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PREFACE.

THIS volume, both in respect to matter and arrangement, is
designed especially for the use of the cadets of the U. 8. Military
Academy, as a supplement to the course in General Astronomy at
present taught them from the text-book of Professor C. A. Young.
It is therefore limited to that branch of Practical Astronomy which
relates to Field Work, and more particularly to those subjects which
are not discussed at sufficient length for practical work in Professor
Young’s volume. It is believed, however, that it will find a use-
ful application in the hands of officers of the Army, who may be
called upon to conduct such explorations and surveys for military
purposes as the War Department may from time to time direct.

The more usual methods of determining Time, Latitude, and
Longitude, on Land, are explained, and the requisite reduction
formulas are deduced and explained. In addition, there is given a
ghort explanation of the principles relating to the Construction of
Ephemerides, to the Figure of the Earth, the determination of
Azimuths, and the projection of Solar Eclipses.

The instruments described are those used by the cadets in the
Field and Permanent Observatories of the Military Academy dur-
ing the summer encampment.

The principal sources of information from which the matter in
this volume has been derived are the published Reports of the
United States Lake, Coast, and Northern Boundary Surveys; the
publications of the Hydrographic Office, U. S. Navy, and the
works of Briinnow and Chauvenet.

U. 8. MILITARY ACADEMY,
WEesT PoinT, N. Y., October, 1892,
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PRACTICAL ASTRONOMY.

EPHEMERIS.

Ephemeris.—The numerical values of the coordinates of the
principal celestial bodies, together with the elements of position of
the circles of reference, are recorded for given equidistant instants
of time in an Astronomical Ephemeris.

The “ American Ephemeris and Nautical Almanac” is pub-
lished by the United States Government, generally three years in
advance of the year of its title, and comprises three parts, viz.:

Part |.—Ephemeris for the Meridian of Greenwich, which gives
the heliocentric and geocentric positions of the major planets, the
ephemeris of the sun, and other fundamental astronomical data for
equidistant intervals of mean Greenwich time.

Part II.—Ephemeris for the Meridian of Washington, which
gives the ephemerides of certain fixed stars, sun, moon, and major
planets, for transit over the meridian of Washington, and also the
mean places of the fixed stars, with the data for their reduction.

Part III.—Phenomena, which contains prediction of phenomena
to be observed, with data for their computation.

EPHEMERIS OF THE SUN.

To construct the ephemeris of the sun it is necessary to com-
pute its tables: these are

1. The table of Epochs.

2. The table of Longitudes of Perigee.

3. The table of Equations of the Center, and its corrections.

4. The table of the Equations of the Equinoxes in Longitude.



2 PRACTICAL ASTRONOMTY.

In Mechanics* it was shown that the Earth’s undisturbed orbit
is an ellipse, having one of its foci at the sun’s center, and that the
earth’s angular velocity is

dv’ h
—3—;........(551)
its radius vector,
_a(l—¢)
"= X eoos O e e« s . (610)

its constant double sectoral area,

h= V#’a(l—e!);’. « oo %5)41:‘“

[u,a)( o

- ’f"“
1_2er— 1-““ . . . (616)

In these expressions 6’ is the angle made by the earth’s radius
vector with any assumed right line drawn through the sun’s center,
6 that included between the radius vector and the line of apsides
estimated from perihelion, and # is the mean motion of the earth
in its orbit.

From (551), (615) and (616), we have

and its periodic time,

a’ _dl _ yu'a (1—e’) (14ecos 6)* _ /A afh’f? x/jwvﬁ
at dt @ (1—¢) =z (-7
,u ’ (1 + e cos 0)" (1 + ecos 6)* Q)
Ne q-e) (1— e")i :
and therefore
ndt=1—¢)} (14ecos 6)*d 0. ®)

Since e varies but little from 0.01678 (see Art. 185, Young t), we
may omit all terms containing the third and higher powers of ¢ in
the development of the second member of the preceding equation.

_* Michie’s Mechanics, 4th Edition.
1+ Young’s General Astronomy.

A
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EPHEMERIS. 3

Then after substituting

1+ c; 826 for cos’ 6, we have

ndt=d6 —2ecosfd 4 4e cos?0d (26)+etc. (3)
Integrating we have ' '
nt+4+C=0"—2esin f+ $¢*sin 2 6 4 etc. 4)

The earth’s orbit is, however, not entirely undisturbed. Due to
the perturbating action of other bodies of the solar system the earth
is never exactly in the place which it would occupy in an undis-
turbed orbit. Moreover the line of apsides has a direct motion, i.e.,
in the direction in which longitudes are measured, of about 11.7
per annum, and the vernal equinox an irregular retrograde motion
whose mean value is about 50’.2 per annum.

Therefore (Fig. 1), let the line from which & is estimated be

that drawn through the sun and the position of the mean vernal
equinox V. at some fixed instant, called the epoch. Then when
0 is zero, 6’ will be the longitude of perihelion, estimated from this
point.  Let this be denoted by /,, and the time of perihelion pas-
sage by £,; then from (4) we have,

nty,+ 0 =1, ’ (5)
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Subtracting from (4) we have
n(t—¢t)=0—1,—2¢sinf +4e’cin26, (6)
which since ,
: 0 —-1,=6 ()
reduces to :

n(t—1t,)=(0"—1)—2esin (0" —1,) +fe'sin2 (¢ — 7). (8)
Transposing /, , we have :
n(t—1t)+l,=10,=06 —2esin (0’ —1,)+ §e'sin2 (¢’ —7,), (9)

in which /,, is the longitude of the mean place of the earth at the
time ¢, referred to the same origin.

Let L be the longitude of the earth’s mean place at the epoch,
also referred to the same origin, and 7' any inferval of time before
or after this epoch. Then will

lm=L4+nT, (10)
and we have .

L+nT =06 —2esin (¢ —1,)+4e'sin 2(6" —1,). (11)

To find the values of the four unknown quantities, Z, n, ¢, and
ly , take four observations of R. A. and declination at different times,
and having reduced the declination to its geocentric value by cor-
recting for refraction and parallax, find the correspondmg longi-
tudes (Art. 180, Young). —

Each longitude is necessarily referred to o the true equinox of its
own date. Reduce each to the mean equinox of the epoch by cor-
recting for aberration, nutation, precession, and perturbations, add .&
180°, and the results will be the longitudes of the true place of the '
earth referred to a common point—the mean equinox of the epoch.

They will therefore be the values of 6’ corresponding to the
values of 7'in the following equations, the solution of which will
give L, n, ¢, and [,.

L4-nT =6’—2esin (0, —1)
L+nT,=86—2esin (0, —1,) 2)
L+4+nT,=6"—2esin (6’ —1) (°

L4+nT =86'—2esin (4 —1)
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The value of n derived from these equations is evidently the
earth’s mean motion from a fixed point.

Its mean motion from the moving mean vernal equinox (or
mean motion in longitude) is evidently given by

360°
n' =1 geee — 507

These observations repeated at different times will determine
the changes that take place in #, ¢, and /,; from the last two the
variations in the eccentnclty and the rate of motion of perihelion
can be found.

Having in this manner found the elements of the earth’s place
and motion, the corresponding mean longitude of the sun at any
instant can be obtained by adding to that of the earth 180°.
L +n" T'+ 180° will then give for any instant the mean longi-
tude of the sun’s mean place. The difference between the longi-
tudes of the sun’s true and mean places at any instant is the
Equation of the Center for that instant.

From the preceding elements let it be required to construct the
Ephemeris of the Sun.

1. The Table of Epochs. —Take mean midnight, December 31—
January 1, 1890, as the epoch. To the mean longitude of the sun’s
mean place at that epoch,add the product of the sun’s mean motion
7', by the number of mean solar days after the epoch, subtracting
360° when this sum is greater than 360°. These longitudes with
their corresponding times being tabulated, form the table of epochs,
from which the mean longitude of the mean place of the sun can
be found by inspection for any day, hour, minute or second.

2. The Table of Longitudes of Perigee.—The longitude of peri-
helion increased by 180° is the corresponding longitude of ﬂrigee. S
Hence the former being found, and its rate of change determined, ‘
the addition of 180° to each longitude of perihelion will give the
longitude of perigee, and these values being tabulated form the
table of longitudes of perigee.

3. The Table of Equations of the Center.—The difference be-
tween the true and mean anomalies at any instant, given by the
first of Egs. (650), Mechanics,

0 —nt=2esin nt4 §¢’sin 2nt 4 ete., (13)
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is called the Equation of the Center, and is known when # and e
are known; ¢ being the time since perihelion passage.

Assuming ¢ to be constant and causing »¢ to vary from 0° to
360°, the resulting values of the second member of the equation
will form a table of the equations of the center. The errors in these
values arise from the small variations in the values of ¢ ; these
errors can be found by substituting in the second member of the
above equation the-actual values of e at the time, and the differences
being tabulated will give a table by which the equations of the
center may be corrected from time to time.

4. The Perturbations in Longitude of the earth arising from the
attractions of the planets (especially Venus and Jupiter), are the
same for the sun; these are computed by the methods indicated in
Physical Astronomy, (see Art. 174, Mechanics,) and then tabulated.

5. The Sun’'s Aberration is taken to be constant, amounting to
— 20”’.25 and is included in the table of epochs.

Ephemeris of the Sun.—The above tables having been computed,
we proceed as follows:

1. From the table of epochs take out the mean longitude of the
sun’s mean place corresponding to the exact instant considered.

2. From the table of longitudes of perigee take the mean longi-
tude of perigee; the difference between this and the mean longi-
tude of the'sun’s mean place is the mean anomaly.

3. With the mean anomaly as an argument find the correspond-
ing value of the equation of the center from its table, and add it
with its proper sign to the mean longitude of the sun’s mean place;
the result will be the mean longitude of the sun’s true place; hence
the

Sun’s true longitude = Mean longitude of sun’s mean place
+ Equation of center + Perturbations in longitude + Corrections
to pass from the mean equinox of date to true equinox of date.
These latter corrections are due to Nutation and constitute the
Equation of the Equinoxes in Longitude.

4. Having the true longitude of the sun and the obliquity of the
ecliptic, the corresponding Right Ascension and Declination of the
sun can be computed for the same instant by the method explained
in Art. 180, Astronomy. )

6. Earth’s Radius Vector.—Substituting the values of ¢ and = ¢,
in the second of Eqgs. (650), Mechanics, will give the values of the
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distance of the sun from the earth in terms of the mean distance
a: thus

r=a(1 —e cosnt+%(1 —cos 2 nt)
3e* ‘
-5 (cos 3 nt —cos nt)t etc.). (14)

7. The Sun’s Horizontal Parallax.—From astronomical observa-
tions the value of @ (and hence of r) is found in terms of the earth’s
equatorial radius, po,. (Young, Chapters XIII and XVI.)

The sun’s equatorial horizontal parallax, P, at any time is then

given by

P =

ﬁr’, (15)

® being the number of seconds in a radian = 206264’’.8, and » being
expressed as just stated.
At any place where the earth’s radius in terms of the equatorial

radius is p, we shall have for the horizontal parallax %’ =pP.

8. The Sun’s Apparent Semi-Diameter.—Knowing P, the sun’s
linear semi-diameter s’, is known in terms of p,. Its angular ap-
parent semi-diameter s, for any day, is then given by

FAW.IN

\19)

s = Ps'.

TR-SErfe P = e L P L,

9. Equation of the Equinoxes in Longitude.—Due to physical
causes, the pole of the equator completes a revolution about the
pole of the ecliptic in about 26,000 years. The plane of the equator
conforming to this motion of the pole, its intersection with the
plane of the ecliptic, called the line of the equinoxes, turns with a
retrograde motion of about 50’".2 per annum about the sun as a
fixed point.

This motion is not however, perfectly uniform. The true pole
describes once in 19 years around the moving mean place above re-
ferred to, a small ellipse, whose transverse axis directed toward the
pole of the ecliptic is 18”°.5 in angular measure, and whose conju-
gate axis is 13’.74. The corresponding irregularity in the motion
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of the line of the equinoxes causes a slight oscillation of the true
on either side of the moving mean equinox. Both are on the eclip-
tic; and their distance apart at any time is called the Equation of
the Equinozes in Longitude, its projection on the equator the
Equation of the Equinozes in Right Ascension,and the intersection
of the declination circle which projects the mean equinox with the
equator, the Reduced Place of the Mean Equinoz. The maximum
value of the Equation of the Equinoxes in Longitude is

1374
B

~

-+ 8in 23° 28" = 17"".25.

To illustrate, P, in Fig. 2, is the pole of the equator, VE the
eciiptic, VM the equator, V the true, ¥’ the mean, and V"’ the re-

P

Fre. 2

duced place of the mean vernal equinox. V'V’ is the equation of
the equinoxes in longitude, and V7" in Right Ascension.

The equation of the equinoxes in longitude is a function of the
longitude of the moon’s node, the longitude of the sun, and the
obliquity of the ecliptic. Separate tables are constructed for this
correction, in which the arguments for entering them are the
obliquity and longitude of the moon’s node, and the obliquity and
the longitude of the sun; the sum of the two corrections is the value
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of the equation of the equinoxes in longitude at the corresponding
times.

10. Equation of Time.—If, at the instant when the true sun’s
mean place coincides with the mean equinox, an imaginary point
should leave the reduced place of the mean equinox and travel with
uniform motion on the celestial equator, returning to its starting-
point at the instant the true sun’s mean place next again coincides
with the mean equinox, such a point is called a Mean Sun. Time
measured by the hour angles of this point is called Mean Solar
Time. The angle included between the declination circles passing
through the centre of the true sun and this point at any instant is
called the Egquation of Time for that instant; its value, at any in-
stant, added algebraically to mean or apparent solar time will give
the other. As the apparent time can be found by direct observa-
tion the equation of time is usually employed as a correction to pass
from apparent to mean solar time. Thus in Fig. 2, PM is the me-
ridian, S the true sun, S’ its mean place, S’’ the mean sun, V.8’’’
the true R. A. of the true sun, V”’S’’ the mean R. A. of the mean
sun = V'S’ = sun’s mean longitude, angle MPS’"’ or arc MS'"’
apparent solar time, MS”’ mean solar time, and §”8’’’ the Equation
of Time = V8" — (V"’8"” + VV").

Hence we have for the Equation of Time,

€ = True sun’s true Right Ascension
— (sun’s mean longitude- equation of equinoxes in R. A.). (17)

The mean sun (S’’) moving in the equator and used in connec-
tion with time, must not be confused with the mean sun (S’) before
referred to, moving in the ecliptic.

11. Referring to the American Ephemeris, we see that Page I
of each month contains the Sun’s Apparent R. A., Declination,
Semi-diameter, Sidereal time of semi-diameter passing the me-
ridian, at Greenwich apparent noon, together with the values for
their respective hourly changes; the latter being computed from
the values of their differential co-efficients. From these we can
find the corresponding data for any other meridian. Page II con-
tains similar data for the epoch of Greenwich mean moon, and in
addition the sidereal time or R. A. of the mean sun. Page III con-
tains the sun’s true longitude and latitude, the logarithm of the
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earth’s radius vector and the mean time of sidereal noon. The
obliquity, precession, and sun’s mean horizontal parallax for the
year, are found on page 278 of the Ephemeris. All these consti-
tute an Ephemeris of the Sun.

From the hourly changes the elements for any meridian can be
readily computed.

THE EPHEMERIS OF THE MOON.

The Ephemeris of the Moon consists of tables giving the Moon’s
Right Ascension and Declination for every hour of Greenwich
mean time, with the changes for each minute; the Apparent
Semi-diameter, Horizontal Parallax, Time of upper transit on the
Greenwich Meridian, and Moon’s Age. In order to compute these,
it is first necessary to find the True Longitude of the Moon, its
True Latitude, the Longitude of the Moon’s Node, the Inclination
of the Moon’s Orbit to the Ecliptic, and the Longitude of Perigee.

1. The Elements of the Lunar Orbit.—Let D be the intersection
of the celestial sphere by the plane of the lunar orbit; VB the

ecliptic, and V4 the equinoctial; ¥ the mean vernal equinox, N
the ascending node, P the Perigee, all relating to some assumed
epoch. Also let M,, M,, M,, M,, be the geocentric places of the
moon’s center at the four times, ,,¢,,¢,,7,. These places are
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obtained as in case of the sun by observed Right Ascensions and
Declinations, corrected for refraction, semi-diameter, parallax, and
perturbations, then converted into the corresponding latitudes and
longitudes, and finally referred to the mean equinox of the epoch,
by correcting for aberration, nutation, and precession.

Referring to the figure, assume the following notation:

v = V N, the longitude of the node;
1 = C N B, the inclination of the orbit;
!, = V 0,, the longitude of M,;
l,= V0,, the longitude of M,;
A, = M, O,, the latitude of M ;
A,= M, O,, the latitude of M,; '
v, = VEN+ NEM,, the orbit longitude of M; '
p = VEN+ N E P, the orbit longitude of perigee;
¢ = PE M = v, — p, the true anomaly of M ;
e = eccentricity of orbit;
m = mean motion of moon in its orbit;
¢, = time since epoch for M ;
L = mean orbit longitude at epoch.
To find » and ¢, we have from the right-angled spherical tri-
angles M, N O, and M, N O,,

sin (/, — ¥) = coti tand
gin (I, — ¥) = cot 4 tan A, ;’ (18)
and by division,
gin ([, —v) _tanA,
sm(, =) tand, (19)

Adding unity to both members, reducing, then subtracting each
member from unity, again reducing, and finally dividing one result
by the other, we obtain

gin (/, — ») +sin (!, — ») _tanA, 4 tani,
sin(/, —v) —sin(/, — v)  tanA, —tand’

(20)

or by reduction formulas, page 4 (Book of Formulas),

tn [BFh v ] i -0 PRI @
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from which ¥ can be found; ¢ is found from either of equations.
(18), when # is known.

To find L, m, e, and p, we proceed as in the determination of
the table of epochs in the case of the sun, using a similar equation,
thus:

L4+ mT =v —2esin (v, — p),
L4+mT,=v,— 2esin (v, — p),

L+mT,=’v,—208in(’U,_p), (22)
L4 mT, =v,—2esin (’U.—P)’
in which
_ -, tan (ll - V).
v, =¥ + tan “eosi (23)

and similar values for v,, v,, and v, .
To find the ecliptic longitude of perigee V O, represented by p, ,
we have from the right-angled triangle & P O,

tan N O = tan (p — 7). cos 7, (24)
from which
P, = v +tan” (tan (p — ¥) . cos 7). (25)

Similarly the mean ecliptic longitude of the moon, L, ,at the epoch is
L, =v 4 tan™ (tan (L — ¥).cosq). (26)
To find the sidereal period, s, we have

360°
§=— @7)

in which s is the length of the sidereal period in mean solar days.
2. The Ephemeris of the Moon.—The motion of the moon is much
more irregular and complicated than the apparent motion of the
sun, owing mainly to the disturbing action of this latter body. But
this and other perturbations have been computed and tabulated,
and from these tables, including those of the node and inclination,
the places of the moon in her orbit are found in the same way as
those of the sun in the ecliptic. The mean orbit longitude of the
moon and of her perigee are first found and corrected ; their differ-
ence gives her mean anomaly, opposite to which in the appropriate
table is found the equation of the center, and this being applied
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with its proper sign to the mean orbit longitude gives the true orbit
longitude, after reduction to true equinox of date.

The Right Ascension and Declination of the Moon can now be
computed for any instanteof time, thus: subtract the longitude of
the node from the orbit longitude of the moon, and we have the
moon’s angular distance from her node, represented in the figure by
N M,. This, with the inclination 7, will give us the moon’s latitude
and the angular distance ¥ O,; the latter added to the longitude
of the node will give the moon’s longitude ¥ 0,. The latitude,
longitude, and obliquity of the ecliptic suffice to compute the right
ascension and declination. The radius vector, equatorial horizontal
parallax, apparent diameter, etc., are computed as in the case of
the sun.

THE EPHEMERIS OF A PLANET.

From the tables of a planet its true orbit longitude as seen from
the sun is found, as in the case of the moon as seen from the earth.
The heliocentric longitude and latitude, and the radius vector are
found from the heliocentric orbit longitude, heliocentric longitude
of the node, and inclination, in the same way as the geocentric
elements of the moon are found from similar data in the lunar orbit.

To pass from heliocentric to geocentric codrdinates, let P, Fjg. 4,
be the planet’s center, £ that of the earth, S that of the sun, and

Fia. 4.

O the projection of P on the plane of the ecliptic. SVand EV
are drawn to the vernal equinox; then let

-
‘) N «,\_( i

v
A -
o U ~
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E 8, be the earth’s radius vector;

8 P, be the planet’s radius vector;

V' 8 O, be the heliocentric longitude of planet;
V E 0, be the geocentric longitude of planet;
P 8 0, be the heliocentric latitude of planet;
P E 0, be the geocentric latitude of planet;

S = O8S E, be the commutation;

0 = 8 O E, be the heliocentric parallax;

E = S E 0, be the elongation;

L = V E 8§, be the longitude of the sun;

r'"’= E P, be the distance of planet from the earth.

%QP“P‘)‘)

To find the geocentric longitude,
S0 =17 cosb,
VST=VES=360°-L,
S =180°— (360° — L) —A= L —180°— A,

from which § is known.
In the plane triangle O E S, we have

récos 04 r:7'cos @ — 7 :: tan$ (£ 4 0):tan 4 (£ — 0).

S+ 0+ E=180°,

s S
3 (B+0)=90° -2,
hence )
X r cos 0 —r
tan&(E— 0) = COt-}S m,
nd placing
tanp = r’ cos A
P=—
we have

tanp —1

tan} (£ — 0)=cot1}Stanp+1

= cot } S tan (p — 45°)

(28)
(20)
(30)

(31)
(3?)

(33)

(34)

(35)

(36)
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therefore Z and O are known: and we have
M =FE— (360°— L) =FE + L — 360° (37)

To find the geocentric latitude, we have

PO=EOtan 0’ =80tan 6 (38)
tan6’ _ SO _ sin E,
tand ~ EO  in &’ (39)
whence
sin £
tan ¢ = tan 6 S (40)
To find »”’, we have
EO=17"cost,
S0 =17 cosb.
In the triangle E 8 O, we have
" cos@:7’ cosf :: sin S : 8in E,
whence

»_ ,co86 sin S
=T s s (41)
With these data we can readily find the right ascension, decli-

nation, horizontal parallax, and apparent diameter as in the case of
the sun and moon.

INTERPOLATION.

Interpolation.—Whenever the differences of the quantities re-
corded in the Ephemeris tables are directly proportional to the dif-
ferences of the corresponding times, simple interpolation will enable
us to find the numerical value of the quantity in question. When
this is not the case, the value is determined by the “ method of in-
terpolation by differences.” Bessel’s form of this formula, usually

employed, is
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Fo=Fynd, 420Dy 2D =H),

n+1)n(n—1)(n—2)
+ 254 d, + ete. (42)

In this formula, F, is the value of the function to be deter-
mined; F, the ephemeris value from which we set out; d,, d,, d,,
etc., are the terms of the successive orders of differences, deter-
mined as explained below; % is the fractional value of the time
interval, in terms of the constant interval taken as unity corre-
sponding to which the values of the function 7’ are computed and
recorded in the tables. To use this formula, draw a horizontal
line below the value of F from which we set out, and one above
the next consecutive value taken from the ephemeris. These lines
are to enclose the values of the odd differences 4, ,d,, d,,etc. The
values of the even differences &, , d,, d,, etc., being each the mean
of two numbers, one above and one below in their respective col-
umns, are then inserted in their proper places. The following ex-
ample is given to illustrate the application of Bessel’s formula.

Find the distance of the moon’s center from Regulus at 9 p.M.
West Point mean time March 24th, 1891.

The longitude of West Point is 4.93 hrs. west of Greenwich;
hence the Greenwich time corresponding to 9 p.M. West Point
mean time is 13.93 hrs. Referring to pages 54 and 55 American
Ephemeris we take out the following data, namely:

A
March 24. F d, a, d, d,
6b 27° 017 24"
10 28’ 9"
gt 28° 29’ 33" +11”
10 28’ 20" + 1II
120 R9° 57" 53" : + 12” —2”
135,93 30° 54’ 477.31 |1° 28" 32" | (+11”.5)| — 1" |—1”
15t 31° 26’ 25" + 11" 0
1° 28’ 43" —-1”
188 32° 55’ 8" <+ 10”
1° 28’ 53"
210 34° 24" 1”7
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Whence, substituting in the formula, we have

F=29° 57 53" 4 0.643 (1° 28’ 32”") + 0.643 (— 2:35) (11”.5)
+ (0.643) § ( — 0.357) 4 (0.143) (—1”).
= 29° 57’ 53’ 4 56’ 55''.616 — 1"°.32 + 0”'.01,
= 30° 54’ 47’'.31 the required distance.

Instruments.—The principal instruments used in field astronom-
ical work are the Transit, Sextant, Zenith Telescope, and Altazi-
muth or Astronomical Theodolite. A short description of each
instrument will be given in connection with the first problem in-
volving its use. But since much relating to the transit is appli-
cable also to the zenith telescope and altazimuth, that instrument
will be explained first.

THE TRANSIT.

The Transit is an instrument usually mounted in the meridian,
and employed in connection with & chronometer for observing the
meridian passage of a celestial body. Since the R. A. of a body is
equal to the sidereal time at the instant of its meridian passage, or
is equal to the chronometer time plus its error (¢ = 7'+ E), it is
seen that by noting 7, E will be given when a is known, and con-
versely @« will be given when E is known. ZThe very accurats
determination of E is the chief use of the transit in field work.

The instrument consists essentially of a telescope mounted upon
and at right angles to an axis of such shape as to prevent easy
flexure. The ends of this axis called the pivots, are usually of
hard bell metal or polished steel, and should be portions of the
same right cylinder with a circular base. They rest upon Y’s,
which in turn are supported by the metal frame or stand. At one
end of the axis there is a screw by which its Y may be slightly
raised or lowered in order that the axis may be made horizontal.
At the other end of the axis is another screw by which its Y may
be moved backward or forward, in order that the telescope may be
placed in the meridian. The telescope is provided with an achro-
wmatic object glass, at the principal focus of which is a wire frame
carrying an odd number of paralle] vertical wires as symmetrically
disposed as possible with reference to the middle; also two horizon-
tal wires near to each other, between which the image of the point
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observed should always be placed. This system of wires is viewed
by a positive or Ramsden’s eye-piece, which can be moved bodily
_in a horizontal direction to a position directly opposite any wire,
thus practically enlarging the field of direct view. The wires are
rendered visible in the daytime by the diffuse light of day, but at
night artificial illumination is required. This is effected by passing
light from a small lamp along the length of the perforated axis,

//\\

4 N

/

whence it is thrown toward the eye by a small reflector placed at
the junction of the axis and the telescope tube, thus producing the
effect of “a bright field and dark wires.”

The right line passing through the optical center of the object
glass intersecting and at right angles to the axis of rotation of the
instrument, is called the “line of collimation.” '

The wire frame should be so placed that this line will pass mid-
way between the two horizontal wires, and intersect the middle
vertical wire; which latter should also be at right angles to the axis
of rotation of the instrument..

These conditions being fulfilled, it is manifest that if the axis
be placed in a true east and west line, and be made exactly level,
the line joining any point of the middle wire and the optical center
of the objective will, as the instrument is turned on its pivots,
trace on the celestial sphere the true meridian; and the sidereal
time when any body appears on the middle wire, will, if correctly
estimated, be the value of 7 required in the equation,

N L

a=T+4E.
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"The improbability of estimating T' with precision leads to the
use of more than one wire, although the advantage of increasing the
number beyond five is, according to Bessel, very slight. If the
wires are grouped in perfect symmetry with reference to the mid-
dle, evidently the mean of the times when a star, as it passes across
the field of view, is bisected by each wire will give a more trust-
worthy time of meridian passage thaun if a single wire be used.
Even if they are not grouped in perfect symmetry, the same will be
true, after applying a correction deduced from the ¢ Equatorial
Intervals ” to be explained hereafter. Every transit instrument is
provided with a level, a diagonal eye-piece, one or more setting
circles, and usually with a R. A. micrometer. In the case of field
transits a striding level is generally used. Its feet are provided
with Y’s which are placed on the pivots of the instrument. Before
using, it should be put in adjustment according to the principles
explained in connection with surveying instrnments.

The diagonal eye-piece facilitates the observation of stars near

the zenith by reflecting the rays at right ‘angles after they pass the
wires. :
The setting circles are firmly attached to the telescope tube and
are read by an index arm carrying a vernier, to which is also attached
a small level, They may be arranged to point out the position of
a star either by its declination or its meridian altitude. In the
latter case, the altitude is computed by the formula

Mer. Alt. = Dec. + Co-Latitude,
for stars south of the zenith, and by

Mer. Alt. = Latitude + Polar Distance,

for stars north of the zenith, the upper sign being used for stars
above the pole. In any case having determined the “ setting,” place
the index arm to mark it, and turn the instrument on its pivots
until the bubble plays. The star will appear to pass through the
field from west to east, except in case of sub-polars, which move
from east to west. An equatorial star passes through the field with
considerable velocity, only 40 to 60 seconds being required for its
passage, the apparent path being a right line. For other stars the
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time required is greater, and the path becomes more curved, until
a8 we approach the pole several minutes are required, and the cur-
vature becomes very apparent.

These facts are of importance in determining when and where
to look for the star.

The curvature of path must be considered in determining the
< Equatorial Intervals.” The eye-piece should be moved horizon-
tally, keeping pace with the star, presenting the latter always in
the middle of the field of view.

The uses of the R. A. micrometer will be explained hereafter.

ADJUSTMENTS OF THE TRANSIT.

From the above it is manifest that, assuming the objective to
be properly adjusted, there are five adjustments to be made before
the instrument is ready for use.

1. To Place the Wires in the Principal Focus of the Objective.—
Push in or draw out the eye-piece till the wires are seen with perfect
distinctness, using an eye-piece of high power. Direct the telescope
to a small well-defined terrestrial object, not nearer than two or
three miles. Now if the wires are not in the focus of the objective,
the object will appear to move with reference to the wire as the eye
is moved from side to side.

The wire frame must then be carried slightly toward or from
tne objective until this parallax is corrected.

After the instrument has been placed in the meridian, and the
horizontal wire made truly horizontal, as explained in the following
adjustments, let an equatorial star run along the wire, and if it does
not remain accurately bisected while the eye is moved up and down,
the wires are not exactly in the principal focus. Other stars must
then be used until the parallax is removed. The wires are then at
the common focus of the objective and eye-piece.

2. To Level the Axis.—The striding level is usually graduated
from the center toward each end.

The pivots are assumed to be equal.

If when its Y’s are applied to the transit pivots, the axis of the
tube is parallel to the axis of the pivots * (i.e., if the level be in

* The axis of the tube is of course a circular arc of long radius. Strictly
speaking, it is the chord of this arc which, when the level is perfectly adjusted,
will be parallel to the axis of the pivots.
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perfect adjustment), and if w and e denote the readings of the west
and east ends of the bubble respectively, then

w—e6
2

will denote the reading of the middle of the bubble, and will there-
fore measure the inclination of the axis of the pivots in level divi-
stons. But the accurate adjustment of the level is never to be as-
sumed. If the axis of the level be inclined to the axis of the pivots
by such an amdunt as to increase the west reading and therefore
diminish the east reading by z divisions, then w and e still denoting
the actual readings, we shall have for the true inclination of the
axis of the pivots,

w—e 2z

B
Upon reversing the level, the west and east readings will be as much
too small and too large respectively as they were too large and too
small before reversal; therefore w’ and ¢’ denoting the actual read-
ings, we shall have for the true inclination this second value,

w—e¢ 2
g T2

‘The mean of these two values,

I RN ity W O e CH s WO RO
2 4 ’/d“a(( /—L('f{‘j,\,

is expressed only in actunal level readirgs and is free from z, the un-
known effect of maladjustment of level.

Hence to level the axis—Take direct and reverse readings with
the level, altering the inclination of ‘the axis till the sum of the
west equals the sum of the east readings.

If the level be graduated from end to end, a similar dmcusslon
will show the level error to be

, 7

@t —(@+e) Wt
4 i,
sy b LeTlrg

(w_w ,fo J/.z; £ 5




THE TRANSIT. 23

3. To Place the Wires at Right Angles to the Rotation Axis,
—Bisect a very distant small terrestrial object by the middle wire,
and the axis being level, note whether the bisection remains perfect
from end to end of the wire as the telescope is alternately elevated
and depressed. If not, rotate the box carrying the wire frame,
until the above condition is fulfilled.

The side wires are parallel and the horizontal wires perpendicu-
lar, to the middle wire.

After the instrument has been finally placed in the meridian,
this' adjustment must be verified by noting whether an equatorial
star will remain accurately bisected by the horizontal wire during
its passage through the field.

4. To Place the Middle Wire in the Line of Collimation.—Bisect
the same distant object as before. Lift the telescope carefully from
‘the Y’s and replace it with the axis reversed. If the object is still
perfectly bisected the collimation adjustment is complete. If not,
move the wire frame laterally by the proper screws over an estimated
half of the distance required to reproduce bisection. If the half
distance has been correctly estimated, the middle wire is now in the
line of collimation. Repeat the operation from the beginning until
the condition is fulfilled.

1f a proper terrestrial point can not be obtained, the cross-wires
in an ordinary surveyor’s transit or theodolite adjusted to stellar
focus, will answer quite as well. If two theodolites are placed, one
north and the other south of our transit, pointing toward and
accurately adjusted on each other, the reversal of the axis above
referred to may be avoided.

In all these cases, the R. A. micrometer is of great convenience
for measuring the distance whose half is to be taken.

The parts of the instrument are now in adjustment among them-
selves. It remains to adjust the instrument as a whole with refer-
ence to the celestial sphere; i.e., to 8o place the instrument that
when turned on its pivots, the line of collimation shall trace the
true meridian.

5. To Place the Line of Collimation in the Meridian.—This is
most easily effected by the aid of a sidereal chronometer whose error
is known. The instrument is first placed as nearly in the proper
position as can be estimated, and its supporting frame turned in
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azimuth until the telescope can be pointed at a slow moving star at
about the time of its meridian passage.

Now level the axis carefully, set the telescope to the meridian
altitude of a circum-polar star whose placeis given in the Ephem-
eris, and bring the middle vertical wire upon this star a short time
before its meridian passage. Hold the wire upon the moving star
by turning the screw which moves one of the Y’s in azimuth, until
the chronometer corrected for its error indicates a time equal to the
star’s R. A. for the date. The transit is now very approximately in
the meridian, although the adjustment should be tested by other stars.

Since the observations to be made with the transit will be for
the purpose of an accurate determination of the chronometer error,
this latter will usually be known only approximately. It may how-
ever be found with sufficient accuracy for making the adjustment
by noting that since all vertical circles intersect at the zenith, the
time of a zenith star’s passage over the middle wire will be its time
of passage over the meridian even though the transit be not in the
meridian. The difference between the chronometer time of this
event and the star’s R. A. will therefore be the clock error.

In the absence of a zenith star, two circum-zenith stars, at op-
posite and nearly equal zenith distances, will give values of the clock
error differing about equally and in opposite directions from its true
value.

Alternating observations on circum-polar and circum-zenith
stars will now give the required adjustment with two or three
trials.

As a final test, the values of the chronometer error determined
from stars which cross the meridian at widely separated points
should be practically identical.

INSTRUMENTAL CONSTANTS.

These must be determined before the instrument can be used,
and are five in number. The transit is supposed to be in good
adjustment.

1. The Value in Time of One Division of the R. A. Micrometer
Head.—The micrometer head, which is usually divided into 100
equal parts, carries a movable wire which is always parallel to the
fixed vertical wires of the transit, and as nearly as possible in their
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plane. As it moves across the field of view it apparently coincides
with each of them in succession.

If s denote the angular distance, measured from the optxcal
center of the objective, between two positions of the micrometer
wire, one of which coincides with the middle wire or the meridian

of the instrument, then i% = ¢ will be the interval of fime required

for a star exactly on the celestial equator to pass from one position
to the other; since it is only such stars whose diurnal path is a
great circle, and since also intervals of time are measured by arcs
of a great circle—the equator. ~ 4
With a star exactly on the equator, the process of finding the , o
value of one division of the R. A. micrometer head would therefore " -
consist in noting the time required for the star to pass from one |
position of the wire to the other; the quotient of which by the 5 -
nymber of turns or divisions through which the head has been /C
moved would give the value of one turn or division. )
In the absence of such a star we must select one whose declina- =
tion, 8, is not zero. The interval of time required for such a star °
to pass from one position to the other will be given by the equation
sin J = gin ¢ sec 4. (43)
To prove this, let 4 B in Figure 7, which represents the sphere .
projected on the plane of the horizon, be the meridian, P the pole,
A el

oo
b

~:../ .

B

F1a. 7,
E Q R the equator, S the place of the star, M Z the first position
of the wire, and P F, coinciding with the meridian, the second.
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Through S pass an arc of a great circle, XS, perpendicular to
A B. This arc will be equal to @ L, and will therefore, from what
precedes, be denoted by s.

Hence, in the right-angled triangle S P K, we have

. sin g
sin P= m' (44)
But P is the hour aﬁgle of the star at S, and s is the hour angle of
an equatorial star at an equal angular distance from the meridian,
t.e., at L. i

Hence denoting the timé ‘equivalent of the former by 7, and of

the latter by ¢ as before, we have

sin 7= sin ¢ sec J,
and therefore
sin ¢ = sin 7 cos d. ()

From this equation we may compute ¢, § being taken from the
Ephemeris, and 7, which is directly observed, being the sidereal
time required for the star to pass from S to the meridian.

After which, if R denote the value of a revolution or division
of the micrometer head, and XV the number of revolutions or divi-
" 'sions corresponding to , we have for the value in time

N R=L. ®)

N
If the star be not within 10° of the pole we may write
1 = I cos 6, . (c)

and

CR=g (@)

thus avoiding the ¢ Correction for Curvature” involved in the
trigonometric functions.
By examining the equations

sin ¢ =sin J cos &, and ¢ =7 cos J, (45)
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it is seen that for the accurate determination of 7, it is better to use
stars near the pole, since errors in the observed values of I will
then be multiplied by the cosine of an angle near 90°.

