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PREFACE

The following pages represent the result of several years’ experience in
presenting to students of engineering the elements of Practical Astronomy.
Although the method and the extent of the discussion have been designed to
meet the specialized requirements of such students, it is intended that the
work shall also serve as an introduction for those who desire a broader knowl
edge of the subject.

The order of treatment and the methods proposed for the solution of the
various problems have been tested sufficiently to establish their usefulness;
and yet the results are to be regarded as tentative, for they possess neither the
completeness nor the consistency which, it is hoped, will characterize a later
edition. The volume is incomplete in that it includes no discussion of the
principles and methods of the art of numerical calculation—a question funda-
mental for an appreciation of the spirit of the treatment. Difficulties inherent
in this defect may be avoided by a careful examination of an article on -
numerical calculation which appeared in Popular Astronomy, 1908, pp. 349-367.
and in the Engineering Quarterly of the University of Missouvi, v. 2, pp. 171-192.
The final edition will contain this paper, in a revised form, as a preliminary
chapter. The inconsistencies of the work are due largely to the fact that the
earlier pages were in print before the later ones were written, and to the
further fact that the manuscript was prepared with a haste that permitted no
careful interadjustment and balancing of the parts.

The main purpose of the volume is an exposition of the principal methods
of determining latitude, azimuth, and time. Generally speaking, the limit of
precision is that corresponding to the engineer’s transit or the sextant. Though
the discussion has thus been somewhat narrowly restricted, an attempt has been
made to place before the student the means of acquiring correct and complete
notions of the fundamental conceptions of the subject. But these can scarcely
be attained without some knowledge of the salient facts of Descriptive
Astronomy. For those who possess this information, the first chapter will
serve as a review; for others, it will afford an orientation sufficient for the
purpose in question. Chapter II blocks out in broad lines the solutions of the
problems of latitude, azimuth, and time. The observational details of these
solutions, with a few exceptions, are presented in Chapter IV, while Chapters
V-VII consider in succession the special adaptations of the fundamental
formule employed for the reductions. In each instance the method used in
deriving the final equations originates in the principles underlying the subject
of numerical calculation. . Chapter 1II is devoted to a theoretical considera-
tion of the subject of time. .

It is not customary to introduce historical data into texts designed for
the use of professional students; but the author has found so much that is
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helpful and stimulating in a consideration of the development of astronomical
instruments, methods, and theories that he is disposed to offer an apology for
the brevity of the historical sections rather than to attempt a justification of
their introduction into a work mainly technical in character. To exclude
historical material from scientific instruction is to disregard the most effective
means of giving the student a full appreciation of the significance and bearing
of scientific results. Brief though they are, it is hoped that these sections
may incline the reader toward wider excursions into this most fascinating field.

The numerical solutions for most of the examples have been printed in
detail in order better to illustrate both the application of the formula involved
and the operations to be performed by the computer. Care has been taken to
secure accuracy in the text as well as in the examples, but a considerable
number of errors have already been noted. For these the reader is referred
to the list of errata on page 132.

The use of the text should be supplemented by a study of the prominent
constellations. For this purpose the “Constellation Charts” published by the
editor of Popular Astronomy, Northfield, Minnesota, are as serviceable as any;
and far less expensive than the average.

My acknowledgments are due to Mr. E. S. Haynes and Mr. Harlow
Shapley, of the Department of Astronomy of the University of Missouri, for
much valuable assistance in preparing the manuscript, in checking the calcu-
lations, and in reading the proofs.

F. H. SEARES.
LAws OBSERVATORY,
UNIVERSITY OF MISSOURI,

June, 1909.
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PRACTICAL ASTRONOMY
FOR ENGINEERS

CHAPTER 1
INTRODUCTION—CELESTIAL SPHERE—COORDINATES.

1. The results of astronomical investigations.—The investigations of
the astronomer have shown that the universe consists of the sun, its attendant
planets, satellites, and planetoids; of comets, meteors, the stars, and the
nebulae. The sun, planets, satellites, and planetoids form the solar system,
and with these we must perhaps include comets and meteors. The stars
and nebulae, considered collectively, constitute the stellar system.

The sun is the central and deminating body of the solar system. It is
an intensely heated luminous mass, largely if not wholly gaseous in consti-
tution. The planets and planetoids, which are relatively cool, revolve about
the sun. The satellites revolve about the planets. The paths traced out in
the motion of revolution are ellipses. nearly circular in form, which vary
slowly in size, form, and position. One focus of each elliptical orbit coin-
cides with the center of the body about which the revolution takes place.
* Thus, in the case of the planets and planetoids, one of the foei of each orbit
coineides with the sun, while for the satellites, the coincidence is with the
planet to which they belong. In all eases the form of the path is such as
would be produced by attractive forces exerted mutually by all members of
the solar system and varying in acecordance with the Newtonian law of
gravitation. In addition to the motion of revolution, the sun, planets, and
some of the satellites at least, rotate on their axes with respect to the stars.

The planets are eight in number. In order from the sun they are:
Mereury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Their
distances from the sun range from thirty-six million to nearly three thousand
million miles. Their diameters vary from about three thousand to nearly
ninety thousand miles. Nevertheless, comparatively speaking, they are small,
for their collective mass is but little more than one one-thousandth that of
the sun.

The planetoids, also known as small planets or asteroids, number six
hundred or more, and relatively to the planets, are extremely small bodies—
so small that they are all telescopic objects and many of them can be seen
only with large and powerful instruments. Most of them are of compara-
tively recent discovery, and a considerable addition to the number already
known is made each year as the result of new discoveries. With but few
exceptions their paths lie between the orbits of Mars and Jupiter,

The only satellite requiring our attention is the moon. This revolves
about the earth with a period of about one month, and rotates on its axis
once during each revolution. Although one of the smaller bodies of the

solar system it is, on account of its nearness, one of the most striking.
1
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The solar and stellar systems are by no means coordinate parts of the
universe. On the contrary, the former, vast as it is, is but an insignificant
portion of the latter, for the sun is but a star, not very different on the
average from the other stars whose total number is to be counted by hun-
dreds of millions; and the space containing the entire solar system, includ-
ing sun, planets, satellites, and planetoids, is incredibly small as compared
with that occupied by the stellar system. To obtain a more definite notion
of the relative size of the two systems consider the following illustration:
Let the various bodies be represented by small spheres whose diameters
and mutual distances exhibit the relative dimensions and distribution through
space of the sun, planets, and stars. We shall thus have a rough model of
the universe, and to make its dimensions more readily comprehensible let
the scale be fixed by assuming that the sphere representing the sun is two
feet in diameter. The corresponding diameters of the remaining spheres and
their distances from.the central body are shown by the following table.

OBjJECT DIAMETER DisTANCE
Sun 2 feet
Mercury 0.08 inch 83 feet
Venus o.2r inch 155 feet
Earth 0.22 inch 215 feet
Mars 0.12 inch 327 feet
Jupiter 2.42 inch 1116 feet
Saturn 2.02 inch 2048 feet
Uranus 0.97 inch 4118 feet
Neptune 0.91 inch 6450 feet
Nearest Star | Unknown 11000 miles

Tt will be seen that the distance of the outermost planet from the sun
is represented in the model by about a mile and a quarter. On the same
scale, the distance of the nearest star, the only one included in the table,
is approximately equal to one-half the circumference of the earth. When
it is remembered that this object is but oue of perhaps two hundred million
stars, the vast majority of which are probably at least one hundred times
more distant, and further that each of these stars is a sun as our own sun,
the very subordinate position of the solar system becomes strikingly ap-
parent, '

The fact that the sun is similar in size and chemical composition to
millions of other stars at once raises the question as to whether they too
are not provided with attendant systems of planets and satellites. A de-
finite answer is wanting, although analogy suggests that such may well be
the case. Bodies no larger than the planets and shining only by reflected
light would be quite invisible, even in the most powerful telescopes, when
situated at distances comparable with those separating us from the stars.
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We do know, however, that in many instances two or more stars situated
relatively near each other revolve about their common center of gravity thus
forming binary or ‘multiple systems. The discovery and study of these
systems constitutes one of the most.interesting and important lines of modern
astronomical investigation.

The distances separating the various members of the solar system are
such that the motions of the planets and planetoids with respect to the sun,
and of the satellites relative to their primaries, produce rapid changes in
their positions as seen from the earth. The stars are also in motion and
the velocities involved are very large, amounting occasionally to a hundred
miles or more per second of time, but to the observer on the earth, their
relative positions remain sensibly unchanged. The distances of these ob-
jects are so great that it is only when the utmost refinement of observation
is employed and the measures are continued for months and years, that any
shift in position can be detected even for those which move most rapidly.
With minor exceptions, the configuration of the constellations is the same
as it was two thousand years ago when the observations upon which are
based the earliest known rccord of star positions were made.

To the casual observer there is not a great deal of difference in the ap-
pearance of the stars and the planets. The greater size and luminosity of
the former is offset by their greater distance. In ancient times the funda-
mental difference between them was not known, and they were distinguished
ounly by the fact that the planets change their positions, while relatively to
each other the stars are apparently fixed. In fact the word planet means
literally, a moving or wandering star, while what appeared to the early ob-
servers as the distingunishing characteristic of the stars is shown by the fre-
quent use of the expression fixed stars.

‘The nebulae are to be counted by the hundreds of thousands. They con-
sist of widely extended masses of luminous gas, apparently of simple chemical
composition. They are irregularly distributed throughout the heavens, and
present the greatest imaginable diversity of form, structure, and brightness.
Minute disc like objects. rings, double branched spirals, and voluminous
masses of extraordinarily complex structure, some of which resemble closely
the delicate high-lying clouds of our own atmosphere, are to be found among
them. The brightest are barely visible to the unaided eye, while the faintest
tax the powers of the largest modern telescopes. Their distances are of the
same order of magnitude as those of the stars, and, indeed, there appears
to be an intimate relation connecting these two classes of objects, for there
is evidence indicating that the stars have been formed from the nebulae
through soine evolutionary process the details of which are as yet not fully
understood.

‘The preceding paragraphs give the barest outline of the interpretation
which astronomers have been led to place upon the phenomena of the
heavens. The development of this conception of the structure of the universe
forms the major part of the history of astronomy during the last four cen~
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turies. Many have contributed toward the elaboration of its details, but
its more significant features are due to Copernicus, Kepler, and Newton.

Although the scheme outlined above is the only theory thus far formu-
lated which satisfactorily accounts for the celestial phenomena in their more
intricate relations, there is another conception of the universe, one far earlier
in its historical origin, which also accounts for the more striking phenomena.
This theory bears the name of the Alexandrian astronomer Ptolemy, and,
as its central idea is immediately suggested by the most casual examination
of the motions of the celestial bodies, we shall now turn to a consideration
of these motions and the simple, elementary devices which can be used for
their description.

%. The apparent phenomena of the heavens.—The observer who goes
forth under the star-lit sky finds himself enclosed by a hemispherical vault
of blue which meets in the distant horizon the seemingly flat earth upon
which he stands. The surface of the vault is strewn with points of light
of different brightness, whose number depends upon the transparency of the
atmosphere and the brightness of the moon, but is never more than two or
three thousand. A few hours observation shows that the positions of the
points are slowly shifting in a peculiar and definite manner. Those in the
east are rising from the lorizon while those in the west are setting. Those
in the northern heavens describe arcs of circles in a counter-clockwise di-
rection abont a common central point some distance above the horizon.
Their distances from each other remain unchanged. The system moves as
a whole.

The phenomenon can be described by assuming that each individual
point is fixed to a spherical surface which rotates uniformly from east to
west about an axis passing through the eye of the observer and the central
point mentioned above. The surface to which the light-points seem at-
tached is called the Celestial Sphere. 1ts radius is indefinitely great. Its
period of rotation is one day, and the resulting motion of the celestial bodies
is called the Diurnal Motion or Diurnal Rotation.

The daylight appearance of the heavens is not unlike that of the night
except that the sun, moon, and occasionally Venus, are the only bodies to
be seen in the celestial vault. They too seem to be carried along with the
celestial sphere in its rotation, rising in the east, descending toward the
west, and disappearing beneath the horizon only to rise again in the east;
but if careful observations be made it will be seen that these bodies can
not be thought of as attached to the surface of the sphere, a fact most easily
verified in the case of the moon. Observations upon successive nights show
that the position of this object changes with respect to the stars. A con-
tinnation of the observations will show that it apparently moves eastward
over the surface of the sphere along a great circle at such a rate that an
entire circuit is completed in about one month. A similar phenomenon in
the case of the sun manifests itself by the fact that the time at which any
given star rises does not remain the same, but occurs some four minutes
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earlier for each successive night. A star rising two hours after sunset on a
given night will rise approximately 1® 56™ after sunset on the following
night. The average intervals for succeeding nights will be 1 52m, 1 48, 1°
44®, ete., respectively. That the stars rise carlier on successive nights shows
that the motion of the sun over the sphere is toward the east. Its path is a
great circle called the Ecliptic, lts motion in one day is approximately one
degree, which corresponds to the daily change of four minutes in the time
of rising of the stars. This amount varies somewhat, being greatest in
January and least in July, but its average is such that a circuit of the
sphere is completed in one vear. This motion is called the Annual Motion
of the Sun.

With careful attention it will be found that a few of the star-like points
of light, half a dozen more or less, are exceptions to the general rule which
rigidly fixes these objects to the surface of the celestial sphere. These are
the planets, the wandering stars of the ancients. Their motions with respect
to the stars are complex. They have a general progressive motion toward
the east, but their paths are looped so that there are frequent changes in di-
rection and temporary reversals of motion. Two of them, Mercury and
Venus, never depart far from the sun, oscillating from one side to the other in
paths which deviate but little from the ecliptic. The paths of the others also
lie near the ecliptic, but the planets themselves are not confined to the
neighborhood of the sun.

The sun, moon, and the planets therefore appear to move over the surface
of the celestial sphere with respect to the stars, in paths which lie in or near
the ecliptic. The direetion of motion is opposite, in general, to that of the
diurnal rotation. The various motions proceed quite independently. While
the sun, moon, and planets move over the surface of the sphere, the sphere
itself rotates on its axis with a uniform angular velocity.

These elementary facts are the basis upon which the theory of Ptolemy
was developed.” It assumes the earth, fixed in position, to be the central
body of the universe. It supposes the sun, moon, and planets to revolve
about the earth in paths which are either circular or the result of a com-
bination of uniform cireular motions: and regards the stars as attached to
the surface of a sphere, which, eoncentric with the earth and enclosing the
remaining members of the system, rotates from east to west, completing a
revolution in one day.

3. Relation of the apparent phenomena to their interpretation.—The re-
lation of the apparent phenomena to the conception of Ptolemy is obvious,
and their connection with the scheme outlined in Section 1 is not difficult to
trace. The celestial sphere is purely an optical phenomenon and has no real
existence. The celestial bodies though differing greatly in distance are all
so far from the observer that the eye fails to distinguish any difference in
their distances. The blue background upon which they seem projected is
due partly to reflection, and party to selective absorption of the light rays
by the atmosphere surrounding the earth. As already explained, the stars
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are so distant that, barring a few exceptional cases, their individual motions
produce no sensible variation in their relative positions, and, even for the
exceptions, the changes are almost vanishingly small. On the other hand,
the sun, planets, and satellites are relatively near, and their motions produce
marked changes in their mutual distances and in their positions with respect
to the stars. The annual motion of the sun in the ecliptic is but a reflection
of the motion of the earth in its elliptical orbit about the sun. The monthly
motion of the moon is a consequence of its revolution about the earth, and
the complex motions of the planets are due, partly to their own revolutions
about the sun, and partly to the rapidly shifting position of the observer.
Finally, the diurnal rotation of the celestial sphere, which at first glance
seems to carry with it all the celestial bodies, is but the result of the axial
rotation of the earth.

In so far as the more obvious phenomena of the heavens are concerned
there is no contradiction involved in either of the conceptions which have
been devised for the description of their relations. That such is the case
arises from the fact that we are dealing with a question concerning changes
of relative distance and direction. Given two points, A and B, we can de-
scribe the fact that their distance apart, and the direction of the line joining
them, are changing, in either of two ways. We may think of A as fixed
and B moving, or we may think of B as fixed and A in motion. Both
methods are correct, and each is capable of giving an accurate description of
the change in relative distance and direction. So, in the case of the celestial
bodies, we may describe the variation in their distances and directions,
either by assuming the earth to be fixed with the remaining bodies in motion,
or by choosing another body, the sun, as the fixed member of the system
and describing the phenomena in terms of motions referred to it. The former
method of procedure is the starting point for the system of Ptolemy, the
latter, for that of Copernicus. Both methods are correct, and hence neither
can give rise to contradiction so long as the problem remains one of motion.

Though two ways lie open before us, both leading to the same goal, the
choice of route is by no means a matter of indifference, for one is much more
direct than the other. For the discussion of many questions the conception
of a fixed earth and rotating heavens affords a simpler method of treatment;
but, when a detailed description of the motions of the planets and satellites
is required, the Copernican system is the more useful by far, although the
geocentric theory presents no formal contradiction unless we pass beyond the
consideration of the phenomena as a case of relative motion, and attempt
their explanation as the result of the action of forces and accelerations. If
this be done, the conception which makes the earth the central body of the
universe comes into open conflict with the fundamental principles of me-
chanics. With the heliocentric theory there is no such conflict, and herein
lies the essence of the various so-called proofs of the correctness of the
Copernican system. .

The problems of practical astronomy are among those which can be
more simply treated on the basis of the geocentric theory, and we might



-1

INTRODUCTION

have proceeded to an immediate consideration of our subject from this
primitive stand-point but for the importance of emphasizing the character
of what we are about to do. For the sake of simplicity, we shall make use
of ideas which are not universally applicable throughout the science of as-
tronomy. We shall speak of a fixed earth and rotating heavens bccause it
is convenient, and for our present purpose, precise; but, in so doing, it is im-
portant always to bear in mind the more elaborate scheme outlined above,
and be ever ready to shift our view-point from the relatively simple, elemen-
tary conceptions which form a part of our daily experience, to the more ma-
jestic structure whose proportions and dimensions must ever be the delight
and wonder of the human mind.

4. Relation of the problems of practical astronomy to the phenomena
of the heavens.—The problems of practical astronomy with which we are
concerned are the determination of latitude, azimuth, time, and longitude.

(a) The latitude of a point on the earth may be defined roughly as its
angular distance from the equator. It can be shown that this is equal to
the complement of the inclination of the rotation axis of the celestial sphere
to the direction of the plumb line at the point considered. If the inclination
of the axis to the plumb line can be determined, the latitude at once becomes
known.

(b) The azimuth of a point is the angle included between the vertical
plane containing the rotation axis of the celestial sphere and the vertical
plane through the object. If the orientation of the vertical plane through
the axis of the sphere can be found, the determination of the azimuth of the
point becomes but a matter of instrumental manipulation.

(¢) Time measurement is based upon the diurnal rotation of the earth,
which appears to us in reflection as the diurnal rotation of the celestial
sphere. The rotation of the celestial sphere can therefore be made the basis
of time measurement. o determine the time at any instant, we have
only to find the angle through which the sphere has rotated since some
specified initial epoch.

(d) As will be scen later, the determination of the difference in longi-
tude of two points is equivalent to finding the difference of their local times.
The solution of the longitude problem therefore involves the application of
the methods used for the derivation of time, togéther with some means of
comparing the local times of the two places. The latter can be accomplished
by purely mechanical means, quite independently of any astronomical
phenomena, although such phenomena are occasionally used for the pur-
pose.

In brief, therefore, the solution of these four fundamental problems
can be connected directly with certain fundamental celestial phenomena.
Both latitnde and azimuth depend upon the position of the rotation axis of
the celestial sphere, the former, upon its inclination to the direction of the
plumb line, the latter, upon the orientation of the vertical plane passing
through it; while the determination of time and longitude involve the posi-
tion of the sphere as affected by diurnal rotation.
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A word more, and we are immediately led to the detailed consideration
of our subject: The solution of our problems requires a knowledge of the
position of the axis of the celestial sphere and of the orientation of the
sphere about that axis. We meet at the outset a difficulty in that the sphere
and its axis have no objective existence. Since our observations and meas-
urements must be upon things which have visible existence, the stars for
example, we are forced to an indirect method of procedure. We must make
our measurements upon the various celestial bodies and then, from the
known location of these objects on the sphere, derive the position of the
sphere and its axis. This raises at once the general question of codrdinates
and codrdinate systems to which we now give our attention.

5. Coordinates and Coordinate Systems.—Position is a relative term,
We cannot specify the position of any object without referring it, either
explicitly or implicitly, to some other object whose location is assumed to
be known. The designation of the position of a point on the surface of
a sphere is most conveniently accomplished by a reference to two great
circles that intersect at right angles. For example, the position of a point
on the earth is fixed by referring it to the equator and some meridian
as that of Greenwich or Washington. The angular distance of the point
from the circles of reference are its codrdinates—in this case, longitude and
latitude.

Our first step, therefore, in the establishment of coordinate systems for
the celestial sphere, is the definition of the points and circles of reference
which will form the foundation for the various systems.

The Direction of the Plumb Line, or the Direction due to Gravity,
produced indefinitely in both directions, pierces the celestial sphere above in
the Zenith, and below, in the Nadir. The plane through the point of obser-
vation, perpendicular to the direction of the plumb line, is called the Hor-
izon Plane. Produced indefinitely in all directions, it cuts the celestial
sphere in a great circle called the Horizon. Since the radius of the celestial
sphere is indefinitely great as compared with the radius of the earth, a
plane through the center of the earth perpendicular to the direction of
gravity will also cut the celestial sphere in the horizon. For many pur-
poses it is more convenient to consider this plane as the horizon plane.

The celestial sphere is pierced by its axis of rotation in two points
called the North Celestial Pole and the South Celestial Pole, or more briefly,
the North Pole and the South Pole, respectively. It is evident from the
relations between the phenomena and their interpretation traced in Section
3 that the axis of the celestial sphere must coincide with the earth’s axis of
rotation.

Great circles through the zenith and nadir are called Vertical Circles.
Their planes are perpendicular to the horizon plane. The vertical circle
passing through the celestial poles is called the Celestial Meridian, or simply,
the Meridian. Its plane coincides with the plane of the terrestrial meridian
through the point of observation.
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The vertical circle intersecting the meridian at an angle of ninety degrees
is called the Prime Vertical. The intersections of the meridian and prime
vertical with the horizon are the cardinal points, North, East, South, and
West.

Small circles parallel to the horizon are called Circles of Altitude or
Almucanters.

Great circles through the poles of the celestial sphere are called Hour
Circles.

The great circle equatorial to the poles of the celestial sphere is called
the Celestial Equator. The plane of the celestial equator coincides with
the plane of the terrestrial equator.

Small circles parallel to the celestial equator are called Circles of Dec-
lination.

The ecliptic, already defined as the great circle of the celestial sphere fol-
lowed by the sun in its annual motion among the stars, is inclined to the
celestial equator at an angle of about 23} degrees. The points of inter-
section of the ecliptic and the celestial equator are the Equinoxes, Vernal
and Autumnal, respectively. The Vernal Equinox is that point at which
the sun in its annual motion passes from the south to the north side of the
equator; the Autumnal Equinox, that at which it passes from the north to
the south.

The points on the ecliptic midway between the equinoxes are called the
Solstices, Summer and Winter, respectively. The Summer Solstice lies to
the north of the celestial equator, the Winter Solstice, to the south.

The coordinate systems most frequently used in astronomy present
certain features in common, and a clear understanding of the underlying
principles will greatly aid in acquiring a knowledge of the various systems.
At the basis of each system is a Fundamental Great Circle. Great circles
perpendicular to this are called Secondary Circles. One of these, called the
Principal Secondary, and the fundamental great circle, form the reference
circles of the system.

The Primary Coordinate is measured along the fundamental great circle
from the principal secondary to the secondary passing through the object
to which the coordinates refer. The Secondary Coordinate is measured along
the secondary passing through the object from the fundamental great circle
to the object itself. The fundamental great circle and the principal secondary
intersect in two points. The intersection from which the primary coérdinate
is measured, and the direction of measurement of both coérdinates, must be
specified.

In practical astronomy three systems of ‘coordinates are required. The
details are shown by the following table. The symbol used to designate
each coodrdinate is written after its name:in the table.

It is sometimes more convenient to use as secondary coordinate the dis-
tance of the object from one of the poles of the fundamental great circle.
Thus in System I we shall frequently use the distance of an object from
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COORDINATE SYSTEMS.
e FUNDAMENTAL | SECONDARY PriNciPAL COBRDINATES
YSTEM | Great CIRCLE CIRCLES SECONDARY PRIMARY SECONDARY
I Horizon Vertical Merldian Azimuth — 4 Altitude = 4
Circles - from South | - from Horizon
loward West upward
11 Celestial Hour I Hour Circle | Hour Angle = ¢ | Declination = ¢
Equator Circles coinciding | 4 from Meridian | + from Equator
with toward West toward North;
Meridian — toward South
11 “ « Hour Circle | Right Ascension | s i
through the = gq - from
Vernal Vernal Equinox
Equinox toward East

the zenith, its Zenith Distance =z, instead of the altitude. Similarly, in
Systems II and III we shall occasionally find that an object’s distance from
the north celestial pole, its North Polar Distance — =, is more convenient than

declination. Between these alternative coordinates we have the relations:
z2=00°—/ (1)
7T =00° — ¢ (2)

The details of the various systems are also shown graphically in Fig. 1,
which represents an orthogonal projection of the celestial sphere upon the.
horizon plane. In this projection all vertical circles become straight lines.
All circles inclined to the horizon at an angle other than 90° become ellipses.
The horizon, and all circles parallel to the horizon plane, remain circles.

6. Characteristics of the Three Systems. Changes in the Coordinates.—
Coordinates are used both for the location of objects on the sphere by actual
observation, and as a means of stating positions predicted on the basis of
the laws which describe the motions of the various celestial bodies. The
practical astronomer and the engineer have occasion to use them in both
ways. It is essential that there be a clear understanding of the relative
advantages of the various systems, of the changes which may occur in the
different coodrdinates, and of the relations of the systems to cach other.
We now proceed to a discussion of the first two of these points. The rela-
tions between the systems will be discussed in Chapter II.

None of the coordinates defined above is absolutely constant for any
of the celestial bodies. The changes which occtir arise as the result of:

(a) a change in the position of the object,

(b) a change in the position of the reference circles,

{c) a change in the position of the observer,

(d) a bending of the light rays by the atmosphere surrounding the earth.
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Fig. 1.
Point 7 = Zealth
Circle NESWH Horizon
Point P = North Celestial Pole
Line N ZS — Celestial Meridian
Line WZE Prime Vertical

Polnts N, E, S, W, = Cardinal Points
Ellipse WME = Celestial Equator

Ellipse wme = Ecliptic
Point v Vernal Equinox
Point o ~ Any Celestial Object
Line ZOr — Vertical Circle through O
Arc POp — Hour Circle through O

Arc Sr = Angle SZO Azimuth ot O = 4 Gobcaifatos
Line rO = Altitude of O = £ Systemi 1
Line ZO — Zenith Distance of O — 2

Arc Mp— Angle ZPO — Hour Angle of O =¢ Covr ik it
Arc 20 = Declination of'O =4 Systsmm 11
Arc PO = North Polar Distance of O =7 |
Arc Vp = Right Ascenslon of O =« Codrdinates

o and » same as in System II }System 111

Any or all of these causes may enter to affect the position of an object,
with the result that the number of possible variations with which we have
to deal is considerable. In some instances, however, the variations are small
quantities—so small that they can be disregarded in all but the most precise
investigations. The small changes which cannot be neglected entirely are
regarded as corrections, which, applied to the coordinates corresponding to
a given position of the object, reference circles, and observer, give their values
for some other position.

]
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The bending of the light rays by the earth’s atmosphere, a phenomenon
known as Refraction, affects all of the codrdinates but azimuth.! e
amount of the refraction, which is always small, depends upon the conditions
under which the object is observed. The allowance for its influence is there-
fore made by each individual observer. The method of determining its
amount will be discussed in Section 8.

In the first system, the reference circles are fixed for any given point
of observation. The azimuth and altitude of terrestrial objects are therefore
constant, unless the point of observation is shifted. For celestial bodies, on
the contrary, they are continuously varying. The positions of all such objects
are rapidly and constantly changing with respect to the circles of reference,
as a result of the diurnal rotation. For the nearer bodies, an additional
complexity is introduced by their motions over the sphere and the changing
position of the earth in its orbit. It appears, therefore, that azimuth and
altitude are of special service in surveying and in geodetic operations, but
that their range of advantageous application in connection with celestial
bodies is limited, for not only are the azimuth and altitude of a celestial object
constantly changing, but, for any given instant, their values are different
for all points on the earth. But in spite of this disadvantage, altitude, at least,
is of great importance. Its determination in the case of a celestial body
affords convenient methods of solving two of the fundamental problems with
which we are concerned, viz., latitude and time. Since the fundamental
circle in the first system depends only upon the direction of the plumb
line, the instrument required for the measurment of altitude is extremely
simple, both in construction and use. In consequence, altitude is the most
readily determined of all the various codrdinates. The observational part
of the determination of latitude and time is therefore frequently based upon
measnres of altitude, the final results being derived from the observed data
by a process of coordinate transformation to be developed in Chapter 11

In the third system, the reference circles share in the diurnal rotation.
Although not absolutely fixed on the sphere, their motions are so slow that
the codrdinates of objects, which, like the stars, are sensibly fixed, remain
practically constant for considerable intervals of time. Right ascension and
declination are therefore convenient for listing or cataloguing the positions
of the stars. Catalogues of this sort are not only serviceable for long periods
of time, but can also be used at all points on the earth. The latter circum-

stance renders right ascension and declination an advantageous means of
‘ expressing the positions of bodies not fixed on the sphere. For such objects
we have only to replace the single pair of codrdinates which suffices for a
star, by a series giving the right ascension and declination for equi-distant
intervals of time. Such a list of positions is called an Ephemeris. If the
time intervals separating the successive epochs for which the codrdinates are
given be properly chosen, the position can be found for any intermediate

IThe azimuth of objects near the horizon is also affected by refraction. The magnitude
of the change in the cotdrdinate is very small, however.
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instant by a process of interpolation. The interval selected for the tabula-
tion is determined by the rapidity and regularity with which the codrdinates
change. In the case of the sun, one day intervals are sufficient, but for the
moon the positions must be given for each hour. For the more distant
planets, whose motions are relatively slow, the interval can be increased
to several days.

Collections of ephemerides of the sun, moon, and the planets, together
with the right ascensions and declinations of the brighter stars, are pub-
lished annually by the governments of the more important nations. That
issued by our own is prepared in the Nautical Almanac Office at Washington,
and bears the title “American Ephemeris and Nautical Almanac.”

It is necessary to examine the character of the variations produced
in the codrdinates by the slow motion of the reference circles mentioned
above. The mutual attractions of the sun, moon; and the planets produce
small changes in the positions of the equator and ecliptic. The motion of
the ecliptic is relatively unimportant. That of the equator is best understood
by tracing the changes in position of the earth’s axis of rotation. As the
earth moves in its orbit, the axis does not remain absolutely parallel to a
given initial position, but describes a conical surface. The change in the
direction of the axis takes place very slowly, about 26000 years being required
for it to return to its original position. During this interval the inclination
of the equator to the ecliptic never deviates greatly from its mean value
of about 23}°. Consequently, the celestial pole appears to move over
the sphere in a path closely approximating a circle with the pole of the
ecliptic as center. The direction of the motion is counter-clockwise, and
the radius of the circle equal to the inclination of the equator to the ecliptic.
The actual motion of the pole is very complex; but its characteristic features
are the progressive circular component already mentioned, and a transverse
component which causes it to oscillate or nod back and forth with respect
to the pole of the ecliptic. The result is a vibratory motion of the equator
about a mean position called the Mean Equator, the mean equator itself
slowly revolving about a line perpendicular to the plane of the ecliptic.
The motion of the equator combined with that of the ecliptic produces an
oscillation of the equinox about a mean position called the Mean Vernal
Equinox, which, in turn, has a slow progressive motion toward the west.
The resulting changes in the right ascension and declination are divided into
two classes, called precession and. nutation, respectively. Precession is that
part of the change in the codrdinates arising from the progressive westward
motion of the mean vernal equinox, while Nutation is the result of the
oscillatory or periodic motion of the true vernal equinox with respect to the
mean equinox.

The amount of the preccssion and nutation depends upon the position
of the star. For an object on the equator the maximum value of the preces-
sion in right ascension for one vear is about forty-five seconds of arc or three
seconds of time. For stars near the pole it is much larger, amounting in
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the case of Polaris, for example, to about 2%s. The annual precession
in declination is relatively small, and does not exceed 20" for any of the
stars.

There remains to be considered the effect of the object’s own motion
and that of the observer. We have already-seen how the changes arising
from the motion of such objects as the sun, moon, and the planets can be
expressed by means of an ephemeris giving the right ascension and declina-
tion for equi-distant intervals of time. For the stars the matter is much
simpler. Their motions over the sphere are so slight as to be entirely inap-
preciable in the vast majority of cases, and for those in which the change
cannot be disregarded, it is possible to assume that the motion is uniform
and along the arc of a great circle. The change in one year is called the
star’s Proper Motion. If the right ascension and declination are given for
any instant, ¢, and it is desired to find their values as affected by proper
motion for any other instant #, it is only necessary to add to the given
coordinates the products of the proper motion in right ascension and declina-
tion into the interval /— /¢ expressed in years. The position of a star for a
given initial epoch and its proper motion are therefore all that is required
for the determination of its position at any other epoch, in so far as the
position is dependent upon the star’s own motion.

The motion of the observer may affect the position of a celestial object
in two ways: First, the actual change in his position due to the diurnal
and annual motions of the earth causes a change in the codrdinates called
Parallactic Displacement. Second, the fact that the observer is in motion
at the instant of observation may produce an apparent change in the direction
in which the object is seen, in the same way that the direction of the wind,
as noted from a moving boat or train, appears different from that when the
observer is at rest. The change thus produced .is called Aberration, and is
carefully to be distinguished from the parallactic displacement. Aberration
depends only upon the observer’s velocity, and not at all upon his position,
except as position may determine the direction and magnitude of the motion.
Parallactic displacement, on the contrary, depends on the distance over
which the observer actually moves.

For the nearer bodies the parallactic displacement due to the earth’s
annual motion is large, and is included with the effect of the object’s own
motion in the ephemeris which expresses its positions. The variation arising
from the rotation of the earth on its axis is far smaller, and can always
be treated as a correction. In the case of the stars, the distances are so
great that the maximum known parallactic displacement due to the earth’s
annual motion amounts to only three-quarters of a second of arc. For all
but a few, a shift in the position of the earth from one side of its orbit to
the other, a distance of more than 180,000,000 miles, reveals no measurable
change in the coérdinates. The displacement due to the earth’s rotation is
of course altogether inappreciable.

Parallactic displacement is usually called Parallax, and, when so spoken
of, signifies specifically, the correction which must be applied to the observed
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coordinates of an object in order to reduce them to what they would be
were the object seen from a standard position. For the stars, the standard
position is the center of the sun: for all other bodies, the center of the carth.

Aberration is due to the fact that the velocity of the observer is a quantity
of appreciable magnitude as compared with the velocity of light. Ior all
stars not lying in the direction of the earth’s orbital motion, the telescope
must be inclined slightly in advance of the star’s real position in order that
its rays may pass centrally through both objective and eve-piece of the
instrument. The star thus appears displaced in the direction of the ob-
server’s motion. The amount of the displacement is a maximum when the
direction of the motion is at right angles to the direction of the star, and
equal to zero when the two directions coincide. The rotation of the ecarth
on its axis produces a similar displacement. The Diurnal Aberration is so
minute, however, that it requires consideration only in the most refined
observations. '

The coordinates of the second system possess, to a certain degree, the
properties of those of both Systems I and IIl. Hour angle, like azimuth
and altitude, is a coordinate which varies continuously and rapidly, and is
dependent on the position of the observer on the carth. The secondary
coordinate, declination, is the same as in System III, and the remarks con-
cerning it made above, apply with equal force here. The second system
is of prime importance in the solution of the problems of practical astronomy,
for it serves as an intermediate step in passing from System I to System III,
or vice versa. It is also the basis for the construction of the equatorial
mounting for telescopes, the form most commonly used in astronomical inves-
tigations. .

