\frac{\mathrm{s} \cdot \mathrm{~b}}{\mathrm{O}}=\frac{\mathrm{S}}{\mathrm{O} \cdot \mathrm{a}} \tag{46}
\end{align*}
$$

Fig. 140.

Fig. I4I.

If O is expressed in inches, f will be in lbs./in. ${ }^{2}$ The required circumference must therefore be,

$$
\mathrm{O}=\frac{\mathrm{S}}{f \cdot a}
$$

For constructions of ordinary dimensions it is not necessary to go into this question at all, and the calculation of tensile stresses is decisive for the dimensions of steel required. Consequently, there is no necessity to arrange hangers or straps in slabs, particularly as in most cases some of the rods will be bent up towards the supports to resist the shear, and the resistance of the concrete to tension which is entirely neglected in the calculations acts as a useful agent. Furthermore, experience has shown that the adhesion of the steel to concrete is greater than the shear. This is
proved by the fact that if a rod is pulled out of the concrete, particles of the concrete still adhere to the steel.

Where great shearing stresses are anticipated, rods or bars with uneven surface, like, for instance, the indented steel bar, may be adopted.

For ribbed slabs the shearing stresses must, however, be ascertained and counteracted, as in consequence of these stresses a failure may be more possible near the supports than in the centre of the slab. Particularly also is it likely that the slab might glide away over the rib.

Shearing and adhesive stresses in ribbed slabs are calculated as described for ordinary slabs. If the neutral axis occurs within the area of slab, the formulæ 45 and 46 are used with the modification that for b the width of the T must be inserted. If the neutral axis occurs at bottom of slab, b must be the distance of ribs. If the neutral axis falls below the slab, b must be again the width of T , and the distance of the compressive force C from the centre of reinforcement must be used, in which case

$$
f=s \frac{b_{r}}{\mathrm{O}}
$$

It follows that the shearing stress does not depend on the amount of shear only, but also on the width and the height of the rib, as s will increase according to the increase of S or the decrease of b_{r} and $\left(d_{t}-d_{s}\right)$.

When simple ribbed ceilings are used, hangers and bending up of rods becomes necessary when

$$
b_{r}=\frac{\mathrm{S}}{s \cdot a}
$$

Practically speaking, in case of ribbed slabs the circumference of the reinforcing rods should be about equal to the width of the rib.

CALCULATION OF HANGERS OR STRAPS.

Wherever the shearing stresses exceed $50 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$ it becomes advisable to arrange a series of hangers or straps connecting the rib with the slab and having a firm grip on the reinforcement
(Fig. $14^{2}{ }^{1}$). As a rule, round rods or hoop irons are used. By thus connecting the essential parts of a ribbed floor the danger of cracks or failure of the concrete in the compressive area is considerably lessened, particularly under sudden shock or oscillation. For factory floors, bridges and other structures subjected to sudden

Fig. 142. ${ }^{1}$ shocks the arrangement of hangers is unavoidable.

In case of a uniformly distributed load the shear diagram is a triangle of the height y and a width $\frac{l}{2}$. The hatched portion of this triangle has a height $y-50$ and a width x. To obtain the shearing stress the hangers have to resist, the area of this triangle is multiplied by the width b_{s} of the ribbed floor.

Fig. 143.

$$
\begin{gather*}
\frac{x}{y-50}=\frac{\frac{l}{2}}{y} \\
\mathrm{x}=\frac{(\mathrm{y}-50)}{\mathrm{y}} \cdot \frac{1}{2} \tag{47}
\end{gather*}
$$

Assuming the allowable shearing stress of steel as 12000 lbs ./in. ${ }^{2}$, the sectional area of hangers required for half the width of ribbed slab is

$$
\begin{equation*}
A_{s}=\frac{(y-50) \cdot x \cdot b_{s}}{2 \cdot 12000} \tag{48}
\end{equation*}
$$

Fig. 144 shows how the distances of hangers may be ascertained graphically.

The distance $\frac{1}{2} l \mathrm{AA}_{1}$ is divided in equal parts and perpendiculars erected in these points intersecting a semicircle over AA_{1}. Taking a pair of dividers these points of intersection are transferred to AA_{1}, and the distances thus obtained represent the position of the hangers.

Fig. 144 .
It is advisable to continue the hangers also through the centre portion of slab in equal distances as, if only half the slab is loaded, shearing stresses occur in the centre as well.

The hangers are usually arranged vertically, as for practical reasons it is difficult to arrange them obliquely, unless they form part of the bar, as for instance on the Kahn bar, skeleton bar and others.

Tests with beams have shown that cracks occur at angles of about 45°, thus proving that the shearing stresses take this in-
clination. For this reason, it is advisable to bend some of the rods up towards the supports under an angle of 45°.

The distance from the support is again found from formula 47 ,

Fig. 145.
and the points where the rods are to be bent up may again be graphically ascertained (Fig. 145). The shear triangle is divided into equal areas and the centres of gravity of these connected by perpendiculars with the axis. The points of intersection are the points of bending the rods. Figs. 146, 147 show a typical arrangement of a beam with hangers, etc.

Fig. ${ }^{4}{ }^{6}{ }^{1}$

Fig. 147. ${ }^{1}$

CHAPTER XI

FORMULAE FOR COLUMNS

CALCULATION OF COLUMNS AXIALLY LOADED.

IF we first consider a column without any reinforcement of the section A in. ${ }^{2}$ supporting a load of W lbs., this load is uniformly distributed over the whole sectional area and parallel to the length of the column.

The compressive stress is then,

$$
\mathrm{C}=\frac{\mathrm{W}}{\mathrm{~A}} \mathrm{lbs} . / \mathrm{in} .{ }^{2}
$$

If the concrete column is reinforced with steel rods, parallel to the length of column, the two materials compress at the same rate, so that,

$$
\frac{c}{\mathrm{E}_{c}}=\frac{c_{s}}{\mathrm{E}_{s}}
$$

and as we call,

$$
\frac{\mathrm{E}_{s}}{\mathrm{E}_{c}}=m
$$

or as the steel can resist the compression m times more than the concrete, it is only then compressed at the same rate as the concrete, when the load W is m times bigger, so that,

$$
\mathrm{C}=\frac{c_{s}}{m} \text { and } c_{s}=m \cdot c
$$

Allowing as before $m=15$ and the safe stress of concrete in columns at 500 lbs . $/ \mathrm{in} .{ }^{2}$, we get

$$
c_{s}=\mathrm{I} 5 \cdot 500=7500 \mathrm{lbs} . / \mathrm{in}^{2}
$$

Consequently in designing a column or checking the design we have to deal with the stress of the concrete only, as the steel can never reach its highest safe stress of 15000 lbs . $/ \mathrm{in} .^{2}$

If A is the sectional area of the concrete column under com-
pression, without deducting the small area of steel, the total stress is,

$$
\mathrm{C}_{\mathrm{c}}=c . \mathrm{A}
$$

and the stress of the steel,

$$
\mathrm{C}_{s}=c_{s} \cdot \mathrm{~A}=m \cdot c \cdot \mathrm{~A}
$$

and as the stresses must be equal to the load,

$$
\begin{gather*}
\mathrm{C}_{c}+\mathrm{C}_{s}=\mathrm{W} \\
c \cdot \mathrm{~A}_{c}+m \cdot c \cdot \mathrm{~A}_{\mathrm{L}}=\mathrm{W} \text { or } \\
\mathbf{c}=\frac{\mathrm{W}}{\mathrm{~A}_{\mathbf{c}}+\mathrm{m} \cdot \mathrm{~A}_{\mathbf{L}}} \tag{49}\\
\mathbf{c}_{\mathbf{s}}=\mathrm{m} \cdot \mathbf{c}=\frac{\mathrm{mW}}{\mathrm{~A}_{\mathbf{c}}+\mathrm{m} \cdot \mathrm{~A}_{\mathbf{L}}} \tag{50}
\end{gather*}
$$

When the column exceeds 18 times its smallest diameter there is danger of bending, and the column must, therefore, be calculated so as to resist the tendency to bend outwards.

For this Euler's formula is usually used.

$$
\mathrm{W}=\frac{\pi^{2}}{\mathrm{~S}_{\mathrm{F}} \cdot l^{2}} \cdot \mathrm{E}_{c} \cdot \mathrm{I}
$$

S_{F} is the factor of safety and may be taken as 6. (The Prussian Government regulations insist on a factor of safety of io, which is, however, generally considered much too high.)

In calculating I, the moment of inertia, the sectional area of the steel rods is to be multiplied by $m=15$ when used for calculating

$$
\begin{align*}
& \mathrm{W}=\frac{\pi^{2}}{\mathrm{~S}_{\mathrm{F}} \cdot l^{2}}\left[\mathrm{E}_{c} \mathrm{I}_{c}+\mathrm{E}_{s} \cdot \mathrm{I}_{s}\right] \text { and } \mathrm{aS} \frac{\mathrm{E}_{s}}{\mathrm{E}_{c}}=m \\
& \qquad \mathrm{~W}=\frac{\pi^{2}}{\mathrm{~S}_{\mathrm{F}} \cdot l^{2}} \mathrm{E}_{c}\left(\mathrm{I}_{c}+m \cdot \mathrm{I}_{s}\right) \\
& \text { If we take } \mathrm{E}_{c}=\frac{30000000}{\mathrm{I} 5}=2000000 \mathrm{lbs} . / \mathrm{in}^{2}{ }^{2} \\
& m=\mathrm{I}_{5}, \mathrm{~S}_{\mathrm{F}}=6 \text { and } \pi^{2}=10 \text {, we get } \\
& \qquad \mathrm{W}=\frac{10.2000000}{6 . l^{2}}\left(\mathrm{I}_{c}+\mathrm{I}_{5} \mathrm{I}_{s}\right) \\
& \qquad \mathrm{W}=\frac{20000000}{61^{2}}\left(\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{5} \mathrm{I}_{\mathrm{s}}\right) \tag{5I}
\end{align*}
$$

or for W in tons and l in feet,

$$
\begin{gather*}
W=\frac{10 \times 2000000}{2240 \times 6 \times l^{2} \times 144}\left(I_{c}+I_{5} \cdot I_{s}\right) \text { or } \\
W=\frac{10.33\left(I_{c}+15 I_{s}\right)}{1^{2}} \tag{52}
\end{gather*}
$$

This formula is based on the assumption that the column is fixed as shown in Fig. 148 and gives a very high factor of safety,

Fig. ${ }^{4} 8$. as ordinary columns may be considered as fixed at both ends, which would mean that their carrying capacity is about four times more.

The iron rods being close to the outside and tending to destroy the concrete, it is necessary to investigate also, if the rods themselves are strong enough to resist bending outwards. The concrete in question is not thick enough to form any proper help, and it is therefore necessary to prevent the bending of rods by an arrangement of hoops or similar means.

The distance of these hoops should be equal to the smallest diameter of the column, but must not exceed thirty times the diameter of the rods.

The factor of safety should be 5 .

$$
\begin{gathered}
\mathrm{W}=\mathrm{A}_{\mathrm{L}} \cdot t_{s}=\frac{\pi \cdot d^{2}}{4} \cdot c_{s} \\
\text { If } \pi^{2}=\mathrm{IO} ; \mathrm{S}_{\mathrm{F}}=5 ; \mathrm{E}_{c}=2000000 \mathrm{lbs} . / \mathrm{in.}^{2} \\
\mathrm{I}=\frac{\pi \cdot d^{4}}{64}, c_{s}=m \cdot c \text {, we get } \\
\frac{\pi \cdot d^{2}}{4}=\frac{10 \cdot 2000000 \pi \cdot d^{4}}{5 \cdot s_{h}^{2} \cdot 64}
\end{gathered}
$$

Where $s_{h}{ }^{2}$ is the distance of the hoops,

$$
\begin{align*}
s_{h}^{2} & =\frac{10 \cdot 2000000 \cdot \pi \cdot d^{4} \cdot 4}{5 \cdot 64 \cdot \pi \cdot d^{2} \cdot c_{s}} \\
s_{h}{ }^{2} & =222222 \frac{d^{2}}{c_{s}}=14814 \frac{d^{2}}{c} \text { or } \\
S_{\mathbf{h}}{ }^{2} & =4714 \frac{\mathrm{~d}}{\sqrt{\mathbf{c}_{\mathbf{s}}}}=12177 \frac{\mathrm{~d}}{\sqrt{\mathrm{c}}} \tag{53}
\end{align*}
$$

In designing a column the load to be carried and the length of the column is known.

Accordingly we take as diameter $\frac{1}{18}$ of the length. We get then

$$
\begin{gather*}
A_{L}=\frac{W-c \cdot A_{c}}{m \cdot c} \tag{54}\\
A_{c}=\frac{W-m \cdot c \cdot A_{s}}{c} \tag{55}
\end{gather*}
$$

If we make $c=500 \mathrm{lbs} . / \mathrm{in} .^{2}, m=15$, and take for A_{c} a sectional area based on a length of square equal to $\frac{1}{18}$ the length of column, the sectional area A_{s} is found from 54.

Fig. 149 .

Fig. 150.

Practically speaking, the area of steel required is about $I^{\wedge} 75$ per cent. of the total sectional area.

Note. At the end of book is attached the table recommended by the R. I. B. A. report on reinforced concrete, from which the required values of A and A_{s} can be readily found.

Another formula for a square section is as follows :-

$$
\begin{align*}
& m=\mathrm{I}_{5}, c=500 \mathrm{lbs} . / \mathrm{in} .^{2}, \mathrm{~A}=\left(\frac{l}{\mathrm{I} 8}\right)^{2} \\
& \mathrm{~A}_{\mathrm{L}}=\frac{\mathrm{W}-500\left(\frac{l}{\mathrm{I} 8}\right)^{2}}{\mathrm{I} 5 \cdot 500} \\
& \mathrm{~A}_{\mathrm{L}}=\frac{\mathrm{W}-\mathrm{I} \cdot 551^{2}}{7500} \mathrm{in.}^{2} \tag{56}\\
& \mathrm{I} 5
\end{align*}
$$

If W is taken in lbs. and l in inches, or if W is taken in tons and l in feet, the formula is

$$
\begin{equation*}
A_{L}=\frac{22.4 W-2.231^{2}}{75} \tag{57}
\end{equation*}
$$

Example.
A column of 12 ft . length supporting a load of 20 tons to be constructed.

$$
\begin{aligned}
& 12 \text { feet }=144 \text { inches, } 20 \text { tons }=44800 \mathrm{lbs} \\
& \qquad d=\frac{l}{18}=8 \text { ins. } \\
& A_{L}=\frac{44800-500 \cdot 64}{15 \cdot 500}=\frac{12800}{7500}=1.70 \mathrm{in}^{2}
\end{aligned}
$$

If we select No. $4 \frac{3}{4} \mathrm{in}$. rods with an area of 0.4418 in. ${ }^{2}$

Fig. 151.

$$
\begin{gathered}
\mathrm{A}_{\mathrm{L}}=4 \cdot 0 \cdot 44 \mathrm{I} 8=\mathrm{I} \cdot 76 \mathrm{in} .^{2} \\
c=\frac{44800}{64+\mathrm{I} 5 \cdot \mathrm{I} \cdot 76}=495 \mathrm{lbs} . / \mathrm{in} .^{2}
\end{gathered}
$$

The moment of inertia of the concrete section is

$$
I_{c}=\frac{d \cdot d^{3}}{I 2}=\frac{8^{4}}{12}=\frac{4096}{12}=34 \mathrm{I} \mathrm{in} .^{4}
$$

and the moment of inertia of the steel

$$
\mathrm{I}_{s}=4\left(\frac{\pi \cdot d^{4}}{64}+\mathrm{A}_{r} \cdot e^{2}\right)
$$

Where A_{r} is the area of one rod and e the distance between centre of rod and axis of column,

$$
I_{s}=4\left(\frac{3 \cdot 14 \cdot 0 \cdot 75^{4}}{64}+0.44 \cdot 3^{2}\right)
$$

The value $\frac{3 \cdot 14 \cdot 0 \cdot 75^{4}}{64}$, namely, the moment of inertia of one rod section, is so small that it need not be considered, consequently

$$
\mathrm{I}_{s}=4 \cdot 044 \cdot 9=15 \cdot 84 \mathrm{in} .^{4}
$$

We find then the load which the column can support without bending from formula 52.

$$
W=\frac{10 \cdot 33(341+15 \cdot 15 \cdot 84)}{12^{2}}=4 I \text { tons, }
$$

so that there is no danger of bending, as we have only half that load to carry.

As regards the danger of the rods bending out, we have $d=$ 0.75 in.

$$
c_{s}=15.495=7425 \text { lbs. } / \text { in. }^{2}
$$

consequently the distance of hoops is

$$
s_{h}=471 \cdot 4 \frac{d}{\sqrt{7425}}=121 \cdot 7 \frac{d}{\sqrt{495}}=4 \cdot 1 \text { ins. }
$$

the cross-bindings, or hoops, should therefore be $4 \cdot \mathrm{I}$ ins. apart.

COLUMNS ECCENTRICALLY LOADED.

Where the load does not act in the centre of gravity of the column section, there are three cases possible. The force can either act within the core, or at the extreme point of it, or, lastly, outside of it.

The core is the centre portion of column section, and its distance from either axis of the column is,

$$
d_{c}=\frac{\mathrm{R}}{\mathrm{~A}} \text { ins. }
$$

where R is the moment of resistance of the section and A the sectional area of the concrete section plus m times the area of steel,

$$
m\left(\mathrm{~A}_{\mathrm{L}^{1}}+\mathrm{A}_{\mathrm{L}^{2}}\right)
$$

(Figs. 152,153).
Where the section is not symmetrical the centre of gravity has to be found by the following formula,

$$
\begin{equation*}
\mathrm{i}=\frac{\frac{\mathrm{d} \cdot \mathrm{~d}_{1}^{2}}{2}+\mathrm{m}\left[\mathrm{~A}_{\mathrm{L}_{1}} \cdot \mathrm{i}_{2}+A_{\mathrm{L}_{2}}\left(\mathrm{~d}_{1}-\mathrm{i}_{1}\right)\right]}{\mathrm{d} \cdot \mathrm{~d}_{1}+m\left(A_{\mathrm{L}_{1}}+A_{\mathrm{L}_{2}}\right)} \tag{58}
\end{equation*}
$$

The moment of inertia of the total section relative to the axis XX and omitting the very small moment of inertia of the steel as being insignificant, is then

$$
\mathrm{I}_{x}=\frac{d}{3}\left[2^{3}+\left(d_{1}-i\right)^{3}\right]+m\left[\mathrm{~A}_{\mathrm{L}_{1}}\left(i-i_{2}\right)^{2}+\mathrm{A}_{\mathrm{L}_{2}}\left(d_{1}-i-i_{1}\right)^{2}\right]
$$

In a symmetrical section

$$
\mathrm{A}_{\mathbf{L} 1}=\mathbf{A}_{\mathbf{L} 2}=\frac{\mathbf{A}_{\mathbf{L}}}{2} \text { and } i_{1}=i_{2}
$$

Fig. 152.

Fig. 153.

$$
i=\frac{d_{1}}{2} \text { and } \mathrm{I}_{x}=\frac{d \cdot d_{1}^{3}}{\mathrm{I} 2}+m \cdot \mathrm{~A}_{\mathrm{L}}\left(\frac{d_{1}}{2}-i_{2}\right)^{2}
$$

Consequently,

$$
\begin{equation*}
d_{c}=\frac{I_{x} \cdot 2}{A \cdot d_{1}}=\frac{d \cdot d_{1}^{2}}{6 \cdot A}+\frac{2 \mathrm{~mA}_{\mathrm{L}}\left(\frac{d}{2}-i_{1}\right)^{2}}{A \cdot d_{1}} \tag{59}
\end{equation*}
$$

See Figs. ${ }^{153}$, 154 .
In the following formulæ,
$\mathrm{A}=d \cdot d_{1}+m\left(\mathrm{~A}_{\mathrm{L}_{1}}+\mathrm{A}_{\mathrm{L}_{2}}\right)=$ Total sectional area in in. ${ }^{2}$
$\mathrm{A}_{\mathbf{L} 1} \& \mathrm{~A}_{\mathrm{L} 2}=$ Sectional areas of the reinforcements under compression and tension respectively.

$$
\mathrm{A}_{\mathrm{L}}=\mathrm{A}_{\mathrm{L}_{1}}+\mathrm{A}_{\mathrm{L}_{2}} \text { in in. }{ }^{2}
$$

$i_{1} \& i_{2}=$ the distances of $\mathrm{A}_{\mathrm{L} 1}$ and $\mathrm{A}_{\mathrm{L}_{2}}$ from the outer edge under compression and tension respectively.
$d_{c}=$ the width or diameter of core.
$e=$ eccentricity of column in in.
Es
$\overline{\mathrm{E}_{\mathrm{c}}}=m=15$.
$n=$ distance of neutral axis from compressed edge.
$\mathrm{I}=$ moment of inertia relative to axis of gravity in in. ${ }^{4}$
$c_{x} \& c_{y}=$ the stresses in the concrete in lbs./in. ${ }^{2}$
$t_{x} \& t_{y}=$ the stresses in the steel in lbs./in. ${ }^{2}$

1. The Force Acts within the Core.

In this case the eccentricity e is smaller than the width of the core d_{c} and the neutral axis falls outside of the section.