Therefore, to determine this constant, proceed as follows:

Shortly before the time of culmination of some slow-moving
(circum-polar) star set the instrument so that the star will pass
through the field. Set the micrometer head at some exact division,
with the wire on the side of the field where the star is about to
enter. Note the reading of the micrometer head, and record the
time of passage of the star over the wire, using a sidereal chronom-
eter whose rate is well determined. Set the wire again a short
distance ahead of the star, note the reading, and record the time of
passage. In this manner “step” the screw throughout its entire
length. Then, remembering that I is the sidereal interval (cor-
rected for rate if appreciable) between any given passage and that
obtained when the wire was nearest to the meridian or the center
of the field of view, apply to each pair of observations equations
(a) and (b), or (¢) and (d), according to the value of J.

Where 0 is considerably less than 90° and equations (c) and (dy
are used, the correction for curvature of path becomes very small,
and the same necessity does not exist for comparing each observa-
tion with the one made at the center of the field.

No correction for difference of refractions between any two
positions of the star is required, since at its meridian passage the
star is moving almost wholly in azimuth.

In any case the adopted value of the constant should rest on
many such determinations,

Very convenient stars to use are a, 6, 8, Ursee Minoris. Their
declinations are accurately given in the Ephemeris, the first two
for every day, and the last one for every ten days.

The first two require equations (a) and ().

The last one not necessarily so.

2. The Equatorial Intervals. —By the “ Equatorial Interval ” of
a given wire is meant the interval of sidereal time required for a
star on the celestial equator to pass from this wire to the middle
wire, or vice versa.

The method of determinating this constant for each wire is
manifestly identical in principle with the process just described,
omitting the application of equations () or (d), and remembering
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3

that 7 is the observed interval with a star whose declination is ¢,
and ¢ is the required Equatorial Interval.

Another method, which may either be used independently or as
a verification, is to measure the intervals between the wires (in
time) by the R. A. micrometer. The adopted constants should rest
upon many determinations.

3. The Reduction to the Middle Wire.—The mean of the times
of transit of a celestial body over the several wires of a transit in-
strument is called the time of transit over the mean of the wires
or the mean wire. The mean does not usually coincide with the
middle wire, due to the improbability of grouping the wires in per-
fect symmetry with reference to the middle.

Since it is the middle wire which has been placed in the merid-
ian, it becomes necessary to determine the distance, in time, of the
mean from the middle wire. Then, the mean of the times of tran-
sit being corrected by this constant, we will have a very accurate
determination of the time of transit over the meridian. Suppose
the instrument to have seven wires, and to be in good adjustment.
A sgtar at its upper culmination will apparently move over these
wires from west to east; therefore (with the instrument in a given
position, say with “illumination east ”’) let the wires be successively
numbered from the west towards the east.

Let a star whose declination is 6 pass through the field, and let
Lyt 8,8, 18,1, , be the accurate instants of passing the cor-
responding wires; let ¢,, ¢,, 1,, 0, 7,, %,, %, , be the equatorial inter-
vals from the middle wire. Then the time of passing the mean
wire is

RILLS AN INRX Y )

The time of passing the middle wire is either

t,+1, 8ec 0, ¢, +1,8ec S, ¢, 4 i,8ec I, ¢,,¢, — i,8ec 6, ¢, — i, 80CF,
ort, —i,8ec 0 A '

(note the minus sign in the last three). Hence the most probable
time of passing the middle wire is

?ﬁj‘?'LCé‘) = ETt_g- %1 sec . 47)
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The difference between this and the time of passing the mean
wire is evidently the second term, or

?';—.i sec 0 = ¢+ v+, :7"' ’(il +i,+4,) sec &, (48)

The equatorial value of this reduction (the desired constant)
will then be
%‘ = At
and for any given star the actual reduction will be this value mul-
tiplied by sec 6. The adopted value of A ¢ should rest upon many
determinations. Its sign is evidently changed by reversing the axis
of the instrument.

Hence, to find the time of astar’s passage over the middle wire,
we have the rule: To the mean of the timeg add A % sec 8, noting
the signs of both factors.

The Equatorial Intervals are also used for finding the time
of passage over the middle wire when actual observation on some of
the wires has been prevented by clouds or other cause. Thus suppose
observations have only been made on the second, third, and seventh
wires. The most probable time of passing the middle wire is

Gtiseof) d lbtiosod) bl —toeod) Zby Zhoes,

t and ¢ referring only to the wires used.

4. Value of One Division of the LevelL—In practical astronomy
the level is used not merely for testing and regulating the horizon-
tality of a given line, but also for measuring either in arc or time
those small residual inclinations to the horizontal which no process
of mechanical adjustment can either eliminate or maintain at a
constant value.

Hence we must determine the value of one division of the strid-
ing level of the transit; i.e., the increment or decrement of incli-
nation which will throw the bubble one division of the graduation.

The best method of determining this quantity in case of a de-
tached level is by use of the “ Level-trier,” which consists simply
of a metal bar resting at one end on two firm supports, and at the
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other on a vertical screw. Then if d be the distance from the screw
to the middle of the line joining the two fixed supports, and % the
distance between two threads of the screw (obtained by counting
the number of threads to the inch), the inclination of the bar to the

horizon would be changed by-———; Tn h due to one revolution of the

1"
screw. The level is then placed on the bar and the number n of
divisions passed over by the bubble due to one turn (or division) of
the screw is noted. The value of one division of the level in angle

is then —h—w The mean of several observations, using both
ndsin 1

ends of the bubble, should be adopted. The value in time is
Brndsol” d’:in 17 If no level-trier is available, the level should be
placed on the body of the telescope connected with a vertical circle
reading to seconds : as for example the meridian circle of a fixed
observatory. Move the instrument slowly by the tangent screw and
note the number of level divisions corresponding to a change of 1"
in the reading of the circle, taking the means as before. By either
method the level may be tested throughout its entire length.

We have seen that the inclination of a line in level divistons is
A ’
(w+w') I (e+¢) ; hence if D denote the constant just found,

the inclination of the line in arc will be

B=(w+w')4—(e+e’) k (w+'w) (3+8')D (49)

ndsnl”

the west end being higher if (w + w’) > (¢ 4 ¢’), or when this ex-
Ppresgion is positive.

T 5. Inequality of the Pivots.—The construction of the pivots
being one of the most delicate operations in the manufacture of the
whole instrument, their equality must never be assumed.

In transit observations it is manifestly the axis of rotation (the

« ., agxis of the pivots) which should be made horizontal, or whose in-

( , clination ghould be measured. If the pivots are unequal they may
Vlbe(arggargitas portions of the same right cone; in which case it is
evident that the striding level applied to the upper element might
indicate horizontality when the axis was really inclined, and vice
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versa. We must therefore correct our level indications by the effect
of this “ Inequality of Pivots.”
To determmate this, let w z y z in Figure 8 represent the cone of

w.wr k_é

o

+ ?

’DA;"M

3B
e ﬂ:—"é
R
Fo. 8. FB gt

the pivots, 4 v being the axis. Let the inclination of the upper
-element w z be measured with the level, giving

po@Ee) =t )

Lift the\axis from the ¥”s and turn it end for end. In this position

w’ z 4 2 yill represent the cone of the pivots.

eastjre as before the inclination of w’2’, and denote it by B’.

Then\ by Anspectjon of the figure it is seen that B’ — B is the angle
4 —

tions of the wpper ff;ment 1—;781 is the

e uppex;/ and lower elements of the cone, and
/

between the tyo p

angle between
B’ —

4 s,
and the axis u v.* -

=pis consequen \j/the ungle between the upper element

/
e

* B and B’ are manifestly the inclinations, in the twe positions, which the
upper element would have if the pivots were equal, minus twice the effect of
the inequality:—this effect being the angle subtended by the difference of the
radii, # — ‘. Of course if the pivots are unequal, the inclination obtained by

) applying the level ¥s to the pivots is not strictly that of

ja) the upper element; but if the angles of the transit and

\ level Y's are equal (as is usually the case), it will evidently

be, as before, the inclination which the upper element would
have if the pivots were equal, minus twice the effect of
the inequality:—the effect in this case being (Fig. 8a, which

\ represents a cross-section of the pivots and level ¥) the
Fie. 8a. angle subtended by ey 1} Hence the algebraic differ-

ence, B’ — B, will be four times the effect of the inequality, as before,

o&-

St Boeane

‘«.M ""7’““‘
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B¢
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’
This quantity, B

: B_ 2, is therefore the desired constant, and

as the figure indicates, it is a correction to be added algebraically
he level determination of the unreversed instrument, or to be
tracted from that of the reversed instrument.
' Its value should rest upon many determinations.

- The inclination of the axis of a transit will hereafter be denoted

\bS' b, which is therefore either B + p, or B’ — p, according as the
Jinstrument is direct or reversed.

of« The cross-sections of the pivots should be perfect circles.
Any departure from this form may be discovered and corrected as
follows:

With instrument direct, determine the value of B with the
telescope placed successively at every 10° of altitude. Call the
mean B, . ‘

Then B, — B is the correction for trregularity of pivots for the
reading corresponding to B with instrument direct. Do the same
with instrument reversed. Then B, — B will be the correction

v = By 1ill be the cor-

AV

for irregularity with instrument reversed.

rection for inequality. Both corrections must be applied to obtain
the true value of b.

T
EQUATION OF THE TRANSIT INSTRUMENT IN THE
MERIDIAN.

The transit, having been adjusted and the instrumental con-
stants determined, is-ready for use. Hitherto it has been assumed
that an adjustment was perfect:—that the middle wire had been
placed ezactly in the line of collimation, that the axis of rota-
tion had been made exactly level, and that the line of collimation
would trace with mathematical accuracy the true meridian. Mani-
festly, however, this theoretical accuracy cannot be attained by
mechanical means. It will therefore be proper, having performed
each adjustment as accurately as possible, not to regard the out-
standing small errors as zero, but to introduce them into a given
problem ag additional unknown quantities having an ascertainable
effect on the result, and then to make independent determinations
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of their value, or leave these values to be revealed by the observa-
tions themselves.

Any departure from perfect adjustment is positive when its
effect is to make stars south of the zenith cross the middle wire
earlier than they otherwise would.

1. To Ascertain the Effect of an Error in Azimuth on the Time
of Passage of the Middle Wire.—Let a denote the horizontal angular
deviation of the axis of rotation from a true east and west line,
positive when the west pivot is south of the east pivot. (This should
never exceed 15’’, and will usually be even less.) The line of col-

oy

limation will then, as the instrument is moved in altitude, describe '/, ., fuuit ,
a great circle of the celestial sphere intersecting the meridian in v.J. tvieter

3PS,

. S axgaz = Cood, 1 e (4) b lovor
Then from the Z P S triangle we have (S being the position of a
star when on the middle wire), &P .. z28"

v a - -‘SHS 5
(.- sin P : sin @ :: 8in 2 : cos 4, P ,
oS

or

sin @ sin z
i _——— 7
814n P cos 0 (Z)

If the star were exactly on the meridian, 2 wonld be equal to
¢ — 0. Being less than 15’ therefrom, the change required in 2
to give ¢» — d is entirely negligible. Again P and a are exceed-
ingly small angles. Hence we may write with great precision, ex-
pressing ¢ and P in time,

. ( _s
P=a%~). (50)
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That is, if the instrument have an azimuth error in time, of
seconds, a star when passing the middle wire is distant from the
sin (¢ — 6)

cos 0

of transit must be corrected accordingly.

2. To Ascertain the Effect of an Inclination of the Axis on the

Time of Passage of the Middle Wire.—Let 5 denote the angular
. deviation of the axis of rotation from the horizontal, positive when

the west pivot is higher than the east. The line of collimation

will then, as the instrument is moved in altitude, describe a great

circle of the celestial sphere intersecting the meridian at the north

and south points of the horizon, and makmg with 1t the ang

(Z HS,in Figure 10). Sctf e v , -

true meridian e seconds of time, and the recorded time

Then from the triangle P H S (S being the position of a star
when on the middle wire) ceSiaLNP S bor 3 Saude O

P :sgin bc cos 2 : cos J, 37 ;976‘—4 oS8P o S
oin < =( -é)a/;',’(,\»n/,

Or, as before, expressing b in time,

p o08 cos (¢ — 8)
" cos b (51)
This is interpreted as in the preceding case.

8. To Ascertain the Effect of an Error in Collimation on the Time
of Passage of the Middle Wire.—Let ¢ denote the angular distance
of the middle wire from the line of collimation, positive when the
wire is west of its proper position. The line of sigh? will then, as
the instrument is moved in altitude, describe a small circle of the
celestial sphere, east of the meridian and parallel to it. Through
S, the place of the star, Fig. 11, pass the arc of a great circle, S X,

&P;__ S fi§ w2 /, .

———

e Ohocf Cov &
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perpendicular to the meridian. This arc will be the measure of
¢. Then in the right-angled triangle P S M we have \
g g g 4 J 73 ) :‘3_:“/9‘ ‘f M= Fo J
gin P =20C A/{ 3»‘»*373 57 76—
cos 0

QS“

[/
P—.m—csec d. (52)

Or, as before, expressing ¢ in time,

Hence when all these errors, @, & and c, exist together, called re-
spectively the azimuth, level, and collimation error, we have for the
Equation of the Transit Instrument in the Meridian,

sin (¢ — 0)

cos 0

3C08 (¢ — 9)

a=T+E+a cos 0

+b -+ ¢ sec 0. (53)

In this equation a is the apparent R. A. of the star for the date,
T is the clock time of transit over the middle wire, obtained from
the time of transit over the mean wire by applying the “ Reduction

mM_Z

S P

Fia. 11,

to Middle Wire,” ¥ is the chronometer error, positive when slow,
negative when fast, ¢ the latitude, & the star’s apparent declination
for the date, and a, b, and ¢ are expressed in time.

When great precision is desired, for example in longitude work,
the equation must be modified by the introduction of a small cor-
rection for Diurnal Aberration, additive to . The value of the
correction is 0%.021 cos ¢ sec 0.

Hence the complete form of the above equation is

a=T+E+a Sin£f66)+bc“é$;6)¢(¢: —0°.021cos ¢) sec .
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Or, placing
¢’ =¢ — 0.021 cos ¢,

a= T—|-E+a8in(¢_6)+bcos(¢—6)+c’sec6. (54)

cos 0 cos 0

After an observation has been made we shall have in this equa-
tion four unknown quantities, Z, a, b,¢’, since ¢ is supposed to be
known, and a and & are found in the Ephemeris. We may either
determine @, b, and ¢ independently, as will next be explained (in
which case an observation on asingle star will then give £), or
leave all four to be determined by observation %_at least four stars.

The sign of ¢ is changed by reversing the a¥is, since the middle
wire is thus placed on the other side of the line of collimation.
ok This value, 0°.021 cos ¢ sec d, which we will denote by R,

may be deduced in an elementary manner as follows: Due to the
earth’s rotation on its axis, all celestial bodies are apparently dis-
placed toward the east point of the horizon. If the body be on
the meridian, this displacement is wholly in R. A. Hence the
R. A. of the object as seen will not be a, but a + R.

The direction of a ray of light received from a body on the
meridian is at right angles to the direction of the observer’s diurnal
motion. Under this condition, the absolute amount of apparent
displacement in seconds of a great circle may be written (Young,
pa. 142),

u

B=ytam 17

where % is the observer’s velocity, and V that of hght If the ob-
server be at the equator, we shall have

_ 20926062 X 2 7
~ 5280 X 24 X 60 X 60

miles per second,

where 20926062 is the number of feet in the earth’s equatorial
radius (Clarke).
According to Newcomb and Michelson,

¥V = 186330 miles per second.
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Hence

20926062 X 2

B =380 % 21 x 3600 X 186330 X tan "

, = 07,319,

This angular displacement in a great circle perpendicular to the

meridian corresponds to 0°021 if the star be on the equator, or to

.0%021 sec 0 if the star’s declination be &, since, as we have seen
before, equal angular distances from the meridian correspond to
hour angles varying with sec d.

If the observer be not on the equator, but at latitude ¢, his
velocity will be diminished in the ratio of the radius of his circle ot
latitude to that of the equator: or regarding the earth as a sphere,
in the ratio cos ¢ : 1.

Hence, for an observer in any latitude, with a star at any dec-
lination,

R = 0021 cos ¢ sec d, L

DETERMINATION OF INSTRUMENTAL ERRORS.

1. To Determine the Level Error b.—This is found from the
formula already deduced, viz.:

b=B+u=CTY Cxp 4, (55)

or

b’=B’—k=(w+w);(e+e)D—R- (56)

according as the instrument is direct or reversed. D and p must
be expressed in time, by dividing their values in arc by 15, thus
giving b in time. '

2. To Determine the Collimation Error c.—Turn the instrument
to the horizon, select some well-defined distant point whose image
is near the middle wire, measure the distance between them with
the micrometer, making the distance positive when the middle
wire is west of the image of the point. - Reverse the axis, and meas-
ure the new distance, with same rule as to sign. Subtract the
second from the first, and one half the difference gives the colli-
mation error in micrometer divisions for instrument direct.
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multiplied by the value of one division in time, gives ¢

rule will be evident from an inspection of Fig. 12 (which
is a horizontal projection), where w is the west,
T and e the east end of the axis, 7 F the hori-
zontal line of collimation, P the image of the

Wo————o" ¢ point in the field of view, @ the direct and &

the reversed position of the middle wire. Ea

P is equal to £, and ¢ is positive.
2 E b Instead of aterrestrial point we may use the
Fia. 12. -intersection of the cross hairs in the focus of
a surveyor’s transit adjusted to stellar focus,
the two instruments facing each other. The intersection referred

to will then be optically at an infinite distance, and its image will
be found at the principal focus of our transit.

Itis

sometimes necessary to determine ¢ by independent stellar

observations, in which case the following method is always employed :
Point the telescope to a circumpolar star and note the times of its

passage

over as many wires as possible on one side of the middle

wire. Reverse the axis. As the star moves out of the field of view,
it will cross the same wires in reverse order, the times of passage
being noted as before.

By means of the Equatorial Intervals reduce each time to the
middle wire, and let 7" and 7" denote the mean of those before and
after reversal, respectively.

T and 7’ are therefore the times of passage of the same star
over two different positions of the middle wire—one as much to

the east

as the other was to the west of the true line of collimation.

From their difference therefore we have double the collimation error,

thus:

. - ’ 3 .
P For instrument direct,

a=T+E+a sin (¢p — 6)+

cos (¢ — ) c 0%.021 cos ¢
+ cos6  coso

cos 6 cos 0

For instrument reversed,

a=T

T-T +

sin (¢ —9) ,co8(p—6) ¢ 0%.021 cos ¢
+E+a_0086 +9o cos 0 cosé  cos 0

(,’.-{,)"if’(f "FQ -2 S J, T o d
’ 'J,u-nf £ ,:S /‘ [.
& D8y
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allowance being made for a change in level error due to a possible
inequality of pivots, and ¢ changing its sign by reversal of the in-
strument.

By subtraction and solution we have

¢c=4(T"— T)cos 6 +4 (' —b) cos (¢ —5).  (57)

If the pivots are equal and the instrument be undisturbed in
level, the last term disappears and we have

c=4(T"—T)cos d. (58)

A slow-moving star must be used in order to give time for care-
ful reversal.

There are various other methods of finding both & and ¢, based
principally upon observation of the wires and their images as seen
by reflection from mercury.

8. To Determine the Azimuth Error, a.—Observe in the usual
manner the time of transit, 7, of a star of known declination.
Then, b and ¢ having been measured, let the corresponding correc-
cos (¢ — 0)
" cosd
called correcting the time for level and collimation. The equation
of the instrument as applied to this star will now read

sin (¢ — 9)

tions, & and ¢’ sec 4, be added to 7, giving ¢&. Thisis

a=t+B+e— 5 (m)
Similarly for another star,
. _s
o =t'+E+a __smc((;ﬁ 5 ) (n)

From which - «

sin (¢ — &’ gin (¢ — O
a(l—é:f:s, ) cos 0 ))=(a’—a)—(t'—t)
S (P S S flewed's o £ELST

a (sin ¢ — cos ¢ tan 6’ — sin ¢ + cos P tan 6) = (a’ — a) — (¢'—¢).

_ (@ —a) = (=1
~ cos ¢ (tan 6 — tan 6”)

(59)
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The value of the clock error does not enter. If however it be
not constant, its rate, 7, must be known, positive when losing, nega-
tive when gaining. Then if £, be the unknown error at some as-
sumed instant 7',, the errors at the two instants of observation will
be E,+ (T —T,) r,and £+ (17" —T,)r. These should be substi-
tuted for £'in equations (m) and (»), and the known terms, (7'— 7', r
and (77— T,) r, be united to 7" and 7” in forming ¢ and ¢’ as are the
corrections for level and collimation. The time is then said to be
corrected for rate. By subtraction to obtain (59), E, will disappear.
Hence while the rate must be known, the error need not be.

Examining the value of @, we see that the following conditions
must be fulfilled in order to obtain an accurate determination.

First, « and a’ must be known exactly; therefore only Ephem-
eris stars should be used.

Again, if the rate of the clock be not well determined, the
interval between the observations must be as small as possible in
order that the correction for rate may affect @ but slightly. There-
fore if both stars are at upper culmination, they should be nearly
equal in R. A. Or, if one be above and the other below the pole,
they should differ in R. A. by as nearly 12 hours as possible.

Again the larger numerically the factor (tan & — tan 6”), the less
the effect of errors in ¢/ — . Hence, if both stars are at upper
culmination, one should be as near and the other as far from the
pole as possible. Or, if one be at upper and one at lower culmina-
tion, they should both be as near the pole as possible; the declina-

tion of the lower star being then taken to be 90° 4 Polar Distance.

REFRACTION TABLES.

A ray of light passing from a celestial body to a point on the
earth’s surface, may be supposed to pass through successive spherical
strata of the atmosphere, the densities of which continually increase
toward the center. Under these circumstances, as has been previ-
ously shown, the ray will be bent toward the normal, resulting in
an apparent displacement of the body toward the zenith.

It hasalso been previously shown that the actual amount of such
displacement increases with the zenith distance, and with the
density of the air, which latter depends on its pressure and tempera-
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ture. In order to facilitate the calculation of this displacement or
refraction in any particular case, tables have been constructed con-
containing certain functions of the zenith distance, temperature,
and pressure, from. which, with observed data as arguments, the re-
fraction may be computed.

Such tables are called Refraction Tables. Those of Bessel are
the best and most usually employed. In these tables the adopted
value of the refraction function is given by

r= aﬂ‘y" tan z,

in which 7 is the refraction; 4, A, and a are quantities varying
slowly with the zenith distance; g is a factor depending on the
pressure, and ¥ upon the temperature of the air; z is the apparent
zenith distance; g therefore depends upon the reading of the ba-
rometer, and y upon the reading of the thermometer. But since
the actual height indicated by a barometer depends not only upon
the pressure of the air, but upon the temperature of the mercury,
g is really composed of two factors B and 7, the first of which de-
‘pends upon the actual reading of the barometer, and 7 involves the
correction due to the temperature of the mercury. '

Nearly all the collections of astronomical tables contain “ Tables
of Refraction,” from which may be found the various quantities in
the equation

r=a (B T)4y*tanz.

The first portion of the table consists of three columns giving the
values of 4, A, and log a, with the apparent zenith distance z as
the argument.

The second part contains B, with the height of the barometer
as the argument. The third part gives the value of 7" with the
reading of the affached thermometer as the argument, and the
fourth part gives y with the reading of the external thermometer
as the argument; z is the observed zenith distance. A substitution
of these quantities gives the refraction, which must then be added
to 2z to give the ¢rue zenith distance.

The attached thermometer gives the temperature of the mercury
of the barometer. The external thermometer should be screened
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from the direct and reflected heat of the sun, but be so fully ex.
posed as to give accurately the temperature of the external gir.

A similar table is sometimes given for passing from true to ap-
parent zenith distances. The mode of using is exactly the same,
subtracting the resulting refraction from the true zenith distance
to obtain z. It is of use in “setting ” instruments for obdervation.

A “Table of Mean Refractions” is also given in nearly every
collection, and contains the refractions for a temperature of 50° F.,
and 30 in. height of barometer, with apparent zenith distances or
altitudes, as the argument, which may be used when a very precise
result is not required.

The above relates only to refraction in altitude. But a change
in a star’s place due to refraction will in the general case cause a
change in its observed R. A. and Dec. In order to ascertain these
two codrdinates as affected by refraction at a given sidereal time 7,
we first compute the body’s hour angle from P =7 — R R, A, %q, a.
then its true zenith distance (z) and parallactic angle (zp from t
astronomical triangle, knowing P, @, and 6. Then if r denote the
refraction in altitude, found as just explained, the refraction in
declination will be

AG =17 cos

and the refraction in R. A., / % / /@/
rsin

= s o

TIME.

The perfect uniformity with which the earth rotates on its axis
makes its motion a standard regulator for all time-pieces. No clock
or chronometer can run with perfect uniformity, and therefore the
time indicated by them must ever be in error. To find these errors
at any instant is the object of the time problems in Practical As-
tronomy.

Time is measured by the hour angle of some point or celestial
body. If the point be the true Vernal Equinox its hour angle is
true sidereal time.



TIME. 43

If the point be the mean Equinox, it is mean sidereal time; but
since the greatest difference between true and mean sidereal time
can never exceed 1.15 seconds in 19 years, astronomical clocks are
run on true sidereal time. To pass from true to mean sidereal
time, apply the correction known as the Equation of Equinoxes in
Right Agcension.

If the point be the Mean Sun its hour angle is mean solar time;
all solar time pieces are run on mean solar time.

If the point be the center of the True Sun, its hour angle is
true or apparent solar time; to pass from true to mean solar time
apply the correction known as the Equation of Time.

Before proceeding to the time problems, it is necessary to deter-
mine the relation existing between sidereal and mean solar infervals,
and especially the relation existing between the sidereal and mean
solar {ime at any instant.

Relation between Sidereal and Mean Solar Intervals.—The in-
terval of time between two consecutive returns of the sun to the
mean vernal equinox, called the mean tropical year, is according to
Bessel 365.2422 mean solar days. Since, while the earth is rotating
on its axis from west to east, the mean sun is moving uniformly in
the same direction, the interval between two consecutive passages

. q. . 1 .
of the meridian over the mean sun will be 14 365.2293 times the
interval between two passages over the mean vernal equinox: for
of the

_ 1
365.2422
whole circuit from equinox to equinox, and each mean solar day

. -
in one mean solar day the mean sun must advance

must correspond to 1 +3_(§£‘E2_ passages of the mean vernal equi-

nox. Hence 365.2422 mean solar days correspond to 366.2422
sidereal days.
Hence we have the relations,

366.2422

One mean solar day = 365.2492

= 1.00273791 sidereal days,

= 24b 3™ 568555 sidereal time.
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365.2422
366.2422

= 23" 56™ 48,091 mean solar time.

One sidereal day = = 0.99726957 mean solar days,

The same relation manifestly exists between the corresponding
hours, minutes, and seconds. Now since the sidereal unit is shorter
than the mean solar in the ratio of 1 : 1.00273791, it follows that
the number of these units in a given interval of time is to the
number of mean solar units as 1.00273791 to 1.

Hence the relations,

Sidereal Interval = Mean Solar Interval X 1.00273791.
Mean Solar Interval = Sidereal Interval X 0.99726957.

Or, denoting these intervals respectively by I’ and 1,

I = I+ 0.00273791 T
I = I'—0.00273043 T,

Tables II and III, Appendix to the Ephemeris, give the values of
the corrections 0.00273791 I and 0.00273043 I’, for each second in
the 24 hours.

Again, since 24 sidereal hours equals 23" 56™ 4%,091 mean solar
time, it follows that a mean solar clock loses 3™ 55%.909 on a side-
real clock in one sidereal day, or 9°.8296 in one sidereal hour.

Also, since 24 mean solar hours equals 24" 3™ 562555 sidereal
time, it follows that a sidereal clock gains 3™ 56%555 on a mean
solar clock in one mean solar day, or 9°.8565 in one mean solar
hour.

These two facts may be thus expressed :

(1) The hourly rate of a mean solar clock on sidereal time is
-+ 9.8296.

() The hourly rate of a sidereal clock on mean solar time is
— 9°.8565.

From (2) it is seen that the R. A.of the mean sun increases

9:.8565 per hour, or in other words, the sidereal time of mean noon
N occurs 9°.8565 later for each hour of west longitude.
L These deductions are of importance in what follows.
' '\' mehtion between Sidereal and Mean Solar Time. That is, having
given either the sidereal or mean solar time at a certain instant, to
find the other.
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Suppose first the sidereal time to be given and let the circle in

Figure 13 represent the celestial v’
equator, M being the point where it

is intersected by the meridian, V the S
vernal equinox and S the place of S
the mean sun. ' v

Then MV = the sidereal time at
the instant, supposed to be known,
M S = the mean solar time required,
and V'S = right ascension-of mean
sun. ‘

At the preceding mean noon the
mean sun’s R. A. was less than at the Fio. 18.
moment considered by an amount which may be represented by
S,

At that time, therefore, the mean sun was at M, and the Vernal
Equinox at a position ¥’ such that ¥V’ ¥ = VS". Hence at the
instant considered, the sidereal time elapsed since the preceding
mean noon is MV — MV’. The time since mean noon having thus
been found in sidereal units, the mean solar equivalent of this inter-
val will necessarily be the mean solar time at the instant consid-
ered. Hence the rule:

From the given sidereal time subtract the R. A. of the mean sun
at the preceding mean noon. Convert the result into @ mean solar
interval by the Ephemeris Tables or the formulal =1 —0.002730430.
The result is the required mean solar time.

To find the sidereal from the given mean time, this operation
must obviously be performed in the inverse order, viz.:

Convert the given mean solar time into a sidereal interval by
the Ephemeris Tables or by the formula I’ = I+ 0.00273791L1
To the result add the R. A. of the mean sun af the preceding mean
noon. The result is the required sidereal time.

On Page II, Monthly Calendar of the Ephemeris, will be found
the R. A. of the mean sun at the preceding G'reenwich mean moon.
To find this element for the local mean noon, multiply the hourly
change 9°.8565 (heretofore deduced) by the longitude in hours,and
add the result to the Ephemeris value.

The above rules are not only of great use in astronomical calcu-
lations, but they enable us to determine the error of either a side-
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real or mean time clock, knowing that of the other, by “ the method
of coincident beats.” Suppose both clocks to beat seconds. Then
from the relative rate heretofore deduced it is seen that their beats
will be coincident once in about 6 minutes. - Note the seconds given
by each clock when this occurs, and then supply the hours and
minutes. Apply the known error to the mean solar for example;
and the result will be the correct m. s. time. Find the correspond-
ing sidereal time by the rule just given. The difference between
this and the time given by the sidereal clock will be its error.

EXAMPLE.

At West Point, N. Y.; Nov. 27, 1891, Longitude 4®.93 west, the
mean solar and sidereal clocks were compared at the instant of
coincident beats, with the following result:

Mean Solar, 0 — 46™— 29°.00.
Sidereal, 17® — 15™— 55°00.

The error of the mean solar was 0%17 slow on Standard Time,
which is itself 4™ 9°.45 slow on local time. '

It is required to find the error of the sidereal clock.
\

Indicated m. 8. time....o.coeviieeeennnnennnn. 0t — 46™— 29°.00
Error on standard time....................... ’ 0.17
Reduction to local time....................... 4 — 945
Corrected m. s. time.. ... ....coivivennnnennn. 0 — 50 — 38.62
Reduction to sidereal interval................. 8.32
Sidereal interval since mean noon........ ..... 0 — 50 — 46.94
R. A. of mean sun at Greenwich mean noon..... 16 — 24 — 27.25
Correction = 988565 X 4.93.....ccccvvivnnn. 48.59
True sidereal iMe.. .. 771 e e ererereenenennens 17 — 16 — 2.8
Clock indication.......cco.vveeieernennnnnnnns 17 — 15 — 55.00
Error of sidereal clock. ............coiiialn.. + 7.78

Hence the sidereal clock was 7°.78 slow.
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TO FIND THE TIME BY ASTRONOMICAL OBSERVA-
TIONS. .

This general problem usually presents itself as a question of de-
termining the error of a time-piece at a given instant. The different
methods of obtaining this error may, as far as considered here, be
grouped under three heads.

I Time by Meridian Transits.
II. Time by Single Altitudes.

III. Time by Equal Altitudes.

The first is the method of precision when properly carried out
with the transit instrument. The second and third, being usually
carried out with the sextant, can only be relied upon as giving an
approximate result more or less exact.

I. TIME BY MERIDIAN TRANSITS.

1. To Find the Error of a Sidereal Time-piece by the Meridian
Transit of a Star. (See Form 1.)—The general statement of the
problem is briefly this: since the time-piece, if correct, ought to in-
dicate the R. A. of the star at the instant of culmination, the dif-
ference in time is the error required. The transit instrument being
supposed to be approximately in the meridian, 7.e., to have been
carefully adjusted, for the practical solution it is necessary to find
by observation and computation the quantities in the following
equation (heretofore deduced) and solve it.

a=T+E+ad+bB+c'C, (60)

in which 4, B, and C have for brevity been substituted for
gin (¢ — 6) cos (¢ — 9)

cosd cos 0
measured &, b, and ¢; computed 4, B, and C; observed 7'; and
taken a from the Ephemeris (@ = the star’s apparent R. A. for the
date), the value of £ follows from the solution of the equation.

In finding 7, record to quarter seconds (or if possible to tenths
of, a second), the time of passage of each wire. Take the mean
and apply the “Reduction to middle wire.” 7, corrected by
aA + bB + ¢’'C is evidently the chronometer time of the star’s
transit over the meridian.

, and sec J, respectively. Then having
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Form 1 indicates the proper method of recording the observa-
tions, it being arranged for five stars. Under the head of “Transit,”
record its number and the maker. The “ Illumination” should be
recorded as east or west, this showing whether the instrument is

. direct or reversed.

The adopted value of £ should be the mean of the results from
several stars. Stars within the polar circle, or those whose declina-~
tion exceeds about 67°, are not used for time determinations, since
the exact instant when a slow-moving star is bisected by a wire can-
not be judged with the greatest precision, and since also slight
errors in measuring @, b, and ¢ will then be greatly magnified by 4,
B, and C, all of which become « for & =90°. But by including
in the observing list two circum-polar stars upon one of which the
instrument is reversed after half the wires are passed, both @ and ¢
may be found by Equations (57) and (59). & is found from level
readings by Equation (55) or (56).

If only a single star is available, it should be one given in the.
Ephemeris, and which passes near the zenith (6 = ¢), since at the
zenith Ada disappears, and this is the only one of the three correc-
tions which requires star observations for its determination.

For very accurate work, such as is required in connection with
the telegraphic determination of longitude, it is usual to employ at
least ten stars for each determination of time, half the stars being
observed with the instrument reversed ; and of each half, two should
be circum-polar and three equatorial stars. In this case, b is ordi-
narily the only instrumental error actually measured (by level read-
ings); each star then gives an equation of the form (60), and £ to-
gether with a and ¢ are found from a solution of the equations by
Least Squares.

These matters will be explained more fully hereafter.

The clock rate is found from errors determined at different
times.

To find the error at a giveninstant, as for example at the middle
.of the time consumed in a series of observations extending over
several hours, this rate should be applied as explained when treating
of the azimuth error.

o} It may sometimes be desirable to find the error of a sidereal
clock from a meridian transit of the sun, although in field work
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this would be exceptional. In such a case it may be assumed, with
an error entirely negligible, that during the short time consumed in
the observation the sun’s motion is uniform, that the time required
for the sun to pass from the mean to the middle wire, and from the
middle wire to the meridian is the same as that for a star of the
same declination.

For example, the reduction to middle wire not exceeding 0.5,
the error committed by the second assumption could not exceed
05'0‘2)274 X sec (23°28") = 0%0015. Hence that reduction may be
computed as usual.

Therefore, note the time of transit of each limb of the sun over
each wire, and take the mean. Reduce to the middle wire as usual,
and apply the correction a4 + bB + ¢’C. The result is the clock
time of culmination of the sun’s center. The ¢rue sidereal time of
this event, or the R. A. of the sun at apparent noon, is found on page
1, Monthly Calendar, by interpolation. The difference gives £.

2. To Find the Error of a Mean Solar Time-piece by a Meridian
Transit of the Sun. (See Form 2.)—Apparent noon at any place is
the instant of culmination of the sun’s center at that place. This
epoch may be expressed in three different times, viz.:

In apparent time, or 12 o’clock apparent time.

In mean time, or 12 o’clock plus the equation of time.

In clock time, or that indicated by a mean solar time-piece.

At apparent noon a mean solar time-piece should therefore indi-
cate 12 o’clock plus the equation of time at the instant.

Therefore the general equation of the Transit Instrument be-
comes for this case

122 +e=T+E+ad+bB+c'C, k61)

€ denoting the equation of time.
Note the order and directions that follow:
1. The mean of all the observed times is the chronometer time of
transit of sun’s center over the mean of the wires.
2. The reduction to middle wire, as well as the three corrections,
are found as in Form 1. By adding them to the above-men-
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tioned mean, we have the chronometer time of apparent noon.
The declination of the sun, used in computing these corrections,
is to be taken from the Ephemeris, allowance being made for
the observer’s longitude. Use page 1, Monthly Calendar.

3. The mean time of apparent noon is 12 hours + €. In comput-
ing € use page 1, Monthly Calendar, and make allowance for
observer’s longitude. The Ephemeris gives the sign of e.

4. Subtract the chronometer time of apparent noon from the mean
time of apparent noon, and the remainder is the error of the
chronometer :—plus if slow, minus if fast.