7. Summary. Method of treating the corrections in practice.—It is
to be remembered, therefore, that the azimuth and altitude of terrestrial
objects are constant for a given point of observation, but change as the
observer moves over the surface of the earth. For celestial objects they
are not only different for each successive instant, but also, for the same
instant, they are different for different points of observation. Right ascension
and declination are sensibly the same for all points on the eartli, and, in con-
sequence, are used in the construction of catalogues and ephemerides. One
pair of values serves to fix the position of a star for a long period of time.
but for the sun, the moon, and the planets an ephemeris is required.

The corrections to which the codrdinates are subject are proper motion,
precession, nutation, annual aberration, diurnal aberration, parallax, stellar
or planetary as the case may be, and refraction. Right ascension and dechi-
nation are affected by all, but only planectary parallax, refraction, and diurnal
aberration arise in practice in connection with azimuth and altitude, and
of these three the last is usually negligible. In all cases these three are
dependent upon local conditions, and consequently, their calculation and
application are left to the observer. Since it is impracticable to include
them in catalogue and ephemeris positions of right ascension and declination,
there remains to be considered, as affecting such positions, proper motion,

»
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precession, nutation,,annual aberration, and stellar parallax. The last is so
rarely of significance in practical astronomy that it can be disregarded. As
for the others, it is sometimes necessary to know their collective effect, and
sometimes, the influence of the individual variations. It thus happeuns
that we have different kinds of positions or places, known as mean place,
true place, and apparent place. ,

The mean place of an object at any instant is its position referred to
the mean equator and mean equinox of that instant. The mean place is
affected by proper motion and precession.

The true place of an object at any instant is its position referred to the
trune equator and true equinox of that instant, that is, to the instantaneous
positions of the actual equator and equinox. The true place is equal to the
mean place plus the variation due to the nutation.

The apparent place of an object at any instant is equal to the true place
at that instant plus the effect of annual aberration. It expresses the location
of the object as it would appear to an observer sitnated at the center of
the earth.

The positions to be found in star catalogues are mean places, and are -
referred to the mean equator and equinox for the beginning of some year,
for example, 1855.0 or 1900.0. Such catalogues usually contain the data neces-
sary for the determination of the precession corrections which must be applied
to the coordinates in deriving the mean place for any other epoch. Modern
catalogues also contain the value of the proper motion when appreciable.
The nutation and annual aberration corrections are found from data given
by the various annual ephemerides. The ephemerides themselves contain
mean places for several hundred of the brighter stars; but the engineer is
rarely concerned with these, or with the catalogue positions mentioned
above, for apparent places are also given for the ephemeris stars, and these
are all that he needs. The apparent right ascension and declination are
given for each star for every ten days throughout the year. Apparent posi-
tions are also given by the ephemeris for the sun, the moon, and the planets,
for suitably chosen intervals. Positions for all of these bodies for dates
intermediate to the ephemeris epochs can be found by interpolation. With
this arrangement, the special calculation of the various corrections necessary
for the formation of apparent places is avoided entirely in the discussion of
all ordinary observations. The observer must understand the origin and
significance of all of the changes which occur in the codrdinates, in order
to use the ephemeris intelligently; but he has occasion to calculate specially
only those which depend upon the local conditions affecting the observations,
viz., diurnal aberration, parallax, and refraction. The first we disregard on
account of its minuteness. There remains for the consideration of the engi-
neer only refraction and parallax. The following is a brief statement of
the methods by which their numerical values can be derived.

8. Refraction.—The velocity of light depends upon the density of the
medium which it traverses. When a luminous disturbance passes from a
medinm of one density into that of another, the resulting change in velocity
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shifts the direction of the wave front, unless the direction of propagation is
perpendicular to the surface separating the two media. Stated otherwise,
a light ray passing from one medium into another of different density under-
goes a change in direction, unless the direction of incidence is normal to
the bounding surface. This change in direction is called Refraction. The
incident ray, the refracted ray, and the normal to the bounding surface at
the point of incidence lie in a plane. When the density of the second medium
is greater than that of the first, the ray is bent toward the normal. When
the conditions of density are reversed, the direction of bending is away from
the normal.

The light rays from a celestial object which reach the eye of the observer
must penetrate the atmosphere surrounding the earth. They pass from a
region of zero density into one whose density gradually increases from the
smallest conceivable amount to a maximum which occurs at the surface of
the earth. The rays undergo a change in direction as indicated above. The
effect is to increase the altitude of all celestial bodies, without sensibly
changing their azimuth unless they are very near the horizon. For the
case of two media of homogeneons density, the phenomenon of refraction
is simple; but here, it is extremely complex and its amount difficult of
determination. The course of the ray which reaches the observer is affected
not only by its initial direction, but also by the refraction which it suffers
at each successive point in its path through the atmosphere. The latter is
determined by the density of the different strata, which, in turn, is a function
of the altitude. This brings us to the most serious difficulty in the problem,
for our knowledge of the constitution of the atmosphere, especially in its
upper regions, is imperfect. To proceed, an assumption must be made con-
cerning the nature of the relation connecting density and altitude. This,
combined with the fundamental principles enunciated above, forms the basis
of an elaborate mathematical discussion which results in an expression giving
the refraction as a function of the zenith distance of the object, and the
temperature of the air and the barometric pressure at the point of observa-
tion. This expression is complicated and cumbersome, disadvantages over-
come, in a measure, by the reduction of its various parts to tabular form in
accordance with a method devised by Bessel. With this arrangement, the
determination of the refraction involves the interpolation and combination
of a half dozen logarithms, more or less.

Various hypotheses concerning the relation between density and altitude
have been made, each of which gives rise to a distinct theory of refraction,
although the differences between the corresponding numerical results are
slight. That generally used is due to Gylden. The tables based upon this
theory are known as the Pulkova Refraction Tables, and can be found in the
more comprehensive works on spherical and practical astronomy.

When the highest precision is desired these tables or their equivalent
must be used, but for many purposes a simpler procedure will suffice. For

example, the approximate expression,
2
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,o 9830
460 +¢

tan 2’ (3)

derived empirically from the results given by the theoretical development,!
can be used for the calculation of the refraction, 7, when the altitude is not
less than 15°. In this expression, & is the barometer reading in inches; ¢,
the temperature in degrees Fahrenheit; 2, the observed or apparent zenith
distance. The refraction is given in seconds of arc. The error of the result
will rarely exceed one second.

For rough work the matter can be still further simplified by using mean
values for 4 and z. For &= 29.5 inches, and # — 50° Fahr. the coefficient
of (3) is 57", whence

= 57'; tan z’. (4)

The values of » given by (4) can be derived from columns three and
eight of Table I with either the apparent altitude or the apparent zenith
distance as argument. For altitudes greater than 20° and normal atmospheric
conditions, the error will seldom exceed a tenth of a minute of arc.

9. Parallax.—The parallax of an object is equal to the angle at the
object subtended by the line joining the center of the earth and the point

z

Fig. 2

of observation. Thus, in Fig. 2, the circle represents a section of the earth
coinciding with the vertical plane through the object. C is the center of
the earth, O the point of observation, Z the zenith, and 5 the object. The
angles 2’ and z are the apparent and geocentric zenith distances, respectively.
Their difference, which is equal to the angle p, is the parallax of 5.

1This form was derived by Comstock, Bulletin of the University of Wisconsin, Science
Series, v. 1, p. 60. :
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We have-the relations
g=2'—p , (s)
h=n+p, (6)

where %' and /% are the apparent and geocentric altitudes, respectively. The
effect of parallax, therefore, is to increase zenith distances and decrease
altitudes,—just the opposite of that produced by refraction.

The parallax depends upon p the radius of the earth, » the distance
of the object from the earth’s center, and the zenith distance 2’ or 5. From
the triangle OCB

rsinp=psinz’,

The angle p does not exceed a few seconds of arc for any celestial body

excepting the moon. For this its maximum value is about 1°. We therefore
write :

? =£—sin 2. )

The coefficient p /7, the value of the parallax when the body is the
horizon, is called the Horizontal Parallax. Denoting its value by, we have

pP=2p,sinz. (8

The value of p, varies with the distance of the object. It is tabulated
in the Awmerican Ephemeris for the sun (p. 285), the moon (page IV of
each month), and the planets (pp. 218-249). For the sun, however, the
change in p, is so slight that we may use its mean value of 878, whence

p=2818sinz (9)

The error of this expression never exceeds 073. The values of p corre-
sponding to (9) can be interpolated from columns four and nine of Table I.

For approximate work the solar parallax is conveniently combined with
the mean refraction given by (4). The difference of the two corrections
can be derived from the fifth and tentli columns of Table I with the apparent
altitude or the apparent zenith distance as argument.

The preceding discussion assumes that the earth is a sphere. On this
basis the parallax in azimuth is zero. Actnally, the earth is spheroidal
in form, whence it results that the radius, p, and consequently the angle
OBC, do not, in general, coincide with the vertical plane through B for the
plumb line does not point toward the center of the earth, except at the
poles and at points on the equator. The actual parallax in zenith distance
is therefore slightly different from that given by (9), and in addition, there
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is a minute component affecting the azimuth. The influence of the spheroidal
form of the earth is so slight, however, that it requires consideration only
in the most precise investigations.

Finally, it should be remarked that the apparent zenith distance used
for the calculation of the parallax is the observed zenith distance freed from
refraction; that is, of the two corrections, refraction is to be applied first:
The zenith distance thus corrected serves for the calculation of the parallax.

For the first system of coordinates, therefore, and the limits of precision
here considered, the influence of both refraction and parallax is confined to
the coordinate altitude, or its alternative, zenith distance. Hour angle, right
ascension, and declination are all affected by both refraction and parallax,
but, as these codrdinates do not appear as observed quantities in the problems
with which we are concerned, the development of the expressions which give
the corresponding corrections is omitted.

TABLE I. MEeaN REFRACTION AND SOLAR PARALLAX

Barometer, 29.5 in.; Thermometer, 50° Fahr.

A’ F » ? r—p k' z’ v 2 r-p
15° 715 3.5 875 34 40° 50° i o UG iAo
20 70 2.6 8.3 2.3 50 40 0.8 5.7 0.7
25 65 290 8.0 1.9 60 30 0.6 4.4 | 0.5
30 60 1.6 7.6 1.5 70 20 0.4 3.0 | @)
35 55 153 7.2 Ra%) 8o 10 0.2 1.5 o.1
40 50 1.1 6.7 1.0 90 o o.o 0.0 0.0

The Refraction, », and the Refraction—Solar Parallax, »- 2, are to be subtracted from 4/,
or added to z’.
The Solar Parallax, p, is to be added 10 %', or subtracted from z’.



CHAPTER 1II

FORMULZE OF SPHERICAL TRlGONOMETRY—TRANSFORMATION
OF COORDINATES—GENERAL DISCUSSION
OF PROBLEMS.

10. The fundamental formula of spherical trigonometry.—Transform-
ations of codrdinates are of fundamental importance for the solution of most
of the problems of spherical and practical astronomy. The relations between
the different systems should therefore receive careful attention. The more
complicated transformations require the solution of a spherical triangle, and,
because of this fact, a brief exposition of the fundamental formula of spherical
trigonometry is introduced at this point.

Fig. 3.

Let ABC, Fig. 3, be any spherical triangle. Denote its angles by 4, B,
and C; and its sides by @,4, andc. With the center of the sphere, O, as origin,
construct a set of rectangular codrdinate axes, XVZ, such that the XV plane
contains the side ¢, and the X axis passes through the vertex B. Let the rec-
tangular coordinates of the vertex C be z, , and 2. Their values in terms of
the parts of the triangle and the radius of the sphere are

x =rcosa,
= 7 sin @ cos B, (10)
2 =rsina sin B.

Construct a second set of axes, X'V'Z, with the origin at O, the XY plane
coinciding with the side ¢, and the X axis passing through the vertex 4. Let
the codrdinates of C referred to this system be 2/, y, and 2. We then have

25— rlces b
¥ =—rsinbd cos 4, (11)
Z= rsin b sin 4.

The second set of rectangular axes can be derived from the first by rotat-

ing the first about the Z axis through the angle ¢. The codrdinates of the first
21
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system can therefore be expressed in terms of those of the second by means of
the relations

x = A cosc—y'sine,
y=4xsin ¢ + ¥ cose, (12)
IS ==Vzp

Substituting into equations (12) the values of z, 3, 2, ¥, ¥, and z from (10)
and (11), and dropping the common factor », we obtain the desired relations

cosa = cos&cosc + sin b sin ccos 4, (13)
sin @ cos B = cos & sin ¢ — sin écos ccos 4, (14)
sin @sin B = sin &sin A. (15)

These equations express relations between five of the six parts of the
spherical triangle ABC, and are independent of the rectangular codrdinate
axes introduced for their derivation. Although the parts of the triangle in
Fig. 3 are all less than 9go°, the method of development and the results are
general, and apply to all spherical triangles. These relations are the funda-
mental formule of spherical trigonometry. From them all other spherical
trigonometry formule can be derived. They determine without ambiguity a
side and an adjacent angle of a spherical triangle in terms of the two remain-
ing sides and the angle included between them, provided the algebraic sign of
the sine of the required side, or of the sine or cosine of the required angle,
be known. Otherwise there will be two solutions.

Equations (13)-(15) are conveniently arranged as they stand if addition-
subtraction logarithms are to be employed for their calculation. For use with
the ordinary logarithmic tables, they should be transformed so as to reduce the
addition and subtraction terms in the right members of (13) and (14) to single
terms (NVum. Cal. pp. 13 and 14). .

Aside from the case covered by equations (13)—(15), two others occur in
connection with the problems of practical astronomy, viz., that in which the
given parts are two sides of a spherical triangle, and an angle opposite one of
them, to find the third side; and that in which the three sides are given, to
find one or more of the angles. The first of these can be solved for those
cases which arise in astronomical practice by a simple transformation of (13),
the details of which will be considered in connection with the determination
of latitude. A solution for the third case can also be found by a rearrange-
ment of the terms of (13). Thus,

CcOS @ — cO0s & cos ¢
cospAN=— : (16)

sin & sin ¢

Similar expressions for the angles B and C can be derived by a simple permu-
tation of the letters in (16). Equation (16) affords a theoretically accurate
solution of the problem; but, practically, the application of expressions of this
form is limited on account of the necessity of determining the angles from
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their cosines. For numerical calculation it is important to have formula such
that the angles 4, B, and C can be interpolated from their tangents (Vum.
Cal. pp. 3 and 14). The desired relations can be derived by a transformation
of (16), (Chauvenet, Spherical Trigonometry, §§ 12 and 16-18), giving

sin (s—=5) sin (s—¢) (17)

sin s sin (s-a) '

tan*y; A =

in which s = % (¢ + 6 +¢). Similar expressions for B and C can be derived
by a permutation of the letters of (17). When the three angles of a spherical
triangle are to be determined simultancously, it is advantageous to introduce
the auxiliary X, defined by the relation

o sin (s—a) sin (s— ) sin (s—c)' (18)

K* :
sin §

Substituting (18) into (17), we find

tan4 A = e (19)

“sin (s—-a)

The expressions tan %8 and tan 4 C are similar in form.
Collecting results, the complete formula for the calculation of the three
angles of a spherical triangle from the three sides are

s=Y%(a+ b6+ o).
Form s-a, s- 4, and s-¢, and check by

(s-a) + (s-8) + (s-c) = s

B = sin (s—a) sin (s— &) sin (s—¢) (20)
i sin s
K K K
tan%A=m,.tan%B=m, tanAC:m,
Check: tan% A tan % Btan % C= S—}%‘_

Two solutions are possible. The ambiguity is removed if the quadrant of
one of the half-angles of the triangie is known.

11. Relative positions of the reference circles of the three coordinate
systems.—The transformation of the codrdinates of one system into those of
another requires a knowledge of the relative positions of the reference circles
of the various systems.

In the case of Systems I and II the principal secondary circles coincide
by definition. The fundamental great circles are inclined to each other at an
angle which is constant and equal to the complement of the latitude of the
place of observation. The proof of this statement can be derived from Fig. 4,
which represents a section through the earth and the celestial sphere in the
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plane of the meridian of the point of observation, 0. The outer circle repre-
sents the celestial meridian, and the inner, the terrestrial meridian of O, the
latter being greatly exaggerated with respect to the former. Z and NV are the
zenith and the nadir; 2 and 7, the poles of the celestial sphere; p and p', the
poles of the earth; AH and EF, the lines of intersection of the planes of
horizon and equator, respectively, with the meridian plane. The plane of the
celestial equator coincides with that of the terrestrial equator, which cuts the
terrestrial meridian in ez,

N

Fig. 4.

Now, by definition the arc ¢O measures the latitude, ¢, of the point O
But,

Arc EZ = Arc ¢0 = ¢, (21)
whence
HE = g0° — ¢, (22)

which was to be proved. It thus appears that the second system can be

derived from the first by rotating the first about an axis passing through the

east and west points, through an angle equal to the co-latitude of the place.
It is to be noted, further, that

Arc ZP = go° — ¢ = Co-latitude of?0, (23)
and
ATcHP = ¢ (24)

From (21) and (24) it follows that the latitude of any point on the earth
is equal to the declination of the zenith of that point. Itis also equal to
the altitude of the pole as seen from the given point.

Systems 1I and III have the same fundamental great circle, viz., the
celestial equator. The principal secondary of the third system does not main-
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tain a fixed position with respect to that of the first, but rotates uniformly in a
clockwise direction as seen from the north side of the equator. :

Let Fig. 5 represent an orthogonal projection of the celestial sphere upon
the plane of the equator as seen from the North. P is the north celestial pole;
M, the point where the meridian of O intersects the celestial equator; and V,
the vernal equinox. The arc MBV therefore measures the instantaneous
position of the principal secondary of the third system with respect to that of
the first. This arc is equal to the hour angle of the vernal equinox, or the
right ascension of the observer’s meridian. It is called the Sidereal Time =§.
We thus have the following important definition:

The sidereal time at any instant is equal to the hour angle of the
vernal equinox at that instant. It is also equal to the right ascension of
the observer’s meridian at the instant considered.

It follows, therefore, that the third system can be derived from the second
by rotating the second system about the axis of the celestial sphere through
an angle equal to the sidereal time.

Finally, the third system can be derived from the first by rotating the first
into the position of the second, and thence into the position of the third.

Briefly stated, the transformation of codrdinates involves the determina-
tion of the changes arising in the codrdinates as a result of a rotation of the
various systems in the manner specified above. It is at once evident that the
transformation of azimuth and altitude into hour angle and declination requires
a knowledge of the latitude; of hourangle and declination into right ascension
and declination, a knowledge of the sidereal time; while, to pass from azimuth
and altitude to right ascension and declination, both latitude and sidereal time
are required. It is scarcely necessary to add that the reverse transformations
demand the same knowledge.

12. Transformation of azimuth and zenith distance into hour angle
and declination.—The transformation requires the solution of the spherical
triangle ZPO, Fig. 1, p. 11. The essential part of Fig. 1 is reproduced in Fig. 6
upon an enlarged scale. An inspection of the notation of p. 11 shows that the
parts of the triangle ZP0O can be designated as shown in Fig. 6.
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Assuming the latitude, ¢, to be known, it is seen that the transformation
in question involves the determination of the side 7 = go® — ¢ and the adja-
cent angle Z in terms of the other two sides, g0°® — ¢ and z = 90° — %, and
the angle 180° — A included between them. Equations (13)~(15) are directly
applicable, and it is only necessary to make the following assignment of parts:

a = go° —34, A = 180° — A4,
b=z, BE=y (25)
¢ =90°—¢.

s0-¢

N

Fig. 6.

The substitution of (25) into (13), (14), and (15) gives

sind = cos z sin ¢ — sin zcos ¢ cos 4, (26)
€0s d cOs ¢ = C0s 2 COS ¢ I sin zsin ¢ cos A4, (27)
cos d'sin # = sin zsin 4. (28)

To adapt these formulae for use with the ordinary logarithmic tables, the
auxiliary quantities 7 and M, defined by

msin M — sin z cos A,
mcos M = cos z,

are introduced (NVum. Cal. p. 14).
Substituting these relations into (26) and (27) and collecting results, we
have for the calculation

msin M = sin zcos A,
mcos M = cos z,
cos 0 sin £ = sin zsin A4, (29)
cos §cost = mcos(¢p—M),
sind = msin (¢ - M).

In formula (26)—-(28) we have three equations for the determination of two
unknown quantities, # and é; in (29), five equations are given for the determin-
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ation of the four unknowns, M, m, ¢, and 6. In both cases one more condition
is available than is required for the theoretical solution of the problem, a point
of great practical importance, as it affords a means of testing the accuracy of
the numerical solution.

The order of solution is as follows: First, determine A and s from the
first two equations. Whatever the values of z and 4, there will always be tweo
pairs of values of Jf and » satisfying these equations. For one, 7 will be pos-
itive; for the other, negative. It is immaterial, so far as the final values of ¢
and ¢ are concerned, which of the two solutions we adopt. For simplicity,
however, we assume that s is always positive. This makes the algebraic signs
of sin M and cos M the same as those of the right-hand members of the first
and second equations, respectively, of (29). The difference of the logarithms
of the right-hand members of these equations equals log tan M, from which
the angle J is determined, the quadrant being fixed by a consideration of the
algebraic signs of any two of the three functions, sin M, cos M, and tan M.
M, logsin M, and logcos M are interpolated with a single opening of the
table. The difference of the last two must equal log tan M, which affords a
partial check. The subtraction of logsin M from log msin M gives log m.
The addition of this result to log cos M/ must agree with the value of log -
cos M from the second of (29), which gives a second partial check. The values
of M and s thus derived are to be substituted, along with z and 4, into the
right-hand members of the last three of (29) for the completion of the calcula-
tion. The left members of the third and fourth of (29) are of the same form
as the first two, which makes it possible to determine # and cos & by an applica-
tion of the process employed for finding 7 and M, care being taken to apply
the checks at the points indicated above. The algebraic sign of cosé is nec-
essarily positive, since ¢ must always lie between -+ go° and —go°, which fixes
the quadrant of £ It is to be noted that this limitation upon the sign of cosd
removes the ambiguity existing in the solution of the general spherical triangle
which was mentioned on p. 22. The hour angle, ¢, and log cos ¢ having been
found, the next step is the determination of logsin d from the last of (29).
The values of logcosd and logsind must correspond to the same angle.
This affords a third partial check. The determination of ¢ and the application
of the check can be accomplished in either of two ways: We may interpolate
0 from the smaller of the two functions logcosé and logsind, and check by
comparing the other function with the value interpolated from the tables with
the calculated ¢ as argument; or we may interpolate ¢ from logtan 4, which is
found by subtracting log cos é from logsind. With the value of & thus de-
rived, logsind and logcosd areinterpolated from the table. The interpolated
values must agree with those resulting from the last three equations of (29).
The former method is shorter; the latter, more precise in the long run, although
not necessarily so in any specific case. In practice, the first method is usually
sufficient.

In applying the checks it is to be noted that the accumulated error of cal-
culation (Num. Cal. pp. 4 and 12) may produce a disagreement of one, and in
rare instances, of two units in the last place of decimals. Great care must be

)
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exercised with the algebraic signs of the trigonometric functions and in assign-
ing the quadrants of the angles. Otherwise, an erroneous computation may
apparently check. The check quantities must agree both in absolute magni-
tude and algebraic sign.

The calculation of z and & from equations (26)-(28) with the aid of addition-
subtraction logarithms is accomplished by an application of the method used
for the solution of the last three of (29). The only differences which occur are
to be found in the details of the combination of the quantities which enterinto
the right members of the two groups of equations.

Example 1. For a place of observation whose latitnde is 38° 56’ 517, the azimuth of an
object is 97° 14’ 12" and its zenith distance 62° 37’ 49”. Find the corresponding hour angle
and declination.

The calculation for equations (26)-(28), using addition-subtraction logarithms, appears
in the first column; that for equatlons (29), made with the ordinary tables, Is in the second
column. For the first, § is derived from logsin §, which, in this case, is smaller than log cos §,
In the calculation of (29), ¢ is determined from logtan$. The arguments for the check
quantities, sin§ and cosd, need not ordinarily be written down. They are inserted here in
order to illustrate the application of the control. The abbreviation Jog is not prefixed to the
arguments, although the majority of the numbers appearing in the computation are logarithms.
Its omission saves time and produces no confusion.

A 970 141 l2"

z 62 37 49
¢ 38 56 st
sin 4 9.99653 sin A4 9.99653
sinz 9.94844 sla 2 9.94844
cos A 9.10026, cos 4 9.10026,
sin ¢ 9.79838 m sin M 9 04870,
cos ¢ 9.89082 mcos M 9.66250
cosz 9.66250 tan M 9.38620,
coszslng 9.46088 M — 13°40'34"
sin z cos ¥ cos 4 8.93952x 14 38 56 51
A 9-47864 ¢ —M 523725
B 0.11430 sin M 9.373715
cosz co¥ 9.35332 cos M 9.98751
sin zsin ¢ cos 4 8.84708, log m 9.67499
B 0.70624 sin (¢ - Af) 9.90018
A 0.61112 cos (¢-M) 9.78322
cos dsln ¢ 9.94497 cos Osin ¢ 9.94497
cos & cos £ 9.45820 cos & cos ¢ 9.45821
lan ¢ 0.48677 tan ¢ 0.48676
¢ 71°56'36" ¢ 71°56°35"
t 4P47m4614 z 4h47m4623
sin Z 9.97806 sin ¢ 9.97806
cos ¢ 9.49130 cos ¢ 9.49131
cosd | 9.96691 cos & 9.96691
sin & 9.57518 sin ¢ 9.57517
d (from sin &) +22°5'8" tan 0 9 60826
cos d 9.96660 Ck. o + 22°5'5"

sin 0 9.57517 Ck.
cos 0 9.96691 Ck.
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13. Transformation of hour angle and declination into azimuth and
zenith distance,—The transformation can be effected by solving (29) in the
reverse order to that followed in Section 12. It is better, however, to use equa-
tions of the same form as those appearing in the preceding section, thus re-
ducing the two problems to the same type. As before, two sides and the in-
cluded angle are given, to find the remaining side. With the following assign-
ment of parts

=2 AR— 7,
b = go° —a, B = 180° — 4, (30)
¢ =90° —¢,

we find by substituting into (13), (14), and (15),

cosz = sindsin ¢ 4 cosd cos ¢ cos/, (31)
sinscos A= — sindcosg -+ cosd sin ¢ cos/, (32)
sinzsin A= cosqgsint (33)

These are of the same general form as (26), (27), and (28). Applying the
same principle as before, we derive

n sin NV = sin g,
ncos N =cosdcos?,
sin 2sin A = cos §'sin ¢, (34)
sin zcos A = nsin (¢ - N),
cos z = ncos(¢ - N).

The two groups (31)-(33) and (34) give the required transformation. The
former can be used with addition-subtraction logarithms; the latter, with the
ordinary tables. A comparison of these equations with groups (26)—(28) and
(29) shows that the same arrangement of calculation can be used for both
transformations. The unknowns are involved in the same manner in both
cases, with the exception that the sine and cosine of z are interchanged in the
left members of (31)-(34) as compared with the corresponding functions of 4 in
(26)~(29).

In the solution of (31)-(33) and (34), the quadrant of A4 is fixed by the fact
that sin z is necessarily positive, since z is always included between 0° and
+180°. This eliminates the ambiguity attached to the solution of the general
spherical triangle.

14. Transformation of hour angle into right ascension, and vice
versa.—Since the codrdinate declination is common to Systems 11 and 111,
the transformation of the codrdinates of one of these systems into those of
the other requires only a knowledge of the relation between hour angle and
right ascension. .

In Fig. 5, p. 25, let B be the intersection of the hour circle through any
celestial body with the celestial equator. We then have by definition
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Arc MB = ¢t = Hour angle of object,
Arc VM = a = Right ascension of object,
Arc MVB = 6 = Sidereal time,
whence '
a=0—1, (35)
t=60—a. (36)
Equations (35) and (36) express the required transformations. The same

result can be derived from Fig. 1, p. 11, the point p, in this figure, correspond-
ing to B in Fig. s.

In a place of observation whose iatitude is 38° 58’ 53", thie hour angle of an
Find the corresponding azimuth and

Example 2.
object is 20019™4118, and its deciination — 8° 31” 47".
zenith distance.

The calculation by equations (31)~(33) is in the first column; that by equations (34), in
the second.

£ = 20b 19™ 4118 = 304° 55’ 27"

S=—831" 47"
r= 3 588
sin ¢ 9.91377x sin¢ 9.91377n
cosd 9.99517 cosd 9.99517
cos ¢ 9-75777 cos? 9-75777
sin ¢ 9.79870 n sin IV 9.17121,
cos ¢ 9.89061 ncos V 9.75204
siné 9.171214 tan N 9.418274
sindsing  8.96991, N — 14°40’ 50"
cosdcos@cos? 9.64355 ¢ 38 58 53
B 0.67364 - 5339 43
A o.57015 sin V 9.40386,,
sin § cos ¢ 9 06182, cos NV 9.98559
cosdsingcoss 9.55164 logn 9.76735
A 9.51018 sin (¢-N)  9.90608
B o.12180 cos(¢-NN) 9.77273
sin zsin 4 9.90894x sin zsin 4 9.90894x
sinz cos A4 9.67344 sinzcosAd ' 9.67343
tan 4 0.23550% tan 4 0.23551x
A 300° 10’ 31” A 300° 10’ 29"
sin 4 9.93676, sin 4 9.93677x
cos A 9.70126 cos A 9.70126
sinz 9.97218 sin z 9.97217
cos z 9. 54007 cos z 9. 54008
z (from cos z) 69° 42 32" z (fromcosz) 69° 42’ 30"
sin z 9.97218 Ck. sinz 9.97217 Ck.
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Example 3. What is the right ascension of an object whose hour angle is 17221™M3426,
when the sidereal time is 21214™5218?

By equation (35)
6 = 21h14™52'8
¢t =17 21 34.6
a= 3 53 18.2, Ans.

Example 4, What is the hour angie of an object whose right ascension is 8h12m3418,
when the sidereal time is 6» 6m28:7?
By equation (36)
g = 6 6m28yy
a= 812 348
¢ = 2153 53.9, Ans.

15. Transformation of azimuth and altitude into right ascension and
declination, or vice versa,—These transformations are effected by a combina-
tion of the results of Sections 12-14. For the direct transformation, deter-
mine Z and & by (26)-(28) or (29), and then a by (35). For the reverse
calculate ¢ by (36), and then 4 and z by (31)—(33) or (34).

Example §. What is the right ascension of the object whose coordinates, at the sidereal
time 17021™16%4, are those given in Example 1?

The hour angie found in the solution of Exampie 1 by equations (26)-(28) is 4247m46%4.
This, combined with g = 17221™1624 in accordance with equation (35), gives for the required
right ascension 12833™30%0.

Example 6, At a place whose latitude is 38° 38’ 53", what are the azimuth and zenith dis-
tances of an object whose right ascension and deciination are gb27™1412 and — 8° 31’ 47", re-
spectively, the sidereal time being 5246™35610? -

By equation (36), £ =20"19™41'8. We have, further, 6 = — 8°31"47” and ¢ = 38° 38’ 53".

These quantities are the same as those appearing in Example 2. The solution by equa-
tlons (39) gave 4 = 300° 10’ 29", z = 69° 42' 30".

16. Given the latitude of the place, and the declination and zenith
distance of an objcct to find its hour angle, azimuth, and parallactic
angle.—We have given three sides of the spherical triangle ZP0, Fig. 6, p. 26,
to find the three angles, the parallactlc angle being the angle at the object.
The parallactic angle is not used in engineering astronomy, although its value
is frequently required in practical astronomy proper.

Equations (20) are directly applicable for the solution of the problem.
Assigning the parts of the triangle as in (30), and, further, writing the angle
C = ¢ = parallactic angle, we have for the calculation,
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a=2 b=90°—40, ¢=090°—y¢,
s=Y(@atb+ o),
Check: (s—a) + (s-6) + (s-¢) =,

< sin (s—a) sin (s=4) sin (s—c¢)

A ;
sin s . (37)
K K

tan Yt=——, cot Yy A=—"5, tan Ypg=—=———.

% sin (s—a)' < sin (s— &) %4 sin (s-¢)

K
Check: tan 34 fcot ¥4 A tan Y% ¢ = 3o
Object »::sstt of meridian, %% ¢, 14 4, Y4 ¢ in {se?::)sr:d} quadrant.

In engineering astronomy the determination of the hour angle, 2, is usually
all that is required. For this case it is simpler to use equation (17). The
formula are

a=2 b=90°-4, c¢=9q0°-¢,
s=Y% (a + o+ o).

Check: (s—a) +(s-8) + (s-¢) =3, (38)

sin (s — &) sin (s - ¢)

tan® }2 2 = 3 g
% sin s sin (s — a)

where 15 7 is to be taken in the first or second quadrant according as the ob-
ject is west or east of the meridian at the time of observation.

For those cases in which the object is more than two and one-half or three,
hours from the meridian, equation (16) written in the form

cos z - sin d'sin ¢
COS (' COS @

(39)

cos i =

will usually give satisfactory results. In any case, (39) affords a valuable con-
trol upon the value of # given by (38). The numerator of the right member of
(39) is readily calculated by means of addition-subtraction logarithms.

17. Application of transformation formulz to the determination of
latitude, azimuth, and time.—It was shown in Section 4 that the solution of
the fundamental problems of practical astronomy requires the determination
of the position of the axis of the celestial sphere and the orientation of the
sphere as affected by the diurnal rotation. In practice this is accomplished
indirectly by observing the positions of various celestial bodies with respect to
the horizon, the observed data being combined with the known position of the
bodies on the sphere for the determination of the position of the sphere itself.
The means for effecting the codrdinate transformation hereby implied are to -
be found in the formule of Sections 12-16.

Although the most advantageous determination of latitude, azimuth, and
time requires a modification of these formula, it is, nevertheless, easy to see
that the solution of the various problems is within our grasp, and that the
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Example 7. For a place whose latltude Is 38°56’51”, find the hour angle, azlmuth, and
parallactic angle of an object east of the merldlan whose declinatlon and zenlth distance are
— 8°16' 14" and 54°16’ 12", respectively.

Equations (37) are used for the solution, which is given below in the column on the left.
If only the hour angle were required, equations (38) or (39) would be used. As an illustra-
tion of the application of these formula, the problem is also solved on this assumptlon. The
first ten lines of the computation for (38), belng the same as that for (37), are omitted. The
remainder of the calculatlon for (338) occupies the upper part of the right-hand column. The
solutlon by (39) ls in the lower part of this column. The object is rather too near the merld-
lan for the satlsfactory use of equation (39), although it happens that the resulting value of
the hour angle agrees well with that from (37) and (38).

) —8° 16’ 14" sin (s-5) $.78890
) 38 56 31 sin (s-¢) 9.88892
r=a 54 16 12 cosec (s-a) 0.13218
b 98 16 14 cosec s 0.00927
¢ S¥Fal | tan? 14 ¢ 8.81927
2s 203 35 35 tan }g ¢ 9.40964
s 101 47 48 Ck. ¥t 165° 35’ 46"
s-a 47 31 36 ¢ 33t 11 32
s=-b 3 3t 34
s-c 50 44 39
sin (s - @) 9.86782
sin (s - 5) 8.78890
sin (s - ¢) 9.88892
COSEC s 0.00927
log K% 8.55491
log & 9-277464 sin § 9.15790x
tan 15 ¢ 9.40964x sin 9.79838
cot 25 A4 0.48856, cos § 9.99546
tan 4 ¢ 938854 CO§ ¢ 9.89082
tan Y4 fcot s A tan K5 ¢ 9.28674 Cos§ 2z 9.76639
K cosec s 9.28673, Ck. sin § sin ¢ 8.95628,
¢ 165° 35° 46" A 9.18989
KA 162 o 48 B 0.06252
Y%ae 166 15 10 cos z — sln g sin ¢ 9.82891 0
¢ 26 fUI 32 €08 § cOs ¢ 9.88628
A 32¢. 1 36 cos ¢ ‘ 9.94263
4 332 30 20 t 331° 117 34"

adaptation of the equations to any special case is only a matter of detail.
Consider for a moment either equations (26)—(28) or (31)-(33). Both groups
involve the five quantities 4, z, ¢, d, and ¢; but,since # = 6 — a, we may regard
them as functions of the six quantities 4, 2, a, 8, ¢, and 6. If, therefore, the
zenith distance of a star of known right ascension and declination be measured,
either group will enable us, theoretically at least, to determine ¢, 4, and —
the latitude, the azimuth of the star, and the sidereal time. The azimuth of
the star being known, the azimuth of any other object, a distant terrestrial
mark, for example, can be found by applying to the calculated position of the
star the difference in azimuth of the star and the mark. The latter can be ob-
served directly with any instrument adapted for the measurement of horizontal
angles. Further, the sidereal time, as will be shown in Chapter III, bears an
3
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intimate relation to all of the other kinds of time, so that, if the sidereal time
has been found, the determination of the others becomes but a matter of cal-
culation.