Fig. 154.

$$
\begin{align*}
c_{x} & =\frac{W}{A}+\frac{W \cdot e \cdot d_{1}}{2 I_{s}} \tag{60}\\
c_{y} & =\frac{W}{A}-\frac{W \cdot e \cdot d_{1}}{2 I_{s}} \tag{6I}\\
A_{L_{1}} & =m\left[\frac{\left.c_{x}-c_{y}\right)\left(d_{1}-i_{2}\right)}{d_{1}}\right]+c_{y} \tag{62}\\
A L_{2} & =m\left[\frac{\left(c_{x}-c_{y}\right) \cdot i_{1}}{d_{1}}\right]+c_{y} \tag{63}
\end{align*}
$$

2. The Force Acts at the Extreme Edge of Core (Fig. 155).

In this case d_{c} becomes $=e$,

$$
\begin{gather*}
d_{c}=e=\frac{\mathrm{I}_{\mathrm{s}} \cdot 2}{\mathrm{~A} \cdot d_{1}} \text { and therefore } \\
c_{x}=\frac{\mathrm{W}}{\mathrm{~A}}+\frac{\mathrm{W} \cdot d_{c} \cdot d_{1}}{2 \mathrm{I}_{\mathrm{s}}} \text { or } \\
\mathbf{c}_{\mathbf{x}}=\frac{2 \mathrm{~W}}{\mathrm{~A}} \tag{64}\\
\mathbf{c}_{\mathbf{y}}=\mathrm{O} \tag{65}
\end{gather*}
$$

As n becomes $=d$, the stresses are

$$
\begin{array}{r}
A_{L_{1}}=m \cdot c_{\mathbf{x}} \frac{\left(d_{1}-i_{2}\right)}{d_{1}} \\
A_{L_{2}}=m \cdot c_{\mathbf{x}} \frac{i_{2}}{d_{1}} \tag{67}
\end{array}
$$

Fig. 155.
These formulæ may also be used if the force acts immediately near the border of the core.
3. The Force Acts without the Core.

In that case e is $>$ than d_{c} and the neutral axis occurs within the section so that $n>d$, Fig. 156 , so that,

$$
\begin{align*}
& \frac{c_{x}}{\mathrm{E}_{\mathrm{c}}}: n=\frac{\mathrm{A}_{\mathrm{LI}}}{\mathrm{E}_{s}}:\left(d_{1}-n-i_{2}\right) \\
& \mathrm{t}_{\mathbf{x}}=\mathbf{m} \cdot \mathbf{c}_{\mathbf{x}} \frac{\mathbf{n}-\mathbf{i}_{2}}{\mathrm{n}} \tag{68}\\
& \mathrm{t}_{\mathbf{y}}=\mathbf{m} \cdot \mathbf{c}_{\mathbf{x}} \frac{\mathbf{d}_{1}-\mathbf{n}-\mathbf{i}_{2}}{\mathbf{n}} \tag{69}
\end{align*}
$$

$$
\begin{equation*}
\text { and } n=\frac{d}{3 \cdot m \cdot \mathrm{~A}_{\mathrm{L}}} \cdot \mathrm{n}^{3}+\frac{d \cdot i_{3}}{m \cdot \mathrm{~A}_{\mathrm{L}}} \cdot n^{2}-\left(d_{1}+2 i_{3}\right) \cdot n \text { or } \mathrm{n} \tag{70}
\end{equation*}
$$

Fig. 156.
Example.
A column 14 by 14 ins. carrying a load of 42 tons is eccentrically loaded, the load occurring at a point $1.5^{\prime \prime}$ from the centre of

Fig. 157.

Fig. 158.
column. The column is reinforced with 4 rods of $1 \frac{1}{2} \mathrm{in}$. diam. and $r^{\prime} 76$ in. ${ }^{2}$ sectional area each. What are the stresses?

$$
\begin{aligned}
d & =d_{1}=14 \mathrm{ins} . \\
i_{1} & =i_{2}=2 \mathrm{ins} . \\
\mathrm{A}_{\mathrm{L}} & =4 \cdot \mathrm{r} \cdot 76=7 \cdot 04 \mathrm{in} .{ }^{2} \\
\mathrm{~A} & =\mathrm{r} 96+\mathrm{r} 5 \cdot 7 \cdot 04=30 \mathrm{r} \cdot 6 \mathrm{in} .^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{8}=\frac{14^{4}}{12}+15 \cdot 7 \cdot 04 \cdot 5^{2}=584 \mathrm{I} \cdot 3 \mathrm{in.}{ }^{4} \\
& d_{c}=\frac{584 I^{\circ} 3 \cdot 2}{301 \cdot 6 \cdot 14} \quad=2.8 \mathrm{ins} .
\end{aligned}
$$

and as $e=1.5 \mathrm{in}$. and $\mathrm{W}=94080 \mathrm{lbs}$.

$$
\begin{aligned}
& c_{x}=\frac{94080}{301 \cdot 6}+\frac{94080.1 \cdot 5 \cdot 14}{2 \cdot 5841 \cdot 3}=480 \mathrm{lbs} . / \mathrm{in} .^{2} \\
& c_{y}=\frac{94080}{301 \cdot 6}-\frac{94080 \cdot 1 \cdot 5 \cdot 14}{2 \cdot 5841 \cdot 3}=144 \mathrm{lbs} . / \mathrm{in} .^{2} \\
& t_{x}=15\left[\frac{(480-144)(14-2)}{14}+144\right]=6480 \mathrm{lbs} . / \mathrm{in} .^{2} \\
& t_{y}=15\left[\frac{(480-144) \cdot 2}{14}+144\right]=2880 \mathrm{lbs} . / \mathrm{in} .{ }^{2}
\end{aligned}
$$

What load could the same column support if the load was acting at a distance of 4 inches from the centre?

As the distance 4 is less than $\frac{1}{2} d_{1}=7$, the load acts still within the section

$$
i_{3}=d_{1}-e=7-4=3 \text { ins. }
$$

From formula 71 we find the position of neutral axis as follows:-

$$
\begin{aligned}
& \frac{14}{3 \cdot 15 \cdot 7 \cdot 04} \cdot n^{3}-\frac{14 \cdot 3}{15 \cdot 7 \cdot 04} \cdot n^{2}+(14-2 \cdot 3) \cdot n=2 \cdot 2^{2}+14^{2}- \\
& 0.044 n^{3}-0.39 n^{2}+8 n=8+196-98=106 \\
& n=8 \text { ins. }
\end{aligned}
$$

If we allow for c the value of $500 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$, we get from formula 70,

$$
\begin{aligned}
& \mathrm{W}=500\left[\frac{14 \cdot 8}{2}+\frac{15 \cdot 3 \cdot 52}{8}(16-14)\right] \\
& \mathrm{W}=34600 \mathrm{lbs} .=15 \text { tons. }
\end{aligned}
$$

The stress in the steel we find from formula 68,

$$
t_{x}=15 \cdot 500 \frac{8-2}{8}=5625 \mathrm{lbs} . / \mathrm{in} .^{2}
$$

CHAPTER XII

FORMULAE FOR ARCHES, VAULTS, ETC.

The reinforcing rods are usually spaced symmetrically parallel to the longitudinal axis, and consequently the core of the arch and the moment of resistance at any point can be determined. To ascertain the stresses the formulæ already developed for axial and eccentrical loading are used.

The stresses are as a rule graphically ascertained by finding the line of resistance, which must on no account fall outside the arch section and should be within the inner third of section.

The depth of arch ring at crown may be assumed from experience or determined from the formula,

$$
\begin{equation*}
\mathrm{d}_{\mathrm{c}}=\sqrt{1}+0.11=0.005 \mathrm{w}+0.0025 \mathrm{w}_{\mathrm{d}} \tag{72}
\end{equation*}
$$

wherein $d_{c}=$ depth at crown in in.
$l=$ clear span in feet.
$w=$ superimposed load uniformly distributed in lbs./ft. ${ }^{2}$
$w_{d}=$ dead load above arch ring at crown in lbs./ft. ${ }^{2}$
The radial depth at quarter points is usually made $=1 \frac{1}{3}$ that at the crown.

The rise of arch is preferably made $=\frac{1}{4}$ to $\frac{1}{6}$ of the span.
Fig. 159 illustrates a simple form of arch ; the stresses in any particular joint are found as follows:-

If $\frac{W}{2}=$ weight of half the arch.
$W_{J}=$ weight of arch up to the joint under observation, $\mathrm{W}=$ live load on half arch for I 2 ins.
$l=$ effective span of arch.
$\mathrm{V}=$ rise of arch.
$d_{1} \& d_{2}=$ the distances of $\frac{\mathrm{W}}{2}$ and W_{J} from the centre of abutment.

Fig. 159.
x and $y=$ the co-ordinates of centre of section $m n$ referred to centre of abutment.

Assuming that the line of resistance passes through the centres of the joints at abutments and crown and that the live load occurs on one-half of the arch only but allowing for the self load of the whole arch, we get the components of the left reaction as follows :-

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{v}}^{1}=\frac{\mathrm{W}}{2}(\text { on account of self load }) \\
& \mathrm{R}_{\mathrm{v}}^{2} \cdot l-w \cdot \frac{l}{2} \cdot \frac{3}{4} l=0
\end{aligned}
$$

UNIVERSITY

$\mathrm{R}_{\mathrm{v}}{ }^{2}=\frac{3}{8} w \cdot l$ (on account of live load), therefore
$\mathbf{R}_{\mathrm{V}}=\frac{\mathrm{W}}{2}+\frac{3}{8} \mathrm{wl}$
$\mathrm{R}_{\mathrm{V}} \cdot \frac{l}{2}-\mathrm{R}_{\mathrm{H}}{ }^{1} \cdot v-\frac{\mathrm{W}}{2}\left(\frac{l}{2}-d_{1}\right)=0$
$\mathrm{R}_{\mathrm{H}}{ }^{1}=\frac{\mathrm{R}_{\mathrm{v}} \cdot \frac{l}{2}-\frac{\mathrm{W}}{2} \cdot \frac{l}{2}+\frac{\mathrm{W}}{2} \cdot d_{1}}{v}$
$\mathrm{R}_{\mathrm{H}}^{1}=\frac{\frac{\mathrm{W}}{2} \cdot d_{1}}{v}$ (on account of self load)
$\mathrm{R}_{\mathrm{H}}{ }^{2} \cdot v=\mathrm{R}_{\mathrm{V}} \cdot \frac{l}{2}-\frac{w \cdot l}{2} \cdot \frac{l}{4}$
$\mathrm{R}_{\mathrm{H}}{ }^{2}=\frac{\mathrm{I}}{16} \frac{w . l^{2}}{v}$ (on account of live load)
$\mathbf{R}_{\mathbf{H}}=\frac{\mathbf{I}}{v}\left(\frac{\mathbf{W}}{2} \cdot \mathrm{~d}_{\mathbf{1}}+\frac{\mathbf{w} \cdot \mathbf{1}^{2}}{\mathrm{I} 6}\right)$
The vertical and horizontal components of the force acting in centre of section $m n$ are as follows :-

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{v}}=\mathrm{R}_{\mathrm{V}}-\mathrm{W}_{J}=\frac{\mathrm{W}}{2}-\mathrm{W}_{J} \text { (on account of self load) } \\
& \mathrm{P}_{\mathrm{v}}=\mathrm{R}_{\mathrm{v}}-w \cdot x=w\left(\frac{3}{8} l-x\right) \text { (on account of live load) }
\end{aligned}
$$

$$
\begin{equation*}
\text { therefore } P_{v}=\frac{W}{2}-W_{J}+w\left(\frac{3}{8} 1-x\right) \tag{75}
\end{equation*}
$$

$\mathrm{P}_{\mathrm{H}}=\mathrm{R}_{\mathrm{H}}=\frac{\frac{\mathrm{W}}{2} \cdot d_{1}}{v}$ (on account of self load)
$\mathrm{P}_{\mathrm{H}}=\mathrm{R}_{\mathrm{H}}=\frac{w . l^{2}}{16 v}$ (on account of live load)
therefore $\mathbf{P}_{\mathbf{H}}=\frac{\mathbf{I}}{v}\left(\mathrm{~W}_{\mathbf{J}} \cdot \mathrm{d}_{\mathbf{1}}+\frac{\mathrm{w} \cdot 1^{2}}{\mathrm{I} \sigma}\right)$
The bending moment is then as follows :-

$$
\begin{equation*}
B=R_{\mathbf{V}} x-R_{H} \cdot y-W_{J}\left(x-d_{2}\right)-\frac{W \cdot x^{2}}{2} \tag{77}
\end{equation*}
$$

and from this the stresses in concrete and steel can be ascertained according to the for mulæ for eccentrical loading.

The arch should be investigated for reverse positions of the load to obtain the maximum stresses. It should in any case be considered under full load, half load and centre third load.

Another way of calculating the reinforcement required is as follows. We ascertain the thrust and bending moments, and in order to determine the amount and position of reinforcement we find first the compressive stress of the concrete due to thrust, and deduct this from the safe stress of the concrete. The amount of reinforcement required to resist the bending moment is then arrived at by using the formulæ for beams. The compressive value for the concrete must in this case be reduced by the amount obtained to resist the thrust, and the safe tensile stress for steel increased m times the unit compression due to thrust. Similarly the formulæ for double reinforced beams may be used for arches with double reinforcements.

Temperature stresses must be carefully considered. Considering the abutments as rigid, these stresses create a thrust together with a negative bending moment at the crown.

If the abutments cannot be considered as perfectly rigid the horizontal thrust must be taken by tension rods, this form of construction being quite usual in arched roofs.

CHAPTER XIII

PATENT BARS AND SYSTEMS

A great variety of systems of reinforced concrete construction, patent bars, etc., have been invented within the last few years, and the following is a condensed review of those principally used in this country at the present moment. They are arranged alphabetically. All of these bars and systems have certain advantages under certain conditions and circumstances, and if used in their right places may tend to improve the soundness of the construction and reduce cost.

The Armoured Tubular Flooring Co. Ltd., I 53 Victoria Street, Westminster, S.W.

The armoured tubular floor known as the "Herbst" system consists of the concrete webs AA, concrete tube B and top layer of concrete C (Fig. r60), the concrete webs A having steel reinforcements made of

Fig. 160. mild steel of 28 to 32 tons tensile resistance.

Fig. r6r shows the reinforcement ; the floor has been constructed in spans up to 30 feet.

Fig. 16i.

Fig. 162.

A special feature is the grip on the concrete webs obtained by shaping the top layer as shown in Fig. 162, which should be an

Fig. 163.
excellent protection against shear. The floor does not require centering during construction.
(For stock sections of reinforcement, see p. 15 I .)

FIG. 164.

The British Reinforced Concrete Engineering Co. Ltd., 196 Deansgate, Manchester, use clips and stirrups made of high carbon steel of various shapes. Fig. 163 shows general arrangement and details.

The stirrups are sprung on the tension bar by squeezing the

Fig. 165.
arms and, when released, retain a tight grip in the required

Fig. 166.
position, tending to come tighter when the concrete is rammed.

The ends of the hoop rods are arranged to lie through the core in such a manner as to be securely anchored in the concrete and to bond the core in every direction against bulging action set

Fig. 167.
up under heavy loading. The illustration shows how and where the various fitments b and c are used.

The Chain Concrete Syndicate, I Basinghall Square, Leeds, use ordinary round mild steel bars of such dimensions as to produce sufficient tensile stress. The leading feature of the system is that all bars are connected by steel clips of patterns and weights to suit requirements. These clips (Fig. 164) are made from flat bar steel

Fig. 168. $\frac{1}{4}$ in. thick and from $\frac{1}{2}$ to $\mathrm{I} \frac{1}{2} \mathrm{in}$. broad and cut and bent by machinery. The company claim that owing to the fact that the reinforcement is distributed uniformly in all directions larger floor panels can be constructed without the necessity of beams. Fig. 165 shows the arrangement of reinforcement in floor.

Edward Coignet Ltd., 20 Victoria Street, S.W.

The Coignet system of armoured concrete is one of the oldest forms of reinforced concrete. The principal feature of the construction is the connexion of tension and compression rods with stirrups (Fig. 166).
In upright structures like columns, piles, etc., the rods are bound by special ties to prevent bursting. Fig. 8r, p. 59, illustrates a Coignet pile usually of a circular section, varying between 10 and 16 ins. in diameter. A Coignet pile during construction has been previously mentioned (see p. 6r). Fig. 167 shows section through a tobacco warehouse at Bristol in the Coignet system.

A boiler foundation supported on piles has already been mentioned (see p. 6o), also an early piece of work in moulded concrete, the aqueduct for the Paris water supply, executed by the late Mons. François Coignet (see p. 2). The principal arch has a span of about I_{32} feet, the total aqueduct being about 5 miles long and comprising twenty-eight arches.

The Columbian Fireproofing Co. Ltd., 37 King William Street, E.C., use special ribbed bars, suspended in steel stirrups over joists or resting on walls. The ribbed bars are embedded in the concrete (Fig. 168), the thickness of concrete and depth of bars being governed by the width of spans, etc. Fig. 169 illustrates the system.

Fig. 169.

The same firm are also the makers of the "Bonna" reinforced concrete pipes. These have a thin steel tube to make them perfectly watertight. The spiral reinforcement consists of steel bars cruciform in section and round similar bars running longitudinally so that a complete circular network of steel bars is formed.

The Concave Floor Co., I Hawstead Road, Catford, S.E., use ordinary wire meshing of various thickness and gauge ; according to spans, $\mathbf{1}, 2$ or 3 layers being used. Fig. 170 shows an arrangement of hollow flooring to facilitate drying out in case the floor is constructed at the ground level and thus prevent expansion and
cracking of parquet, wood-block and other finish. The floor is a centering in itself and can be constructed either hollow or solid. The mode of construction is to first place ordinary large mesh

Fig. I70.
wire netting over the beams covered with brown paper to prevent the concrete squeezing through. A thin layer of concrete is then

Fig. 171.
spread over this and the reinforcing wire mesh follows, after which the bulk of the concrete is brought in. The first layer of

Fig. 172.
wire can afterwards be cut away, together with the paper, and the floor finished with level soffit or it may remain where a hollow

Fig. 173.
floor is desired. Figs. 171, 172, 173 show types of this floor which is also very suitable for flat roofs. The whole area being cut up into very small squares of minute reinforcement the formation of hair cracks is made almost impossible while possibility of
failure is practically avoided particularly where the meshing continues over several spans.

The Considère Construction Co. Ltd., 5 Victoria Street, S.W. The principal feature of the Considère system is the spiral

Fig. 174.
armouring of the concrete. It is claimed that a much greater resistance is obtained. Fig. 174 shows details of a continuous spirally armoured girder. The system lends itself particularly also to pile making and, furthermore, some excellent work has been done in bridge building (see p. 59).
H. Kempton Dyson's Patent Bar. This is a recent invention
and not yet commercially worked. The bar provides for rigid attachment of shear members to top as well as bottom rods, and forms practically a lattice girder with the concrete in which it is embedded. Owing to the rigid attachment of the various parts there is no fear of displacement during concreting operations, while a mechanical bond is also created.
The bar can be rolled up to a length of 60 or 80 ft ., and all cutting being done while the metal is hot, the expense of cutting cold and consequent danger of splitting is done away with. The only processes entailed in its manufacture are rolling, cutting to length and expansion. That done it can be put in place straight away. The bar has many other advantages, such as easy handling, etc. (Fig. 175.)
The cutting is done by means of spiral cutting edges on the rolls.

Fig. 175.
This patented process has been applied to the making of expanded metal for reinforcing floor or wall slabs, pipes, etc., and to the reinforcing of columns, piles, etc.

The Empire Stone Co. Ltd., 23I Strand, W.C., are the makers of the . Siegwart floor. This consists of hollow beams made of granite concrete and reinforced with steel rods. The beams are placed side by side on the supports, walls, or girders, and then grouted in with cement mortar. (Figs. 176, 177.)