5. Time-pieces at West Point are run on 75th Meridian mean time,
i.e. 4™ 9°.45 slower than local mean time. Hence in finding
the error at West Point subtract 4™ 9%.45 from 12 + €, before
proceeding with step No. 4.

»Je Should the necessity arise for finding the error of a mean
solar time-piece by a meridian transit of a-star, it may be done by
the same methods, the reduction to the middle wire and corrections
for instrumental errors being computed as usual, since the equa-
torial value of the first, as before, being taken as not exceeding 0.5,
0500273 o

5 — sec 67
= 0%.0035. Stars within the polar circle, or whose declination ex-
ceeds about 67° are not used for time determinations.

Therefore having observed the clock time of transit (corrected by
aAd~+bB+ cC),and having computed, as heretofore explained,
the correct mean solar time of transit from the star’s R. A., the dif-
ference gives the clock error.

the greatest error thus produced cannot exceed

THE SEXTANT.

As problems under the second and third heads arising in field
work are usually solved by aid of the sextant, a short description of
that instrument and the manner of using it becomes necessary.

The sextant is a hand reflecting instrument designed for the
measurement of the angular distance between two objects. In its
construction it embodies the following principle of Optics, viz.:
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‘When a ray of light is reflected successively by two plane mirrors,
the angle between the first and last direction of the ray is twice the
angle between the mirrors, provided the ray and its two reflections
are all in the same plane perpendicular to both mirrors. For as-
tronomical work the sextant is mainly used for measuring vertical
angles, i.e., the altitude of some celestial body. In the measure-
ment of Lunar Distances, however, the angle will usually be in-
clined.

The instrument consists essentially of a graduated circular arc,
usually somewhat over 90° in extent, connected with its center by
several radii and braced by cross pieces, forming what is known as
the frame. Attached to the center of the arc is a movable indez-
arm provided with clamp and tangent screw, carrying at its outer
end a vernier and microscope for reading the sextant arc. Attached
to the index-arm at its center of motion, and therefore rotating with
it, is a small mirror known as the index-glass, whose plane is per-
pendicular to that of the frame. Perpendicular to the frame, at-
tached thereto and therefore immovable, is a second small mirror,
known as the korizon-glass. These two mirrors are so placed with
reference to each other that when the index-arm vernier points to
the zero of the arc, they shall be exactly parallel and facing each
other. In this position a ray reflected by -both mirrors will have its
original direction unchanged. The horizon-glass is divided into
two parts by a line parallel to the frame. The first part next the
frame is a mirror, and is the horizon-glass proper. The outer
part, consisting of unsilvered glass, is not & mirror. A small tele-
scope screwing into a fixed ring, is held by the latter with its axis
parallel to the frame and pointing to the horizon-glass. The dis-
tance to the axis from the frame is so regulated that the objective
will receive rays passing through the unsilvered, as well as rays
reflected from the silvered, part of the horizon-glass. Since each
portion of an objective forms as perfect an image as does the whole,
the difference being only in degree of brightness of the image, it is
manifest that by pointing the telescope at one object and placing
another so that its reflected rays will be received by the objective,
an image of each object may be seen in the field of view, each per-
fect in detail, but less bright than if formed with the whole aper-
ture of the objective. The relative brightness of the two images
may be varied at will by simply moving the telescope bodily to or
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from the frame, thus presenting more or less of the objective to the
silvered part of the horizon-glass. For observation, they should be
equally bright.

Excessive brightness, as in case of the sun, is reduced by two
sets of colored shades of different degrees of opacity, one set for the
reflected, and one for the direct rays. These are supposed to be
of plane glass, but to eliminate any errors due to a possible pris-
matic form, they admit of easy reversal. A disk containing a set
of colored glasses is arranged to screw over the eye end of the tele-
scope. This should be used when practicable, gince any prismatic
form in these glasses will affect both direct and reflected  rays
equally.

Two parallel wires are placed in the focus of the objective, the
middle point between which marks the center of the field of view.
The line joining this point and the optical center of the objective -
is the axis of the telescope. It is this line which should be parallel
with the frame of the instrument.

Suppose now with the index-arm set at zero (in which case the
mirrors are parallel), the telescope is accurately directed to some
very distant point. Rays will pass through the unsilvered part of
the horizon glass and form an image at the center of the field of
view. Rays sensibly parallel to these will fall upon the index-glass,
be reflected to the horizon-glass, and thence into parallelism with
the original direction, since the angle between the mirrors is zero.

These reflected rays being parallel to the direct rays, will be
brought to the same focus, and there will be presented at the mid-
dle of the field of view, apparently one, in reality two, images of the
point, accurately coinciding.

Retaining the direct image at the middle of the field, let the
index-arm be moved forward, say 25°. According to the principle
of Optics cited, there will be superimposed on the first image that
of another point, separated from the first point by an angular dis-
tance of 50°. Accordingly in order to give the real value of an

“angle, the sextant graduations are marked double their true value.

Also according to the same principle of Optics, it foflows that if
the reading is 50° when the distance is 50°, the ray from the second
point and all its reflections must determine a plane perpendicular
1o both mirrors and hence parallel to the frame. If the instrument
and index-arm be 8o moved as to produce coincidence of images on
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either side of the field, evidently the last direction of the ray is not
parallel to the frame, the fundamental principle of the sextant is
violated, and the position assumed by the index-arm to give this
coincidence gives an incorrect value of the angle. The frame of
the instrument must therefore always be held in the plane of the
two points, which condition is fulfilled when coincidence of their
images can be produced at the centre of the field.

Hence, to measure an angle with a sextant: —Direct the tele-
scope to the fainter of the two objects and bring its image to the
middle of the field. Refaining it in this position,rotate the instru-
ment about the line of sight and move the index-arm slowly back
and forth until accurate coincidence of the two images is produced
at the middle of the field. Perfection of coincidence is produced
by use of the tangent screw. _

In measuring altitudes (e.g. of the sun) at sea, it is sufficient to
bring the reflected image tangent to the sea horizon, and correct
the resulting altitude for dip. On land the natural horizon cannot
be used for obvious reasons. Recourse is therefore had to an * arti-
ficial horizon ” consisting of a small vessel of mercury with its sur-
face protected against wind, etc., by a glass roof. An observer
placing himself in the plane of the “object ” and the perpendicular
to the artificial horizon, will by placing the eye at the proper angle
see an image of the object reflected from the mercury. Since the
angles of incidence and reflection are equal, this image may be re-
garded as another body at the distance of the object and at the same
angular distance delow the horizon as the real object is above it.
The measurement of the angle between the two will therefore give
the double altitude of the object. This measurement is accom-
plished by regarding the image seen in the mercury as the « fainter
of the two objects” mentioned in the foregoing rule, and then pro-
ceeding as there indicated.

If the body have a sensible diameter, as the sun, the altltude of
the center is the quantity sought, since all data in the Ephemeris
relating to the sun is given for its center. Nevertheless since it is
easier to judge of the exact tangency of the two images than of
their exact coincidence, it is the altitude of a limb which is always
measured. This, corrected for refraction, semi-diameter, and par-
allax, will give the true geocentric altitude of the center.

The sextant being usually held in the hand and therefore
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somewhat unstable, being also of small dimensions and graduated
on the arc only to 10’, a single measurement of an angle never
suffices for any astronomical purpose. Altitudes are therefore
always taken in “sgets ” and the corresponding times noted. There
are two methods of taking these sets according as the body is mov-
ing rapidly or slowly in altitude. The first case evidently applies
to extra-meridian observations, and the second to circum-meridian
and circum-polar observations.

To explain the first case, suppose it were required to take a set
of forenoon altitudes of the sun’s upper limb. First it is to be
noted that the image in the horizon as viewed by the telescope, is
erect; it having been inverted once by the reflection and again by
the telescope. The image reflected from the mirrors is however
inverted, and its lowest point corresponds to the upper limb of the
sun. Now point the telescope to the mercury (having applied the
proper shades), and place the upper limb of this image at the center
of the field. By the rotation and movement of the index-arm be-
fore described bring the image from the mirrors into the field
above the other. Since the sun is rising, this image (inverted) will
appear to be slowly falling in the field of view toward the other.
Set the vernier at the nearest outward exact division of the limb,
and note the instant when the two images are just tangent. Set
the vernier at the next exact outward division of the limb (which
operation separates the images), and note again the time when they
come to tangency, which will be only a few seconds later. So pro-
ceed until the set is complete. The altitudes are thus equidistant,
involve no reading of the vernier, and while waiting for contact
the instrument can be held steady by both hands.

To take altitudes of the lower limb, allow the falling image to
pass over the other and note the instants of separation.

In the afternoon, the image here described as falling, is rising.

In the second case, when the body is about to pass the meridian
or is near the pole, it is moving so slowly in altitude that we can-
not set the index-arm ahead by successive equal steps and wait for
the body to reach that altitude. Moreover upon passing the
meridian the motion in altitude is reversed. 'In this case we must
therefore measure the altitudes of the selected limb in as quick
succession as possible according to the ordinary method.

The same principles apply in case of a star.
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The glass forming the roof of the horizon may be somewhat
prismatic. The effect of this may be eliminated by taking another
set with the roof reversed.

ADJUSTMENTS OF THE SEXTANT.

Hitherto it has been assumed that both mirrors were accurately
perpendicular to the frame, that when they were parallel to each
other the index-arm vernier reads zero, that the center of motion
of the arm was the center of the graduated limb, and that the
telescope axis was parallel to the frame. The mirrors and telescope
are however not rigid in their connections, but each is susceptible
of a slight motion to perfect the adjustment. Well-known optical
principles together with the preceding remarks render any expla-
nation of these adjustments unnecessary.

1st. Adjustment:—To make the index-glass perpendicular to the
frame.

Set the index near the middle of the arc ; remove the telescope
and place the eye near the index-glass nearly in the plane of the
frame. Observe at the right-hand edge of the glass whether the
arc as seen directly and its reflected image form one continuous
arc, which can only be the case when the glass is perpendicular.
If not, tip the glass slightly by the proper screws until the above
test is fulfilled.

2d. Adjustment :—To make the horizon-glass perpendicular to the
frame.

'The first adjustment having been perfected, the second is tested
by noting whether the two mirrors-are parallel for some one position
of the index-glass. If so, the horizon-glass must also be perpen-
dicular to the frame.

Point the telescope to a 3d or 4th magnitude star, or to a distant
terrestrial point, the plane of the frame being vertical. Move the
index-arm slowly back and forth over the zero. This will cause
the reflected image to pass through the field ; if it passes exactly
over the direct image the two mirrors must be perpendicular to the
frame. If it passes to one side, tip the horizon-glass by the proper
screws until the test is fulfilled.

3d. Adjustment:—To make the axis of the telescope parallel to
the frame.

“Turn the telescope until the wires before referred to are parallel



T0 FIND THE TIME BY ASTRONOMICAL OBSERVATIONS. 57

to the frame. (An adjusting telescope in which the wires are well
separated is to be preferred.) Select two objects which are at a
considerable distance apart, as the sun and moon when distant 100°or
more from each other. Point the telescope to the moon and bring
the image of the sun tangent to it on one of the wires. Move the

. instrument till the images appear on the other wire. If the tangency
still exists, the telescope is adjusted. Otherwise tip the ring hold-
ing it, by means of the proper screws, till the test is fulfilled.

4th. Adjustment:—To make the mirrors parallel when the read-
ing of the arc is zero.

Set the index exactly at zero and point to the distant object
described in the second adjustment. If the two images are exactly
coincident, the adjustment is perfect. Otherwise turn the horizon-
glass around an axis perpendicular to the frame, by the proper
screws, until coincidence is secured. The mirrors are now parallel.

ERRORS OF THE SEXTANT.

It should be remembered that to whatever division of the arc
the index may point when the mirrors are parallel, this division is
the temporary zero, and from it all angle readings must be reckoned.
The fourth adjustment will not remain perfect; it is therefore
easier to determine the temporary zero from time to time, note its
distance and direction from the zero of the graduation, and apply
the correction to all readings. The distance in arc of the tempo-
rary from the fixed zero is called the “ Index Error,” positive if the
temporary zero lie beyond the graduated arc, negative if on. To
facilitate its measurement when positive, the graduations are car-
ried 4 to 5 degrees to the right of the zero, constituting what is
called the “extra arc.”

To measure the index-error, bring the mirrors to parallelism by
producing a perfect coincidence of the direct and reflected images
of a star or distant point; read the vernier, giving the result the
proper sign.

Another method specially applicable at sea is as follows:

Measure the korizontal diameter of the sun (so that the two
limbs may not be affected by unequal refraction), first on the arc
and then on the extra arc. Evidently one reading will exceed, and
the other be less than the diameter, by the index-error. One half
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the difference will then be the index error, positive if the larger
reading be on the extra arc.
As a verification, one fourth the sum should be the sun’s semi-
. diameter as given for the date in the Ephemeris.
Another error which must be attended to with equal careis the
“ Eccentricity.” This arises when the center of motion of the in-
dex-arm is not coincident with the center of the graduated arc.
The effect of such maladjustment is seen from Figure 15, @ being
the center of motion, and & that of
the arc. When the arm is in the posi-
tion e in prolongation of the line
joining the two centers, there is mani-
festly no error in the reading. When
at ad perpendicular to that line, there
is an error cd. Between these two
positions the error will be intermedi-
ate in value.

To determine this error, measure with a theodolite the angular
distance between two distant points. Then take the mean of
several measurements of the same angle with the sextant. The
difterence will be the effect of eccentricity for that reading of the
seztant. This operation should be repeated at short angular inter-
vals for the whole are, and the results tabulated.

Other methods may be adopted when the appliances of a fixed
observatory are at hand.

Fia. 15.

Nomenclature of the Astronomical Triangle.

A = azimuth angle = angle at the zenith,

P = hour angle = angle at the pole.

) = parallactic angle = angle at the body.

. 90° — ¢ = side from zenith to pole.

90° — & = d = side from pole to body = polar distance.

90° — @ = z =side from zenith to body = zenith distance.
In which

¢ = latitude of place.

6 = declination of body.

a = altitude of body.
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1I. TIME BY SINGLE ALTITUDES.

1. To Find the Error of a Sidereal Time-piece by a Single Altitude
of a Star. (8ee Form 3.)—The solution of this problem consists in
finding the value of the hour angle Z P S in the astronomical tri-
angle (see Fig. 16),-having given the three sides of the triangle,
viz.: Z P, the complement of the latitude, P S the polar distance
of the star, and Z ¥ its zenith distance. The latitude ¢ is sup-
posed to be known, the polar distance d is taken from the

E H M
Fie. 16.
Ephemeris for the date, and the altitude @, the complement of the
zenith distance, is measured by the sextant and artificial horizon.
The measured altitude having been corrected for errors of the sex-
tant and refraction, the above data substituted in the formula

8 m sin (m — a)
cos ¢ sin d

[m=2tdte]

will give the value of P, the star’s hour angle, which divided by 15
will give the hour angle in time. (The negative sign is to be used
if the star be east of the meridian.)

This plus the star’s R. A. for the date will give the sidereal
time, which by comparison with the chronometer time noted at the
instant of taking the altitude, will give the chronometer error.

As heretofore stated, reliance is not to be placed upon a single
measurement by so defective an instrument as the sextant. A set
of observations, from 5 to 10, is therefore made by recording the
times corresponding to successive changes of 10’ in the star’s
double altitude. These altitudes will thus be equidistant and in-
volve no measurement of seconds of arc.

/
sin} P =+ 2 ’ (62)
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In the computations it is usual to assume that the mean of the
times corresponds to the mean of the altitudes, as shown on Form
3, which implies that the star’s motion in altitude is uniform. This
in general is not true. We must therefore, to be as accurate as
posgible, either apply a correction to the mean of the times to
obtain the time when the star was at the mean of the altitudes, or
a correction to the mean of the altitudes to give the altitude at the
mean of the times. Whether corrected or not, the means are used
a8 a single observation. Also, since the refraction varis§wuniformly
with the altitude, the refraction corresponding to the nfban of the
altitudes requires, in strictness, a slight correction; although of much
less importance than the first. These corrections may as a rule be
omitted. Their deduction is glven in the following paragraph.

»J¢« To determine the correction to be applied to the mean of the
apjtudes or the mean of the times, the following deduction is ap-
ended essentially as given by Chauvenet.
To find the change in altitude of a star in a given interval of
time, having regard to second differences, let

e = f(P).
"Then a+ sra=f(P+ o P).
Expanding by Taylor’s Theorem,

ot aa=f(p)+ L ppp LID) (P) |

da da (aP)

Aa= IPAP—{-IPA--Q—

From the astronomical triangle,

sin @ = cos d sin ¢ -+ sin d cos ¢ cos P.

cosada = —sind cos ¢sin PdP.
da _ sindcos¢psin P _°
iP=" oma = ¢ @ sin A, (63)
A being the azimuth.
da d A
Fp = —cos ¢ cos A ------ (64)
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Also from the astronomical triangle in a similar manner,

dd__ cosisind

dPT " smnP ° - (63
% being the parallactic angle.
Whence
3
Aa=—cos¢psin 4AP +cos ¢sm;4nc;))s Acosy (AP) . (66)

Expressing A a and A P in seconds of arc and time respec-

tively, we have, after reductlon) BOL st yia T .
Jda .oy - R PRSI
PR

Aa= —cos¢sind (154 P)

cos ¢psin A cos A costp (154P) . _,
+ P 5 sin 17,  (67)

which gives the variation in altitude due to a lapse of A P seconds
of time.
The last term may be written

(15AP)’ "_ 28in"}AP _
2 nl sinl1” ™
Values of m are given in tables under the head of Reduction to the
Meridian.

Placing also, for brevity,

_ . __cos Acosyp
g = cos ¢ sin 4, k__sinT’

we have,
Aa=—159gAP + gkm,

a more convenient expression of the same relation.

Now let H, H’, H”, etc., denote the altitudes (corrected for
sextant errors), 7, 71", 7", etc., the corresponding times, a, the
mean of the altitudes, #, the mean of the times, and a,’ the altitude
corresponding to Z,, since this cannot be ¢,. It is now required to.
determine the relation between ¢,” and ¢, in order that the whole

£ a(,""."’/ .':A "'//
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set of observations may be resolved into one—a slngle altitude -
taken at the mean of the times.

The change H — a,’ required the time 7' — ¢,

The change H” — a,’ required the time 7” — ¢,
etc.

Therefore from the relation nAa = —159 A P+ gk m we
have, denoting the different m’s by m, , m,, etc.,

H—a'=—-19g(T—¢)+gkm,, % (68)
H—a'=—-159g(T"—=t)+gkm,,
etc. etc.
If there were n observations, the mean gives.
a,,—ao’=gkm'+m’-tbm’+etc'=g7cmo. (69)
Or
a’=a,—gkm, " (70)

The last term is therefore the desired correction to the mean of
the altitudes in order that it may correspond to the mean of the
times. -

It will however be more convenient to find such a correction as
applied to the mean of the times will cause it to correspond to the
mean of the altitudes.

Let ¢,” denote the time corresponding to the mean of the alti-
tudes.

The change @, — a,’ required the time ¢{,’ — ¢{,, Hence from
the preceding, we have, since #,” — #, is very small,

15g(to—to) == (ao _ao’) = _gkmo:
',=t — s km,

. _cos Acos . .
Expressing ¥ = —smp known quantities,
b= sin P cos ¢ sin d sin @ — cot P. M)

cos’
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. . .3 —
sin P cos ¢ sin d]l = 2sin’ 4 (T t,). (712)
cos a, cot a,

?,’ =t,+ ﬁ[:cotP -

n sin 1’

The refraction, r, belonging to the mean of the altitudes is or
rected, if desired, by the quantity

ginr 1 2sin’4 (a,— H)
. 2 - 2 . 173 .
sin’ a,n sin 1

H denoting the different altitudes.

~—

It is important to ascertain what stars are suited to the solution
of this problem.

Differentiating the equation derived from the astronomical tri-
angle (regarding a and P as variable),

8in ¢ = sin ¢ sin 6 4 cos ¢ cos d cos P, (V3"

and reducing by

cos ¢ _ gin P
cos 6 ~ sin 4’

we have
1

From this it is seen that any error ( @) in the measured alti-
tude will have the least effect on the computed hour angle when
@=0°and 4 =90°. That is, the method is less exposed to error
in low latitudes; but whatever the latitude, the star should be near
the prime vertical. The worst position of the star is when on the
meridian. -

Differentiating the same equation regarding ¢ and P as variable,
reducing by

cos @ cos A =sin J cos ¢ — cos J 8in ¢ cos P, (75)
and the same equation as before, we have

1

: dP:cosqbta.nA

d . (76)
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From this it is seen that any uncertainty as to the exact latitude
will also have least effect when the star is near the prime vertical
and the observer near the equator.

Differentiating with reference to § and P, we have

1

AP = st g’

a4, (77)

and it thus appears that an erroneous value of ¢ will also produce
the least effect when the star is on the prime vertical, since from
the equation

sin:/::ﬁ—g?gsinA

sin ¢ and therefore tan t will be a maximum when sin 4 is also
& maximum. '

From the three foregoing differential equations it is also seen
that the effect of constant errors either in the measured altitude,
the assumed latitude, or assumed declination, may be eliminated
by combining the results from two stars, one east and one west of
the meridian, and in as nearly corresponding positions as possible;
since then the corresponding values of sin 4, tan 4, and tan ¢ will
be numerically nearly equal and of opposite signs.

Hence the following general rule should be observed: In order

. to reduce to @ minimwmn the effect of errors either in the observations
or the assumed data, select a star which will cross the prime vertical
at some distance from the zenith (8 < ¢), and make the observations
near that circle. As the latitude increases, greater accuracy in the
observations and data 18 required in order to give a constant degree
of precision in the results. Stars very near the horizon should be
avoided on account of ‘excessive and irreqular refraction. The
adopted value of the clock error should be the mean of the results
from an east and a west star.

In the computation, if great accuracy be not essential, mean re-
fractions may be employed; their values are given in tables.

2. To Find the Error of a Mean Solar Time-piece by a Single Alti-
tude of the Sun's Limb. (See Form 4.)—This problem does not
differ in principle from the preceding. The observations are made.
on the sun’s limb, and therefore in addition to refraction the cor-

/'_\
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rection for semi-diameter at the time of observation must be ap-
plied. Also, since the sun has an appreciable parallax, and since
also the Ephemeris data supposes the observer to be at the earth’s
center, the altitude must be further corrected for ¢ parallax in alti-
tude.” Parallax in altitude = Equatorial Horizontal Parallax X o
X cos altitude, p being the ratio of the earth’s radius at the equator
to that at the place of observation. At West Point log p = 9.999368
— 10. The Equatorial Parallax is given in the Ephemeris, page
2178.

The sun’s declination (or polar distance) which is given in the
Ephemer:s for certain instants of Greenwich time, varies quite rap-
idly; and in order to determine this element at the instant of ob-
servation we must know our longitude and the error of the chro- .
nometer, to obtain which is the object of the problem. In practice,
however, the error will usually be known with sufficient accuracy
to find approximately the time elapsed since Greenwich mean noon.
With this assumed difference we find by interpolation in page II,
Monthly Calendar, the declination for the instant. The same re-
marks apply to the determination of the semi-diameter referred to
above, and the Equation of Time below. '

With the data thus found, compute P (in time) as in the pre-
ceding problem.

Then if it be a morning observation,

Apparent time = 12* — P,
If an afternoon observation,

Apparent time = P,

Apparent time + Equation of Time = Mean Time. This com-
pared with the mean of the recorded times gives the chronometer
error, and if this is found to differ very materially from the assumed
error, the declination and possibly also the Semi-diameter and
Equation of Time, must be redetermined, and the computation re-
peated. The sun should be observed as near the prime vertical as
is consistent with avoiding irregular refraction.

In all cases where time is to be determined by altitudes of the
sun, it is better to make a set of observations on each limb, and re-
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duce each set separately. If a difference of personal error in esti-
mating contact of images as compared with their separation exists,
it will thus be discovered and in a great measure eliminated.

III. TIME BY EQUAL ALTITUDES.

1. To Find the Error of a Sidereal Time-piece by Equal Altitudes
of a Star. (See Form 5.)—If the times when a star reaches equal
altitudes on opposite sides of the meridian be noted, the “ middle
chronometer time” will be the time of transit, provided the chro-
nometer has run uniformly. Hence we would have

T,+ T,
2

E=a— (78)

But if the refraction is different at the times of the two observa-
tions, the #rue altitudes will be unequal when the observed are
equal; which latter will consequently not correspond to equal hour
angles. Manifestly therefore one of the chronometer times (e.g.,
the last), requires a correction equal to the hour angle correspond-
1ing to the change in frue altitude,—this change being the difference
between the E. and W. refractions,—and the middle chronometer
time will require one half this correction.
Hence we have in full (see note at end of next problem),

_ T.+T7, , 1 (r.—ry,) cosa ~
E_a—[: 2 215 cospcosdsin £ |’ (79)

E being the chronometer error at time of meridian passage, a the
star’s apparent R. A., T, and T, the chronometer times of observa-
tion, r, and r,, the east and west refractions, and ¢ one half the
elapsed time between the observations. The above equation evi-
dently applies even when the times have been noted by a mean
solar chronometer, provided a be replaced by the computed mean
time of meridian passage. :

Use an Ephemeris star and make the first set of observations as
prescribed under “ Time by Single Altitudes.” Then with the same
sextant use the same altitudes in the second set, of course in the
reverse order.
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From the preceding Equation it is seen that the actual aititudes
are not required. Therefore unless the correction for refraction
is to be applied, no record need be made of the sextant readings or
errors. Also,under the same condition, the method is independent
of errors in the assumed latitude or the star’s declination.

As before, the observations should be made as near the prime
vertical as is consistent with avoiding irregular refraction. By
selecting a star whose declination is but a little less than ¢, it will
be on the prime vertical near the zenith, and we can probably avoid
the correction for refraction since the elapsed time will be small.
The sextant and chronometer also will be but little liable to changes.

If the eastern observations have been prevented by clouds or
other cause, we may still take the western observations, and the
eastern at the next prime vertical transit of the star; thus giving
the chronometer error at time of star’s Jower meridian passage.

2. To Find the Error of a Mean Solar Time-piece by Equal Alti-
tudes of the Sun’s Limb. (See Form 6.)—The general principles
involved and the methods of observation are the same asin the pre-
ceding problem. But since the sun changesin declination between
the times of the E. and W. observations, equal altitudes do not cor-
respond to equal hour angles. For example, when the sun is mov-
ing north, the morning will be less than the afternoon hour angle
at the same altitude. Manifestly therefore the afternoon hour angle
requires to be diminished by the change due to the change of decli-
nation, and the middle chronometer time by Zalf this amount, which
is accomplished in practice by adding the correction with its sign
changed. This correction is called the “ Equation of Equal Alti-
tudes.”

The middle chronometer time thus corrected gives the chro-
nometer time of apparent noon. 12" 4 the Equation of time at
Apparent Noon gives the mean time of apparent noon, and the dif-
ference is the.chronometer error on mean time at apparent noon.

Hence in full .

(r.— r,) cO8 @
cos ¢ cos Jsin ¢

T4+ T, 1
E=wze—[(F54+0) 4,5
+ (AK tan ¢ + BK tan a):l. (80)

A-DB+
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The last term in the bracket is the Equation of Equal Altitudes.
For its deduction, see note at end of problem.

4 and B are taken from tables. A is the sun’s hourly increase
in declination at apparent noon, taken from the Ephemeris by inter-
polation; ¢ is the sun’s declination at same time.

If a sidereal chronometer had been used, the above equation
would evidently still apply, substituting for 12" + € the sun’s R. A.
at apparent noon, and omitting 6" in the parenthesis.

For the application of this method to midnight, and effect of
errors in data, see Note. .

:[- Cortevtiom for Refraction.—To deduce the correction for re-
fraction employed in the two preceding problems, resume the dif-
ferential equation of the last note, ’

cos @ )
dP= cos ¢ cos 6 sin P d a (numerically),

which gives the change in hour angle (in arc) for a change in alti-
tude of da." ,

If the west refraction be less than the east, the sun will, in fall-
ing, reach the altitude a too soon, and the west hour angle must be
increased. Hency in this case the correction must be positive and
additive, and in an} case the correction with its proper sign in time
will be obtained from\the expression

(r.— r,) cosa
15°cos ¢ cos 6 gin £’

since 7, — r, is the change in,altitude da, and ¢, or one half the
elapsed time, is practically P.
For the middle chronometer tﬁﬂe, we therefore have

_ (7. l\q',,,) cos a
Cor. for Ref. = } 15 cos ¢\°QS S st (81)

N\,
The equation reduced as in the precediﬁg\note, gives
AN

AN
To—T .
—_—t "® - 82
ap 30 cos ¢ sin 4" ()
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\
Since r, — r,, may denote an error in altitude from any cause what-

ever, it follows that the obsefvations should be made near the prime
vertical.

Equation of Equal Altitudes.—In order to deduce the Equatlon
of Equal Altxtudes, resume th¢ equation

8in @ = sin ¢ 8in|d + cos ¢ cos J cos P.
Differentiate, regarding 6 and & as variable, and solving, we have

8in ¢ cos & — cos ¢ cos P sin &
cos ¢ fos d sin P

— (tan g _ tanid )
- (sin P tanlP s, (83)

dP =

dé,

which gives the change in hour angle due to a change d ¢ in decli-
nation.

Now if ¢ denote half the elapsdd time in hours, and K the hourly
increase in the sun’s declination at the middle instant (assumed to
be apparent noon), we will have

§
d6=2tK

Again assuming P to be the mean hour angle = ¢, and ¢ to be the
declination at the middle instant (mumed to be apparent noon), we
shall have for the change in hour'angle in time due to the in-

crease in declination \\

tan ¢ tan

ap= Tl‘(smt tan? 2K (84)

Since X denotes an increase in declmatlon, the afternoon hour angle
will be too large by the above quantity, hnd the middle chronometer
time too large by half the same quantity. Hence in any case, the
quantity to be added to the middle chronometer time to reduce it
to chronometer time of apparent noon is

Kttan¢+1(ttand‘
15sin ¢ 15 tan ¢ °
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¢

. t
Making 4 = — ;- B=qmn

Btz e have

Eq. of Equal Altitudes = 4 K tan ¢ + B Ktan . (85)

As in the preceding case, observations may be made in the
afternoon and the following morning to obtain the chronometer
error at midnight. Such a set may be regarded as A. M. and P. M.
observations respectively made by a person at the other extremity
of the earth’s diameter, and therefore in latitude — ¢.

Hence for midnight the Eq. would be

Kttang Kttand
15 8in ¢ 15tan ¢ °

(86)

Since ¢ is always less than 12", its sine is always positive. Also
tan ¢ will be positive when ¢ is l¢ss than 6% and negative when
more. From which it is seen that we may use a single equation for
both noon and midnight, viz.:

A Ktan ¢+ BKtan 6, «

by noting the following rule as to signs.

For noon, 4 is always negative, for midnight positive. For
noon or midnight B is positive when the elapsed time is less than
12" and negative when more.

The effect of errors in ¢ and & is readily seen by a differentia-
tion of the Equation.

Time of Sunrise or Sunset.—This problem is precisely similar to
that of single altitudes, except that the altitude of the sun is known
and therefore no observation is required. The zenith distance of
the sun’s center at the instant when its upper limb is on the hor-
izon is assumed to be 90° 50’, which is made up of 90°, plus 16’
(the mean semi-diameter of the sun), plus 34’ (the mean refraction
at the horizon). The resulting hour angle replaces P in Form 4.

Duration of Twilight.—The zenith distance in this case is 108°,
as twilight is assumed to begin in the morning or end in the even-
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ing when the sun’s center is 18° below the horizon. (See Art.
130, Young.)

From the solution of the Z P § triangle it can readily be shown
that the time required for the sun to pass from the horizon to a
zenith distance z is

t=— sm’W/ ! —smg :3: (j #), (87

in which ¢ and ¢’ (called the sun’s parallactic angles) are the an-
gles included between the declination and vertical circles through
the sun’s center for any zenith distance 2, and for the horizon re-
spectively, and ¢ is the observer’s latitude. Making 2 equal to 108°
this becomes

t= 2 gin=! 1'— cos8 18°cos (p — ¢ )
15 , 2 cos’ ¢

¢
h

(88)

from which the duration of ‘ltwilight for any latitude and any sea-
son of the year can be found; the values of ¢ and ¢’ are given by

in ¢ — sin ¢ cos 2

cos = / cos 0 sin 2z ’ (89)
and i ’
' gin ¢
008 ¥’ = Con 6 (%0)

When ¢ is equal to ¢’ ¢hen t is & minimum, and we have, after
replacing 1 — cos 18° by 2/sin” 9°,

t= ﬁ gin™ (sin 9° sec @), (91)

from which the duration of the shortest twilight is found. Under
the same condition we have from Eqs. (89) and (90),

gin d = — tan 9° sin ¢; (92)

from which the sun’s declination at the time of shortest twilight at
any latitude can be found.
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DAL /Lo?m%r%n

The latitude of a“place on the earth’s surface is the declination
of its zenith. The apparent zenith is the point in which the plumb-
line, if produced, at the point of observation would pierce the celes-
tial sphere. The central zenith is the point in which the radius of
the earth, if produced, would pierce the celestial sphere. The lati-
tude measured from the central zenith is called the geoceniric lati-
tude, and that from the apparent zenith is called the astronomical
latitude or simply the latitude. The difference between the lati-
tude and the geocentric latitude is called the reduction of latitude.

The direction of the plumb-line is affected by the local attrac-
tion of mountain masses on the plumb-bob, or on account of the
unequal variations of density of the crust of the earth, at or near
the locality of the station. The Astronomical latitude is deter-
mined from the actual direction of the plumb-line, and therefore
includes all abnormal deviations. The Geographical or Geodetic
latitude is that which would result from considering the earth a
perfect spheroid of revolution, without the abnormal deviations
above referred to.

Form and Dimensions of the Earth.—Before proceeding to the
latitude problems it is important to derive some necessary formulas
from the form and dimensions of the earth. For this purpose, let
us assume that the earth is an oblate spheroid about the polar axis.

z2l

Fia. 17.

Let E P’ O be a meridian section of the earth through the observ-
er’s place 0; C P’ the earth’s axis; £ @ the earth’s equator and
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H H the observer’s horizon. Let P be the pole of the heavens; Z
the apparent and Z’ the central zenith; ¢ the latitude and ¢’ the
geocentric latitude. The equation of the observer’s meridian re-
ferred to its center and axes is

a!y! + b!zi —_ a!b!, (93)

in which @ and b are the equatorial and polar radius of the earth.
The codrdinates of O being 2’ and y’, we have the following ana-
lytical conditions.
For the fangent at O, coincident with the horizon, from
a’yy’ + b2z’ = a'b'; ' (94)

and the normal at O, through the apparent zenith Z, from

ay (z—2')=b02' (y—y')=0. (95)
From Eq. (94), we have
L )
tan 0 4 C = tan (90° — ¢) = z,—’;,; (96)
whence )
bz’ tan p =a'y’. ¢/C (97)
Substituting in
a yn + 82" = a'h* (98)
and eliminating & by
a - .
S = s (99)
we have
a cos ¢

Y=
VY1 —¢é' sin’ ¢’

,_a(l—e)sing
T¥Y1—¢sin'@

(100)
y

Let s be the length of any portion of the meridian; then for the

elementary arc, its projection on the major axis z, is i

dscos 0OAC=dssin o= —dz’, (101)
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since 2’ is a decreasing function of the latitude. Differentiating
the first of Eqs. (100), we have

r_ _ . (1L—¢)sin ¢d¢.
dg'=—a (1 — ¢* sin’ @)} ’ (102)

Equating (101) and (102), we have

ds:aM

(1 — ' sin® @)’ (103)
and for any other latitude ¢, ,
ds,=a-1=0)d¢ (104)

(1 — ¢'sin® ¢,)‘.
Let d ¢ = 1°, then dividing (103) by (104), we have

ds _ (1—e'sin’ o) _1—3esin’ g,

ds, (1—ée'sin’¢)i 1—§e'sin’¢

nearly, (105)

which, after solving with reference to ¢*, reduces to

ds—ds,
dssin’¢p —ds, sin* @,’

2
=3 (106)

[

from which the value of the eccentricity of the meridian can be
found when the measured lengths ds and ds, of any two portions
of the meridian line, each 1° in latitude, and the latitudes ¢ and
¢, of their middle points are known; for the earth, this has been
found to be about 0.0816967.

To find the equatorial and polar radii, we have from Eq. (103)
after making d¢ =1°,

a =

. ds (1= ¢ sin® g, (107)

and from the property of the ellipse,
b=a¥1—2¢\ (108)
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To find the radius of curvature R at any point of the meridian.
After substituting the values of dz, dy, and d’y, taken from Egs.
(100), in the general formula for radius of curvature,

dz* dy* ]
R=+ (_%fyy_) , (109)
we have
1—¢ (110)

R=a —
(1—¢'sin’ @) ’
and hence the length of one degres of latitude at any latitude ¢ is,

27 R_2ma 1—¢
B =35 = 360 1 —¢sin'g) (1)

To find the length of a degres on a section perpendicular to the
mertdian at any latitude ¢ we proceed as follows: The radius p of
the earth at the observer’s place, is the minor axis, and the equa-
torial radius a is the major axis of the elliptical section, cut out of
the earth by a plane perpendicular to the meridian plane, passed
through the center and the observer’s place.