Practically, such a solution would be complicated. It is simpler to deter-
mine ¢, 4, and 6 separately, assuming for the calculation of each that one or
both of the others are known.

For example, equation (31) is a function of 2, d, ¢, and #==0 - a. Let it
be assumed that the zenith distance of a star of known right ascension and
declination has been measured and that the time of observation has been
noted. The substitution of the resulting data into (31) leads to the determin-
ation of the only remaining unknown, namely, the latitude, ¢.

Again, the elimination of z from (32) and (33) gives an expression for A
as a function for ¢, 4, and # = ¢ — . Letit be assumed that ¢ and § are known.
The azimuth of a star of known right ascension and declination can therefore
be calculated. The calculated azimuth applied to the observed difference in
.azimuth of star and mark gives the azimuth of the mark.

Finally, equations (38) and (39) express the hour angle, ¢ as a function of
z, ¢, and 8. If the zenith distance of a star of known right ascension and dec-
lination be measured in a place of known latitude, the hour angle can be cal-
culated. Equation (35), in the form § = ¢ + «, then gives the sidereal time of
observation. i

The solutions thus ontlined require, for the determination of latitude, a
knowledge of the time; for the determination of time, a knowledge of the lat-
itude; and, for azimuth, both time and latitude. For the first two, time and
latitude, it might appear that the methods proposed are fallacious. If each is
required for the determination of the other, how can either ever be determined ?
The explanation is to be found in the fact that the formula can be arranged
in such a way that an approximate value for either of these quantities suffices
for the determination of a relatively precise value of the other. Thus, a mere
guess as to the time will lead to a relatively accurate value of the latitude,
which, in turn, can be used for the determination of a more precise value of the
time. The process can be repeated as many times as may be necessary to se-
cure the desired degree of precision. The principle involved in the procedure
thus outlined is called the Method of Successive Approximations. In
numerical investigations it is of great importance. The method amounts,
practically, to replacing a single complex process by a series, consisting of
repetitions of some relatively simple operation. Ordinarily, the success of the
method depends upon the number of repetitions or approximations which
must be made in order to arrive at the desired result. If the convergence is
rapid, so that one or two approximations suffice, the saving in time and labor
as compared with the direct solution is frequently very great. Indeed,in some
instances, the method of successive approximations is the only method of pro-
cedure, the direct solution being impossible as a result of the complexity of
the relation connecting the various quantities involved.



GENERAL DISCUSSION 35

The general mcthod of procedure for the solution of the problems of
latitude, time, and azimuth has been outlined. There remains the formulation
of the details. But, before proceeding to a detailed development, we must
consider the subject of time in its theoretical aspects—the different kinds of
time, their definition and their relations. Chapter III will be devoted to this
question. We must also consider the various astronomical instruments that
find application in engineering astronomy—their characteristics and the con-
ditions under which they are employed, since the nature of the data obtained
through their use will influence the arrangement of the solutions. Chapter IV
is therefore devoted to a discussion of various astronomical instruments.

In arranging the details of the methods for the determination of latitude,
time, and azimuth, it is to be remembered that the various problems are not
merely to be solved, but they are to be solved with a definite degree of
precision, and with a minimum expenditure of labor. This requirement
renders the question one of some complexity, for the precision required may
vary within wide limits. For many purposes approximate results will suffice,
and it is then desirable to sacrifice accuracy and thus reduce the labor
involved. On the other hand, in astronomical work of the highest precision,
no means should be overlooked which can in any way contribute toward an
elimination or reduction of the errors of observation and calculation.

The problems with which we have to deal therefore present themselves
under the most diverse conditions, and, if an intelligent arrangement of the
methods is to be accomplished, one must constantly bear in mind the results
which will be established in the two following chapters, as well as those
already obtained in the discussion of the principles of numerical calculation.



CHAPTER 111
TIME AND TIME TRANSFORMATION

18. The basis of time measurement.—The rotation of the earth is the
basis for the measurement of time. Since motion isrelative, we must specify the
object to which the rotation is referred. By referring to different objects, it is
obvious that we may have several different kinds of time. Actually, the rotation
of the earth is referred to three different things: the apparent, or true, sun, a
fictitious object called the mean sun, and the vernal equinox. In practice, how-
ever, we turn the matter about and take the apparent diurnal rotations of these
objects with reference to the meridian of the observer, considered to be fixed,
as the basis of time measurement. We have, accordingly, three kinds of time:
Apparent, or True, Solar Time, Mean Solar Time, and Sidereal Time.

19. Apparent,or True, Solar Time=A.S.T.—The apparent, or true, solar
time at any instant is equal to the hour angle of the apparent, or true, sun
at that instant.

The interval between two successive transits of the apparent, or true, sun
across the same meridian is called an Apparent, or True, Solar Day=A. S. D.

The instant of transit of the apparent sun is called Apparent Noon=A. N.

In astronomical practice the apparent solar day begins at apparent noon.
It is subdivided into 24 hours, which are counted continuously from o to 24.
The earth revolves about the sun in an elliptical orbit, the sun itself occupying
one of the foci of the ellipse. The earth’s motion is such that the radius vector
connecting it with the sun sweeps over equal areas in equal times. Since the
distance of the earth from the sun varies, it follows that the angular velocity
of the earth in its orbit is variable. Hence, the angular motion of the sun
along the ecliptic, which is but, a reflection of the earth’s orbital motion, is also
variable. The projection into the equator of the motion along the ecliptic is like-
wise variable, not only because the ecliptical motion is variable, but also on
account of the fact that the angle of projection changes, being o degrees at the
solstices, and about 231 degrees at the equinoxes. Apparent solar time is
not, therefore, a uniformly varying quantity, nor are apparent solar days of
the same length. .

The adoption of such a time system for the regulation of the affairs of
everyday life would bring with it many inconveniences, the first of which would
be the impossibility of constructing a timepiece capable of following accurately
the irregular variations of apparent solar time. On this account there has been
devised a uniformly varying time, based upon the motion of a fictitious body .
called the mean sun.

20. Mean Solar Time=M. S. T.—The mean sun is an imaginary body
supposed to move with a constant angular velocity eastward along the equator,
such that it completes a circuit of the sphere in the same time as the apparent,
or true, sun. Further, the mean sun is so chosen that its right ascension differs

as little as possible, on the average, from that of the true sun.
36
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The Mean Solar Time at any instant is equal to the hour angle of the
mean sun at that instant.

The interval between two successive transits of the mean sun across the
same meridian is called a Mean Solar Day=M. S. D.

The instant of transit of the mean sun is called Mean Noon=M. N.

Mean solar time is a uniformly varying quautity and all mean solar days are
of the same length. Mean solar time is the time indicated by watches and clocks,
generally, throughout the civilized world, and the mean solar day is the standard
unit for the measurement of time.

In astronomical practice the mean solar day begins at mean noon. It is
subdivided into 24 hours which are numbered continuously from o to 24. The
astronomical date therefore changes at noon. But since a change of date during
the daylight hours would be inconvenient and confusing for the affairs of every-
day life, the Calendar Date, or Civil Date, is supposed to change 12 hours before
the transit of the mean sun, 7Z.e at the midnight preceding the astronomical
change of date. Further, in most countries, the hours of the civil mean solar
day are not numbered continuously from o to 24, but from o to 12, and then
again from o to 12, the letters A. M. or P. M. being affixed to the time in order
to avoid ambiguity. For example the civil date 1go7, Oct. 8 10® A. M, is
equivalent to the astronomical date, 1907, Oct. 7, 22" The astronomical day
Oct. 8 did not begin until the mean sun was on the meridian on Oct. 8 of the
calendar.

From the manner of definition, it is evident that at any instant the mean
solar time for different places not on the same meridian is different. If each
place were to attempt to regulate its affairs in accordance with its own local
mean solar time, confusion would arise, especially in connection with railway
traffic. To avoid this difficulty all points within certain limits of longitude use
the time of the same meridian. The meridians selected for this purpose are
all an exact multiple of 15 degrees from the meridian of Greenwich, with the
result that all timepieces referred to them indicate at any instant the same number
of minutes and seconds, and differ among themselves, and from the local mean
solar time of the meridian of Greenwich, by an exact number of hours. The
system thus defined is called Standard Time.

Although, theoretically, all points within 724 degrees of longitude of
a standard meridian use the local mean solar time of that meridian, actually, the
boundaries separating adjacent regions whose standard times differ by one
hour are quite irregular.

The standard meridians for the United States are 75, 9o, 105, and 120
degrees west of Greenwich. The corresponding standard times are Eastern,
Central, Mountain, and Pacific. These are slow as compared with Greenwich
mean solar time by 5, 6, 7, and 8 hours, respectively.

21. Sidereal Time.—The sidereal time at any instant is equal to the hour
angle of the true vernal equinox at that instant. (See p. 25.)

The interval between two successive transits of the true vernal equinox
‘across the same meridian is called a Sidereal Day=S. D.
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The instant of transit of the true vernal equinox is called Sidereal
Noon=S. N.

Since the precessional and nutational motions of the true equinox are not
uniform, sidereal time is not, strictly speaking, a uniformly varying quantity,
but practically it may be considered as such, for the variations in the motion
of the equinox take place so slowly that, for the purposes of observational astron-
omy, all sidereal days are of the same length.

The importance of sidereal time in the transformation of the codrdinates
of the second system into those of the third, and vice versa, has already been
shown in Sections 11 and 14. It also plays an important role in the determina-
tion of time generally, for sidereal time is more easily determined than either
apparent or mean solar time.

The usual order of procedure in time determination is as follows: Every
observatory possesses at least one sidereal timepiece whose error is determined
by observations on stars. The true sidereal time thus obtained is transformed
into mean solar time by calculation, and used for the correction of the mean
solar timepieces of the observatory. Certain observatories, in particular the
United States Naval Observatory at Washington, and the Lick Observatory at
Mt. Hamilton in California, send out daily over the wires of the various tele-
graph companies, series of time signals which indicate accurately the instant
of mean noon. These signals reach every part of the country, and serve for the
regulation of watches and clocks generally.

22. The Tropical Year.—Several different kinds of years are employed
in astronomy. The most important are the tropical and the Julian. The
Tropical Year is the interval between two successive passages of the mean
sun through the mean vernal equinox. Itslength is 365.2422 M. S. D. During
this interval the mean sun makes one circuit of the celestial sphere from
equinox to equinox again, in a direction opposite to that of the rotation of the
sphere itself, whence it follows that during a tropical year the equinox must
complete 366.2422 revolutions with respect to the observer’s meridian. We
therefore have the important relation:

One Tropical Year=365.2422 M. S. D.=366.2422 S. D. (40)

In accordance with a suggestion due to Bessel, the tropical year begins
at the instant when the mean right ascension of the mean sun plus the constant
part of the annual aberration is equal to 280° or 18® 40®. The symbol for this
instant is formed by affixing a decimal point and a zero to the corresponding
year number; thus for 19og, the beginning of the tropical year is indicated by
1909.0. This epoch is independent of the position of the observer on the earth
and does not, in general, coincide with the beginning of the calendar year,
although the difference between the two never exceeds a fractional part of a day,

23. The Calendar.—For chronological purposes the use of a year involving
fractional parts of a day would be inconvenient. That actually used has its
origin in a decree promulgated by Julius Caesar in 45 B. C. which ordered that
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the calendar year should consist of 365 days for three years in succession, these
to be followed by a fourth of 366 days. The extra day of the fourth year was
introduced by counting twice the sixth day before the calends of March in the
Roman system. In consequence such years were long distinguished by the
designation bissextile, although they are now called Leap Years. The years of
365 days are Common Years. With this arrangement the average length of
the calendar year was 3653 days. This period is called a Julian Year, and
the calendar based upon it, the Julian Calendar.

The difference between the Julian and the tropical years is about r1™.
In order to avoid the gradual displacement of the calendar dates with respect
to the seasons resulting from the accumulation of this difference, a slight mod-
ification in the method of counting leap years was introduced in 1582 by Pope
Gregory XIII. The accumulated difference amounts approximately to three
days in 400 years, and, as the Julian year is longer than the tropical, the Julian
calendar falls behind the seasons by this amount, Gregory therefore ordered that
the century years, all of which are leap years under the Julian rule, should not
be counted as such unless the year numbers are exactly divisible by 400. At
the same time it was ordered that 10 days should be dropped from the calendar
in order to bring the date of the passage of the sun through the vernal equinox
back to the 21st of March, where it was at the time of the Council of Nice in
325 A.D. The Julian system thus modified is called the Gregorian Calendar.
The revised rule for the determination of leap years is as follows: All years
whose numbers are exactly divisible by four are leap years, excepting the century
years. These are leap years only when exactly divisible by four hundred. All
other years are common years. The average length of the Gregorian calendar
year differs from that of the tropical year by only 0.0003 day or 26° In the
modern system the extra day in leap years appears as the 29th of February.

The Gregorian calendar was soon adopted by all Roman Catholic countries
and by England in 1752. Russia and Greece and other countries under
the dominion of the Eastern or Greek Church, still use the Julian Calendar, which,
at present, differs from the Gregorian by 13 days.

924, Given the local time at any point, to find the corresponding local
time at any other point.—From the definitions of apparent solar, mean solar,
and sidereal time, it follows that at any instant the difference between two local
times is equal to the angular distance between the celestial meridians to which
the times are referred. But this is equal to the angular distance between the
geographical meridians of the two places, Z.e. their difference of longitude.

Let 7¢ = the time of the eastern place,
7w = the time of the western place,
L. = longitude difference of the two places,

We then have the relations:

Te = Tw+L
Tw=Te—L, (41)
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Equations (41) are true whether the times be apparent solar, mean solar, or
sidereal.

Example 8. Given, Columbia mean solar time 12" 14™ 16¢41, find the corresponding
Greenwich mean solar time.

Tw= 12D 14™ 16841
N —r161 0 W8 33
Te =18 23 34.74 Ans.

Example 9, Given, Greenwich mean solar time 1907, Oct. 6 3! 14™ 21°, find the corre-
sponding Washington mean solar time,

Te =1907, Oct. 6 3B 14™ 21°
= s 8 16
7w—1907,0ct. 522 6 5 Auns.

Example 10. Given, central standard time 1907, Oct. 12 6218h0® A.M., find the cor-
responding Greenwich mean solar time, astronomical and civil.

7w =1907, Oct. 12 6 18mo0* A.M.
Oct. 11 18 18 o astronomical
6] o020
1907, Oct. 12 0o 18 o astronomical } Yo
Oct. 12 o 18 o P.M. civil #

Example 11. Given, central standard time 1907, Oct. 11 oF 3™ 16518 P.M. find the
corresponding Columbia mean solar lime, civil and astronomical.

L
Te

i

Ze = 1907, Oct. 11 ot 3m 16818 P.M.
— 9 18.33
Tw=

19o7, Oct. 11 11 53 57.85 A.M. civil } 4
Oct. 10 23 53 57.85 astronomical i

25, Given the apparent solar time at any place, to find the corre-
sponding mean solar time, and vice versa.—From equation (36), =0 — ¢,
and the definitions of mean solar and apparent solar time, we find

M.S. T.=60 — R. A.of M. S,,
A.S.T.=0—R.A. of A. S.

whence
M.S.T.— A.S.T.=R. A.of A.S. — R, A. of M. S.
The difference

E=M.S.T.—AST (42)

is called the Equation of Time. The equation of time varies irregularly
throughout the year, its maximum absolute value being about 16™. It is some-
times positive, and sometimes negative, since the right ascension of the apparent
sun is sometimes smaller and sometimes greater than that of the mean sun. The
right ascension of the apparent sun is calculated from the known orbital motion
of the earth. The right ascension of the mean sun is known from its manner
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of definition. This data suffices for the calculation of E, whose values are tabu-
lated in the various astronomical ephemerides. In the American Ephemeris they
are given for instants of Greenwich apparent noon on page I for each month,
and for Greenwich mean noon, on page II. The former page is used when
apparent time is converted into the corresponding mean solar time, and the
latter when apparent solar time is to be found from a given mean solar time.
The algebraic sign of E is not given in the American Ephemeris, but the column
containing its values is headed by a precept which indicates whether it is to be
added to or subtracted from the given time. Values of E for times other than
Greenwich apparent noon and Greenwich mean noon must be obtained by inter-
polation. This operation is facilitated by the use of the hourly change in E
printed in the columns headed “Difference for 1 Hour,” which immediately fol-
low those containing the equation of time. If the time to be converted refers
to a meridian other than that of Greenwich, the corresponding Greenwich time
must be calculated before the interpolation is made. Note that for each date
the difference of the right ascension of the apparent, or true, sun in column two
of page II, and the right ascension of the mean sun in the last column of the
same page, is equal to the corresponding value of E, in accordance with the
definition.

Example 12. Given, Greenwich apparent solar time 1907, Oct. 15 2B 6™ 12306, find the
corresponding Greenwich mean solar time.

E for Gr. A. N, 1907, Oct. 15 13™' 56175 (Eph. p. 164)
Change in £ during 22 6™ 12* + 1.20

E (10 be subtracted from A.S. T.) 13 57.95

Gr. A.S. T. 1907, Oct. 15 2 6 1206

Gr. M.S. T. 1907, Ocl. 15 1 52 14.11 Ans.

Example 13. Given, Greenwich mean solar time 1907, Oct. 15 1? 52™ 1411, find the
corresponding Greenwich apparant solar time.

E for Gr, M. N. 1907, Oct. 15 13™ 56:88 (Eph. p. 165)
Chaunge in £ during 1® g2m 14* + 1.07

E (1o be added to M. S, T.) 13 57.95

Gr. M.S.T. 1907, Oct. 15 e 52 014511

Gr. A. S.T. 1907, Oct. 15 2 6 12,06 Ans.

Example 14. Given, central standard time 1907, Oct. 20 110 18m12¢2 A.M., find the
corresponding Columbia apparent solar time.

C.S.T. 1907, Oct. 20 11D 18™ 1212  A.M.

/5 9 18.3

Columbia M. S. T. 1907, Oct. 19 23 8 5§3.9 astronomical
Gr. M. S. T. 1907, Oct, 20 5 18 12.2

E for Gr. M. N. 1907, Oct. 20 14 58.63 (Eph. p. 165)
Change in £ during 5P 18m12® + 2.39

E (to be added to Columbia M. S. T.) 15 1.0
Columbia A. S. T. 1907, Oct. 19 23 23 54.9 Ans.
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Example 15. Given Columbia apparent solar time 1907, Oct. .19 23" 23™ §419, find the
corresponding central standard time.

Columbia A. S. T. 1907, Oct. 19 232 23™ 54%9

7z 6 o 18.3
Gr. A.S. T. 1907, Oct. 20 5 33 13.2
E for Gr. A. N. 1907, Oct. 20 14 58.52
Change in £ during 5233™ 13* + 2.50

E (tobe sub. from Columbia A.S.T.) 15 1.0
Columbia M. S. T. 1907, Oct. 19 23 8 53.9
UL, 9 183
CSaT. 1907, Oct. 20 11 18 12.2 A.M. A#s.

926. Relation between the values of a time interval expressed in
mean solar and sidereal units. Equation (40) is the fundamental relation
connecting the units of mean solar und sidereal time. If we let

I; = the value of any interval 7 in mean solar units,
Im = the value of 7/ in sidereal units,

we find from (40)

L = In + 3—5—5.[';"‘-‘—22 (43)
Im =1 — 366.[*;—422 (44)
Writing
111 = 36T;-5?2 i 366_—-12722
(43) and (44) become
& = Im + 11/m (45)
In=1L — 114 (46)

Assuming /m = 24" we find from (45)

24" o™ 0'000 M. S. = 24* 3™ 56555 Sid.
Similarly, by supposing /4 = 24® we obtain from (46)

24" o™ 0%00 Sid. = 23" 56™ 4t091 M. S.
Hence

I1124" = 23655'55
1124 = 235.909

Gainof fon M. S. T.in 1 M. S. D.

Gain 6.6 FPWAS) T uad: " S. D. (47)
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and further

Gain of # on M. S. T. in 1 M. S. hour = III1? = 98565 8
Baof fon M.S. T.int S hour = M1 =g.82g6 48

For many purposes these expressions may be replaced by the following approx-
imate relations: '

: I1124* = 4=(1 — 1/70), Error = 0016
1124 = 4 (1 — 1/60), Error = 0.081
111 =10+ (1 — 1/70), Error = 0.0006 (49)

II1 =10 (1 — 1/60), Error = 0.0037

Equations (45) and (46) may be used for the conversion of the value
of a time interval expressed in mean solar units into its corresponding value
in sidereal units, and vice versa. The calculations are most conveniently made
by Tables II and III printed at thé end of the American Ephemeris. Table II
contains tle numerical values of I1%, while Table III gives those of 111/m, the
arguments being the values of /% and /m, respectively. It will be observed that
the first factors of 11Z and IIl/m indicate the table, and the second the argu-

. ment which is to be used for the interpolation.

In case tables are not available the conversion can be based upon equations
(47) or (48), or more simply, upon (49), provided the highest precision is not
required.

Example 16. Glven the mean solar interval 16" 18™ 21¢20, find the equivalent sidereal
Interval.
By Eq. (45) Im = 168 18M 21820
HI/m = 2 40.72 (Eph. Table III)
Ig==16 21 1.92 Ans.

The caiculation of 11{/m by the third of (49) is as follows:

I = 164306 10°/m = 163206
1/70X108m = 2.33
1117;m = 160.73 = 2™ 4073

The valne thus found differs onlyotor from that derived from Table III of the Ephemeris,

Example 17. Given the sidereal Interval 202 28m 42117, find the equivaient mean solar
interval.

By Eq. (46) Z; = 20° 28™ 42017
1175 = 3 21.29 (Eph. Table II)
Im =120 25 20.88 A=s.
The calcuiatlon of 11/ by the last of (49) is as foilows:
75 = 20%478 10°7s = 20478
1/60X 1005 =  3.41
1175 = 201.37 = 3™ 21437
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27. Relation between mean solar time and the corresponding side-
real time.—In Section 14 it was shown that the relation connecting the hour
angle of an object with the sidereal time is

t=0—a

where a represents the right ascension of the object. Applying this equation
to the mean sun, we find

M=0—R (50)

in which R represents the right asceusion of the mean sun, and M its hour
angle. The latter, however, is equal by definition to the mean solar time. Equa-
tion (50) therefore expresses a relation between mean solar time and the cor-
responding sidereal time, which can be made the basis for the conversion of
the one into the other. The transformation requires a knowledge of R, the
right ascension of the mean sun, at the iustant to which the given time refers.
We now turn our attention to a consideration of the methods which are avail-
able for the determination of this quantity.

28, The right ascension of the mean sun and its determination.—It
is shown in works on theoretical astronomy that the right ascension of the
mean sun at any instant of Greenwich mean time is given by the expression

Ro = 18" 38™ 45836 -+ (236555 X 365.25)
-+ 0:00000932* (51)
-+ nutation in right ascension,

in which ¢ is reckoned in Julian years from the epoch 1900, Jan. o o® Gr. M. T.
It thus appears that the increase in the right ascension of the mean sun is not
strictly proportional to the increase in the time. This, in connection with equation
(50), shows that sidereal time is not a uniformly varying quantity, a fact already
indicated in Section 21. The nutation in right ascension oscillates between limits
which are approximately-1® and —1® with a period of about 19 years. Its change
in one day is therefore very small, and, as the same is true of the term involving
£2 in (51), it follows that the increase in the right ascension of the mean sun
in one mean solar day is sensibly 236.°555. From equation (50) it is seen that
the gain of sidereal on mean solar time during any interval is equal to the
increase in R during that interval; and, indeed, we have exact numerical agree-
ment between the change iu the latter for one mean solar day, as given by equa-
tion (51), and the gain of the former during the same period as shown by the
first of (47). From this it follows that the methods given in Section 26, including
Tables IT and III of the Ephemeris and the approximate relations (49), can
equally well be applied to- the determination of the increase in R, provided only
that the interval for which the change is to be calculated is small enough to
reuder the variations in the last two terms of (5I) negligible.
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To facilitate the solution of problems in which R is required, its precise
numerical values are tabulated in the various astronomical ephemerides for every
day in the year. In the American Ephemeris they are given for the instant of
Greenwich mean noon, and are to be found in the last column of page II for
each month. If these tabular values be represented by Ro, and if R. represent
the right ascension of the mean sun at the instant of mean noon for a point whose

longitude west of Greenwich is L, it follows from the preceding paragraph
that

R = Ro + 1L, (52)

for L is equal to the time interval separating mean noon of the place from the
preceding Greenwich mean noon. Further, the value of R at any mean time, M,
at a point whose longitude west of Greenwich is L is given by

R =R + 111X, (53)

or

R = Ro + NI1L + IIIA. (54)

Equations (52) and (53), or their equivalent, (54), suffice for the determi-
nation of R at any instant at any place when the value of Ko for the preceding
mean noon is known. For a given place the term IIIZ is a constant. Its value
can be calculated once for all, and can then be added mentally to the value of
Ro as the latter is taken from the Ephemeris. The quantity IIIM may be-
derived from Table III of the Ephemeris with M as argument.

If an Ephemeris is not available the values of R can still be found; approxi-
mately at least, by the use of Tables II-IV, page 46. The first of these contains
the values of Ro computed from (51) for the date Jan. o for each of the years
1907-1920. Denoting these by Roo and neglecting the variations in the last two
terms of (51) we have for Greenwich mean noon of any other date

Ro = Roo + 111D (s5)

where D indicates the number of mean solar days that have elapsed since the
preceding Jan. o. Substituting (55) into (54).

R = Reo + HIL + 11(D + M). (56)

The value of D may be obtained from Table IIT by adding the day of the
month to the tabular number standing opposite the name of the month in
question. M is conveniently expressed in decimals of a day by means of Table
IV. The value thus found is to be combined with D. If the precise value of
I11, viz., 236.°555, be used, the uncertainty in R derived from (56) will be only
that arising from the neglect of the variation in the last terms of (51). If care
be taken to count D from the mearest Jan. o the error will never exceed 0.°3 or
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TABLE II

RIGHT ASCENSION OF THE MEAN SUN FOR THE
ErocH JAN, od ok Gr, M. T.

Year

Roo

Year

ROO

1907
1908
1909
1910
1911
1912
1913

TABLE III
NuMBER OF DAY 1IN YEAR

D

Date

Common | Leap
Year Year
Jan. o o o
Feb. o 31 31
Mar. o 59 6o
Apr. o 90 91
May o 120 121
June o 151 152
181 182
Juiy of _ 184 — 184
e 212 213
U8 O —1s3f [ —1s3
243 244
Sept. o 122 — 122
273 274
Oct. o __ 92 o+
g 304 305
vl erf, | =G
Dec. o 334 335
— 31 — 31

PRECEPT: Add the day of
the month to the tabuiar vaiue
corresponding to the given
month, The use of the nega-
tive vaiues gives the day num-
ber from the fol/lowing Jan. o.

18k 36m o847

1914 | 18B 37M 13162

35 3.04 |1913 36 16.64
38  2.28 | 1916 35 19.63
37 509 | 1917 38 1907
36  7.99 | 1018 37 21.8%
35 10.98 | 1919 36 24.51
38 10.57 | 1920 35 28.05
TABLE 1V _
Hours AND MINUTES INTO DECIMALS OF A DAY
Decimais Decimals Decimais
Hour of a Min. of a Min. of a
Day Day Day
1 0.042 I 0.001 10 0.007
2 0.083 2 1 20 0.014
3 0.125 3 2 30 0.021
4 0.167 4 3 40 0.028
5 0.208 5 3 50 0.035
6 0.250 6 4 60 0.042
7 0.292 7 S
8 0.333 8 6
9 0.375 9 6
10 0.417 10 0.007
11 0.455
12 0.500
PrecepT: When the given hour is greater than

12, drop 12 from the argument and add od500 to the

result given by the table.

Thus, for 172 28™m enter the

tabie with the argument s 28™, giving 09228, whence
17h 28™ — 049228 4 0d500 = 09728,
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0:4. Thisrequires that for D>183° the negative value of Table I1I be employed,
together with the value of Roo for the following Jan. o.

If a somewhat greater uncertainty is permissible, the result may be more
expeditionsly found by using 4™(1—1/70) for 1II. If D be reckoned from the
nearest Jan. o as above, the corresponding error will not exceed 3°

Example 18. Find the right ascenslon of the mean sun for the epoch 1907, June 16
8h 21™ 14800 Columbia M. S. T.

By Equation (54)
Ro = 5" 34™ 25010 (Eph. p. 93)
L =6 g™ 18133 = 1 0.67 (Eph. Table III)
M=8 21 14000 BHMN= 1 22.34 (Eph. Table III)
R=5 36 48.11 Ans.
By Equation (56)
(D 4- M) = 1674348 (TablesIIl and IV) Roo (1907) = 182 36m or5 (Tahle II)
4™ (D 4 M) = 669m392 IIIL = 1 0.7
1/70X4™ (D 4 M) = 9w563 D+ M)=10 59 49.7
R= 5 36 s1 Ans.
Example 19. Find the right ascension of the mean sun for the epoch 1909, Sept. 21
198 26™ 24* Columbia M. S. T.

D -+ M = — 1019 4 09810 (Tables Il and IV) Roo (1910) = 182 39™ st1 (Table 11)

=-— 1004190 IHIL = 1 0.7
4™ (D+ M) = — 400m760 INI(D4M)=—6 35 2.1
1/70X 4 (D+M) =— 5.725 R= 12 3 4 Ab»ns.

The precise value glven by (54) is 12" 3™ 5t21.

29. Given the mean solar time at any instant to find the corre- ~
sponding sidereal time.—From equation (50) we find

0=M+4 R (57)
Introducing the value of R from (53) we have

= M + R + 1114, (58)

where
Ri = Ro -} 111L. (59)

Equations (59) and (58) solve the problem.

Equation (58) may be interpreted as follows: R is the right ascension
of the mean sun at the preceding mean noon for a place in longitnde L west of
Greenwich. It is therefore also equal to the hour angle of the vernal equinox
at that instant, Ze. to the sidereal time of the preceding mean noon at the
place considered. Now M is the mean time interval since preceding mean noon,
and by (45) M-IIIM is the equivalent sidereal interval. The right member
of (58) therefore expresses the sum of the sidereal time of the preceding mean
noon and the number of sidereal hours, minutes, and seconds that have elapsed
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since noon. In other words it is the sidereal time corresponding to the mean
time, M, as indicated by the equation.

In case the Ephemeris is not at hand, R may be obtained from (56) and
substituted into (57) for the determination of . The uncertainty in the sidereal
time thus found will be the same as that of R derived from (56).

Oftentimes a rough approximation for 6 is all that is required. In such
cases the following, designed for use at the meridian of Columbia, is useful: -

0 = 18 3777 4 M + 4(1 —1/70) D+ M).  (60)

The first term in the right member of this formula is the average value of
Roo plus the constant term IIIL, which for Columbia may be taken equal to 1™,
The expression can be adapted for use at any other meridian by introducing the
appropriate value of IIIL. The maximum error in the value of # derived from

(60) is 1.27.

Example 20. Given Columbia mean solar time 16" 27™ 32¢17 on 1909, Nov. 16, find the
corresponding sidereal time.

By equations (58) and (59)
M = 161 27m 32117
Ro=15 39 39.98

IIIL = 1 0.67
M = 2 42.23
8= 8 10 35505 Aus.

By equations (56) and (57)

D+ M = — 459 409686 M= 162 27m 3222
=—44"314 Roo= 18 37 5.1

4 (D + M) = — 177m256 INL = 1} 0.7
1/70X 4D+ M) =— 2.532 III(D+M)Y=—2 54 43.4

8= 8 10 55 Ans.

By equation (60)
18h 37my
M= 16 27,5
41— 1/70)(D+ M) = —2 54.7
= 8 10.5 Ans.

30. Given the sidereal time at any instant to find the corresponding
mean solar time.—We make use of equation (50), viz.

M=60—R
Substituting as in Section 29 we have

M=60—R.— IIIM

or

(1M =0 — R (61)






CHAPTER 1V
INSTRUMENTS AND THEIR USE

31. Instruments used by the engineer.—The instruments employed by the
engineer for the determination of latitude, time and azimuth are the watch or
chronometer, the artificial horizon, and the engineer's transit or the sextant. The
following pages give a brief account of the theory of these instruments and a
statement of the methods to be followed in using them.

The use of both the engineer’s transit and the sextant presupposes an under-
standing of the vernier. In consequence, the construction and theory of this at-
tachment is treated separately before the discussion of the transit and sextant
1s undertaken.

TIMEPIECES

32. Historical.—Contrivances for the measurement of time have been used
since the beginning of civilization, but it was not until the end of the sixteenth
century that they reached the degree of perfection which made them of service
in astronomical observations. The pendulum seems first to have been used as a
means of governing the motion of a clock by Biirgi of the observatory of
Landgrave William IV at Cassel about 1580, though it is not certain that the
principle employed was that involved in the modern method of regulation. How-
ever this may be, the method now used was certainly suggested by Galileo about
16373 but Galileo was then near the end of his life, blind and enfeebled, and it
was not until some years later that his idea found material realization in a clock
constructed by his son Vincenzio. It remained for Huygens, however, the Dutch
physicist and astronomer, to rediscover the principle, and in 1657 give it an appli-
cation that attracted general attention. Some sixty years later Harrison and
Graham devised methods of pendulum compensation for changes of temperature,
which, with important modifications in the escapement mechanism introduced by
Graham in 1713, made the clock an instrument of precision. Since then its devel-
opment in design and construction has kept pace with that of other forms of
astronomical apparatus.

The pendulum clock must be mounted in a fixed position. It can not
be transported from place to place, and it does not, therefore, fulfill all the
requirements that may be demanded of a timepiece. By the beginning of the
eighteenth century the need of accurate portable timepieces had become pressing,
not so much for the work of the astronomer as for that of the navigator. The
most difficult thing in finding the position of a ship is the determination of longi-
tude. At that time no method was known capable of giving this with anything
more than the roughest approximation, although the question had been attacked
by the most capable minds of the two centuries immediately preceding. The
matter was of such importance that the governments of Spain, France, and the
Netherlands established large money prizes for a successful solution, and in 1714
that of Great Britain offered a reward of £20,000 for a method which would give

the longitude of a ship within half a degree. With an accurate portable timepiece,
50
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which conld be set to indicate the time of some standard meridian before begin-
ning a voyage, the solution would have heen simple. Notwithstanding the stimu-
lus of reward no solution was forthcoming for many years. In 1735 Harrison
sticeeeded in constructing a chronometer which was compensated for changes of
temperature ; and abount 1760 one of his instrmments was sent on a trial voyage
to Jamaica. Upon return its variation was found to be such as to bring the
valites of the longitndes based on its readings within the permissible limit of
error.

The ideal timepiece, so far as uniformity is concerned, would be a body moving
nnder the action of no forces, but in practice this can not be realized. The
modern timepiece of precision is a c¢lose approximation to something equivalent,
but falls short of the ideal. Thus far it has been impossible completely to nullify
the effect of certain influences which affect the uniformity of motion. Changes
in temperature, variations in barometric pressure, and the gradnal thickening of
the oil lubricating the mechanism produce irregularities, even when the skill of
the designer and clockmaker is exercised to its utmost. No timepiece is perfect.
We can say ouly that some are better than others. Further, it is impossible
to set a timepiece with such exactness that it does not differ from the true time
by a quantity greater than the uncertainty with which the latter can be determined.
Thus it happens that a timepiece seldom if ever indicates the true time; and, in
general, no attempt is made to remove the error. The timepiece is started under
conditions as favorable as possible, and set to indicate approximately the true
time. It is then left to run as it will, the astronomer, in the meantime, directing
his attention to a precise determination of the amount and the rate of change of
the error. These being known, the true time at any instant is casily found.

33. Error and rate—The error, or correction, of a timepicce is the quantity
which added algebraically to the indicated time gives the true time. The error
of a timepiece which is slow is therefore positive. If the timepiece is fast the
algebraie sign of its correction is negative.

The error of a mean solar timepiece is denoted by the symbol J7; of a
sidereal timepiece, by J#. To designate the timepiece to which the correction .
refers subscripts may be added. Thus the error of a Fauth sidereal clock may
be indicated by Jf,; of a Negus mean time chronometer, by 47,. Sometimes
it is convenient to use the number of the timepiece as subscript.