The Expanded Metal Co. Ltd., York Mansions, Westminster, S.W., manufacture an expanded steel lathing from sheets of rolled metal of various thicknesses, cut and expanded by machinery into meshes of various shapes.
This material is a very useful reinforcement for floor and foundation slabs, partitions and particularly also for encasing steel work as a protection against fire.

Fig. 178 shows a typical floor reinforced and generally treated

Fig. 178.
with expanded metal, while Figs. 179, 180 illustrate how by means of this material columns and stanchions may be protected from fire. (For stock sizes, see p. I5 I.)

The Hennebique system (L. P. Mouchel \& Partners, 38

Figs. 179 and 180.
Victoria Street, S.W.) is one of the oldest systems of reinforced concrete known and has been used for many important works in many countries. Ordinary round rods are used, together with a series of hangers or stirrups, Fig. i81 showing the usual arrange-

Fig. I8r.
ment. Fig. 184 shows the reinforcement of columns, the longitudinal bars having closely spaced steel wire links of $\frac{3}{16} \mathrm{in}$. steel wire applied in sets of four. A Mouchel Hennebique pile has already been mentioned (see p. 60) which, in addition to the longitudinal bars and transverse links, has diaphragms, further connecting the bars. These diaphragms hold in place a consecutive

Fig. 182.-Indented Bar.

series of tubes, each about 4 ft . long, their object being to form the hollow core of the finished pile (p. 59). A column base is shown on p. 6o. The lower portion of the concrete is reinforced by a double system of bars laid in two directions so as to provide for the tensile stresses caused by the bending moments developed by the central load and the vertical reaction of the ground.

The indented steel bar is manufactured by the Patent Indented Steel Bar Co. Ltd., Queen Anne's Chambers, Westminster, S.W. This bar gives a great bonding efficiency. It is of uniform cross section throughout, but in longitudinal section there are a series of projections, the edges of

Fig. 184. which are inclined at an angle exceeding the angle of friction between concrete and steel, so as to prevent splitting ; a mechanical bond is thus given throughout, without any waste of material (Fig. 185). The bars are easy to handle and can be bent to any required shape. Where shearing stresses occur, the nature of the surface of bar greatly increases the adhesion of the concrete and prevents

Fig. 185.
slipping. A retaining wall reinforced with these bars has already been mentioned (see p. 56).

Figs. 182 and 183 show a floor during construction and section of bar.

On p. 6i the stadium at the Franco-British Exhibition is reproduced, in the construction of which these bars were used. (For stock sizes, see p. 152.)

The Improved Construction Co. Ltd., of 47 Victoria Street,

Westminster, S.W., manufacture a variety of articles by a special process, called after the inventor, the Jagger process. The principal feature of this is a vibrating oscillating table by means of which a perfect mixing of the concrete is obtained giving maximum density. Mention must be made of railway sleepers

PLAN.
Fig. 186.
made in this system (Fig. 186) which should prove a great improvement on the present wooden and iron sleepers.

Johnson's wire lattice, manufactured by R. Johnson, Clapham, and Morris, Ltd., Lever Street, Manchester, is made in sheets or

Fig. 187.
rolls of practically any length by any width up to $8 \mathrm{ft} .6 \mathrm{ins}$. is made up of tension and binding wires, woven to form a rectangular mesh. The tension wires are straight and the binding wires crimped. This material is a useful reinforcement for floor slabs and similar structures (Fig. 187). (For stock sizes,' see p. I 53.)

The "Kahn" bar is manufactured by the Trussed Concrete Steel Co. Ltd., Caxton House, Westminster, S.W. The bar is of diamond shape section

Fig. 188. (Fig. 188), having side wings turned up as shown to form shear members and to give a mechanical bond. The bar is supplied in 4 different sizes and various patterns, some having the wings all one way, others in opposite directions, either the whole bar being sheared or the centre left unsheared. The advantages are obvious, and wherever shearing stresses occur the bar is used to great advantage.

As the shearing members are rigidly connected with the main bar, displacement during concreting is made impossible. Figs. 189, 190 illustrate plan and section and part elevation of new telegraph stores, Birmingham. Elevation and section of one span of Charles Creek Bridge has already been mentioned (see p. 55). (For stock sizes of bar, see p. 153.)

Leslie \&o Co. Ltd., Kensington Square, W. In this system the main members are connected with strips of flat metal or wire looped to engage the bars. Hooks are driven on the stirrups, which owing to the wedge-shaped, bent over. ends tighten the strip or rod upon the bar. This system has the great advantage that the whole of the steel work is framed up completely as a unit and dropped into place, and owing to the rigid connexion of the various members displacement during concreting is prevented. Fig. r91 shows a typical arrangement of foor, beam and column construction.

The lock woven mesh system, by James H. Tozer \&o Son, Ltd., York Mansions, Westminster, S.W., is suitable for floors, roofs, raft foundations, walls, sewers, etc. ; in fact, wherever large areas have to be reinforced. As the name implies, the material consists of wire, woven together to form a square mesh and lock jointed at the points of intersection. The material, being made in continuous sheets, gives a uniform distribution of stresses and a mechanical bond.

142;

Fig. igi.-View of Floor Construction under the Leslie System.

Fig. 192.-Tozers Floor.

Fig. 192 shows a floor being laid of 15 ft . span. An appli-

Fig. 193.
cation of the material for roof construction has already been dealt with (see p. 64). (For stock sizes, see p. I54.)

Fig. 194.
Potter Eo Co. Ltd., 66 Victoria Street. Fig. 194 illustrates a system of forms for concrete walls, designed to reduce the cost of forms and waste of timber used. The appliances consist of
steel girders secured together by bars and pins to suit walls of any thickness and they are raised as the walls grow in height. The trough boards are attached to smaller girders. After the concrete has been deposited for some 24 hours the appliance is raised, and so on until the top of wall is reached, when it is finally taken down and ready for re-use. Thus a great saving in timbering is effected. Mr. Potter has also just brought out a new reinforcing arrangement for beams (Fig. 195). The system creates rigid and immovable attachment and practically forms a truss arrangement. The tensile member is not weakened by holes, and

Fig. 195.
the shear members can be quickly attached on the job, while displacement during concreting and sliding of tensile member when under severe stress is made impossible.
"Sideolith," 19 Temple Street, Birmingham, are the makers of the "skeleton" reinforcement, a bar stamped out of steel, split and expanded into girder-like form. This bar would appear to be particularly useful for beams, lintels and the like, the perfect connexion of shear members to tension and compression rods preventing any possible displacement during concreting. Fig. 196 illustrates the skeleton bar which is made in sections from $3 \frac{1}{4}$ to 6 ins. width and a proportionate depth of $4 \frac{1}{2}$ to 14 ins.

The Visintini system, largely used on the Continent, is parti-
cularly suitable for large spans such as occur in roof and bridge constructions.

Figs. 197-199 show the arrangement of the reinforcements, the whole beam being a lattice girder, and the various rods are calculated in thesame fashion as such a girder. A typical application of this type of beam has already been mentioned (see p. 64).
E. P. Wells, 94 Larkhall Rise, Clapham. Wells' twin rod has the shape of the figure 8 , being composed of two round rods (Fig. 200).

In beams the twin rods are placed flat and one of them bent up towards the support and continued

over same in the usual way. The web between the two rods is slit and stirrups inserted to form shear members. Figs. 201-203 illustrate a column and base and floor together with details of the Wells system.

Fig. 200.

Fig. 201.

Fig. 202.

Fig. 203.

Values d, n and $A_{\text {t }}$ for a Width of Slab $=12$ Inches for Various Proportionate Stresses t and c.

Allowable max. stresses in lbs./in. ${ }^{2}$		Effective depth in ins. d	Distance of neutral axis in ins. n	Sectional area of steel required in in. ${ }^{2}$		
Steel	Concrete c			$\mathrm{A}_{\text {T }}$	A_{T}	
15000	0	$\begin{array}{ll} 0.0511 \\ 0.1767 & a \end{array}$	$\} 0.230 \mathrm{~d}$	0×12	$0.001413 a$ $0.000408 c$	a β
15000	,	0.0449 0.15 0.	\} 0.259 d	O.14 n	0.001625 a	${ }_{\beta}^{a}$
,		0.1573 $0 \cdot 0$ 0.0402		4	$\begin{aligned} & 0.000469 \\ & 0 \cdot 001832 \end{aligned}$	$\stackrel{\beta}{\beta}$
15000		- $-1391 \quad b$) $0 \cdot 285$	0.16 n	0.000528 c	β
15000	450	$\circ \cdot 10365$ $0 \cdot 1263$	$\} 0.310$ d	0.18 n	0.002037 a o.000588 c	a β
15000	500 \{	$\begin{aligned} & 0.0335 \\ & 0.1160 \end{aligned}$	$\} 0.333 d$	$0.20 n$	0.002261 a $0.000640 c$	a β
15000		- 0304 a) 0	0.22 n	0.002486 a	a
15000		- 1080		$022 n$	0.000700 c	β
15000	600	$\begin{array}{ll} 0.0290 & a \\ 0 \cdot 1008 & b \end{array}$	\} 0.375 d	$0.24 n$	0.002624 0.000756 0	a β
14000	550	$\begin{array}{ll} \text { o.o305 } \\ \text { o.1059 } & b \end{array}$	$\} 0.370$ d	$023 n$	$0 \cdot 002678$ a 0.000768 c	a β
14000		-.0328 ${ }^{\circ}$	O.349 d	0.21	-002453 a	\boldsymbol{a}
14000		-.1138 ${ }^{\text {d }}$		021	$0 \cdot 000708$ c	β
14000	450	$\begin{array}{ll} 0 \cdot 0357 & a \\ 0 \cdot 1212 & b \end{array}$	$\} 0.325 d$	019 n	0.002244 a 0.000648 c	a β
		-0299 a			0.002955 a	a
13000		- 1039 b		0.25	$0 \cdot 000854$ c	β
13000	500	-0.0323 a $0.1113 b$	\} $0 \cdot 366$	$0.23 n$	0.002712 a	a β
		-0350 a			$0 \cdot 002483$	
13000	450	O-I208 b	0'342	0.21	-0.000717	β
12000	550 \{	-.0293 ${ }^{\text {o }}$		$0 \cdot 27$ n	0.003291 a	${ }^{a}$
		-.1015 ${ }^{-}$			0.000940 c	β
12000	500	$\begin{aligned} & 0 \cdot 0315 \\ & \text { o.1086 } \\ & \text { o. } \end{aligned}$	$0 \cdot 385 d$	$0.25 n$	0.003034 a $0.000874 c$	a β
12000	450	$\begin{array}{cc} \circ \cdot 0342 & a \\ \text { O•II79 } & b \end{array}$	$0 \cdot 360$ d	$0.23 n$	0.002768 a $0.000804 c$	a β

Note.-The values α apply to slabs with single reinforcement.
The values β apply to ribbed slabs.
The symbols a, b, c, stand for $\sqrt{\mathrm{B}}, \sqrt{\frac{\mathrm{B}}{b_{s}}, \sqrt{\mathrm{~B} \cdot b_{s}} \text { respectively. }}$

The following are the Sizes and Properties of such sections as are generally used in reinforced concrete works.

One Cubic Ft. of Steel weighs $48 \cdot 6$ lb.

Thickness or diam. in ins.	Weight of Bar x foot long	Weight of Bar it foot long	Area of - Bar in sq. ins.	Area of - Bar in ins.	Circumference of Bar in in.
	-094	-119	-0276	-0352	$\cdot 589$
	-167	-212	-0491	-0625	-7854
	-26I	-333	-0767	-0977	-9817
	-375	-478	- IIO4	-1406	-1781
	-511	-651	-1503	-1914	I•3744
	-667	-850	-1963	- 2500	1.5708
	-845	- 076	- 2485	$\cdot 3164$	1.7671
	I.043	1-328	-3068	-3906	I'9635
	I. 262	I•608	$\cdot 3712$	-4727	$2 \cdot 1598$
	1.502	$1 \cdot 913$	-4418	- 5625	$2 \cdot 3562$
	1.763	$2 \cdot 245$	$\cdot 5185$	-6602	2.5525
	$2 \cdot 044$	$2 \cdot 603$	-6013	$\cdot 7656$	2.7489
	2.347	2.989	-6903	-8789	$2 \cdot 9452$
	$2 \cdot 67$	3.4	$\cdot 7854$	$1{ }^{\circ} 000$	3.1416
	3.014	$3 \cdot 838$	-8866	I•1289	3.3379
	3.379	$4 \cdot 303$	-9940	I•2656	3.5343
	3.766	4795	I 1075	1.4102	3.7306
	$4^{\circ} 173$	$5 \cdot 312$	I 2272	I.5625	3.927
	4.6	$5 \cdot 857$	I•353	I.7227	4.1233
	5.049	$6 \cdot 428$	I.4849	I.8906	4.3197
	$5 \cdot 518$	$7 \cdot 026$	I.623	$2 \cdot 0664$	4.5160
	$6 \cdot 008$	$7 \cdot 65$	1.7671	$2 \cdot 25$	4.7124
	$6 \cdot 52$	$8 \cdot 301$	I*9175	2.4414	4.9087
	7.051	$8 \cdot 978$	2.0739	2.6406	$5 \cdot 1051$
	7.604	$9 \cdot 682$	2.2365	2.8477	$5 \cdot 3014$
	$8 \cdot 178$	10.41	2.4053	$3 \cdot 0625$	5*4978
	$8 \cdot 773$	II'17	2.5802	3.2852	5.6941
	$9 \cdot 338$	11.95	$2 \cdot 7612$	3.5156	5.8905
	10.02 10.68	12.76 13.6	2.9483	3.7539	$6 \cdot 0868$
	10.68	13.6	$3 \cdot 1416$	4.000	6.2332

Hoops, Bands and Flats of small section are also used. Such reinforcements are particularly suitable for placing in the joints between hollow terra-cotta or concrete blocks or bricks in floor slabs. Hoops and bands are obtainable from a minimum width of $\frac{3}{8} \mathrm{in}$. in the following thicknesses: Gauges I to 26 , and $\frac{1}{32}, \frac{3}{64}, \frac{1}{16}, \frac{5}{64}, \frac{3}{32}, \frac{7}{64}, \frac{1}{8}, \frac{9}{64}, \frac{5}{32}, \frac{11}{64}, \frac{3}{16}$ in. Flats are obtainable as follows:-

Width	Thickness	Width	Thickness
In.	In.	In.	In.
$\begin{gathered} \frac{5}{8} \\ \frac{7}{4}, \mathrm{I}, \mathrm{I} \frac{1}{8}, \mathrm{I}, \mathrm{x}_{4}^{2}, \mathrm{I} \frac{3}{2} \end{gathered}$	$\begin{aligned} & \frac{3}{16} \text { to } \frac{5}{8} \\ & \frac{3}{16} \text { to } \frac{3}{1} \\ & \frac{3}{16} \text { to } \frac{7}{8} \end{aligned}$	$\begin{array}{r} 1 \frac{1}{2}, 1 \frac{5}{8}, 1 \frac{3}{4}, 1 \frac{7}{8} \\ 2,2 \frac{1}{4}, 23,2 \frac{1}{2}, \\ 2 \frac{5}{8}, 2 \frac{2}{4}, 3 \end{array}$	$\frac{3}{16}$ to I

Iron Wire.
Sizes, Weights, Lengths, and Breaking Strains, Imperial Standard Wire Gauge.

Sizes on wire gauge	Diameter in in.	Weight		Length per cwt.	Breaking strain	
		100 yds.	1 mile		Annealed	Bright
		lbs.	lbs.	yards	lbs.	lbs.
710	-500	193.4	3,404	58	10,470	15,700
6/0	$\cdot 464$	166.5	2,930	67	9,017	13,525
5/0	-432	144.4	2,541	78	7,814	11,725
4/0	$\cdot 400$	123.8	2,179	91	6,702	10,052
3/0	$\cdot 372$	107.1	I,885	105	5,796	8,694
2/0	$\cdot 348$	$93^{\circ} 7$	1,649	120	5,072	7,608
1/0	$\cdot 324$	$8 \mathrm{I} \cdot 2$	1,429	138	4,397	6,595
1	-300	$69 \cdot 6$	1,225	161	3,770	5,655
2	$\cdot 276$	$58 \cdot 9$	1,037	190	3,190	4,785
3	$\cdot 252$	$49^{\circ} \mathrm{I}$	864	228	2,660	3,990
4	$\cdot 232$	$41 \cdot 6$	732	269	2,254	3,381
5	$\cdot 212$	$34^{\circ} 8$	612	322	1,883	2,824
6	-192	$28 \cdot 5$	502	393	1,544	2,316
7	-176	24	422	467	1,298	1,946
8	-160	19.8	348	566	1,072	1,608
9	-144	16	282	700	869	1,303
10	-128	12.7	223	882	687	1,030
II	-116	10.4	183	1,077	564	845
12	-104	$8 \cdot 4$	148	1,333	454	680
13	$\cdot 092$	$6 \cdot 5$	114	1,723	355	532
14	-080	5	88	2,240	268	402
15	$\cdot 072$	4	70	2,800	218	326
16	-064	$3 \cdot 2$	56	3,500	172	257
17	-356	2.4	42	4,667	131	197
18	$\cdot \mathrm{C} 48$	I•8	32	6,222	97	145
19	-040	I 2	21	9,333	67	100
20	-036	1	18	11,200	55	82

Armoured Tubular Floor "Herbst" Bar.

No.	Section in ins.	Sectional area in sq. in.	Per foot weight in lbs.	Sectional area sq. centimetre	Per metre weight in kilograms
1	$1 \times \frac{1}{8}$	0.156	0.56	$1{ }^{\circ} \mathrm{OO}$	0.83
2	I $\times \frac{3}{16}$	0.234	$0 \cdot 84$	I'52	I-25
3	$2 \times \frac{1}{8}$	$0 \cdot 313$	I'12	$2 \cdot 02$	I 66
4	$2 \times \frac{5}{32}$	$0 \cdot 387$	I•38	2.52	$2 \cdot 07$
5	$2 \times \frac{3}{16}$	$0 \cdot 468$	I•68	$3 \cdot 03$	2.49
6	$2 \times{ }^{\frac{7}{2}}$	0.545	I'96	$3 \cdot 53$	$2 \cdot 90$
7	$2 \times \frac{1}{4}$	0.625	$2 \cdot 25$	4.04	3.31
8	$2 \times \frac{9}{32}$	0.695	$2 \cdot 48$	4.53	$3 \cdot 72$
9	$2 \frac{1}{2} \times \frac{1}{4}$	0.78 I	2:79	$5 \cdot 05$	$4 \cdot 14$
10	$2 \frac{1}{2} \times \frac{9}{32}$	$0 \cdot 879$	$3 \cdot 12$	$5 \cdot 67$	$4 \cdot 65$
11	$2 \frac{1}{2} \times \frac{5}{16}$	0.976	$3 \cdot 48$	$6 \cdot 30$	$5^{1} 7$

Expanded Metal Co. Ltd.

Expanded Metal Diamond Mesh Lathing.

Note.-Sheets, 8 ft . long \times under 2 ft . 3 ins. wide, and sheets 6 ft . or 7 ft . long \times under 2 ft . wide, are cut and charged as standard sizes. Other sizes can be cut for special requirements, and quotations for such sheets will be furnished on application.

No.	Size of mesh shortway	Gauge of metal	Sizes of sheets keep in stock	Approx. weight per super. yard
$\begin{aligned} & 91 \\ & 92 \\ & 26 \\ & 93 \\ & 94 \end{aligned}$		$\begin{aligned} & 24 \mathrm{G} \\ & 22 \mathrm{G} \\ & 20 \mathrm{G} \\ & 24 \mathrm{G} \\ & 22 \mathrm{G} \\ & 20 \mathrm{G} \end{aligned}$	$\left\{\right.$	$\begin{aligned} & 3 \frac{1}{2} \text { lbs. } \\ & 44 \\ & 5 \\ & 5 \\ & 3 \frac{1}{2} \\ & 4 \frac{1}{4} \\ & 4 \end{aligned}$

Expanded Metal Cup Mesh Lathing.
Note.-These Lathings are supplied in standard size sheets only.

81 82 83 84		$\begin{aligned} & 27 \mathrm{G} \\ & 27 \mathrm{G} \\ & 24 \mathrm{G} \\ & 24 \mathrm{G} \end{aligned}$	7 8 7	0 8 0 8	\times	I	3 8 3 8		$\begin{gathered} \text { lbs. } \\ " \\ " \\ " \end{gathered}$

Expanded Metal Square Mesh Lathing.