Squaring and adding Eqs. (100) and extracting the square root,
we have the radius of the earth at the observer’s place; or

— _e(1—¢")sin"p_ 1—2¢sin’p+e'sin’ ¢
p-a‘/l 1—¢'sin’ ¢ _a1/ 1—¢'sin’ ¢ (112}

The square of the eccentricity of the section is

a' — p’= e (1—e¢)sin’ @,

0" —_
a l—¢sin*eg °’

which being substituted for ¢’ in Eq. (111) after making ¢ = 90°,
gives

2 1 —e¢'sin’ @
'___' .
B =360 1—¢ (2—¢)sin’ @

(113)
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To find the length of a degree of longitude at any latitude ¢,
we know, Eqs. (100), that the radius of the parallel is 2’; therefore
we have

2w, 27, cos ¢

360° =360 YT —¢ s’ ¢ (114)

a=

The value of the radius of the earth at any latitude ¢, is de-
rived from Eq. (112) or,

p=a‘/1—2e’sin’¢+e‘sin’¢

1 —¢*sin’ ¢ ?

which, for logarithmic reduction, when ¢ is made unity may be
placed under the form

x. log p = 9.9992747 + 0.0007271 cos 2 ¢ — 0.0000018 cos 4 ¢. (115)
From the figure and Egs. (100), we have

a cos ¢

Y1 —¢'sin’ ¢’

' =pcos ¢ = (116)
a(l—e¢"sin @

) 3 {—
S v o (1)

Multiplying these equations b¥ 08 ¢ and sin ¢ respectively, adding

and reducing we have - gl
cos (¢ — ¢') = % VI —¢sn &, (118)
and from (116),
a cos @
cos ¢ = e
¢ PY1—=¢sin’ ¢ (119)

Whence by combination we have

cos ¢’ cos (¢ — @) = — cos ?; (120)
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and solving with reference to p we have

cos @

p=a ‘/cos @ cos (¢p —¢')’

(121)

which is capable of logarithmic computation. :
To find the reduction of latitude ¢ — ¢’. Since ¢ is the angle

made by the normal with the axis of z we have A
S
tan ¢ = — Iy ) - (122)
and from the figure we have i PR
a/‘f

mnw=%- (123) .

Differentiating the equation of the meridian section we have

Z=— a—'Zi; . (124)
Whence
tan ¢’=f7,tan ¢=(1—¢) tan ¢, (125)

Developing into a series, we have

e e \'.
¢—¢'=2_e,sm2¢— (2—_—5,) sin 4 ¢ +etc.  (126) X
But since ¢ = 0.0816967 this reduces to é\ / .
7 {
¢ — ¢ =690".658in 2 ¢ —1".16 sin 4 ¢ very nearly.  (127) VLU

Latitnde Problems.—The general problem of latitude consists

in finding the side Z P in the Z P S triangle, any other three parts
being given.

Differentiating (73’), regarding first @ and ¢ and next P and ¢
ag variable, and reducing by (75) we obtain

«w¢=sec Ada,
and
d¢ =tan 4 cos pd P, '

e & = %?0%44 W%)WD[ C'/f‘d?

sz v - wozw/’— epvd o ¥ s P
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W\

Whence observations for latitude should as a rule be made upon a
body at or near the time of its culmination.

The following are the methods usually employed.

1. By Circumpolars.—This depends on the fact that the altitude
of the pole is equal to the astronomical latitude of the place. Let
a and a’ be the altitudes of a circumpolar star at upper and lower
culmination respectively, corrected for refraction and instrumental
errors; d and d’ the corresponding polar distances, and ¢ the lati-
tude; then we have

p=a—d, p=a +d, ¢=4}@+a)+3@—ad.

The change from d to d’is ordinarily so small in the interval
(12 hours) between the observations as to be negligible; it is due
solely to precession and nutation. This method is free from dec-
lination errors, but subject to changes and errors in the refraction.
It is therefore an independent method, and is the one used in fixed
observatories where the observations can be made with great accu-
racy even during daylight by the transit circle. With the sextant
the method is applicable only in high latitudes during the winter
so that both culminations occur during the night time. A star
with a small polar distance is to be preferred, to avoid irregular re-
fraction at the lower culmination.

The sextant, however, is not well adapted to this method, since
the least count of its vernier is usually 10"/, and at culmination
only a single altitude can be measured, even if the instant of cul-
mination be accurately noted by a chronometer. But if Polaris be
the star chosen, a series of observations may be made during the
five minutes immediately preceding and following culmination, and
at no time during these ten minutes will the star’s altitude differ
from its meridian altitude by more than 1’.1. Errors within this
limit would not be detected by even the best sextant observations,
and the mean of the measured altitudes will therefore be the me-
ridian altitude witk the usual precision.

Even if a be regarded as too small when found in this manner,
o’ will be too large by practically the same amount, and % (a + a’)
will be correct.

2. By Meridian Altitudes or Zenith Distances.—This method de-
pends on the fact that the astronomical latitude of a place is equal
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to the declination of its zenith. If the star culminate between the
pole and the zenith, then
p=0—2,

where Z, is the meridian zenith distance of the star. If between
the zenith and equator, then

p=0+z2,

We have therefore only to measure z,, take & from the Ephemeris,
and substitute in one of these equations.

This method is a very exact one when the observations are made
with an instrument, such as the transit circle, accurately adjusted
to the meridian, and whose least count is small. It is subject to
errors of both declination and refraction; although the latter as
well as any constant errors in the measured altitudes may be nearly
eliminated, as is seen from the preceding equations, by combining
the result with that from another star which culminates at about
the same time at a nearly equal altitude on the opposite side of the
zenith.

For reasons stated above, the sextant is not well adapted to this
method except at sea, where the highest accuracy is not requisite.

3. By Circum-meridian Altitudes.—If the altitude of a celestial
body be measured within a few minutes of culmination, we may by
noting the corresponding time very readily compute the difference
between the measured altitude and the altitude which the body
will have when it reaches the meridian. This difference is called
the “ Reduction to the Meridian,” and by addition to the observed
will give the meridian altitude. If several altitudes be measured
and each be reduced to the meridian, we may evidently, by taking
the mean of the results, obviate the inaccuracies incident to the
use of the sextant in the last problem.

These are called “ Circum-meridian Altitudes,” and their reduc-
tion to the meridian is rendered very simple by the special formula

cos¢cosd. 2 sin®* 4 P

4 =a+ cos a, sin 1"
cos ¢ cos d\* 2s8in‘4 P
— (220 e . .., (128
( Cos @, )tana, sni1” T » (128)

the deduction of which will be given hereafter.

N\
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In this formula ¢ is the true altitude, 6 the declination, and P
the hour angle, all relating to the instant of observation; @, is the
2 sin*4 P 2 gin'3 P

sin 1" and sin 1”
given in tables with P as the argument. For small values of P the
series will converge rapidly provided a, is not too large.

Having the meridian altitude, the latitude follows as in the last
method.

For stars below the pole, we have simply to reckon P from the
time of lower transit, and ¢ as exceeding 90° by the star’s polar
distance. Cos ¢ will thus change its sign and both terms of the
reduction become negative.

From (128) it is seen that for computing @, we require both «,
and ¢; but as will appear later, approximate values will suffice.
If an approximate value of ¢ be known, that of a, follows from

desired meridian altitude. Values of are

a, =06+ 90° — . - (129)

If not, one may be found as follows: In this method, double alti-
tudes are taken in as quick succession as possible from a few min-
utes before until a few minutes after meridian passage. The great-
est altitude measured will therefore be very near the meridian
altitude, and its substitution in (129) will give a value of ¢ suffi-
ciently accurate for the purpose..

The mode of making observations and reductions in case of a

" star with sidereal chronometer, will be at once apparent from an

explanation in case of the sun with a mean time chronometer. It
must be borne in mind that the declination of the sun is constantly
changing.

The observations are mac> as just explained on a limb of the
sun, viz.: Several double altitudes are taken as near together as
possible, as many before, as after meridian passage, and the corre-
sponding chronometer times noted. (Note the difference between
this, and sextant observations for time.) )

Now if we suppose each observation to have been reduced to
the meridian, after correcting for refraction, parallax and semi-
diameter, we would have several equations of the form -

- a,=a+ Am— Bn,

b S VAV

\ . { .
j ) \ Cov b .

- (y : .
QK& -/ L RN
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2gin’ 3 P 28in' § P
sin 1’/ »and gin1” ’

and 4 and B the remaining factors of the corresponding terms in
Equation (128). Any one of the equations will give for the lati-
tude,

in which m and » are the tabular values of

¢=06+90°— (e + Am —Bn). (130)

In this equation, & is the declination at the time of observation.
For, since the reduction to the meridian has been made with this
value of d in obtaining 4 and B, a + 4 m — Bn is manifestly the
meridian altitude of a body whose declination is constantly 6. In
fact, the reduction to the meridian by the formula given, can be
computed only on the hypothesis of a constant declination. We
are thus dealing with a fictitious sun, whose declination on the me-
ridian differs from that of the trne sun. But since declination and
meridian altitude always preserve a constant difference (the colati-
tude), we see that Equation (130) will give the correct value of ¢,
due to perfect balance in the errors of 6 and (2 + 4 m — Bn).

The mean of all the equationg due to the several observations
will be

¢= 60 + 90° — (ao + Aomo - Bono)' (131)

Reasoning in the same manner with reference to the mean fictitious
sun (with its declination d, and meridian altitude [a, 4 4,m,—
Bn,]), we see that the result will be perfectly rigorous in ¢keory
if we employ the mean, &,, of the actual declinations, not only for
the first term in the value of ¢, but for the single computation
of A,and B, We thus avoid a separate computation for each
observation.

The result will moreover be perfectly rigorous in practice if we
use for &, the declination corresponding to the mean of the times;
gince in the 30 minutes covered by the observations, the departurc
of the sun’s declination from a wniform increase or decrease, is
negligible.

We have still to determine the value of P from the chronometer
time of each observation, and in this determination it must be borne
in mind that P (in arc) is the angular distance of the #rue sun
from the meridian at the instant of observation.
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There are two reasons why this distance (in time) cannot be
given directly by a mean time chronometer. First, the chronom-
eter will usually be gaining or losing, ¢.e., it will have a * rafe.”
Secondly, a mean time chronometer, even when running without
rate, indicates the angular motion of the mean sun, which may be
quite ditferent from that of the ¢rue sun, as shown by the continual
change in the Equation of Time.

We therefore proceed as follows: From Page I, Monthly Calen-
dar of the Ephemeris (knowing the longitude), take out the Equa-
tion of Time. Add this algebraically to 12 hours, apply the error
of the chronometer, and the result will be the chronometer time
of apparent noon. The difference between this and the chro-
vpometer time of each observation, gives the several values of P in
time, each subject to the two corrections mentioned. To find the
correction for rate, let  represent the number of seconds gained or
lost in 24 hours (a losing rate being positive for the same reason
that an error slow is positive). Then if P’ be the corrected hour
angle, we will have

b P’:P::86400 : 86400 — ' [86400 = 60 X 60 X 24].
" Or
86400

) ——— O
P _P86400—r.

Or

9 sin'§ P/_ 2sin’ § P( 86400 ) _ . 2sin’} P
gin 1”7 ~  sin 1”7 \86400 —r/ gin 1”

Hence we will also have

cos ¢ cos 6 2 sin? § P

Am (corrected for rate) =k cos a, 17

Hence if we compute 4 by the formula

cos ¢ cos 6
A=k _L,
cos @,
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we may employ the actual chronometer intervals and pay no far-
ther attention to the question of rate.

From & = ( 86400 ) », values of X are tabulated with the rate
86400 — r

88 the argument.

The second correction depends, as just stated, on the difference .
between the motions of the true and mean sun, while the former is
passing from the point of observation to the meridian. In other
words it depends on the change in the Equation of Time in the
‘same interval, or, which is the same thing, upon the rate of an ac-
curate mean solar chronometer on apparent time.

If therefore we let ¢ represent the change in the Equation of
Time for 24 hours (positive when the Equation of Time is increas-
ing algebraically), it is evident that » — ¢ will be the rate of the
given chronometer on apparent time, and that the correction for
this fofal rate may be computed as just explained for r, or taken
from the same table, using » — ¢ as the argument instead of r alone.

The operation of reducing the observations is then, in brief, as
follows.

By Circum-Meridian Altitudes of the Sun’s Limb.—Form 7.

Correct the mean of the double altitudes for eccentricity and in-
dexerror. Correct the resulting mean single altitude for refraction,
semi-diameter, and parallax in altitude. Denote the result by a,.

From the Equation of Time (Page I, Monthly Calendar), longi-
tude and chronometer error, find the chronometer time of apparent
noon.

Take the difference between this and each chronometer time of
observation, denote the difference by P, and their mean by P,.

With each value of P, take from tables the corresponding
values of m and n. Denote their respective means by m, and =,

From Page II, Monthly Calendar, take the sun’s declination
corresponding to the local apparent time P,, and denote it by ..

If ¢ can be assumed with considerable accuracy, determine the
corresponding @, by a, = 6, 4 90° — ¢

If not, take the greatest measured altitude, correct it for refrac-
tion, etc., call it @, , and deduce ¢ from the above equation.

From the rate of the chronometer and change in Equation of
Time, (both for 24 hours,) take £ from the table.
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With these values of %, ¢, a,, and J,, compute

__cos ¢ cos O

4 *k, and B, = 4, tan a,.
cos a,

The latitude then follows from

¢=20,+90° — (a, + A,m, — Bn,). (132)

By Circum-Meridian altitudes of a Star.—Form 8.

With a star observed with a sidereal chronometer, the observa-
tions are the same, and the reduction is only modified by the fact
that parallax, semi-diameter, equation of time and longitude do not
enter, while the declination is constant.

.If the star lie between the zenith and pole, the formula becomes

¢ = (a, + 4;m, — Byn;) — 90° 4 6. (133)
If below the pole, '

.
. -

¢=(a,—Am, — Bmn,) + 90° —4,. (134)

1. An Ephemeris star is to be preferred to the sun, since the
reduction is more simple, its declination is better known and con-
stant, it presents itself as a poinf, which is of advantage in sextant
observations, and we have a greater choice both in time and the
place of the object to be observed.

2. By comparing Eqs. (132) and (133) we see that constant
errors in the measured altitudes, and in refraction, will be nearly
eliminated by combining the results of two stars, one as much
north as the other is south, of the zenith.

Also from the principal term of the Reductjeh to the Meridian,
cos pcos & R2sin*t P
cosa,  sinl”
knowledge of the chronometer error, giving an incorrect value of
P may be eliminated by taking another observation at about an
equal altitude on the other side of the meridian ; since, P being
very small, sin’ § P will be as much too large in one case as it will

be too small in the other.

, it is seen that the effect of an imperfect

7 u.;w*—— s 0 t\\ ?
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The double altitudes should therefore be taken at as nearly
equal intervals of time and be as symmetrically arranged with refer-
ence to the meridian, as practicable.

3. By rewriting the assumed formula for the reduction, ex-
pressing the first term as a function of ¢ and & only, and including
the third term which has heretofore been omitted, we have (Form-
ula 2, P. 4, Book of Formulas),

' _ 1 ___tana, 4(1+3tan’a,)
4Gl Gang—tand " (tan¢—tan6)’n+(ta,nq)—tan&l)'s’
and

_ 1 _ tan a, (14 3tan’a,)
4= = Gno—tang " (tané‘—tantp)’lu (tan 6 — tan ¢)*”

for south and north stars respectively.

2gin’{ P .2sin'} P 2 sin® § P
M=——N, MW= ——— &= ———pf—
_8inl . . 8nl gin 1

From these equations it is seen that if a star be selected which
culminates at a considerable distance from the zenith, either north
or south, each term of this development is much smaller than in
case of a star culminating near the zenith, either north or south.

Since the third term has been entirely neglected in the previous
discussion, it becomes desirable to select our star in such a manner
that the omitted term (and hence all following it) shall be small;
and this, as just seen, will occur when there is considerable differ-
ence between the latitude and the star’s declination in either direc-
tion.

From the above expression for the third term, knowing the ap-
proximate latitude, we may readily find the hour angle of any given
star, within which if the observations be confined, the value of the
term will not exceed any desired limit—say 0’”.01 or 1””.  Similarly
for the second term. We thus ascertain how long before culmina-
tion the observations may safely be begun when it is proposed to
omit one or both terms in the reduction.

For example in latitude 40° N, if we observe a star at declina-
tion 0°, the observation may be made at 20™ from meridian passage
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and yet the third term amount only to .01’’, which would affect the
resulting latitude by one linear foot. Or it may be made at 27™
from culmination, and the third term amount only to .1”’, affecting
the resulting latitude by ten feet.

A star at an equal altitude north of the zenith, declination 80°
(for combination with the preceding as recommended), may be
observed at 48 and 62 minutes from culmination, with no larger
€ITors.

With other latitudes the figures will vary, but the principle re-
mains the same.

From an inspection of the third term

% (14 3tan’a,) 2sin°} P
(tan ¢ —tan 6)* sin1” °

it is seen that an unfavorable position of the star, causing the first
factor to be excessive, may be counterbalanced by dlmmlshmg the
hour angle, P.

Hence the general rule: Select a star whose declination differs
considerably from the latitude.” This will give ample time for tak-
ing a series of altitudes. As the declination of the selected star
approaches the latitude, restrict the observations to a shorter time,
greater care tn this respect being necessary for south stars. Ar-
range the observations as symmetrically with reference to the me-
ridian as practicable, and use at least two stars—on opposite sides
of the zenith.

4. Finally, if a mean solar chronometer be used with a star, the

86400
86400 —r
must evidently be reduced to sidereal intervals by multiplying by
1.00272791 heretofore deduced. That is

corrected m. s. intervals defined by the equation P’ =

86400
' =P 1002
P’ = P g ——1.00273791,

and the factor for rate will be £ (1.00273791)" instead of k.
Similarly if a sidereal chronometer be used with the sun, the
factor for rate will be £ (0.99726957)" instead of %.

. ——
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5. To Determine the Reduction to the Meridian.—The difference
between a circum-meridian and the meridian altitude of a body is
called the “ Reduction to the Meridian.”

Its nature will be understood from Figure 18. S is the place
of the star; S’ the point where it
crosses the meridian, (P8 = P §');
and SS” the arc of a small circle
of which Z, the zenith, is the pole,
(28" =28). z & will therefore
be the meridian zenith distance
=2,=90°—a,; ZSor ZS" wil
be the circum-meridian zenith dis-
tance = z = 90° — a; and if = denote the Reduction to the Meri-
dian = S’ 8"/, we shall have

a,=a-+2. (a)

The several terms of Equation (128) after ¢ therefore represent
; and it is required to deduce this value of = arranged, as is seen,
in a series according to the ascending powers of sin* { P,

The equation heretofore deduced, viz.:

Fra. 18,

cos z = sin ¢ sin & + cos ¢ cos & — 2 Cos ¢ cos ésin’} P,

gives by reduction (since sin ¢ sin -+ cos ¢ cos & = cos (¢ —9)
= Co8 2,),
cos z, —cos z — 2 cos pcos &in’ } P=0. %)

Putting for convenience 2 cos ¢ cos & =m, and sin'{ P =y,
we have
cosz,—cosz—my =0, @)
We also have
z=a,—a, or 2=%+2, (c)

€08 z = €08 % COB%, — 8in z8in z,.

Hence from (3’)
cosz, — cos z Co8 7, + sinz sinz, —my = 0. @)
Now let

¢=Ay+ By + Cy' + etc, (e)
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be the undetermined development desired. From the relation ex-
pressed by (d), we are to determine such constant values of 4, B,
and C, as will make the series, when convergent, true for all values
of y. Therefore let the values of cosz and sin z derived from (¢)
be substituted in (d). The resulting equation will, from the con-
dition imposed on (¢), be an identical equation.

To find cos z and sin z for this substitution, we have from cal-
culus,

cosx—l——-+etc,

xl
sinz =2z —g—{-etc.,

and from (¢),

cosz=1—} (A'y*+ 2 A By' + etc.),
sinzg=Ay+ By'+ Cy' —} Ay* — ete.
Substituting in (d),

cosz, —cosz, +4 A*cosz,y'+ ABcoszy' +sinz, Ay
+s8inz, By’ +s8inz, Cy* — }8inz, A’y — my =0.

Collecting the terms,

gin z, 4 3 A* cos 2 008 %

2 I 3  J—

m ‘ }y+%+lenz:§y+; ;_n;uz;zo 1:}‘1/ =0.
‘4

From the principles of identical equations

. m
ginz, A—m=0. 4=—+——.
: gin 2,
1m® cos z, . © 1 m’cot 2,
3 e, TOsmz=0 B=-—g sin’z,'
m' cot’ z 1 m

(1 + 3 cot’z,).

1
F —sin 2z, C=0. 0—-6

l
sin’ 2, +6 sin’ 2, sin
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Therefore

]
cos ¢ cos 623in’%—P—(cos & cos 6)tana,2sin‘%P

cos a, cos a,
2(cos¢cos¢5 2 . . e
-|-§ poes é-l—-) (143 tan’ @,) 2 8in* 3 P.

Reducing the terms of the series from radians to seconds of arc,
we have for the value of a,,

al=a+cos¢cos¢$2sin’§P _ (cos¢cos§)’tanal2sin‘iP

cos @, gin 1” cos @, sin'1”

+2§(Q§_¢ cos‘d)’(l + 3tan’ a,) g8in"$ P etc. / /

cos @, sin 1" //.//%
THE ZENITH TELESCOPE.

This instrament, being employed in the next latitude problem,
will now be briefly described, and the manner of determining its
constants explained. Its use, as will be seen, is limited to field
work, and it therefore forms no essential part of the equipment of
a permanent observatory.

The instrument consists of a telescope like that of the transit,
mounted at one end of a horizontal axis, counterpoised by a weight
at the other. The telescope turns freely in altitude about this axis,
which is in turn supported by a conical vertical column rising from
the centre of a horizontal graduated circle, the circle resting on a
small frame consisting of three legs whose feet are levelling screws.

The horizontal axis with the telescope attached turns freely in
azimuth abeut the vertical column. the amount of such motion
being indicated by a vernier sweeping over the horizontal circle.
By this motion the instrument is placed in the meridian.

The setting circle is similar to the one described in connection
with the transit. It is rigidly attached to the body of the telescope,
and reads to single minutes of zenith distance. The attached level,
connected with the movable vernier arm of the setting circle, being
intended to measure as well as to indicate differences of inclina-
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tion, is of considerable delicacy. The instrument is provided with
clamp and tangent screws for both motions, also the usual adjusting
SCTews.

The field of view presents the appearance shown in Figure 20;
sometimes however the number of a
vertical wires is increased so that | \1
the instrument may if necessary be /
used as a transit. The wires are
all fixed except ¢ &, which can be
moved up or down parallel to it-
gelf, and is called the declination *
micrometer wire. The comb-scale
fg is so cut that one turn of the
micrometer head carries the wire \ A
i k exactly from one tooth to the L_/e
next, thus recording the number b
of whole revolutions between two F1a. 20,
positions of the wire. Hundredths of a revolution are shown on the
micrometer head by a fixed index. These are called divisions.
(Arrangements for illuminating the wires are the same as with the
transit.)

Therefore it is seen that if, when the instrument is adjusted to
the meridian, two stars cross the middle wire at different times and
in different places, but yet within the same field of view, we may
find the difference of their meridian zenith distances by bisecting
each in succession by the movable at the instant of its passing the
middle wire, noting the difference of micrometer readings, and
multiplying the result by the value in arc of one division of the
micrometer head: or if the attached level shows the telescope to
have altered its angle of elevation between the observations, thus
apparently displacing the second star in the field of view, we may
still correct the micrometer reading provided we know the value in
arc of one division of the level.

It is therefore necessary to determine for each instrument these
two constants.

,l
The Attached Level and Declination Micrometer of the Zenith -

Telescope.—Since the level is neither detached, nor attached to a
circle reading to seconds, neither of the modes of finding the level
constant given in connection with the transit, is available. The

S
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same is true of the micrometer constant, since the micrometer wire
is now parallel, not perpendicular, to the apparent path of a star at
its meridian passage. With the zenith telescope the usual method
of finding these two constants is to find the value of a division of
the level in ferms of a revolution of the micrometer head. Then
after finding the latter (which involves the former) we may find
the actual value of a division of the level in seconds of arc, as will
now be explained. The formulas come at once from the astronom-
ical triangle, remembering that at the time of a star’s elongation
the triangle is right-angled: ( = 90°).

Direct the telescope to a small, well-defined, distant, terrestrial
object, and set the level so that the two ends of the bubble will give
different readings. Bisect the object with the micrometer wire,
note the reading, also that of each end of the bubble. Move the
telescope and level together by the tangent screw until the bubble
plays near the other end of the tube. Again bisect the mark by the
micrometer wire and note all three readings as before. The mean
of the number of divisions passed over by the two ends of the bub-
ble is then the number of divisions passed over by the bubble. The
difference of the micrometer readings is the run of the micrometer.
Dividing the second by the first, we have the value of a division of
the level in terms of a revolution of the micrometer. Take a mean
of geveral determinations and denote it by d.

We can now find the value of one division of the micrometer.
For reasons stated when treating of the R. A. micrometer, we use a
circumpolar star, and at the instant that its path is perpendicular
to the wire in question. This requires us to take the star at its
elongation. Manifestly the same principles apply to the two cases,
since the principal difference is that the star and wire have each
been apparently shifted 90°; the motion of the star with reference
to the wire not having changed. Some changes in detail are how-
ever necessary. In the first place, since the motion of the star is
almost wholly in altitude, we cannot as before neglect differences in
refraction between two transits. Again, since the pressure of the
hand in working the micrometer head is in a direction to cause a
possible disturbance of the instrument even though firmly clamped,
we must read the level at every transit, and if any change has oc-

“curred, correct the micrometer readings accordingly.
As a preliminary, we must determine the time of elongation

>
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(in order to know when to begin our observations), and the setting
of the instrument, 7.e., the azimuth and zenith distance of the star
at the time of elongation. The hour angle is found from

cos P, = cot ¢ tan ¢,
from which the sidereal time of elongation is given by
T,=a+P,—E, (135)

in which a is the star’s apparent R. A. for the instant, and Z is the
error of the chronometer. The plus sign is used for western and
the minus for eastern elongations.

The azimuth is given by

sin 4 = c0s &’ (136)
and the zenith distance by
_sging
cosz, = ¢ (137)

Set the instrument in accordance with these coSrdinates 20 or
30 minutes before the time of elongation, and as soon as the star
enters the field, shift-the telescope if necessary so that it will pass
nearly through the center.

The observations are now conducted in exactly the same man-
ner as for the R. A. micrometer, with the addition that each end of
the level bubble is read in connection with each transit.

Then, as before, each observation is compared with the one
made nearest the time of elongation, 7', the interval of time
being computed from either

sin ¢ = sin I cos G, (137%)
or '
1= Icos d,

according to the declination of the star. After which we have in
arc (neglecting for the present differences of refraction and level),

, _15i
B'=r
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M being the number of micrometer revolutions or divisions be-
tween the two positions of the star, and R’ the value of one revolu-
tion or division.

But if the reading of the level is different at the two observa-
tions, manifestly M must be corrected accordingly.

For instance, if the level shows that between the two observa-
tions the telescope had moved wifh the star in its diurnal path,
then evidently the micrometer will indicate only a part of the
angular distance between the two positions of the star, and the
level correction must be added to the micrometer interval. Con-
versely, if the telescope has moved against the motion of the star.
This level correction is found as follows : if d is the value of one
division of the level in terms of a revolution of the micrometer,
and L the number of divisions which the level has shifted, then
Ld will be the value (in micrometer revolutions) ef the correction
to be applied to M. The method of finding ¢ has already been
explained.

Hence the value of B’ becomes,

, 1534
T E 7

Since, however, refraction affects the two positions of the star un-
equally, it is seen that M + L d is only the difference of apparent
zenith distances (7.e., the instrumental difference), while 15 7 being
derived directly from the time interval, is the difference of frue
zenith distances. If therefore 15 ¢ be corrected by the difference
of refraction, the numerator will denote the difference of apparent
zenith distance in arc, and the denominator this same difference in
micrometer revolutions.

Denote by 4 r the difference of refraction in seconds for 1’ of
zenith distance at z,; then for 154’/ it may be taken as ;157 4 r,
which is the desired correction. The above formula therefore be-
comes, denoting the true value of a revolution by R,

_15i— 5 15idr

R= =R R'dr

T M+Ld T 7 60

(138)

4 r is taken from refraction tables.
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The adopted value of R should be a mean of the results from
all the observations. '

Having now found R, the value in arc of one division of the
level is evidently

D= Rd, (139)

since d is the value in micrometer revolutions. Both constants are
therefore determined.

One of the most convenient and accurate modes of employing
formula (138) in practice, is as follows : Suppose the star to be
approaching eastern elongation, and the micrometer readings to
increase as the zenith distance decreases. Let Z,, M,, and L, be
the zenith distance, micrometer, and level readings at elongation
(all unknown), and Z’, M’, and L’ the corresponding quantities at
the time of any one of the recorded transits. Then remembering
that in (138), 157 is the true difference of zenith distance
=2 —2Z,,M=M,— M, L =L,— L, and reserving the correc-
tion for refraction to be applied finally, we have

2 —-Z,=M,—M)R+ (L,— L')Rad.
Similarly for another transit,
2" —Zz,=(M,= M) R+ (L, — L")Rd.
Subtracting and solving,

_Z=-2)-(2"-2)

R=0r =+ =1)a

(140)

Then Z — Z, having been computed for each transit by (137%),
these differences may be taken by pairs for substitution in (140),in
any manner desired. For example, if forty transits have been re-
corded, it is usual to pair the first difference with the twenty-first,
the second with the twenty-second, etc., when if the successive
micrometer readings have been equidistant, the divisors will be
equal, save for the slight level correction. We thus obtain twenty
determinations of R, the mean of which should be corrected for

refraction as shown in (138),viz.: by subtracting Reg L
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The preceding method of finding these two constants of the
zenith telescope is regarded as the best; but provision is made in
the construction of the instrument for turning the box containing
the wire frame through an angle of 90°. When this is done, the
declination micrometer becomes virtually a R. A. micrometer, and
the value of a revolution may be found as described for that mi-
crometer, and then the box revolved back to its proper place and
clamped. In this case however the result must be in arc. The

~b } level constant must be found as just described.
yf Latitude by Opposite and nearly equal Meridian Zenith Dis-

tances. Talcott’s Method. See Form 9.

This method depends upon the principle that the astronomical
latitude of a place is equal to the declination of the zenith.

Let 2, and 2, represent the observed meridian zenith distances
of two stars, the first north and the second south of the zenith ;
ry and r, the corresponding refractions; and J, and J, their ap-
parent declinations. Then, ¢ denoting the latitude,

¢=06,+ 247, (141)

D=0, — 2, — Ty (142)

From which '
_60+6n 2 — 2n Ts — Tn -

Since refraction is a direct function of the zenith distance, this
equation shows that any constant error in the adopted refraction
will be nearly or wholly eliminated if we select two stars which
culminate at very nearly the same zenith distance, and provided
also that the time between their meridian transits is so short that
the refractive power of the atmosphere cannot be changed appre-
ciably in the mean time.

Again, since absolute zenith distances are not required, but only
their difference, if the stars are so nearly equal in altitude that a
telescope directed at one, will, upon being turned around a vertical
axis 180° in azimuth, present the other in its field of view, then
manifestly the difference of their zenith distances may be meusured
directly by the declination micrometer, and the use of a graduated
circle (with its errors of graduation, eccentricity, etc.) be entirely
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dispensed with, except for the purpose of a rough finder. The in-
strument used in this connection is called a “ Zenith Telescope.”
Its construction, and application to the end in view, are best learned
from an examination of the instrument itself.

Again, since errors in the declinations will affect the resulting
latitude directly, we should be very careful to employ only the ap-
parent declinations for thé date.

The following conditions should therefore be fulfilled in select-
ing the stars of a pair:

1st. They should culminate not more than 20°, or at most 25°,
from the zenith.

2d. They should not differ in zenith distance by more than
15’, and for very accurate work, by not more than 10’. The field
of view of the telescope is about 30’. The limit assigned prevents
observations too near the edge of the field, and lessens the effect of
an error in the adopted value of a turn of the micrometer head.
This limit also requires a very approximate knowledge of the lati-
tude, which may be found with the sextant, or by measuring the
meridian zenith distance of a star by the zenith telescope itself.

3d. They should differ in R. A. by not less than one minute
of time, to allow for reading the level and micrometer, and by not
more than fifteen or twenty minutes, to avoid changes in either the
instrument or the atmosphere.

Since the Ephemeris stars, whose apparent declinations are
given with great accuracy for every ten days, are comparatively few
in number, it becomes necessary, in order to fulfil the above con-
ditions, to resort to the more extended star catalogues.

But since in these works only the stars’ mean places are given,
and those for the epoch of the catalogue (which fact involves re-
duction to apparent places for the date), and moreover since these
mean places have often been inexactly determined, it becomes de-
sirable to rest our determination of latitude on the observation of
more than one pair. For example, on the “ Wheeler Survey,” west
of the 100th meridian, the latitude of a primary station was re-
quired to be determined by not less than 35 separate and distinct
pairs of stars, these observations being distributed over five nights.

Preliminary Computations,.—We should therefore form a list of
all stars not less than 7th magnitude which culminate not mora:
than 25° from the zenith and within the limits of time over which
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we propose to extend our observations, arrange them in the order
of their R. A., and from this list select our pairs in accordance
with the above conditions, taking care that the time between the
pairs is sufficient to permit the reading of the level and micrometer,
and setting the instrument for the mnext pair; say a¢ least two
minutes.

A “Programme ” must then be prepated for use at the instru-
ment, containing the stars arranged in pairs, with the designation
and magnitude of each for recognition when more than one star is
in the field; their R. A., to know when to make ready for the
observation; their declinations, from which are computed their
approximate zenith distances; a statement whether the star is to be
found north or south of the zenith, and finally the “setting ” of the
instrument for the pair, which is always the mean of the two
zenith distances.

The declinations here used, being simply for the purpose of so
pointing the instrument that the star shall appear in the field,
may be mean declinations for the beginning of the year, which are
found with facility as hereafter indicated. Similarly for the R. A.
For this Programme, see Form 9.

Adjustment of Instrument.—The Instrument must next be pre-
pared for use. The column is made vertical by the levelling
screws, and the adjustment tested by noting whether the striding
level placed on the horizontal axis will preserve its reading during
a revolution of the instrument 360° in azimuth. The horizontality
of the latter axis is secured by its own adjusting screws, and tested
by the level in the usual way. The focus and verticality of the
wires are adjusted as explained for the transit. The collimation
error should, as far as is mechanically possible, be reduced to zero.
This may be accomplished approzimately by the ordinary reversals
upon a terrestrial point distant not less than 5 or 6 miles (to
reduce the parallax caused by the distance of the telescope from
the vertical column); or very perfectly by two collimating tele-
scopes, as explained for the transit. The instrument is adjusted to
the meridian as explained for the transit. When this is perfected,
one of the movable stops on the horizontal circle is moved up against
one side of the clamp which controls the motion in azimuth, and there
fixed by its own clamp-screw. The telescope is then turned 180°
around the vertical column and again adjusted to the meridian by
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a circum-polar star; the other stop is then placed against the other
side of the clamp, and fixed. The instrument can now be turned
exactly 180° in azimuth, bringing up against the stops when in the
meridian.

Observations,—The circle being set to the mean of the zenith
distances of the two stars of a pair, the bubble of the attached level
is brought as nearly as possible to the middle of its tube, and when
the first star of the pair arrives on the middle transit wire (the in-
strument being in the meridian) it is bisected by the declination mi-
crometer wire, the sidereal time noted, and the micrometer and level
read. The telescope is then turned 180° in azimuth, the clamp
bringing up against its stop. The same observations and records
are now made for the second star. The instrument is then reset for
the next pair, and 8o on. The time record is not necesséry unless
it be found that the instrument has departed from the meridian, or
unless observation on the middle wire has been prevented by
clouds, and it becomes desirable to observe on a side wire rather
than lose the star. In these cases the hour angle is necessary to
obtain the “reduction to the meridian.”

The observations are recorded on Form 9 a. In the column of
remarks should be noted any failure to observe on middle wire,
weather, and any circumstance which might affect the reliability of
the observations.

Reduction of Observations.—By referring to Eq. (143) the gen-
eral nature of the reduction will be evident. The principal term
in the value of ¢ is d, + 6, , which, as before stated, must be found
for the date. Since z, — 2, has been measured entirely by the mi-
crometer and level, this term involves two corrections to &, + 4, ;
r, — r,, involves another, and the very exceptional case of observa-
tion on a side wire involves another.

1st. The reduction from mean declination of the epoch of the
catalogue to apparent declination of the date. Let us take the
case of the B, A. C. (British Association Catalogue).

The star’s mean place is first brought up to the beginning of
the current year by the formula

@ = (o 4w +1oo £
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in which 4’ = mean north polar distance as given in catalogue,
p’ = annual precession in N. P. distance, s’ = secular variation in
same, 4’ = annual proper motion in N. P. distance (all given in
catalogue for each star), ¥ = number of years from epoch of cata-
logue to beginning of current year, and d’”’ = the mean N. P. dis-
tance at the latter instant. To this, the corrections for precession,
proper motion, nutation, and aberration, since the beginning of the
year, are applied by the formula

d=d" + 1y + Ac + Bd' + Ca’ + DV,

in which 7 = fractional part of year already elapsed at date, given
on pp. 285-292, Ephemeris; 4, B, C, D, are the Besselian Star
Numbers, given on pp. 281-284 Ephemeris for each day; o/, ¥, ¢/,
d’, are star constants, whose logarithms are given in the catalogue;
and d = star’s apparent N. P. distance at date. Then ¢ = 90° —d.

The quantities a’, ¥’, ¢/, d’, are not strictly constant; indeed
many of their values have changed perceptibly since 1850, the
epoch of B. A. C. If it be desired to obviate this slight error, it
may be done by recomputing them by formulas derived from
Physical Astronomy, or, in part, by using a later catalogue. In
this connection a work prepared under the “ Wheeler Survey,”
entitled “ Catalogue of Mean Declinations of 2018 Stars, Jan. 1,
1875,” will be found most convenient, embracing stars between 10°
and 70° N. Dec., and therefore applicable to the whole area of the
U. S. exclusive of Alaska.

With this catalogue, the reductions are made directly in decli-
nation, not N. P. distance, and by the formulas,

6’=6”+(p’+ﬂ’)y
0=06"+417 ' + da’ + BY 4+ Oc’ 4+ Dd’,

in which everything relates to declination.
Exactly analogous formulas hold for reduction in R. A.