If 8 be the indicated sidereal time at a given instant, and J# the cor-
responding error of the timepiece, the true time of the instant will be

=04 44" (64)
The analogous formula for a mean solar timepieee is
T =il AT (65)

The daily rate, or simply the rate, of a timepiece is the change in the error
during one day.



H2 PRACTICAL ASTRONOMY

If the error of a timepiece increases algebraically, the rate is positive; if it
decreases, the rate is negative. The symbols 68 and 97" with appropriate sub-
scripts are used for the designation of the rates of sidereal and mean solar time-
pieces, respectively. The hourly rate,ze. the change during one hour, is some-
times more conveniently employed than the daily rate.

It is convenient, but in no wise important, that the rate of a timepiece should
be small. On the other hand, it is of the utmost consequence that the rate should
be constant; for the reliability of the instrument depends wholly upon the degree
to which this condition is fulfilled. ‘

Generally it is impossible to determine by observation the error at the instant
for which the true time is required. We must therefore be able to calculate its
value for the instant in question from values previously observed. If the rate
is constant this can be done with precision; otherwise, the result will be affected
by an uncertainty which will be the greater, the longer is the interval separating
the epochs of the observed and the calculated errors.

If 40 and J0’ be values of the observed error for the epochs z and #, the
daily rate will be given by

Ao — db

00—_?'—'t

(66)

in which #—# must be expressed in days and fractions of a day. The rate having
thus been found, the error for any other epoch, t”, may be calculated by the
formula

J6" = 46" 460 (' —¢) (67)

Example 22. The error of a sidereal clock was + 3™ 27:61 on 1909, Feb. 3, at 6%4
sidereal time, and -- §™ 33210 on 1909, Feb. 11, at 5b2; find the daily rate, and the correction on
Feb. 14 at 796 sidereal time.

We have 40 = 4 5™ 27361, 40’ — + 5™ 33%10, and
¢ — =114 gha — 3d 6bg — 74 2218 — 7dgs.

Equation (66) then gives 80 = 4 5249/7.95 = -+ €169, which is the required value of the rate.
To find the error for Feb. 14, 726, we bave

2" — ¢’ =144 706 — 114 gh2 — 3d 2by — 3d1,
whence by equation (67)
40" = + 5™ 33'10 + 3.1 X 0169 = + 5™ 35124. Aus.

34. Comparison of timepieces.—It is frequently necessary to know the time
indicated by one timepiece corresponding to that shown by another. The determi-
nation of such a pair of corresponding readings involves a comparison of the two
timepieces. To make such a comparison the observer must be dble accurately
to follow, or count, the seconds of a timepiece without looking at the instrument.
It is desirable, moreover, that he should be able to do this while engaged with
other matters, such as entering a record in the observing book, etc.
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Pendulum clocks usually beat, or tick, every second; and chronometers, every
half second. The beats of the ordinary watch are separated by an interval of a
fifth of a second. With cach beat the second hand of the timepiece moves
forward by an amount corresponding to the interval separating the beats—a
whole second space for the clock, a half second space for the chronometer, and
a fifth of a second for the watch. '

If the Dbeats of two timepieces coincide, a comparison is easily made. The
observer has only to pick up the beat from one, then, following mentally, look
at the other and note the hour, minute, and second corresponding to a definite
time on the first. After noting the reading of the second, the observer shounld
look again at the first before dropping the count, to make sure that the indicated
number of seconds and the count were in agreement at the instant of comparison
If the beats of the timepieces do not coincide, and it is desired to obtain a com-
parison with an uncertainty less than the beat interval, the observer must estimate
from the sound the magnitude of the interval separating the ticks. He will then
note the hour, minute, second, and tenth of a second on the second timepiece cor-
responding to the beginning of a second on the first.

When a watch is to be compared with a clock or a chronometer, the count
shonld be taken from the latter. The tenths of a second on a watch corresponding
to the beginning of a second on the clock or chronometer may be estimated by
noting the position of the watch second hand with respect to the two adjacent
second marks at the instant the beat of the clock or chronometer occurs. The
comparison will then give the liour, minute, second, and zero tenths on the clock
or chronometer corresponding to a certain lour, minute, second, and tenth of a.
second on the watch. '

If a sidereal and a mean solar timepiece are to be compared, a very precise
result may be obtained by the method of coincident beats. It was shown in Sec-
tion 26 that the gain of sidereal on mean solar time is about ten seconds per hour,
or one second in six minutes. The ticks of a solar and a sidereal timepiece, each
beating seconds, must therefore coincide once every six minutes. [f one of the
timepieces beats half seconds, the coincidences will occur at intervals of three min-
utes. A comparison is made by noting the times indicated by the two instruments
at the instant the beats coincide. If carefully made, the uncertainty of the com-
parison will not exceed one or two hundredths of a second.

Example 23. On 1907, Oct. 29, five comparisons of a watch were made with the Fauth
sidereal clock of the Laws Observatory. The means of the comparisons are g = 18" 23™ ot00,
and 7= 4" 3™ 16112 P.M. The error of the Fauth clock was —29:72, and the longitude
west ot Greenwich is 6h g™ 18:33. Find the error of the watch referred to central standard
time.

From ¢r and Jor find ¢ by (64). The sidereal time is then to be transformed into C.S. T.
by (62) and the first of (41). The resulting C. S. T. compared with 7y gives the error of
the watch.
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fe 18t 23m o200

A0r — 29.72

g 18 22 30.28

V(s 14 27 40.63

0 — 1, 3 54 49.65

1I(§— 721) 38.47

Coll MERSE. = 2 TS . )

/&, 9 18.33
CESHETS 4 3 29.51 P.M,
Tw 40| i3] Br6t12" IRSMI
AT + 13.39 Auns.

Example 24. On i1go7, Oct. 30, civil date, the Fauth sidereal clock of the Laws Observ-
atory read 14h 28m g!75, when the Riggs clock, a central standard timepiece, indicated
ob sm 17100 P.M. The error of Riggs was 4 4:82; find the correction to the Fauth clock.

The reading of Riggs combined with its error by (65) gives the true C. S. T. From this
the Columbia M. S. T. is found by the second of (41). This converted into the correspond-
ing g by (58) and compared with the reading of Fauth gives 44s. ¢

In problems in which the given time is near noon, great care must be exercised in
determining the date for which &o is to be taken from the Ephemeris. In the present case,
the astronomical date for the goth meridian is Oct. 30, for the true C. S. T. shows that the
instant of mean noon had passed; but at Columbia mean noon had not yet arrived. Since
Rois always to be taken from the Ephemeris for the preceding local mean noon, the date to be
used is Oct. 29.

Tr ob smi7ioo P.M.
ATR + 4.82 N
C.S. T. o 5 21.82 P.M., Oct. 30, civil date
& 9 18.33
Col. M. S.T. 23 56 3.49 Oct. 29, astronomical

Ry 14 27 40.63

A7 3 55.91
0 14 27 40.03

Or 14 28 9.75

A46¢ — 29.72  Auns.

Example 5. When the error of a timepiece, a, is given and it is required to find the
corrections of two others 4 and ¢, the observations and reductions may be controlled by a
circular comparison, 7. ¢, by comparing @ and 4, @ and ¢, and 4 and ¢. The first comparison
leads to the error of 4. The given error of a, and that calculated for 4, may then be used to
reduce the second and third comparisons. Each of these leads to a value of the error of ¢ and
the two results must agree within the uncertainty of the observations and calculations.

The Fauth sidereal clock, a Bond sidereal chronometer and the Gregg and Rupp central
standard clock of the Laws Observatory were compared in this manner on 1902, April 18,
The bracketed numbers are the results of the comparisons. J8r= - 1™ 1413, find J8; and
A TG & R

Hs 10" 8m 4550} Tcar  8h 26m 3088 P.M. T air 8b 28m agio P.M.
Gl 10 714271 fr 10 9 35.0 s 10 12 47.§
A0 +1 143 46: I 14.3 NIH S
8 1o 8 41.4 a 10 10 49.3 ] 10 12 43.9
46s v 9 C oS R S e 1.0 CLASN T, 8 36 358.3

d7car  +8 33.2 TG +8 333
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The second and third comparisons are reduced by the method used for Ex. 23. The
detalls of the conversion of ¢ into C. S. T. are omitted. The two values of J7¢ax present
a satlsfactory agreement.

Example 26. Given thirty comparisons of a Waltham watch and a Bond sldereal
chronometer made at intervals of one minute; to find the rate per minute of the watch
referred to the chronometer, a precise value of the watch time corresponding to the first
chronometer reading, and the average uncertainty of a single comparison.

The interval between any two chronometer readings minus the difference between the
corresponding watch readings is the loss of the watch as compared with the chronometer
during the interval. The quotient of the loss by the interval in minutes is a value of the
relative rate per minute. Thus, if

7I: = interval between two chronometer times,
Iy = interval between two watch times,
? = relative rate of watch per minute,

then
1(_ - 1\\'
A e \
V{3 = (a

The solution of the first part of the problem may therefore be accomplished by grouping
the comparisons in pairs and applying equation (@). The mean of the resulting values of /2
will then be the final result. The selection of the comparisons for the formatlon of the pairs
requires careful attention if the maximum of precision is to be secured. To obtain a criter-
ion for the most advantageous arrangement, consider the resultant error of observation in 2
when derived from equation (). Denoting the influence of the errors in the observed watch
times upon the interval 7y by e we find for the error of 2

E[R] = } ()
c
Since e Is independent of the length of the interval separating the comparisons, it follows
from (&) that the precision of /2 increases with the length of this interval.

It is desirable for the sake of symmetry in the reduction that the separate values of 72
should be of the same degree of precision; and it is important to arrange the calculation so that
any irregularity in the relatlve rate will be revealed. The reduction will then give not only
the quantitative value of the final result, but at the same time will throw light upon the reli-
ability of the instruments employed.

We are thus led to the following grouping of the comparisons: 1 and 16, 2 and 17, 3 and
18, ...... 15 and 30; or, in general, the »th comparison is palred with the (15 #)th. The
fourth column of the table gives the values of /w corresponding to this choice. The first of
these is derived by subtracting the first 7' from the sixteenth; the second, by subtracting the
second 7w from the seventeenth, and so on. The 15 values of /y substituted into equation
(a), together with the constant value Zc = 15™, would give 15 separate values for 2. The first
of these would depend upon data secured during the first 15 minutes of the observing period;
the last, upon those obtalned during the last 15 minutes; while the intermediate values of /2
would correspond to various intermediate 15-minute intervals. Any lrregularity in the rate
will therefore reveal itself in the form of a progressive change in the separate values of 2.
But, since /c is assumed to be constant throughout, equation (2) shows that constancy of 7y
will be quite as satisfactory a test of the reliability of the timepieces as constancy in 2. Itis
not necessary, therefore, to calculate the separate values of the relative rate; and for the der-
ivation of the final result we adopt the simpler procedure of forming the mean of the values
of /i, which we then substitute into (@) with /o = r5™. We thus find mean Zy = 14™ 57165,
whence the mean relative rate of the watch referred to the chronometer is o!157 per minute of
chronometer time,
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WATcH AND CHRONOMETER COMPARISON

No. a, Gy e (n—1) R T v
r O 45™ 00 | joh 25m 2519 | I4™ 5716 otoo 25%90 ~—*1
2 46 o.0 26 25.8 .6 0.16 25.96 —.17
3 47 o©0.0 27 257 .4 0.31 26.01 ~—.22
4 48 o.0 28 25.5 -5 0.47 25.97 —.18
5 4y 0.0 | 29 25.1 .8 0.63 25.73 +.06
6 50 0.0 30 25.0 7 o.78 25.78 -}-.01
7 51 0.0 31 24.8 .8 | 0.94 25.74 L
8 52 0.0 32 24.7 o7 1.10 25.80 ~.0I
9 53 o0.0 33 24.4 &) 1.26 25.66 —+.13
10 54 0.0 34 24.2 .8 1.41 25.61 +.18
11 55 0.0 35 241 7 1.57 25.67 +.12
12 56 0.0 36 239 7 1.73 25.63 +.16
13 57 o0.0 37 23.8 7 1.88 25.68 +.11
14 58 o.0 38 23.7 7 2.04 25.74 -+.05
15 59 0.0 39 23.7 .4 2.20 25.90 —.11
16 1 o0 0.0 40 23.5 :5)?9@ 2.36 25.86 —.07
17 1 o.0 41 23.4 14.57.65 2.51 25.91 —.12
18 2 00 | 42 231 | 15 o000 | 2.67 25.77 +.02
1) 3 o.0 ‘ 43 23.0 15) 2.35 2.83 25.83 —.04
20 4 0.0 44 22.9 | R=otgy 2.98 25.88 —.09
21 5 0.0 45 22.7 3.14 25.84 —.05
22 6 o.0 46 22.6 3.30 25.90 —.1I
23 7 0.0 47 22.4 3-45 25.85 —.006
24 8 oo 48 22.1 3.61 25.71 -+.08
25 9 0.0 49 22.0 3.77 25.77 .02
26 10 0.0 50 21.8 3.92 2572 | .07
27 I1 0.0 51 21.6 4.08 25.68 fLonT
28 12 0.0 52 2I.§ 4.24 25.74 .05
29 13 0.0 53 21.4 4.40 25.80 —.01
30 14 0.0 1T T 4.55 25.65 +.14
cxtsell o 45 000 |10 25 2579 b =3°>_’235% i*_;i
Rem. = — o.01 -}-0.01
30) 273

Average Residual = == otog

An examination of the individual values of /w for the given problem affords no certain
evidence of a variabllity of the relative rate.

As for the second requirement of the problem, it is evident that were the observations per-
fectly made, with a watch whose relative rate was zero, the seconds and tenths of seconds of all
the watch readings would have been the same. Had they been made with the same errors of
observation as actually occurred, but with a watch of zero relative rate, they would have differed
among themselves only by the errors of observation. The mean of all the seconds readings
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would then have given a precise value of the watch time corresponding to the first chronom-
eter reading. The given problem may be reduced to this case by correcting each watch
reading by the effect of the rate during the interval separating it from the first observation.
To accomplish this we have only to add to the readlngs, in order, the quantities o2, 1R, 2/,
.« « + + 29R; or, in general, to the »th reading, (» —1)2. The values of these corrections are
in column five of the table, and the watch times, corrected for rate, in column six. These
results are given to two places of decimals in order to keep the crrors ot calculation small as
compared with the errors of observation. The mean of the values of 7\, 10" 2§™ 2579, is the
required preclse watch reading corresponding to the first chronometer reading, o® 45™ otoo.

To obtain a notion of the uncertainty of a single comparison, consider the corrected watch
readings, 7. If the frue value of /2 has been used In applying the corrections for rate, and
if the Zrue value of the first watch reading were known, the actual error of this and of each of
the remaining readings could at once be found by forming the difference between the true
value and each of the corrected watch times. The average of the errors would then indicate
the precision of the comparisons. But the true values of 2 and of the first comparison are
not known.and cannot be found. We must therefore proceed as best we may; and, accord-
ingly, we use for the true relative rate the value calculated above, and for the true value of
the first watch reading, the mean of all the corrected readings. The differences between each
corrected watch time and the mean of them all are callcd residuals. The residuals will differ
but little from the corresponding errors, for the calculated value of & and the mean 7' will
differ but little from the quantities they are taken to represent. Although the average of the
residuals will not exactly equal the average of the errors, it may be accepted, nevertheless, as
a measure of the precision of the observations; for, barring a constant systematic error, it is
evident that the more accurate the observations, 7.e. the smaller their variations among them-
selves, the less wlll be the average residual.

Denoting the residuals by v, and the mean of the corrected watch times by A7, we have

.

o=M,— T ()

The values of v formed in accordance with (¢) are in the last column of the table.

A valuable control may be applied at this point. It is easily shown that if the exact value
of M, be used for the formation of the residuals, their algebraic sum must be zero. (Num.
Comp. p. 17.) If, however, an approximation for A7, is used, the algebraic sum of the resid-
uals will equal the negative value of the remainder in the divislon which gives as quotient
the value used as a mean.

In the present case the algebraic sum of the residuals is +} 0.01; the remainder is —o.01,
which checks the formation of the mean and the residuals. The average residual, without
regard to algebraic sign, is &= 0t0o9. This we may accept asthe average uncertainty of a single
comparison. 1

The principles illustrated in the preceding reduction find frequent application in the
treatment of the data of observation. The example is typical and the methods followed in the
discussion should receive careful attention. 1n particular, the grouping of the observations
for the determination of the mean value of R should be examined; and the student should
investigate for himself the precision ot the result when such combinations of the comparisons
astrand 2 2and 3, ....29and 30; rand 2,3and4,....29and 30; 1 and 30, 2 and 28,....
15 and 16; etc, are employed in place of that actually used.

Example 27. To determine the average uncertainty of a single comparison of two time-
pieces by the method of coincident beats. A

Ten successlve coincidences of the beats of a Bond sidereal chronometer with those of a
Gregg & Rupp mean time clock are taken as the basis of the investigation. The method used
for the reduction Is similar to that employed in Ex. 26. The comparisons are in the second
and third columns of the table. Since the chronometer beats half-seconds and the clock sec-
onds, the interval between the successive coincidences is that required for the clock to lose
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ot5 as compared with the chronometer. Denote the true value of this interval by 7. To ex-
hibit the influence of the errors of observation we find what the clock readings would have
been had they all been made at the same instant as the first. This is done by subtracting
from the readings, in order, o/, 1/, 27,....9/. The numerical values of the corrections are
in column five, and the reduced clock readings themselves, in column six. The value to be
used for 7 is one-fifth of the average of the intervals between the »th and the (z#-45)th clock
readings. The individual values of these intervals are in column four. Their mean fis
14™55%2, whence /= 2m59%04. The variations in the values of 7 represent the influence of the
errors of observation. The average residual for the reduced clock readings is 4= 2194, which
may be accepted as the average uncertainty of the time of a coincidence, Since the clock
loses 1° in 358°% the corresponding average uncertainty of a comparison is 4= o%008.

ComPAR1SON BY COINCIDENT BEATS.

No. 6 {7 7 ! (n—1)7 7" o
1 17 35m 5780 | 2M 6™ oo 4™ 45% om ofo 2h M 6otn — 3%
2 28RS 255 8 s55.0 62.00 1y 2 Ssolo 56.0 + o.7
3 41  53.0 11 §5.0 60.0 5k wiSar 569 — 0.2
4 44 52.5 14 54.0 540 | 8 7.1 56.9 — 0.2
5 47 49.0 17 50.0 55.0 11 g6.2 53-8 + 2.9
6 50 44.5 20 450 5)276.0 14 552 49.8 + 69
7 53 57.0 23 §7.0 5)14  §5.2 | 17  54.2 62.8 — 6.1
8 56  55.5 26 §5.0| /= 2 59.04i 20 53.3 61.7 -— 5.0
9 59 49.0 29 4S.0 ! 23 52.3 55-7 + 1.0
1o 118 2 465 32 45.0 | 26 51.4 536 + 3.1
10)567.2 -+ 14.6
Clock loses 1* in 358" Rem= +o0.2 . — o.2
Average uncertainty of a single 10) 20.4
comparison — = 2194/358 = == 0%008. ‘ Average Residual = —_4.:2_'94

35. The care of timepieces.—All timepieces should be wound at regular in-
tervals. They should be protected from moisture, electrical and magnetic in-
fluences, and extremes of temperature, especially the direct rays of the sun. They
vield the best results when at rest, absolutely untouched, except as winding
may be necessary. Portable instruments must not be sutbjected to violent shocks,
jolts, or oscillatory motions. Chronometers are particularly sensitive to such dis-
turbances, especially oscillations. Timepieces of this sort are usually hung in gim-
bals, mounted in a substantial wooden case. When at rest, or when subjected to
the long periodic motions of a ship, they should hang free in the gimbals in order
that the mechanism may remain constantly horizontal in position. When trans-
ported from place to place on land, the gimbals should be locked. Otherwise the
unavoidable jarring may produce oscillations sufficient to change appreciably the
error and the rate. If the journey is such that shocks can not be avoided, it is
safer to stop the instrument and insert thin wedges of cork between the balance
wheel and the supporting frame, using just sufficient force to hold them in place.
In this way the delicate pinions of the balance may be gnarded from injurv. The
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chronometer, so far as possible, should be kept in a fixed position with respect
to the points of the compass.

TIIE ARTIFICIAL IIORIZON

36. Description and use.—The artificial horizon consists of a shallow dish
filled with mercury. The force of gravity brings the surface to a horizontal posi-
tion, and the high reflective power of the nietal makes it possible to see the various
celestial bodies reflected in the surface. Any given object and its image will be
situated on the same vertieal circle, and the angular distance of the image below the
surface will be equal to that of the object above. The angular distance between
the object and its image is therefore twice its apparent altitude. Strictly speaking,
this is true only when the eye of the observer is at the surface of the mercury,
but for distant objects the error is insensible.

The measurement of the distance between the object and its image therefore
affords a means of determining the altitude of a celestial body, and in this con-
nection the artificial horizon is a valuable accessory to the sextant. It can also
be used to advantage with the engineer's transit for the elimination of certain
instrumental errors.

The artificial horizon is usually provided with a glass roof to protect the
surface of the mercury from disturbances by air currents. It is important that
the plates of glass should be carefully selected in order that the light rays travers-
ing them may not be deflected from their course. The effect of any non-parallelism
of the surfaces may be eliminated by making an equal number of settings with
the roof in the direct and reversed position, reversal being accomplished by turn-
ing the roof end for end.

THE VERNIER

37. Description and theory.—The vernier is a short graduated plate attached
to scales for the purpose of reducing the uncertainty of measurement. It takes
its name from its inventor, Pierre Vernier, who in 1631 described its construction
and use. In its usual form the graduations are such that the total number of
vernier divisions, which we may denote by n, is equal to » — 1 divisions of the
scale, the graduation nearest the zero of the scale marking the zero of the vernier.
The vernier slides along the scale, the arrangement being such that the angle,
or length, to be measured corresponds to the distance between the zeros of the
scale and of the vernier. When the zero of the vernier stands opposite a gradua-
tion of the scale, the desired reading is given directly by the scale. Usually this
will not occur, and the vernier is then used to measure the fractional part of the
scale division included between the last preceding scale graduation and the zero
of the vernier.

The difference between the values of a scale and a vernier division is called
the least reading =—/ of the vernier. If

d =value of one division of the scale,
@’ = value of one division of the vernier,
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then, for the method of graduation described above,

(n—1)d=nd’
whence

l=d—d'= (68)

n

The least reading of the vernier is therefore 1/x#th of the value of a scale division.
Now, for an arbitrary setting of the vernier, consider the intervals between
the various vernier graduations and the nearest preceding graduations of the scale,
beginning with the zero of the vernier and proceeding in order in the direction
of increasing readings. The first interval is the one whose magnitude is to be
determined by the vernier. Denote its value by #. Since a vernier division is
less than a scale division by the least reading, /, it follows that the interval between
the second pair of graduations will be 7 — ]; that between the third v — 2/; and so
on, each successive interval decreasing by I. By proceeding far enough we shall
find a pair for which the interval differs from zero by an amount equal to, or
less than //2, a quantity so small that the graduations will nearly, if not quite,
coincide. Suppose this pair to be 7’ divisions from the zero of the vernier. The
value of the corresponding interval will be z — z'/=¢, and we therefore find

v=un'l +e¢. (69)

In practice we disregard ¢ and use
v=1l. (70)

To determine the value of v, therefore, we count the number of vernier
divisions from the zero of the vernier to the vernier graduation which most nearly
coincides with a graduation of the scale. The product of this number into the
least reading is the value of v. The final result is the sum of v and the reading
corresponding to the last scale graduation preceding the zero of the vernier.

In practice the actnal counting of the number of divisions between the zero
of the vernier and the coincident pair is avoided by making use of the numbers
stamped on the vernier. These give directly the values of 7'l corresponding to
certain equidistant divisions of the vernier. Usually one or two divisions precede
the zero and follow the last numbered graduation of the vernier. These do not
form a part of the n divisions of the vernier, and are therefore to be disregarded
in the determination of . They are added to assist in the selection of the coin-
cident pair when coincidence occurs near the end of the vernier.

38. TUncertainty of the result.—The error of a reading made with a per-
fectly constructed vernier is ¢, whose maximum absolute value is /2. The uncer-
“tainty of the result is therefore //2.

The gain in precision resulting from the use of the vernier may be found
by comparing the uncertainty of its readings with that arising when the scale
alone is used. The latter may be fixed at 0.05d, as experience shows that this
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is approximately the uncertainty of a careful eye estimate of the magnitude of <.
The inverse ratio of the two uncertainties may be taken as a measure of the
increase in precision, whence we find that the result given by the vernier is approx-
imately #/10 times as precise as that derived from an estimate of the fractional
parts of a scale division. It appears, therefore, that a vernier is of no advantage
unless the number of its divisions is in excess of ten.

The use of a magnifying lens usually shows that none of the vernier grad-
uations exactly coincides with a graduation of the scale. With a carefully grad-
nated instrument, it is possible, by estimating the magnitude of ¢, to push the
precision somewhat beyond the limit given above. To do so it is only necessary
to compare ¢ with the interval between the next following pair of graduations.
or with that of the pair immediately preceding, according as ¢ is positive or
negative. The sum of the two intervals to be compared is [. It is therefore
possible to estimate ¢ in fractional parts of the least reading.

The condition that n divisions of the vernier equal n—1 divisions of the
scale must be rigorously fulfilled if reliable results are to be obtained. The matter
should be tested for different parts of the scale by bringing the zero of the vernier
into coincidence with a scale graduation, and then examining whether the (n+4-1)st
vernier graduation stands exactly opposite graduation of the scale. Information
may thus be obtained as to the accuracy with which the graduation of the instru-
ment has been performed.

The vernier should lie, preferably, in the same plane as the scale, and, in
all positions, should fit snugly against the latter. In many instruments, however,
it rests on top, the plate being beveled to a knife edge where it touches the scale.
With this arrangement the greatest care must be exercised in reading to keep

the line of sight perpendicular to the scale. Otherwise an error due to parallax
will affect the result.

THE ENGINEER'S TRANSIT

39. Historical.—The combination of a horizontal circle with a vertical arc
for the measurement of azimuth and altitude is known to have been used by the
Persian astronomers at Meraga in the thirteenth century, and it is possible that
a similar contrivance was employed by the Arabs at an even earlier date. The
principle involved did not appear in western Europe, however, until the latter
half of the sixteenth century. There it found its first extensive application in the
instruments of Tycho Brahe, who constructed a number of “azimuth-quadrants”
for his famous observatory on the island of Hveen. The vertical arcs of Tycho’s
instruments were movable about the axis of the horizontal circle, and were pro-
vided with index arms fitted with sights for making the pointings. The adjust-
ment for level was accomplished by means of a plumb line, the spirit level not yet
having been invented. Magnification of the object was impossible, as a quarter
of a century was still to elapse before the construction of the first telescope. The
instruments were large and necessarily fixed in position; and, indeed, there was
no need for moving them from place to place as they were intended solely for
astronomical observations. Though primitive in design, they were constructed
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with the greatest care, and were capable of determining angnlar distances with an
uncertainty of only 1’ or 2. They are of interest not only on account of the re-
markable series of results they yielded in the hands of Tycho, but also because
they embody the essential principle of the modern altazimuth, the universal instru-
ment, the theodolite, the engineer’s transit, and a variety of other instruments.

None of these modern instruments is the invention of any single person,
but rather a combination of inventions by various individuals at different times. The
telescope, first constructed during the early years of the seventeenth century, was
adapted to sighting purposes through the introduction of the reticle by Gascoigne,
Auzout, and Picard. Slow motions were introduced by Hevelius. The vernier was
invented in 1631, and the spirit level, by Thévenot, in 1660. All these were com-
bined with the principle of the early azimuth-quadrant to form the altazimuth,
which appears first to have been made in a portable form by John Sisson, an
Englishman, about the middle of the eighteenth century. At the beginning of the
nineteenth century the design and construction were greatly improved by Reich-
enbach, who also added the movable haorizontal circle, thus making it possible
to measure angles by the method of repetitions. The universal instrument was
then practically complete, and the transition to the engineer’s transit required
only the addition of the compass and such minor modification as would meet
the requirements of precision and portability fixed by modern engineering
practice.

For a detailed description of the engineer's transit, the student is referred
to any standard work on surveying. Certain attachments, notably the compass
and the telescope level, are not required for the determination of latitude, time,
and azimuth. On the other hand, it is desirable that the instrument used in the
solution of these problems should possess features not always present in the mod-
ern instrument. In particular, the vertical circle should be complete, and should .
be provided with two verniers situated 180° apart. A diagonal prism for the
observation of objects near the zenith, and shade glasses for use in solar obser-
vations are a convenience, though not an absolute necessity.

40. Influence of imperfections of construction and adjustment.—It is assumed
that the student is familiar with the methods by which the engineer’s transit may
he adjusted, and that observations will not be undertaken until the various adjust-
ments have been made with all possible care. But since an instrument is never
perfect, it becomes of importance to determine the influence of the residual errors
in construction and adjustment, and to establish precepts for the arrangement of
the observing program such that this influence may be reduced to a minimum.

In the instrument fulfilling the ideal of construction and adjustment, the fol-
lowing conditions, among others, are satisfied : .

1. The rotation axes of the horizontal circle and the alidade coincide.

2. The planes of the circles are perpendicular to the corresponding axes

of rotation.

3. The centers of the circles lie in the corresponding axes of rotation, and

the lines joining the zeros of the verniers pass through the axes.
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4. The vertical axis of rotation is truly vertical when the plate bubbles are
centered.
The horizontal rotation axis is perpendicular to the vertical axis.
The line of sight, 7.¢. the line through the optical center of the objective
* and the middle interseetion of the threads, is perpendicular to the hori-
zontal axis.

7. The vertical circle reads zero when the line of sight is horizontal,

It is the task of the instrument maker to see that the first three of these con-
ditions are satisfied. The observer, on the other hand, is responsible for the re-
mainder.

No. 1 is of importance only in the measurement of horizontal angles by the
miethod of repetitions, The error arising in such measures from non-coincidence
of the vertical axes may be eliminated by the arrangement of the observing pro-
gram deseribed in Section 47.

No. 2. It ean be shown that the error due to lack of perpendicularity of the
circles to the axes is of the order of the square of the deviation. In well con-
structed instruments it is therefore insensible

No. 3. If the third condition is not satisfied the readings will be affected by
an error called eceentricity.

oven

F I
.« e
Y
Fig. 7.

In Fig. 7 let C be the center of the graduated circle OV, V, ; @, the point
where the rotation axis intersects the plane of the circle; O, the zero of the
graduations; and V/, and V', the zeros of the verniers. The distance aC =e¢
is the eccentricity of the circle. The perpendicular distance of a from the
line joining V, and V, is the eccentricity of the verniers. The reading of I,
is the angle OCV,, and of V,, OCV, Denote these by R, and R,, respect-
ively. The angles through which the instrument must. be rotated in order
that the zeros of the verniers may move from O to the positions indicated, are
OaV =4, and OaV,=A,, respectively. A, and A, are therefore to be regarded
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as the angles which determine the positions of the verniers with respect to O
for the pointing in question. The relations connecting 4, and 4, with the vernier
readings, R, and R,, are )

AXZRX+EO_Exr (71)
A,_—_R; + Eo_ Eﬂl (72)

where E,, E,, and E, are the corrections for eccentricity for the points O, V7,
and V,. The mean of (71) and (72) is

%(A1+A2)=%(R1+Rz)+Eo+ I/é(Ez—Ex)' (73)
For any other pointing of the telescope, we have the analogous equation
B(A+ A)=K%R+R)+ E+ K (E/—E)  (74)

It is easily shown that E,—E, and E,’—E, are of the order of ¢e'/7?, where
¢ is the eccentricity of the verniers and r the radius of the circle. The last terms
of (73) and (74) are entirely insensible in a well constructed instrnment. The
difference of (73) and (74) is therefore

%(A/+A)) — %A+ 4) = V(R +R,) — G (RA+R). (75)

The left member of (75) is the angular distance through which the instru-
ment is rotated in passing from the first position to the second, and the equation
shows that this angle is equal to the difference in the means of the vernier read-
ings for the final and initial positions. The eccentricity is therefore eliminated
by combining the means of the readings of both verniers.

It can be shown that the eccentricity will also be eliminated by combining
the means of any number of verniers, greater than two, uniformly distributed
about the circle. In practice it is sufficient to use the degrees indicated by the
first vernier with the means of the minutes and seconds of the two readings.

Nos. 4—7. Horisontal Angles: In the measurement of horizontal angles
an error of adjustment in No. 7 has no influence. To investigate the effect of
residual errors in Nos. 4—56, let

i—inclination of the vertical axis to the true vertical,
g0° —, j=inclination of the horizontal axis to the vertical axis,

b=inclination of the horizontal axis to the horizon plane,
90° 4 c=inclination of the line of sight to the horizontal axis.

The quantities b and ¢ are the errors in level and collimation, respectively.
Then, in Fig. 8 which represents a projection of the celestial sphere on the plane
of the horizon, let Z be the zenith, Z’ the intersection with the celestial sphere
of the vertical axis produced, O an object whose zenith distance is s, and A
the intersection of the horizontal axis produced with the celestial sphere when
O is seen at the intersection of the threads. The sides of the triangles ZAZ’
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on the horizontal circle readings. But by (79) /= 4, sensibly, whence it follows
that the amount of the error is given by (81). If, therefore, R be the actual
horizontal circle reading, and R,, the value for a perfectly adjusted instrument.
we have

R,= R+ b cot g, + ccosec 2, (CERRN (82)

in which the value of b is given by equation (78). Assuming that equation
(82) refers to that position of the instrument for which the vertical circle is on
the right as the observer stands facing the eyepiece (C. R.), we find by a
precisely similar investigation for circle left (C. L.),

b,=j—icos/, (83)
R, = R,~— b, cot z,— c cosec z,, @5 /L (84)

where R, is the circle reading less 180°, and &, the inclination of the horizontal
axis to the plane of the horizon for C. L. The mecan of equations (82) and
(84) is

R,= %(R+ R) + %(6— &) cot z, (85)
or, substituting the values of b and b, from (78) and (83)
R,= Y%(R+ R,) +icoslcotz, (86)

It therefore appears that the mean of the readings of the horizontal circle
taken C. R. and C. L. for settings on any object is free from the influence of
J, ¢, and the component of ¢ in the direction of the line of sight, viz., ¢ sin I. More-
over, for objects near the horizon the effect of icos/, the component of 7 par-
allel to the horizontal axis, is small, for it appears in (86) multiplied by cot s,

If the instrument be provided with a striding level, the values of b and b,
may be determined by observation. Their substitution into (85) will then give
the horizontal circle reading completely freed from ¢, j, and ¢.

The readings may also be freed from the influence of b by combining the
results of a setting on O with those obtained by pointing on the image of O seen
reflected in a dish of mercury, both observations being made in the same position
of the instrument, either C. R, or C. L. The reflected image, O’, will be on the
vertical circle through O, and as far below the horizon as O is above. Since the
horizontal axis is not truly horizontal, it will be necessary to rotate the instru-
ment slightly about the vertical axis in turning from O down to O'. 4 will thus
move a small amount to a new position A4’

To investigate the effect of the errors for a pointing on O’ we must therefore
consider the triangle 4’Z0’ in place of 4Z0 in Fig. 8. The sides of 4'Z0" are
ZA' =74 = 90°—b, A'O' = A0 =g0°+} ¢, and Z0' = 180°—5,. The angle at
Zis K— k' where k' is the direction of ZA4’ referred to ZP. We then find, simi-
larly to equation (&0),
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— sin ¢ = —sin bcos g, + cos bsin z,cos (K — £7),
whence

K—g0° — %" = — b cot 5, + ¢ cosec z,
and, finally, if R’ be the horizontal cirele reading for the setting on O’
R,= R'—bcots, + ccosec z,. ETRY (87)
Equations (82) and (&) both refer to C. R. Their mean is
R, = % (R+ R') + c cosec z,, CHR. (88)
By the same method we find from the reflected observation, C. L.,
R,= R, + b, cot z,—ccosec z,, G ik (89)

1

in which R, is the circle reading less 180° for C. L. This equation combined
with (84) gives

R,= %B(R, + R,') — ccosec g, (G (90)

Equations (88) and (9o) show that the mean of the horizontal cirele read-
ings for direet and reflected observations of an ohject in the same position of
the instrument is free from the influence of any adjustment error in level.