Note.-These Lathings are supplied in standard size sheets only.

200	$\frac{7}{16}$ square	27 G 24 G		o	\times \times \times	2	-	$2 \frac{1}{3} \text { lbs. }$

The Patent Indented Steel Bar.

Size of bar	Net section sq. ins.	Weight per foot run lbs.	No. of lineal feet in a ton feet	Normal lengths to which bars are ordinarily rolled feet	Abnormal lengths to which they can be required feet
${ }^{\frac{1}{4}}{ }^{\prime \prime} \square \mathrm{Bar}$	0.06	$0 \cdot 24$	9,333	30	45
$\frac{1}{3}^{\prime \prime} \square \mathrm{Bar}$	$0 \cdot 11$	- 38	5,894	40	45
	$0 \cdot 25$	0.85	2,635	50	60
部鸟Bar	- 39	I•33	1,684	50	70
$3^{\prime \prime} \square^{\text {a }}$ Bar	$0 \cdot 56$	109	1,172	50	80
	$\bigcirc \cdot 77$	$2 \cdot 60$	861	40	80
I' $\square^{\prime \prime}$ Bar	1.00	3.40	658	40	70
14" ${ }^{\text {¹ }}$ Bar	${ }^{1} 56$	$5 \cdot 31$	422	40	70

A variation of 3 per cent. either way is allowed in the weight of bars.

Table of Johnson’s Wire Lattice. Special Concrete Meshes.

Number	Mesh	Gauge of wires	Sectional area sq. in. per ft. of cross section
7	$1{ }^{\frac{1}{2 \prime}}{ }^{\prime \prime} \times 3^{\prime \prime}$	13×13	-0528
8	$1{ }^{\frac{1}{2}{ }^{\prime \prime}} \times{ }^{\prime \prime} \times 3^{\prime \prime}$	II $\times 11$	-0848
9	$\mathrm{I}_{\frac{1}{2 \prime}}{ }^{\prime \prime} \times{ }^{\prime \prime} \times{ }^{\prime \prime}$	10×10	-1032
17	$2^{\prime \prime} \times 4^{\prime \prime}$	8×11	- 1206
18	$\mathrm{I}_{\frac{1}{2}}{ }^{\prime \prime} \times{ }^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$	9×11	- 1304
19	$2^{\prime \prime} \times 4^{\prime \prime}{ }^{\prime \prime}$	7×11	- 1458
${ }^{16}$	$1 \frac{1}{2}^{\prime \prime} \times{ }^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$	8×11	-1608
10	$2^{\prime \prime \prime} \times 4^{\prime \prime}$	6×11	$\stackrel{-1740}{ }$
20	$\frac{1}{1_{2}^{\prime \prime}}$	7×11	-1944
11		6×11	-2320
21		7×11	-2430
22	I ${ }^{\frac{1}{2}}{ }^{\prime \prime}{ }^{\prime \prime} \times{ }^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$	$9 \mathrm{~T} \times 11$	-2608
12	$2^{\prime \prime \prime} \times 4^{\prime \prime}{ }^{\prime \prime}$	3×11	-2994
23	$2^{\prime \prime} \times 4^{\prime \prime}$	$6 \mathrm{~T} \times 11$	-3480
24	$\mathrm{I}_{\frac{1}{2}}{ }^{\prime \prime} \times{ }^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$	3×11	-3990
25	$2^{\prime \prime} \times 4^{\prime \prime}$	13×13	-0396

Kahn Trussed Bar.

Size	Weight per foot lbs.	Area in sq. inches	Standard length of diagonals ins.
$\frac{1}{2} \times 1 \frac{7}{2}$	1.4	0.41	
$\frac{3}{4} \times 2 \frac{3}{16}$	2.7	0.79	6
1×3	4.8	1.41	12
$1 \frac{3}{4} \times 2 \frac{3}{4}$	6.8	2.00	18

Lock Woven Mesh.
Table of Weights, Gauges and Sectional Areas.

Superimposed Floor Loads in Various Buildings.
lbs. per sq. foot

Weight of Various Substances.
Forage.
I truss of hay weighs 60 lbs . and contains II ft. cube
I " "straw " 36 ", "

I cwt. of oats $=3.64 \mathrm{ft}$. cube
I ", , barley $=2.38$,
I ", " wheat $=2.20 \quad$,
Earth, etc.

> ft. cube

I ton of chalk			$=$	$13 \frac{1}{2}$
I	,	clay	=	17 ${ }^{\frac{1}{2}}$
I	,	gravel	=	19
I	,	river sand	$=$	19
I	,,	pit sand	$=$	213
I	,	loain	=	21
I	,	Thames ballast	=	20
I	,	shingle		232

Metals.

Zinc	$=450$
Cast iron	$=450$
Wrought iron	$=485$
Steel	$=490$
Copper	$=550$
Lead (milled)	$=712$

Timber.

lbs. per ft. cube

Yellow pine	$=33$
Fir	$=35$ to 38
Baltic oak	$=47$
English oak	$=50$
Mahogany	$=50$

Stones.
ft. cube

1 ton	marble	13
,'	granite	132 ${ }^{\frac{1}{2}}$
,'	Kentish rag	$13 \frac{1}{2}$
1 ,	Yorkshire	$14 \frac{1}{2}$
1 ,	blue lias limestone	142 ${ }^{\frac{1}{2}}$
I ,,	Portland	15
"	Bath	16

Men and Horses.

Men closely packed I cart horse
$=84 \mathrm{lbs}$. per ft. super.
$=18 \mathrm{cwts}$.

Sundries.
I gallon of water weighs $=$ to lbs.
1 foot cube of water $\quad=6.232$ gall.
I cwt. of water $\quad=\mathrm{I} \cdot 8 \mathrm{ft}$. cube.
I sack of flour of 2 bolls $=280 \mathrm{lbs}$.
I tun of oil (vegetable) $=236$ galls.
I ,, , (animal) $=252$ galls.
I sack of wool $=364 \mathrm{lbs}$.
I pocket of hops
$=1 \frac{3}{4} \mathrm{cwt}$. (abt.)
Brickwork in lime mortar $=100 \mathrm{lbs}$. per ft. cube.

," ,, cement	$=110$	"	"
Concrete $=112$			
Reinforced concrete 1:2:4	$=150$	"	,"
Gypsum	$=140$,	,
Chalk lime	$=45$	"	"
Masonry	$=140$		"
River sand	$=118$,	",
Thames,	$=103$	"	,
Pit ,	$=100$,"	"
Portland cement	$=90$,	

I ton of Portland cement $=$ г sacks of 2 cwt . each.
54 cubic feet $=1$ double load.
A wheelbarrow contains 2 ft .9 ins . or $\frac{1}{10}$ yd. cube.
A small earth waggon holds $\mathrm{I}_{2} \frac{1}{2}$ yds. cube.
A large
A run is 22 yards.

A rod of reduced brickwork $=272 \mathrm{ft}$. supl. $1 \frac{1}{2}$ bk. thick and is 306 ft . cube or $1 \mathrm{I} \frac{1}{3}$ yards cube. 500 bricks $=1$ cartload.
A rod of brickwork weighs about 13 tons.
Plain tiles laid to $3 \frac{1}{2}$ gauge require 700 tiles and weigh $14 \frac{1}{2} \mathrm{cwt}$. Battens are $7^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{\prime \prime}$ and $7^{\prime \prime} \times 3^{\prime \prime}$
Deals are $9^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ and $9^{\prime \prime} \times 3^{\prime \prime}$
Planks are $I I^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}$ and $I I^{\prime \prime} \times 3^{\prime \prime}$ I20 deals $=\mathrm{I}$ hundred.
50 feet cube squared timber $=1$ load.
600 feet sup. of 1 board $=1$,
The waste in sawing timber $=\frac{1}{10}$ th.
Roof covered with lead weighs 7
zinc

Diagrams for ascertaining the cost of stone, sand and cement per cube yard of concrete for various mixtures.

Directions: Follow the horizontal line corresponding to the cost of stone

 or sand per cube yard, until it intersects the heavy line corresponding to the proportions in which the materials are to be mixed. The figure at the end of the vertical line intersecting this point is the cost of stone or sand per cube yard of well-rammed concrete.
FIG. 205.

Follow the horizontal line corresponding to the cost of cement per ton, until it intersects the heavy line corresponding to the proportions in which the materials are to be mixed. The figure at the end of the vertical line intersecting this point is the cost of cement per cube yard of well-rammed concrete.

The foregoing diagrams have been based on 1.40 cube yards of dry materials being required to make 1 cube yard of wellrammed concrete. These figures have been arrived at after numerous experiments.

Table of Logs, Squares and Cubes, etc.

n	- n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	n
1	1	1	1,0000	1,0000	000,000	3,142	0,78 54	I
2	4	8	1,4142	1,2599	500,000	6,283	3,14 16	2
3	9	27	1,7321	I,4422	333,333	9,425	7,06 86	3
4	16	64	2,0000	I, 5874	250,000	12,566	12,56 64	4
5	25	125	2,2361	1,7100	200,000	${ }^{1} 5,708$	19,63 50	5
6	36	216	2,4495	1,8171	166,667	18,850	28,27 43	6
7	49	343	2,6458	1,9129	142,857	21,991	38,48 45	7
8	64	512	2,8284	2,0000	125,000	25, 133	50,26 55	8
9	81	729	3,0000	2,0801	III,III	28,274	63,61 73	9
IO	I 00	1000	3,1623	2,1544	100,000	31,416	78,53 98	IO
II	121	1331	3,3166	2,2240	90,9091	34,558	95,03 32	1 I
12	1 44	1 728	3,4641	2,2894	83,3333	37,699	1 13,097	12
13	r 69	2197	3,6056	2,3513	76,9231	40,84I	I 32,73 2	13
$=4$	x 96	2744	3,7417	2,4101	71,4286	43,982	I 53,93 8	14
15	225	3375	3,8730	2,4662	66,6667	47,124	1 76,71 5	${ }_{5} 5$
16	256	4096	4,0000	2,5198	62,5000	50,265	2 01,06 2	16
17	289	4913	4,123I	2,5713	58,8235	53,407	2 26,98 ○	17
18	324	5832	4,2426	2,6207	55,5556	56,549	$254,469$	18
19	361	6859	4,3589	2,6684	52,6316	56,690	$283,529$	9
20	400	8000	4,4721	2,7144	50,0000	62,832	314,159	20
21	44 I	9 261	4,5826	2,7589	47,6190	65,973	346,36 I	21
22	484	10 648	4,6904	2,8020	45,4545	69,115	380,133	22
23	529	12167	4,7958	2,8439	43,4783	72,257	4 15,476	23
24	576	13824	4,8990	2,8845	41,6667	75,398	452,389	24
25	625	15625	5,0000	2,9240	40,0000	78,540	490,874	25
26	676	17576	5,0990	2,9625	38,46I5	81,681	530,929	26.
27	729	19683	5,1962	3,0000	37,0370	84,823	572,555	27
28	784	21952	5,2915	3,0366	35,7143	87,965	615,752	28
29	84 I	24389	5,3852	3,0723	34,4828	91,106	660,52 0	29
30	900	27000	5,4772	3,1072	33,3333	94,248	706,85 8	30
31	961	29791	5,5678	3,14I4	32,2581	97,389	754,768	3 I
32	10 24	32768	5,6569	3,1748	31,2500	$100,531$	$804,248$	32
33	ro 89	35937	5,7446	3,2075	30,3030	103,673	855,299	33
34	Ir 56	39304	5,8310	3,2396	29,4118	ro6,814	907,920	34
35	1225	42875	5,9161	3,27II	28,5714	109,956	962,113	35
36	1296	46656	6,0000	3,3019	27,7778	113,097	10 17,88	36
37	ェ3 69	50653	6,0828	3,3322	27,0270	116,239	10 75,21	37
38	1444	54872	6,1644	$3,3620$	26,3158	119,381	II 34, 11	38
39	1521	59319	6,2450	3,3912	25,6410	122,522	I1 94,59	39
40	1600	64000	6,3246	3,4200	25,0000	125,66	1256,64	40
41	1681	68921	6,4031	3,4482	24,3902	128,81	I3 20,25	41
42	1764	74088	6,4807	3,4760	23,8095	131,95	I3 85,44	42
43	1849	79507	6,5574	3,5034	23,2558	135,09	1452,20	43
44	1936	85184	6,6332	3,5303	22,7273	138,23	15 20,53	44
45	2025	91125	6,7082	3,5569	22,2222	141,37	r 5 90,43	45
46	2116	97336	6,7823	3,5830	21,7391	144,51	16 61,90	46
47	2209	103 823	6,8557	3,6088	21,2766	147,65	1734,94	47
48	2304	110592	6,9282	3,6342	20,8333	150,80	18 09,56	48
49	24 OI	117649	7,0000	3,6593	20,4082	153,94	$\underline{1885,74}$	49
50	2500	125000	7,0711	3,6840	20,0000	${ }^{157,08}$	19 63,50	50

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	πn	$\frac{\pi n^{2}}{4}$	n
50	2500	125000	7,0711	3,6840	20,0000	157,08	19 63,50	50
51	26 or	132651	7,1414	3,7084	19,6078	160,22	2042,82	51
52	2704	140608	7,2111	3,7325	19,2308	163,36	21 23,72	52
5.3	2809	148877	7,2801	3.7563	18,8679	166,50	2206,18	53
54	2916	${ }^{1} 57464$	7,3485	3,7798	18,5185	169,65	22 90,22	54
55	3025	166375	7,4162	3,8030	18,1818	172,79	23 75,83	55
56	3136	175616	7,4833	3,8259	17,8571	175,93	24 63,01	56
57	3249	185193	7,5498	3,8485	17,5439	179,07	25 51,76	57
58	3364	195112	7,6158	3,8709	17,2414	182,21	26 42,08	58
59	3481	205379	7,6811	3,8930	16,9492	185,35	27 33,97	59
60	3600	216000	7,7460	3,9149	16,6667	188,50	28 27,43	60
61	3721	226981	7,8102	3,9365	16,3934	191,64	29 22,47	61
62	3844	238328	7,8740	3,9579	16,1290	194,78	3019,07	62
63	3969	250047	7,9373	3,9791	15,8730	197,92	3117,25	63
64	4096	262144	8,0000	4,0000	15,6250	201,06	32 16,99	64
65	4225	274625	8,0623	4,0207	$\mathrm{I}_{5,3846}$	204,20	3318,31	65
66	4356	287496	8,1240	4,0412	15,1515	207,35	34 21,19	66
67	4489	300763	8,18.54	4,0615	14,9254	210,49	35 25,65	67
68	4624	314432	8,2462	4,0817	14,7059	213,63	36 31,68	68
69	47 61	328509	8,3066	4,1016	14,4928	216,77	37 39,28	69
70	4900	343000	8,3666	4,1213	14,2857	219,91	38 48,45	70
71	5041	357911	8,4261	4,1408	14,0845	223,05	39 59,19	71
72	5184	373248	8,4853	4,1602	13,8889	226,19	40 71,50	72
73	5329	389017	8,5440	4,1793	13,6986	229,34	4185,39	73
74	5476	405224	8,6023	4,1983	13,5135	232,48	43 00,84	74
75	5625	421875	8,6603	4,2172	13,3333	235,62	44 17,86	75
76	5776	438976	8,7178	4,2358	13,1579	238,76	45 36,46	76
77	5929	456533	8,7750	4,2543	12,9870	241,90	4656,63	77
78	6084	474552	8,8318	4,2727	12,8205	245,04	47 78,36	78
79	6241	493039	8,8882	4,2908	12,6582	248,19	49 01,67	79
80	6400	512000	8,9443	4,3089	12,5000	251,33	50 26,55	80
81	6561	531441	9,0000	4,3267	12,3457	254,47	5153,00	81
82	6724	551368	9,0554	4,3445	12,1951	257,61	52 81,02	82
83	6889	571787	0,1104	$4,3621$	12,0482	260,75	54 10,61	83
84	7056	592704	9,1652	4,3795	II,9048	263,89	5541,77	84
85	7225	614125	9,2195	$4,3968$	$\text { II, } 7647$	267,04	5674,50	85
86	7396	636056	9,2736	$4,4140$	II,6279	270,18	$58 \text { o8,80 }$	86
87	7569	658503	$9,3274$	$4,4310$	$\text { 11 }, 4943$	273,32	59 44,68	87 88
88 89	7744 7921	681472 704969	$9,3808$	$4,4480$	11,3636	276,46	6082,12	88 89
89	7921	704969	9,4340	4,4647	II,2360	279,60	62 21,14	89
90	8100	729000	9,4868	4,4814	II, IIII	282,74	63 61,73	90
91	828 s	753571	9,5394	4,4979	10,9890	285,88	6503,88	91
92	8464	778688	9,5917	4,5144	10,8696	289,03	66 47,61	92
93	8649	804357	9,6437	4,5307	10,7527	292,17	67 92,91	93
94	8836	830584	9,6954	4,5468	$10,6383$	295,31	69 39,78	94
95 96	9025	857375	9,7468	4,5629	10,5263	298,45	70 88,22	95 96
96	9216	884736	9,7980	4,5789	$10,4167$	301, 59	72 38,23	96
97 98	9409	912673	9,8489	4,5947	10,3093	304,73	73 89,81	97 98
98 99	9604	941192	9,8995	4,6104	10,2041	307,88	75 42,96	98
IOO	1 0000	970299 1000000	$\frac{9,9499}{10,0000}$	$\frac{4,526 x}{4,6416}$	$\frac{10,1010}{10,0000}$	$\frac{311,02}{314,16}$	$\frac{7697,69}{785398}$	IOO

n	n^{2}	n^{3}	\sqrt{n}		$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	n
100	10000	1000000	10,0000	4,6416	10,0000	314,16	\%	
	10201	1030301	ro,	4	9	7,30	80 11,85	
					9,80392	320,44		
	1	,		4,687		323,5	8332,29	103
104	108	I 124864	ıо,	4,7027	9,61538	326,73	84 94,87	104
	1	1157	10,	4,7177	9,52		86 59,or	105
	11	I	10,2956	4,7326	9,43396	333,	88 24,73	
	11	25043	10,3441	4,747	9,345	336,	8992,02	7
		59712	10,3923			339,29	91 60,88	
109	11	I 295029	10,4403	4.7769	9.1743	342,43	93 31,32	09
110	12100	1331000	10,488I	4.7914	9,09	345, 5^{8}	9503,32	10
		1 367631		4,8059				
	1	I 404		4,820	8,92857	351	98 52,03	
13	I 2769	I 442897	10,6301	4,834	8,84956	355,	I 0028,7	113
4	I 2996	I 481544	10,6	4,848	8,77193	358	10207,0	4
115	1 3225	I 520875	10,7	4,862	8,69565	361	86,9	115
	13	I 560896	10,7	4,877	8,62	364	, 3	
117	I 3689	1601613		4,89	8,5	367,5	51,3	17
		r 643032	10,	4,9	8,4	370,7	35,9	
19	14	1 685159				373,85	22,	19
12	1	1728000	10,9545	4,9324	8,33333	376,99.	I 1309,7	120
	I		II,	4,9461	8,26446	38	,0	
	I 4884	r 815848	II,0454	4,9597	8, 19	383,27	I 1689,9	
123	15129	I 860867	11,0905	4.97	8,130	386,	I 1882,3	23
124	r 5376	I 906624	II,1355	4,98	8,06	389.		
125	I 5625	1953125	11,1803	5,00		392,		
126		2000376	11,2250	5,01	7,9365	395,		
127	1 6129	2048383	II,2	5,02	7,87402	398	67,7	27
128		2097152	II, 3		7,81250	402,12	68	
129	I 664 I	2	11,3578	5,0528	7,7519	405,27	I 3069,8	
I30	1 6900	2197	11,4018	5,0658	7,69231	408,4I	3273	130
13	1716	2248			7,6	4 II		3 I
132	1 7424	2299968	II,4891	5,09	7,5757	414,69	I 3684,8	132
133	1 7689	2352637	II, 5326	5,1045	7,5188	417,83	I 3892,9	133
134	I 7956	2406104	II, 5758	5,1172	7,46269	420,97	I 41 02,6	134
135	I 8225	2460375	II,6190	5,1299	7,4074I	424,12	I 4313.9	135
136	I 8496	2515456	ir,6619	5,1426	7,35294	427,26	I 45 26,7	
137	I 8769	2571353	11,7047	5,15	7,29927	430,40	I $474 \mathrm{tr,I}$	37
138	I 9044	2628072	II,7	5,16	7,24638		I 49 57, 1	38
139	19321	2685619	11,7898		7,19424		$1{ }^{1} 5174,7$	39
I40	I 9600	2744000	II,	25	7,1	439,8	I 5393.8	140
141	1 9881	2803	11,8743	5,2048		442,96	I 5614.5	141
142	2 OI 64	2863288	II,9164	5,2171	7,04225	446, ir	I 5836,8	142
143	20449	2924207	Ir.9583	5,2293	6,99301	449,25	I 6060,6	143
144	20736	2985984	12,0000	5,2415	6,94444	452,39	I 6286,0	144
+46	21025	3048625	12,0416	5,2536	6,89655	455,53	I 6513,0	145
146	21316	3112136 3176523	12,0830 12,1244	5,2656 5,2776	6,84932 6,80272	458,67	I $674 \mathrm{xI}, 5$	146
147 148	$\begin{array}{lllll}2 & 16 & 09 \\ 2 & 19 & 04\end{array}$	3176523			6,8027 6,7567	461,8	I 6971 7,7	
149	222 OI	3 307949	12,206	5,3015	6,71141	468,10	1 74 36,6	I49
150	22500	3375000	12,247	5,313	6,66667	471,24	17671.5	50