0.+ 9,
2

2d. The micrometer and level corrections to L Viz.:

Zs — Zn -

2
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Let us suppose that, with the telescope set at a given inclina-
tion, the micrometer readings are greater as the body viewed is
nearer the zenith; and in the first instance, that the inclination as
shown by the attached level is not changed when the instrument is
turned 180° in azimuth. -

Then

Z — % will be given wholly by the micrometer, and be

2
My — My,
2
crometer readings on the south and north stars respectively, and R
the value in arc of a division of the micrometer head. Since the
readings increase as the zenith distance decreases, it is manifest
that 2 : s R is the one of the two expressions which will repre-

~

m, — m,

either R, or

R, in which m, and m, are the mi-

Zy — %y
2
But as a rule the upright column will not be truly vertical, and
therefore the inclination of the optical axis of the telescope will
change slightly due to the necessary revolution between the obser-
vations of the stars of a pair,—the fact being indicated by a different
reading of thelevel. In this case, the difference of micrometer read-
ings will not be strictly the difference of zenith distance as before,
but will be that difference + ‘the amount the telescope has moved.
The micrometer readings therefore require correction before they

sent

with its proper sign.

can give Z‘—;zi' Since it is immaterial which star of the pair is

observed first, let us suppose it to be the southern, and let /, and I,
be the readings of the ends of the bubble. Then l"—z_—l‘ will be the

reading of the level, it being graduated from the center toward
each end. Now if, on turning to the north, the level shows that
the angle of elevation of the telescope has increased, the microme-
ter reading on the northern star will be too small, by just the
amount corresponding to the motion of the telescope in altitude;
and this whether the star be higher or lower than the southern
star. Conse_guently m, must be increased to compensate. If //,
and !, be the reading of the present north and south ends of the
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: )
bubble, then the bubble reading will be lLr-z—l ; the change of

level, in level divisions, will be

— L 4
l"2 l‘+l" 21‘,and in arc

(ln + l,u) - (Za + Z'a) .D
2 .

Since, upon turning to the north, the angle of elevation of the tele-
scope was supposed to increase, this quantity is positive; and being
the angular change of elevation, it is the correction to be applied
to m,, .

If the telescope diminished its elevation on being turned to the
north, it would be necessary to diminish m, by the same amount.
But in this case the above correction is obviously negative, and the
result will be obtained by still adding it algebraically.
my
£l
all cases we have the rule. Subtract the sum of the south readings
from the sum of the north. One-fourth the difference multiplied
by the value of one division of the level, will be the level correction.
The true difference of observed zenith distances of the two stars,
is therefore

The correction to —= will be half the above amount; hence in

R My ‘2‘ m, + (ln + l’n) : (la + l',) .D.

7y — 7
2
are at so small and so nearly equal zenith distances, differences of
actual refractions will be practically equal to differences of mean
refractions (Bar. 30 in., F. 50°), which latter may therefore be substi-

3d. The correction for refraction, or Since the stars

tuted for r, — r,. If %; denote the change in mean refraction for a

difference of 1’ in zenith distance, then for z, — 2, (expressed in

2, — 2, dr .
50 ar Hence we may write

seconds) it will be

To=—"Tn__ . 2% — 2, dr
5~ e @
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To determine %, we have for the equation of mean refraction

Young, p. 64),
r = a tan z.
Differentiating,

asin 1’ 1'

’
(fo rl ) cos’ z

a being taken from refraction tables, and z representing the mean
of the zenith distances of the pair. The following table of values

of dr is given, in which we may interpolate at pleasure.

dz
2 ar
dz
0° 0.0168"
5° 0.0169”’

10° | 0.0173”
15° | 0.0180”
20° | 0.0190”
25° | 0.0205”

The principal term in 22 ; P g "in ; ™ R. Hence we may write

To=—1Tn _ Ny — M, cﬁ'
2 =1 60 E

and the correction for refraction will have the same sign as the
micrometer correction.

Hence the rule: Multiply the micrometer correction in minutes
by the tabular value of % , and add the result algebraically to the
other corrections.

4th. The correction to the zenith distance when the observation
has not been made in the meridian; 7.e., when not made on the
middle vertical wire.

This will be an exceptional correction, but one which must oc-
cagionally be made.

ol
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If a plane be passed through the middle horizontal wire and the
optical centre of the objective, it will cut from the celestial sphere
a great circle; and the zenith distance of a star anywhere on this
circle will, ags measured by this fixed position of the instrument, be
the inclination of the plane to the vertical.

Therefore, if the zenith distance of a star between the zenith
and equinoctial be measured by an instrument which moves only
in the meridian, it will have its greatest value when on the me-
ridian. For a star which crosses any other part of the meridian,
the ordinary rule as to relative magnitude applies.

But whatever the position of the star, the numerical value of
this “reduction to the meridian,” due to an observation on a side
wire, is different from that heretofore discussed, where the instru-
ment was in the vertical plane of the star; being in this case
1 (15 P)*sin 1" 8in 2 ¢; P being the hour angle. For the deduc-
tion of this expression, see sJs following. For a star below the equi-
noctial or below the pole sin 2 & would be negative; hence from the
as to relative magnitudes above given, it is seen that if in using
the zenith telescope, a star south of the zenith be observed on a side
wire, the above correction must be added algebraically to the od-
gerved to obtain the meridian zenith distance; and north of the
zenith it must be subtracted algebraically.

2, — 2y

By inspecting the term 5

, we see that in any case one half

this reduction, or
3 (15 P)*sin1”sin 2 6 = [6.1347] P*sin 2 6,

is to be added to the deduced latitude, or to the sum of the other
corrections in order to obtain the latitude. The hour angle P in
seconds of time is known from P = ¢ 4 E — a, ¢ being the chro-
nometer time of observation, £ the error, and « the star’s R. A.
We therefore have the following complete formula for the latitude

6« + 6n My — My (ln + l’n) - (lc + l’a)
[ ] - !
@ s +EB="5—+D 4
. (144)
+3 ”‘—"(;)—”"R &-g + [6.1347] P* sin 2 8, + [6.1347] P"*sin 2 6,
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For the reduction see Form 95. The results of all the pairs may
be discussed by Least Squares.

This method, although extremely simple in theory, involves
considerable labor. It has however been employed almost exclus-
ively on the Coast and other important Government surveys, with
results which compare favorably with those obtained by the first-
class instruments of a fixed observatory.

»J« To Determine the Reduction to the Meridian for an Instru-
ment in the Meridian.—Let S Fig. 21 be the place of the star when
on a side wire. Then C'S S8’ will be
the projection of the great circle cut 8,
from the celestial sphere by the plane E
of the middle horizontal wire and the
optical center of the objective, Z 8"
will be the recorded zenith distance
=2'. "Let 88 be an arc of the star’s C
diurnal path, preserving always the Fio. 1.
same distance from the equator.

Then Z 8’ will be the true meridian zenith distance =z, , and
E S’ =46. Represent E S’ by ¢’.

The Reduction to the Meridian, S’ 8”’, being denoted by z, we

have ' '

2,=2 +z, and 6 =0"—2. (a)

Let it now be required to develop « into a series arranged according
to the ascending powers of sin® § P, as before.
The triangle P SS”, right angled at S”’, gives

tan 6 = cos P tan ¢’ = tan 6’ — 2tan 6’ sin* } P. ©®)
Replacing for brevity sin’ § P by v,
tan 6 = tan 6" — 2 y tan &”, @)

_ y _ . tand’ —tanz
tan § = tan (¢ x)—1+tan6’tanx

' =tan 6’ — 2y tan &, *
tan 6’ — tan 2 = tan 6’ — 2 ytan 6’ + tan’ 6’ tan 2

— 2y tan® ¢’ tan 2. (d)
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Let
z=Ay+ By' +ete. (e)

be the undetermined development desired. If the value of tan 2
derived from this equation be substituted in (d), the resulting
equation will be identical.

From Trigonometry,

tanz = x+£3’ ~+ ete.,
and from this and (¢),
tanz = Ay + By* 4 ete.
Substituting in (d), and transposing,
Ay+By’—2 y tan 6’+t;3,n‘ 6’ (Ay+By')—2 tan' ¢’(4dy+By*)y=0.
From the principles of identical equations,
A — 2tan 6’ 4 4 tan* 6’ = 0.

_ 2tand’ _ _sind" .., . ’
A—1+tan’6’_2cos6’cos ¢’ =sin 2 ¢".

B+ Btan® ¢’ — 2 Atan’ 6’ =0. B =2sin* ¢’ sin 2 ¢”.
Therefore, expressing z in seconds of arc, from (¢),

2 gin' 4 P sin 2 6’ sin® 8’
sin 1’/

z_sin’ 3 Psin? ¢’
- sin 1”

+

Omitting the last term as insensible, expressing P in seconds of
time, and remembering that since P is very small,

15 P

15 P . . .
in? —— = (——) sin’1”’, we have 2 =} (15 P)*sin 1’ sin 2 ¢”.

81 2 B)

In computing this term, 6 may be substituted for ¢’

»}« To Determine the Probable Error of the Final Result.
From equation (143) it is seen that the probable error of a lati-
tude deduced from a single pair of stars will be composed of two
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parts: 1st, the probable error of the half sum of the declinations
derived from the catalogue used; 2d, the probable error of the half
difference of the measured zenith distances, which may be called
the error of observation.

Consider first a single pair of stars observed once. Let R, de-
note the probable error of the deduced latitude, R’ that of the half
sum of the declinations, and R’ that of observation, all unknown .
a8 yet. Then, Johnson,* Art. 89,

R’= i ‘/RI!+R”!, (a)

and for this pair observed » times, 7.c., on # nights,

B=xy R+ 2 )

If now we employ m different pairs,

m n

in which 7’ denotes, as before, the total number of observations.

It may be observed at this point, that as shown by (c), if a skilled
observer be provided with a catalogue not of the first order of ex-
cellence, (R’ large, R”’ small), it is better to employ many pairs,
rather than repeat observations on a few palrs, thus augmenting
both m and 7, instead of ~ alone.

To determine R’’, form the differences between the mean of all
the latitudes resulting from the first pair and the separate latitudes
from that pair.

The residuals denoted by v,’, v,”’, v,"”, etc., will manifestly be
free from any effect of error in the half sum of the declinations
employed. Do the same with the results from each of the other
pairs, giving v,/,v,”" .... v/, v, . ... etc.,

Then, Johnson, Art. 138,

B e
R = + 0.6745 1/ %1 (d)

* Johnson’s ** Theory of Errors and Method of Least Squares,” 1890.
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The value of B’ should not exceed about 0’’.8, and cannot be
expected to fall below 0”.3. On the Coast Survey, its value has
usually been slightly less than 0”’.5.

To determine R’, we have from (5)

RII 2

RI:= R‘l ~ . (e)

in which it must be remembered that B, is the probable error of

the latitude as deduced from a single pair of stars observed = times.
Select several (m’) pairs, which are observed on an equal number

of nights in order that the results from each pair may be of equal

weight. Then, as before, form the differences between the mean

of the = results for each pair and the mean of these 2’ means.
Then the mean value of R, will be, Johnsoun, Art. 72,

B, =0.6745Y —‘S—_”I )

ml

Substituting this value of R, together with that of % in (), we
have R’, and the probable error of the final result is given by (c),
a8 before seen. ‘ : '

If R’ be determined from a great number of stars taken from a
single catalogue, it may be considered as constant for that cata-
logue. With the one employed on the Lake Survey, R’ usually fell
between 0””.53 and 0”’.60.

If it be desired to combine the mean results from each pair ac-
cording to their weights in order to obtain the weighted mean
latitude, we have from (3), (since the weight of an observation is.
proportional to the reciprocal of the square of the probable error,)

=__"
p—anl+R1r:)

p denoting the weight of the mean result from a pair observed »
times.
The weighted mean latitude will be, Johnson, Art. 66,

2(9)
2 (p)
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with a probable error, Johnson, Art. 72,

R=o61sy =2¥)

(m—1)3p

The errors which give rise to R’ are those pertaining to the
catalogue or catalogues used.

Those giving rise to R’’ are due to various causes, viz.: imper-
fect bisection of one or both stars due to personal bias or unsteadi-
ness of the stars, anomalous refraction, errors in determining the
value of a division of the micrometer and level, changes in temper-
ature affecting the instrument between the two observations of a
pair, etc. '

If any of the residuals (v) are unusually large, they should be
examined by Peirce’s Criterion before rejection.

Finally it must be remembered that in this, as in all other
methods here given, the final result (supposed free from error) is
the astronomical latitude, and will differ from the geodetic or geo-
graphical latitude by any abnormal deflection of the plumb-line

which may exist at the station. /

5. Latitude by Iolaris off the Meridian. See Form 10.—This
method depends upon the fact that the astronomical latitude of a
place is equal to the altitude of the elevated pole.

This latter is obtained by measuring the altitude of Polaris at a
given instant, and from the data thus obtained, together with the
star’s polar distance, passing to the altitude of the pole.

To explain this transformation :

Let P = star’s hour angle, measured from the upper meridian.
a = altitude of star at instant P, corrected for refraction.
d = polar distance of star at instant P.
¢ = latitude of place.
Then from the Z P S triangle we have

8in ¢ = sin ¢ cos d -+ cos ¢ sin d cos P. (145)

This equation which applies to any star may be solved directly;
but with a circum-polar star it is much simpler to take advantage -
of its small polar distance, and obtain a development of ¢ in terms
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of the ascending powers of d,in which we may neglect those terms
which can be shown to be unimportant.

Now if we let z = the difference in altitude between Polaris at
the time of observation and the pole, we shall have

¢=(a—=z), sinp=sin(e —z), cos ¢ = cos(a~— z),
and from (145),

1 = cos z (cos d + sin d cot @ cos P)

— 8in z (cos d cot @ — sin d cos P). (146)

Moreover, it is evident that if we can obtain the development of
z in terms of the ascending powers of @, we will have the develop-
ment of ¢ in the same terms, from ¢ = ¢ — 2.

This is the end to be attained. Therefore let

z=Ad + Bd'+ Cd® +etc., (147)

be the undetermined development desired, in which 4, B, C, etc.,
are to have such constant values, that the series, when it is con-
vergent, shall give the true value of @, whatever may be the value
of d.

It is manifest, then, that if this assumed value of z be substi-
tuted in (146), the resulting equation must be satisfied by every
value of d which renders (147) convergent; that<is, the resulting
equation must be identical; otherwise (147) could not be true.

With a view, therefore, to this substitution, let it be noted that
by the Calculus we have

2 2
cosx=1—2—+ﬁ—etc., (m)
. z* z°
Binz =2 — % +m-—etc., (n)

and hence from (147),
2
cosx:l—‘igd—’—ABd'+etc., (148)

sing = 4d+Bd+ (0~ &) & + ote. (149)
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Also,
a  a
cosd=1— 2 + 31— etc., (150)
and P
. a
smd—d—?-l—l—zo—etc. (151)

Now d is a very small angle; at present about 1° 16’, or 0.0221
radians; = can never be greater than d, and in the general case
will be less. Under these circumstances the above series becomes
very convergent, and the sum of a few terms will represent with
great accuracy the sum of the series. It is for this reason that the
problem under discussion is applicable only to close eircum-polar
stars, and therefore we take advantage of the small polar-distance
of Polaris.

~ Substituting (148), (149), (150), and (151), in (146), we have,
rejecting terms involving the 4th and higher powers of d,

Acota 3
]
+ Bcos P Acos P
_CBS_PG_M _ﬁ,cowl cos Pcot a
o _ 4 s =0.

A*cos Pcota + 2 i}d * =
— Al Pocta ! j — dcota
—AB 2

AI

_(O_T)cotaj

This equation being identical, the algebraic sum of the coeffi-
cients of each power of d must be separately equal to zero.
Hence we have by solution,

A = cos P.

B=-— P
2

0=cosPsin’P

3 .
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Therefore, from (147),
z=dcos P — }d'sin’ Ptan a 4+ 4} d* cos P sin* P,

From (m) and (n), (150) and (151), it is seen that z and d are
expressed in radians, Expressing them in seconds of arc,

z=d cosP—4% d’sin* P tanasin 1’4 § d° cos P sin’P sin* 1"/, ete.,

which is the required development.
Therefore,

@=a—dcos P+ }d*sinl’” sin’ P tana
— 3d’sin’1”" cos Psin’ P -} ele. (152)

The last three terms are in seconds.

Hence we have the general rule:

Take a series of altitudes of Polaris at any convenient time.
Note the corresponding instants by a chronometer, preferably
sidereal, whose error is well determined. Correct each observed
altitude for instrumental errors and refraction. Determine each
hour angle by P =sidereal time — R. A, '

Take from the Ephemeris the star’s polar distance at the time,
being careful to use pp. 302-313, where also the R. A. required
above will be found.

Substitute each set of values in Equation (152), and reduce each
set separately. The mean of the resulting values of ¢ is the one
adopted. See Form 10.

As before stated, the method is applicable only to close circum-
polar stars. Polaris is selected since it is the nearest dright star to
the pole, a fact which is of importance in sextant observations.

On the last page of the Ephemeris are given tabular values of
the correction z. They are however only approximate; and the
complete solution, ag given above, consumes but very little more
time.

This is a very convenient method of determining latitude; our
only restriction being that, with a sextant, the observations must
be made at night. With the ¢ Altazimuth ” instrument, the ob-
servations may be made for some time before dark.

V\
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The last term in (152) is very small. In order to ascertain
whether it is of any practical value, let us determine its maximum
numerical value. Denoting the term by z, and its constant factors
by ¢, we have

%z = ¢ cos P sin® P.

Replacing sin’ P by 1 — cos’ P, and differentiating twice, we have,
after reduction,

dz— 1 — 1 '

d—P_2csmP 3c¢sin’ P.

dz _ . — 9 ¢sin? !
m_2ccosP 9 ¢sin® P cos P. '

To obtain the maximum,
2¢sin P — 3cgin®* P =0,
From the roots of this we have
ginP=0, sinP =4 ¥3%, sinP=— V3%,

the last two of which correspond to equal numerical maxima, *
Hence the maximum value of the term is given when sin® P = %,
or whenz =} d*sin’ 1”7 § ¥'3. Ford = 1°16, this gives z = 0".29.
The mazimum error committed by the omission of this term
will therefore be about 0’’.3. Evidently its retention when the
observations have been made with a sextant would be superfluous.

* With sin P=+ 4§ we may have cosP= + 4%, and similarly for
sin P= — 4§. By substituting in the second differential coefficient we see
that + 4/§ with 4 4/% correspond to equal maxima, while + 4§ with — ¢/ 3
correspond to equal minima. With sin P = 0, we may have cos P= + 1, the
former of which corresponds to & minimum and the latter to an equal maxi-
mum; viz., zero. Hence zero is a lesser and not the greatest maximum value
of z ; the latter, with which only we are concerned, being, from (152), ¢ d® sin®
1"34/%.

Fig. 22 gives the curve of values of z with P as the ahsciss®, showing
the inferior maximum at P=180°, and the greatest maxima (numerical) at

about 55°, 125°, 235°, and 305°.
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The value of log sin 1, not given in ordinary tables, is
4.6855575-10.

T e w w w7 N
g ®%° \/ © 860”

Fra. 22.

Any mistake as to the value of P will manifestly produce its
greatest effect when the star is moving wholly in altitude. Hence
if the chronometer error be not well determined, the times of
elongation are the least advantageous for observation.

Since cos (360° — P) = cos P, we may measure P from the up-

K per meridian to 180° in either direction.

6. Latitude by Equal Altitudes of Two Stars. See Form 11.—
By this method the latitude is found from the declinations and hour
angles of two stars; the hour angles being-subject to the condition
that they shall correspond to equal altitudes of the stars.

Let 6 and ¢’ = the correct sidereal times of the observations.

a and a’ = the apparent right ascensions of the stars.

6 and ¢’ = the apparent declinations of the stars.

P and P’ = the apparent hour angles of the stars.

a = the cgmmon altitude.

& = the required latitude.

P and P’ are given from

P=0-—a. P =0 —-a.
From the Z P S triangle we have
sin @ = sin ¢ sin & + cos ¢ cos 3 cos P.
8in @ = sin ¢ sin 6’ - cos ¢ cos 6’ cos P’.
Subtracting the first from the second and dividing By cos ¢,
tan ¢ (sin 6" — sin 8) = cos & cos P — cos 6" cos P’ (153)

The value of tan ¢ might be derived at once from this equa-
tion, since it is the only unknown quantity entering it. The form
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is, however, unsuited to logarithmic computation. In order to ob-
tain a more convenient form, observe that the second member may
be written

cos 6 cos P __ cos8 ¢’ ¢os P’) + (cos 6 cos P __cos ¢’ cos P’)
( -2 2 2 2 *

Adding to the first parenthesis

cos & cos P’ cos 6’ cos P)
(%= T )

and subtracting the same from the second, we have, after factoring,

tan ¢ (sin 6’ —sin ) = } (cos & — cos d”) (cos P + cos P’)
' + % (cos & + cos ¢”) (cos P — cos P’).

Solving with reference to tan ¢, and reducing by Formulas 16, 17,
and 18, Page 4, Book of Formulas,

tan ¢ = tan § (6’ 4 &) cos } (P’ + P)cos } (P’ — P) (154)
+ cot § (6’ — d)sin } (P’ + P) sin § (P’ — P).

The solution may be made even more sin;ple by the use of two
auxiliary quantities, m and M, such that

m cos M = cos } (P’ — P)tan} (6’ + 9). (155)
msin M =sgin } (P’ — P) cot } (6’ — ) (156)

Then '
tan ¢ =mecos [} (P’ + P) — M. (157)

Equations (155) and (156) give m and M, and (157) gives ¢, all
in the simplest manner.
For example, to find M, divide (156) by (155), and we obtain

tan M = tan § (P’ — P) cot } (6" — &) cot (6’ - 6).

This admits of easy logarithmic solution.
The value of m follows from either (155) or (156), and that of
¢ from (157), both by logarithms.
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The value of a does not enter; hence the resulting latitude will
be entirely free from instrumental errors, those of graduation, ec-
centricity, and index error, and its accuracy will depend only upon
the skill of the observer, and the accuracy of our assumed chronom.
eter error and rate. Ephemeris stars should be chosen if possible, for
the sake of accuracy in declinations, and their R. A. should permit
the observations to be made with so short an interval that the re-
fractive power of the atmosphere can not have changed materially
in the mean time. The value of refraction is not required; it is
only necessary that it remain practically constant.

Differentiating (153) with reference to ¢, P, and P’, solving,
reducing by

cos 6 sin P’ = cos asin 4’,
and
sin 6’ = sin ¢ sin @ - cos ¢ cos @ cos A4’

we have, since a is the same for both stars,

sin 4’ , sin 4
csA'—cosAdP 8 A ap,

d¢=cosd cos A" —cos A4

from which it is seen that any error in the time or in the assumed
chronometer correction will have least effect on the resulting latitude
when the two stars reach the common altitude at about equal dis-
tances north and south of the prime-vertical, the nearer to the
meridian the better.

When several observations with the sextant are taken in succes-
gion on each star, it is better to reduce separately the pair corre-
sponding to each altitude.

LONGITUDE.

The difference of Astronomical Ldngitude between two places is
the spherical angle at the celestial pole included between their re-
spective meridians. By the principles of Spherical Geometry, the
measure of this angle is the arc of the equinoctial intercepted by its
sides; or it is the same portion of 360° that this arc is of the whole
great circle.

But since the rotation of the earth upon its axis is perfectly
uniform, the time occupied by a star on the equinoctial in passing
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from one meridian to another, is the same portion of the time re-
quired for a complete circuit that the angle between the meridians
is of 360°, or, that the intercepted arc is of the whole great circle.
Moreover, all stars whatever their position occupy equal times in
passing from one meridian to another due to the fact that all points
on a given meridian have a constant angular velocity. .

The same facts apply also to the case of a body which, like the
mean sun, has a proper motion, provided that motion be uniform
and in the plane of, or parallel to, the equinoctial.

Hence it is that Longitude is usually expressed in #ime; and in
stating the difference of longitude between two places in time, it is
immaterial whether we employ sidereal or mean solar time: for the
number of mean solar time units required for the mean sun to pass
from one meridian to another, is exactly equal to the number of
sidereal time units required for a star to pass between the meridians,

The astronomical problem of longitude consists, therefore, in
determining the difference of local times, either sidereal or mean
solar, which exist on two meridians at the same absolute instant.

Since there is no natural origin of longitudes or circle of refer-
ence.as there is in case of latitude, one may be chosen arbitrarily,
and which is then called the “ first ”” or * prime meridian.” Differ-
ent nations have made different selections: but the one most com-
monly used throughout the world is the upper meridian of Green-
wich, England, although in the United States frequent reference is
made to the meridian of Washington.

The astronomical may differ slightly from the geodetic or geo-
graphical longitude, for reasons given under the head of latitude,

In the following pages, only the former is referred to; it is
usually found from the difference of time existing on the two
meridians at the instant of occurrence of some event, either celes-
tial or terrestrial. Up to about the year 1500 A.D., the only method
available was the observation of Lunar Eclipses. But with the
publication of Ephemerides and the introduction of improved
astronomical instruments, other and better methods have superseded
this one, of which the two most accurate and most generally used
are the “ Method by Portable Chronometers,” and the “ Method by
Electric Telegraph.” Longitude may also be found from * Lunar
Culminations ” and “ Lunar Distances,” in cases when other modes
are not available.
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1. By Portable Chronometers. Let 4 and B denote the two sta-
tions the difference of whose longitude is required. Let the chron-
ometer error (E) be accurately determined for the chronometer time
T, at one of the stations, say 4 ; also its daily rate (»).

Transport the chronometer to B, and let its error (£”) on local
time be there accurately determined for the chronometer time 77.
Let ¢ denote the interval in chronometer days between 7" and 7'’.

Then, if r has remasned constant during the journey, the true
local time at 4 corresponding to the chronometer time 7'’ will be,
T’ + E + ir.

The true time at B at the same instant is, T' 4+ E’.

Their difference = difference of Longitude is

A=E+ir—E" (158)

Thus the difference of Longitude is expressed as the difference
between the simultaneous errors of the same chronometer upon the
local times of the two meridians, and the absolute indications of
the chronometer do not enter except in so far as they may be re-
quired in determining <.

The rule as to signs of £ and r, heretofore given, must be ob-
gerved. If the result be positive, the second station is west of the
first; if negative, east.

This method is used almost exclusively at sea, except in voyages
of several weeks, the chronometer error on Greenwich time, and its
rate, being well determined at a port whose longitude is known.
Time observations are then made with a sextant whenever desired
during the voyage, and the longitude found as above. The same
plan may evidently be followed in expeditions on land, although ex-
treme accuracy cannot be obtained since a chronometer’s “travel-
ing rate ” is seldom exactly the same as when at rest.

In the above discussion, the rate was found only at the initial
station. If the rate be determined again upon reaching the final
station, and be found to have changed to 7/, then it will be better to

’
employ in the above equation r -‘2- " instead of #. To redetermine

the longitude of any intermediate station in accordance with this

’ —
additional data, we have 2 = r_z_r = daily chkange in rate; and
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the accumulated error at any station, reached » days after leaving 4,
would be £ + (r + xg) n, the quantity in parenthesis being the

rate at the middle instant.

The above method is slightly inaccurate, since we have assumed
that the chronometer rate as determined at one of the extreme
stations (or botk, if we apply the correction just explained), is its
rate while en route. This is not as a rule strictly correct.

Therefore, when the difference of longitude between two places
is required to be found with great precision, “ Chronometric Expe-
ditions ” between the points are organized and conducted in such a
manner a8 to determine this traveling rate.

As before,
let £ = chron. error on local time at 4 at chron. time 7'
(4 EI = 111 [ 113 «© B <« «© T’.
114 EH — [{3 (3 {1 111 B 111 « TI.
11 El" — 113 I3 'q 173 A &% « TH'.

That is, the error on local time is determined at the first station for
the time of departure, then at the second station for the time of ar-
rival; again at the second station for the time of departure, and
finally at the first station for the time of arrival.

Then the entire change of error is £’ — E. '‘But of this
E’ — E’ accumulated while the chronometer was at rest at the
second station. The: entire time consumed was 7””’—7. But of
this 7"/— 7" was not spent in traveling. Therefore, the ¢raveling
rate, if it be assumed to be constant, will be

(E"' -—E) _ (E" _El)

r= (T =T)=(T" =T

(159)

This, then, is the rate to be employed in Eq. (158) instead of the
stationary rate there used.

If the rate has not been constant, but, as is often the case, uni-
formly increasing or decreasing, the above value of 7 is the average
rate for the whole traveling time of the two trips, whereas for use
in Eq. (158), we require the average rate during the trip from 4 to
B. This latter average will give a perfectly correct result provided
the rate change wniformly. If the rate hasbeen increasing, then »
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in Eq. (159) will be too large numerically, by some quantity as 2.
Hence Eq. (158) becomes

A=E+i(r—2z)—E’, (160)

in which 7 is found by (159). In order to eliminate z, let the
chronometer be transported from B to A, and return; i.e., take B
instead of A as the initial point of a second journey. This is best
accomplished by utilizing the return trip of the journey 4 B 4, as
the first trip of the journey B 4 B.

Then the new average rate »’ having been found as before, it
will, if the trips and the interval of rest have been practically equal
to those of the first journey, exceed the value required, by the same
quantity, z, due to the uniformity in the rate’s change. Hence for
this journey Eq. (158) becomes,

A=E" —[i( —2)+ B"]. (181)

In the mean of (160) and (161),  disappears, giving,

A

_E"4+E  i(r—r) E’"+E'
= 3 + 3 - I (162)

Hence, if our time observations are accurate, and the traveling
rate constant, the difference of longitude between 4 and B may be
determined by transporting the chronometer from 4 to B, and re-
turn. Or, if the rate be uniformly increasing or decreasing,the
difference of longitude will be found by transporting the chro-
nometer from A4 to B, and return, then back tc¢ B; thus making
three trips for the complete determination.

In a complete “ Chronometric Expedition,” however, many
chronometers, sometimes 60 or 70, are used, to guard against acci-
dental errors; and they are transported to and fro many times. As
an example, in one determination of the longitude of Cambridge,
Masgs., with reference to Greenwich, 44 chronometers were employed
and during the progress of the whole expedition, more than 400
exchanges of chronometers were made.

They are rated by comparison with the standard observatory
clocks at each station, which are in turn regulated by very elabo-
rately reduced observations on, as near as possible, the same stars,
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Conducted as above described, “Chronometric Expeditions ”
give exceedingly accurate results, especially if corrections be made
for changes in temperature during the journeys.

2. Longitude by the Electric Telegraph. See Form 12.—This
method consists, in outline, in comparing the times which exist
simultaneously on two meridians, by means of telegraphic signals.
These signals are simply momentary “ breaks ” in the electric cir-
cuit connecting the stations, the instants of sending and receiving
which are registered upon a chronograph at each station. Each
chronograph is in circuit with a chronometer which, by breaking
the circuit at regular intervals, gives a time scale upon the chrono-
graph sheet, from which the instants of sending and receiving are
read off with great precision.

Suppose & signal to be made at the eastern station (4) at the
time 7' by the clock at 4, which signal is registered at the western
station (B) at the time 7'’ by the clock at B.

Then if £ and E’ are the respective clock errors, each on its
own local time; and if the signals were recorded instantly at B,
then the difference of longitude would be (7'+ E) — (T'' + E’).
But it has been found in practice that there isalways a loss of time
in transmitting electric signals. Therefore in the above expression
(T’ + E’) does not correspond to the instant of sending the signal,
but to a somewhat later instant. It is therefore toolarge, the entire
expression is too small, and must be corrected by just the loss of
time referred to. This is usually termed the “ Retardation of Sig-
nals;” and if it be denoted by z, the ¢rue difference of longitude
will be (I'+E)—(T"+ E’)+2=A"4+2=A. But z is un-
known, and must therefore be eliminated.

In order to do this, let a signal be sent from the wesfern station
at the time 7"’ which is recorded at the eastern at the time 7'"”.
Then if £’ and E’” are the new clock errors, the frue difference
of longitude will be

(an + EHI) _ (T" + E") —z=A'—z=A

By addition, z disappears, and if A denote the longitude, we will
have
’ ”
A= A -l‘: A .

~
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Or, in full, assuming that the errors do not change in the interval
between signals,

A=)+ (B BT = T7) + (B~ B, (163)

«

T, T, T”,and T’ are given by the chronograph sheets;
E and E’ must be determined with extreme accuracy, since incor-
rect values will affect the resulting longifude directly.

Having established telegraphic communications between the
two observatories (field or permanent), usually by a simple loop in
an existing line, preliminaries as to number of signals, time of
gending them, intervals, calls, precedence in sending, etc., are
settled. At about nightfall messages are exchanged as to the suita-
bility of the night for observations at the two stations. If suitable
at botk, each observer makes a series of star observations with the
transit to find his chronometer error. The electric apparatus for
this purpose, consisting of two or three galvanic cells, a break-cir-
cuit key, chronograph, and break-circuit chronometer, is arranged
as shown in Fig. 23, the chronometer being placed in a separate

K
: ,b"‘“:~-f
Soa NG

Fie. 28.

circuit with a single cell, connected with the principal circuit by a
relay, to avoid the effects of too strong a current on its mechanism.
The chronometer breaks the circuit 4, releasing the armature of the
chronometer relay, which therefore breaks circuit B at 8. This re-
leases the armature of the chronograph magnet to which is attached
a pen, thus registering on the chronograph the beats of the chro-
nometer. Circuit B may also be broken with the observing key,
thus recording the transits of stars also on the chronograph. At
least ten well-determined Ephemeris stars should be used—three
equatorial and two circumpolar for each position of the transit.



LONGITUDE. 123

Then as the time agreed upon for the exchange of signals ap-
proaches, the local circuit should be connected as shown in Fig. 24,

by a relay to the main line, which is worked by its own permanent
batteries, and in which there is also a break-circuit key. The con-
nections are the same at both stations. By this arrangement it is
geen that each chronograph will receive the ¢ime-record of its own
chronometer; and also the record of any signals sent over the main
line in either direction.

Neither chronograph receives the record of the other’s chro-
nometer. Then at the time agreed upon, warning 1s sent by the
station having precedence, and the signals follow according to any
prearranged system. Notice being given of their completion, the
second station signals in the same manner.

As an example of a system, let the break-circuit key in the main
line be pressed for 2 or 3 seconds once in about ten seconds, but
at irregular intervals: this being continued for five minutes will
give 31 arbitrary signals from each station.

Each chronometer sheet when marked with the date, one or
more references to actual chronometer time, and the error of
chromrometer, as soon as found, will, in connection with the sheet
from the other station, afford the obvious means of finding all the
quantities in Eq. (163) from which the longitude is computed.
TRe sheets may be compared by telegraph, if desired.

The work of a single night is then completed by transit observa-
tions upon at least ten more stars under the same conditions as
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before, the entire series of twenty being so reduced as to give the
chronometer error at the middle of the interval occupied in ex-
changing signals. The mode of making this reduction will be
explained hereafter.

The preceding is called the method by “ Arbitrary Signals,” and
is the one now usually employed. Sometimes however the method
by ¢ Chronometer Signals” is used, which will be readily under-
stood by reference to Fig. 25, the connections being the same at
Yoth stations.

Fi1a. 25.

In this case it is seen that each chronometer, although in local
circuit, graduates each chronograph, upon which we therefore have
8 direct comparison of the two time-pieces.

- This method is subject to the inconvenience and possible inac-
curacies in readihg which may occur due to a close but not perfect
coincidence in beats, unless special precautions are taken.

The arrangement of the galvanometer and rheostat, asshown in
both figures (taken from the Coast Survey Report for 1880), in-
sures the equality of the currents passing through the relays at the
two stations, which point should be ascertained by exchange of
telegraphic messages; therefore after the relays are properly ad-
justed they will be demagnetized by the signals with equal rapidity,
and constant errors in this respect be avoided.

The final adopted value of the longitude should depend upon
the results of at least five or six nights; outstanding errors in the
electrical apparatus being nearly eliminated by an exchange between
the two stations when the work is half completed.

“ Longitude by the Electric Telegraph ”” had its origin in the
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U. 8. Coast Survey, and has since been employed considerably in
Europe. As at first employed it consisted virtually in telegraphing
to a western, the instant of a fixed star’s culmination at an eastern
station ; and afterwards, telegraphing to the eastern, at the instant
of the same star’s culmination at the western station.

In connection with Talcott’s Method for Latitude, it has been
used extensively in important Government Surveys, taking prece-
dence, whenever available, over all other methods.

Reduction of the Time Observations. See Form 12a.—These
observations, as just stated, are in two groups ; one before, and one
after the exchange of signals or comparison of chronometers. From
them is to be obtained the chronometer error at the epoch of ex-
change or comparison, which is assumed to be the middle of the
interval consumed in the exchange; this latter being about 12
minutes.

Let us resume the equation of the Transit Instrument approxi-
mately in the meridian,

a=T+E+ad+bB+C(c—.02cos ), (164)

and let 7, denote the epoch, or the known chronometer time to
which the observations are to be reduced. Let us suppose also,
that of the three instrumental errors, a, b, and ¢, only & has been
determined, this being found directly by reading the level for every
star. The rate of the chronometer, r, is supposed to be known
approzimately, and it is to be borne in mind that % is the error at
the time 7. Then in the above equation Z, @, and ¢ are un-
known. L
Now if we denote the error at the epock by E, , we shall have

E=E,—(T,— T)r (165)

And if E’, denote an assumed approximate value of E,, and € be
the unknown error committed by this assumption, we shall have,

E=E +e—(T,—T)r. (166)
From which, Eq. (164) becomes
e+ Ada+Cc+T—.021cosp C+E' ,—(T,—T)r 4+ Bb —a =0,
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in which everything is known save € (the correction to be applied
to the assumed chronometer error at the epoch), @, and c.

Aa is called the correction for azimuth.