Finally the combination of (88) and (go) gives ’

Ro=U%(R+ K + R, + R (o1)

in other words the mean of the readings, direct and reflected, for both positions
of the instrnment, is free.not only from b, but from the collimation error as well.

Vertical Circle Readings: To investigate the influence of i, j and ¢ upomr
the readings of the vertical circle, consider again Fig. 8. The truc zenith dis-
tance of O is ZO =z, ; that given by the vertical circle readings is equal to the
angle Z'A0. From the triangle ZAO we find

cos 5, = —sin &sin ¢ + cos & cos c cos (ZAO).

The squares and products of the errors of adjustment are ordinarily quite insen—
sible, whence we find with all necessary precision.

s, = Angle ZAO0.

Denoting the instrumental zenith distance Z'40 by z, we find s5,— 5= angle
ZAZ', and from triangle ZAZ'

cos & sin (5, — 5) =sin7sin/,
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or, since b, 5,—2, and ¢ are very small,

s, =2z 4 7sin/, G5, 1R (92)
A similar investigation gives for the reversed position of the instrument

5, =25, + 7sin/, (GAp[o (93)

in which z, is the instrumental zenith distance for C, L.

The angles 5 and z, are not read directly from the circles. The ordinary
engineer’s transit reads altitudes, but if there is any deviation from the condi-
tion expressed in No. 7, the readings will not be the true altitudes, for they will
inctude the effect of the index error. 1f » and r, be the vertical circle readings
for C. R. and C. L., respectively, and / the reading when the line of sight is hor-
1zontal, we have

z =g0 —7r + 1, (CHR! (94)
5, =00 — 7, — 1, C. L (95)
Substituting (94) and (95) into (92) and (93)
5,=090°—7r 4 J+7sin/, CalR (96)
2,=00" —7,— I +17sin/, Calld (97)
The mean of (g96) and (g7) is
2,=90° — Y(r +7,) 4+ Zsinl (98)

For an instrument whose vertical circle is graduated continuously from 0°
to 360° it is easily shown that the equation corresponding to (98) is

z,= Y%(v,—w,) + isin/, (99)

in which 7, and v, are the circle readings, the subscripts being assigned so that
v, —v, < 180°.

It therefore appears that the vertical circle readings are not sensibly
affected by 7, ¢, or the component of 7 parallel to the horizontal axis. The com-
ponent of ¢ in the direction of the line of sight, viz., ¢ sin/ enters with its full
value, and (g8) and (gg) show that it cannot be eliminated even when readings
taken C. R. and C. L. are combined. The formation of the mean for the two
positions of the instrument does eliminate the index error, however, 7.¢. the
residual error of adjustment in No. 7.

To free the results from 7sin/ we may combine observations direct and
reflected, using the mercnrial horizon. Considering the triangle 4'Z0’ previously
defined, we find for the reflected observation

cos (180° — 2,) = —sin b sin ¢ 4 cos & cos ¢ cos (ZA'0’)
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whence, neglecting products and squares of the errors of adjustinent, the true
zenith distance of O’ is 180°—z,==angle ZA4'O’. Denoting the instrumental
zenith distance of O’, which is the angle Z'4’0’, by 180°—z2" we find

Angle ZA'Z' = (180° — z,) — (180° — 5') = 2’ — 2,

In the triangle ZA'Z’ the sides are ZA'=qg0o°— b, Z'A’ == go°—j, and
ZZ' =1, and denoting the angle ZZ'A’ by /' we find

cos &sin (3" — 5,)=sinisin /',
or with sufficient approximation
s,=5 —1isin/, (GPRY (100)

Now if 7 be the vertical circle reading for C, R., reflected, and / the cir-
cle reading when the line of sight is horizontal, we shall have, similarly to (94),

=90 —r —1, C. R. (101)
This substituted into (100) gives
5,=90° —#' —/—7isin/’ C.R..  (102)

Since I differs from | by a quantity of the order of the errors, the difference
between ¢ sin / and 7 sin [ will be insensible, so that when cquations (96) and
(102) are combined to form the mean we have simply

2,=00° — Y (r4 7). (G IR (103)
Similar considerations for observations direct and reflected, C. L., give
5, =00 — Y(».+ ). CH= (104)

In other words, the formation of the means of the vertical circle readings for
observations direct and reflected in the same position of the instrument elimi-
nates not only the component of ¢ in the direction of the line of sight, but the
index correction as well. The influence of icos/, j and ¢ is insensible. So
far as the errors here considered are concerned, observations direct and reflected
m a single position of the instrument are sufficient. Nevertheless it is desirable
that measures be made both C. R. and C. L. for in this way different parts of
the vertical circle are used, thus partially neutralizing errors of graduation.
For an instrunmient with a vertical circle graduated continuously from 0° to
360°, it is easily shown as before that in (103) and (104) the sum of the circle

readings must be replaced by their difference taken in such a way that it is less
than 180°,
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The preceding discussion assumes that the adjustments of the instrument
remain unchanged throughout the observations. If this is not so, the elimination
of the errors will, in general, be incomplete.

It is not always convenient to make use of the artificial horizon, and it is
therefore desirable to be able to apply a method of elimination which does not
depend upon this accessory.

It is easily shown that if the instrument be relevelled before obsertwg in
the reversed position, the mean of the readings C. R. and C. L., both for the
horizontal and the vertical circle, will be free from the errors in all of the ad-
justment under Nos. 4—7, within quantities of the order of the products and
squares of the errors. The same will be true, even though the plate bubbles
are not accnrately centered during the direct observations, provided, after re-
versal, they be brought to the same position in the tubes that they occupied
before.

That such will be the case follows from a consideration of Fig. 8 The
reversal and relevelling is equivalent to rotating the triangle ZAZ’ about Z through
the angle 180°+-2¢, its dimensions remaining unchanged. A thus assumes a
new position A4,, distant from O by 9o°~-¢, and Z’ a position Z,/. The triangle
ZA,0 leads to an equation differing from (84) only in that b, is replaced by b.
The mean of the new equation and (82) is simply

R,= 1R+ R), (103)

where R and R, are the horizontal circle readings; the latter having been reduced
by 180°. The result is therefore free from both b and c.
Again, from triangle ZA4,Z’, we find for circle left analogously to (97),

2,=Q0°— 7, — [—17sin/, (Co JCx (106)

in which the vertical circle reading 7, is not the same as the r, of (97), for
(106) presupposes that the instrument is relevelled after reversal, while (g97)
assumes that no change is made in the position of the vertical axis during the
observations. The mean of (96) and (106) is

5,=90 — %(r +7), (107)

which is free from b, ¢, and I. For a circle graduated continuously we have
similarly,

5= }(v, —v,) (108)

where as before the readings are to be taken in such an order that their dif-
ference is less than 180°.

It is assumed throughout that the pointings are always made by bringing
the object accurately to the intersection of the threads. It is important that this
be done, even though the threads be respectively horizontal and vertical ; for
obsenmo at one side of the field is equivalent to introducing an abnormal value
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of the collimation, while pointings above or below the horizonta] thread corre-
spond to a modification of the index error of the vertical circle.

4]1. Summary of the preceding section.—The preceding results may be
summarized as follows: _

No. 1. Non-coincidence of vertical axes enters only when the horizontal
circle is used by the method of repetitions. Error eliminated by proper arrange-
ment of observing program. See Section 47.

No. 2. Non-perpendicularity of circles to axes usually has no sensible
influence on circle readings.

No. 3. Eccentricity of circles and verniers eliminated by formmﬂ means
of readings of both verniers. See equation (73).

Nos. 4—7. Horizontal circle readings: Component of deviation of vertical
axis from vertical in direction of line of sight, non-perpendicularity of axes, and
collimation eliminated by forming mean of readings taken C. R. and C. L. Com-
ponent of deviation from vertical which is parallel to horizontal axis appears mul-
tiplied by cotz,. See equation (86). Correction for the latter may be made by
observations with the striding level. See equation (85). All errors in Nos. 4—6
eliminated by forming mean of readings direct and reflected, for both C. R. and
C. L. See Equation (91). The error in No. 7—index error of vertical circle—
does not enter. Vertical circle readings: All errors in Nos. 4—7 excepting com-
ponent of deviation of vertical axis from vertical in direction of line of sight
insensible or eliminated from mean of readings C. R. and C. L. See equation.
(98) or (99). All errors in Nos. 4—7 insensible or eliminated from mean of
readings, direct and reflected, in same position of instrument. See equations
(103) and (104). Desirable to observe both C. R. and C. L., however, to reduce
graduation error of vertical circle.

All errors under Nos. 4—7 eliminated from mean of readings C. R. and
C. L. for both horizontal and vertical angles provided plate bubbles have same
position in tubes for both positions of the instrument. See equations (105)
and (107) or (108). 3

42. The level.—The adjustment of the engineer’s transit with respect to
the vertical is usually made by means of the plate bubbles, any residual error
being eliminated by some one of the methods of Section 40. In some cases,
however, it is desirable to remove the effect of this error by measuring the
inclination of the horizontal axis to the horizon and applying a suitable cor-
rection to the circle readings. This method of procedure requires a knowl-
edge of the theory of the striding level.

The striding level is more sensitive than the plate bubbles, its tube is
longer, and the scale includes a larger number of divisions. It is made in two
forms, one with the zero of the scale at the middle of the tube, the other with
the zero at the end. Theoretically the two forms are equivalent. The adjust-
ment of the level tube within its mounting should be such that the bubble
stands at the middle of the tube when the base line is horizontal. The scale
reading of the middle of the bubble for this position is called the horizontal
reading. Owing to residual errors of adjustment, the horizontal reading will
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not usually be zero, even for the form in which the zero of the scale is at the
middle of the tube. Its valne must be determined and applied as a correc-
tion to the scale readings, or else its influence must be eliminated. The latter
is easily accomplished by combining readings made in the direct and the
reversed position, reversal being made by turning the level end for end.

Let d = the angular value of one division of the level scale.
/i = the horizontal reading.

Further, for any inclination of the base line, let 7’ and " be the readings of
the middle of the bubble, and &' and 4" the corresponding observed inclina-
tions, for the level direct and reversed, respectively. Finally, assume that all
readings increasing toward the right are positive, and all toward the left, neg-
ative. We then find, whatever the position of the zero of the scale,

b = (m' — h)d, (109)
o= (m" —h)d. (110)

Since / has opposite signs for the two positions of the level, the mean of (109)
and (110) is

b= Y(m' + m")d, (111)
in which the mean of the observed inclinations has been written equal to &.

Denoting by #, /', and #”, /", the readings of the ends of the bubble for two
positions, and writing

D=1Yd, (112)
we find from (111) '
b=#+ 10+ +1")D. (113)

This result depends only upon the readings of the ends of the bubble and
the value of one division of the scale, and is therefore free from the horizontal
reading. The convention regarding the algebraic sign is such that when &
calculated from (113) is positive, the right end of the level is high.

Since &’ and &” are two observed values of the same quantity, we find from
the difference of (109) and (110)

=Y +1—r"—1"), (114)

which may be used for the calculation of # when a complete observation has
been made.

43. Precepts for the use of the striding level.—The level is a sen-
sitive instrument, and great care must be exercised in its manipulation if pre-
cise results are to be obtained. The inclinations to be measured should be
small and the horizontal reading should correspond as closely as possible with
the scale reading of the middle of the tube. The points of contact of the level
with the pivots upon which it rests must be carefully freed from dust particles.
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The length of the bubble, which is adjustable in the more sensitive forms,
should be about one-third the length of the tube, and -ample time should be
allowed for the bubble to come to rest before reading. The instrument should
be protected from changes in temperature, and, to this end, it should be
shielded from the rays of the sun, and from the heat of the reading lamp and
the person of the observer. The right end of the bubble should always be
read first, careful attention being given to the algebraic sign, and the time of
reversal for each observation should be noted. Mistakes in reading may be
avoided by noting that »— /7, the length of the bubble, must equal »'—/".

The following, in which S represents the sum of the four readings, is a
convenient form for the record:

Time
r 7
7’ 2%
v+ L .
7’ + l' } 5, b == \S(i.

S is most casily found by forming first the diagonal sums of the four
readings written as above, for both #" and /7 and #” and /7' will be opposite in
sign and approximately equal in absolute magnitude.

Example 28. The following illustrates the record and reduction of level observalions.
The first observation was made with a level whose zero paint is in the middle of the tube; the
second, wilh one whose zero is at the end. The values of D are 8716 and o032, respectively.

97——6h 5™ T‘?‘-gh 12m
+ 140 — 9.7 + 31.0 -} 16.4
+ 10,1 —13.8 —20.3 —35.0
+ 0.3 s DY L O NS sk
—{~Ov4} +°'7? b= + 5.7 _3.91 79 b 0%25

44, Determination of the value of one division of a level.~—The ob-
server should be familiar with the sensitiveness of all the levels of his instru-
ment, even though he depends entirely upon a simple centering of the bubble
for the adjustment. If the striding level is to be used, a knowledge of the an-
gular value of one division of its scale is an essential.

The investigation of levels is most easily carried out with the aid of a
level trier, which is an instrument consisting essentially of a rigid base carry-
ing a movable arm whose inclination to the horizon may be varied by a known
amount by means of a graduated micrometer screw. The entire transit may
be mounted on the arm, or the various levels may be attached separately for
the investigation. The determination of the change in the inclination of the
arm of the level trier necessary to move the bubble over a given number of
divisions gives at once the angular value of one division of the scale.
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Example 29. The following shows part of the reduction of observations made with a
level trier for the determination of the value of one division of a level. The bubble was run
from the left to the right end of the tube and back again, for both level direct and reversed,
by moving the micrometer head through four diwvisions at a time. The ends of the bubble
were read for each setting of the micrometer. Column two of the table gives the micrometer
settings; and columns three and four, the corresponding means of the end readings of the
bubble for level direct. The fifth column contains the means of the quantities in the two pre-
ceding columns; and column six, the differences between the »th and the (64 »)th readings
in column five. The principle used In combining the observations is the same as that em-
ployed in Examples 26 and 27. T'he length of the arm and the pitch of the micrometer screw
are such that a rotation of the micrometer head through one division changes the inclination
by 1”. Each of the displacements of the bubble in column six therefore corresponds to a
change in inclination of 24”. The quotients formed by dividing the displacements into 24"
are the values of one division of the level for different portions of the tube. A similar rednc-
tion of the readings taken with the level in the reversed position gave for 4 the values in column
eight. The means for the two series are in the last column. A glance at the results in this
column is sufficient to show that the curvature of the level tube is variable.

ONE DivisioN oF A LEVEL—LEVEL TRIER

X Reading Middle of Bubble e d
No. [ Mictom. |75 e
Lto R ' RtoL | Mean | ™™ | Direct |Rev'sed| Mean

1 164 i 12.35 " 12.95 12.63 14.45 l 1766 1773 1770
2 160 15.50 15.75 15.62 13.33 1.80 1.76 1 78
3 156 | 17.50 18.00 17.83 13.03 ’ 1.84 1.84 1.84
4 152 19.80 i 20.50 | 20.13 12575 l 1.89 1.90 1.90
5 148 22.45 | 23.00 | 22.72 12.30 ’ 1.95 1.90 1.92
6 144 24.55 l 25.20 24.88 12.22 | 1.96 1.92 1.94
7 140 l 26.95 27.25 27.10 [
8 136 28.90 29.00 28.95 ’
9 132 30.70 | 31.05 30.88

10 128 l 32.60 | 33.15 | 32.88 |

131 124 34.95 | 35.10 | 35.02 ' [

12 120 " | 37.03 i 3715 | 37.10 i

The investigation may also be carried out by a method first proposed by
Comstock in which the circles of the transit are used to change the inclination*
of the level tube by a known amount. If the instrument is levelled, the levels
themselves being in adjustment, the bubbles will remain centered when the
alidade is rotated about the vertical axis. If now the vertical axis be deflected
from the true vertical by a small angle 7, the bubbles will not remain centered
as the instrument is rotated. For any given level, however, there will be two
readings of the horizontal circle, differing by 180° for which the bubble will
stand at the middle of the tube; and by rotating slightly about the vertical
axis it can be brought to any desired position in the tube. The change in the
inclination of the level tube corresponding to any given displacement of the
bubble can be expressed in terms of 7 and the observed change in the reading
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of the horizontal circle, whence the angular value of one division of the level
may be determined as before,

To express & as a function of Z and the horizontal circle readings, let AHC
and HC' in Fig. g represent portions of the horizontal circles for the normal
and the deflected positions of the vertical axis; L, any position of the level,
which is supposed to be attached with its axis perpendicular to the radius
through L and parallel to the plane of the circle; and 4, the corresponding
inclination. In the spherical right triangle AZZC the angle /A is equal to 7, the

e

H T
&/,_

L

Cl

Fig. 9

deflection of the axis from the vertical, while that at L is go°—4. Now, if 7,
and » be the horizontal circle readings corresponding to the inclinations zero
and & respectively, we find

Arc HL = g0’ — (r—7),
whence from the triangle /£LC,
tan & =tanzsin (r—7,). (1135)

The angle & is very small and, for z equal two or three degrees, » —», will
never exceed cne degree. We may therefore use the approximate relation

b= (r—vr,) tan i, (116)

with an error not exceeding 0701.
For any other inclination, 4,, we have the analogous equation

==& —.ro) tan 7,
which, combined with (112) gives
by —b=(r, —7)tanc. (117)

The angle », — 7 is the change in the horizontal circle reading correspon-
ding to the change in inclination 4, — 4. The latter, however, may be written
equal to sd, where s is the displacement of the bubble in scale divisions, and &
the angular value of one division.

We thus have finally as the expression for &

r—r__ .
L —tani. (118)

d=
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The angle 7 should be two or three degrees for the investigation of the
ordinary transit levels. For very sensitive levels it should be less. If the
instrument be provided with a telescope level, the deflection of the vertical
axis may be accomplished as follows: Level the instrument and center the
telescope bubble. Then change the vertical circle reading by the angle 7 and,
by means of the levelling screws, bring the telescope bubble back to the
middle of its tube, taking care at the same time that the transverse plate
bubble is also centered after the deflection. This precaution is necessary in
order that the deflection may have no component perpendicular to the plane
of the vertical circle. In the absence of a telescope level, level the instrument,
sight on a distant object, change the vertical circle reading by 7, and bring the
object back to the intersection of the threads by means of the levelling screws.

The observations may be made either by displacing the bubble through a
definite number of divisions and noting the corresponding change in the hori-
zontal circle readings, or by changing the circle readings by a definite amount,
say 10, and observing the variations in the position of the bubble. For short
tubes with only a few graduations the former method is more convenient, while
the latter is to be preferred for the long finely graduated tubes of sensitive
levels.

The bubble should be run from one end of the tube to the other and then
back again, in both positions of the instrument. Such a series of readings
constitutes a set,

The instrument must be as rigidly mounted as possible, preferably on a
masonry pier. It is desirable to check the constancy of 7 by deflecting through
this angle foward the vertical at the end of a set and noting whether the
instrument is then levelled.

Example 30. Observations were made by the deflected axis methaod for the determina-
tion of the value of one division of the striding level of a Berger transit. The deflection was
3% The graduations of the tube are in two groups of three each, the groups being separated

ONE D1visiON oF A LEVEL—DEFLECTED AXIS

Hor. Circ’le Reading | '

Level
Mean | », —7»

Divisions | ———— 57—
IRtoLR’ Rto L

Position

I

\
1 and 4 341° 550 341° s56/0 55.5 | i i Direct
3and 6 342 8.0 342 8.0 8.0 -5 | Direct
3and 6 162 6.5 162 6.3 6.4
1 and 4 161  53.0 161 53.0 53.0

' Reversed

193
Al | Reversed

Mean 12.95

= 5 tan, (=—=='8.719
r—r=12/95 log (r,—7)= 1.112
SE=N> colog s 9.699
logd = 9.530

d= 0/339=120/3 Aus.
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by a space approximately equal to the length of the bubble. The horizontal circle was read
when the bubble was symmelrically placed with respect 1o the palrs of graduations indicated
in column one of the table. The circle readings themselves are in columns two and three;
and the minutes of the means of corresponding settings, in column four. The differences of
the readings for a displacement of the bubble through two divisions are in the fifth column.
‘The calculation for the determination of 4 is in accordance with equation (118).

45. The measurement of vertical angles.—The observer will have
occasion to measure the altitude not only of rapidly moving equatorial stars
but also of circumpolar objects like Polaris whose posmons with respect to the
horizon change but slowly. The difference in motion in the two cases neces-
sitates a difference of method in making thesettings. For Polaris or any other
close circumpolar object, the star should be brought to the intersection of the
threads by the slow motions, the time of coincidence and the vertical circle
readings being carefully noted. For stars whose altitude varies rapidly, this
cannot be done with precision. The object is therefore brought into coinci-
dence with the vertical thread near the point of intersection, and kept on the
thread by slowly turning the horizontal slow motion until the instant of
transit across the horizontal thread, the time and the vertical circle readings
being noted as before.

Observations on the sun are most readily made with the aid of a shade of
colored glass, but if this is not available, the image may be projected on acard
held a few inches back of the eyepiece, by a proper focusing of the objective.
In order that the threads may be seen sharply defined on the card, it is neces-
sary that the eyepiece be drawn out a small fraction of an inch from its
normal position before the solar image is focused. There are several methods
by which the pointings may be made. For example, the instrument may be
adjusted so that the preceding limb is near the horizontal thread and ap-
proaching the intersection. The instrument is clamped and the instant of
tangency carefully noted. Then, without changing the vertical circle reading,
the image is allowed to trail through the field until the transit of the following
limb occurs, when the time is again noted, the instrument in the meantime
being rotated by means of the horizontal slow motion so that both transits are
observed at the intersection of the threads. While waiting for the second
transit, the vertical circle is read. This method is open to the objection that
an interval of three or four minutes separates the transits of the two limbs,
which catails a considerable loss of time. The interval may be shortened by
shifting the position of the telescope between the observations, but this of
course requires a reading of the vertical circle for each transit. If there be
more than one horizontal thread, the difficulty can be avoided by observing
the transits over the cxtreme threads—the preceding limb over the first
thread and the following limb over the last thread. The same number of
settings should be made for both limbs. The mean of the readings will then
correspond to the altitude of the sun’s center, the influence of semidiameter
being eliminated. If for any reason the program cannot be made complete
in this particular, the altitude of the sun's center may still be found with the
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aid of the value of the semidiameter interpolated from page t of the Ephemeris
for the instant of observation.

The arrangement of the observing program is determined by the results
derived in Section 40 and summarized in Section 41. The number of settings
to be made for the determination of the altitnde depends upon the precision
desired, the rapidity with which the observer can make the pointings and read
the circle, and the position of the object. It is desirable, however, that the
number should not be less than two for each position of the instrument. The
maximum number to be included in a single set is limited by the fact that it is
convenient to use for the reduction the means of the circle readings and the
times. Since the change in the altitude of the star is not proportional to the
change in the time, the two means, rigorously speaking, will not correspond to
each other; but if the observing interval does not exceed a.certain limit, say a
quarter of an hour, no appreciable error will be introduced into results secured
with the engineer’s transit by treating the means as a single observation. The
observing program will also depend on the method employed for the elimina-
tion of the instrnmental errors 7, 7, ¢ and Z. Bearing in mind the various fac-
tors involved, we adopt the following as convenient arrangements for a set of
observations on a star. The necessary modifications for measures on the sun
will at once be suggested by the methods for making the settings described in
the preceding paragraph.

OBSERVATIONS DIRECT OBSERVATIONS DIRECT AND REFLECTED
Level. Level.
2 readings on star, C. R. 1 reading on star, direct.

Reverse 2 readings on star, reflected. } C.R.
Level. 1 reading on star, direct.
4 readings on star, C. L. Reverse.
Reverse. 1 reading on star, direct.

Level. 2 readings on star, reflected. }C.L.
2 Readings on star, C. R. 1 reading on slar, direct.

With the first arrangement, which is to be used when all of the pointings
are made directly on the star, the elimination of the errors depends upon the
bubbles occupying the same positions in their tubes for both C.R. and C.L.
The instrument must therefore be relevelled carefully after each reversal.

With the second, which will find application when the artificial horizon is
employed, the elimination will be complete if the adjustments remain un-
changed during the intervals separating the various direct observations and
the corresponding reflected observations immediately preceding or following.
After the instrument has once been levelled, therefore, the screws need not be
touched until the set has been completed unless the bubbles should become
displaced by a considerable amount. .

Both verniers should be read for each setting of the telescope.

If only an approximate result is required, the observations may be dis-
continued at the middle of the set. On the other hand, if more precision is
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desired, additional sets may be observed, each of which, however, should be
reduced separately.

The fact that for a short interval the change in the altitude is sensibly
proportional to the change in the time makes it possible to test the consist-
ency of the measures. For direct observations the quotients of the differ-
ences between the successive circle readings by the differences between the
corresponding times must be sensibly equal. If this condition is not satis-

‘fied, an error has been committed. The errors ‘most likely to occur are
those involving mistakes of 10’ or 20°, or perhaps a whole degree, in the
circle readings, and an exact number of minutes in the times. It is convenient
to express differences of the circle readings in minutes of arc, and the time
intervals in minutes and tenths. The quotients will thus express the change
in the altitude in minutes of arc for one minute of time. If the artificial
horizon has been used the quotients must be calculated for the direct and
reflected observations separately. For observations on the sun, the combina-
tion of the data for the calculation of the quotients will depend upon the
method followed in making the settings, and is easily derived in any special
case. The test is usually sufficient to locate errors of the class mentioned
with such certainty as to justify a correction of the original record, and should
always be applied immediately after the completion of the set in order that
the measures may be repeated if necessary. For circumpolar objects, a simple
inspection will usually be sufficient to indicate the consistency of the observa-
tions. .

Equations (103) and (104), and (107) show that for an instrument graduated
to read altitudes, the apparent altitude, free from the instrumental errors, 7, 7,
¢, and 7/, will be given by forming the mean of the circle readings obtained in
accordance with the above programs.

For an instrument with its vertical circle graduated continuously o’ to
360° the zenith distance will be given by

.= %(vl Bt "'}z) (l [9)

where the subscripts are assigned in such a manner that », — @, < 180°. If the
observations are direct, one v will represent the mean of all the circle readings
C.R.; the other, the mean of all C.L.. If the artificial horizon has been used,
one v will represent the mean of all the direct readings; and the other, the
mean of all the reflected readings.

The observed altitude, or zenith distance, thus derived must be corrected
for refraction and parallax in accordance with Sections 8 and g.

Example 31. The following is the record of parlial sets of observations made with a
Buff & Buff engineer’s Iransit at the Laws Observatory, on 1908, Oct. 2, Friday P. M., for the
determinalion of tlhe alliludes of Polaris and Alcyone. The measures were all direct. The
timepiece used was an Elgin walch.

An inspection of the readings for Polaris shows that the measures are consistent. The
relatively large difference in the readings C. R. and C. L. reveals the exlstence of an index
error of 2’ or 3'.
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PoOLARIS ALCYONE
Vertical Circle | 1 Vertical Circle ircle R
Watch e er, B Circle Watch P Ao Circle Rate
Sh3rmigh 39° 267 39° 26’ R gh 35m2134 20° 40’ 20° 40’ L x
33 25 26 26 R 37 LS1.25 82000 50820 50 Loagdi3
36 50 33 33 L b M T i e 13 WA e o R
36 11 34 34 L 43 Nt 4R N TS 1272 ST R HreS
éh“35"'11“ 39° 29".8 gh3g™ 634 21° 195

For Alcyone the close agreement of the values for the rate of change in altitude per
minute of time given in the last column is evidence of the consistency of the measures.

The quantities in the fifth line are the means. The angles are the apparent altitudes
corresponding to the watch times iinmediately preceding. To obtain the true altitudes a
correction for refraction, which may be obtained from Table I, page 20, must be applied.

Example 32. The following observations were made with a Berger engineer’s transit
on 1908, October 15, Thursday P. M., for the determination of the altitude of the sun. The
measures were all direct and were made by projecting the image of the sun on a card. The
transits were observed over the middle horlzonlal thread, the telescope being shifted after
each transit. The timepiece was the Fauth sidereal clock of the Laws Observatory.

Vertical Circle
Fauth Clk. Ver.A Ver.B Limb Circle Rate

16h 37m ge2 24° 1° 24° U’ F R ,
40 468 2333 2333 F R 9
43 34.3 2235 2235 P R
45 19.1 22 19 22 19 )E R 9-2
4 77N 22 26 22 27 F L
48 473 22 11 22 11 F L 9-0
50 11.7 21 23 21 2§ P L
§T 29.9 21 12 21 12 p L 100 -
Means 160 45™ 3833 22° 278

46. The measurement of horizontal angles.—It is assumed that
the two objects whose difference of azimuth is to be determined are a terres-
trial mark and a celestial body, either the sun or a star. The directions given
in Section 45 for making settings in the measurement of vertical angles apply
here with only slight and obvious modifications. The conditions determining
the arrangement of the observing program are similar to those enumerated in
the present section. Although the details may vary with circumstances, the
following will serve to indicate the essentials. ‘The first arrangement is in-
tended for use when only an approximate result is required, while the second
and third are designed for more precise determinations. The first two include
only direct observations, while the last is arranged for measures in which the
artificial horizon is employed. In direct observations care should be taken to
keep the bubbles centered throughout, but when the artificial horizon is used,
.the levelling screws must not be touched between any direct observation and
its corresponding reflected setting. For settings on the mark the zenith dis-
tance will usually be so nearly equal to go® that the error due to the deviation
of the vertical axis from the true vertical will be quite insensible, even
though no special effort be made to eliminate its influence.
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DirRecT OBSERVATIONS

1 setting on mark} C.R
2 settings on star J
2 settfngs on star }C.L.
1 selting on mark
DirRECT OBSERVATIONS D1RECT AND REFLECTED OBSERVATIONS
1 setting on mark C.R. 1 selting on mark C.R.
1 setting on mark C.L. 1 setting on mark C.L.
3 settings on star C,L. 1 setting on star, direct }C L
3 settings on star C.R. 1 setting on star, reflected ) 7
1 setting on mark C.R. 1 setting on star, reflected }C R
1 setting on mark C.L. 1 setting on star, direct o
: 1 setting on mark C.R.
1 setting on mark C.L.

Both verniers of the horizontal circle should be read for each setting, and
for those made on the star, the time should be noted in addition.

The required difference of azimuth will be the difference between the
means of the readings on the mark and on the star. Its value will correspond
to the mean of the times. If more precision is desired than can be obtained
from a single set, several sets may be observed, each of which should be re-
duced separately. To reduce the influence of graduation error, the horizontal
circle should be shifted between the sets. If the number of sets is 2, the
amount of the shift between the successive sets should be 360°/x.

Example 33. The following Is the record of a simultaneous determination of the altitude
of Polaris and the difference In azimuth of Polaris and a mark.

ALTITUDE OF PoLARIS AND AZIMUTH OF MARK No. 2

1908, Oct. 13, Thursday P. M. Observer Sh.

Station No. 2 Recorder W,
Buff & Buff Engineer’s Transit No. 5606

ATy = —38%7 at 7» 59™ P.M., and — 314 at 9" 54™ P.M.

Hor. Circle Vertical Circle
Object Watch Circle
Ver. A Ver. B Ver. A Ver. B
Mark — 147° 23!5 3272 28’0 B R
Polaris oh 35m23* 322 10.0 142 10.0 39° 51" 39° 51' R
Polaris 40 35 8.0 8.0 51 51 R
Polarls 44 33 142 6.5 322 6.5 59 59 L
Polaris 48 8 4.5 5.0 59 58 L
Mark —_— 327+ 23L s 147 23.0 —_ L

o z,
Means g 42™ 10° ls“t:‘r'k f;; 2;2; 39° 54/9=Appt. Alt.

Difference of Azimuth S—AM =174 44.06

47. The method of repetitions.—The precision of the measurement of
the azimuth difference, D, of two objects, 4 and B, may be increased materi-
ally by making a series of alternate settings on 4 and A such that the rotation
from A4 to B is always made with the upper motion of the instrument, and that

. from B to 4 with the lower motion. Assuming that the graduations of the

horizontal circle increase in the direction 4B, each turning from A4 to B will
6
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increase the reading by the angle D, while that from 5 back to 4 will produce
no change since during this rotation the vernier remains clamped to the circle.
If the turning from A to B is repeated z times, the difference between the
circle readings for the final setting on B and the initial setting on A4 will be
»D; and if the initial and final readings be R, and R,, repectively, we shall

have

D=R;'7_Z—Ri. (120)

The method of repetitions derives its advantage from the fact that the
circle is not read for the intermediate settings on 4 and 5. Not only is the
observer thus spared considerable labor, but, what is of more importance, the
errors which necessarily would affect the readings do not enter into the result.
Consequently, that part of the resultant error of observation arising from the
intermediate settings is due solely to the imperfect setting of the cross threads
on the object. For instruments such as the engineer’s transit, in which the
uncertainty accompanying the reading of the angle is large as compared with
that of the pointing on the object, the precision of the result given by (120)
will be considerably greater than that of the mean of z separate measurements
of the angle D), each of which requires two readings of the circle. But for
instruments in which the accuracy of the readings is comparable with that of
the pointings, as is the case with the modern theodolite provided with read-
ing microscopes, the method of repetitions is not to be recommended.
Although there is even here a theoretical advantage, it is offset by the fact
that the peculiar observing program required for the application of the method
presupposes the stability of the instrument for a relatively long interval, and
hence affords an nnusual opportunity for small variations in position to affect
the precision of the measures. Moreover, experience has shown that there
are small systematic errors dependent upon the direction of measurement, z.e.
upon whether the initial setting is made on 4 or on B; and, although these
may be eliminated in part by combining series measured in opposite direc-
tions, it is not certain that the compensation is of the completeness requisite
for observations of the highest precision. With the engineer’s transit, how-
ever, the method of repetitions may be used with advantage.

Since rotation takes place on both the upper and the lower motions, any
non-parallelism of the vertical axes will affect the readings; and the observing
program must be arran'ged to eliminate this along with the other instru-
mental errors. For any given setting the deviation of the axis from parallel-
ism, p, unites with the inclination of the lower axes to the true vertical, ¢/, and
determines the value of 7, the inclination of the upper axis to the vertical, for
the setting in question. For different settings ¢ will be different, for a
rotation of the instrument on the lower motion causes the upper axis to
describe a cone whose apex angle is 2¢ and whose axis is inclined to the true
vertical by ”.  But no matter what the magnltude of 2 may be, within certain
limits easily including all values arising in practice, it may be eliminated by
forming the mean of direct and reflected readings made in the same position
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of the instrument, provided that 7 is the same in direction and magnitude for
both settings. This follows from the discussion on pages 66 and 67 whose
result is expressed by equation (88). Hence, if after a series of z repetitions
observed C.R. direct, # further repetitions be made C.R. reflected, such that
the vernier readings for the corresponding settings in the two series are
approximately the same, the instrumental errors 2’ and p will be eliminated.
Equation (88) shows that 7, the deviation of the upper vertical axis from per-
pendicularity with the horizontal axis, will also be eliminated. To remove
the influence of the collimation, ¢, the entire process must be repeated C.L.;
and to neutralize the systematic error dependent upon the direction of meas-
urement, the direct and reflected series should be measured in opposite direc-
tions. We thus have the following observing program, in which 4’ and 5’
denote the reflected images of 4 and B, respectively:

Level on the lower motion.

Turn from 4 to B on the upper motion » times.

Set on A and read the horizontal circle.
Direct { ]
Read the horizontal circle for last setting on 5.

C.R.
Set on B’ and read the horizontal circle.

Reflected {Tm"n from B’ to 4’ on the upper motion » times.
Read the horizontal circle for last setting on A4’.

Repeat for C.L.

The circle reading for the first setting on B’ must be the same, approximately at least,
as that for the last setling on 5. ]

The mean of the values of D calculated from the four series is the required azimuth
difference of 4 and B.

Uusnally one of the objects, say A, will be near the horizon, in which case
reflected settings on 4’ will be impossible. A4 must then be substituted for
A’ in the above program. The error due to ¢ will not be eliminated from these
settings; but, owing to the presence of the factor cot z,, it may be disregarded.

When the artificial horizon is not used the program must be modified.
Were ¢’ zero, 7 would constantly be equal to p, although the direction of the
deflection would change with a rotation of the instrument on the lower
motion. If a series of # repetitions C.R. be made under these circumstances,
equation (82) shows that each setting will be affected by an error of the form

jcotz, + pcoslcot z, - ¢ cosec z,.