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$		$\frac{\pi}{4} n^{2}$	n
I50	22500	3375000	12,2474	5,3133	6,66667	471,24	1 7671,5	0
15 I	228 O1	3442951	12,2882	5,3251	6,62252	474,38	17907,9	151
152	23104	3511808	12,3288	5,3368	6,57895	477,52	I 81 45.8	152
${ }^{5} 53$	23409	$35^{81} 577$	12,3693	5,3485	6,53595	480,66	I 8385,4	I53
154	23716	3652264	12,4097	5,3601	6,4935	483,81	I 8626.5	154
	24025	3723875	12,4499	5,3717	6,45161	486,95	18869,2	155
15	24336	3796416	12,4900	5,3832	6,41026	490,09	1 9113.4	ז56
	24649	3869893	12,5300	5,3947	6,36943	493,23	I 9359,3	${ }_{5} 57$
158	24964	3944312	12,5698	5,4061	6,329I	496,37	I 9606,7	158
15	25^{288}	4 Or9 679	12,6095	5,4175	6.28931	499,51	r 9855,7	I 59
16	25600	4096000	12,6491	5,4288	6,25000	502,65	20106.2	160
161	25921	4173 281	12,6886	5,440	6,21118	505,80	$2035^{8,3}$	161
162	26244	4251528	12,7279	5,4514	6,17284	508,94	20612,0	62
163	26569	4330747	12,7671	5,4626	6,13497	512,08	20867,2	163
164	26896	4410944	12,8062	5,4737	6,09756	515,22	21124,1	164
	27225	4492125	12,8452	5.4848	6,06061	518,36	21382,5	165
166	27556	4574296	12,8841	5,4959	6,02410	521,50	21642,4	66
16	27889	4657463	12,9228	5,5069	5,98802	524,65	21904,0	6
168	28224	4741632	12,9615	5,5178	5,95238	527,79	22167.1	68
169	28561	4826809	13,0000	5,5288	5,91716	530,93	$2243 \mathrm{3}, 8$	69
I'70	28900	4913000	13,0384	5,5397	5,88235	534,07	2,26 98,0	I'70
,	2924 r	5000211	13,0767	5,5505	5,84795	537,21	22965.8	171
172	29584	5088448	13,1149	5,5613	5,81395	540,35	23235,2	172
173	29929	5177717	13.1529	5,5721	5,78035	543,50	23506,2	173
174	30276	5268024	13,1909	5,5828	5,747x3	546,64	$2377^{8,7}$	174
175	30625	5359375	13,2288	5,5934	5,71429	549,78	240 52,8	175
176	30976	5451776	13,2665	5,6041	5,68182	552,92	243 28,5	176
177	31329	5545233	13,3041	5,6147	5,64972	556,06	24605,7	177
178	31684	5639752	13,3417	5,6252	5,61798	559,20	24884,6	178
179	32041	5735339	13,3791	5,6357	5,58659	562,35	25164.9	79
180	32400	5832000	13,4164	5,6462	5,55556	565,49	254 46,9	80
181	327 61	5929741	${ }^{1} 3,4536$	5,6567	5,52486	568,63	25730,4	181
182	33124	6028568	13,4907	5,6671	5,49451	571,77	$260 \times 5,5$	2
183	33489	6128487	13,5277	56774	5,46448	574,91	263 02,2	3
184	33856	6229504	13,5647	5,6877	5,43478	578,05	26590,4	184
8	34225	633 r 625	13,6015	5,6980	5,40541	58x,19	26880,3	
186	34596	6434856	13,6382	5,7083	5,37634	584,34	27171.6	86
187	34969	6539203	13,6748	5,7185	5,34759	587,48	274 64,6	8
188	35344	6644672	13,7113	5,7287	5,31915	590,62	277 59,1	188
189	35721	6751269	13,7477	5.7388	5,29101	593,76	280 55,2	189
190	36100	68.59000	13,7840	5,7489	5,26316	596,90	28352,9	190
191	3648 x	6967871	13,8203	5.7590	5,23560	600,04	$28652, \mathrm{I}$	191
192	36864	7077888	13,8564	5,7690	5,20833	603,19	28952,9	192
193	37249	7189057	13,8924	5,7790	5,18135	606,33	29255,3	193
194	37636	7301384	13,9284	5,7890	5,15464	609,47	29559,2	194
195	38025	7414875	13,9642	5,7989	5,12821	6r2,61	29864,8	195
196	38416	7529536	14,0000	5,80	5,10204	6r 5,75	3 or 71,9	196
197	388 cg 3	7645373 7762392	14,0357 14,0712	5,8186 5,8285 5,83	5,07614	618,89 622,04	30480,5 30790,7	197
198	39204 30601	7762392 7880599	14,0712 14,1067		5,05051	622,04 625,18	30790,7 3 II 02,6	198 199
200	$\frac{39601}{40000}$	7880599 8000000	14, 1	5,8	5,02513	625,18	311	0

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	πn	$\frac{\pi n^{2}}{4}$	n
200	40000	8000000	14,1421	5,8480	5,00000	628,32	31415,9	200
	404 OI	8120601	14, 177	5,8578	4,97512	631,46	317 30,9	
202	40804	8242408	14,2127	5,8675	4,95050	634,60	32047,4	202
203	41209	8365427	14,2478	5,8771	4,92611	637,74	323 65,5	203
204	41616	8489664	14,2829	5,8868	4,90196	640,88	32685,1	204
205	22025	8615125	14,3178	5,8964	4,87805	644,03	330 06,4	205
206	42436	8741816	14,3527	5,9059	4,85437	647,17	333 29,2	206
207	42849	8869743	14,3875	5,9155	4,83092	650,31	33653,5	207
208	43246	8998912	14,4222	5,9250	4,80769	653,45	339 79,	208
209	43681	9129329	14,4568	5,9345	4,78469	656,59	34307,0	209
210	44100	9261000	14,4914	5,9439	4,76190	659,73	$34^{6} 36,1$	210
211	445	9393931	14,5258	5,9533	4,73934	662,88	34966,7	211
21	44944	9528128	14,5602	5,9627	4,71698	666,02	352 98,9	212
213	45369	9663597	14,5945	5,9721	4,69484	669,16	35632,7	213
214	45796	9800344	14,6287	5,9814	4,67290	672,30	35968,1	214
215	46225	9938375	14,6629	5,9907	4,65ı16	675,44	363 05,0	215
216	46656	10077696	14,6969	6,0000	4,62963	678,58	36643,5	216
217	47089	10218313	14,7309	6,0092	4,60829	681,73	36983,6	217
218	47524	10 360232	14,7648	6,0185	4,58716	684,87	373253	218
219	47961	10503459	14,7986	6,0277	4,56621	688,or	37668,5	219
220	48400	10648000	14,8324	6,0368	4,54545	691,15	38013,3	220
221	48841	10 793 861	14,866	16,0459	4,52489	694,29	38359,6	221
22	49284	10 941 048	14,8997	6,0550	4,50450	697,43	387 07,6	222
223	49729	II 089567	14,9332	6,0641	4,48430	700,58	390 57, I	223
224	5 Or 76	II 239424	14,9666	6,0732	4,46429	703,72	394 08,1	224
225	50625	II 390625	15,0000	6,0822	4,44444	706,86	39760,8	225
226	51076	II 543176	15,0333	6,0912	4,42478	710,00	4 O1 15,0	226
227	. 1529	II 697083	15,0665	6,1002	4,40529	713,14	40470,8	227
228	51984	In 852352	1.5,0997	6,1091	4,38596	716,28	40828,1	228
229	52441	12008989	15,1327	16,1180	4,36681	719,42	41187,1	229
230	52900	12167000	15,1658	6,1269	4,34783	722,57	41547,6	230
231	533 6I	12326391	15,1987	6,1358	4,32900	725,71	41909,6	231
232	$53^{8} 24$	12487168	I5,2315	6,1446	4,31034	728,85	42273.3	232
233	54289	12649337	15,2643	6,1534	4,29185	731,99	42638,5	233
234	54756	12812904	15,2971	6,1622	4,27350	735, 13	430 05,3	234
235	55225	12977875	15,3297	6,1710	4,25532	738,27	43373,6	235
236	55696	r3 144 256	15,3623	6,1797	4,23729	741,42	43743,5	236
237	56169	13312053	15,3948	6, 1885	4,21941	744,56	44115,0	237
238	56644	13481272	15,4272	6,1972	4,20168	747,70	44488 r	238
239	57121	13651919	15,4596	6,2058	4,18410	750,84	44862,7	239
240	57600	I3 824000	15,4919	6,2145	4,16667	753,98	45236,9	240
241	5808 I	13997521	15,5242	6,2231	4,14938	757,12	$456 \mathrm{x} 6,7$	241
242	58564	14172488	15,5563	6,2317	4,13223	760,27	459 96,	242
243	59049	14348907	15,5885	6,2403	4, 11523	763,41	463 77,0	243
244	59536	14526784	15,6205	6,2488	4,09836	766,55	46759,5	244
245	60025 60516	14706125	15,6525	6,2573	4,08163	769,69	47143,5	245
246	6 6 6 10516	14886936 15069223	I5,6844 I 5,7162	6,2658	4,06504	772,83	475 29,2	246
247	61009 6 I 504	15069223 15252992	15,7162	6,2743	4,04858	775,97	479 16,4	247
248	6 I5 O4	15252992	15,7480	6,2828	4,03226	779,11	48305.1	248
250	6	15438249	15,7797	6,2912	4,01606	782,26	48695,5	249
	625	15625	15,8	6,299	4,00000	785,40	49087,4	

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	π	$\frac{\pi n^{2}}{4}$	n
2	62500	15625000	15,8114	6,2996	4,00000	785,40	49087,4	250
	630 OI	15813251	I 5,8430	6,3080	3,98406	788,54	49480,9	
252	63504	16003008	I 5.8745	6,3164	3,96825	791,68	49875,9	252
253	64009	16194277	15,9060	6,3247	3,95257	794,82	50272,6	253
254	64516	16387064	15,9374	6,3330	3,93701	797,96	50670,7	254
255	65025	16581375	1 5,9687	6,3413	3,92157	801,11	51070,5	255
256	65536	16777216	16,0000	6,3496	3,90625	804,25	51471,9	256
257	66049	16974593	16,0312	6,3579	3,89105	807,39	51874,8	257
258	66564	17173512	16,0624	6,3661			522 79,2	258
259	6708 r	17373979	16,0935	6,3743	3,86100	813,67	52685,3	259
260	67600	175	16,1245	6,3825	3,846I5	816,81	5,30 92,9	260
	68121	1777			3,83142	819,96	535 02,1	26 I
26	686	17984728	16,1864	6,3988	3,81679	823,10	53912,9	262
263	69169	18191447	16,2173	6,4070	3,80228	826,24	543 25,2	263
264	69696	18399744	16,2481	6,4151	3,78788	829,38	547 39, 1	264
	70225	18609625	16,2788	6,4232	3,77358	832,52	55154,6	265
266	70756	18821096	16,3095	6,4312	3,75940	835,66	55571,6	266
	71289	19034163	16,3401	6,4393	3,74532	838,81	55990,2	267
	71824	19248832	16,3707	6,4473	3,73134	841,95	56410,4	268
	723	19465109	16,4012	6,4553	3,71747	845,09	56832,2	269
2	729	19683 coo	16,4317	6,4633	3,70370	848,23	$57255: 5$	0
271	73	19902511	16,4621	6,4713	3,690	851,37	57680,4	271
272	73984	20123648	16,4924	6,4792	3,67647	854,51	5 81 06,9	272
273	74529	20346417	16,5227	6,4872	3,66300	857,65	58534,9	273
274	75076	20570824	16,5529	6,4951	3,64964	860,80	58964,6	274
275	75625	20796875	16,583I	6,5030	3,63636	863,94	593 95,7	275
276	76176	21024576	16,6132	6,5108	3.62319	867,08	59828,5	276
277	76729	21253933	16,6433	6,5187	3,6iori	870,22	60262,8	277
278	77284	21484952	13,6733	$6,5265$	3,59712	873,36	606 98,7	278
279	77841	21717639	16,7033	6,5343	3,58423	876,50	6 II 36,2	279
28	78400	21952000	16,7332	6,5421	3,57143	879,65	61575,2	0
	78961	22188041	16,7631	6,5499	3,55872	882,79	62015,8	281
282	79524	22425768	16,7929	6,5577	3,54610	885,93	624 58,0	282
283	80089	22665187	16,8226	6,5654	3.53357	889,07	629 OI, 8	283
284	80656	22906304	16,8523	6,573I	3,52113	892,21	633 47,	284
	81225	23149125	16,8819	6,5808	3,50877	895,35	637 94,0	285
	81796	23393656	169115	6,5885	3,49650	898,50	642 42,4	286
287	82369	23639903	16,941I	6,5962	3,48432	901,64	$64692,5$	287
288	82944 8254	23887872	16,9706	6,6039	3,47222	904,78	65144,1	288
	83521	24137569	17,0000	6,6115	3,46021	907,92	65597,2	9
290	84100	24389000	17,0294	6,6191	3,44828	911,06	66052,0	290
291	846 81	24642171		6,6267	3,43643	914,2	66508,3	291
292	85264	24897088	17,0880	6,6343	3,42466	917,35	669 66,2	292
293	85849	25153757	17,1172	6,6419	3,41297	920,49	674 25,6	293
294	86436	25412184	17,1464	6,6494	3,40136	923,63	67886,7	294
295	87025	25672375	17,1756	6,6569	3.38983	926,77	68349,3	295
296	87616	25934336	17,2047	6.6644	$3,37838$	929,91	688 13,4	296
297	88209	26198073	17,2337	6,6719	3,36700	933,05	69279,2	297
298	888 04	26463592	17,2627	6,6794	3,35570	936,19	69746,5	298
299	894 OI	26730899	17,2916	6,6869	3,34448	939,34	70215,4	299
300	90000	27000000	17,3205	6,6943	3,33333	942,48	$7068.5,8$	300

n	n^{2}	n^{3}	n	$\sqrt[3]{n}$	$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	n
300	900	27000	17	6,6943	3,33333	942,4	70685,8	0
301	906	27270	17,3494	6,7018	3,32226	945,62	7 II 57,9	301
302	91204	27543608	17,378ı	6,7092	3,31126	948,76	71631,5	302
3	91809	27818127	17,4069	6,7166	3,30033	951,90	72106,6	303
304	924	28094464	17,4356	6,7240	3,28947	955,04	$72583 ; 4$	304
305	93025		17,4642	6,7313	3,27869			305
3	93636	28652616	17,4929	6,7387	3,26797	961,33	735 4r,5	306
3	94249	28934443	17,5214	6,7460	3,25733	964,47	740 23,0	307
308	94864	29218112	17,5499					308
309	9548 I	29503629	17,5784		3,23625	970,75	749 90,6	9
310	961	29791000	17,6068	6,7679	3,22581	97	75476,8	310
-3	96	30080231			3,21543		75964,5	I
312	973	30371328	17,6635	6,7824	3,20513	980, 18	764 53,8	312
313	9796	30664297		6,7897	3,19489		76944,7	313
314	985	30959144			3,18471	986,46	774 37,	314
	99225	31255875	17,7482	6,8041	3,17460	989,60	7793 x , 1	315
316	99856	31554496	17,7764	6,8113	3, 16456	992,74	784 26,7	316
317	10 0489	3185.5 Or3	17,8045		3, I5457	995,88	789 23,9	317
3	10 II 24	32157432		6,8256	3,14465	999,03	794 22,6	318
319	101761	32461759	17,8606		3,13480	1002,2	799 22,9	319
3	1024	32768000	17	6,8399	3,12500	1005,3	80424,8	320
321	10	33					80928,2	321
322	Io 36		17,9444		3,10559	10	8 I4 33, 2	322
323	IO	33698267			3,09598	101	8 I9 39,8	323
324	104976	34 O12 224	18,0	6,8683	3,08642	1017,9	824 48,0	324
32	IO 5625		18,0		3,07692	1021,0	82957,7	325
3	10 6276		18,0555	6,8824		1024	834	326
327	$\text { 10 } 6929$	34965783	18,083I	6,8894	3,05810	1027,	839 8r, 8	327
328	10 7584	35287552	18,11	6,8964	3,04878	1030, 4	844 96,3	328
329	10 8241	35611289	18,1384	6,9034	3,03951	1033,6	85012,3	329
330	Io 89	35937000	18,165	6,9104	3,03030	103	85529,9	30
331	1095	36264691			3,0		86049,0	331
332	1102	36594368	18,2209	6,9244	3,01205	1043	86569,7	332
333	II 08	36926037	18,2483	$6,9313$	3,00300	1046	870 92,0	333
334	II 15 56	37259704	18,2757	$6,9382$	2,99401	1049,3	87615,9	334
33	II 2225	37595375	18,3030	6,		1052,4	$88 \mathrm{rr} 4 \mathrm{r}, 3$	335
33	II 28	37933056	18,	6,	2,97619	1055,6	88668,3	336
337	II 3569	38272753				1058,7	89196	337
33	II 4244	38614472	18,3848	6,9658		1061,9	897 27,0	338
339	II 49 2I	38958219	18,4120	6,9727	2,94985	1065,0	90258,7	339
340	II 56	39304000	18,4391	6,9795	2,	1068, 1	90792,0	340
341	II 62	39651821				1071	91326,9	341
342	II 6964	40 001 688	18,4932	6,9932	2,92398		91863,3	342
343	II 7649	40353607	18,5203	7,0000		1077	924 O1,3	343
344	II 8336	40707584		7,0068	2,90698	1080,7	929 40,9	344
3	II 9025	41063625	18,5742	7,0136	2,89855	1083,8	934 82,0	345
346	II 9716	41421736	18,601	7,0203	2,89017	1087,0	940 24,7	34
347	120409	41 781 923	18,627	7,0271	2,88184	1090	94569,0	347
3	121104	42144192	18,6548	7,0338	2,87356	1093,3	951 14,9	348
349	1218 OI	42508549	18,6815	7,0406	2,86533	1096,4	95662,3	349
35	12250	42875000	18,7083	7,0473	2,85714	1099,6	962 11,3	350