Ce “ “« o “ collimation.
—.021 cos p C « “ “ “ diurnal aberration.
— ( To — T) r [ [ €€ [{3 rate.
Bb [ ({3 [ [{3 level.

Collecting the known terms, transposing them to the 2d mem-
. ber, and denoting the sum by n, we have

€e+Ada+ Cc=mn. (167)

Each one of the twenty stars furnishes an Equation of Condition
of this form, from which, by the principles of Least Squares, we
form the three “ Normal Equations,”

S(C)e+Z(40)a+ 3 (0 ec= = (0On),
Sd)e+S(A)a+Z(A0)c=3 (4dn),
SU) e+ I a+ 3 (0)e=32 (@),

from a solution of which we find a, ¢, and the correction, €, to be
applied to the assumed chronometer error at the epoch.

If either ¢ or @ be known, say ¢, by methods given under “ The
Transit Instrument,” then the correction for collimation for each
star, C ¢, should be transferred to the 2d member and included in 7.
We then have only the two “ Normal Equations,”

=2(1) e+ =2 (da) = =2 (n),
A e+=Z(4)Ya==(4n),

from which to find € and a.

It is to be remembered that the middle ten stars have been ob-
served with the instrument reversed, and that such reversal changes
the sign of ¢, and therefore of the term Cc. Hence in forming the
« Equations of Condition” for those stars, care should be taken to
introduce this change by reversing the sign of C. The sign of ¢ as
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found from the “ Normal Equations ” will then belong to the col-
limation error ¢ of the unreversed instrument.

Also, since reversing the instrument almost invariably changes
a, it is better to write @’ for a in the corresponding “ Equations of
Condition,” and treat @’ as another unknown quantity. We will
thus have four “ Normal Equations” instead of three, and derive
from them two values of the azimuth error, one for each position
of the instrument.

Sometimes, and perhaps with even greater accuracy, the solution
is modified as follows:

Independent determination of @ and ¢ are made, as explained
heretofore, by the use of three stars.

Adopting these, each star gives a value of the chronometer error
as per Form 1. The mean result compared with the similar mean
of preceding and following nights, gives the rate. The principle of
Least Squares is then applied (correcting also for rate) in the man-
ner just detailed, to obtain the corrections to be applied to these
values of a, ¢, and the mean chronometer error. With these cor-
rected values of @ and ¢, new values of the chronometer errors are
found by direct solution (Form 1), the mean of which is adopted.

o}« Personal Equation.—From (163) it is seen that although
errors in £ and £’ affect the deduced longitude directly, the effect
will disappear if they are equally in error.

Practical observers acquire as a rule certain fixed habits of ob-
servation whereby the transits of stars are recorded habitnally
slightly too early or too late, thus affecting the deduced ¢lock error
correspondingly.

The difference between the result obtained by any observer and
the true value is called his Absolute Personal Equation, and that
between the results of two different observers their Relative Per-
sonal Equation. In Longitude work this- latter should always be
determined and applied to one of the clock errors, thus giving
values of Z and £’ as though determined by a single observer, and
causing them if in error at all, to be as nearly equally so as possible.

To determine this Relative Personal Equation, the two observers
should, both before and after the longitude work, meet and compare
as follows: one notes the transits of a star over half the wires of
the instrument, and the other the transits over the remaining half.
Each time of transit is then reduced to the middle wire by the
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Equatorial Intervals, and the difference between their respective
means will be a value of their relative personal equation. The
adopted value should depend upon twenty or thirty stars, and the
work be distributed over three or four nights.

Personal equation is not a constant quantity, and should be re-
determined from time to time. On the Coast Survey it is largely
eliminated by causing the observers to change places upon comple-
tion of half the observations for difference of longitude between the
stations.

~~—————— Application of Weights and Probable Error of Final Result.—
The probable error of an observed star transit may be divided for
practical purposes into two parts: the first, due to errors (apart
from personal equation) in estimating the exact instants of the
star’s passage over the wires, unsteadiness of star, etc., is called the
observational error; the second, called the culmination error, is due
to abnormal atmospheric displacement of star, in exact determina-
tion of instrumental errors, anomalies and irregularities in the clock
rate, etc. Evidently the first is the only part of the probable error
which may be diminished by increasing the number of wires. It
may be determined for each observer as follows:

Having made several (m) determinations of the Equatorial In-
tervals as before explained, let each be compared with its known
value, giving for the probable error of a single determination
(Johnson, Art. 72),

Ro=0.6745 f—_”l (a)

Since these intervals depend upon observed transits over two wires,
we have for the probable error of an observed transit of an equato-
rial star over a single wire (Johnson, Art. 87),

20

R” = 0.6745 2—(’”2—_1—). (b)

For any other star this will manifestly be

R’ sec 0,



LONGITUDE, 129

and for &V wires the probable error of the mean will be

R”
Vv

For the smaller instruments of the Coast Survey R’/ = 0°.08 about.
To determine the culmination error, R’, for an equatorial star,
let R denote the combined effect of both errors; then

R==_ 4R ()

R may be found by comparing several (m) determinations of a
star’s R. A. (all reduced to the same equinox) with their mean,
uging the same formula as before. Multiplying the valne thus
found by cos d, we have the probable error for an equatorial star.
The mean result from many stars should be the adopted value of R.

For the smaller instruments of the Coast Survey R = 0°.06
about.

Substituting in (¢), making N = 15,

R’ = 0°.056.

For any other star this will evidently be R’ sec 8. Hence for the
probable error of the transit of an equatorial star over W, or the
full number of wires,

(0°.08)* os)'

R = + (0°.056)"; @

and for any less number of wires,

(0%.08)" os)'

R = + (0°.056)". )
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Since the weights of observations are proportional to reciprocals of
squares of probable errors, we have for the weight of an observation
on 7 wires (that on the full number being taken as unity),

0.0064 2
— 0.0032_ ~+1

p= == -
0006 1 00032 241
n n

. ;)

Again, from what precedes it is seen that the total probable error
(R) of the transit of an equatorial star will become R sec & for any
other. Hence different stars will have weights inversely as sec® 6.
In practice, however, slightly different relations have been found to
answer better. For the instruments above referred to, the formula

, 1.6

P =is 4 tan® & @)
has been adopted.
The report of the Chief of Engineers for 1873 gives
,_ 13
=1 +0.3sec’ 6" (%)

Therefore if each Equation of Condition in the Reduction of the

Time Observations be multiplied by the corresponding value of 4p
(Johnson, Art. 126), it will be weighted for missed wires.

In the same way, if multiplied by 4’ it will be weighted for
declination. It is, however, unusualto weight for declination when
d<40°.

The normal equations having been formed from the weighted
equations of condition in the usual manner, their solution will give
the chronometer error and its weight, p,. (Johnson, Arts. 132,133.)

The probable error of a single observation is then found by the
formula, (Johnson Art. 138),

r=0%6745

)

>
m—q
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.where the residuals, », are.formed from the m weighted equations
of condition, and ¢ is the number of normal equations.

. The probable error of the chronometer correction as determined
by a single night’s work will then be

__r :
ry= i | ¥)]

Similarly we obtain p,’ for the weight of the chronometer correction
at the other station, and the weight to be assigned to the resulting
longitude, from the relation between weights and probable errors,
will be

Pe}’e
= k
pl p. +pc ( )

The weighted mean longitude as the result of m’ nights’ work will
then be

2 (@.2)
| =@’ 0
.with a probable error
0. 67451/ = (1’; ( 2) 5 (m)

Circumstances must, however, decide as to the relative weights to be -
assigned to’the results of different nights. If the observations have *

‘been conducted on a uniform gystem, it will perhaps be better to
give them all equal weight. |

3. Longitude by Lunar Culminations.—The moon has a rapid
motion in Right Ascension. If, therefore, we can find the local
times existing on two meridians, when the moon had a certain
R. A, their difference of longitude becomes known from this differ-
ence of times.

Determine the local sidereal time of transit or R. A. of the
moon’s bright limb, and denote it by a,.

From pp. 385-392, Ephemeris, take out the R. A. of the center
at the nearest Washington culmination. This + the Sidereal Time
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of semi-diameter crossing the meridian, according as the east or west
limb is bright, taken from same page, will give the- R. A. of the
bright limb, at its culmination at Washington. Denote this by a,.

Now if an approximate longitude be zof known, which will
seldom be the case, one may be established as follows: Let v =
moon's change in R. A. for one hour of longitude, taken from same
page of Ephemeris. Then upon the supposition that this is uni-
form, we will have

oy —
v:litay—a,: L, or I'= —'T-—‘-',

L’ being the approximate longitude from Washington, whose
longitude from Greenwich is accurately known. With this value
of L’ take from the Ephemeris a new value of v corresponding to
the mid-longitude § L’, and determine as before a closer approxi-
mate longitude, L”’. If we are within two hours of Washington
in longitude, L'’ will be sufficiently close for the purposes to which
we are to apply it. If farther away, make one or two more approx-
imations, and call the final result Lg,.

L., will be true within a very few seconds of time even if the
observing station be in Alaska, situated 6 hours from Washington,
and even if the observations be made when the moon’s irregularities
in R. A. are most marked.

With the approximate longitude (and this is one of the uses to
be made of this quantity, before referred to), we may now find the
sidereal time required for moon’s semi-diameter to cross the merid-
ian of the place of observation by simple interpolation to 2d or 3d
differences in the proper column of the same page of the Ephemeris.
Denote this by 7.

The greatest change in the time required for semi-diameter to
cross the meridian, due to a change of one hour in longitude, is
about 0.13 %, Hence, even if we could possibly have made an error
of 10 minutes in our determination of L}, , the value of 7} can only
involve an error of about .02 *¢ when at its maximum. This would
involve a maximum error of about 0.5%° in the resulting longitude.

a; + T, = a, will then be the R. A. of the moon’s center at the
instant of transit of the center.

On Pages V to XII of the Monthly Calendar are found the
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R. A. of the moon’s center for each hour of Greenwich mean time.
The problem now is to find at what instant (7)) of Greenwich time
the moon’s center had the R. A. determined by our observation.
This may be solved by an inverse interpolation; t.e., instead of
interpolating & R. A. corresponding to a given time not in the
table, we are to interpolate a time to a given R. A. not in the table;

and in this interpolation the use of second differences will be quite
sufficient.

Therefore let 7', and 7, + 1 be the two Greenwich hours be-
tween which a, occurs.

Let & « be the increase of moon’s R. A. in one minute of mean
time, at 7', 'This is given on the same page.

Let ¢’ a be the increase of J « in one hour. Found from same
column by subtracting adjacent values of J a.

Let a, be the R. A. given in the Ephemeris at 7.

Then using second differences, we have

(168)

_ &’a To—T)\NT,—T,
“““"'*'(6“"' g 3600) 60 °

In this equation 73, — T, is expressed in seconds; everything is
known but ¢, and its value may be found by a solution of the
quadratic. The result added to 7', gives 7, or the Greenwich mean
time at which the moon’s center had a, for its R. A. Convert this
into Greenwich sidereal time, call the result a,, and our longitude
is known from

A=a, — a,. (169)

The preceding is the method to be followed where there is but
a single station.

Imperfections in the Lunar Tables from which the Ephereris
is computed, render the tabular R. A.liable to slight errors. There-
fore from Equation (168) our values of 7, and hence a, may be
incorrect from this canse, giving from Equation (169) an incorrect
longitude.

Differences between two tabular values are, however, nearly cor-
rect.

Hence it is more accurate to have corresponding observations
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of the moon’s transit on the same day taken at a station whose
longitude is known.
Its longitude, found as above, will be

MN=a/—a/;
and the difference of longitude between the two stations,
A" - A’ = (aﬂl - aﬂ) - (ao’ - ac),

inaccuracies of the Ephemeris being nearly eliminated in the differ-
ence (a,” — ay).

No method of determining longitude by Lunar Culminations is
sufficiently accurate for a fixed observatory. It may however be
used in surveys and expeditions where telegraphic connection with
a known meridian can not be secured. Even with the appliances
of a fixed observatory, the mean of several determinations is some-
times subsequently found to be in error by.from 4 to 6 seconds of
time (Madras Observatory). Dependence should not therefore be
placed upon a single observation, but the operation should be re-
peated upon each limb as many times as may seem desirable. The
longitude derived from any determination may be employed as the
approzimate longitude required in any subsequent determination.

Before proceeding to any details as to the observations and re-
ductions, it is well to note the effect of errors in either, upon our
result. The main outline of the problem consists in determining
the moon’s B. 4. at a certain instant, and then ascertaining from
the Ephemeris the Greenwich time of the same instant. Both the
moon’s B. 4. and the instant are denoted, at the place of observa-
tion, by a, = a, & 7). a, depends very largely upon accuracy of
observation and reduction. 7 dependsupon ¢nferpolation with an
approzimate longitude. Asshown before, no error of assumed longi-
tude that could ever occur in practice, would have any appreciable
effect on 7. If the ¢néerpolation be properly performed, 7 can
involve only very slight errors. But whatever they may be, they
enter with full effect in a,, and when the final operation is per-
formed to determine the corresponding Greenwich time, an inspec-
tion of the tables will show that any error in a, is increased from
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20 to 30 times in the resulting longitude. In this way, as before
shown, an error of .02® in 7} is amplified into .5* in the result.

Errors in a; affect a,, and therefore the result, in the same
manner; hence we see that considerable care is necessary in both
observation and reduction. At the very best, the result is liable to
be in error from 1 to 3 seconds. In latitude of West Point, 1
second of time = 1142 feet in longitude. _

Observations and Reductions.—The transit instrument is sup-
posed to be pretty accurately adjusted to the meridian, and the
outstanding small errors a, b, and ¢, measured. The rate of the
gidereal chronometer is also supposed to be known.

Note the chronometer time of transit of the moon’s bright limb
over each wire of the instrument. In this case, as with a star, the
time of culmination is found by reducing the observations to the
middle wire and then correcting for the three instrumental errors.
See Form 1. But in case of the moon these reductions and correc-
tions take a somewhat modified form due to the two facts that the
moon has a proper motion in R. A., and also a very sensible parallax
in R. A. when on a side wire. Hence (see note following) we have

% F instead of 2—7:' sec ¢’, for the reduction to the middle wire,

and (Aa + Bb+ Cc’) Fcos ¢ instead of Aa + Bb -} Cc, for the
.instrumental correction; and the Equation of the Transit Instru-
ment as applied to this case becomes,

'01',—2—T+§F+E+ (da+ Bb4 Cc) Foos 8", (170)

In this equation = 7 is the sum of the observed times, » the num-
ber of wires used, = ¢ the sum of their equatorial intervals, d” the
moon’s declination as seen, <.e., as affected by parallax, and

e , 601643
F=[1— psin 7 cos (¢’ — 9)] 890660.1643—(6‘00’
p being the earth’s radius at place of observation in terms of‘the
equatorial radius, # the moon’s equatorial horizontal parallax, ¢’
the geocentric latitude, (Fa) as already stated, and ¢ the moon’s
geocentric declination. These quantities must be found before the
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reduction can be made. The mode of finding p and ¢’ has already
been explained. To find 7, d, and (J @), note in addition to the
transit of the moon’s limb that of one or more stars at about the
same altitude, and which culminate within a few minutes of the
moon. The difference between the times of passing the middle
wire applied to the star’s R. A. will give an approximate value of
a;, from which an approximate longitude is determined as before
explained. With this, 7 may be taken from page IV, and ¢ and
(6 @) from pp. V to XII, Monthly Calendar. # thus becomes
known. Evidently

6’ = 0 — pmsin (¢’ — 9)

with sufficient accuracy, and the computation of «; can now be
made.

One of the greatest inaccuracies to be apprehended is a failure
to determine a very exact value of E for the instant of transit.
This quantity may be eliminated, or very nearly so, as follows:

If two or more fundamental stars, those whose places have been
established with the highest degree of accuracy, be selected so that
the mean of the times of their transits shall be very closely the time
of transit of the moon’s limb, then the mean of their equations will
be, corresponding to & mean star,

ET ——se06 +(4a+ Bb+C¢),. (171)

Ay =

Subtracting from Eq. (170), since £ and Z, denote errors at
almost the same instant, we have

=T Z=2T,, 6 =21 >-5
7 " nF——secG + ete., (172)

a=a,+

in which Z has disappeared.

It £ and E, differ, their difference will be simply the change of
error in, for example, ten minutes, which can be accurately allowed
for by the chronometer’s well-established rate. Moreover, if the
stars be selected so that their declinations differ but slightly from
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that of the moon, it is evident that the last terms of Eqs. (170) and
(171) will be nearly the same, and that their difference in Eq. (172)
will be & minimam. See expressions for 4, B, and C, in connection
with Form 1.

.By this method, therefore, the R. A. of the moon’s limb, a,, is,
from Eq. (172), made to depend very largely upon the R. A. of
Jfundamental stars; instramental and clock errors being reduced to
a minimum of effect.

The stars should be selected from the Ephemeris in accordance
with the above conditions, and observed in connection with the
moon. '

ke 7o deduce Equation (170).

In the Equation of the Transit instrument, the quantities
% sec 0 (embraced in 7'), and (4a 4 Bb -+ C:') denote respect-
ively the times required for a star whose declination is & to pass
from the mean to the middle wire and from the middle wire to the
meridian. In the case of the moon these intervals (or hour-angles)
require modification, both on account of parallax and proper motion.

The Ephemeris values of R. A. and Declination are given for
an observer at the earth’s center; but on account of our proximity
to the moon, an observer on the surface always sees that body dis-
placed in a vertical circle, which results in a displacement or paral-
lax both in declination and (unless the body be on the meridian)
R. A. Hence it is that when the moon’s limb appears tangent to
a side wire as at M’, Fig. 26, it is in reality at M. Therefore the

Z

Fia. 26.

apparent hour-angle Z P M’ requires a correction to reduce it to
the true hour-angle Z P M, and the result is to be further modified
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due to the moon’s own motion in R. A. The following is based on
the method given by Chauvenet.

To deduce the relation between the true and apparent hour-
angles, let them be represented respectively by P and P’, the cor-
responding zenith distances by z and 2, and the declinations by &
and ¢, Z being the geocentric zenith,

Then

sin P :sin 4 ::8inz :cosd,

sin P’ :sin 4 ::sinz2’ : cos d’,

sin P .  sinz cosd
sin P’ "'sinz’ " cos6”
sinz cos ¢’

gin P =sin P/ —— ——.
sin 2’ cos 0

Or, since P and P’ are very small when the limb is on a side wire,
we have, expressing them both in seconds,

,8inz cos d’

P=
gin 2’ cos 6

P ig the time which the limb with an hour-angle P’ would require
to reach the meridian if the moon had no proper motion. The
actual interval is greater than P on account of the moon’s contin-
ual motion eastward or increase in R. A,, resultmg in a retardation
of its apparent diurnal motion.

To determine thig, the Ephemeris glves at intervals of one hour
the moon’s motion in seconds of R. A. in one mean solar minute
=da. One m" 8. minute = 60 X 1.002738 ='60.1643 sidereal

da
60.1643
geconds eastward, and therefore its apparent dlurna.l motion west-

seconds. Hence in one mderea.l second the moon moves

oa
ward is only 1 — 501643 in the same interval. In other words,

this is the apparent rate of the moon in diurnal motion at the in-
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stant considered. Denote it by B. Then the time required to
traverse the true hour angle P (or the apparent, P’), will be

P ginz cosd’ 1
stn 2’ cosd R’
When the limb is on the mean of the wires, the apparent hour
angle, P’, from the middle wire becomes 271? gec 6’ (since 67, not 6, is

the declination of the point as observed), and when on the middle
wire P’ becomes [a sin (¢ — ¢”) 4 b cos (¢ — 6”) + ¢’| sec 6.

Hence to pass from the mean of the wires to the meridian re-
quires

[-2—“' sec 87 + (asin (¢ — 6%) + beos (¢ — 6') + c') sec a']
n
x Snz osdll_Zising 1 g+ (dat Bb+ 02)

sinz 1 1 ‘
sin 2’ cos 6 R’

X cos 6’

Placmg ; 86C P 7= F, the Equation of the Transit instru-

ment as apphed to the moon, becomes, designating the R. A. of the
limb by ay,

a= 2_T+E+— F+ (da+ Bb+ Oc’) Feos 6%, (170)

For purposes of computation the value of # may be simplified

by expressing :il:ll :, in terms of quantities given in the Ephemeris.

Let 7 = moon’s equatorial horizontal parallax, p the parallax in
altitude, and p as heretofore.
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Then

ginz _ sin (2’ —p) _ sinz’cosp —cosz’ sinp _
ginz’ =  sinZ gin 2’ -

cosp —cos2’ pgin 7 ;
gince sinp = psgin 7 8in 2.

Expanding cos 2’ = cos (2 + p), placing sin’p = 0 and cos z =
cos (¢/ — &), we have

ging _ . . '
g7 = 1 — psinwcos (¢’ —9)
and
F=[1— psin 7 cos (¢" — 6)] sec&-lle-.
Evidently we may also write,
_ /L 6’ = 0 — p wsin (¢’ — 6).
v —

k,/\'

+ * 4, Longitude by Lunar Distances.—On pp. XIII to XVIII of the
Monthly Calendar in the Ephemeris are found the true or geocen-
tric distances of the moon’s center from certain fixed stars, planets,
and the sun’s center, at intervals of 3 hours Greenwich mean time.
If then an observer on any other meridian determine by observation
one of these digtances, and note the local mean time at the instant,
he can by interpolation determine the Greenwich mean time when
the moon had this distance, and hence the longitude from the
difference of times.

The planets employed are Venus, Mars, Jupiter,and Saturn, and
the fixed stars, known as the 9 lunar-distance stars, are a Arietis
(Hamal), @« Tauri (Aldebaran), 8 Geminorum (Pollux), @ Leonis
(Regulus), a Virginis (Spica), a Scorpii (Antares), a Aquile
(Altair), a Piscis Australis (Fomalhaut), and « Pegasi (Markab).
From this list the object is so selected that the observed distance
shall not be much less than 45°, although a less distance may be
used if necessary.

The distance observed is that of the moon’s bright limb from a
star, from the estimated center of a planet, or from the nearest
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limb of the sun. If the sextant telescope be sufficiently powerful

to give a well-defined disc, we may measure to the nearest limb of

the planet, and treat the observation as in the case of the sun.
Thus in Fig. 27, letting Z represent the observer’s zenith, and ¢’

Fia. 27.

and C’’ the observed places of the sun and moon respectively, the
distance measured is S’ M’, from limb to limb.

The effect of refraction is to make an object appear too high, and
that of parallax, soo low. In the case of the sun the former out-
weighs the latter. In the case of the moon the reverse is true.
Hence the frue or geocentric places of the two bodies would be
represented relatively by S and M, and the distance S M, from
center to center, is the one desired.

The outline of the method is as follows:

Having measured the distance 8’ M, and corrected it for the
two semi-diameters; and having also measured the altitudes of the
two lower limbs and corrected them for the respective semi-diame-
ters, we have in the triangle Z C” 0’ the three sides given, from
which we find the angle at Z. Then having corrected the observed
altitudes for refraction, semi-diameter and parallax, we have in the
triangle Z S M, two sides and the included angle Z, to compute the
opposite side S M. -~

— Before proceeding to the more definite solution, three pomts l
should be noticed.

1st. The semi-diameter of the moon as seen from the surface of
the earth is greater than it would appear if measured from the
center of the earth, due to its less distance. Hence C’/ M’ is an
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“ qugmented semi-diameter,” and must be treated accordingly. The
augmentation in case of the sun is insignificant.

2d. Since refraction increases with the zenith distance, the re-
fraction for the center of the sun or moon will be greater than that
for the upper limb, and that of the lower limb will be greater than
o that of the center. The apparent distance
of the limbs is therefore diminished, and the
whole disc, instead of being circular, presents
an oval figure, whose vertical diameter is the
least, and horizontal diameter the greatest,
- agshown in Fig, 28.". Thereforeif ¢ d denote

the direction of the measured distance, the
* assumed semi-diameter, ¢ f, will be in excess
‘ by the amount e f, and must be corrected
N accordingly. This correetion becomes of
Fro. 2. " importance if the altitude of either sun or

moon be less than 50° at the moment of observation.

3d. Since the vertical line at the station does not in general
pass through the earth’s center, but intersects the axis at a point
R. (see Fig. 17), it is most convenient to reduce our observations at
first to the point R, regarding the earth as a sphere with B O as a
radius, and then to apply the small correction due to the distance
C R, in order to pass to the true or geocentric quantities.

In the following explanation, the body whose distance from the
moon is measured is taken to be the sun. The result will then
apply equally to a planet if its limb be considered; if its center be
considered, the expression for its semi-diameter becomes zero. If
the body be a fixed star, the expressions for its semi-diameter and
parallax become zero.

Let 2’ = measured altitude of moon’s lower limb, corrected for

sextant errors.
H'"’ = measured altitude of sun’s lower limb, also corrected.
d’”’ = measured distance between moon’s bright limb and
nearest limb of sun, also corrected.

T = local mean solar time at instant of measuring d”’.

L’ = an assumed approximate longitude.
¢ = latitude.

Note the readings of the barometer and of the attached and ex-
ternal thermometers.
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With 7 and L’, take from the Ephemeris the following quan-
tities:

8 = geocentric semi-diameter of moon.

7 = equatorial horizontal parallax of moon,
6 = geocentric declination.

S = semi-diameter of sun.

D = geocentric declination of sun.

P = equatorial horizontal parallax of sun.

The first two are obtained from page IV, monthly calendar, or
pages 385 to 393 Ephemeris.

The third from pages V to XII, monthly calendar, or pages 385
to 393 Ephemeris.

The fourth and fifth from page I, monthly calendar, or from
pages 377 to 385 Ephemeris.

The sixth from page 278 Ephemeris.

We must now correct d’” for both semi-diameters, augmented in
case of the moon. Therefore with 2’/ + s and s asarguments, enter
the proper table and take out the amount of augmentation. In the
absence of tables this may be computed by the formula,

Augmentation = & 8’ sin (A"’ + 8) 4+ 4 £ " + 4 &’ 8’ sin’ (B”" 4+ 3);

in which log £ = 5.25020 — 10, and s is expressed in seconds. (For
deduction of this series see Note 1.)

Add this correction to s and we have 8’ = moon’s semi-diameter
as seen from point of observation.

We now have (neglecting the distortion of discs), the following
values of the observed quantities reduced to the centers of the ob-
served bodies, viz. :

d=d"+¢+8 WMW=r+s. H=H4+S8.

Using these quantities we may now find the correction due to
distortion of discs (or refractive distortion), as follows: From
tables of mean refraction take out the refractions corresponding to
the altitude (2’ + s’) of the upper limb, to that (A" — s”) of the
lower, and that (&’) of the center. The difference between the
latter and each of the other two gives very nearly the contraction
of the upper and lower semi-diameters of the moon. This may be
repeated once if the refractions are very great due to a small alti-
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tude. The mean of the two is the contraction of the vertical
semi-diameter due to refraction. Denate it by As, and the same
quantity in case of the sun by A S.

These quantities are represented by e b in Fig. 28, and from them
we are to find ¢ £, or the distortion in the direction of @’’. This is
found to vary very nearly as cos® ¢, ¢ being the angle which d’*
makes with the vertical. (See Note 2.)

The values of ¢, or @ in case of the sun, will be found from the
three sides of the triangle Z ¢’ C"’, Fig. 27. Their values, page 6,
Book of Formulas, will be, if m =} (d’+ &' + H’).

cos m sin (m — H’) sin'4 Q = cos m sin (m — A’)
gind’cos A’ ’ ~  sind’cos H'

sin*} g =

And the refractive distortions will be, from the above,

Ascos' ¢, and A S cos’ Q.

Hence the fully corrected values of the measured quantities are
d'=d"” 4+ (' — A scos’q)+ (S — A S cos’ @),
W=~r"+s —as, H =H"+4+8—-a8.

We now have the distance (d’), between the centers and the
altitudes of the centers (2’ and H'),as these quantities would have
been had we been able to measure them directly. We must now
ascertain what they would have been had we measured them at the
center of the earth; or, as a first step, had we measured them at the
point R. : :

This is necessary, because the earth not being a perfect sphere,
the transference of an observer to the center would not displace a
body (apparently) toward the astronomical, but toward the geocen-
tric zenith, and the angle at Z, Fig. 27, would no longer be com-
mon to the two triangles. But by regarding the earth as a sphere
with radius O R, Fig. 17, the two zeniths will coincide, and the
reduction therefore be easily made. Afterward a correction is tobe
applied due to a transference of the observer from R to C.

Therefore let H,, %, and d,, be the values of H’, A’, and d’,
when referred to R, and let r, and » be the actual refractions for
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H’ and A’. It will be shown in Note 3 that = (the angle sub-
tended by the equatorial radius at the distance of the moon) is to

7,, the angle subtended by O R, as a, the equatorial radius, is to %.
Therefore 7, the parallax at R, equa.is g On account of the greater
distance of the sun, P will be practically the same for R as for C.
Therefore, Art. 83, Young,
h,=WF —r 4 m cos(h’ —r)
H,=H'—r,+ Pcos (H —r,)

In order to find d,, let S and M (Fig. 29) represent the places

of the sun and moon as seen from the point R without refraction,
given by H,, h,, and d,; and ¢’ and C"’ the places as observed,
(given by H’, 1’ and d’).

Then in triangle Z 0’ C”’,

cos Z — cos d’ — gin h’sin H’
- cos k' cos H'

Page 6, Book of Formulas.
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From triangle Z S M,

cosd, — sin k, sin H,
cos Z = ‘ £ /
cos A, cos H,

Page 6, Book of Formulas.

Equating these two values of cos Z, adding unity to both mem-
bers and reducing,

cos @’ +cos (b’ + H’) _ cosd, + cos (h, + H,) Page 4
cos ' cos H' - cosh, cos H, - orages
Make m =} (h’+4-H'+d’), whence cos (A'+ H’) =cos (2 m—d’).
Substituting in the preceding equation, reducing the first member
by formulas 4, page 4, 11, page 2, and 13, page 1, and the second
member by formulas 9 and 10, page 2, we have

cosmcos (m —d’) _cos’} (h, 4+ H,) —sin* 4 d,
cosh’ cos H' cos h, cos H,

Whence,

cos i, cos H,

sin'} d, = cos’ § (h, + H)) — =7 71

cos m cos (m — d’).

This may be placed in a more convenient form by assuming

cosk,cos H, cosmecos(m — d’)

cosh’ cos H'  cos’} (h,+ H,) = sin” M.

Whence ginyd, = cos} (h, + H,) cos M.

‘We now have the distance between the centers as it would have
been without refraction, if measured from the point B. This is
represented by the line S M. (Fig. 29.)

The transference of the observer to the center will, since this
motion lies wholly in the plane P M R, have the effect of appar-
ently diminishing the declination of the moon, causing it to appear
at M’, while the position of § will not be sensibly changed.

oo
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- It will beshown in Note 4 that the correction to be added to
d,(S M) to give d (S M) is '

7 e'sin @ (sinD_sin6 __’”:(sinD__ sin &
¥1—e'sin’'¢ \8ind, tand,) - sind, tan d,)' ‘
| 4
4
¢ being the eccentricity of the meridian = 0.0816967. S
Hence we have finally, denoting the geocentric distance between
centerg by d,

.(sinD s8ind
d=d,+mi ind,—tand,)'

This operation of finding d from the observed quantities is called
¢ Clearing the Distance.®
It is now necessary to find the Greenwich mean time when the
moon and sun were separated by the distance d. For this purpose
,enter the Ephemeris at the pages before referred to, and find there-
-l it two distances between which d falls. Take out the nearer of
these and the Greenwich hours at the head of the same column.
Then if A denote the difference between the two distances, and A’
the difference between the nearer one and ¢, both in seconds, we
shall have, using only first differences, for the correction, ¢, to be
applied to the tabular time taken out,

A3 alih Lt = 3 A’
S A%
3h
Or log t® = log—A- + loga’.

10

Or in seconds, log#* =log SAOO + loga’.
10800
A

L. of Diff.” (Proportional Logarithm of Difference.) Hence we
have simply to add the common logarithm of A’ in seconds to the
proportiondl logarithm of the table to obtain the common logarithm
of the correction in seconds of time,. ]‘

The logarithms of are given in the columns headed « P.
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To take account of second differences, take the difference be-
tween the preceding and following proportional logarithms. With
this and ¢ as arguments enter table 1, Appendix to Ephemeris, and
take out the corresponding seconds, which are to be added to the
time before found when the proportional logarithms are decreasing,
and subtracted when they are increasing.

Denote the final result by 7}, and the difference of longitude
by A. Then

A=T,—T. (173)

The mode given above for clearing the distance is quite exact,
but somewhat laborious. There are, however, several approximative
solutions, readily understood from the foregoing, which may be
employed where an accurate result is not required, and which may
be found in any work on Navigation.

The method by “ Lunar Distances ” is of great use in long voy-
ages at sea or in expeditions by land, where no meridian instru-
ments are available, and when the rate of the chronometers can no
longer be relied upon.

It is important to note that if 7'in Eq. (173), denote the chro-
nometer time of observation, instead of the #rue local time, 7, — 7"
will be the error of the chronometer on Greenwich time. In this
way chronometers may be “checked.” If, however, 7' denote the
true local time, obtained by applying the error on local time to the
chronometer time, then the same equation gives the longitude.

e Observations.— It is necessary that 2’’, H’’, and d’’ should cor-
V' respond to the same instant 7. Hence observe the following order

/

\/~\

in making observations. Take an altitude of the sun’s limb, then
an altitude of the moon’s limb, then the distance, carefully noting
the time, then an altitude of the moon’s limb, then an altitude of
the sun’slimb. A mean of the respective altitudes of the two limbs
will give very nearly the altitudes at the instant of measuring the
distance.

For greater accuracy, several measurements of the distance may
be made, and the mean adopted. Also, when possible, at least two
stars should be used on opposite sides of the moon, for the purpose
of eliminating instrumental errors.

The accuracy of the result will depend upon the observer’s skill
with the sextant, and mode of reduction followed.
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o}« 1. To Find Augmentation of Moon’s Semi-diameter.—In de-
termining the augmentation of the moon’s semi-diameter due to its
altitude, the ellipticity of the earth is practically insensible. There-
fore (Young, p. 62), denoting the altitude of the center (%'’ 4 s)
by %', the parallax in altitude by p, and the augmented semi-diameter
by &,

cos i’

{
T s W )

cos b’ — cos (b’ 4 p))
cos (A’ +p) [

Augmentation = G =8 —s8=3s (
By page 4, Book of Formulas,
cosh’ — cos (b’ 4 p) =2sin§ (&’ + A4’ +p)sin § p.
G= 2% _sin(W+ip)sinip
cos (%’ + p) )

‘Expanding the sine and cosine of the sums, writing § » for sin
% p, and unity for cos } p, we have

G_sp(sinh’+4}pcosh’).
= cosh’ —psink’

p = mcosh’ (Young, p. 61).
According to the Tables of the Moon, the relation between =
and s is constant, such that

7 = 3.6697 s.

Hence p = 3.6697 s cos A’.
Designating this numeral by %',

_ k'8 (sinh’ + } &’ s cos’h’)

@ 1— % ssinh’

By division,

G=Fkssink' +35*s+ } %" s"sin’ &’ 4 ete.
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Multiplying by sin 1’ to reduce G to seconds,

G=Fkssinh + } £*s* + 3 k"8’ sin* A’ + ete,, (174)
in which log £ = 5.2502 — 10.

»}e 2. To Deduce the Law of Refractive Distortion.—In Fxg 28,
let 2’ denote the altitude of the center, and A"’ that of any point of
the limb, as . Then the difference of mean refraction for ¢ and f°
will be (Young, p. 64),

F = a(coth’ — cot h”), , (1)

in which @ is the constant 60”.6.
Denoting the angle a ¢ f by ¢, and the semi-diameter by s,

" =h'+ scosq. . )
From Trigonometry,

1 — tan 2’ tan (s cos 9)
tan A’ + tan (scosg)

cot A’ =

Substituting in (1), and writing s cos ¢ tan 1”” for tan (s cos ¢),
we have,

F=a (s cos ¢ tan 1’ 4 s cos ¢ tan 1’/ tan’ h’)
- tan® &’ 4 s cos ¢ tan 1’ tan A’

The last term in the denominator is insignificant compared with
tan’ 2’; hence

F = acosec’ &’ s cos g tan1”’, (3)
which by (1) and (2) will be the difference between that ordinate
of the ellipse and the circle which passes through f.

Hence the line ¢ f will be,

Refractive Distortion = a cosec® 2’ s tan 1’” cos’ ¢.
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If ¢ = o0, we have a b = contraction of vertical semi-diameter =
As = acosec’ B’ stan 1”’. Hence finally,

Refractive Distortion = A s cos’ ¢. (175)

o} 3. To Deduce the Parallax for the Point R.
By making 2 = o in Equation (95), and reducing by (108), (99)
and (100), we have for the distance B C (Fig. 17 or 29),
ae’sin @
VI—¢esin’ ¢
Denoting the distance B O by y, the triangle B O C gives

a e’ sin @

_me: y::8in (¢ — @’) : cos @',

a e’ sin ¢ cos @’

y= sin (¢ — @) ¥1— ¢'sin’ @

Developing sin (¢ — ¢’), cancelling and applying (125),

_ a
VI—esin g

y

Comparing with second part of (112) it is seen that the denom-
inator is sensibly the value of p expressed in terms of a as unity.
Hence

!/=;-

* The angles at the moon subtended by the two lines a a.nd%

will be proportional to those lines. Therefore

wim,::

R
XK

w,=

(176)

SE

»l« 4. To Determine the Difference between ¢, and &, due to a
Transference of the Observer from R to C.
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By the previous note we have (Fig. 29),
RO = ae’sin @ )
Y1 — e'sin’ @

The perpendicular distance, C' .V, from the center to the line
R M, is, with an error entirely negligible, '

ae’sin ¢cosd
T /1 —e'sin’ @

CN

As before, the angle at the moon subtended by this line will be

ag’singpcos & w _ 7 ¢* sin ¢ cos &
VI —¢sinpd V1—esin'¢p

which is therefore the angular apparent displacement of the moon,
represented by the arc M M’ (Fig. 29).
-Denote it by m. Then, in the triangles P M’ S and M M’ S,

cosd, — cosm cosd _ sin D — sin & cosd

cos M’ =

sin m sin d - cos dsind
Reducing, replacing cos m by unity,
cosd, —cosd
— sin m (sin D gin 6 cos @
= cos 8 cos 6 ) )
From Fig. 30, it is seen that when
X \‘\1 d,and d are nearly equal, as in the
djy \ Ppresent case, we may replace cos d’ —
1 cos d by sin (d — d,) sin d, .
F1e. 30. Therefore

sin(d—d)—sinm( sin D siné‘cosd)
7 .

cosdsind, cosdsind,
Or

7 ¢’ sin @
T Vl—esint g

(sin D sind )

sind, tand, (177)
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OTHER METHODS OF DETERMINING LONGITUDE.