The first and last terms of this expression will have the same values for all
pointings on the same object. Equations (82), (84), and (86) show that they may
be eliminated by combining with a similar series made C.L. The values of
the second term will be different for each setting owing to the change in /, but
their sum will be zero if the values of / are uniformly distributed throughout
360°, or any multiple of 360°. In order that this may be the case, approxi-
mately at least, it is only necessary that = be the integer most nearly equaling
%360°/D, where the £ is any integer, in practice usually 1 or 2.

It is also easily seen that, if after any arbitrary number of settings the
instrument be reversed about the Jower motion and the series repeated in the
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reverse order, the sum of the errors involving p will be zero, provided that the
circle readings for corresponding settings C.R. and C.L. are the same, or ap-
proximately so. The reversal of the instrument on the lower motion changes
the direction of the deflection # by 180°. The values of / for corresponding
settings C.R. and C.L. will therefore differ by 180°, and the errors will be oppo-
site in sign and will cancel when the mean of the two series is formed. The
reversal also eliminates the influence of j and ¢ as indicated in the preceding
paragraph. i

The above assumes that the deflection of the lower axis, ', is zero. If
this is not the case, each setting will be affected by an additional error of the
form 7' cos/ cotz, in which /' is constant so long as 7' remains unchanged
in direction. 1f 7' be the result of a non-adjustment of the plate bubbles, the
error which it produces may be eliminated from the mean of two series, one
C.R. and one C.L., by relevelling after reversal. (See page 70.) This will
change the direction of ' by 180°. Consequently, the values of 7 for C.R.
and C.L. will differ by 180°, and the errors for the two positions will neutralize
each other when the mean is formed.

The consideration of these results leads to the following arrangement of
the observing program. .

Level on the lower motion.

Turn from 4 to B on upper motion # times.

Set on A and read horizontal circle.
}C.R.
Read horizontal circle for last selting on B.

Reverse on Jower molion and relevel.

Turn from B to 4 on upper motion » times.

Set on B and read horizontal circle.
}C.L.
Read horizontal circle for last setting on A.

The circle reading for the first setting on B, C.L. should be the same, approximately at
least, as that for the last setting on B, C.R.

The mean of the values of D calculated from the two series is the requlred azimuth
difference of 4 and B.

With this arrangement the instrumental errors 7', 2, 7, and ¢ will be com-
pletely eliminated, whether the settings are distributed through 360° or not,
provided only that the instrumental errors remain constant during the obser-
vations. Practically, it is desirable that the value of 7 should be such that 2.0
equals 360°, or a multiple of 360°, at least approximately; but when D is small
this may unduly prolong the observations. The maximum number,of repeti-
tions which can be made advantageously depends upon the stability of the
instrument and must be determined by experience.

If the instrument is provided with a striding level, the influence of #', p,
and j may be taken into account by measuring the inclination of the horizontal
axis for each setting and applying a correction to R, and R, of the form & cot 2,
in which é denotes the sum of all the observed inclinations for settings on
A and B respectively.

When one of the objects, say B, is a star, the time of each setting on B
must be noted. The calculated value of D will then correspond sensibly to
the mean of the times, provided the observing program be not too long.
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Example 34. On 1909, April 9, the following observations of the difference In azimuth
of Polaris and a mark were made by the method of repetitions with a Buff & Buff engineer’s
transit. The recorded times are those of a Fauth sidereal clock whose error was - 6™ 36,
After four repetitions C.R., 1he instrument was reversed on the lower motion, relevelled, and
the series repeated in the reverse order. Since the azimuth difference is approximately 174°,
720° must be added to the readings on the star before combining them wilh those on the
mark. The results for the two halves are derived separately, although the means for the set
are also given.

Hor. Circle
Object 0. Ver. A Ver. B Circle Means

Mark — 179° 59°5  359° 59'5 R 179° 59’ 30"

Polaris gP 27™ 30* 353 32 R
Polaris 30 48 R
Polaris 33036 R

Polarls 35 49 154 13.5 334 13.5 R 874 13 30

4) 7 43 4)694 14 o©

3t 56 0=9"38m32* S—AM=173 33 30

Polaris 9 39 12 154 13.0 334 13.5 L 874 13 15
Polaris 42 28 L
Polaris 4 9 L
Polaris 46 20 1L,

Mark — — 179 5t.0 359 51.0 L 179 §t  ©

ZA S 4)694 22 15

9 43 2 0=9"49™ 38" S—M=173 35 34

Final Means 0=9 44 5 S—M=173 34 32

THE SEXTANT

48. Historical and descriptive,—The instruments typified by the engi-
neer’s transit may be used for the measurement of horizontal or vertical angles
only. Simultaneously with the development of the altazimuth principle there
was gradually evolved a contrivance adapted for the measurement of angles
lying in any plane. Beginning with the astrolabe of the ancients, the applica-
tion of various ideas gave in succession the Jacob’s staff, or cross-staff, which
dates apparently from the middle of the fourteenth century, the back-staff, or
Davis quadrant; the sextant of Tycho, which was also used by the Arabs in .
the tenth century; the octants of Hooke and Fouchy, in which a mirror was
used for the first time; and, finally, the reflecting octant whose principle was
due to Newton, although the construction was first carried out by John Hadley
about 1731. The instrument of Hadley.has been improved in design, but no
essential modification has been made in its principle. In its modern form it
is known as the reflecting sextant, or more generally, simply as the sextant.

With the exception of the astrolabe and the large fixed sextants of Tycho,
the various forms mentioned are characterized by the fact that they may be
held in the hand during observations, small oscillations and variations in the
position of the instrument offering no serious difficulty in the execution of the
measures. These instruments have therefore played an important part in the
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practice of navigation, and to-day the sextantis the only instrument which
can advantageously be employed in the observations necessary for the deter-
mination of a ship’s position. In addition, its compactness and lightness, and
the precision of the results that may be obtained with it render it one of the
most convenient and valuable instruments at our command.

The modern sextant consists of a light, flat, metal frame supporting a
graduated arc, usually 70° in length; a movable index arm; two small mirrors
perpendicular to the plane of the arc; and a small telescope. The index arm
is pivoted at the center of the arc and has rigidly attached to it one of the
mirrors, the index glass, whose reflecting surface contains the rotation axis
of the arm and the attached mirror. The position of the index glass corre-
sponding to any setting may be read from the graduated arc by means of a
vernier. The second mirror, the horizon glass, is firmly attached to the
frame of the sextant in a manner such that when the vernier reads zero the
two mirrors are parallel. Ounly that half of the horizon glass adjacent to
the frame is silvered. The telescope, whose line of sight is parallel to the
frame, is directed toward the horizon glass, and with it a distant object may
be seen through the unsilvered portion. When the frame is brought into
coincidence with the plane determined by the object, the eye of the observer,
and any other object, a reflected image of the second object may be seen in
the field of the telescope, simultaneously with the first, by giving the index
arm a certain definite position depending upon the angular distance separat-
ing the objects. If the position of the arm is such that the rays of the second
object reflected by the index glass to the horizon glass, and then from the
silvered portion of the latter, enter the telescope parallel to the rays that pass
from the first object through the unsilvered portion of the horizon glass, the
two images will be seen in coincidence. This being the case, the relative incli-
nation of the mirrors as shown below, will be one-half the angular distance
separating the objects; and, since the construction is such that the inclination
may be read from the graduated arc, it becomes possible to find the angular
distance between the objects. The use of the instrument is simplified by
graduating the arc so that the vernier reading is twice the inclination of the
mirrors, and hence, directly, the angular distance of the objects. With the
usual form of the instrument the maximum angle that can be measured is
therefore about 140°. The two mirrors and the telescope are provided with
adjusting screws, which may be used to bring them accurately into the posi-
tions presupposed by the theory of the instrument. In addition, the tele-
scope may be moved perpendicularly back and forth with respect to the frame
thus permitting an equalization of the intensity of the direct and reflected
images by varying the ratio of the reflected and transmitted light that enters

the telescope. Adjustable shade glasses adapt the instrument for observa-
tions on the sun.

49. The principle of the sextant.—In Fig. 10 let OV represent the
graduated arc; / and H, the index glass and the horizon glass, respectively;
and 7V, the index arm, pivoted at the center of the arc and provided with a
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vernier at /. When ¥V coincides with O, the mirrors are parallel. The posi-
tion indicated in the figure is such that the two objects S, and S, are seen in
coincidence, for the rays from S, pass through the unsilvered portion of
and enter the telescope in the direction AE, while those from S, falling on /
are reflected to A and thence in the direction ZZ. The two beams therefore
enter the telescope parallel.

| %4

Fig. 10.

It is to be shown that the inclination of 7 to A is one-half the angular
distance A4 separating the objects. /NVand HN are the normals to the mirrors,
and by the fundamental laws of reflection they bisect the angles S,7/4 and
THE, respectively. In the triangle /HE.

2a=26+4 4,
whence
: a=0b6+ % A.
But in the triangle ZHN
a=0b-+ M.
Therefore,
M=y A.

But M, being the angle between the normals to the mirrors, measures their
inclination, and is equal to the angle subtended by the arc OV, whence

A=20V. (121)

But since the arc is graduated so that the reading is twice the angle subtended
by OV the angular distance between the two objects is given directly by the
scale.

50. Conditions fulfilled by the instrument.—The following conditions,
among others, must be fulfilled by the perfectly adjusted sextant.
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The index glass must be perpendicular to the plane of the arc.

The horizon glass must be perpendicular to the plane of the arc.

The axis of the telescope must be parallel to the plane of the arc.
The vernier must read zero when the mirrors are parallel.

. The center of rotation of the index arm must coincide with the center
of the graduated arc.

Since the positions of the mirrors and the telescope are liable to derange-
ment, methods must be available for adjusting the instrument as perfectly as
possible. This is the more important inasmuch as it is impossible to eliminate
from the measures the influence of any residual errors in the adjustments.
Although elimination is impossible, it should be remarked that the errors
arising in connection with Nos. 4 and 3, at least, may be determined by the
methods given in Sections 52 and 53, and applied as corrections to the read-
ings obtained with the instrument. Conditions Nos. 1-4 are within the control
of the observer. No. 5 must be satisfied as perfectly as possible by the
manufactuorer.

N

51. Adjustments of the sextant.—No. 1. /udex glass. To test the
perpendicularity of the index glass, place the sextant in a horizontal position,
unscrew the telescope and stand it on the arc just in front of the surface of
the index glass produced. If then the eye be placed close to the mirror, the
observer will see the reflected image of the upright telescope alongside the
telescope itself. By carefully moving the index arm, the telescope and its
image may be brought nearly into coincidence. If the two are parallel, the
index glass is in adjustment. The telescope should be rotated about its axis
in order to be sure that it is perpendicular to the plane of the arc. If the
adjustment is imperfect, correction must be made by the screws at the base of
the mirror. Some instruments are not provided with the necessary screws,
and in such cases the adjustment had best be entrusted to an instrument
maker.

The test can also be made by looking into the index glass as before, and
noting whether the arc and its reflected image lie in the same place. If not,
the position of the mirror must be changed until such is the case.

No. 2. The horizon glass. The adjustment of the horizon glass may be
tested by directing the telescope toward a distant, sharply defined object,
preferably a star, and bringing the index arm near the zero of the scale. Two
images of the object will then be seen in the field of view—one formed by the
rays transmitted by the horizon glass, the other, by those reflected into the
telescope by the mirrors. The reflected image should pass through the direct
image as the index arm is moved back and forth by the slow motion. If it
does not, the horizon glass is not perpendicular to the plane of the arc, and
must be adjusted until the direct and reflected images of the same object
can be made accurately coincident.

No. 3. The telescope. The parallelism of the telescope to the frame may
be tested by bringing the images of two objects about 120° apart into coin-
cidence at the edge of the field nearest the frame. Then, without changing
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the reading, shift the images to the opposite side of the field. If they remain
in coincidence, the telescope is in adjustment. If not, its position must be
varied by means of the adjusting screws of the supporting collar until the test
is satisfactory.

No. 4. Index adjustment. 1f the fourth condition is not fulfilled, an index
error will be introduced into the angles read from the scale. To test the
adjustment, bring the direct and reflected images of the same distant object
into the coincidence as in the adjustment of the horizon glass. The corres-
ponding scale reading is called the zero reading=R,. If R, is zero, the
adjustment is correct. If not, set the index at o°, and bring the images into
coincidence by means of the proper adjusting screws attached to the horizon
glass. [t is better, however, to disregard this adjustment and correct the readings
by the amount of the index error.

It can be shown that the errors affecting the readings as a result of an
imperfect adjustment of the index glass, the horizon glass, and the telescope
are of the order of the squares of the residual errors of adjustment. If care be
exercised in making the adjustments, the resulting errors will be negligible
as compared with the uncertainty in the readings arising from other sources.

52. Determination of the index correction.—Make a series of zero
readings on a distant, sharply defined object, a star if possible. If the zero of
the vernier falls to the right of the zero of the scale, do not use negative
readings, but consider the last degree graduation preceding the zero of the
scale as 359°, and read in the direction of increasing graduations. The zero
reading is what the instrument actually reads when it should read zero. The
index correction, /, is the quantity which must be added algebraically to the
scale readings to obtain the true reading. We therefore have

I=0"—R, (122)
I =360°— R, (123)

The latter expression is to be used for the determination of / when the
zero of the vernier falls to the right of that of the scale for coincidence of the
direct and reflected images of the same object.

When observations are to be made on the sun, the index correction should
be determined from measures on this object. Since it is impossible, on account
of their size, to bring the solar images accurately into coincidence, we deter-
mine the zero reading as follows: Make the two images externally tangent,
the reflected being above the direct, and read the vernier. Let R, represent
the mean of a series of such readings. Then make an equal number of settings
for tangency with the reflected image below. Call the mean of the corres-
ponding readings R,. The mean of R, and R, will then be the value of the
zero reading, and we shall have

I=0"—Y%(R, +R,), (124)
I=360"— %(R, + R). (125) -
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[}

The readings thus obtained will also give the value of S, the sun’s semi-
diameter. Since the center of the reflected image moves over a distance of
four semi-diameters in shifting from the first position to the second, we have

S= Y (R.— R). (126)

Owing to the brilliancy of the solar image, its diameter appears larger
than it really is—a phenomenon known as irradiation. Should the value of
S be required for the reduction of observations on the sun (see Section 53),
the value calculated .from equation (126) should be used rather than that
derived from the Ephemeris, in order that the influence of irradiation may be
eliminated.

53. Determination of eccentricity corrections.—Any defect in the
fifth condition introduces an eccentricity error into the readings. Since, with
the usual form of the instrument there is but a single vernier, this cannot be
eliminated. Each sextant must be investigated specially for the determination
of the eccentricity errors affecting the readings for different parts of the scale.
These may be found by measuring a series of known angles of different mag-
nitudes. The mean result for each angle, 4, gives by (71) an equation of
the form

A=R+ T+ E,—E, (127)

where R is the sextant reading for coincidence of the two objects whose
angular distance is 4; 7, the index correction; and £, and £, the eccentricity
corrections for those graduations of the scale which coincide with vernier
graduations for the readings R, and R, respectively. The readings of the
coinciding graduations when the vernier reads R, and R may be denoted by
R, and R', respectively. E,— E is the correction which must be applied to
the sextant reading, freed from index correction, in order to-obtain the true
value of the angle. Denoting its value by ¢, (127) may be written

e=A—(R+1). (128)

Having determined ¢ from (128) for a considerable number of angles dis-
tributed as uniformly as possible over the scale, the results may be plotted as
ordinates with the corresponding values of R’ as abscissas. From the plot a
table may be constructed giving the values of ¢ for equidistant values of R’,
from which the value of ¢ for any other reading, &, can then be derived. Care
sl}ould be taken always to enter the table with the R’ corresponding to the
given R as argument. It should be noted that the usefulness of the table
depends upon 7 remaining sensibly constant, for if the index correction
changes by any considerable amount, R, may change sufficiently to render
the tabular values of € no longer applicable.

: The chief difficulty in investigating the eccentricity of a sextant consists
in securing a suitable series of known angles. A simple method is to measure
with a good theodolite the angles between a series of distant objects, nearly
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in the horizon, care being taken to tilt the instrument so that in turning from
one cbject to the next no rotation about the horizontal axis is necessary.

54. Precepts for the use of the sextant.—The following points should
carefully be noted in using the sextant: Focus the telescope accurately.
The image of a star should be a sharply defined point; that of the sun must
show the limb clearly defined and free from all blurring. For solar observa-
tions, use, whenever possible, shade glasses attached to the eyepiece rather
than those in front of the mirrors; and reduce the intensity of the images as
much as is consistent with clear definition. If the use of the mirror shade
glasses cannot be avoided, select those which will make the direct and
reflected images of the same color, and reverse them through 180° at the
middle of the observing program to eliminate the effect of any non-parallelism
of their surfaces. If a roof is used to protect the surface of the mercury from
wind, it also should be reversed at the middle of the program. In all cases
make the direct and reflected images of the same intensity by regulating the
distance of the telescope from the frame. Make the adjustments in the order
in which they are given above, and always test them before beginning obser-
vations. The index correction should be determined both before and after
each series of settings. Make all coincidences and contacts in the center of
the field. Finally, the instrument should be handled with great care, for a
slight shock may disturb “the adjustment of the mirrors and change the value
of the index correction.

55. The measurement of altitudes.—Although the sextant may be
used for the measurement of dngles lying in any plaue, it finds its widest
application in practical astronomy in the determination of the altitude of a
celestial body.

At sea the observations are made by bringing the reflected image of the
body into contact with the image of the distant horizon seen directly through
the unsilvered portion of the horizon glass. To obtain the true reading the
plane of the arc must be vertical. Practically, the matter is accomplished by
rotating the instrument back and forth slightly about the axis of the tele-
scope, which causes the reflected image to oscillate along a circular arc in the
field. The index is to be set so that the arc is tangent to the image of the
horizon. The corresponding reading corrected for index correction, dip of
horizon, and refraction is the required altitude. The correction for dip is
necessary, since, owing to the elevation of the observer, the visible horizon
lies below the astronomical horizon. The square root of the altitude of the
observer above the level of the sea, expressed in feet, will be the numerical
value of the correction in minutes of arc. The observations are not suscept-
ible of high precision, and the correction for eccentricity may be disregarded
as relatively unimportant.

For observations on land the artificial horizon must be used. The meas-
urement of the angular distance between the object and its mercury image
' gives the value of the double altitude of the object. Some practice is
required in order to be able to bring the object and its mercury image into
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coincidence quickly and accurately. In case the object is a star, care must be
taken that the images coinciding are really those of the object and its reflec-
tion in the mercury. The following is the simplest method of procedure:
Stand in a position such that the mercury image is clearly visible in the
center of the horizon, and direct the telescope toward the object. By bring-
ing the index near zero the reflected image will. appear in the field. The
telescope is then turned slowly downward toward the mercury, the index
being moved forward along the arc at the same time at a rate such that the
reflected image of the object remains constantly in the field. 1If the plane of
the sextant is kept vertical, and if the observer is careful to stand so that the
mercury reflection can be seen, its image seen directly through the unsilvered
portion of the horizon glass will come into the field when the telescope has
been sufficiently lowered. Both images should then be visible. The varying
altitude of the object will cause them to change their relative positions. The
index is set so that the images are approaching and clamped. When they
become coincident the time is noted and the vernier read. The instant of
coincidence is best determined by giving the instrument a slight oscillatory
motion about the axis of the telescope and noting the time when the reflected
image in its motion back and forth across the field passes through the direct
image.

To obtain an accurate value of the altitude, a series of such settings
should be taken in quick succession, the time and the vernier reading being
noted for each. It is not necessary to use the method described above for
bringing the images into the field for any of the settings but the first; for if,
after reading, the index be left clamped and the telescope be directed toward
the mercury image, the plane of the arc being held vertical, the reflected
image will also be in the field. If it is not at once seen, a slight rotation
about the axis of the telescope will bring it into view, unless too long an
interval has elapsed.

Measures for altitude may also be made by setting the zero of the vernier
accurately on one of the scale divisions so that the images are near each other
and approaching a coincidence. The time of coincidence and the vernier
reading are noted. The index is then moved 20’ so that the images will again
be approaching coincidence. The time and the reading are noted as before
and the process is repeated until a sufficient number of measures has been
secured.

The consistency of the measures should always be tested, as in the case
of the engineer’s transit (see page 79) by calculating the rate of change of the
readings per minute of time. If however, the observations have been made
by noting the times of coincidence for equidistant readings of the vernier, the
constancy of the time intervals between the successive settings will be a
sufficient test. i

If Rdenote the mean of the vernier readings, the apparent double altitude
of the object will be given by

2kl =R+ IT+e, (129)
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in which 7 is the index correction, and ¢ the correction for eccentricity. The
true altitude corresponding to the mean of the observed times is found from

k=nh—vr,

where the refraction, », may be derived from Table I, page 20, or if more
accurate results are required, by equation (3), page 18. If the zenith distance
is desired instead of the altitude, we calculate 2z’ from

z'=q0°— 7', (130)
and z from

2=z 47 (131)

For measures on the sun coincidences are not observed, but, instead, the
instants when the images are externally tangent. To eliminate the influence
of semidiameter, the same number of contacts should be observed for both
images approaching and images receding. If for any reason this cannot be
done, a correction for semidiameter must be applied. Let

n, = number of settings for images approaching,

2, = number of settings for images receding,

n = total number of settings,

S =the semidiameter of the sun calculated by equation (126).

We shall then have for solar observations

— Ng — Ny Upper sign, altitude decreasing.
2k =R=* n S+17+e¢, Lower sign’, altitude increasing. (132)

in which %’ is the apparent altitude of the sun’s center corresponding to the
mean of the observed times; and the term involving S, the correction for
semidiameter., The true altitude and zenith distance are then given by

=Nk —r-+p, (133)
s=z'+r—p, (134)

The solar parallax, g, may be obtained from columns four and eight of Table
1, page 20. For approximate results »—p may be taken from the fifth
and tenth columns of this same table.

Example 85. On 1909, April 10, the following sextant observations of the altitude of
the sun were made at the Laws Observatory near the time of meridian transit, The error of
the timeplece was 4¢,—= 4 6™ 37°. The observations will be reduced later for the determina-
tion of latitude.
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.THE DETERMINATION OF LATITUDE

56. Methods.—On page 34 it was shown that if the zenith distance or
altitude of a star of known right ascension and declination be measured at a
known time, the latitude of the place of observation can be determined by
means of equation (31). The preceding chapter indicates the methods that
may be employed for the measurement of the zenith distance. It is the pur-
pose of the present chapter to determine the most advantageous method of
using the fundamental equation and to develop the formul® necessary for
the practical solution of the problem.

To establish a criterion for the use of equation (31), it is to be noted that
the resultant error of observation in ¢ will depend upon the errors affecting
d, z, 0, and a. Star positions are so accurately known, however, that the
errors in ¢ and 6 are insignificant as compared with those occurring in 2z and
#; and we need concern ourselves only with those affecting the latter two
quantities. It is particularly important to know the influence of an error in
the time, for since this quantity is assumed to be known, it is desirable to be
able to spec1fy how accurately it must be given in order to obtain a deﬁmte
degree of precision in the latitude.

The relation connecting small variations in 2z and 8 with changes in ¢ is
found by differentiating (31), 2, £=60—«, and ¢ being considered variable.
(Num. Comp. p. 11.) We thus find

— sin zdz = sin 0 cos ¢ dg — cos d sin @ costdyp —cosd cos ¢ sin £dt,  (135)
which by means of (32) and (33) reduces to
dz ==cos Ady + sin A cos ¢ dt.
Writing d¢ = dfl and solving for dg
d¢ = sec Adz—tan A cos ¢ db. ' (136)

Assuming now that the differentials of z and @ represent the errors in
these quantities, the resultant error in ¢ will be given by (136). In order that
this may be a minimum, sec 4 and tan 4 must have their minimum absolute
values, which will occur when 4 is 0° or 180°. Since these quantities increase
as the azimuth deviates from 0° or 180°, the object observed for the deter-
mination of latitude should be as near the meridian as possible. Even with
this limitation there will be considerable variety in the procedure depending
upon the position of the star and the circumstances of the observations; and
we now proceed to the consideration of the following five cases in which the

» given data are, respectively,
95
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The zenith distance of an object when on the meridian,

The difference of the meridian zenith distances of two stars,

A series of zenith distances when the object is near the meridian,
The zenith distance of an object at any hour angle,

The altitude of Polaris at any hour angle.

R

1. MERIDIAN ZENITH DISTANCE

57. Theory.—The hour angle of an object on the meridian is zero. For
this case equation (31) reduces to )

cos z, = cos (¢ — 0), (137)
whence
*z=¢0— 9,
or
¢=20=xz, (138)

Equation (138) may also be derived geometrically by means of Fig. 4, p. 24
whence it is seen that the upper sign must be used for objects south of the
zenith; and the lower, for objects between the zenith and the pole. For
lower culmination the fundamental relation becomes

¢ =180°—0 — 5,. (139)

58. Procedure—For the instant of observation we have by (35) 0 =a.
If 40 be the error of the timepiece, the clock time of transit will be

0'=oa— 46, (140)

where a, along with J, is to be interpolated from the Epkemeris for the instant
of observation. The true zenith distance is then to be determined by some
one of the methods of Section 45 or 55 for the clock time . Equation (138)
or (139) will then give the required value of the latitude.

If a mean timepiece is used, the sidereal time of transit must be converted
into the corresponding mean time, 7, by equations (62) and (41), pp. 49 and 39,
respectively. The clock time of obervation is then given by

I'=T—47. (141)

In case the error of the timepiece is uncertain, the observer will bring the
image to the intersection of the threads, or the direct and reflected images
into coincidence if the sextant is used, a little before the time of transit and
follow with the slow motion until it becomes necessary to reverse the direc-
tion in which the tangent screw is turned in order to keep the image on the
thread. This instant marks the time of meridian passage. The corresponding
reading, properly corrected, then gives the altitude as before.

Example 36, On 1909, April 10, an observation was made at the Laws Observatory with
a sextant for the determination of the latitude by a meridian altitude of the sun. The reading
on the upper limb at the calculated time of transit was 118° 29’ 10”. The error of the clock,
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the index correction, and the semidiameter to be used are those of Ex. 35. The calculation
of the clock time of transit is in the left hand column. The reduction of the observation for
the determinatlon of the latitude is in the second column.

118° 29’ 10”
4+ 1
Unknown
118 29 11
14 36
45 24
30
15 56
1 50
54 29
56 19

Gr. A, T.of Col. A, N, =6t gm 182=6r155 R
Sun's g at Col. ALN. =1 14 42 z
40, = + 6 37 €

e vt S 24’

ﬁl

w
O

The true value of the latitude is
known to be 38° 56’ 52” r—p

+ w
~ e

(I |
@

IR N N
W
0

2. DIFFERENCE OF MERIDIAN ZENITH DISTANCES
TALCOTT'S METHOD

59. Theory.—From equation (138) we have

9’:55 + 25,

¢=8N_—zh‘!

where the subscripts indicate the position of the stars with respect to the
zenith. One-half the sum of these two equations gives

‘F=%(3s+3N)+%(35'—ZN')+%(rs'—'rN)v (142)

in which the true zenith distances have been replaced by 2.’ + 7, and 2z’ + 7,
respectively. The declinations are given by the Epkemeris, and the difference
of the refractions is readily calculated. If therefore the difference between
the apparent zenith distances of two stars be measured, the latitude can be
calculated by (142).

By limiting the application of the equation to those cases in which the
zenith distances are nearly equal, a considerable increase in precision will be
obtained as compared with that resulting from meridian zenith distances.
Since the measures are differential, instrumental errors affecting the two ob-
servations equally will be eliminated. In the case of measures with the
sextant, for example, the index correction and the eccentricity will be elim-
inated and need not, therefore, be determined. But what is of more import-
ance, so far as precision is concerned, is the fact that the errors of observation
which would affect these instrumental corrections, were they determined, de
not enter into the result. A similar condition exists in the case of the refrac-
tion, for the difference of two refractions corresponding to nearly equal zenith
distances can be calculated with a higher degree of precision than is possible .
in the determination of the total refraction. Finally, the fact that the quantity
to be observed is small, makes it possible to introduce other and more precise
methods of measurement than those which depend upon the use of a grad-
uated circle. For example, with the engineer’s transit small differences of

7
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zenith distance may be measured more accurately with the gradienter screw
than with the vertical circle.

The method under discussion was first proposed by Horrebow, the director
of the Observatory of Copenhagen about the middle of the eighteenth century,
and was given extensive practical application in the work of the United States
Coast and Geodetic Survey about a century later by Captain Talcott, from
which circumstance it is commonly known as Talcott’s method. It reaches its
highest precision when used in connection with the zenith telescope, an in-
strument of the altazimuth type fitted with an accurately constructed micro-
meter eyepiece and a very sensitive altitude level. The level enables the
observer to give the line of sight the same inclination to the vertical during
both observations, while the micrometer affords a very precise determination
of the required difference in zenith distance of the two stars.

If the method is to be used in connection with the engineer’s transit, the
angular value of one revolution of the gradienter screw should first be deter-
mined by measuring a small angle whose value is known., The observa-
tions should be made and reduced in a way such that any irregularity in the
screw will be revealed. To this end a process analogous to that used in
Examples 26 and 29 may be employed.

Since the correction for refraction will always be small, we may assume

d ’
rs—rN=£—é, (e's—2" ).

From (4) we find
G g sec®z'sin 1°
dz = 57 3¢ ’
which expresses the rate of change of » per 1° of change in 2. Denoting this

quantity by C, the correction for refraction in seconds of arc becomes
Yelr —n)"=15(s'— &')°C (143)

in which the difference of the zenith distances must be expressed in degrees.
The value of C may be taken from Table V with the mean zenith distance of
the two stars as argument.

TABLE V

2 C z"C

IDP | o 56°0[F 2% 4
20 TOE 55 3.0
30 1v 3 60 4.0
40 1.7 65 5.6
50 2.4 70 8.5

60. Procedure.—Select two stars culminating within 15™ or 20™ of each
other whose declinations satisfy as nearly as possible the condition

2¢ =05 + 0y (144)
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and calculate the clock time of meridian transit by (140) or (141).

If a sextant is used, measure the double altitudes of the two stars at the
instants of transit. Let R, and R, be the corresponding sextant readings.
The second term of (142) will then be given by

12(2s' — 23") = Y (Ry— Ry). (145)

If the engineer’s transit is employed, level carefully and bring the star
culminating first to the intersection of'the threads at the instant of its transit.
Read the gradienter screw, reverse, relevel, bring the second star to the inter-
section of the threads at the instant of transit by means of the screw, and note
the reading as before. The vertical circle should be firmly clamped when
the setting on the first star is made, and must not be disturbed thereafter
until the second star has been observed. If the two screw readings be
denoted by s and m,, and if G be the value of one-half a revolution of the
screw, we shall have

(2" — ') = =G (m,— ma), (146)

in which the upper sign is to be used when the screw readings increase with
increasing zenith distance.

In levelling, special attention should be given to the altitude level.
Unless the bubble has the same position for both observations, an error will
be introduced into the result. If the level is a sensitive one, it will be better -
to omit the levelling after reversal and apply a correction to the result given
by (146). If ¢ and ¢ be the readings of the object and eye ends of the
bubble, respectively, and if readings increasing toward the north be recorded
as positive while those increasing toward the south are entered as negative,
the correction to be added algebraically to the result given by (146) will be

(00 + 0 + 0, + €.) D, (147)

in which D is one-fourth the angular value of one division of the level. The
bubble readings should be taken as near the times of transit as possible.

The last term of (142) is given by (143), the value of C being derived from
Table V. The declinations are to be taken from the list of apparent places in
the Ephemeris for the instant of observation. In case the northern star is ob-
served at lower culmination, its declination in (142) must be replaced by
180° — d..

3. CIRCUMMERIDIAN ALTITUDES

61. Theory.—The zenith distance to be used in equations (138) and (139)
is that of the object when on the meridian. Since only a single determination
of this quantity can be made at any given transit, it is desirable for the sake of
precision to modify the method described under No. I so as to permit a multi-

plication of the settings.

The change in the zenith dlstance durmg an interval 1mmedlately preced-
ing or following the instant of transit is small and its value is easily and
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accurately calculated. The meridian zenith distance may therefore be found
by observing when the object is near the meridian and applying to the meas-
-ured value of the coordinate the amount of the change during the interval
separating the instant of observation from that of culmination. A series of
such measnres reduced to the meridian gives a precise value of 'z, which can
then be substituted into (138) or (139) for the determination of the latitude.
It is of course immaterial whether the quantity measured be zenith distance or
altitude. The method is commonly knqwn as that of circummeridian altitudes. -

The development,of the formule to be used for the calculation of the
reduction to the meridian is as follows: Equation (31) may be written in the
form

cos z=cos (¢ —J) —2cosgcosdsin® ¥ ¢ (148)

Let z be the observed value of the cotrdinate, z, the meridian value, and Z the
reduction to the meridian. We then have

24 Z=a2, (149)
Substituting into (148) we find
cos (2, — Z) ==cos z,— 2 cos ¢ cos § sin* ¥ 2. (150)

To express Z explicitly we may replace the left member of (150) by its expan-
sion by Taylor’s theorem. Since Z is small the convergence will be rapid.
Introducing at the same time

A = cos ¢ cos d cosec 2, m = 2 sin*%¢, (151)
and neglecting terms in Z* we find .
Z=—Am +142* cot 3, (152)

Squaring, we have to the same degree of approximation
2t = A*me.
Substituting into (152), and writing
Bi—Acotisy n=Y,m*= 2 sin‘15¢, (153)
we have finally for the reduction to the meridian.
Z=—Am + Bn. (134)

Since the observations may be arranged so that Z will not exceed 15 HOrg2of
the error in (154) will be insensible.

Combining equations (138), (149), and (154), the expression for the latitude
becomes

¢ =08 %z Am =% Bn, (155)
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in which the upper sign is to be used for southern stars; and the lower, for
those culminating between the zenith and the pole.

For an object observed near lower culmination, £ in (31) must be replaced
by 180° + ¢ The resulting value of the reduction to the meridian substituted

into (139) gives
¢ =180"—0 —z— Am— Ba. (156)

Equations (155) and (156), in which the last terms are to be calculated by
(151) and (153), express the solution of the problem. For observations with
the engineer’s transit the term Bz will usually be insensible when the hour
angle is less than 15™ or 20™.

It will be observed that A4 and B depend upon the latitude — the quantity
to be determined. A value of ¢ sufficiently accurate for the calculation of
these coefficients may be obtained by (138) or (139) from the value of z
observed nearest the time of transit. It will be noted further that 4 and B are
constant for any given series of observations and need be calculated but once.
The factors 72 and 2, on the other hand, are different for each setting. Since
they depend only upon the hour angle, their valnes may be tabulated with # as
argument. Tables VI and VII may be used for all ordinary observations with
the transit or sextant.

TasLE VI TasLE VII
& m ¢ m 14 ”
om o"” 10| 196" om [ oo
42
1 11 238 5 0.0
2 12 283 = 10 0.1
10 49
3 18 ;3 | 13| 332 15 | 0.5
4 31 8 14 385 g 16 0.6
5 49 15 442 17 0.8
22 60
6 71 e 16 502 6 18 1.0
7 96 2 17 5676: R B2
8 126 23 18 636 20 15
72
B g 708 -
10 196 20 785

62. Procedure.—Calculate the clock time of transit, 8 or 77, of the
object to be observed. Beginning a few minutes before this instant, make a
series of observations for the determination of the zenith distance by some
one of the methods of Section 45 or 55, noting the time for each. Correct the
apparent zenith distance for refraction in the case of a star, and for refraction
and parallax in the case of the sun. Form the hour angle, 7, corresponding to
each observation by subtracting the clock time of transit from the time of
observation. For a star, # must be expressed in sidereal units; for the sun, in
solar units. Calculate 4 and B from (151) and (153), using the value of the
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14

zenith distance observed nearest the time of transit for z, and for the determi-
nation of an approximate value of ¢, both of which are required for the com-
putation. Finally, calculate the latitude for each observation by means of
(155) or (156). The declination to be used is that corresponding to the instant
of observation.

The final result may also be obtained by applying the mean of all the
values of Am and of Bn to the mean of all the zenith distances in accordance
with equations (155) or (156). This method, however, gives no indication as
to the consistency of the observations, and it is better to reduce the results
separately, or, at least, to reduce separately the means of not more than two
or three consecutive measures.