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	πn	$\frac{\pi n^{2}}{4}$	n
	122500	42875	18,7083		2,	1099,6	962 II, 3	
	12			7,		1102,7		351
352	1239	43614208			2,84091	1105, 8	973 14,0	35
35	1246	43986977		7,0674		11		353
354	1253	44361864	18,8149	7,0740	2,82486	11	98423,0	354
		44738875		7,0807	2,81690	III5,3	98979,8	355
	126736	45118016		7,0873	2,80899		99538,2	35
357	127449	45499293		7,0940	2,80112	I121,5	1000	357
5			18,9209	7,1006	2,79330	1124,7	10 0660	358
	1288	46268279		7,1072		1127,8	101223	35
	12	46656000		7,1138	2,77778	II31,0	10 1788	60
	13	47						361
	1310	47437928						362
	13 17	47832147		7,1335	2,75482	11	10 3491	363
364	I3 24	48228544		7,1400	2,74725	II	104062	364
	I3 3225	48627125			2,7	-149,	5	
				7,		I 149,	9	36
	I3 46	49430863	19,1572	7,1596	2,72480	115	5	367
36	135424				2,71	11		
	13	50243409		7.1726	2,	. 1 I 59,2	106941	369
	13		19	7.	2	1162,4	IO 75	
371	137	51064	19,2					371
372	1383	51478848	19,2873		2,68817	11		372
373	139129	51895117		7,1984	2,68097	11		37
3	I3 98	52313624	19,33	7,2048			10 9858	374
375	140625	52734375			2,66667	1178,		375
376	141376			7,2177		II8I, 2	II IO 36	37
377	142129	53582633				1184	II 1628	377
378	142884	$54 \text { OIO } 152$				1187,5	II 2221	37
92	1436	54439939		7,2	2,63852	1190,7	II 2815	
	14	54872000	19,4936		2,63158	1193	II 34	
38								38
38	145924	55742968	19,5448			1200	$1)$	38
	146689		19,5704					383
	147456	56623104	19,5959	7,2685	2,60417	1206,4		384
	148225	57066625		7,2748		1209,5		88
386	148996	57512456	19,6469	7,2811				386
	149769				2,58398	1215,8		387
388	150544	58411072	19,6977	7,2936		1218 ,	II 8237	38
389	151321	58863869	19,7231	7,2999	2,57069	1222, 1	II 8847	389
39	152 L	59319	19	7,3061	256410	1225	119459	390
3	15		19,7737		2,55754	1228,4		391
392	153664	60236288	19,7990	7,	2,55102		1206	392
393	I5 4449	60698457	I9, 82	7,3248	2,54453	123	1213	393
94	155236	6ı 162984	19,8494	7,3310	2,53807	1237,8	121922	394
	156025	6ı 629875		7,3372	2,53165	1240,9	122542	395
396	156816	62099136	19,8997	7,3434	2,52525	1244, 1	123163	396
397	157609	62570773	19,9249	7,3496	2,51889	1247,2	123786	397
39	158404	63044792	19,9499	7,3558	2,51256	1250,4	124410	39
	1592 O1	63521199	19,9750	7,3619	2,50627	1253.5	125036	
400	160000	64000000	20,0000	7,368	2,50000	1256,6	125664	

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	πn	$\frac{\pi n^{2}}{4}$	n
40	16	64000000	20,0000	7,3	2,50000	12	25664	00
401	1608	64	,	7,3742	2,49377		126293	40I
402	16 16 04		20.	7,3803	2,48756	1262,9	126923	402
403	162409	65450827	20,0749	7,3864	2,48139	1266, 1	127556	403
404	163216	65939264	20,0998	7,3925	2,47525	1269,2	128190	404
	164025	66430125	20,1246	7,3986	2,46914	1272,3	128825	405
406	16 4836	66923416	20,	7,4047	2,46305	1275,5	129462	406
407	165649	67419 143	20, 1742	7,4108	2,45700	1278,6	12 OI 00	407
408	16 6464	67917312	20,	7,4169	2,45098	128x,8	120741	408
409	16728 x	68417929	20,22	7,4229	2,44499	1284,	121382	409
410	16	68921000	202		2	1288,	132025	410
4	1689 mr	69426 53I	20,273	0	2,43309	1291,2	132670	411
412	169744	69934528	20,2978	7,4410	2,42718	129	133317	412
4	1705	70444997	20,3224	7,44	2,42131	1297,	133965	413
414	171396	70957944	20,3	7,453	2,41546	1300,	I3 4614	414
	172225	71 473375	20,3	7,4590	2,40964	1303,	135265	415
4	173056	71991296	20,3961	7,4650	2,40385	1306,9	135918	416
417	173889	72 511 713	20	7,4710	2,39808	I3IO,0	13 6572	417
	174724	73034632	20	7.4770	2,39234	1313,	137228	418
419	175561	73560059	20,4695	7,4829	2,38663	1316,	137885	9
0	17	74088000	20,4939	7,4889	2,38095	1319	158544	20
421	177	74	20	7,4948	2,37530	I322,6	139205	421
422	178084		20,5	7,5007	2,36967	1325,8		422
423	178929	75686967	20,5670	7,5067	2,36407	1328,9	140531	423
424	179776	76225024	20,5913	7,5126	2,35849	1332,0	14 II 96	424
5	180625	76765625	20,6I55	7,5185	2,35294	133	141863	425
426	181476	77308776	20,6398	7,5244	2,34742	1338	142531	426
427	182329	77854483	20,6640	7,5302	2,34192	1341	1432 Or	427
428	18 3184	78402752	20,6882	7,5361	2,33645	${ }^{1} 344$,		428
429	18404 I	78953589	20,7123	7,5420	2,33100	1347.7	144545	429
430	184900	79507000	20,7364	7	2,	1350,9	145220	30
431	185761	80062991	20,7	37	2,		5896	43I
432	186624	80621568	20,7846	7,5595	2,3148	1357,2	146574	432
433	187489	81 182737	20,8087	7,5654	2,30947	1360,3	147254	433
434	188356	81 746504	20,8327	7,5712	2,30415		147934	434
435	189225	82312875		7,5770	2,29885	1366,6	148617	435
436	190096	82881856	20,8806	7,5828	2,29358	1369,7	1493 OI	436
437	190969	83453453	20,9045	7,5886	2,28833	1 372,9	149987	437
438	19 1844	84027672	20,9284	7,5944	2,283II	1376,0		438
439	192721	84604519	20,9523	7,6001	2,27790	1379	I5 1363	439
440	193600	85 184000	20,9'	7,6059	2,27273	1382,3	152053	440
4	1944 81	85766121	21,0000	7,6117	226757	1385,4	152745	441
442	I9 5364	86350888	21,0238	7,6174	2,26244	1388,6	I5 3439	442
443	196249	86938307	21,0476	7,6232	2,25734	1391,7	I5 4134	443
4	197136	87528384	21,0713	7,6289	2,25225	1394,9	I5 4530	444
	198025	88121125	21,0950	7,6346	2,24719	I 398 ,	155828	445
4	198916	88716536	21,1187	7,6403	2,24215	1401,2	r5 6228	446
7	199809	89314623	21,1424	7,6460	2,23714	1404,3	156930	447
448	200704	89915392	21,1660	7,6517	2,23214	1407, 4	157633	448
9	2016 OI	90518849	21,1896	7,6574	2,22717	1410,6	158337	449
	202500	91125000	21,2132	7,6631	2,22222	1413,7	159043	450

n	n^{2}	n^{3}	\sqrt{n}	$3^{3} n$	$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	
450	20	1.	21,213			1413,7	159043	450
451	203	91733	21,2368				5	5
452	204304	92345408	21,2603		2,21239	1420,0	160460	52
453	205209	92959677	21,2838	7,6801	2,20751	1423, 1	161171	453
454	206116	93576664	21,3073	7,6857	2,20264	1426,3	161883	454
455	207025	94196375	21,3307	7,6914	2,19780	1429,4	162597	455
456	207936	94818816	21,3542			1432,6	163313	
457	208849	95443993	21,3776	7,70		1435,7,	164030	457
458	209764	96071912	21,4009			1438, $\mathbf{8}^{\text {d }}$		
459	210681	96702579	21,4243	7,7	2.17865	1442, 0	165468	459
460	211	97336000	21,4476	7,7194	2,17391	1445, I	166190	
	2125	97972	21,4709			144		461
	213444	986 rr	21,4942	7,7	2,16	1451,4	167639	462
	21436	99252847	21,5174	7,	2,15983	1454,6	168365	,
	215296	99897344	21,5407	7,7	2,15517	1457,7	169093	464
	216225	100 544625	21,563	7,74	2,15054		169823	
	217156	IOI 19469		7,75	2, 14592		170554	466
	2180	101 847563	21,6		2,14133	1467		6
	219024	102503232	21,			1470, 3		46
469	21	103161709			2,	1473,4	172757	
470	220900	103823000	21,67	7,7750	2,12	1476,5	94	470
471	22	104487111	21,7			147	174234	47
472	222784	105154048	21,7			1482	174974	472
473	223729	105823 817	21,748	7,7915	2,1	1486	175	473
474	. 224676	106496424	21,7715	7,79	2,10	1489	176	
475	225625	107171875	21,7945			1492,3	177205	
476		107850176	21,8			1495	177952	
4	227529	108531333	21,			1498		477
	228484	109215352				1501	179451	
	22944 I	109	21,	7,8243		1504,	180203	
48	23	110	21,90	7,8297	2,08333	1508,	180956	80
48	231361	III 284	21,9317			1511,	181711	48 I
	232324	III 980168	21,9545		2,074	1514,2	182467	482
	233289	112678587	21,9773	7,8	2,07039	r 517,4	183225	483
	234256	I13 379	22,			1520,	183984	484
	23	114084	22,			152		485
	236196	114791256			2,05	1526	185508	
	237169	115501	22,			5	186272	
	23 81 44	116214272	22,0907			1533, 1	187038	
489	23	116930	22		2,04499		187805	489
490	24 OI 00	117649	22,135	7,8837	2,04082	39	188574	490
491	2410	I18 37	22,		2,03666	1542,5	189345	491
492	242064	119095	22,	7,8	2,03252	1545	19 O1 17	492
493	243049	119823	22,	7,899	2,	1548	190890	493
494	244036	120553784		7,905	2,	r 551,9	191665	494
495	2450	121287375	22,2486		2,	1555, I	192442	495
496	2460	122023936	22,2	7,9	2,01613	1558,2	193221	496
497	247009	122763473	22,2935	7,921	2,0	15	194000	497
498	248004	123505992	22,31	7,9264	2,00803	1564,5	194782	498
499	2490 OI	124251499	22,3383	7,9317	2,0040	+567,7	195565	
50	250000	12500000	22,3607	7,9370	2,00	1570, 8	196350	

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\ln n$	$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	n
500	250000	125000000	22,3607	7,9370	6,2146I	2,00000	I 570,8	196350	500
501	25 IO OI	125751501	22,3830	7.9423	6,21661	1,99601	1573,9	197136	501
502	252004	126506008	22,4054	7,9476	6,21860	1,99203	1577, 1	197923	502
503	253009	127263527	22,4277	7,9528	6,22059	1,98807	1580,2	198713	503
504	254016	128024064	22,4499	7,9581	6,22258	1,98413	1583,4	199504	504
505	255025	128787625	22,4722	7,9634	6,22456	1,98020	1586,5	200296	505
506	256036	129554216	22,4944	7,9686	6,22654	1,97628	I 589,6	201090	506
507	257049	130323843	22,5167	7,9739	6,22851	1,97239	I 592,8	201886	507
508	258064	${ }^{131} 096512$	22,5389	7,9791	6,23048	1,96850	1 595,9	202683	508
509	25908 I	131872229	22,5610	7,9843	6,23245	1,96464	1599, 1	203482	9
510	26 OI 00	132651000	22,5832	7,9896	6,23441	1,96078	1602,2	204282	0
511	26 II 21	I33 432831	22,6053	7,994 ${ }^{8}$	6,23637	1,95695	1605,4	205084	5 II
512	262144	134 217728	22,6274	8,0000	6,23832	1,95312	1608,5	205887	512
513	263169	135005697	22,6495	8,0052	6,24028	1,94932	1611,6	206692	513
514	264196	135796744	22,6716	8,0104	6,24222	1,94553	1614,8	207499	514
5	265225	136590875	22,6936	8,0156	6,24417	1,94175	16ı7,9	208307	515
5	266256	137388096	22,7156	8,0208	6,246II	1,93798	1621, 1	209117	516
517	267289	138 188 413	22,7376	8,0260	6,24804	1,93424	1624,2	209928	517
5	268324	138 991 832	22,7596	8,03II	6,24998	1,93050	1627,3	210741	518
519	269361	139798359	22,7816	8,0363	6,25190	1,92678	1630,5	21155^{6}	519
	270400	140608000	22,8035	8,0415	6,25383	1,92308	1633,6	212372	0
521	27 14 4I	141 420761	22,8254	8,0466	6,25575	1,91939	1636,8	213189	521
522	272484	142 236648	22,8473	8,0517	6,25767	1,9157I	1639,9	214008	522
523	273529	143055667	22,8692	8,0569	6,25958	1,91205	1643, 1	214829	523
52	274576	143877824	22,8910	8,06:20	6,26149	1,90840	1646,2	215651	524
52.5 525	275625	144703125	22,9129	8,0671	6,26340	1,90476	1649,3	216475	525
525	276676	145531576	22,9347	8,0723	6,26530	1,90114	1652,5	2173 OI	526
527	277729	146363183	22,9565	8,0774	6,26720	1,89753	1655,6	21 81 28	527
528 529	278784	147197952	22,9783	8,0825	6,26910	1,89394	1658,8	218956	528
	279841	148035889	23,0000	8,0876	6,27099	1,89036	1661,9	219787	52
53	280900	148877 000	23,0217	8,0927	6,27288	1,88679	1665,0	220618	530
531	28 19 61	149721291	23,0434	8,0978	6,27476	1,88324	1668,2	221452	531
532	283024	I50 568768	23,0651	8,1028	6,27664	ェ,87970	1671,3	222287	532
533	284089	151 419 437	23,0868	8,1079	6,27852	r,87617	1674,5	223123	533
534	285156	I52 273304	23,1084	8,1130	6,28040	1,87266	1677,6	223961	534
535	286225	153130375	23,1301	8, 1180	6,28227	1,86916	1680,8	2248 or	535 536
536	287296	153990656	23,1517	8,123I	6,28413	r,86567	1683,9	225642	536
537	288369	154854153	23,1733	8,1281	6,28600	1,86220	1687,0	226484	537
5	289444	155720872	23,1948	8,1332	6,28786	1,85874	1690,2	227329	538
539	290521	156590819	23,2164	8,1382	6,28972	1,85529	1693.3	228175	539
54	291600	157464000	23,2379	8,1433	6,29157	1,85185	1696,5	229022	540
541	292681	I58 3404 II	23,2594	8,1483	6,29342	I,84843	1699,6	229871	541
542	293764	159220088	23,2809	8,1533	6,29527	1,84502	1702,7	230722	542
543	294849	160103007	23,3024	8,1583	6,297II	1,84162	1705,9	231574	543
544	295936	160989184	23,3238	8,1633	6,29895	1,83824	1709,0	232428	544
545	297025	16ı 878625	23,3452	8,1683	6,30079	1,83486	1712,2	233283	545
546	298116	162 771 336	23,3666	8,1733	6,30262	I,83I50	1715,3	234140	546
547	299209	163667323	23,3880	8, 1783	6,30445	r,828ı5	1718,5	234998	547 548
548	300304	164566592	23,4094	8, 1833	6,30628	1,82482	1721,6	235858	548 549
549	3014 OI	165469149	23,4307	8,1882	6,30810	1,82149	1724,7	236720	5
550	302500	166375000	23,4521	8,1932	6,30992	I,818ı8	1727,9	237583	550

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	π	$\frac{\pi n^{2}}{4}$	n
5	3025	16637			5			
55	303	16728	23,4	8,	1,81488	1731,0	238448	551
55	3047	168196	23,494			1734,2	239314	55
553	3058	169112377	23,5160		1,80832	1737,3	24 O1 82	553
		170 03I 464	23,5372			1740,4	241051	
	30	170953875	23,5584		1,80180	1743	241922	
	3091	171 879616	23,5797		r,798	1746,7	242795	
	3 I	172808693			r,79533	1749,9		557
	$3 \mathrm{3I} 13$	173741112	23	8,2327	1,79211		244545	
	3124	174676879	23.	8,2377	1,788		245422	
	31 3600	175616000	23,6643	8,2426	$\underline{\text { 1,78571 }}$	1759,3	2463 or	
	3I 47 2I	$17655^{8} 48 \mathrm{x}$	23,6	8,2475	1,		247181	561
	3 I	177	23,	8,2524			248063	562
	3 I 6969	178453547	23,727	8,2573		1768,7		563
	3I 8096	179406 ± 44	23.7487	8,2621	1,7	1771,9	249832	
		$180{ }^{362} 125$	$23,7697$	8,2670	I,7	$1775,0$	250719	
	320356	181 321496			x,766	1778, 1	251607	
	321489	182284263	23,8118	8,2768	1,763	178		
	322624	183250432	23,832	8,2816	,	178	253388	
569	323761	184	23,8537		1,75747	17	25 42 81	69
57	324900	185193	23,8747	8,2913	1,75439	179	255176	
	3260	186				8		571
572	3271				I,7	$1797,0$	256970	572
	32	188132	23,		I,7	18		
	329	189 I 19	23			1803,3	258770	
	3306	190109375	23	$8,3{ }^{1} 55$	$\mathbf{x}, 73913$	1806,4	259672	
	331776	191 102	$24,$		1,7	1809,6	260576	
	332929	192100033	24	8,325I	x,733	$18 \mathrm{I} 2,7$	261482	577
	334084	193100552	24,		1,73010	$18 \mathbf{5}, 8$	262389	
	335241	194104539	24,062		1,727	1819,0	263298	
5	336400	195112000	24,083	8,3396		1822, 1	264208	
58	337561					1825	265120	581
58	3387	197	24,1247	8,3491		1828,4	266033	582
583	339889	198 ± 55287	24,1454	8,3539	1,71527	1831,6	266948	583
584	341056	199176704	$24,166 I$		r,71233	1834,7	267865	58
	342225	200201625	$24,1868$		1,70940	1837,8	268783	
58	343396	201230056	$24,207$	8,3682	x,70648	1841, 0	269703	
58	344569	202262003	$24,2281$	8,3730	1,70358	1844, I	270624	
58	345744	203297472	24,2487	83777	1,70068	1847,3	271547	
589	346921	204336469	24,2693	8,3825	1,69779	1850,4	272471	
590	348 I oo	205379	242899		1,69492	1853,5	273397	0
	349	206			1,69205			591
	350464	207474688	24,331 I	8,3967	1,68919	1859,8	275254	592
	351649	208527857	24,3516	8,4014	1,68634	1863,0	276184	593
	352836	209584584	24,3721	8,4061	1,68350	1866, 1	277117	594
5	354025	210644875	24,3926	8,4108	1,68067	1869,2	278051	
596	3552	211708736	24,413	8.4155	1,67785	1872,4	278986	596
597	356409	212776173	24,4336	8,4202	1,67504	1875,5	279923	
598	357604	213847192	24,4540	8,4249	1,67224	1878,7	280862	598
599	3588 or	214921799	24,4745	8,4296	1,66945	1881,8	281802	
6	360000	216000000	24,4949	8,4343	1,6666	1885,0	282743	

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	n
600360000		216000000	24,4949	8,4343	1,66667	1885,0	282743	00
601	36 I2 OI	217081801	24,5153	8,4390	1,66389	1888, 1	283687	601
602	362404	218167208	24,5357	8,4437	1,66II3	1891,2	284631	602
603	363609	219256227	24,5561	8,4484	1,65837	1894,4	285578	603
604	3648 ェ6	220348864	24,5764			1897,5	286526	604
605	366025	221445125	24,5967	8,4577	1,65289	1900,7	287475	605
606	367236	222545 OI6	24,6171	8,4623	1,65017	1903,8	288426	606
607	368449	223648543	24,6374	8,4670	1,64745	1906,9	289379	607
8	369664	224755712	24,6577	8,4716		1910, 1	290333	608
609	370881	225866529	24,6779	8,4763	1,64204	1913,2	291289	9
610	372100	226981000	24,6982	8,4809	1,63934	1916,4	292247	610
6	3733	228099 I31	24,718		1,63666	1919,5	293206	6II
6	374544	229220928	24,7386	8,4902	1,63399	1912,7	29 41 66	612
	375769	230346397	24,7588	8,4948	1,63132	1925,8	295128	613
614	376996	231475544	24,7790		1,62866	1928,9	296092	614
615	378225	232608375	24,7992	8,5040	1,62602	1932,I	297057	6 I 5
	379456	233744896	24,8193	8,5086	1,62338	1935,2	298024	6 I 6
	380689	234885 113	24,8395	8,5132	1,62075	1938,4	298992	6I7
18	381924	236029032	24,8596	8,5178	1,6I812	1941,5	299962	6I8
619	383161	237176659	24,8797	8,5224	x,6I551	1944;6	300934	619
	384400	238328300	24,8998	8,5270	x,61290	1947,8	301907	620
621	385641	239483 06I	24,9199	8,5316	1,6103I	1950,9	302882	621
622	386884	240641848	24,9399	8,5362	1,60772	1954, I	303858	622
	38 81 29	241804367	24,9600	8,5408	I,60514	1957,2	304836	623
62	$3^{8} 9376$	242970624	24,9800	8,5453	1,60256	1960,4	305815	624
	390625	244140625	25,0000	8,5499	1,60000		306796	625
626	391876	245314376	25,0200	8,5544	I,59744	1966,6	307779	626
8	393129	246491883	25,0400		1,59490	1969,8	308763	27
28	394384	247673152	25,0599	8,5635	1,59236	1972,9	309748	628
	39564 I	248858189	25,0799	8,5681	1,58983	1976, 1	310736	-
03	396900	250047000	25,0998	8,5726	1,58730	1979,2	311725	30
	39 81	251239591		8,5772	1,58479	1982,3	3127 I5	631
632	399424	252435968	25,1396	8,5817	1,58228	1985,5	313707	632
633	400689	253636137	25,1595	8,5862	I,57978	1988,6	314700	633
634	4019.56	254840104	25,1794	$8,5907$	1,57729	1991,8	315696	634
63	403225	256047875	25,1992	8,5952	1,57480	1994,9	316692	635
636	404496	257259456	25,2190	8,5997	1,57233	1998, 1	317690	636
637	405769	258474853	25,2389	8,6043	1,56986	2001,2	358690	637
638	407044	259694072	25,2587	8,6088	1,56740	2004,3	319692	638 639
	408321	$\frac{260}{262} 917$ 119	25,2784	8,6132	1,56495	2007,5	320695	639
040	409600	262144000	25,2982	8,6177	1,562.50	2010,6	321699	40
641	41 088 81	263374721	25,3180	8,6222	1,56006	2013,8	322705	641
642	4 x 2164	264609288	25,3377	8,6267	1,55763	2016,9	323713	642
3	4I 3449	265847707	25,3574	8,6312	I,5552I	2020,0	32 47 32 52	643
	414736	267089984	25,3772	8,6357	1,55280	2023,2	325733	644
	416025	268336125	25,3969	8,6401	1,55039	2026,3	326745	645
	417316	269586136	25,4165	8,6446	1,54799	2029,5	327759	646
	418609	270840023	25.4362	8,6490	1,54560	2032,6	328775	647
	4199 94	272097792	25,4558	8,6535	I,5432I	2035, 8	329792	648
	4212 OI	273359449	25,4755	8,6579	1,54083	2038,9	330810	
050	422500	274625000	25,4951	8,6624	I,53846	2042,0	331831	