1st. If two stations are so near each other that a signal made at
either, or at an intermediate point, can be observed at both, the
time may be'noted simultaneously by the chronometers at the two
stations, and the difference of longitude thus deduced. An appli-
cation of the same system, by means of a connected chain of signal
stations, will give the difference of longitude between two remote
stations. The signals are usually flashes of light—either reflected
sunlight or the electric light, passed through a suitable lens.

2d. By noting the time of beginning or ending of a lunar or
solar eclipse, or by occultations of stars by the moon. For these
methods, see various Treatises on Astronomy.

3d. By Jupiter’s Satellites. a. From their eclipses. The
Washington mean-times of the disappearance of each satellite in
the shadow of the planet, and reappearance of the same, are accu-
rately given in the Ephemeris, pp.452-473, accompanied by diagrams
of configuration for convenience of reference. A full explanation
of the diagrams is given on p. 449. An observer who has noted one
of these events, has only to take the difference between his own
local time of observation and that given in the Ephemeris, to obtain
his longitude. This method is defective, since a satellite has a sen-
gible diameter and does not disappear or reappear instantaneously.
The more powerful the telescope employed, the longer will it con-
tinue to show the satellite after the first perceptible loss of light.
These facts give rise to discrepancies between the results of differ-
ent observers, and even between those of the same observer with
different instruments. Both the disappearance and reappearance
should therefore be noted by the same person with the same instru-
ment, and a mean of the results adopted. The first satellite is to
be preferred, as its eclipses occur more frequently and more sud-
denly, although both disappearance and reappearance cannot be
observed.

b. From their occultations by the body of the planet. The times
of disappearance and reappearance to the nearest minute only, are
given on same pages of the Ephemeris. Since the times are only
approximate, they simply serve to enable two observers on different
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meridians to direct their attention to the phenomenon at the proper
moment. A comparison of their times will then give their relative
longttude.

c. From their transits over Jupiter’s disc.

d. From the transits of their shadows over Jupiter’s disc. The
approximate times of ingress and egress, to be used as in case b, are
given on same pages of the Ephemeris, for cases ¢ and d.

Application to Explorations and Surveys.—On explorations, and
reconnoissances for more exact surveys, the observer will usually be
provided only with a chronometer, sextant, and artificial horizon,
with probably the usual meteorological instruments.

The chronometer should be carefully rated and have its error on
the local time of some comparison meridian (e.g., that of Washing-
ton) accurately determined for some given instant, so that, by ap-
plying the rate, its error on the same local time may be found
whenever desired.

The sextant should have its eccentricity determined before
starting, since this error often exceeds any ordinary index error,
and cannot be eliminated by adjustment.

The observer should be able to recognize by name several of the
principal Ephemeris stars. To determine the codrdinates of his
station when they are entirely unknown, he should first find the
chronometer error on his own local time, using preferably the
method by “ equal altitudes of a star,” since, as has been seen, he
will then be independent of any knowledge of the star’s coordinates,
his own time, latitude, longitude, or instrumental errors.

Observations for latitude may be made at any convenient time
by ¢ circum-meridian altitudes” of a south and north star, or of a
south star only, combined with ¢ Polaris off the meridian,” the
reductions being made by aid of the chronometer error just re-
ferred to.

The method by “ circumpolars ” may also be used as a verifi-
cation when applicable, the reduction being very simple.

The longitude is known as soon as the chronometer error on
local time is known, by comparing this with its known error on the
local time of the comparison meridian. However large the rate of
a chronometer, it should be nearly constant; but after someé time
spent in traveling, with possible exposure to extremes of tempera-
ture, its indications of the comparison meridian time are rendered
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somewhat uncertain by the accumulation of unknown errors, thus
introducing the same uncertainties into our longitudes. In such
cases the method by “lunar distances ” will afford an approximate
reéstablishment of the chronometer error on the comparison merid-
ian time, or a correction to an assumed approximate longitude.

If it be impracticable to find the local time by equal altitudes as
recommended, on account of clouds or the length of time involved,
it may be found by “single altitudes ” of an east and a west star
(or of a single star when necessary, either east or west), an approxi-
mate value of the latitude required in the computation being found
from the best obtainable value of the meridian altitude of the star
observed for latitude. With the error thus found the latitude is
found as before, which, if it differs materially from the assumed
approximate value, must be used in a recomputation of the time.
From this the longitude follows as before.

If the latitude be known or approximately so, as at a fixed sta-
tion or when tracing a parallel of latitude, time and longitude will
be most expeditiously determined by “single altitudes.”

In certain classes of work it is neces8ary to obtain approximate
coordinates by day, in which case of course the sun must be used in
accordance with the same general principles as far as applicable.

In all sextant work, except in methods by equal altitudes, its
adjustments and errors must be carefully attended to.

In extensivesurveys and geodetic work, where very precise results
are required, the methods employed are “ Time by Meridian Tran-
sits ” with the reduction by Least Squares, Longitude by the Elec-
tric Telegraph, and Latitude by the Zenith Telescope. The ob-
gerving-instruments should be mounted on small masonry piers or
wooden posts set about four feet in the earth and isolated from the
surrounding surface by a narrow circular trench one or two feet
deep. )

The exact location of an astronomical station is preserved, if de-
sired (a8 when the station is one extremity of a base-line), by a
cross on a copper bolt set in a block of stone embedded two or three
feet below the surface, the exact location of which is recorded by
suitable references to surrounding permanent objects.

Often it is required to determine the coordinates of a point
where it is impracticable to locate an astronomical station, as for
example a light-house or a central and prominent building of a city.
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In such a case, having made the requisite observations at a suitable
station in the vicinity, and having computed by (111) and (114) the
length in feet of one second in latitude and longitude, measure the
true bearing and distance of the point from the station, from which
the coordinates of the former with respect to the latter are readily
computed.

In locating points at intervals on a line which coincides with a
parallel of latitude, sextant observations for latitude which can be
quickly reduced will give, as just explained, the approximate dis-
tance of the observer from the desired parallel, to the immediate
vicinity of which he is thus enabled to proceed. At this point a
complete series of observations for latitude is made with the zenith
telescope, and the resulting distance to the parallel carefully laid
off due north or south.

In this manner points about twenty miles apart were located on
the 49th parallel between the U. S. and the British Possessions.

TIME OF CONJUNCTION OR OPPOSITION.

Two celestial bodies are said to be in conjunction when either
their longitudes or their right ascensions are equal ; and in opposition
when they differ by 180°. In the Ephemeris the conjunctions and op-
positions of the moon or planets with respect to the sun refer to their
longitudes. Conjunctions of the moon and planets or of the planets
with each other refer to their right ascensions. In other cases, when
used without qualification, the terms usually refer to longitudes.

The longitudes of the principal bodies of the solar system (or
the data from which they may be computed) are given in the
Ephemeris for (usually) each Greenwich mean moon. To find the
time of conjunction, determine by inspection of the tables the two
dates between which the longitudes of the bodies become equal, and
denote the earlierdate by 7. Take from the tables four consecutive
longitudes for each body—two next preceding and two next follow-
ing the time of conjunction. Form for each the first and second
differences, which give, from (42),

Lo=L+nd,+%"4, (@)
and
—n

L,,:L’+nd’,-|—.n 2

a,’ ©)
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¢ ¢ 0,
in which L, is the unknown common longitude at ion, and

7 in the second member is the required fractional portion of the
interval between the consecutive epochs of the tables,
Subtracting and collecting the terms

Rl e ) L s

from which » is found by solution; the corresponding portion of
the constant tabular interval is then added to 7, thus giving the
Greenwich time of conjunction. The time on any meridian to the
west of Greenwich is found by subtracting the longitude. The
value of n should be carried to three places of decimals to obtain
the time to the nearest minute.

The method of finding the time of opposition is obvious from
the above, noting that (c) becomes

d',—d

&= 2—’)n=180°+L'—L. (d)

_2.‘5.7),’_1_ (dl - dl’+

Except when the moon is involved, the use of first differences will
usually be found sufficient.

The times of conjunction and opposition in right ascension are
found in accordanee with the same principles.

TIME OF MERIDIAN PASSAGE.

To determine the local mean solar time of a given body coming
to the meridian, it is to be noted that this time () is simply the
hour angle of the mean suh at that instant, and that this hour
" angle is, by the general formula, P = sidereal time — R. A. of the
mean sun.

Now the sidereal time at the instant is equal to the R. A. of the
body on meridian, and this is equal to its R. A. at the preceding
Greenwich mean fhoon (a) plus its increase of R. A. since that
epoch, which is equal to m (P +21), A being the longitude from
Greenwich, and m the body’s hourly increase in R. A. Or, sidereal
time = a + m (P + Q).
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.

Similarly we have, denoting the hourly increase of mean sun’s
R. A. by s, R. A. of mean sun = a,+ 8 (P + ).
Therefore by the preceding formula,

retara

<4 S i

P=[a+m(P+A)]—[a,+ s (P +1)] f~}4,,., o,

Solving,
_a—a,+A(m —s)
P= 1— (m—ys)

In this equation « and a, are given directly in the Ephemeris,
A is supposed to be known, and s is constant and equal to 9.8565
seconds; m is obtained from the column adjacent to the one giving
value of &, and should be taken so that its value will denotg the
change at the middle instant between the Greenwich mean/h,oon
and the instant under discussion, viz., 4 (2 4 A), as near as can be
determined.

For the moon, whose motion in R. A. is varied, and for an in-
ferior planet, a second approximation may be necessary. If the
planet have a retrograde motion, m becomes negative. If the body
be a star, m becomes zero.

If the sidereal time of culmination be required, the above
formula holds, substituting for the mean sun the vernal equinox,
whose R. A. and hourly motion in R. A. are zero.

Hence, ’

p_atim
1—m

For a star, P’ = a.
\

\/\ AZIMUTHS. i

Definitions.—In surveysand geodetic operations it often becomes
necessary to determine the “ azimuth ” of lines of the survey; <. e.,
the angle between the vertical plane of the line and the plane of the
true meridian through one of its extremities; or, in other words,
the ¢rue bearing of the line.

For reasons given under the head of Latitude, the geodetic may
differ slightly from the astronomical azimuth of a line. Only the
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latter will be referred to here, and it is manifestly the angle at the
astronomical zenith included between two vertical circles, one coin-
ciding with the astronomical meridian, and the plane of the other
containing the line in question.

Outline.—In outline, the method consists in measuring with the
¢ Altazimuth ” or “ Astronomical Theodolite ”” the horizontal angle
which is included between the line and some celestial body whose
place is well known. Then having ascertained by computation the
Zrue azimuth of the dody at the instant of its bisection by the ver-
tical wire, the sum of the two will be the frue azimuth of the line.

Instruments.—The “ Astronomical Theodolite ” is provided with
both horizontal and vertical circles. In geodetic work the latter is
used largely as a mere finder, but the former is often of great size—
usually from one to two feet in diameter, and very accurately

Fie. 31.
graduated throughout. For reading the circle, it is provided with
several reading-microscopes fitted with micrometers, in lieu of ver-
niers; and in order that any angle may be mesasured with different
parts of the circle, the latter is susceptible of motion around the
vertical axis of the instrument. Eccentricity and errors of gradua-
tion are thus in a measure eliminated.
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To mark the direction of the line at night a bull’s-eye lantern
in a small box firmly mounted on a post is ordinarily used; the
light being thrown through an aperture of such size as to present
about the same appearance as the star observed. To avoid refocus-
ing for the star, the lantern should be distant not less than a mile.
If it is impracticable to place the lantern exactly on the line whose
azimuth is required it may be placed at any convenient point, its
azimuth determined at night, and the angle between it and the line
measured by day; the aperture being then covered symmetrically
by a target of any approved pattern. For convenience in the
following discussion the target will be supposed to be on the line.

Classification of Azimuths.—Azimuths of the line with refer-
ence to the star are taken in “sets,” the number of measurements
of the angle in each set being dependent upon whether the final
result is to be a primary or secondary azimuth. Primary azimuths
are employed in determining the direction of certain lines con-
nected with the fundamental or primary triangulation of a survey,
and each set consists of from 4 to 6 measurements of the angle in
each position of the instrument. The final result is required to

" depend upon several sets, with stars in different positions (generally
not less than five, and often many more). The error of the chro-
nometer (required in the reductions), together with its rate, are de-
termined by very careful time observations with a transit.

Secondary azimuths are employed in determining the direction
of certain lines connected with the secondary or tertiary triangles
of a survey. The number of measurements in a set is about one
half or one third that in a set for a primary azimuth; the number
of sets is also reduced, and the time observations are usually made
with a sextant. The sun is used in connection with secondary
azimuths only.

Selection of Stars.—In order to make a proper selection of stars
for the determination of azil.nuths, we have from the Astronomical
Triangle,

sin P -
cos ¢ tan & — sin ¢ cos P (178)

tan 4 =

Errors in the assumed values of P, ¢, or & will produce errors in
the computed azimuth, thosein & being for obvious reasons usually
insignificant and least likely to occur.
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Taking the reciprocal of (178), differentiating and reducing the
first term of the resulting second member by

cos @ cos i = sin ¢p cos & — cos ¢ sin J cos P,
the second by

‘sin @ = sin ¢ sin & - cos ¢ cos & cos P,

and the third by
sin A:sin P::cos d : cos a,
we have
_ _cosdcosyp . _sing
dA————cosa dP+tanasinAd ¢ md&

From this equation it is seen that if we select a close circumpolar
star, any error (d P) in the clock correction or in the star’s R. A.,
or any error (€ ¢) in the assumed latitude, will produce but slight
effect on the computed azimuth, since cos ¢ and sin 4 will each be
very small. If in addition the star be at elongation (p = 90°), the
first mentioned error will produce no effect, while sin 4, although
at a maximum for the star, will still be very small. (In latitude of
West Point the azimuth of Polaris does not exceed 1° 40’.) At
elongation the effect of errors (4 J) in ¢ will be a maximum,
although insignificant if & be taken from the Ephemeris.

But if the star be observed at both east and west elongations,
the effect of d 6 and d ¢ will disappear in the mean result, since
the computed azimuth (reckoned from the north through the east to
360°), if erroneous, will be as much too large in one case as too
small in the other.

Circumpolar stars at their elongations (both) are most favorably
situated, therefore, for the determination of azimuths; and since
experience gives a decided preference to stars in these positions,
other cases will not be considered, except to remark that the As-
tronomical Triangle then ceases to be right angled.

The stars a (Polaris), d, and A, Ursee Minoris, and 51 Cephei,
are those almost exclusively used (although the latter two cannot
be used with small instruments). Their places are given in a

.
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special table of the Ephemeris, pp. 302-13, for every day in the
year, and they are so distributed around the pole that one or more
will usually be available for observation at some convenient hour.
Of these four, A Urse Minoris is both the smallest and nearest to
the pole. For the large instruments it therefore presents a finer
and steadier object than any of the others. For the small instru-
ments suitable stars may be selected from the Ephemeris.

Measurements of Angles with Altazimuth.—In order to under-
stand the measurement of the difference of azimuth of two points
at unequal altitudes,let us suppose that the horizontal circle of the
¢ Altazimuth ” has its graduations increasing to the right (or like
those of a watch-face), and that absolute azimuths are reckoned
from the north point through the east to 360° the origin of the
graduation being at the point 0, Figure 32.

The angle N L 0 will then be the absolute azimuth of the origin

Fie. 82.

of graduations = 0, and if the instrument be in adjustment and
A, and 4, denote the absolute azimuths of the star and line respec-
tively, we shall have

4,
4

i

g-li-_ g, } in which R and R’ denote

angles 0 Z S and 0 L L’ respectively, and may be considered as the
readings of the instrument when pointed upon the star and over
the line. These equations will be somewhat modified if the instru-
ment be not in perfect adjustment. This will usually be the case.
Let us suppose that the end of the telescope axis to the observer’s
left is elevated so that the axis has an inclination of & seconds of arc.
- Then if the telescope be horizontal and pointing in the direction
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L 8§, it will, when moved in altitude, sweep to the right of the star,
and the whole instrument must be moved to the left to bring the
line of collimation on the star. The reading of the instrument will
thus be diminished to r,and we shall have the proper reading,
R = r + a correction. The amount of this correction is readily
seen, from the small right-angled spherical triangle involved (of
which the required distance is the base), tobe & cot 2. In the same
way it is seen from the principles explained under “ Equatorial
Intervals,” etc., that if the middle wire be to the left of the line of
collimation by ¢ seconds of arc, » must receive the correction
¢ cosec z. Hence when both these errors exist together, we shall
have, 2z’ denoting the zenith distance of the target,

A, = O+ r + bcot z 4 ¢ cosec z, (179)
A, = O+ 7’ + ¥ cot 2z’ + ccosec?, (180)

since ¢ remains unchanged, while & is subject to changes.
Subtracting,

A — A, = (r'+ ' cot2’) — (r + beot z) + ¢ (cosec 2’ — cosec z).

Since by reversing the instrument the sign of ¢ is changed, but
not altered numerically, we may, if an equal number of readings in
the two positions be taken, drop the last term as being eliminated
in the mean result. With this understanding, the equation will be

A, — A, = (' + ¥ cotz’) — (r 4 b cot2). (181)

which gives the azimuth of the line with reference to the star,
free from all instrumental errors. & is positive when the left
end is higher, and its value, heretofore explained, is obtained by
direct and reversed readings of both ends of the bubble, and is

% [ (w4 ') — (e+ e’)] ,» d being the value of one division in

seconds of arc. For stars at, or very near, elongation, it is evident
that cot z may be replaced by tan ¢, without material error; cis
positive when middle wire is to the lef? of its proper position.

For very precise work the above result requires a small correc-
tion for diurnal aberration, the effect of which is to displace (appar-
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ently) a star toward the east point. For stars at elongation, this
correction is 0””.311 cos 4,. (See Note 1.)

In using the reading-microscopes, care should be taken to correct
for « error of runs.” When a microscope is in perfect adjustment,
a whole number of turns of the micrometer screw carries the wire
exactly over the space between two consecutive graduations of the
circle. Due to changes of temperature, etc., the distance between
the micrometer and circle may change, thus altering the size of the
image of a “space.” The excess of a circle division over a whole
number of turns is called the “ Error of Runs.” This error is de-
termined by trial, and a proportional part applied to all readings of
minutes and seconds made with the microscope.

Observations and Preliminary Computations. —The observations
and the preliminary computations are as follows: The error and
rate of the chronometer, error of runs of the micrometers, collima-
tion error and latitude are supposed to have been obtained with
considerable accuracy. The apparent R. A. and declination for the
time of elongation of the star to be used must be taken from the
Ephemeris, or, if not given there, reduced from the mean places
given in the catalogue employed, as explained under Zenith
Telescope.

Then for the star’s hour-angle at elongation, cos P, = %:2?
13 113 I3 azimuth “© P sin Ae = co8 6.
cos @

“ “ “  zenith distance at ¢ cosz, = o ¢
sin 6

N “ gidereal time “ T,=a+P,
“ “ chronometer « “ « T,=T,+ E,

a being the R. A,, and Z the chronometer error.

The instrument is then placed accurately over the station and
levelled, 8o that everything will be in readiness to begin observations
at about 20™ before the time of elongation as above computed. In
the actual measurement of the angle several different methods have
been followed. First, five or six pointings are made on the target,
and for each pointing, the circle and all the microscopes are read;
also if the angle of elevation of the target differ sensibly from zero
(as would not usually be the case with the base-line of a survey)
readings of the level, both direct and reversed, are made. If the
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target be on the same level as the instrument, cot 2’ will be zero,
and the level correction will disappear. Them five or six pointings
are made on the star, and in addition to the above readings the
chronometer time of each bisection is noted. The instrument is
then reversed to eliminate error of collimation, and the above
operations repeated, beginning with the star. In the second method
alternate readings sre made on the mark and star, star and mark,
until five or six measurements of the angle have been made, the
chronometer being read at each bisection of the star; the circle,
microscopes and level as before. The instrument is then reversed,
and the same operations repeated in the reverse order. The middle
of the time occupied by the whole set should correspond very nearly
to the time of elongation. Similar observations are then made, on
the same or following nights, on other stars, combining both eastern
and western elongations, and using different parts of the horizontal
circle for the measurement.

Reduction of Observations.—Since the observations on the star -
have been made at different times, and since these correspond to
different though nearly equal azimuths, the first step in the reduc-
tion is to ascertain what each reading on the star would have been
had the observation been made exactly at elongation. For this
purpose find the difference between the chronometer time of each
.observation and the chronometer time of elongation as computed,
applying the rate if perceptible. Let the sidereal interval between
these two epochs be denoted by r seconds. Then the elongation
reading of the star would have been

actual reading 4 the expression 112.5 7* gin 1"’ tan 4,,

.

which denote by C. (See Note 2.)

[The quantity 112.5 7" sin 1”” is almost exactly equal to the
tabulated values of “m” in the “ Reduction to the Meridian,” and
may if desired be taken directly from those tables.] With a
circle graduated as assumed, this correction would manifestly be
negative for a western, and positive for an eastern, elongation.
Hence Eq. (181) becomes,

Ay — A, = (7 + ¥ cot2’) — (r +beotz & 0). (182)

Fach pair of observations (on the line and star) with the telescope
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“direct ” gives a value of A, — 4,. If n, be the number of such
>(d— A)
Na
eastern, negative for western, elongations) be added as heretofore
cos 6
cos ¢/’

line for instrument “ direct.”
Similarly, for instrument “ reversed,” we shall have

pairs, the mean will be — , to which if A, (positive for i

computed (sin 4, = ) we shall have the frue bearing of the

2 ( 4, — e)

n,

from which by adding 4, we obtain the true bearing of the line for
instrument reversed.

The mean of the two is the frue bearing of the line as given by
the star employed.

[For the greatest precision, this must be corrected by adding
the diurnal aberration, 0’".311 cos 4..]

The adopted value of the azimuth of the line should rest upon
at least five such determinations.

\ E

\/\ Fie. 83.
o}« 1. Diurnal Aberration in Azimuth.

It has already been shown when treating of the transit instru-
ment and in Art. 225 Young, that due to diurnal aberration all
stars are apparently displaced toward the east point of the horizon !
by 0”7.319 cos ¢ sin 6 of a great circle, where 6 is the angle made by
the direction of a ray of light from the star with an east and west
line (measured by S E, Fig. 33).
To determine the effect of this small displacement on the

- -\ /1/!
- -
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azimuth of a star, the right-angled triangle Z S M gives, denotmg
Z M by b,

8in z cos 4 = sin fsin .

Hence

sin 4 = 5% b cos 4
~ sinfsind’

cot 6

| tan 4 = e

Differentiating
cos®’ 4 cos A
dA__sinbsin’(i ~ T sinfsinz

Substituting — 0”.319 cos ¢ sin 6 for d 6 (since ¢ is a decreasing
function of 4),

0"".319 cos 4 cos ¢
sin z

d4 =

For a close circumpolar star at elongation
cos ¢ =sinz, sensibly.
Hence,
dA4=0"319 cos 4.. (183)

»ke 2. To Reduce an Azimuth Observed Shortly Before or After
the Time of Elongation, to its Value at Elongation.

If we conceive the meridian to be revolved to the position of the
declination circle passing through the point of elongation, evidently
the arc of this circle intercepted between the vertical wire of the
instrument and the point of elongation will have the same numeri-
cal value as the “ Reduction to the Meridian ” deduced in connec-
tion with the Zenith Telescope, viz.:

$(157)*sin 1" 8in 2 § = 112.5 7* sin 1”’ sin & cos d.
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The angle at the zenith subtended by this arc, i.c., the correction
to azimuth, is seen from the small right-angled triangle to be

17 sin 6 cos &

112.5 7% sin -
sin z,

(184) .
Substituting cos ¢ and sin d for sin ¢ and cos 6 (d = polar dis-

tance), making cos p = 1,and sin p = tan p (since the star is a close
circumpolar), the last factor becomes

t.a._njz =tan 4,
sin z,
Hence

C =112.,57"sin1” tan A4,.

l/\ DECLINATION OF THE MAGNETIC NEEDLE.

The Declination of the Magnetic Needle may be found in ac-
cordance with the same principles, regarding the magnetic meridian
pointed out by the needle, as the line whose azimuth is to be found.
Or, note the reading of the needle when the instrument carrying it
is pointed accurately along a line whose true bearing or azimuth is
known. Or, take the magnetic bearing of some known celestial
body, and note the time 7. Then. P = 7' — a. This value of P
in Eq. (178) gives the true azimuth, and the difference between
this and the magnetic bearing gives the declination of the needle.
Or, if the time be not known, measure the altitude of the body and
solve the Z P S triangle for .4, knowing ¢, §, and . Then having
noted the magnetic bearing of the body at the instant of measuring
the altitude, the difference is the declination of the needle.

SUN-DIALS.

A sun-dial is a contrivance for indicating apparent solar time
by means of the shadow of a wire or straight-edge cast on a properly
graduated surface. The wire or straight-edge, called the s¢yle or
gnomon, must be parallel to the earth’s axis; i.e., it must be inclined
to the horizontal by an angle equal to the latitude, and be in the
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meridian. The graduated surface, called the dial-face, is usually
a plane, and made either of metal or smoothed stone. It may have
any position with reference to the style (consistent with receiving
its shadow throughout the day), although it is usually either hori-
zontal or placed in the prime vertical. The two varieties are shown
in Fig. a, the first being by far the more common.

The principle of the horizontal dial will be readily understood
from an inspection of Fig. &.

Let PP’ be the axis of the celestial sphere, Z the zenith, 4 Q B
the equinoctial, and 4 H B perpendicular to € Z the plane of the
dial face, the style extending from C in the direction of 2. Then
if a plane be passed through tue style and the position of the sun,
S, at any instant, it will cut from the celestial sphere the sun’s
hour-circle, and from the dial-face the line €' IX, which is therefore
the shadow of the style on the dial-face. The direction of this line
is thus seen to be independent of the sun’s declination (season of
the year),’and dependent only on his hour angle. If, therefore, we
mark on the dial-face the various positions of this line correspond-
ing to assumed hour angles which differ from each other by, for
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example, 3° 45" or 15 minutes, instants of apparent solar time will
be indicated by the arrival of the style’s shadow at the correspond-
ing line. This construction may be made as follows, noting that

Z

F16. b.
the 12-0’clock line is the intersection of the dial-face with the
vertical plane through the style.

Suppose, for example, it were required to ¢onstruct the 9-o’clock
line. In the spherical triangle P H’ IX right-angled at H’ we
have P H’ = ¢, and the angle at P = Z P .§ = 45°, to determine
the side A’ IX = z, given by the formula

' tanz = sin @ tan 45°,

Then with C as a center lay off an angle from CH’ equal to the
computed value of z, and draw the line C I.X.
Generally,

tan 2 = sin ¢ tan P,

P denoting the hour angle assumed.

Values of z corresponding to intermediate values of P may be
laid off with a pair of dividers.

The dial-face may have any convenient form,—circular, rectan-
gular, or elliptical. The last is the best form (shown in Fig. a),
since the axis can be so proportioned that the spaces along the edge
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will be nearly equal, thus greatly facilitating any subdivision. For
the latitude of West Point, C #” should be about 24 times C 4
(Fig. @). If the plate be 18 or 20 inches long the subdivisions can
be readily carried to minutes.

Usnually the style is a triangular-shaped piece of metal of a suf-
ficient thickness to avoid deformation by accident—say # or } inch.
In this case one edge will cast the shadow in the A.M., and the
other in the P.M. Hence the graduations on either side of the
12-0’clock line must be constructed using as a center the point
where the shadow-casting edge pierces the plane of the dial-face.
The plane of the style must be accurately perpendicular to the
dial-face. :

Having been graduated, the sun-dial is mounted on a firm
pedestal, accurately levelled by a spirit-level, and turned till the
plane of the style is in the meridian. For an approximation we
may use a pocket compass, the declination of the needle being
known within moderate limits. By day the orieatation may be
effected by means of a watch whose error is known. Compute the
watch time of apparent noon = 12-o’clock — error 4 equation of
time, and turn the dial slowly, keeping the shadow of style on the
12-0’clock mark until the time computed. The levelling must be
carefully attended to. If the watch error be not known, it may be
found by means of a sextant.

If no means of determining time are at hand, the dial may still
be oriented by a determination of the meridian plane, either by
day or night. At night advantage may be taken of the fact that
Polaris and § Ursae Majoris (the middle star in the tail of the
Great Bear or handle of the Dipper) cross the meridian at almost
exactly the same instant. Therefore if two* plumb-lines be sus-
pended from firm supports as nearly in the meridian as may be, one
touching the style and the other a few feet to the south arranged
for lateral shifting, we may by sliding the latter cover both stars by
both lines at the moment of meridian passage. These lines then
define the meridian plane, into which the style is easily turned.
The polar distance of  being between 34° and 35° it is evident
that for latitudes above about 40° the star must be observed at

- lower culmination, and for lower latitudes at the upper.

By day the meridian plane may be determined as follows: Sus

pend a plumb-line over the south end of a perfectly level table or
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other suitable surface. With the point 4 as a center describe an
arc, CD. The shadow of a knot or bead at B will describe during
the day a curve C EF G D. Mark the points C and D where it
crosses the arc before and after noon. A line from A4 bisecting the
chord O D will then be in the meridian, and its extremities may be
projected to the earth by plumb-lines and the points marked.
Stretch a fine cord from one point to the other, and note the instant

NS

Fra. c.

when the shadow of the south plumb-line exactly coincides with
that of the cord. This is evidently apparent noon; and if the dial
be so turned that the shadow of the style falls on the 12-o’clock
line at the same instant, it will be duly oriented.

Evidently this method supposes the sun’s declination to be con-
stant; its change may, however, for this purpose be neglected,
except for a month at about the time of the equinoxes.

The meridian line may also be determined with a theodolite, as
described in works on Surveying.

The dial-face may if desired be graduated after orientation by
noting where the shadow of the style falls at 1 hour, 2 hours, etc.,
from the time of apparent noon.

The indications of all sun-dials must be corrected by the Equa-
tion of Time in order to give local mean time. This correction is
practically constant for the corresponding days of all years, and its
.value at suitable intervals may either be engraved on the dial-plate,
or taken from the annexed table.

Refraction, varying with the sun’s altitude, is evidently a source
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of error, although too small to require consideration in the present
connection.

The indications of a sun-dial with the solid style (Fig. a) will
be one minute too great in the forenoon and one minute too small
in the afternoon, since the shadow line will in each case be formed
by the limb of the sun toward the meridian, and the sun requires
about one minute to advance through an arc equal to its semi-
diameter.

A dial constructed for a given latitude may be used without
appreciable error in any latitude not differing therefrom by more
than one third of a degree—say 25 miles.

Vertical dials are usually placed on the south fronts of buildings.
Their construction is readily understood from what precedes, the
graduations being computed by the formula

tan z = cos ¢ tan P.

"EQUATION OF TIME—TO BE ADDED TO SUN-DIAL TIME.

Day. Jan. Feh. March. April. May. June.
1 +4m + 14m -+ 12m + 4m — 8m —2m
7 14 11 2 —4 -1
16 10 14 9 0 —4 0
24 12 18 6 -2 -3 +2
Day. July. Aug. Sept. Oct.. Nov. Dec.
1 +-3m -+ 6m om —10m — 16m —10m
8 b 5 -2 —12 —16 -7
16 6 4 -5 —14 -15 — 4
4 6 2 -8 —15 —13 0
SOLAR ECLIPSE. [/\

A solar eclipse can only occur at conjunction—that is, at new
moon, and then only when the moon is near enough to the plane of
the ecliptic to throw its shadow or penumbra upon the earth. The
following discussion, abbreviated from that found in Chauvenet’s
Practical Astronomy, Vol. I, will suffice to give the student such a
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knowledge of the theory of eclipses as to enable him to project
a solar eclipse, with the aid of the eclipse data found in the
Ephemeris.

Solar Ecliptic Limits.—Let N S Fig. 34 be the Ecliptic, Vi

Fre. 34.

the intersection of the plane of the moon’s orbit with the celestial
sphere, V the moon’s node, § and M the sun’s and moon’s center
at conjunction, and S’ and M’ the same points at the instant of
nearest angular distance of the moon from the sun. Assume the
following notation, viz.:—
f = S M, the moon’s latitude at conjunction.
; = S N M, the inclination of the moon’s orbit to the ecliptic.
A = the quotient of the moon’s mean hourly motion in longitude at
conjunction, divided by that of the sun.

4 = S’ M’, the least true distance.
y =SMS.

Considering N M S as a plane triangle, and drawing the perpen-
dicular M’ P from M’ to S N, we have

S8 = g tan y. SP =22 tan y.
S’ P=8A—1)tan y. M P=pg—Agtan y tan 7.
4= F'[(A—1)tan"y 4+ (1 — Atanitany)’ ].

Differentiating the last equation and placing %‘1}7 =0, wefind4

will be a minimum for

ton v = Atan 1
Y= +rtars
This value gives '
4 = ﬁ’ (l - 1)’

= A=) At (185)
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or

A = B cos* ¢, (186)

when tan 4’ is placed equal to tan 4.

A
A—1
The least apparent distance of the sun’s and moon’s center as
viewed from the surface of the earth may be less than 4 by the
difference of the horizontal parallaxes of the two bodies. Call this
distance 4’, then

4" =d4— (= - P).

Now when 4’ is less than the sum of the apparent semi-diameters
of the sun and moon there will be an eclipse; hence the condition
is (denoting the semi-diameters of the moon and sun respectively
by s’ and s),
4d—(w — P) <s+ ¢,
or
Beosi <m—P+4s+4. (187)

To ascertain the probability of an eclipse, it is generally suffi-
cient to substitute the mean values of the quantities in the above
inequality. The extreme values, determined by observation are

{5° 20" 06" {61’ 827 {9". 0

40 57/ 22/! 52’ 50" . 8”.70
5 8 44" 57 117 87.85
16 18” , 167 46” 16.19
8 {15' L BV ‘210.89
6 17 15" 357 13. 5

The mean value of sec¢’, found from those of 7 and A, is 1.00472
and hence,

(188)
B (r—P+s+8)seci’ =g <(r— P+3+8) (14 0.00472).

The fractional part of the second member of the inequality
varies between 20’ and 30”’; taking its mean 25"/, we have for all
but exceptional cases,

B<L<m—~P+s48 425", (189)
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Substituting in this last form the greatest values of 7, s, and
&', and the least value of P; and then the least values of , s, and
&', and the greatest value of P, we have

B < 1°34 213,

and
B <1°22 50",

respectively.

If, therefore, the moon’s latitude at conjunction be greater than
1° 34’ 27,3 a solar eclipse is imposgible; if less than 1° 22’ 50" it
is certain; if between these values it is doubtful. To ascertain
whether there will be one or not in the latter case, substitute the
actual values of P, w, s and s’ for the date, and if the inequality
subsists there will be an eclipse, otherwise not.

PROJECTION OF A SOLAR ECLIPSE.

1. To find the Radius of the Shadow on any Plane perpendicular
to the Axis of the Shadow.

In Fig. 35 let S and M be the centers of the sun and moon; V
the vertex of the umbral or penumbral cone; F Ethe fundamental
plane through the earth’s center perpendicular to the axis of the
shadow; and C D the parallel plane through the observer’s position.
It is required to find the value of C' D at the beginning or ending
of an eclipse.

Take the earth’s mean distance from the sun to be unity, and

’
let ES=r, EM=1r',MS=r —17r'. Placer—r,r
be the ratio of the earth’s equatorial radius to the moon’s radius
= 0.27227. Then P, being the sun’s mean horizontal parallax, we
have

= g,and let k

Earth’s radius = sin P,
Moon’s radius = % sin P, = 0.27227 sin P

Sun’s radius = sins.
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8 being the apparent semi-diameter of the sun at mean distance.
From the figure we have

sin 8 + k8in P,
g ?

sin FVE=sinf= (190)

in which the upper sign corresponds to the penumbral and the
lower to the umbral cone. The numerator of the second member
is constant, and since s = 959”".758, P, = 8’’.85, we have

log [sin 8 + & sin P,] = 7.6688033 for exterior contact.
log [sins — £sin P] = 7.6666913 for interior contact.
If the equatorial radius of the earth be taken as unity, we have.

vu=F_ ur=.
sin
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Whence the distance ¢ of the vertex of the cone from the fun-
damental plane is
_ k
c=z=+ m (191)
If ! and L be radius of theshadow on the fundamental and on the
observer’s plane respectively, and { be their distance apart, we have

! =ctanf=ztan f 3+ ksecf. (192)
L=(c—C)tanf=10—Ctanf (193)

2. To find the distance of the Observer at a given time from the
Axis of the Shadow in terms of his Co-ordinates and those of
the Moon’s Center, referred to the Earth’s Center as an Origin.