The method of circummeridian altitudes may advantageously be com-
bined with that of Talcott. When this is done there will be given a series of
values of %% (z's—=z'y) derived from observations made near the meridian.
Each of these must be reduced to the meridian by adding to (142) the term
1% (Zs— Z,), in which Z; and Z, are to be calculated by (154).

Example 37. The reduction of the circummeridian altitudes given in Ex. 35, p. 93, is as
follows: To eliminate the semidiameter the means are formed for the 1st and 2nd, 3rd and
4th, sth and 6th, and the 7th and 8th observations. These results are in the first and sixth
lines of the calculation below. The eccentricity corrections are unknown, The index cor-
rection found in Ex. 35is+1”. In Ex. 36, p. 96, the clock time of transit was found to be
1k 8m gs,

0F b om 25s 1h 3m 191 1b 6m 68 1k jom (8¢
¢ (sidereal) —7 40 —4 46 —1 59 +2 13
£ (solar) —7 39 —4 45 —1 59 +2 13
m 1 lsll 44H 8!’ lO"
n o o o o
r 1u7® st 0" 117° 547 557 117° 56’ 357 117° 567 357
L' 58 55 30 58 57 28 58 58 18 8 58 18
z' 31 4 30 3t 2 31 3t 1 42 31 1 42
r—p . +30 +30 +30 +30
) +7 54 22 +7 54 25 +7 54 27 +7 54 31
— Am —2 52 —1 6 —0 12 —o0 1§
@ 38 56 30 38 56 20 38 56 27 38 56 28
From the 3rd column cosg  9.8908
¢ 38 57 c0s3  9.9939
d +7 54 cosecz, 0.2877
z, 31 2 log 4 o0.1744

The mean of the four values of ¢ is 38° 56’ 26”, which is 26” less than the known true
latitude. This fact taken in connection with the close agreement of the individual values
suggests the existence of an eccentricity correction of about— 50" for the part of the scale
used in the observations.

4. ZENITH DISTANCE AT ANY HOUR ANGLE

; 63,. Theory.—1It is desirable to be able to determine the latitude from a
zenith distance measured when the object is so far from the meridian that the
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formul® for circummeridian altitudes no longer give convergent results. This
is readily accomplished by using the fundamental equation (31) in the form

cos z == n cos (¢ — V). - (157)

Equation (157) is the last of equations (34), the auxiliaries z and NV being
defined by the first and second of this group.

64. Procedure.—Having determined the true zenith distance of the
object, calculate the hour angle by

t=0—a, : (158)
in which @ is the true sidereal time of observation. Then determine 2 and NV by

nsin V=sin @,
7 cos [V =cos 6 cos ¢,

(159)
and ¢ — N from

cos (p— N) =22, (160)

A reference to the fourth of (34) shows that sin (¢ — V) must have the
same algebraic sign as cos 4. This together with the sign of cos (¢ — &) from
(159) determines the quadrant of ¢ — V. The latitude is then given by

¢g=(¢g—N)+ N (161

Equations (158) —(161) are rigorous and apply to all values of the hour
angle, but care should be taken to observe as near the meridian as possible in
order that errors in z and § may not appear multiplied in the result. (See
Section 5§6.) A sufficient number of decimal places must be employed to offset
the fact that the angle ¢ — V is determined from its cosine.

Example 38, On 1908, Oct. 2, at watch time 8> 35™ 11* P.M. the altitude of Polaris was
found to be 39° 29.8. (See Ex. 3t, p. 79.) The error of the watch on C.S.T. was 4 1™ 45°.
Find the latitude by equations (158) - (161).

C.8.T. ghe3bm g6% cos 8.3150
Columbiag 21 13 14 cos ¢ 9.649S
a 0 27 10 ncos N 7.9648
¢ 19 46 4 nsin V 9.9999
¢ 296° 31.0 tan V 2.0351

57 50 30.2 N 89° 28.3
r {071 sin V 0.0000
z 50 31.3 log# 9.9999
& 88 49.0 cosz 9.8033
cos(p—N) 9.8034

The calculated o is larger ¢—N —50° 30.8

than the true value by 0.6 @ 38 §57.5 Ans.
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The C.S.T. is converted into the corresponding Columbia ¢ by (41) and (58). ¢« and ¢
are from p. 321 from the Ephemeris, The value of # shows that Polaris was east of the mer-
idian at the time of the observation, whence cos 4 and sin (p— V) are negative. Since
cos (¢ — V) is positive, o — V is in the fourth quadrant.

5. ALTITUDE OF POLARIS

65. Theory,—The peculiar location of Polaris with respect to the pole
makes it possible to simplify the fundamental latitude equation for use in
connection with this object. Since the latitude is by definition equal to the
altitude of the north celestial pole, the problem may be solved by finding an
expression for the difference in altitude of the pole and Polaris. The polar
distance of Polaris is about 1° 11’, consequently, the required difference will
always be a small angle. To this fact is due the possibility of a simplification
of equation (31). (See Num. Comp. pp. 14 and 16.)

Replacing z and 4 in (31) by the altitude, %, and the north polar distance,
7, respectively, we find

sin 2 = cos 7 sin ¢ -+ sin 7 cos ¢ cos £ (162)
If /7 be the difference in altitude of Polaris and the pole, we shall have
o=h+ H. (163)

Writing 2=¢ — H in (162), and expanding and solving for sin &
sin / = —sinz cos £ 4 tan ¢ (cos H— cos 7). (164)

Since at 2 maximum

H=n=1°11,

we may replace sin /7 and sin = in (164) by / and =, respectively, with an error
not exceeding 073. At the same time we may write

cos H=1—1%H, cosT=1—1%77%
with errors which are still smaller, thus obtaining
H =—mcosz+ Ytan ¢ (z*— H?). (165)
Neglecting terms involving =3,
=% cosZ,
and substituting Z* into (165) we have

=-—mcos’+Ya tan¢sin‘s ~ - (166)
Finally, by (163)
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¢=h—ncos!+ K, (167)
in which e W2
K =1z tan ¢sin*s (168)

The error in the latitude calculated from (167) due to the approximate
form of the equation will usually be less than 27

The calculation of K requires a knowledge of ¢ —the quantity to be
determined; but, since the coefficient }=* is only about 0.02, a rough approx-
imation for the latitude will answer. The values of K may be derived from
Table VIII with an approximate latitude and the hour angle as arguments.
The table is based on the value 7 =1° 110",

TABLE VIII A = 15 % tan psin?¢

¢t |p==30°| p=135° <p=40°}sa=4s° o=50°] ¢

oh 0’00 0’00 o.oo 0,00 0’00 12h
1 0.03 0.03 0.04 0.05 0.06 11

2 0.11 0.13 0.15 0.18 0.22 10
3 0.2t 0.26 0.31 0.37 0.44 9
4 0.32 0.38 0.46 0.55 0.66 8
5 0.40 0.48 0.57 0.68 0.82 7
6 0.42 0.51 0.62 0.73 o 87 6

For values of # greater than 12" enter the table with 24" — ¢ as argument.

In rough work, the values of /7 may be taken directly from Table IV at
the end of the Ephemeris with ¢, or 24" — ¢, as argument. This table is calcu-
lated with a mean value of ¢ equal to 45°. The interpolated /7 added to the
true altitude of Polaris will give the latitude of points within 10° or 15° of the
mean latitude of the table with an error not exceeding a few tenths of a
minute of arc.

66. Procedure.—Having determined the true altitude, %, of Polaris,
calculate

!=0—a,

— 0_3' (169)
¢ =h—xcost+ K.

in which 6 is the sidereal time of observation, and « and 4 the apparent right
ascension and declination, taken from the Eplhemeris, pp. 312-323. Inter-
polate X from Table VIII with ¢ or 24> — ¢ and an approximate value of ¢ as
arguments. = is conveniently expressed in minutes of arc.
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Example 39. Find the latitude by equations (169) from the data of Ex. 33, p. 81.

Tw ot 42™ 10° ) 88°49.1 R' 39° 54.9
47w —32 b4 70.9 . 140 ¢
CHSIL G 38 log 1.8506 xcosf  57.0
Columbiag 23 1 29 cos ? 9.9056 K 0.2
“ 1 27 13 log 7 cos ¢ 1.7562 ¢ 38 57.0 Ans.
: 21 34 X 2 The calculated ¢ is larger
g 323" 34:0 than the true value byo'r1.

The application of equations (169) to the data of Ex. 38 gives Sp=38° 57.5, which agrees
exactly with the result obtained by the formulz of Section 64.

Example 40. Find the latitude by means of Table IV of the Ephkemeris from the data
of Exs. 38 and 39.

The hour angle is to be calculated as before. Itsvalue in both cases is greater than 12h,
Consequently, # is to be interpolated from Table IV, Epkemeris, p. 595, with 242 —¢ as
argument. We then find

Ex. 38 Ex. 39

242 —¢ 4t 13mg 2b 25my
a 39°28L7 39°53.8

V44 —31.2 —37.0
¢ 38 57-5 38 56.8

67. Influence of an error in time.—We may now examine more closely
the influence of an error in the time upon the calculated latitude. The change
is ¢ produced by a small change in 6 is by (136)

do = —tan A4 cos ¢d §. (170)

For all of the preceding methods but No. 4, 4 will be small, a few degrees
at most, and we may write sin4 in place of tan4 in (170) with sufficient
accuracy for the present purpose. Substituting for sin 4 its value from (33),
and writing 2 equal to the meridian zenith distance, 2, (170) becomes

dg = == cos ¢ cos d cosec g,sin Zdf. (171)

in which the upper sign refers to southern stars. For circummeridian altitudes
(171) reduces by (151) to

do == Asintdl. (172)
For Polaris we have with sufficient approximation

2,=090° — ¢, €0s 0 =7 —0.02,
whence

dp =0.02sin ¢df. (173)
Equations (172) and (173) may be obtained directly from (153) and (157)

by differentiating with respect to ¢ and mtroducmg dt = dfl, the small terms
Bn and’ K being disregarded.
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Equations (170)-(173) may be used for the calculation of d¢ when df is
known, or for the determination of the accuracy with which the time must be
known in order to obtain ¢ with a given degree of precision. If @ is expressed
in seconds of time, the factor 15 must be introduced into the right members
of the various equations in order that dp may be expressed in seconds of arc.

It is evident that, aside from the dependence of dy upon ¢ it also depends
upon the zenith distance and declination of the star, and that an error in the
time has the least influence upon the calculated latitude for stars near the
pole. For Polaris the effect of 4§ is always small, and if # be near oh or 124, it
will be very slight indeed, even though 48 be large. ‘

This fact taken in connection with the simplicity of the reductions renders
the last of the above methods the most useful of all the various processes that
may be employed for the determination of latitude. The greatest precision,
however, is attained only by the method of a Talcott when used in connection
with the zenith telescope.

Example 41. What is the error in the latitude calculated from the first of the clrcum-
meridlan altitudes of Ex. 37, p 102, on the assumption that the watch correctlon used was
incorrect by 20°?

By (172) we find, taking the values of A and # from Ex. 37

d0 = 20" = 300" £=7m39" =1°54"45"
log 4 0.1744 ° logd¢ 1.1849
sin # 8.5334 d¢ =1§" Ans.

log300 2.4771

Example 42, How accurately must the time be known in order that the altitude of
Polaris given in Ex. 33, p. 81, may yield a value of the latitude uncertain by not more
than ol1?

By (173) and the data in Ex. 39, p. 105, we find

¢t 323° 340 dy o.1
sin ¢z 0.595 o.0zsinf/ o0.012
dg=8.33=133" Ans.



CHAPIEER NV

THE DETERMINATION OF AZIMUTH

68. Methods.—The azimuth of a terrestrial mark may be found by ob-
serving the difference in azimuth of the mark and a celestial object and applying
to this difference the calculated azimuth of the object corresponding to the in-
stant of observation. The methods to be employed for the observational part
of the process have been discussed in detail in Chapter IV. We have now to
examine the means by which the azimuth of the celestial body may be com-
puted.

A rigorons and general method of procedure leading to the fundamental
equation /

- cosdsin ¢ (174)
~ sindcos¢ —cosdsin gcos’ “

was ontlined on page 34. Before proceeding to the adaptation of this equation
to the purposes of calculation it is desirable to investigate the conditions under
which it may most advantageously be employed. The calculated azimuth will
depend upon the right ascension and declination of the star, the time, and the
latitude of the place of observation. The first two quantities may be assumed
to be known with precision, but the last are likely to be affected by relatively large
uncertainties. To determine the influence of these upon the calculated azimuth,
and thus derive a precept for the cloice of objects to be observed, we differen-
tiate (33), 4, 5, and ¢ being considered variable, and substitute for &z its value
from page 95. Writing at the same time dt = df we find after simplification.

dA = — cot zsin A dg + (sin z sin ¢ + cos z cos ¢ cos A) cosec z df.

If in Fig. 6 we denote the angle at O by g, the expression in parenthesis re-

duces by the second of the fundamental formulae of spherical trigonometry to
cos d cos ¢, whence

dA =— cot zsin A dg 4 cos § cos g cosec z 4. (175)

In order that d4 may be small it is necessary that the object should not
be near the zenith. Otherwise, the factors cotz and cosecz will produce a multi-
plication of both d¢ and 4. Further, it is desirable that the azimuth should
be near 0° or 180°, for when this is the case an error in the assumed latitude
will produce but little effect upon the calculated azimnth. When the object is
near the pole, cos ¢ will be small and the influence of df will be slight; and if,
at the same time, it be near elongation, cosq will also be small, and the effect
of df will still further be minimized.

-A close circumpolar star at any hour angle satisfies these conditions with
sufficient closeness to render the influence of any ordinary errors in ¢ and 6

quite insensible. Shonld the clock correction be very uncertain, however, it may
108
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be desirable to observe for the determination of the azimuth difference of the
mark and the star at or near the time of elongation in order that the coefficient
of df in (175), already small through the presence of cosd, may he made still
smaller by the introduction of a value of g near go°.

Far less satisfactory will be the result in the case of ohservations on the
sun, although this object may be used when the latitude is known with some
precision, provided care be taken to observe as far from the meridian as pos-
sible. With this precaution the coefficients in (175) depending on £ and g will
have the values best adapted for a minimization of the errors in ¢ and 6, especially
that of the latter, which in all cases is most to be feared.

Besides the fundamenta]l equation (174) there is another which is some-
times useful, namely, (26). If the zenith distance of the celestial body be
measured simultaneously with the determination of the azimuth difference, the
azimuth of the body may be calculated by this equation, whence the azimuth of
the mark can be found as before. With this method of procedure the latitude of
the place must be known, but the time does not enter into the problem except as
it may be required for the interpolation of the declination of the object for
the instant of observation.

To determine the conditions under which this method may be used with
advantage, differentiate (26) considering ¢, 5, and 4 as variables. We thus
find after simplification

cos ¢ dA = cos g cosec ¢ dz — cot ¢ do. (176)

From this it appears that errors in & and ¢ will have the least influence
when ¢ and ¢ are as near go° or 270° as possible. These conditions cannot both
be fulfilled at the same time. But for circumpolar stars observed near elonga-
tion the magnitude of cosq and cot¢ in (176) will be such that errorsin z and ¢
will have only an insignificant influence on the calculated azimuth.

The consideration of the preceding results indicates that we shall need
adaptations of the fundamental azimuth equations designed for the calculation of

1. The azimuth of the sun.

+ 2. The azimuth of a circumpolar star at any hour angle.’

3. Azimuth from an observed zenith distance.

I. AZIMUTH OF THE SUN

69. Theory.—The first four equations of (34) are the equivalent of (32)
and (33) from which the fundamental equation (174) was derived. By their
combination we find the following group which for the purposes of calculation
replaces (174).

tan o
tanN_c_ost' (177)
cos V
tan A —mtaﬂ {7 (178)

The quadrants of /V and A are determined by noting that sin /V and sin 4 have the same
aigebraic signs as sin § and sin ¢, respectively.



110 PRACTICAL ASTRONOMY
%0. Procedure—If a sidereal timepiece is used, calculate ¢ from
t=0—aq,

in which @ is the true sidercal time of obscrvation, and « the sun’s apparent
righf ascension. If a mean solar timepiece is employed, calculate the apparent
solar time for which the azimuth difference has been measured. This is di-
rectly the hour angle of the sun. Interpolate d, and @ when required for the
calculation of ¢, for the instant of observation. Finally compute A from (177)
and (178). Azimuth determinations from solar observations should be made
only when the sun is far from the meridian.

2. AZIMUTH OF A CIRCUMPOLAR STAR AT ANY HOUR ANGLE
%1, Theory.—Dividing the numerator and denominator of (174) by

sin ¢ cos ¢ and writing & =90° — 7, we find

tanwsec ¢ sin#

tan A = —
I —tanx tan ¢ cos 2’

(179)

This equation may be replaced by the following group which is arranged with
reference to the requirements of calculation.

£ = tanmsec ¢,
& =tan 7 tan¢ = gsin ¢,
_ I (180)
E % cos?'
tanAd =—gGsin ¢

The quadrant of A4 is determined by the fact that sin. 4 must have the same algebraic
sign as sin 7.

The factors g and % are constant for any given night, and in approxi-
mate work they may be considered as such for a series of nights. Moreover Jt
is small because of the factor tanzw. G therefore differs but little from unity,
and the values of logG may be tabulated with loghcost as argument. Such a
table, sufficient for all practical requirements is given in Rept. Supt. U. S. Coast
and Geodetic Survey, 1897-8, pp. 399-407.

In case tables for logG are not accessible its values may be calculated as
follows: G has the form 1/(1 4+ 2) or 1/(1 — ), in which ¥ =/cost, according
as cost is negative or positive. The latter expression may be written in the form

G=1/1—v)=004+2)(1+2)(1+2).... (181)

Since v is small, the parentheses after the second or third in the last member
of (181) will sensibly be equal to unity. To find the value of log G, therefore,
we must find the logarithms of one or more factors of the form {14 b). For
this purpose we use the addition logarithmic table. Since @ =1, the formule
are (Num. Comp. p. 10).
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A=logb, log (14b) =B,
where B is to be interpolated from the table with 4 as argument. Hence

For cos? negative,
A=log (h cost), log G =—B.
For cost positive, (182)

A,=log (kcos?), A,=log(kcosty, A,=log(kcos?)....
logG=28,+B,+B8,+. ...

Equations (180) used in connection with tables for log G, or with formula
(182) afford a convenient and precise method of calculating the azimuth of
any of the close circumpolar stars whose apparent places are given in the
Ephemeris, pp. 312-323.

Equations (180) are rigorous, however, and for approximate results they
may be simplified, especially if the circumpolar observed is Polaris. For this
object 7w at the present time is 1° 11/, and for latitudes less than 60°, its azimuth
will always differ from 180° by less than 2° 3. We may therefore write

180° — 4 =xzGsecgsin? (183)

with an error not exceeding 2”. For latitudes of 45° or less the error will always
be less than 1”. ’

TasLE IX
4 log G log G secy ¢
oh 0.0075 0.1167 24h
1 0.0073 0.1165 23
2 0.00635 0.1156 22
3 0.0053 0.1145 21
4 0.0037 0.1129 20
5 0.00I9 O.I111 19
6 ©.0000 0.1092 18
7 9.9981 0.1072 17
8 9.9963 0.1055 16
9 9.9948 0.1039 15
10 9.9936 0.1028 14
11 9.9928 0.1020 13
12 9.9926 0.1018 12

Further, log G may be tabulated, as in Table IX, for a mean value of the lati-
tude with ¢ as argument. Since ¢ enters into G through h, which contains the
factor tan z, and since G itseif appears multiplied by 7 in (183), any difference
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between the value of ¢ assumed for the calculation of the table and that cor-
responding to the place of observation will have only a slight influence on the
azimuth derived from (183). It is to be understood, however, that the local
value of sec ¢ must be used, and that the value of the coefficient = appearing
in (183) must correspond to the date of observation. In case a number of
azimuth determinations are to be made at a given station, the corresponding local
value of log secg may conveniently be combined with the mean values of
log G. One can then interpolate log Gsecg directly from the table.

The values of log G in Table I1X are based upon ¢ =40°, and 7= 1° 10/,
the latter of which is the mean north polar distance for 1910.0. The maximum
absolute errors in the azimuth resulting from the use of this table for various
latitudes are

Latitude 30° 35° 40° 45° 50°
Error in 4 o.24 o012 0loo  0o.15 038

The values of log G sec ¢ in the third column of Table IX refer to the lati-
tude of the Laws Observatory, which is 38° 57

72. Procedure.—Interpolate « and 0 for the instant of observation from
the list of apparent places of circumpolar stars, Ephemeris, pp. 312-323. Cal-

culate

N

7 =00° —J, t=0—a,

where @ is the true sidereal time of observation for which the azimuth difference
of the star and the mark has been measured. Then:

For a precise azimuth, calculate A from (180). The value of log G may be
taken from Rept. Supt. U. S. Coast and Geodctic Survey, 1897-8, pp. 399-407,
or from some similar table, with the argument log/icost; or it may be calculated
by means of (182).

For an approximate azimuth from Polaris, interpolate log G, or log G sec ¢,
from table 1X with ¢ as argument. Then calculate 4 from

A=180° —xGsec ¢sint (184)

If = be expressed in minutes of arc, the last term of (184) will also be
given in ntinutes of arc.

Example 43. Determine the azimuth of the mark from the data given in Ex. 34, p. 85.
The latitude of the place of observation is 38° 56’ 52".

Equations (180) are used for the calculation, the results for the two positions of the
Instrument being reduced separately. The azimuth of the mark is found by subtracting the
difference S— A, taken from p. 85, from the calculated azimuth of Polaris. The difference
of the two values of Af is not to be taken as an indication of the precision of the result, as

these quantities are affected by instrumental errors whose influence is not eliminated until the
mean is formed.
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C.R. C. L:
a 1b 25™ 19° 0 9b 38m 32* 9h 49™ 38:
z 1° 10' 46" ] SESTg R Ty 8 24 19
) 38 56 52 ¢ 13318 Brs 126° 4’ 45"
A sec ¢ 0.10918 cos? 9.739640 9.77005n
tanz 8.31362 kcost=A 7.96082q 7.99123na
ang 9:975%  B=logG  9.99605 9.99577
; gf 8'4 4 sin £ 9.92209 9.90752
FEL S22l tan A4 8.34094n 8.32609n
Y A4 l78° 44’ 38" I78° 47’ 10"
S—M 173 33 30 173 35 34
M GYREL S L 5 Bn 36
Mean SEnTgi2a

3. AZIMUTH FROM AN OBSERVED ZENITH DISTANCE
73. Theory.—Equation (26) rewritten in the form

sin 6 —cos 2z sin ¢

—c0s 4= 5
sin 2 COS ¢

(185)
A < 180° when the object is west of the meridian

expresses the azimuth as a function of d, 2, and ¢. If the zenith distance of an
object of known declination be measured at a place of known latitude, the azi-
muth of the object can be calculated. We have seen from the differential rela-
tion (176) that the most advantageous use of (185) requires that ¢ and £ be as -
near go° or 270° as possible, a condition best fulfilled by circumpolar stars.
For these objects the azimuth will be near 180°. In such cases the solution of
(185) will be affected by a large error of calculation owing to the fact that A
is derived from its cosine. On this account it is desirable to transform the
equation so that the azimuth may be determined from its tangent or cotangent.
This transformation has already been made and the results are collected under
(37) along with the formulz for the determination of ¢ and the parallactic angle,
g, from the three sides of the triangle PZO shown in Fig. 6. Seclecting those
relating to the azimuth we find.

a=35 b=090°— 0, ¢=090°—c¢,
s=Y(a+b6+¢)
Check: (s—a)+(s—0b) +(s—c)=35, (186)
sty B (s —c)sin(s—a)
SoF Mgy sin ssin (s — &)

14 A is 1o be taken in the 1st or 2nd quadrant according as the object is west or east of
the meridian. s

74. Procedure.—It is to be remembered that the object observed should
satisfy the conditions ¢ =go° or 270° and #=6" or 18t as closely as possible.
Since the error of the measured zenith distance usually will be larger than that
affecting the latitude, the first of the above conditions is the more important

of the two. See equation (176).
8
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The zenith distance determined simultaneously with the measurement of the
azimuth difference, the declination for the instant of observation, and the latitude
of the place of observation constitute the data necessary for the calculation of the
azimtth.

For objects whose azimuths are not so near 0° or 180° as to render the errof
of calculation for (185) large, we may calculate 4 by this equation. But for
circumpolar stars, which are best adapted for use with the method in question, it
will be desirable to derive A by means of (186). In any case, however, (185)
and (186) will serve as a mutual control for testing the accuracy of the calculated
azimuth.

%5, Azimuth of a mark.—Having measured S— 47, the azimuth differ-
ence of the object and the mark, and having determined the azimuth of the
object by some one of the above methods we calculate A7, the azimuth of the

mark, by
M=A—(S—M). (186a)

Example 44. Find the azimuth of the mark from the data given in Ex. 33, p. 81.

Since both the time and the altitude of Polaris corresponding to the instant of measure-
ment of the azimuth difference of the star and the mark are known, the reduction may be
made by the third as well as by the second method. The first column contains the calcula-
tion by (184); the second, that by (186). The value of ¢ required for the first part is taken
from Ex. 39, p. 106.

t 21k 34™ 16 2’ 39° 54.9
4 323° 34.0 ¥ 1.1
logn 1.8506 a=1z 50 6.2
Gsecg 0.1I51 b=rx 1 10.9
sin ¢ 9.7737n €=90—¢p 5T 3.1
log Ax 1.7394 s 51 Io.I
Ax +54%9 s—ea I 3.9
A 180° 549 s—5 49 59.2
S—M 174 44.1 s—c¢ o 7.0
M 6 10.8 sin (s—c¢) 7.30882
sin (s —a) 8.26920
cosec (s—&) 0.11583
cosec s 0.10847
cot ¥4 4 7.90116

A 180° 54.8 Ck.

76. Influence of an error in the time.—An uncertainty in the clock
correction, or any error in noting the time of the measurement of S— M, will
introduce an error into the final result, for the calculated azimuth of the object
will not correspond to the observed azimuth difference. The magnitude of
this error for any given given error in § depends upon the position of the star.
Its value may be calculated from the differential relation between 4 and 4,

dA = cos d cos g cosec zdf, (187)

which is derived from (173).

Similarly, when the azimuth of the object is calcufated from measures
of its zenith distance there will be an uncertainty in the result due to the error
affecting z, The relation in this case is, by (176),
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dA = cos ¢ sec ¢ cosec ¢ dz. (188)

Equations (187) and (188) may be used to estimate the uncertainty in 4
corresponding to a given uncertainty in ¢ and z, or they may be used to
determine the ‘accuracy with which the time or the zenith distance must be
known in order to secure a given degree of precision in 4.

Usually z and # may be estimated with sufficient precision for the deriva-
tion of d4. The parallactic angle ¢ may be calculated from '

sec ¢ sin ¢ = sin 4 sec = sin Zcosec z. (189)

For circumpolar stars (187) and (188) may be simplified as follows: Since
the azimuth of such an object is always a small angle, the spherical excess of
the triangle PZO, Fig. 6, page 26, is small and we shall have approximately
g = 180° — ¢, whence

COS ¢ = —COosZ (190)

Further, we have with sufficient approximation z=9g0° —¢. Substituting
these results into (187) and (188) and writing cos d =, we find

dA = —msec ¢ costdl, (191)
dA =—sec ¢ cot 2dz. (192)

The first of these can also be derived from (184) by differentiating and
writing G=1.

Example 45, The altitude of 1he sun and the difference of its azimuth and that of a
mark were measured with an engineer’s transit at the Laws Observatory on 1909, April 27.
The results were 7w =4" 1™ 11f0, P.M., JZw=— 1™ 44t5 (referred to C.S.T.), 2’ = 33° 19’6,
S-— M=81°24"7. Find the azlmuth of the mark, calculating the azimuth of the sun both by
method 1 and method 3.

The computation of the solar azimuth by (177) and (178) is in the first column; that for
(186), In the second. In the latter instance the tlme is required only with such precision as
as may be necessary for the interpolatlon of declination from the Epkemeris for the instant
of observation. s

C.S.T. 3 5™ 26¢5 r’ 33° 196
Col. M.S.T. 3 50 8.2 r—p 1.3
E 2N24.7 =Lt 56 41.7
t=Col. AS.T. 3 52 32.9 b=nx 7600 8.0
? ISSPNES 2 €=90—¢ 51 3.1
bl 413 s§I.1 s 91 56.9
tan § 9.39196 sin (s—¢) 9.81604
cos £ 9.72255% sin (s—a) 9.76132
tan V : 9.66941 cosec s 0.00025
N 25° 2.2 cosec (s — b) 0.56498
¢ 38 s56.9 cot 5 4 0.07130
Sp-——;V 1325407 A 80° 38.2 Ck,
cos V 9.95715 S—M 83y 224 .7
tan ¢ 0.20651 M 359 13.5
casec(¢—zV) 0.61g02
tan A 0.78268

A 8o° 381



CHAPTER VII

THE DETERMINATION OF TIME

W Methods,—The determination of time means, practically, finding
the error of a timepiece. To accomplish this the true time § or 7 is calculated
from observations on a star or the sun and compared with the clock time at
which the observations were made. The required error is given by

40=0—¢", (193)
or

AaT=T—7T, (194)

according as the timepiece is sidereal or mean solar, " and 7" being the clock
values of the time of observation.
The fundamental equation for the determination of time is

0=a+1 (195)

Applied to any celestial object this equation gives the sidereal time, from
which the mean solar or apparent solar time may be derived by the transform-
ation processes of Chapter III. For the sun, however, the hour angle ¢ is
directly the apparent solar time, and, in case of observations on this object, the
mean solar time may be found from (42) written in the form

T=:t+E. (196)

When the timepiece is solar the use of (196) is simpler than that of (195).
Since a and £ may be regarded as known, the problem is reduced to the

determination of the hour angle of the object for the instant of observation.
As indicated on page 34 this may be accomplished by measuring the zenith
distance of the object at a place of known latitude and using equation (38)
or (39).

- The problem can also be solved by determining the clock time 6,’ of the
instant for which the hour angle of the object is zero. For this case the
fundamental equation reduces to

6=1, (197)

and

40=a—08,. (198)

In outlining the methods that may be employed for the determination of
6, it will be assumed that the object is a star and that the timepiece used is
sidereal. The modifications necessary for the removal of these limitations will
be considered in connection with the discussion of the details presented in the

following sections.
116



METHODS 117

To determine 8, we may note the time 6, when a star has a certain zenith
distance, or altitude, east of the meridian, and, again, the time 6, when it has
the same zenith distance west of the meridian. Since the celestial sphere
rotates nniformly, we shall have

0, =3 (0. +0.). (199)

The method is known as that of equal altitudes.

The clock time of meridian transit, §,', may also be determined by noting
the instant of passage of an object across the vertical thread of a transit
instrument mounted so that the line of sight of the telescope lies in the plane
of the meridian. ~This is the meridian method of time determination.

Finally, 6," may be found by observing the transit of an object across the
vertical thread of an instrument nearly in the plane of the meridian. The
application of a small correction to the observed time depending upon the
displacement of the instrument from the meridian gives the clock time for
which #=o0. In practice the deviation of the instrument is such that the line
of sight lies in the plane of the vertical circle passing through Polaris at a
definite instant. The process is accordingly known as the Polaris vertical
circle method of time determination. It is of special interest on account of
the fact that it is readily adapted to a simultaneous determination of time and
azimuth.

There are other methods of determining the true time, but those ountlined -
afford a sufficient variety to meet the conditions arising in practice. We there-
fore proceed to a detailed consideration of
The zenith distance method.

The method of equal zenith distances or altitudes.
The meridian method.
The Polaris vertical circle method.

BN

I. THE ZENITH DISTANCE METHOD

78. Theory,—The formul® necessary for the calculation of # from 4, ¢,
and 2, were developed in connection with the discussion of codrdinate trans-
formations and are given in (38) and (39).

The resultant error of observation will depend upon the errors affecting

4, 8, ¢, and z. Those in « and ¢ we may disregard as relatively insignificant.
From (136) we find

dfl = cosec A sec ¢ dz— cot A sec ¢ dg. (200)

Assuming that @z and dg represent the errors in z and ¢, and 40 the resultant
error of observation in #, it appears that for a given latitude the time will be
least affected by uncertainties in z and ¢ when the azimuth of the object is
near go° or 270°. Care should be taken, therefore, to select for observation
only those objects which are near the prime vertical.
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79. Procedure.—Having found the true zenith distance corresponding
to the clock time, calculate # by (38) or (39). The latter equation should not
be used when the object is so near the meridian that the interpolation of # from
its cosine is rendered uncertain.

Observations on a star: 1f the timepiece is sidereal, calculate 8 by (1953),
and 460 by (193); if solar, convert the sidereal time derived from (195) into the
corresponding mean solar time 7, and determine 47 from (194), taking care
that 7 is reduced to the meridian to which the clock time refers.

Observations on the sun: 1f the timepiece is sidereal, we may proceed as
in the case of a star using (195) and (193), or we may convert the value of 7
derived from (1g6) into the corresponding sidereal time and then use (193).
If the timepiece is solar, calculate 7 from (196), reduce its value to the
meridian to which the clock time refers, and calculate 47 from (194).

Owing to the change in the right ascension and declination of the sun, a
knowledge of the approximate time is necessary for the reduction of solar
observations. Should the error of the timepiece be unknown, the interpolation
of « and ¢, or £, may be made with the Greenwich mean time corresponding to
the clock time of observation. The resulting data will give an approximation
for the error of the clock which, in general, will be sufficient for a precise
interpolation of the codrdinates of the sun. A repetition of the calculation
then gives the final value of the clock correction.

Example 46, Find the error of the watch from the measured altitude of Alcyone given
in Ex. 31, p. 79.

We have
2 21° 19" 30" ¢ 18h 35m 1637
7 2 30 a 3 42 3.2
h 21 17 © 6 2z 17 199
d 423 49 23 C.S.T. g 40 51.4
) 38 56 52 Watch g 39 6.4

ATw +1 450 Ans.

The solution of (38) gives /=18"35m16:8. From (39), as a control, we find 18 35™ 166,
The value used for ¢ is the mean of these. The conversion of ¢ into the corresponding
C.S.T. is accomplished by (62) and (41).

2. THE METHOD OF EQUAL ALTITUDES

80. Theory.—If 6, and 6, be the sidereal clock times when a star has the
same altitude, or zenith distance, east and west of the meridian, respectively,
the clock time of meridian transit will be given by (199), whence by (198)

48 =a— 3 (6, + 0,). (201)
If a solar timepiece is used we shall have
AT =T— 3 (T, +T), (202)

where 7'is the mean solar time corresponding to 6 = a.
If the object observed is the sun, the above equations are not applicable
on account of the change in the declination during the interval separating the
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measures. This influence may be included, however, by reducing the observed
times to what they would have been had the declination been constant and
equal to its value at the instant of meridian transit. Since the change in ¢ is
small, the required corrections may be found from the differential relation
connecting changes in ¢ with corresponding changes in £ From (31)

dt = (tan ¢ cosec £ — tan d cot /) 44, (203)

in which ¢ is one-half the interval between the two observations expressed in
solar units, & the declination for apparent noon, and 48 the change in d during
the interval £ Both the observed times will be too late by the quantity 47
Hence, for solar observations made with a sidereal timepiece,

40 = a— 14(0, + 0,) + at. (204)

If the timepiece is solar, we have from (196) and (202), since z=0 for the
instant of meridian transit,

AT=E—% (T, 4+ T,) + dt. (203%)

It is sometimes convenicnt to combine afternoon observations with others
made on the following morning. In this case the mean of the observed times
corrected for the change in declination is the clock time of lower culmination.
The quantity 7 in (203) is one-half the interval between the observations -
expressed in solar units as before; but ¢ must be interpolated from the
Ephemeris for the instant of the sun’s lower transit, and the resulting value of
dt must be added to the clock times of observation. The expressions for the
clock correction are

40 = 12" +a— ¥ (6, + 0,)—das, (206)
AT = 12"+ E—% (T, + T)—ds, (207)

in which the values of « and £ refer to the instant of lower culmination.