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	n	$\frac{\pi n^{2}}{4}$	n
6	422500	274625000	25,4951	8,6624	1,53846	2042,0	331831	
65	423^{8} OI	275894451	25,5147	8,6668	1,53610	2045,2	332853	651
652	425104	277167808	25,5343	8,6713	1,53374	2048,3	$333^{8} 76$	652
653	426409	278445077	25,5539	8,6757	1,53139	2051,5	3349 or	653
654	427716	279726264	25,5734	8,6801	1,52905	2054,6	335927	654
655	429025	281 OII 375	25,5930	8,6845	1,52672	2057,7	336955	655
656	430336	282300416	25,6125	8,6890	1,52439	2060,9	337985	656
657	431649	283593393	25,6320	8,6934	I,52207	2064,0	339016	657
	432964	284890312	25,6515	8,6978	I, 51976	2067,2	340049	658
659	43428 I	286 191 179	25,6710	8,7022	1,51745	2070,3	34 10 84	659
66	4356 no	287496000	25,6905	8,7066	1,51515	2073,5	34 21 19	6
661	4369 21	288804	25,7099		x,51286	2076,6	$343^{1} 57$	66I
662	438244	290117528	25,7294	8,7154	1,51057	2079,7	344196	662
663	439569	291 434247	25,7488	8,7198	1,50830	2082,9	345237	663
664	440896	292754944	25,7682	8,724I	1,50602	2086,0	346279	664
665	442225	294079625	25,7876	8,7285	1,50376	2089,2	347323	665
66	443556	295408296	25,8070	8,7329	1,50150	2092,3	348368	666
667	444889	296740963	25,8263	8,7373	I,49925	2095,4	349415	667
668	446224	298077632	25,8457	8,7416	1,49701	2098,6	350464	668
66	447561	299418309	25,8650	8,7460	r,49477	2101,7	351514	
6	448900	300763000	25,8844	8,7503	1,49254	2104,9	352565	670
67	450241	302 III 711	25,9037			2108,0	3536 I8	671
672	451584	303464448	25,9230	8,7590	1,48810	2111,2	354673	672
673	452929	304821217	25,9422	8,7634	I,48588	2114,3	355730	673
674	454276	306182024	25,9615	8,7677	I, 48368	2117,4	356788	674
67	455625	307546875	$25,9808$	8,7721	I, 48148	2120,6	357847	675
676	456976	308915776	$26,0000$	8,7764	I,47929	2123,7	358908	676
677	458329	310288733	26,0192	8,7807	1,47710	2126,9	359971	677
678	459684		26,0384		1,47493	2130,0	361035	678
	46 10 4I	313046839	26,0576	8,7893	1,47275	2133, 1	3621 OI	679
	462400	314432000	26,0768	8,7937	1,47059	2136,3	363168	
1681	$4 6 \longdiv { 3 7 6 1 }$	3I5 821 24I	26,0960	8,7980	1,46843	213	364237	68ı
682	465124	317 214568	26,1151	8,8023	I,46628	2142,6	36.5308	682
683	466489	318611987	26,1343	8,8066	I,46413	2145,7	366380	683
684	467856	320 O13 504	26,1534	8,8109	I,46199	2148,8	367453	684
685	469225	321419125	26,1725	8,8ı52	I, 4598.5	2152,0	368528	685
686	470596	322828856	26, 1916	8,8194	I, 45773	2155, 1	369605	686
687	47 19 69	324242703	26,2107	8,8237	r, 45560	2158,3	370684	687 688
688	473344		26,2298 26,2488	8,8280	$\mathbf{I}, 45349$	2161,4	371764	688
689	474721	327082769	26,2488	8,8323	1,45138	2164,6	372845	
690	476100	328509000	26,2679	8,8366	1,44928	2167,7	373928	90
691	47748 I	329939 371	26,2869	8,8408	r,44718	2170,8	375013	691
692	478864	33 I 373888	26,3059	8,8451	r,44509	2174,0	376099	692
693	480249		26,3249	8,8493	1,44300	21771	377187 378276	693
69	481636	$\begin{array}{llll}334 & 255 & 384 \\ 335 & 702 & 375\end{array}$	26,3439	8,8536	1,44092	2180,3	378276	694
	483025	335702375	26,3629	8,8578	I, 43885	2183,4	379367	695 696
	484416	337153536 338608873		8,8621	1,43678	2186,5	380459	696
	485809 48720	338608873		8,8		2189,7	381553 382649	698
699	4872 O4 4886 OI	340 341 341	26,4386	8,8748	r,43266 $\mathbf{r , 4 3 0 6 2}$	2192,8 2196,0	382649 383746	698
700	490000	343000000	26,4575	8,8790	1,42857	2199, 1	384845	00

n	n^{2}	n^{3}	\sqrt{n}	\sqrt{n}	$\frac{1000}{n}$	πn	$\frac{\pi n^{2}}{4}$	n
700	4900	343000000	26,4575	8,8790	r,42857	2199, I	$384^{8} 45$	700
701	49 I4	344472 IOI	26,4764	8,8833	I,42653	2202, 3	385945	701
7	4928	345948408	26,4953				387047	702
703	494209	347428927		8,8917	I, 42248	2208,5	38 81 51	703
704	4956	348913664	26,5330	8,8959	I, 42045	2211,7	389256	704
705	497025	350402625		8,9001	1,41844		390363	705
706							391471	706
707	499849	353393243		8,9085	I, 41443	2221, 1	392580	707
708	501264	354894912	26,6083	8,9127	I, 41243	2224,2		708
709	50 2681	356400829		8,9169	I,41044	2227,4	3948 o5	709
710	50	357911000	26,6458	8,9	I,40845	22	3959 r9	710
711	50	35942543 I	26,6646	8,9253	I, 40647		397035	7 II
712	506944	360944 128	26,6833		I, 40449		39 81 53	712
713	508369	362467097	26,7021	8,9337	1,40252	2240	399272	13
714	509796	363994344		8,9378		2243	400393	714
715	511225	365525875	26,7395	8,9420	1,39860	22	40151.5	715
716	$5^{1} 2656$	367 061 696		8,9462	I,39665	2249	402639	716
717	514089	368 601 813	26,7769	8,9503	1,39470	2252,	403765	717
718	5 5 524	370146232	26,7955	8,9545	I, 39276	2255,	404892	718
7	51	371	26,8142	8,9587	1,39082	22	406020	719
720	51 8400	373248000	26,8328		1,38889	22	O	20
721	$5 \times 984 \mathrm{I}$	374805361		8,9670	1,38696		408282	721
722	521284	376367048	26,8701			2268,	409415	722
723	522729	377933067	26,8887	8,9752	1,38313	2271		723
724	5241	379503424	26,9072	8,9794	I,38122	2274,	411687	724
725	5256	381078125	26,9258	8,9835	x,3793I	22°	412825	725
726	527076	382657176		8,9876	I,3774	22	413965	726
727	528529	384240583	$26,9629$		x,37552	2283,	415106	727
728	529984	385828352		8,99.59	r,37363	2287,	416248	728
729	531441	387420489	27,0000	9,0000	r,37174	2290,	417393	729
730	53	389017000	27,0185	9,00	1,36986	229	418539	730
73 I	5343 6I	390617 891	27,03	9,0082			419686	731
732	535824	392223168	27,0555	9,0123	1,36612	2299,	420835	732
733	537289	393832837	27,0740	9,0164		2302,	42 19 86	733
734	538756	395446904	$27,0924$	9,0205	1,36240	2305,9	423138	734
735	540225	397065375	27,1109	9,0246	1,36054	2309, I	424293	735
736	541696	398688256	$27,1293$	9,0287	1,35870	2312,2	425447	736
737	543169	400315553	$27,1477$	9,0328	I,35685	2315,4	426604	737
738	544644	401947272	27,1662	9,0369		2318	427762	738
739	546121	403583419	27,1846		1,35318	2321,6	428922	739
740	547	405224000	27	9	1,35135	2324,8	430	740
741	549081	406869021	27,2213	9,0491	1,34953	2327,9	43 I2 47	741
742	550564	408518488	27,2397	9,0532	1,34771	2331, 1	432412	742
743	552049	410172407	27,2580	$9,0572$	r,34590	$2334,2$	433578	743
744	553536	411830784	27,2764	9,06I3	I,34409	2337,3	434746	744
745	555025	413493625	27,2947	9,0654	1,34228	2340,5	435916	745
746	556516	415 160 936	27,3130	9,0694	1,34048	2343,6	437087	746
747	558009	416832723	27,3313	9,0735	r,33869	2346,8	438259	747
748	559504 56 10 or	418508992	27,3496	9,0775	I, 33690	2349,9	439433	748
75	56 10 OI	420189749	27,3679	9,0816	1,33511	2353, 1	440609	749
75	562500	421875000	27,386r	9,0856	1,33333	2356,2	441786	0

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	n	$\frac{\pi n^{2}}{4}$	n
750	562500	421875000	27,3861	9,0856	r,33333	2356,2	44×786	0
751	5640 OI	423564751	27,4044	9,0896	x,33156	2359,3	442965	751
752	565504	425259008	27,4226	9,0937	1,32979	2362,5	444146	752
753	567009	426957777	27,4408	9,0977	r,32802	2365,6	445328	753
754	568516	428661064	27,4591	9,1017	1,32626	2368,8	4465 I	754
755	570025	430368875	27,4773	9,1057	r,32450	2371,9	447697	755
756	571536	432 08ı 216	27,4955	9,1098	1,32275	2375,0	448883	756
757	573049	433798093	27,5136	9, 1138	1,32100	2378,2	450072	757
758	574564	435519512	27,5318	9,1178	r,31926	2381,3	451262	758
	57608 x	437245479	27,5500	9,1218	1,31752	2384,5	452453	
760	577600	438976000	27,5681	9,1258	1,31579	2387,6	453646	760
761	579121	440 7II 081	27,	9,1298	1,31406	2390,8	45484 x	761
762	580644	442450728	27,6043	9,1338	1,31234	2393,9	456037	762
	582169	444194947	27,6225	9,1378	1,31062	2397,0	457234	763
764	583696	445943744	27,6405	9,1418	1,30890	2400,2	458434	764
765	585225	447697125	27,6586	9,1458	1,30719	2403,3	459635	765
766	586756	449455096	27,6767	9,1498	1,30548	2406,5	-46 0837	766
767	588289	451217663	27,6948	9,1537	1,30378	2409,6	462041	767
768	589824	452984832	27,7128	9,1577	1,30208	2412,7	463247	768
769	. 591361	454756609	27,7308	9,1617	1,30039	2415.9	464454	769
770	592900	456533000	27,7489	9,1657	1,29870	2419,0	465663	770
771	5944 4I	458314 OII	27,7669	9,1696	1,29702	2422,2	466873	771
772	595984	460099648	27,7849	9,1736	I,29534	2425	468085	772
773	597529	461889917	27,8029	9,1775	I,29366	2428,5	469298	773
774	599076	463684824	27,8209	9,1815	1,29199	2431,6	470513	774
75	600625	465484375	27,8388	9,1855	1,29032	2434,7	471730	775
776	602176	467288576	27,8568	9,1894	1,28866	2437,9	472948	776
777	603729	469097433	27,8747	9,1933	1,28700	2441,o	474168	777
778	605284	470910952	27,8927	9,1973	1,28535	2444,2	475389	778
779	60684 I	472729139	27,9106	9,2012	1,28370	2447,3	476612	779
780	608400	474552000	27,9285	9,2052	1,28205	2450,4	477836	780
781	60996 r	47637954 I	27,9464	9,2091	1,2804r	2453,6	479062	781
782	6 l 1524	478211768	27,9643	9,2130	1,27877	2456,7	480290	782
783	6r 3089	480048687	27,9821	9,2170	1,27714	2459,9	48 15 5	783
784	6r 4656	48ı 890304	28,0000	9,2209	1,2755I	2463,0	482750	784
785	6r 6225	483736625	28,0179	9,2248	I, 27389	2466,2	483982	785
786	617796	485587656	28,0357	9,2287	1,27226	2469,3	48.5216	786
787	6x 9369	487443403	28,0535	9.2326	1,27065	2472,4	486451	787
788	620944	489303872	28,0713	9,2365	1,26904	2475,6	487688	788
789	622521	491169069	28,0891	9,2404	1,26743	2478,7	488927	789
790	624100	493039000	28,1069	9,2443	1,26582	2481,9	49 or 67	790
791	62568 x	494913671	28,1247	9,2482	1,26422	2485,0	49 I4 09	791
792	627264	496793088	28,1425	9,2521	1,26263	2488, r	492652	792
793	628849	498677257	28,1603	9,2560	1,26103	2491,3	493897	793
794	630436	500566184	28,1780	9,2599	r,25945	2494,4	495143	794
795	632025	502459875	28,1957	9,2638	1,25786	2497,6	4963 91	795
796	633^{6} 16	504358336	28,2135	9,2677	1,25628	2500,7	497641	796
797	635209	506261573	28,2312	9,2716	1,25471	2503,8	498892	797
798	636804	508169592	28,2489	9,2754	1,25313	2507,0	50 O1 45	798
799	6384 OI	510082399	28,2666	9,2793	1,25156	2510, 1	501399	
800	640000	512000000	28,2843	9,2832	2,15000	2513,3	502655	0

	n^{2}	n^{3}	n		2		$\frac{\pi n^{2}}{4}$	n
800		512000000	28,2843	,2832	I,2	2513,3		
801	6416 or		28,	9,2870	I, 2		503912	
	643204	515849608	28,3196	9,2909		2519,6		802
	6448 os	517781627	28,3373	9,2948		2522,7	506432	803
	6464 r6	519718464	28,3549	9,2986		2525,8	507694	804
	648025	521660125	28,3725	9,3025	1,24224	2529,0	50 8958	
	649636	523606616	28,3901	9,3063	1,24069	2532,1	510223	
	651249	525557943	28,4077	9,3120	1,23916	2535,3	511490	807
	652864	527514112	28,4253	9,3	r,23762	2538,4		
809	654481	529475129		9,3179		2541,5	514028	809
81	6561	53I 441	28,4605	9 ,	I,	, 7	515	
811	6577	533 411 731	28,		I, 23305	25	73	
812	6593	535	28,			2551		812
813	660969	537367797	28,5132	9,3	1,23001	2554,	519124	3
	662596	539353144	28,530	9,33	1,22850	2557,3	520402	14
	664225	541343	28,548	9,3	1,22699	2560,4	521681	815
	665856	54333^{8}	28,5657	9,34	1,22549	2563,5	522962	
817	667489	545388513		9,34	1,22399	2566,7	524245	817
818	669124	547343432	28,6007	9,3	1,22249	2569,8		
81	670761	353259	28,6182			2573,0	5	19
82	672400	551368000	28,6	9,3	I,21		52	820
821		553387661	28,6					
822		555	28,67	9,	1,21655	258	1	
82			28,68	9,	1,21507	258	3	823
	6789	559476	28,7	9,37	1,21359	2588		824
	6806	561 515	28,7228	9,37	1,21212	2591		
82	682276	5	28,7402	9,38	1,21065	259		
	683929	565609	28,7576	9,386	1,20919	2598	537157	827
	685584	56766355^{2}	28,7750	9,3902		2601,2		
829	687241	569722789	28,7924	9,3940	I,	2604	53	
83	6889	571787000	28,8097	9,3	1,20482	2607,	54	
831								831
832		575930		9,		2613,8	543671	832
833		578 oog	28,8			2616,9	79	833
834			28,8	9		2620, 1		834
835			28,8			2623	99	
836			28,9137			2626		836
837	700569	5	28,9310			2629	550226	837
838		588480	28.9482			2632,7		838
839	7039 21	590589719	28,9655	,	I,	2635,8	552858	839
840	705600	5	28,9828		1,19048	2638,9	55	
				9,4391				841
8	708964	596947		$9,4429$	1,18765	2645,	556819	842
8		599077	29,0345	9,4466	1,18624	2648	55 8r 42	843
84	712336	601	29,0517	9,4503		2651	559467	844
8	714025	603351125	29.	9,454	1,18343	2654,6	560794	845
846	7 I 5	605495736		9,4.57	1,18203	2657,8	562122	846
847	717	607645423			1,18064	2660,9		
848		609800192		9		2664, I	564783	848
849	7208 or	6II 960049	29.1376	9,469	1,1778	2667,2	566116	
850	722500	614125000	29, 1548	9,4727	I, 17647	2670,4	56745	

n	n^{2}	n^{3}	/n	$\sqrt{1}$	$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	
850	72	614125	29,1548	9,4727	117647	2670,4	567450	50
851	724	16295	29,1719		1,17509		568786	851
852	725904	618	29,1890		r,17371		57 OI 24	
853	727609	620650477	29,2062	9,4838	1,17233		571463	3
85	729316	622835864	29,2233	9,4875	1,17096		5728 O3	
	73	625026375	29,2404	9,4912	1, 16959	2686, I	574146	
856	732736	627222016	29,2575	9,4		2689,2	575490	
		629422793	29,2746		r, 16686	2692,3	576835	857
	736164	631628712	29,2916	9,5	x,16550		578182	
	7378 81	$\frac{633839779}{63605600}$	29,3087				579530	
	7396	636056	29,325	9,5097			580880	
861	741	638277	29	95134				1
862	7430	640503928	29,3598	9,517	I, I	27		862
863	7447	642735647	29,3769		I, 15875	2711		863
864	746496	644972544	29,3939		1, 15741	2714		
	748225	647214625	29,4109	9,	I, I5		587655	
866		649461896	29,4279	9,5317	I, 154	27	589014	
	751689	651714363		9,5354	I,	27	-59	
88	753424	653972032		9,539		27		
869	7551	656234	29,4788	27	5	2730,0	593102	
870	756900	658503000	29,4958	9,5464	I, 14943	2733	594468	
871	7586	660776311	29	9,5501			595835	71
872	76 o3	663054848	29,	9,55		273	597204	
873	7621	665338617	29,5	9,5			598575	,
874	76387	667627624	29,5635	9,56			599947	
875	76562	669921875	29,5804	9,56		274	601320	
876	767376	272221376	29,5973	9,568		275	60	
877	769129	674526 I33	29,6142	9,5719				7
878	770884	676836 I52	29,63II	9,5756		275		878
87	77264 I	679 151 439	29,6479	9,5792	I, 13766	2761,5	6068 31	879
88	774400	681472000	29,6648	9,5828	1,13636	2764,6	6082	
881	77 61 61	68379784 I	29,6818	9,5865		27		881
882	777	686128968	29,6985	9,590	I, 133	2770		882
883	77	688465387	29,7153	9,593			61 2366	883
884	781456	690807104	29,7321	9,597			6ı 3754	884
885	783225	693154125	29,7489	9,601	I,	2780	$6 \mathrm{5I} 43$	885
886	784996	695506456	29,7658	9,6046	I,12867	2783,5	6I 6534	886
887	786769	697864103	29,7825	9,6082	I, 12740	2786,6	61 7927	
888	788544	700227072	29,7993	9,6118	1,12613	2789,7	61 9321	888
889	79 O3 21	702595369	29,8	9,6154	I, 12486	2792,9	620717	
890	792100	704969000	29,8329	9,6190	1,1236	2796	62	0
891	79388 I							891
892	795664	709732288	29,8664	9,6262	1,12108	2802,3	6249 I3	892
893	797449	712121957	29,883	9,6298	I, 11982	2805,4	626315	893
894	799236	714516984	29,8998	9,6334	I, I1857	2808,6	627718	894
895	80 10 25	716917375	29,9166	9,6370	1,11732	2811,7	629124	
896	802816	719323136	29,9333	9,6406	1,11607	2814,9	630530	9
89	804609	721734273	29,9500	9,6442	1,11483	2818,0	631938	
89	806404	724150792	29,9666	9,6477	I,11359	2821,2	633348	8
899	8082 or	726572699	29,9833	9,6513	1,11235	2824,3	634760	
90	81 00	729000000	30,0	9,6549	1,1111	2827,4	3173	