81. Procedure,—The object observed should be near the prime vertical.
When three or four hours east of the meridian note the time of transit across
the horizontal thread of the transit for a definite reading of the vertical circle,
most conveniently an exact degree or half degree. Change the reading by
10’ or 20" and note the time of transit as before. Repeat a number of times,
always changing the reading by the same amount. After meridian passage
observe the times of transit over the horizontal thread for the same readings of
the vertical circle as before, but in the reverse order. If the sextant is used,
note the times of contact of the direct and reflected images for the same
series of equidistant readings of the vernier before and after meridian passage.
Denote the means of the two series of times by 6, and 8,, or 7, and 7, according
as the timepiece is sidereal or mean solar. For a star the error of the clock will
be given by (201) or (202). For the sun, calculate @7 by (203), and the clock error
by (204) or (205) in case the observations are made in the morning and after-
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noon of the same day, or by (206) and (207) when they are secured in the
afternoon and on the following morning.

Care must be taken not to disturb the instrumental adjustments between
the two sets of measures. If these remain unchanged no correction need be
applied for index error, eccentricity, refraction, parallax or semidiameter.
This fact taken in connection with the sxmpllcxty of the reductions constitutes
the chief advantage of the method. It is subject, however, to the serious
objection that an interval of several hours must elapse before the observing
program can be completed, with the danger that clouds may interfere with the
second series of measures.

When the engineer's transit is used for the observations, all the measures
should -be made in the same position of the verticle circle, and the angles
should all be set from the same vernier.

As in the case of the zenith distance method of time determination, an
approximate knowledge of the time is necessary when the object observed is
the sun. If the clock correction is quite unknown, this may be derived from
the observations themselves as before. It is only necessary to interpolate the
sun’s right ascension, or the equation of time, as may be required, on the
assumption that the clock error is zero. This approximate result will lead to
an approximation for the error of the timepiece with whick the calculation
may be repeated for the determination of the final value.

3. THE MERIDIAN METHOD

82. Theory.—The meridian method of time determination requires
a transit instrument mounted so that, when perfectly adjusted, the line of
sight lies constantly in the plane of the meridian, whatever the elevation
of the telescope. In order that this may be the case, the horizontal axis
must coincide with the intersection of the planes of the prime vertical and the
horizon, and the line of sight must be perpendicular to the horizontal axis.
The instant of a star’s transit across the vertical thread will then be the same
as that of its meridian passage. Denoting the clock time of this instant by 6.’
the error of the timepiece will be given by

40 =a—0,. (208)

In general, however, the conditions of perfect adjustment will not be
satisfied. The horizontal axis will not lie exactly in the plane of the prime
vertical, nor will it be truly horizontal. When produced it will cut the celestial
sphere in a point 4, Fig. 8, page 65, whose azimuth referred to the east point
and whose altitude we may denote by « and &, respectively. Further, the line
of sight will not be exactly perpendicular to the horizontal axis, but will form
with it an angle go°® 4-¢. The quantities «, 4, and ¢ are known as the azimuth,
level, and collimation constants, respectively. In general, therefore, the star
will not be on the meridian at the instant of its transit across the vertical
thread, but will have a small hour angle # whose value will depend upon the
magnitude of the instrumental constants &, &, and ¢ and the position of the

star. To obtain the clock time of meridian transit we must subtract # from the
clock time of observation, 8, whence
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0, =0 —:¢, (209)
and by (208)
d0=a—0" + 2 (210)

The values of a, 4, and ¢ can always be found. Consequently 46 can be
determined by (210) when # bas been expressed as a function of the instru-
mental constants. For this purpose we make use of equations (82), (89), and
(33). The last two terms of (82) express the influence of the level and colli-
mation constants, & and ¢, upon the reading of the horizontal circle of the engi-
neer’s transit for C. R., or, what amounts to the same thing, the amount by
which the azimuth difference of the point 4 and the object O, when on the
vertical thread, exceeds go°. The last two terms of (89) express the corres-
ponding quantity for C. L. These results may be applied directly to the
meridian transit to determine the azimuth of the star at the instant of its
transit across the vertical thread. For, denoting this azimuth by 4, and
assuming that @, the azimuth of the point A referred to the east point, is
measured positive toward the south, we have at once

As=a—+ & cot z= c cosec z, (211)

in which the upper sign refers to C. R., and the lower to C. L. In the present

case, however, the positions of the instrument are less ambiguously expressed
by circle west (C. W.) and circle east (C. E.), respectively. We may now use

(33) to determine the hour angle of the star when its azimuth is equal to 4.

Replacing 4 in (33) by 4. and writing 4 and ¢ instead of their sines, which

we may do since both are very small angles, we find

Zcos 0 =Assin z (212)
whence by (211)
tcosd=asinz-+bcosz=xc. (213)
Equations (211) and (212) become indeterminate for z=0, on account of the
presence of A, but the conditions of the problem show that there can be no
such discontinuity in the expression which gives 7 as a function of «, &, and ¢.
Equation (213) is therefore valid for z=o0, and becomes inapplicable only for
stars very near the pole. Since the star is near the meridian at the instant of

observation, 2z in (213) may be replaced by the meridian zenith distance ¢ —d.
Writing

A=sin(¢p —d)secd, B=cos(p—d)secd, C=secd, (214)
and substituting for 7 in (210) we find

d0=a— 0"+ aAd + 6B % cC. (213)
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Equations (214) and (215) give the value of 46 when the time of transit ¢’
across the vertical thread has been observed, provided the instrumental con-
stants @, 6, and ¢ are known. The quantities 4, B, and C are called the
transit factors. Their values depend only upon the position of the star and,
for any given latitude, may be tabulated with & as argument. They may also
be tabulated with the double argument é and 2. Tables of the latter sort are
to be found in Rept. Supt. U. S. Coast and Geodetic Survey 1397-8, pp. 308-319.
These are applicable for all points of observation.

There remains still the determination of the constants, @, &, and ¢. The
second of these can be made equal to zero by a careful adjustment and level-
ling of the instrument, or its value may be measured in case a striding level is
available. The azimuth and collimation constants are best determined from
the observations themselves. Assuming that & has been made equal to zero,
or that its value has been determined, there remain in (215) only three
unknowns, 46, 2, and ¢. The observation of any three stars will afford three
equations of condition involving these quantities from which, theoretically,
their values may be determined. Practically, however, the solution is sim-
plified and rendered more precise by proceeding as follows:

Suppose that the transits of a number of stars of various declinations have
been observed, the instrument having been used in both positions. Consider
the results for two of these having the same declination as nearly as possible,
one observed C. W, the other, C. E. Writing

4 =a—b + bB, (216)

we have from (215) "

40 =40, + aA,, +cC,,
40 = 40", + aAx — cC, (ErSe!

Since it is assumed that the two declinations are nearly equal, we may sup-
pose A, = A.. whence we find

__dbr,— 4p, -
R S

which determines the collimation constant. Should there be more than one
pair of stars of equal declination, (217) may be applied to each. The mean of
the resulting values of ¢ will then be accepted as the final value.

Next, consider two stars observed in the same position of the instrument
whose declinations differ as widely as possible. One of these should be a
northern star, a circumpolar preferably, the other, a southern star. Writing

Bl 0 == cC (218)

we find for these objects from (215)
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40 = 40"y + aA,
40 = 40" + a4

whence

407 — do", @19
& AN_"As { 9

Inasmuch as there is danger of a change in the azimuth constant during
the reversal, @ should be determined by (219) for both positions of the
instrument.

The value of 46 is then to be calculated by

40 = 40" + aA. (220)

The mean of all such values is the final value of the clock correction.

The chief advantage of the meridian method of time determination is to
be found in the fact that the results do not depend upon a reading of the
circles. Since the uncertainty of an observed transit is considerably less than
that'of an angle measured with a graduated circle, the precision is relatively
high. It is the standard method of determining time in observatories.
When carried out with a large and stable instrument mounted permanently in
the plane of the meridian, with the inclusion of certain refinements not con-
sidered in the preceding sections, it affords results not surpassed by those of
any other method, either in precision or in the amount of labor involved in the’
reductions.

83. Procedure.—To place the instrument in the meridian we may make
use of a distant object of known azimuth. Set off the value of the azimuth on
the horizontal circle and bring the object on the vertical thread by rotating on
the lower motion. aving clamped the lower motion, rotate on the upper
motion until the reading is zero. The line of sight will then be approximately

-in the plane of the meridian.

In case no object of known azimuth is available, Polaris may be used in-
stead. In this case the star is brought on the vertical thread at an instant for
which its azimuth has previously been calculated by (184). With the ex-
ception that the setting must be made at a definite instant, the procedure is
the same as that for a distant terrestrial object. The determination of the
azimuth of Polaris requires a knowledge of the approximate time, but (191)
shows that if § be known within two or three minutes, the azimuth will not be
in error by more than one or two minutes of arc, which is sufficiently accurate.
In case the clock correction is entirely unknown, an approximation may be
derived as follows: Set on Polaris and clamp in azimuth. Then rotate the
telescope on the horizontal axis and observe the transit across the vertical
thread of a southern star of small zenith distance. Denoting the sidereal clock
time of transit by 6, the approximate error of the timepiece will be given by

4 =a—10". (221)
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Since the azimuth of Polaris differs but little from 180°, the line of sight will
not deviate greatly from the plane of the meridian, especially when directed
toward points near the zenith. If the zenith distance of the time star is not
more than 25° or 30° the error in @ will not, ordinarily, exceed two or three
minutes, and this, as stated above, is sufficient for the calculation of the azimuth
of Polaris with the precision necessary for the orientation of the instrument.

The program will include the observation of four or five stars in each posi-
tion of the instrument, reversal being made at the middle of the series. Each
group should contain one northern star to be used for the determination of the
azimuth constant. The remaining objects should be southern stars culminating
preferably between the zenith and the equator. In order that there may be
sufficient data for the determination of the collimation constant, care should
be taken to observe at least one pair of stars, one C. W, the other, C. E., whose
declinations are equal or nearly so.

For an instrument whose vertical circle reads altitudes, the settings which
will give the telescope the proper elevation to bring the stars into the field at
the time of culmination are to be calculated by.

Setting = g0° == (¢ — 0), (222)

in which the upper sign refers to northern stars.

The star list with the setting for each object should be prepared in ad-
vance. This having been done, the instrument is to be levelled and adjusted
in azimuth. Three or four minutes before the transit of the first star, which
will occur at the clock time «-— 46, set the vertical circle at the proper read-
ing, and as the star comes into the field adjust in altitude until it moves along
the horizontal thread. Note the time of its transit across the vertical thread
to the nearest tenth of a second. After one-half the stars have been observed
in this manner, reverse the instrument about the vertical axis through 180°
and proceed with the observation of the remaining stars.

Observations with the striding level for the determination of & should be "
made at frequent intervals throughout the observing program. Level read-
ings increasing toward the east should be recorded as positive; toward the
west, as negative. 1f a striding level is not available, the plate levels, especially
the transverse level, should be very carefully adjusted before beginning the
observations and the bubbles should be kept centered during the measures. -

The reduction is begun by collecting the right ascension, the declination,
and the transit factors for each star. The codrdinates are to be interpolated
for the instant of observation from the list of apparent places in the Ephemeris.
The transit factors may be computed by (214), or better still, they may be in-
terpolated from the transit factor tables. (See page 122.) If the inclination of
the horizontal axis has been measured, the values of 4 are to be computed by
(113). The value of 46’ is then to be calculated for each star by (216). Then
select two stars of equal or nearly equal declination, one observed C. W., the
other C. E,, and calculate ¢ by (217). Compute as many such values of ¢ as
there are pairs of stars of equal declination, and form the mean of all. With the
mean value of ¢ calculate 46” for each star by (218). Then determine « for



THE MERIDIAN METHOD 125

each position of the instrument by (219), using for this purpose the stars of
extreme northern and southern declination. Finally calculate 46 for each
object by (220). The mean of all such values of 46 is the final value of the
clock correction corresponding to the mean of the observed clock times of
transit.

In case the rate of the timepiece is large, each observed ' should be cor-
rected for rate before forming the values of J8’, the corrections being applied in
such a way that each §’ becomes what it would have been had all the observa-
tions been made at the same instant. The epoch to which the values of §’ are
reduced is usually the exact hour or half-hour nearest the middle of the series.

Example 47. On 1909, May 19, Wed. P. M., the error of the Fauth sidereal clock of the
Laws Observatory was determined by the meridian method, the instrument used being a Buff
& Buff engineer’s transit.

The error of the clock was known to be approximately 4+ 7mo*. The azimuth of Polaris
calculated by (184) for the clock time 11Bst™o* was 176° 26'5. Vernier A of the horizontal
circle was set at thls value, and at the clock time indicated Polaris was brought to the inter-
section of the threads by means of the lower motion. After clamping, the upper motion was
released and vernier A was made to read 0°. The instrument having thus been placed in the
meridian, the transits of four stars were observed. The reversal was then made by changing
the reading of vernier A from o° to 180°, after which four more stars were observed. The
plate levels were carefully adjusted at the beginning, and the bubbles were kept centered
throughout the observations.

The first of the tables gives the observing program and the data of observation. The
various columns contain, respectively, the number, name, magnitude or brightness, and the
apparent right ascension and declination of the stars; the setting of the vertical circle, the
the observed clock time of transit, and the position of the circle. The settings were obtained
by adding the colatitude 51° 3’ to the values of the declination. For northern stars this sum
must be subtracted from 180°,

The second table contains the reduction and the value of the clock correction derived
from each star. The values of J#’ are obtained by subtracting each #’ from the correspond-
ing « in accordance with (216). The third and fourth columns contain the values of the
transit factors Interpolated from the tables of the Laws Observatory. None of the pairs
of stars observed are suitable for the determination of the collimation by (217). To avoid this
difficulty, approximate values of the azimuth constant are derived by (219) from stars 1 and 4,
and 6 and 8, 8" being replaced by @’ for this purpose. The results are aw= - 212 and
ae = + 424. These values are uncertain owing to the fact that the influence of the collimation
has been neglected in derlving them, but they are sufficiently accurate for a determination of
¢ by (216a), provided we use for this calculation stars whose declinations differ as little as pos-
sible. Substituting the numerical values of @, 4, and C into (216a) for stars 3 and 5, and 2
and 8 we find

408 = + 7™424 4 1.04¢ A48 =+ 7M424 + 1.05¢
48 =47 4.6—t.00c 46 =+17 5.0—1.00¢

These two sets of equations give for ¢, 4 o!10 and 4 0?27, respectively. T'he mean, 4-ot19, is
accepted as the value of the collimation constant. Multiplying this by the value of C for
each star gives the corrections for collimation contained in the fifth colummn. The combina-
tion of these with the value of 9’ gives the quantities in the column headed 48"”. It should
be noted that the algebraic sign of the collimation correction changes with the reversal of the
instrument. The azlmuth constant is now redetermined for each position of the circle, using
for this purpose the value of 44" for stars 1 and 4, and 6 and 8. The results are aw = - 2138
and ae= - 4%16. From these we find the values of the azimuth corrections @A, which,
added to thevalues of 48" in accordance with (220), give 8, the clock correction tor each star.
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The last column contains the weight assigned to each result in forming the mean value of
the clock correction. The mean 4¢ for the sonthern stars is the same for each position of
the instrument, which shows that the influence of the collimation has been satisfactorily
eliminated. It shonld be noted, as a control upon the calculation of the azimuth constant,
that the values of 4¢ for each pair of azimuth stars must agree within one unit of the last-
place of decimals. In the present case the agreement is exact for both pairs.

No. Star Mag. a b Setting 0’ Circle
1 ¢ Corvi 3.2 12b §m2783 —22° 7' 28° 56’ S 11h58m2 588 w
2 y Corvi 257 11 8.2 —17 2 34 1S 12 4 5.7 w
3 &2 Corvi 3% 25 10.1 — 16 I 35 2 S 1§ 7.6 w
4 x Draconis 3.8 29 39.0 + 70 17 58 40 N 22 13230 w
5 TVirginis 2.9 37 3.9 — o0 57 50 6 S 30 2.1 E
6 322 Camelop. [ 5.2 48 36.1 4 83 54 45 3 N 41 2 E
7 ¢ Virginis 3.1 12 57 39.8 + 11 27 62 30 S 50 37.1 E
8 ¢ Virginls 4.6 13 5152 | — 5 3 46 o S 58 13.3 E
No. 46" A c cC 40" ad 40 Wwt.
I + 7m1ts | +0.94 | 4 1.08 4otz | o+ 7mir7 | 4+ 202 [47939 1
2 2.5 | 4 0.87 1.03 + o.2 257 + 2 4.8 I
3 2.5 | + 0.8s5 1.04 + 0.2 2.7 + 2.0 4.7 1
4 70 | —1.54 2.96 + 0.6 7.6 — 3.7 3.9 [
5 1.8 | 4 0.64 1.00 —o0.2 1.6 + 2.7 4.3 1
6 34.1 | —6.65 9.41 — 1.8 32.3 — 27.7 4.6 o
7 2.7 + 0.47 1.02 — 0.2 2.5 4 20 4.5 1
8 1.9 | +o0.70 ] 4 1.00 — 0.2 1.7 | 4+ 29 4.6 1

At ¢' =125 10,=+ 77447

4. THE POLARIS VERTICAL CIRCLE METHOD

SIMULTANEOUS DETERMINATION OF TIME AND AZIMUTH

84, Theory.—In the method now to be discussed the transits of stars
are observed across the vertical circle passing through Polaris, the instrument
being adjusted with reference to the plane of this circle by bringing Polaris on
the vertical thread immediately before each transit. Since the azimuth of
Polaris is always a small angle, that of each time star at the instant of its
observation will also be small. The conditions do not therefore differ essen-
tially from those in the meridian method, and the clock correction may be
calculated by (215) as before. The only question to be considered is whether
the approximations introduced in deriving this equation are justifiable in view
of the fact that the value of « in the vertical circle method may amount to 1°
or 2°, while with the meridian method it need not exceed 1’ or 2’. It can be
shown that, when it is a question of hundredths of a second of time in the
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final result, (215) is insufficient; but for those cases in which an uncertainty of
one or two tenths of a second is permissible, the approximation is ample.

In the meridian method both « and ¢ are determined from the observations
themselves. Here we determine ¢ as before,but « is to be calculated from the
known position of Polaris. The azimuth constant will nearly equal the
azimuth of Polaris measured from the north point positive toward the east at
the instant of setting, but not exactly, owing to the presence of the instru-
mental constants & and ¢. If ¢, represent the azimuth of Polaris defined as
above, we have by (82) and (89g) X

a=a,+ bcotz,== ccosec z,,

s, being the zenith distance of Polaris. Since & and ¢ are very small, 2, may be
replaced by go — ¢, whence

a=ua,+ btan g = csece. (223)
Sunbstituting (223) into (215) and writing
B'=Atan ¢ + B, C'=Adsecy¢+C, (224)
we have
d=a—0"+a,A+b6B = cC, (225)

where, as before, the upper sign refers to C. W. [Equation (225) is the same
in form as (215); but its solution is slightly different, for (184) gives

“a,=—n Gsecgsint, (226)

which may be used for the calculation of «,. This leaves in (225) only two
unknowns, 46 and ¢, and the observation of any two time stars therefore
affords the data necessary for a complete solution of the problem. For the
sake of precision one of these should be observed C. W., the other, C. E. To
determine ¢ write

4 =a—0" + a4+ 6B (227)
We then find from (225)
40 = 40"y + cCw
d0=40"c —cCy
whence

46°'s— 40°
eTar A =

There is here no necessity for an equality in declination of the two stars as
in the case of the meridian method, for the influence of the azimuth is in this
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case included in 46’. Having found ¢ from (228) we calculate 46 from (225)
written in the form :

46 = 40’ %+ cC. © (229)

The factor 4 in (227) is the same as that in (215), but it must be more
accurately known than in the meridian method, on account of the magnitude
of a,, The quantities B’ and (' are easily reduced by (214) to

B'=secg, C'=FE +tang, (230)
in which
E =secd—tand. (231)

The values of £ may be taken from Table X with ¢ as argument, whence ¢’ may
be found by the simple addition of tang. For any given latitude (" itself
may be tabulated with ¢ as argument. The third column of Table X contains
such a series of values for the latitude of the Laws Observatory, viz., 38° 57"

The vertical circle method is easily adapted to a simultaneous determi-
nation of time and azimuth. If the horizontal circle be read at the instant of
setting on Polaris, and if in addition, readings be taken on a mark, the azimuth
of the mark will be given at once; for the azimuth of Polaris is calcnlated in
the course of the reduction of the observations for time, and the horizontal
circle readings give the azimuth difference of the star and the mark. Since a,
is measnred from the north point positive toward the east, the azimuth of the
mark measured in the conventional manner will be

An=M—S +a,— 180° (232)

in which S and 47 are the means of the horizontal circle readings on the star
and the mark, respectively; and «,, the mean of the calculated azimuths of
Polaris.

The vertical circle method of time determination, like that of the meridian
method, is not dependent upon the reading of graduated circles, and in conse-
quence, yields results of a relatively high degree of precision. It possesses
the further advantage that no preliminary adjustment in the plane of the
meridian is necessary. 1t is especially valuable for use with unstable instru-
ments, for the constancy of the quantities @, 4, and ¢ is assumed for only a
very short interval, much less than in the meridian method. It is necessary
that the azimuth and level constants remain unchanged only during the
interval separating the setting on Polaris and the transit of the time star
immediately following, and this need not exceed two or three minutes. More-
over, each set of two time stars is complete in itself and gives a complete
determination of the error of the timepiece.

The instrument used should be carefully constructed, however, for any

irregularity in the form of the pivots is likely to produce serious errors in the
results.
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85. Procedure.—The instrument is carefully levelled, and three or four
minutes before the transit of a southern star across the vertical circle through
Polaris, the telescope is turned to the north, and Polaris itself is brought to
the intersection of the vertical and horizontal threads. The instrument is
clamped in azimuth and the sidereal time of setting, 0, is noted. The tele-
scope is then rotated about the horizontal axis until its position is such that
the southern or time star will pass through the field of view. The transit
of the time star is observed, and the entire process is then repeated for a
second time star, with the instrument in the reversed position. The data thus
obtained constitute a set and permit a determination of the error of the time-
piece. Y

If a simultaneous determination of time and azimuth is required, the
program for a set will be

Set on the mark and read the H. C,

Set on Polaris, note the time, and read the H. C. » C. W.
Observe the transit of the time star,

Set on Polaris, note the time, and read the H. C.

Observe the transit of the time star. C. E.
Set on the mark and read the H. C.

in which C. W, and C. E. are to be interpreted as meaning that if the instru-
ment be turned from the mark to the north by rotating about the vertical
axis, the vertical circle will then be west or east, respectively. The plate levels
should be carefully watched, and if there is any evidence of creeping, the in-
strument should be relevelled.

The observing list with the settings for the time stars should be prepared
in advance. Itis also desirable, in order to save time in observing and to avoid
errors in the identification of the stars, to calculate in advance the approxim-
ate times of transit. Disregarding the errors in level and collimation we have
from (223)

'=a+ad— 40 (233)

in which 46 represents an approximate value of the clock correction. To de-
rive a value for the term ¢, 4 we combine equation (226) with the value of 4
from (214), and write

=110 =7, E=i; t,=0,—a,=6@,— 1h 30m
We thus find
a, A= P(tan ¢ — tan ¢), (234)
in which
P=gqu7sin (f, — 11 30m), (235)

Since @,4 necd be known only very roughly, we may use a constant value
for 6, choosing for this purpose the sidereal time corresponding approxi-
mately to the middle of the observing program.

9
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P having been calculated from (235) we find the value of a,A4 for each time
star from (234) by introducing the corresponding value of 4. One or two
places of decimals are ample for the calculation. '

The observations having been secured, the first step in the reduction is
the determination of an approximation for the clock correction of sufficient
accuracy for the calculation of the azimuth of Polaris. Neglecting errors in
level and collimation we have from (225)

40, =a—0'+ a4, (236)

which applied to the time star transiting nearest the zenith will give the
required approximation. For the term 2,4 we may introduce the value calcu-
lated by (234) in preparing the observing list. Collecting results we have the
following notation and formula:

a,, m, and «, & are the codrdinates of Polaris and the time star,
respectively;
6, and @', the'sidereal clock times, respectively, of their observation;
S and M, the readings of the horizontal circle for settings on Polaris
and the mark, respectively;
Auw, the azimuth of the mark measured from the south, positive
] ' toward the west;

48, the error of the timepiece, and 46, an approximation for this 5
quantity.
=0, + d0,— «,, a,= —nGsecgsin i,
A =sin (¢ —d)secd, C'=tang+ £,
d0'=a—0"+4-.a 4 +bsec o (237)
' o e— 4oy
=Tt 0y

A= 40"y + cC'y = d0'e — cCe.

Log G or log Gsec ¢ is to be taken from Table IX, which is reprinted here
for convenience, with the argument #; £ or (", from Table X with the argu-
ment 0. The subscripts @ and ¢ refer to observations made circle west and
circle east, respectively. Finally, calcnlate

Am = % [M—(S— dn)l + A[‘ZU S8 (S— ﬂo)’w] i 1800‘ (238)

where the subscripts attached to A/ refer to settings made with the instrument
in such a position that if turned toward the north by rotation about the verti-
cal axis, the circle would then be west or east, respectively, according to the
subscript. '

For the determination of the error of the clock, &, should be expressed in
seconds of time; for the determination of the azimuth, in minutes of arc. The
values of 4 are needed to four places of decimals, and when once obtained,
should be preserved, since, for a given latitude, they may be used unchanged
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for several months. If the collimation is known to be small and the declina-
tions of the two time stars do not differ too greatly, it will be sufficient to
take the mean of the values of 48’ for C. W. and C. E. as the error of the

timepiece.
TasLe IX, 1910.0

2o log G log Gsec o 3
ob 0.0075 0.1167 24P
1 0.0073 0.1165 23
2 0.0063% 0.1156 22
3 0.0053 0.1145 21
4 0.0037 0.1129 20
5 0.0019 o.1111 19
6 © 0000 0.1092 18
7 9.9981 0.1072 17
8 9.9963 0.1055 16
9 9.9948 0.1039 15
10 9.9936 o.1028 14
Ix 9.9928 0.1020 13
12 9.9926 0.1018 12

Example 48. On 1909, May

TaBLE X

) E €°
+ 30°| o0.58 | 1.39
+ 25 0.64 1.45
-+ 20 0.70 1.51
+ 15 .77 1.58
+ 10 | 0.84 1.65
+ 5 0.92 I.72

(] 1.00 1.81
— 5 1.09 1.90
— 10 1.19 2.00
— 15 1530818 21T
— 20 1.43 2.24
— 25 157, 2.38
= 1.73 2.54

19, immediately after securing the meridian observations

given in Ex. 47, a simuitaneous determination of time and azimuth was made by the Polaris
vertical circle method, the instrument used being the same as that employed for the meridian

observations. The stars observed were

Object

Polaris
a Virginis
¢ Virginis

Mag. R. A.

2.2 1B 25m 348
1.1 13 20 24.9
3.6 13 30 44

Dec. Setting
+880 491 311
— 10 41 40 22
=50 8 50 355

During the observations the vertical circle of Polaris was so nearly in coincidence with
the meridian that no special calculation of the instant of transit of the time stars across this
circle was necessary. The record of the observations is as follows:

Object
Mark
Polaris

a Virginis
Polaris
¢ Virginis

Mark

Fauth Clk.

13 810
13
16
25

20
10.§
2

57.2

Horizontal Circle

Ver. A Ver. B Circle
7° 46’0 187 460
179 56.5 359 56.5
359 8.5 179 58.5
187 45.5 7 45.5

mEBELE

We have 7 = 7093, log = = 1.8510. For the calculation of the azimuth of Polaris we use
the approximate clock cerrection 46, = + 7™ o', whence o, — 40,=1218m34'. The combination
of this with ¢ in accordance with (237) gives 7.
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The azimuth ¢ whose logarithm is given in the fourth line is expressed in minutes o
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f arc.

Since the correction @ 4 must be expressed in seconds of time the logarithm of 4, viz., 0.6020,
is also included when log @ and the two logarithms immediately following it are afided to
form log @ 4. The final value of the clock correction is in satisfactory agreement with that
tfound in Ex. 47.

a Virginls, C,W. ¢ Virginis, C. E.

G b gim 46° 11h 57m 28*
sinz, 8.5553 8.0435
Gsecg o.1018 o.1018
log a, 0.5081n 9.9963n
sin(¢—6) 9.8819 9.7996
sec 0.0076 0.0000
loga,A4 0.9996n 0.3979n
a4 —10% — 21§
a—0’ +7 144 47 72
40’ +7 44 +7 4.7
Cc’ 2.0 1.8
cC’ + 0.2 — 0.1
40 + 7m426
a, — 3.2 — r'o
S—a, 179 59.7 359 59-5
M 7 46.0 187 45.5
Am + 7° 46L15

ERRATA

Many nebulae show continuous spectra, indicating that they may not
be wholly gaseous in constitution.

28, 14 of arguments, for coszco @ read cos z €08 ¢.

for or read and.

for o to 24 read o to 23.

for o to 24 read o to 23.

for oto 12 read 1 to 12.

for o to 12 read 1 to 12.

the equation number refers to both equations.
for \ime read time.

for apparant read apparent,

4 and §, Sec. 26, interchange Is and /nm.

Jor o.05d read 0.05d.

Jor —E, read + E,.

for 180° + ¢ read 180°, approximately.

in form for record of level observations: in last column, for »’ and »",
read /’ and /”; for, Sd, read SD.

prec. eq. (117), for (112) read (116).

in Ex. 31, add: Alcyone was east of the meridian at the time of
observation.

for Thursday read Tuesday.
in Ex. 34, add: The observations were made at the Laws Observatory.

prec. eq. (141), for obervation rcad observation

PaGE LiNE
3 29,
3y 14,
37 I,
37 17,
37 17,
37 18,
39, last,
40, 2, Ex. 11,
41, 2, Ex. 13,
42,

60, last,
64,  eq.(72),
70, 17,
73’

75

8o,

81, 4, Ex. 33,
8s,

96,

98,

98,

first eq., for z’ read z’y.
eq. (143), for » read »,.
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Aberration: defined, 14; diurnal, 15.

Almucanters, 9.

Aftitude: defined, 10; measurement of with
engineer’s transit, 77-80; with sextant,
91-94.

Altitude circles, 9.

Apparent place, 16.

Apparent solar time: defined, 36; converted
into mean solar time, 40.

Arguments: arrangement of, 27.

Artificial horizon, 59.

Asteroids, 1.

Azimuth: relation to axis of celestial
sphere, 7; defined, 10; caiculation of from
latitude, deciination and zenith distance,
31-34; conditions for precise determina-
tion of, 108; from the sun, 109-110; from
circumpolar star, 110; from measured
zenith distance, 113-114; of mark, 114;
influence of error in time on, 114-115;
simuitaneousiy determined with time,
126-132.

Azimuth and zenith distance transformed
into hour angie and declination, 25-28;
into right ascension and declination, 31.

Caiendar: Julian and Gregorian, 38-39.

Cardinal points, 9.

- Celestial equator, 9.

Celestial sphere: defined, 4; relation of its
position to latitude, azimuth and time,
13

Chronometer: see timepieces.

Circummeridian altitudes: latitude from,
9Y-102, i

Clock: see timepieces.

Coincident beats, 53.

Coiiimation: error, 64; constant, 120.

Common year, 39.

Oobrdinates: necessity for, 8; primary and
secondary, 9; systems of, 10; relative po-
sition of reference circles, 23-25; trans-
formations of, 25-31.

Copernican system, 4, 6.

Date: caiendar and civil, 37.

Day: apparent solar, 36; mean solar, 37;
sidereal, 37.

Declination: circles of, 9; defined, 10.

Dip of horizon, 91.

Diurnal motion, 4.

Eccentricity: defined, 63; determination of
for sextant, 90.

Ecliptic, 5, 9.

Engineer’s transit: historical, 61; condi-
tions satisfled by, 62-63; theory of, 64-71;
measurement of vertical angies, 77-80;
of horizontal angles, 80-85.

Ephemeris, 12.

Equal altitudes: time from, 117, 118-120.

Equation of time, 40.

Equator: celestial, 9; mean, 13.

Equinox: vernal and autumnal, 9; mean,
13; precession of, 13.

Error of timepiece, 51.

Fundamental formule of sphericai trigo-
nometry, 21-23.

Gregorian calendar, 39.

Horizon: defined, 8; artificial, 59; dip of,
91.

Horizontal angles: measurement of, 80-81;
by repetitions, 81-85. )

Hour angle: defined, 10; transformed into
right ascension, 29-30; caicuiation of
from latitude, declination and zenith
distance, 31-32.

Hour angle and declination transformed
into azimuth and zenith distance, 29,

Hour circles, 9.

Index error: of engineer's transit, 68; of
sextant, 8§9.

Julian calendar, 39.

Julian year, 39.

Latitude: reiation to axis of celestial
sphere, 7; defined, 24; fundamental for-
muie for, 32-34; conditions for precise
determination of, 95; calculated from
meridian zenith distance, 96; by Tali-
cott’s method, 97-99; from circummeri-
dian altitudes, 99-102; from zenith dis-
tance at any hour angle, 102-103; from
altitude of Polaris, 104-105; influence of
an error in time upon, 106.

Leap year, 39.

Least reading of vernier, 59-60.

Level: error of, 64; theory of, 71-72; pre-
cepts for use of, 72; value of one divi-
sion, 73-76; constant, 120.

Longitude, 7.

Mean equator, 13.
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Mean equinox, 13.

Mean noon: defined, 37; sidereal time of,
47,

Mean place, 16.

Mean solar day, 37.

Mean solar time: defined, 36; converted
into apparent solar time, 40; converted
into sidereal time, 47-48.

Mean sun: defined, 36; right ascension of,
44-46.

Meridian: defined, 8; reduction to, 100.

Meridian method -of time determination,
117, 120-126.

Meridlan zenith distance:
96.

Method of repetitions, 81-85.

Nadir, 8.

Nebulae, 3.

Noon: apparent, 36; mean, 37; sidereal, 38.

Nutation, 13.

Parailactic angle, 31.

Parallax: defined, 14; theory, 18-20.

Planets: names, 1; relative distances and
diameters, 2.

Polar distance, 10.

Polaris: latitude from, 104-105;
from, 110-114.

Polaris vertical circle method of time de-
termination, 117, 126-132.

Poles of celestial sphere, 8.

Precession, 13, 15.

Prime vertical, 9.

Proper motion, 14, 15.

Ptolemaic system, 4, 6.

Rate of timepiece, 51.

Reduction to the meridian, 100.

Refraction: defined, 12; discussion of,
.16-18; table, 20; differential, 98.

Repetitions: method of, 81-85.

Residuals, 57.

Right ascenslon: defined, 10; transformed
into hour angle, 29-30; of mean sun,
44-46. ‘

Right ascension and  declination trans-
formed into azimuth and zenith distance,
31.

Rotation: diurnal, 4.

Semldiameter, 77, 93.

Sextant: historical, 85; theory, 86-87;
adjustments, 88-89; index correction, 89;

latitude from,

azimuth

eccentricity, 90; precepts for use of, 91.
Sidereal day, 37.
Sldereal noon, 38.

Sidereal time: defined, 25, 37;
into mean solar time, 48-49.
Solar system: parts, 1; model of, 2.

Solstices, 9.

Spherical trigonometry: fundamental for-
mule, 21-23.

Standard time, 37.

Stars: motions of, 3, 14, 15.

Stellar system, 1.

Successive approximations, 34, 118, 120.

Sun: annual motion of, 5; parallax of
19-20.

converted

| Talcott’s method, 97-99.

Time: relation to celestial sphere, 7; fun-
damental formula for, 32-34; basis of
measurement, 36; different kinds, 36;
distribution of, 38; difference in two lo-
cal times, 39; apparent solar into mean
solar and vice versa, 40; relation be-
tween units, 42; mean solar into side-
real, 47; sidereal into mean solar, 48;
methods of determining, 116-117; from
zenith distance, 117-118; from equal al-
titudes, 118-120; meridian method, 120-

126; Polaris vertical circle method,
126-132.
Timepieces: historical, 50-51; error and

rate of, 51; comparison of, 52-58; care
of, 58.

Transit: see engineer’s transit.

Transit factors, 122.

Tropical year, 38.

True place, 16.

True solar time: see apparent solar time..

Vernier: theory, 59-60; uncertainty of re-
sults, 60-61.

Vertical angles: measurement of with en-
gineer’s transit, 77-80; with sextant,
91-94.

Vertical circles, 8.

Year: tropical, 38; Julian, 39; leap and
common, 39. )

Zenith, 8.

Zenith distance: defined, 10; latitude from,
96, 102-103; azimuth from, 113; time
from, 117-118.

Zero reading, 89.
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