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$		$\frac{\pi n^{2}}{4}$	n
900	81 0	729000	30,0000	9,6549	1,	2827,4	636173	900
901	8 I I	731432	30,016		I,10988	2830,6	637587	901
90	$8 \mathrm{I} 3^{6}$	733870808	30,0333	9,6620	1,10865		639003	02
903	81 54	736314327	30,0500	9,6656	I,10742	2830,9	640421	3
904	81 7216	738763264	30,0666	9,6692	1,10619	2840,0	641840	904
5	81 9025	741217625	30,0832	9,6727	I,10497	284	643261	905
906	820836	743677416	30,0998	9,6763	I, 10375	2846,3	644683	6
	822649	746142643	30, 1164	9,6799	1,10254	2849,4	64 6x 07	907
908	825464	748613312	30, 1330	9,6834	1,10132	2852,6	647533	908
909	826281	751089429	30	9,6870	1,10011	2855,7	648960	909
910	82	753571000	30,1	9,	r,	2858,8	650388	910
91 F	8299	756058 031	30,1828	9,6941	1,097	882,0	651818	9 II
2	8317	$75^{8} 550528$	30, 1993	9,6976	I 0964	2865, 1	653250	912
913	833569	761048497	30,2159	9,7012	1,09529	2868,3	654684	913
914	835396	763551944	30,2324	9,7047	1,0940	2871,4	656118	914
	837225	766060875	30,2490	9,7082	1,09	2874,6	657555	915
916	839056	768575296	30,2655	9,7118	1,09170	2877,7	658993	916
917	840889	771095213	30,2820	9,7	1,09051	888	660433	917
918	842724	773620632	30,2985	9.7	1,08932	2884, 0	661874	918
919	844561	776×51559	30,3150	9,7224	I, 08814	2887, 1	663317	919
920	84	778688000	30,3315		I,	2890,3	664761	920
921	84	781 229	30,3		1,08		666207	921
9	8500	783777448	30,3645	9,7329	1,08460	2896,5	667654	922
923	851929	786330467	30,3809	9,7364	1,08342	2899,7	6691 o3	923
924	853776	788889024	30,39	9,7	1,08225	2902,8	670554	924
	855625	791453125	30,4138	9,7435	1,08108	2906,0	672006	925
9	857476	794022776	30,4302	2,7470	I,O	2909	673460	926
927	859329	796597983	30,4467	9,7505	1,07875	2912,3	6749 15	927
928	86 II 84	799178752	30,463I	9,7540			676372	928
29	86304 I	801765089		9,7575		2918,5	677831	929
930	864900	8043.57000	30,4959	9,7610	1,O	2921,7	679291	30
931	866761	806954491					680752	931
932	868624	809557568	30,5287	9,7680	1,07	2928,0	682216	932
933	870489	812166237	30,54,50	9,7715	1,07181	2931, 1	683680	933
9	872356	814 780504			1,07066	2934,2	685147	934
935	874225	817400375	30, 5778	9,7785	1,06952	2937,4	6866 I5	935
936	876096	820025856	30,5941	9,7819	1,06838	2940,5	688084	936
937	877969	822656953	30,6105	9,7854	r,06724	2943,7	689555	937
938	879844	825293672	30,6268	9,7889	1,06610	2946,	691028	938
939	881721	827936 or9	30,6431	9,7924	1,06496	2950,0	692502	939
9	8836	830584000	30,6594	9,7959	1,0638	2953,1	693	40
941	8854 81	833237621	30,6757		1,06270	2956,2	695455	941
942	887364	835896888	30,6920	9,8028	1,06157	2959	696934	942
943	889249	$83^{8} 561807$	30,7083	9,8063	1,0604.5	2962,5	698415	943
944	89 II 36	841232384	30,7246	9,8097	1,05932	2965,7	699897	944
945	893025	843908625	30,7409	9,8132	1,05820	2968,8	701380	945
946	8949 16	846590536	30,7571	9,8167	1,05708	2971,9	702865	946
947	896809	849278123	30,7734	9,8201	1,0.5597	2975,1	704352	947
948	898704	851971392	30,7896	9,8236	1,05485	2978,2	705840	948
949	9006 OI	854670349	30,8058	9,8270	1,05374	2981,4	707330	949
5	9025	857375000	30,822I	9,8305	1,05263	2984,5	708822	

n	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$	$\frac{1000}{n}$	πn	$\frac{\pi n^{2}}{4}$	n
950	902500	857375000	30,8221	9,8305	1,05263	2984,5	708822	0
95	9044	860085351	30,8383	9,8339	1,05152	2987,7	710315	951
9521	906304	862801408	30,8545	9,8374	1,05042	2990,8	71 1809	952
953	908209	865523177	30,8707	9,8408	1,04932	2993,9	713306	953
95	91 or 16	868250664	30,8869	9,8443	1,04822	2997, 1	71 4803	954
955	912025	870983875	30,9031	9,8477	1,04712	3000,2	71 6303	955
956	913936	873722816	30,9192	9,8511	1,04603	3003,4	71 7804	956
957	915849	876467493	30,9354	9,8546	1,04493	3006,5	719306	957
9581	91 7764	879217912	30,9516	9,8580	1,04384	3009,6	720810	958
959	919681	881 974079	30,9677	9,8614	1,04275	3012,8	722316	959
960	921600	884736000	30,9839	9,8648	1,04167	3015,9	$423^{8} 23$	960
961	9235	887503681	31,0000	9,8683	1,04058	3019,1	725332	961
962	925444	890277128	31,016	9,8717	1,03950	3022,2	726842	962
963	927369	893056347	31,0322	9,8751	1,03842	3025,4	728354	963
964	929296	895 84I 344	31,0483	9,8785	1,03734	3028,5	729867	964
965	931225	898632125	31,0644	9.8819	1,03627	3031,6	$\begin{array}{llll}73 & 1382\end{array}$	965
966	933156	901428696	31,0805	9,8854	1,03520	3034,8	732899	966
967	935089	904231063	31,0966	9,8888	1,03413	3037,9	734417	967
968	937024	907039232	31,1127	9,8922	1,03306	3041, 1	735937	968
969	938961	909853209	31,1288	9,8956	1,03199	3044,2	737458	969
970	940900	$\underline{912673000}$	31,1448	9,8990	1,03093	3047,3	738981	970
971	942841	915498611	31,1609	9,9024	1,02987	3050.5	740506	971
972	944784	918330048	31,1769	9,9058	1,0288I	3053,6	742032	972
973	946729	921167317	31,1929	9,9092	1,02775	3056,8	743559	973
974	948676	924 O10 424	31,2090	9,9126	1,02669	3059,9	745088	974
975	950625	926859375	31,2250	9,9160	1,02564	3063,1	746619	975
976	952576	929714176	31,2410	9,9194	1,02459	3066,2	74 81 51	976
977	954529	932574833	31,2570	9,9227	1,02354	3069,3	749685	977
978	956484	935441352	31,2730	9,9261	1,02249	3072,5	751221	978
979	95844 I	938313739	31,2890	9,929.5	1,02145	3075,6	752758	979
980	960400	941192000	31,3050	9,9329	1,0204 1	3078,8	754296	
981	9623 61	944076 141	31,3209	9,9363	1,01937	3081,9	$755^{8} 37$	981
982	964324	946966168	31,3369	9,9396	1,01833	3085,0	757378	982
983	966289	949862087	31,3528	9,9430	1,01729	3088,2	758922	983
984	968256	952763904	31,3688	9,9464	I, OI626	3091,3	760466	984
	970225	955671625	31,3847	9,9497	I. OI 523	3094,5	762013	985
986	972196	958585256	31,4006	9,9531	I,OI420	3097,6	763561	986
987	974169	961504803	31,4166	9,9565	1,01317	3100,8	765111	987
988	976144	964430272	31,4325	9,9598	I,OI215	3103,9	766662	988
989	97 81 21	967361669	31,4484	9,9632	1,OIII2	3107,0	768214	989
990	98 OI 00	970299000	$3 \mathrm{I}, 4643$	9,9666	1,01010	3110,2	769769	90
991	982081	973242271	31,4802	9,9699	1,00908	3113,3	771325	991
992	984064	976 191 488	31,4960	9,9733	1,00806	3116,5	772882	992
993	986049	979146657	31,5119	9,9766	1,00705	31 19,6	774441	993
994	988036	982107784	31,5278	9,9800	1,00604	3122,7	776002	994
995	990025	985074875	31,5436	9,9833	1,00503	3125,9	777564	995
996	992016	988047936	31,5595	9,9866	1,00402	3129,0	779128	996
997	994009	991026973	315753	9.9900	1.00301	3132,2	780693	997
998.	996004	994 O11 992	31,5911	9,9933	1,00200	3135,3	732260	998
999	9980 OI	997002999	31,6070	9,9967	1,00100	3138,5	783828	999

180

LIST OF SYMBOLS

BASED ON THE STANDARD NOTATION SUGGESTED BY THE SCIENCE STANDING COMMITTEE OF THE CONCRETE INSTITUTE.

$a \quad$ Area of the couple formed by compressive and tensile forces in a beam.
$a_{c} \quad$ Area of compressive force measured from neutral axis in ribbed slabs.
$a_{t} \quad$ Area of tensile reinforcement measured from neutral axis.
b Breadth generally in inches.
$b_{r} \quad$ Breadth of rib in a tee-beam in inches.
$b_{s} \quad$ Effective breadth of slab in tee-beam in inches.
c Compressive stress intensity on concrete.
c_{s}. Compressive stress intensity on steel.
$\left.\begin{array}{l}c_{x} \\ c_{y}\end{array}\right\}$ Stresses in concrete of columns eccentrically loaded.
d Depth generally in rectangular sections.
d Effective depth of beam or slab from top to axis of tensile reinforcement in inches.
d Diameter in circular sections in inches.
$d_{c} \quad$ Depth or distance of centre of compressive reinforcement from compressed edge of beams in inches.
$d_{c} \quad$ Diameter of core of pillars in inches.
d_{c} Depth of arch ring at crown of arch in inches.
d_{d} Distance of bottom of reinforcement of rib from centre of gravity of reinforcement in inches.
$d_{h} \quad$ Diameter of a helical reinforcing rod in any compression piece in inches.
d_{l} Diameter of a longitudinal reinforcing rod of a pillar in inches.
$d_{n} \quad$ Deflection of a beam in inches.
d_{γ} Distance of rods centre to centre in inches.
d_{s} Total depth of slab in tee-beam in inches.
d_{t} Total depth in inches.
$e \quad$ Eccentricity of load in inches.
$e \quad$ Distance of centre of rod from axis of column in inches.
f Friction or adhesion of concrete and steel.
$h \quad$ Height generally in inches.
$i \quad$ Inset of centre of reinforcement from bottom of slab or rib in inches.
i Inset of rod centres from outer edge of column section in inches.
i Inset of centre of gravity of column section from outer edge in inches.
i Distance of eccentric load from outer edge of column section in inches. $i=d-e$ (diameter - eccentricity).
l Length generally in inches.
l Effective length or span of beam or arch.
m
Modular ratio, i.e. the ratio between the elastic moduli of

$$
\text { steel and concrete }=\frac{\mathrm{E}_{s}}{\mathrm{E}_{c}} .
$$

$n \quad$ Distance of neutral axis from compressed edge in inches
p Intensity of pressure per unit of length or area.
r Radius in inches.
$s \quad$ Shearing stress intensity.
$s_{h} \quad$ Spacing of hoops round columns in inches.
$s_{r}=\frac{t}{c}$ Stress ratio in ribbed slabs.
$t \quad$ Tensile stress intensity on steel.
$t_{c} \quad$ Tensile stress intensity on concrete.
$\left.\begin{array}{l}t_{x} \\ t_{y}\end{array}\right\}$ Stresses in steel in columns eccentrically loaded.
v Versine or camber of a curve or rise of an arch in inches.
w Weight or load generally, per unit of length or area.
w Superimposed load uniformly distributed on arch.
w_{d} Dead load above arch ring at crown.
$\left.\begin{array}{l}x \\ y\end{array}\right\}$ Co-ordinates in arch calculations in inches.
x Distance of hangers or bending up of rods from support in inches.
$y \quad$ Height of shear triangle.
β Distance of compressive force from neutral axis in ribbed slabs in inches.
$\gamma=\frac{t}{c}$ In ribbed slabs.
$\pi \quad$ Ratio of circumference of a circle to its diameter.
O Perimeter of steel rods in inches.

A Total cross-sectional area of beam or pillar in inches.
$A_{C} \quad$ Area of compressive reinforcements of beams in inches.
A_{L} Cross-sectional area of longitudinal steel rods of pillar in inches.
$\mathrm{A}_{r} \quad$ Sectional area of one rod in ins. ${ }^{2}$
$A_{S} \quad$ Area of shear reinforcement in ins. ${ }^{2}$
$A_{T} \quad$ Area of tensile reinforcement in beams in ins. ${ }^{2}$
B Bending moment generally.
B Maximum bending moment of the external forces or loads on a beam.
B Bending moment at crown of arch.
$\mathrm{B}_{\mathrm{C}} \quad$ Bending moment at centre of beam.
$\mathrm{B}_{\mathrm{E}} \quad$ Bending moment at end of beam.
B_{L} Bending moment left half of arch.
$B_{R} \quad$ Bending moment right half of arch.
C Total compressive force or stress.
C_{c} Total compression on concrete.
C_{s} Total compression on steel.
E_{C} Elastic modulus of concrete in compression in lbs./in, ${ }^{2}$
$\mathrm{E}_{\mathrm{S}} \quad$ Elastic modulus of steel in lbs./in. ${ }^{2}$
G Centre of gravity of column section.
I_{C} Moment of inertia for concrete.
IS Moment of inertia for steel.
N_{d} Number of divisions in one half of arch.
$\mathrm{N}_{r} \quad$ Number of rods.
$\mathrm{P}_{\mathrm{H}} \quad$ Horizontal pressure.
$\mathrm{P}_{\mathrm{V}} \quad$ Vertical pressure.
R Moment of resistance of internal stresses in a beam at a given cross-section.
$\mathrm{R}_{\mathrm{L}} \quad$ Left reaction.
R_{R} Right reaction.
S Total shearing force across a section.
$\mathrm{S}_{\mathrm{C}} \quad$ Shear at crown of arch.
$\mathrm{S}_{\mathrm{C}} \quad$ Total shear taken up by concrete.
S_{S} Total shear taken up by steel.
S_{F} Safety factor.
T Total tensile force.
T_{C} Thrust at crown of arch.
W Weight or load.

INDEX

A

PAGE
Adhesion 71
Aggregate 20
Arch design 57
Calculations 123
Armoured Tubular Flooring Co. Ltd. 127
Stock sections $15 I$
Atmospheric action 22, 29
B
Bars 127
Spacing in floors 48
Stock sections 149
Base for columns 60
Beams 75
Bending moments 68
Calculation of beams 76
Calculations of T beams 91
Continuous over several supports 70
Double reinforcements 87
Span of 68
Span of T 96
Width to be assumed of T 96
Bending moments for
Cantilevers 51
Ceiling slabs 70
Continuous beams and slabs 68
Bending up of rods III
Bond, mechanical 108
Brickwork, reinforced 54
British Fire Prevention Committee's Tests I6
British Reinforced Concrete Eng. Co. Ltd. 129
Building during frosty weather 29

C

PAGECalculations for
Arches 123
Beams, double reinforcement 87
Beams, single reinforcement 75
Beams, T, double reinforcement 102
Beams, T, single reinforcement 91
Column hoops 115
Columns axially loaded 112
Columns eccentrically loaded 117
Shearing stresses 105
Symbols for 18I
Cantilevers 5I
Cavity walls 55
Cement 12
Composition of 12
Manufacture of 13
Centering 36
Patent bracket for 46
Chain Concrete Syndicate system 132
Coignet system 132
Colouring concrete 10, 44
Columbian Fireproofing Co. system 133
Columns 54
Calculation of 112
Design of 54
Compressive resistance
Of concrete 47
Of steel 73
Concave Floor and Roof system 133
Concrete 14
Mixing 19
Proportions of 26
Considère system I35
Continuous beams 69
Cracks in concrete II
D
Deflection 46
Durability of concrete 5
Dyson's Patent Bar 135
E
Early uses of concrete
PAGE
Elastic modulus 73
For steel and concrete 73
Empire House Co. 136
Euler's formula 113
Expanded Metal Co. Ltd. system 136
Stock sizes of material 151
Expansion of concrete 44
F
Facing concrete 44
Factor of safety 71
Fire resistance 5
Forms for walls 38
Foundations 61
Frosty weather, work during 29
G
Gravel concrete 14, 21
H
Hair cracks II
Hangers, calculation of Io8
Heat, influence of 30
Hennebique system 138
Hooped columns II4
I
Improved Construction Co. 139
Increase of strength of concrete 9
Indented steel bar 139
Stock sizes of 152
J
Johnson's wire lattice 140
Stock sizes of 153
K
Kahn bar 141
Stock sizes of 153

L
PAGE
Leslie and Co.'s system I4I
Lock-woven mesh system I4I
Stock sizes of I54
M
Mixing of concrete 27
Mixing machines 28
Moduli of elasticity of steel and concrete 73
Moments, bending 68
N
Neutral axis, meaning of 75
Position in slab and beams 75
Position in columns II9
P
Piles, calculations for, adopt those for columns and beams 61
Pipes 62
Potter's system 143
Proportions for concrete 26
R
Ratio of moduli of elasticity 76
Reactions over supports 69
Reinforced brickwork 54
Resistance of concrete 74
To compression 74
To tension 71
To shear 71
Retaining walls 57
Ribbed ceilings 52
Reinforcing 52
Calculations for 91
Roofs 63
Rust, effect of 31
S
Safe stresses 47
Sand 21
Sections of bars, etc. 149
Setting of cement 13
page
Shearing stresses 105
Calculations of 107
Shocks 8
Sideolith bar 144
Siezwart floor I36
Slabs, calculation of 75
Single reinforcement 75
Double reinforcement 87
Soil, bearing power of 155
Span, measurement of 68
Stairs 61
Steel, resistance of 73
Stresses, temperature II
Striking of centering 41
Symbols I8I
T
Tables 148-180
Tanks 63
Tee beams 52
Calculation of 91
Width of rib 96
Width of table of T 96
Temperature, effect on setting I3
Stresses and cracks II
Tensile resistance of concrete 71
Testing machine for deflection of beams 46
Tests by British Fire Prevention Committee 16
Thickness, minimum thickness of floor slabs 8I
V
Vibration, resistance to 8
Visintini system 144
W
Walls 54
Waste-pieces, use of 32
Waterproofing 10
Weight of reinforced concrete 67
Weights of substances 155
Wells' system 145
Width of table of T beams 96
Wire gauges 150

[^0]: ${ }^{1}$ From Everyday Uses of Portland Cement.

[^1]: ${ }^{1}$ From Everyday Uses of Portland Cement.

[^2]: ${ }^{1}$ From Everyday Uses of Portland Cement.

[^3]: ${ }^{1}$ From Everyday Uses of Portland Cement.

[^4]: ${ }^{1}$ From Everyday Uses of Portland Cement.

[^5]: ${ }^{1}$ From Everyday Uses of Portland Cement.

[^6]: ${ }^{1}$ From Everyday Uses of Portland Cement.

[^7]: ${ }^{1}$ From Everyday Uses of Portland Cement.