Let O, Figure 36, be the earth’s center, and X ¥ the funda-
mental plane. Take Z Y to be the plane of the declination circle

Fia. 86.

passing through the point Z in which the axis of the moon’s shadow
pierces the celestial sphere; X Z being perpendicular to the other
two coordinate planes. Let M and S be the centers of the moon
and sun, M’, S’, their geocentric places on the celestial sphere, M,
their projections on the fundamental plane, and C, the projection
of the observer’s place on the same plane. Let P be the north
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pole. The axis O Z, being always parallel to the axis of the shadow,
will pierce the celestial sphere in the same point, as S M. Assume
the following notation:

a, 6, r =the R. A,, Dec., and distance from the earth’s center,
respectively, of the moon’s center.
a’, 6’, r’ = the corresponding coordinates of the sun’s center.

a, d, = the R. A. and Dec. of the point Z.

z,y,2z = the coordinates of the moon’s center.

&,nm,C = the coordinates of the observer’s position.

¢, @ = the latitude and reduced latitude respectively.

A = the longitude of the observer’s station west from
Greenwich.

P = the earth’s radius at the observer’s station in terms of
the earth’s equatorial radius taken as unity.

A, = the Greenwich hour angle of the point Z.

M = the sidereal time at which the point Z has the R. A. a.

4 = the required distance of the place of observation from

the axis of the shadow at the time u.
From the conditions, we have

R.A of Z =a,
R A oM =a,
R.Aof X =90°+a,
and therefore
ZPM'=a—a, and PM’' =90°— 4.
Through M, and C, draw M, N and C, N parallel to the axis of

X and Y respectively; then M, C, N =P ZM' = P, the position
angle of the point of contact, and we have

dsinP =z — &,
} (194)

dcos P=y —n.
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b From the spherical triangles M’ P X, M’ P Y, and M’ P Z, we
ave

z =rcos M X =rcosdsin(a —a)
y=rcos M’ Y =r|sindcosd — cos dsin & cos (@ — a)] » (195)
2 =rcos M’ Z=r [sin 6 sind — cos d cosd cos (@ — a)].

Similarly the codrdinates of the place of observation are

& = p cos ¢’ sin (4 — a) ‘
n = p [sin ¢’ cos d — cos @’ sin d cos (u — a)] (196)
¢ = p [sin ¢’ sin d + cos ¢’ cos d cos (1 — a)].

The hour angle (1, — @) of the point Z for the meridian of the
observer can be found from

H—a=p —A,

in which g, is the hour angle of the point Z for the Greenwich
meridian and A is the longitude of the observer’s meridian.
The distance of the observer from the axis of the moon’s shadow
4, = C, M, can be found from the above formulas,
!

since, AL=x-8) 4+ (y—n) (197)

3. To Find the Time of Beginning or Ending of the Eclipse at the
Place of Observation.

For the assumed Greenwich mean time of computation take
from the Besselian table of elements given in the Ephemeris for
each eclipse the values of sin d, cos d, and u. The values of p cos ¢’
and p sin @’ are found on page 505, computed from the formulas,

a Ccos @
COo8 f = =—=F005
peosd Y1 —¢'sin’ @ ¢
(198)

. ., _8n@¥1—¢sin’@_sing
peng = —"—m @

.
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The .varia.tions of £ and # in one minute of mean time are ob-
tained by differentiating the first two of Eqs. (196), and give

&' = [7.63992] p cos ¢’ cos (4 — 1)
5 =|7.63992] p cos ¢’ sin d sin (u — A) (199)
=|7.63992] & sin d.

The variations of = and y for one minute of mean time are
represented by ’, and y’, and their logarithms are given in the
lower table of the Ephemeris elements for the eclipse. Now, if the
time chosen for computation be exactly the instant of beginning or
ending of the eclipse, then 4 = L; but as this is scarcely possible
a correction 7 in minutes must be made to the assumed Ephemeris
time 7'.

‘We may then write,
LsinP=z—§4(2'—8&")1, (200)
LesP=y—n+ @ —7)r (201)

Assume the auxiliary quantities m, M, n, N, given by the equa-
tions,

msin M =z — &,

mecos M=y —,

nsin N=2"—§&’, (202)
ncos N=y —7'.
From these we have
‘Lgin(P—N)=msin(M—~ N),
(203)
Lcos(P—N)=mcos(M—N)+nr.
Hence putting ¢ = P — N, we have
gingp =202 — ) (ﬂi[ =) (204)
_____mcos(l,l;[—N)iLc;sn/:’ (205)
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the lower sign of the second term in the second member of the last

equation corresponding to the time of beginning and the upper to

the time of ending of the eclipse.*

4. The Position Angle of the Point of Contact.—The angle re-
quired is P = N + 3 for the end and P = N — ¢ + 180°
for the beginning of the eclipse.

5. We now have all the equations, and the Ephemeris gives us the
Besselian table of elements from which the circumstances of
an eclipse can be computed at any place. These equations
are here arranged in the order in which they would be used,
and the student is referred to the type problem worked out
in the Ephemeris as a guide.

1. Constants for the given place,

p 8in @’ | Found from table page 505, Ephemeris, know-
p cos ¢’ % ing the observer’s latitude.
2. Qoordinates of observer, referred to center of earth.

& = p cos ¢’ sin (4 — a).
7 = psin ¢’ cos d — p cos @’ sin d cos (4 — a),
€ = psin ¢’sind 4 p cos ¢’ cos d cos (4 — a).
3. Variations of observer’s coordinates in one minute of mean time,
&’ =[7.63992] pcos ¢’ cos (u — A).
7 = [7.63992] £ sind.
4, The values of m, M, n and, N, given by
msin M=z — &',
mecs M=y —n,
nsin N=2' — &',

n cos N=y —17.

* See page 506, Ephemeris.
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The radius L of the shadow or penumbra on a plane passing
through the observer, parallel to the fundamental plane, and
at a distance { from it.

L=1—-Ctan f.
The value of the angle %,

oy = ML= 30

The value of the time 7 in minutes

;= _mecos (M — N):l: Lcosz/)’

n n

The position angle P, from
P=N+1.

P =N — £+ 180°
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? P—' log p ® —9' log p
o 1 { n o ! ! n
0 0| 0 0.00 | 0000000 | 85 0 | 10 48.25 | 9.999 5248
1 0| 02402 | 9.999 9996 10 | © 49.63 5208
2 0| 048.02 9982 20 50.98 5169
8 0| 111.95 9961 30 52.31 5129
4 0| 18580 9930 40 53.62 5089
5 0| 15954 9891 50 54.90 5049
6 0| 22312 | 99009843 | 86 0 | 10 56.16 | 9.999 5009
7 0| 24654 9786 10 57.41 4969
8 0| 8 9.76 9721 20 58.63 4929
9 0| 83274 9648 30 59.82 4888
10 0 | 85547 9566 40 | 11 1.00 4848
11 0| 41792 9476 50 2.15 4807
12 0 ( 44006 | 99999377 | 87 0 | 11 38.28 | 9.999 4767
18 0| 5 1.8 9271 10 4.39 4726
14 0 | 52328 9157 20 5.47 4686
15 0 | 54433 9035 80 6.54 4645
16 0 | 6 495 8905 40 7.58 4604
17 0| 62.14 8768 50 8.59 4563
18 0 | 64486 | 99998624 | 88 0 | 11 9.59 | 9.999 4522
19 0| 7 4.09 8472 10 10.56 4481
20 0 | 72280 8314" 20 11.51 4440
21 0 | 7 40.99 8149 80 12.44 4399
29 0 | 758.61 7977 40 18.84 4358
23 0 | 8 15.66 7799 50 14.22 4317
24 0| 88210 | 9.0097614 | 89 0 | 11 15.08 | 9.999 4276
25 0 | 847.93 7424 10 15.92 4234
2 0| 9 3.12 7228 20 16.73 4193
27 0| 91765 7027 80 17.52 4152
28 0 | 93150 6820 40 18.29 4110
29 0| 94466 6608 50 19.04 4069
80 0| 95712 | 99996392 | 40 0 | 11 19.76 | 9.999 4027
10 | 9 59.12 6355 10 20.48 3985
20 | 10 1.11 6319 20 21.18 3944
30 8.07 6282 80 21.79 8002
40 5.02 6245 40 22.42 8860
60 6.94 6208 50 23.02 8319
81 0| 10 885 | 90996171 | 41 0 | 11 23.61 | 9.999 8777
10 10.73 6134 10 24.17 8136
20 12.59 6096 20 24.70 8693
80 14.44 6059 80 25.22 8651
40 16.26 6021 40 25.71 8609
50 18.06 5984 50 26.18 8567
82 0| 101984 | 99995946 | 42 0 | 11 26.62 | 9.999 8525
10 21.60 5908 10 27.04 3483
20 28.34 5870 20 27.44 8441
80 25.05 5832 80 27.82 8399
40 26.75 5794 40 28.17 8357
50 28.43 5755 50 28.50 8315
83 0 ( 10 80.08 | 9.9995717 | 48 0 | 11 28.80 | 9.999 3273
10 31.71 5678 10 29.08 3230
20 33.32 5640 20 29.34 8188
30 84.91 5601 30 29.58 8146
40 86.48 5562 40 29.79 8104
50 38.03 5523 50 29.98 8062
84 0 | 1039.55 | 9.9995484 | 44 0 | 11 30.14 | 9.999 3019
10 41.06 5445 10 30.29 2977
20 42.54 5406 20 30.41 2035
30 44.00 5367 30 30.50 2892
40 45.44 5327 49 30.57 2850
50 46.86 5288 50 30.62 2808
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Reduction of Latitude, and Logarithm of Earth’s Radius.

TABLE .

Earth’s Radius,

p=

Geographical Latitude,

Argument, @

e | e—o log p ® P—q' log p
o ! ! 1 ©° I ! n
45 0| 11 80.65 | 9.9092766 | 556 O | 10 49.74 | 9.999 0275
10 80.65 2723 10 48.36 0235
20 30.63 2681 20 46.97 0195
30 80.58 2639 80 15.55 0155
40 80.51 2596 40 4.11 0116
50 80.42 2554 50 4265 0076
46 0| 118081 | 09902512 | 56 0 | 10 41.16 | 9.999 0037
10 80.17 2470 10 80.65 | 9.998 9998
20 80.01 2427 20 88.18 9958
30 29.82 2385 30 86.58 9919
40 29.61 2343 40 85.01 9880
50 29.88 2300 50 83.41 9841
47 0 | 1120.12 | 99992258 | 57 0 | 10 31.80 | 9.998 9802
10 28.85 2216 10 30.16 9764
20 28.54 2174 20 28.50 9725
80 28.22 2132 80 26.83 9636
40 27.87 2089 40 25.13 9648
50 27.50 2047 50 23.40 9610
48 0 | 11 27.10 | 9.999 2005 58 0 | 10 21.66 | 9.998 9571
10 26.69 1963 10 19.90 9533
20 26.24 1921 20 18.11 9495
30 25.78 1879 80 16.31 9457
40 25.29 1837 40 14.48 9419
50 24.18 1795 60 12.63 9382
49 0 | 112424 | 99991758 | 89 0 | 1010.77 | 9.998 9344
10 | 3369 1711 n o5 ek
20 23.11 1669 20 504
80 22.50 1627 : 9282
o %187 1556 40 %13.08 9195
50 21.22 1544 50 1 9158
50 0 | 112025 | o902 | &9 O | 35012 | o008 012
;g 19.85 1460 | g2 0 | 93365 8688
19.18 1419 | g3 0 | 919.85 8479
80 18.39 1377 64 0 9 5.36 8275
40 17.63 1835 ’ -
5 e 155 1 68 o | so021 8077
66 0 | 88440 | 9998 7884
51 0 | 111602 | 99991252 | 67 0 | 8 17.97 7697
10 15.19 1211 | 68 0 | 8 0.92 7517
20 14.33 1170 | 69 0 | 7 48.29 7342
30 18.45 1128 | 70 0 | 7 25.08 74
40 12.55 1087 | 71 0 | 7 6.38 7013
50 11.62 1046
72 0 | 647.06 | 9.998 6859
52 18 11 18.% 9.999 (l)ggg 32 g g 2;'33 gg%g
20 871 0922 | 7 0 | 54638 6441
80 7.69 0881 6 0 5 25.20 6317
40 6.66 0840 %7 0 5 8.67 6201
ol o | somons | B3 | 55| M
) 59
53 0|11 451 | 9.9% g8 180 o | 85696 5901
20 2 07 o677 | 81 0 | 838410 5818
30 132 oesr | 82 0 | 81098 5743
50 08.74 0556 | 84 0 2 24.07 | 9.998 5619
54 0 | 10 57.52 | 9.999 0515 23 8 ? 32&3 2258
10 56.28 0475
5 187 0 | 11243 5498
gg gggﬁ 8;;; 88 0 | 04834 5476
40 52.42 033 | 89 0 | 02418 5463
50 51.09 0315 | 90 0 | 0 0.00 | 9.998 5458

)
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TABLE Il.

Mean Refraction.
Bsaromeoter 80 inches, Fahrenheit Thermometer 50°,

Mean Re-
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HEADQUARTERS U. S. MILITARY ACADEMY,
WEesT Point, N. Y., May 21, 1902.

No. 29.

1. The officers named below, except the first three who
constituted the original committee, are added to the
committee on reception and entertainment, Centennial
celebration, so that the committee is composed of: The
Professor of Engineering, the Professor of Mathematics,
the Instructor of Ordnance and Gunnery, Captains Lan-
dis, Hanson, Willcox, Davis, Robinson, Jones, Livermore,
Palmer, Saxton, Parker, Jervey, Coe, Averill, Bigelow,
A. Hamilton, Nolan, Sills, Callan, Guignard, McNeil,
Hinkley, Hagnod, Abernethy, Sarratt, Bowley, Gilbert,
1st Lieutenants Stuart, Oakes, Pope, Mitchell, Smither,
Jewell.

CIRCULAR, }

2. Captains Franklin and Hero are added to the ban-
quet committee, Centennial celebration, so that the com-
mittee now consists of the following officers: The Pro-
fessor of Mathematics, the Commandant of Cadets, the
Instructor of Practical Military Engineering, Captains
Franklin, Hero.

3. The three officers last named below are added to the
committee on exterior decoration and illumination, Cen-
tennial celebration, and the committee now consists of:
The Professor of Philosophy, the Instructor of Ord-
nance and Gunnery, the Instructor of Practical Military
Engineering, Captains Pierce, Jamieson, 1st Lijeuten-
ant Ladue.

4. The officers whose names appear below, except the
first two who constituted the original committee, are
added to the committee on sports and military ceremon-
ies, Centennial celebration, so that the committee con-
sists of: The Professor of Philosophy, the Comman-
dant of Cadets, Captains Greble, G. F. Hamilton, Lewis,
1st Lieutenants Roberts, Koehler, 2nd Lieutenant Glade.

BY ORDER OF COLONEL MILLS:

W. C. RIVERS,
Captain 1st Cavalry,
Adjutant.
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66 0 |1.75897 5o 10 5| LTass 79 | 10056 | 1.0560
67 01115671 99 1.0092 | 50 | 173928 Jg | 1.0038 | 1.
08 0| 1752 g ' 1.0080 | 1.0600
5809 1o | %10 | i 88| 10080 | o0m
700|113 38 Yo | 50 | 1oaes o | ooer | 100ae
7 . 1.0124 99 | 1.0067 | 1.0671
72 0 |1.76875 g : 40 | 1.78459 1o | 1.0070 | 1.
78 0 | 115615 7) 1o | 5o | L7ser 112 1 170073 | 10725
7 .75543 86 :
10075 | 1.0754
0197 | 88 0173229 o, 4
™ 10 | 175441 16 rowd | ™ 10| L7sioe 24| 100 | 100k
75425 -0204 “ron3s 142 | 1 1.0846
20 1 1.75425 1y e 80| L7832 15y | 1.0084 | 1.0848
80 1 1.75408 44 5 40 | 1.72631 125 | 1.0082 | 1.08
10 | 175301 17 Toste | 50 | 17aams 162 | 1.0098 | 1.0914
%0 | 15513 18 . 20 | 8¢ 0| 1.72346 (o0 | 1.0008 | 1.0051
535 -02 "7 : .0992
" 10 | 17300 » %-0223 10 | 1180 199 10103 | 11086
75: 023 212 | 1.1082
20 | 1.75816 o 10 80 | 1.71749 555 | 1.0110
5205 235 1500 227 1.1130
80 11.79295 o X 40 | 171522 1.0115 | 1.
o [ 110212 22 Tosés | 50 | Lrians 218 | L0121 | 11178
S et 85 0 | 1.71020 1.0127 | 1.1229
T 0|1.75220 | 1.0026 | 1.0252 -
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Bessel’s Refraction Table.

TABLE lll.

Factor depending upon

the barometer.

Factor depending upon the external

Eng. ins.

Log B.

21.6
27.6

SO WIRU OV O DD TR T OB~ O Q0= DTN 0O - O © W=

Factor depending wpea

—0.03191
0.03083
0.02876
0.02730
0.02564
0.02409
0.02254
0.02099
0.01948
0.01798
0.01640
0.01488
0.01836
0.01185
0.01035
0.00885
0.00735
0.00586
0.00438
0.00290

—0.00142

+0.00005
0.00151
0.00297
0.00443
0.00588

- 0.00732
0.00876
0.01020
0.01163
0.01306
0.01448
0.01589
0.01731
0.01871
+0.02012

the attached ther-
mometer.

F. Log T.
o
—30 | +0.00243
20 0.00203
—10 0.00164
0 0-00125
10 0.00086
+20 0.00047
30 | +0 00008
40 | —0.00031.
50 0.00070
60 0.00109
0 0.00148
80 0.00186
90 0.00226
+100 | —0.00264

Logf=log B+log T.

thermometer.
F. Log y. F. Log ».
o ]

—20 | +0.06276 | +85 | +0.01185
19 0.06181 36 0.01098
18 0.06083 37 0.01011
17 0.05985 38 0.00924
16 0.05887 39 0.00837
15 0.05790 40 0.00750
14 0.05693 41 0.00664
13 0.05596 42 0.0057:
12 0.05500 43 0.00492
11 0.05403 4 0.00406
10 0.05307 45 0.00332

9 0.05211 46 0.002
8 0.05115 47 0.00149
7 0.05020 48 | +0.00064
6 0.04924 49 | —0.00021
] 0.04829 50 0.00106
4 0.04734 51 0.00191
8 0.04640 52 0.00275
2 0.04545 53 0.00360
-1 0.04451 54 0.00444
0 0.04357 55 0.00528
+1 0.04263 56 0.00612
2 0.04169 57 0.00696
8 0.04076 58 0.00780
4 0.03982 59 0.00863
b 0.03889 60 0.00946
6 0.03796 61 0.01029
7 0.03704 62 0.01112
8 0.03611 63 0.01195
9 0.03519 64 0.01278
10 0.03427 65 0.01360
11 0.03335 66 0.01443
12 0.03243 67 0.01525
13 0.03152 68 0.01607
14 0.03060 69 0.01689
15 0.02969 70 0.01770
16 0.02878 o ! 0.01852
17 0.02787 7 0.01933
18 0.02697 73 0.02015
19 0.02606 4 0.02096
20 0.02516 5 0.02177
21 0.02426 76 0.02257
22 0.02336 m 0.02338
28 0.02247 8 0.02419
4 0.02157 79 0.02499
25 0.02068 80 0.02579
26 0.01979 81 0.02659
27 0.01890 82 0.02738
28 0.01801 83 0.02819
29 0.01713 84 0.02898
80 0.01624 85 0.02978
31 0.01536 86 0.03057
82 0.01448 87 0.03136
83 0.01360 88 0.03216
84 0.01273 89 0.03294
+85 | +0.01185 ] +90 | —0.03373
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Biapeed 1 og. A.| Log.B. [212%d|Log. A.| Log. B. Fﬁm, Log. A.

. m.
019.4059| 9.4059| 0 409.4085 9.4048 20(9.4081
2| .4059)  .4059 42| .4065] .4047 22| .4083
4| .4059| .4059 44| 4066 .4046 24! .4084
6| .4060| .4059 46/ .4067  .4045 g .4085
80
32

§ .40060{ .4059 48| .4067|  .4043 .4086

10/ .4060| .4059 50| .4068  .4042 .4087
12 .4060{ .4038 62| .4069] .4041 .4089
14 .4060] .4058 54| .4069| .4039 34 .4

16| .4000] .4058 56| .4070! .4038 86| .4091

18| .4061| .4057] 0 58| .4071f .4036 88| .4093

20| .4061 405711 0] .4072f  .4034 40| .4094
22| .4061 .4056 2| 407 .4033 42| .4095
24| .4061 .4055 4| .4074]  .4081 44( .4097
20 .4062| .4055 6| .4074 .4029 46/ .4098
28| .4062 .4054 8| .4075 .4027 48| .4100

30| .4062] .4053 10{ .4076]  .4025 60 .4101
2 .4063] 4052 12| .4077)  .4023 52, .4103

j .4063)  .4051 14 .4078|  .4021 64| .4104
36 .4064| .4050 16| .407% .4019 56| .4108
0 38/9.4064] 9.4049|1 18(9.4080| 9.4017| 1 58/9.4107

TABLE IVa. Logarithms of A and B.
For computing Equation of Equal Altitudes when ‘‘Elapsed Time” is short.



5
i

{Elapsed)

Time, |L0g- A.| Log.B. |"jme, |Log. A.| Log. B. ¥Tige, [Log. A.| Log.B.

% m. % m. A m

2  09.4109] 9.3959 | 4 0,9.4260| 9.8635 | 6 09.4515, 9.8010
2| .4111| .3955 2| .4268| .8627 R .4621| .2096
4 .4113| .8952 4| .4266| .8620 4] .4526 .2082
6] .4114| .3948 6| .4270| .8613 6] .4531] .2968
8 .4116| .3944 8| .4273| .3604 8 .4536] .2954
10| .4118] .8941 10| .4277| .8598 10| .4542| .2940
12| .4120{ .8937 12| .4280| .85688 12| .4547 .2025
14| .4121| .3933 14| .4284]| .3580 14| 45652 .°911
16| .4123| .8929 16 .4283 .8672 16| .4558 .2896
18] .4125| .3925 18| .4201| .8864 18| .4563( 2881
20| .4127 .8921 20| .4295| .8555 20| .4569| .2806
22| .4129] .8917 22| .4299| .8547 22! .4574] .2850
24| .4131] .3913 24| .4302| .8538 241 .4580] 2835
26| .4133| .8909 26| .4306] .3530 26| .4585| .2819
28| .4135[ .8905 28| .4310] .3521 28| .4591| .2804
80| .4137| .3900 30| .4314| .3512 30| .4597 .2788
32| .4139 .38Y6 32| 4317 .8503 32| .4602 2772
84| .4141( .3892 34| .4321| .3464 84| .4608| .2756
86| .4144| .3837 86| .4325| .3485 86| .4614 .2739
88| .4146| .3832 38| .4829| .3476 88| .4620] .2723
40| .4148| .3878 40| .4333) .8467 40| .4625] .2708
42| .4150( .38738 42| 4337 .3457 42| .4631f 2689
44| .4152] .3368 44| 4341 .3448 44| .4637) .20672
46| .4155] .3363 46] .4345| .3438 46| .4643[ .2655
48| .4157 .3859 48| .4349] .3429 48[ 4649 .20638
50| .4159| .3854 50| .4353| .3419 60| .4655] .2620
52| .4162| .3849 52| 4357 L3409 B2 .4661| .2602
54| .4164] .3343 54! .43611 .3399 B4 .4067] .2584
56| .4167| .3838 56] .4366) 3389 56 .4675  .2566

2 58 .4169) .3333 | 4 58| .4370| .837Y b8| .467Y] .2548
0 .4172| .3828 15 O .4374] .3369 0] .4685] .2530
2| 4174 .3322 R .4378| .3358 2| 4691 2511
4| 4177 .8817 4} .4383] .8343 4} 4697 2492
6| .4179[ .3811 6 .4387| .38337 8 4704 2478
8| .4182( .3806 8| .4391] .3327 8| .4710[ 2454
10 .4184] .3800 10; .4396| .3316 10| .4716 2434
12| .4187] .3794 12 .4400| .3305 12| .4723] .2415
14| .4190] .3789 14] .4405] .3294 14 4729 .2395
16| .4193| .3783 16} .4409| .3283 16| .4735] .2375
18] .4195] .3777 18] .4414| .3272 18] 4742 2335
20| .4198] .3771 20, .4418| .3261 20| .4748 .2334
22| .4201 .8765 22, .4423] .3249 22 4705 .2313
24| .4204 .3759 24 4427 3238 24| .4761] .229°
26) 4207 .3752 206! .4432| .3226 26| 4768 .2271
28| .4209] .3746 28, .4437| .3214 28| .4774] 2250
80| .4212| .3740 30’ 4441  .3203 30| .4781| .2228
32| .4215| .3733 32) .4446] .3191 82 .4788[ .2206
84| .4218| .3727 34) 44511 8178 84| .4794| .2184
36| .4221| .3720 36i .4456)  .8166 86| .4801| .2162
38| .4224| .3713 38| .4460| .8154 38| .4808| .2140
40| .4227] .38707 40| .4465| .3142 40 4815 .2117
42| .4231| .3700 42( 44700 3129 42| .4821] .2094
44| .4234| .3693 44) 44751 3116 44| 4828 .2070
46| .4237] .36%6 46! 44501 .3103 46| 4835 .2047
48| .4240( .3679 48, .4485] .3091 48] .4842] .2023
50| .4243| .3672 501 .4490| .8078 50| L4849 1999
52| .4246| .3665 521 .4494| .3064 52| .4856] .1974
54| .4250| .3657 54 .45001 .3051 54| 4863 .1950
56 4258 .3650 ;56 .4505] 8028 G561 4R701 1925

8 58(9.4256] 9.3643 l 5 58 9.-:.310; 9.3024 i 7 5t~i.).-l--‘577( $.1900
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Logarithms of A and B.

TABLE V.

For computing Equation of Equal Altitudes,

i |

Elapued 1. A.| Log.B. "‘.{‘,‘,‘,’n"jdlw A.| Log. B. ['HBS|Log. A. | Log. B

h. m. h. m| . A. m.

8 09.4884] 9.1874 |14  0]9.6841|—9.0971[16  09.7895(—9.4884
2| .4892| .1848 2 .6856| .1057 2| .7915| .4987
4] .4899 .1822 .6872| L1141 4 7935 .4990
6] .4906| .1796 6| .6887] .1224 6 .7955| .65042
8| .4013] .1769 8| .6903| .1306 8| .7975| .5094
10 .4921| .1742 10| .6919] .1887]  10{ .7996| .5148
12| .4928/ .1715 12| .6934] .1468 12[..8016{ .5197
14| .4935 .1687 14| .6950( .1547] 14| .8087 .5248
16| .4943| .1659 16| .6966| .1625| 16| .8058| .5300
18| .4950 .1630 18| .6982 .1703 18| .8078| .53561
20| .4958| .1602 20| .6998] .1779] 20| .8099| .5401
22 .4965 .1573 22| .7014| .1855 22| .8120| .5452
24f .4978 .1543 24| .7030| .1930] 24| .8141| -5502
26| .4980[ .1513 26| .7047] .2004| 26| .8162| .5653
28| .4988| .1483 28 .7063| .2078] 28| .8184| .5608
80| .4996| .1453 80| .7079| .2150| 80| .8205| .5658
82| .5003[ .1422 32| .7008) .2222| 82| .8227 .5702
34| .5011| .1390 34| .T112|  .2298 84| .8248 .6752
36| .5019] .1359 86| .7129| .2364| 86| .8270| .5801
88| .5027| .1827 88| .7146| .2434] 88| .8292| .5850
40[ .5035| .1294 40| .7162| .2503 40 .8814] .65900
42| .5042| .1261 42| .71179  .2571 42| .8336] .5948
44| .5050] .1228 44| .7196] .2639] 44| .8358| .5997
46| .5058| .1194 46| .7218| .2708] 46| .8380| .6046
48| .5066| .1159 48| .7280] .2773] 48| .8402| .6094
50| .5074] .1125 50| 7247  .2839 60| .8425 .6148
52| .5082{ .1089 52| .7264] .2905 62| .8447] .6191
54| .5091| .1054 54| .7281|  .2970| 54| .8470| .6239
56| .5099 .1017 56| .7299]  .8034 56| .8493|  .6287
58| .5107| .0981 H4 68| .7316]  .8098[16 58| .8516| .6335
0| .5115| .0943 15 of .7833 .3162f17 0| .8589| .6383
ol .5123 .0996 9| .7851| .3225 2| .8562] .6431
4| .5132 .0867 4] 7369 .3287 4] 8585 .6478
6| .5140| .0828 6| .7386] .3350 6 .8608| .6526
8 .5148| .0789 8| .7404| .8411 8 .8682] .6573}
10| .5157| .0749 10 .7422  .3472| 10| .s8655 .6621
12| .5165| .0708 12| .7440| .3533 12 .8679| .6668
14| .5174| .0667 14| .7458] .8593 14| 8703 .6715
16| .5182( .0625 16| .7476] 8653 16| .8727] .6762
18| .5191| .0583 18| .7494| .8718 18| .8751f .6809
20| .5199| .0540 20| .7512] .8772 20 .8775| .6856
22| .5208| .0496 292 .7531|  .8831 22| .8799| .6903
24| .5217| .0452 24| .7549)  .3889] 24| .8824| .6949
26| 5225 .0408 26| 7568  .3947 26| .8848| .6896
28| .5234| .0360 28| .7586| .4005 28| .8878[ .7043
30| .5243| .0314 30| .7605| .4062 30| .8898 .7089
32| .5252| .0266 82| .7924| .4119 32| .8923[ .7136
84| .5261| .0218 34| .7642| 4175 34| .8948[ .7182
86| .5269| .0169 36| .7661 4232] 36| .8978| .7228
88| .5278| .0119 88| .7680f .4288| 38| .899 N2
40| .5287 .0069 40! .7699( .4343] 40| .9024| .7321

5296 .0017 42| .T118|  .4399] 42| .9050[ .7367

.5305| 8.9966 44| .7738|  .4454| 44| .9075| 7413

46| .5315| .9911 46| 7757 .4509] 46| .9101] .7459
48| .5324| .0857 48| .7776{  .4563| 48| .9127] .7605
50| .5333| .9802 50{ .7796| .4617] 50| .9154| .7652
52| .5342| .9745 52| .7815| .4671 52( .9180[ .7598
.5351| .9688 64| .7835| .4725| 54| .9208| .7644

56| .5361 .9630 56| .7855| .4778| 56| .9283| .7690

9 58 9.537ol 8.9570 [15 58/9.7875| —9.4831{17 58/9.9260|—9.7736




—0.4201 >

Elapsed
Elapeed 1op. A.| Log.B. [Bapsedip oo a.| reg.B. |B2Ptediiog a.| Log. B.
h. m. h. m. h. m.

18 0/9.9287/—9.7782|20  0/0.1249|—0.0625[22  0|0.4528/—0.4872
2 .9814 .7827 2| .1280| .0676 .4601 4455
4/ .9341] .7873 4| .1330] .07R7 4 .4680] .4540
6, .9868) .7919 6 .13711 L0779 6 .4761 .4625
8 .9396 . 8| .1412 .0830 8| .4842| .4711

10| .9424 .8011 10 .1454] .0882 10| .4026( .4799
12| .9451] .8057 12{ .1496| .0935 12| .5010f .4889
14| .0479] .8103 14 .1688| ,0987 14| .6097 .4980
16 .9508] .8149 16| .1581 .1040 16| .5184 .5072
18] .9536] .8195 18| .1623 .1093 18| .6274| .5165
20f .9564] .8241 20| .1667] .1146 20| .5865 .5261
22| .9593| .8287 22 .1711 .1200 22| .5458[ .5858
24( .9622( .8333 24 .1755 1253 24| .5553 5467
26| .9651 .837 26 .1799 .1308 26| .5649( .565657
28| .9680] .8425 28| .1844| 1362 28| .5748] .5660
80| .9709| .8471 80| .1889 1417 80| .5848] .5764
82| .9739( .8517 32| .1935 .1472 82| .5951 .b6871
84 .9769| .8563 84 .1981 .1627 84/ .6056] .5979
86| .9798) .8609 86| .2028| ,1582 86| .6164] .6090
88| .9829| .8655 88| .2075 .1638 88| .6273| .6204
40| .9859| .8701 40| .2122| 1695 40| .6386| .6819
42| .9889 .8748 42 .2170, .1751 42| .6501 .6438
44] .9920f .8794 44) .2218| .1808 44| .6619 .6559
46| .9951 .8840 46| .2267 .1866 46| .6740 .6684
48(9.9982|  .8887 48| .2316| .1924 48| .6865| .6811
50/0.0013, .8933 50 .2366| .1982 50| .6993| .6942
b2 . .8980 52| .2416 .2040 52 .7124| .7076
54| .0076] .9026 54| .2467|  .2099 64| .7268( .7214
56| .0108] .9073 56| .2518 .2159 56| .7898| .7856
18 68| .0140 .9120[20 58{ .2570 .2219|33 58| .7641 1501
19 0| .0172] .9167[21 0| .262: 2279128 O .7689 .7652
2| .0204] .9213 2 .267 .2839 2| .7842(  .7807
4f .0237] .9260 4| 2729 .2401 4| .8000] .7967
6 .0270| .9307 6| .2783 .2462 6| .8163( .8133
8|..0303] .9865 8| .2838 .2524 8| .8333( .8305
10( .0386( .9402 10| .2893 .2587 10| .8508| .8483
12| .0370| .9449 12| .294 .2650 12 .8691 .8667
14| .0403] .9497 14| .3005 2714 14| .8882 .8860
16| .0437 .9644 16| .3063 2778 16 .9080] .9060
18] .0472| .9592 18| .3120 .2843 18] .9288] .9270
20| .0606/ .9640 20| .8179{ .2909 20| .9506) .9489
22! .0541 .9687 22| .3238 2976 22| .9734| .9719
24| .0576 L9735 24| .3208 .8041 24(0.9975(—0.9961
26| .0611 .9784 26| .8359 .8109 26|1.0228/—1.0216
28| .0646| .9832 28| .8420 L8177 28| .0497 .0487
80| .0682| .9880 80( .3482 .8246 30 .0783 0774
32| .0718] .9929 32| .3545 .8315 32| .1089 1081
84| .0754/—9.9977 34| .3609 .3385 84| .1416 1409
86| .0790(—0.0026 36| .3674 .8456 86| .1770, 1764
38| .0827 L0075 88) .3739 .8527 88| .2164 2149
40| .0884] .0124 40| .3805 .8599 40| .2573 2500
42| .0901 .0173 42| .8873 .8678 42| .3037 8083
44 .0939] .0223 44( .3941 8747 44| .8554| .8552
46| .0976 L0272 46, .4010 .8822 46( .4140| .4138
48| .1015 L0822 48| .4080! .8897 48| .4815 .4814
50| .1053| .0372 50| .4151 .8974 60| .5613] .5612
52| .1092| .0422 521 4223 .4052 62| .6688] .6587
54 .1131 L0478 54| .4297 .4130 54| .7844] .7843
56 .1170 L0523 56| .4371 .4210 56(1.9610|]—1.9610] .
19 58/0.1209—0.0574'21 580.444C 23 58[2.20627|—2.2627
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17.28 | 80.90 | 48.48 | 69.90 | 95.29 | 124.61 | 1567.84
1747 ! 3116 ' 48.76 ' 70.29 ' 95.74 ' 125.18 ' 158.48

']
0| o0o00| 196] 785| 1787| 81.42| 49.09 | 70.68 | 96.20 | 125.65
1] ooo| 208| 798| 1787 | 81.68| 49.41 | 71.07 [ 96.66 | 126.17
2| o000| 210| s12| 18.07| 81.94| 4974 | .47 | 97.12 | 126.70
8| o0o00| 216]| 825| 1827 82.20| 50.07| 71.86 | 97.58 | 127.22
4| o001 228| 889| 1847 | 8247 | 5040 | 72.26 | 98.04 | 12775
5] o001 281| s852| 1867| 82.74| 5078 | 72.66 | 98.50 | 128.28
6| o002| 288| s8e66| 1887 88.01| 51.07| 78.08 | 98.97 | 128.81
7| oo2| 245| 880 | 19.07| 88.27| 51.40 | 78.46 | 99.48 | 120.34
8| o0038| 252 894| 19.28| 83.54| 51.74 | 78.86 | 99.90 | 129.87
9| oo0s4| 260| 9.08| 19.48| 83.81 | 52.07 | 74.26 | 100.37 | 180.40
10| oo5| 267 92| 19.60| 84.00 | 5241 | 74.66 | 100.84 | 130.94
11| oo06| 275| 9.36| 1990| 8436 | 52.75 | 75.08 | 101.81 | 131.47
12| o0o08| 28| 950 | 2011 | 84.64| 58.09 | 7547 | 101.78 | 152.01
18] o009 291 | 964 2032| 84.91| 5843 | 7588 | 102.25 | 182.55
_ |14 o1 | 299 99| 2053 | 85.19 | 58.77 | 76.29 | 102.72 | 153.09
*s
o|™ [16] o012 807| 994 20.74| 8546 | 5411 | 76.69 | 103.20 | 133.63
glg |16| o014 815| 1009 | 20.95| 85.74 | 54.46 | 77.10 | 108.67 | 134.17
17| o016| 823| 1024 | 2116 | 86.02 | 54.80 | 77.51 | 104.15 | 134.71
0 18] o1s| 832| 1039 | 21.38| 86.80 | 55.15 | 77,98 | 104.63 | 135.25
19| o020 | 840 | 1054 | 21.60 | 86.58 | B55.50 | 78.34 | 105.10 | 135.80
20| o022 | 849 | 1069 | 2182 | 86.87 | 5584 | 78.75 | 105.58 | 130.34
21| o24| 858| 10.84 | 20.03| 87.16 | 56.19 | 79.16 | 106.06 | 136.88
. 22| oce| 867| 11.00]| 22.25| 87.44 | 56.55 | 79.58 | 106.55 | 137.43
c 28 0.28 8.76 11.15 22.47 37.72 56.90 80.00 | 107.03 | 137.98
8 24| o081 | 885 11.81| 2270 | 88.01 | 57.25 | 80.42 | 107.51 | 138.58
2 los| ose| so9el| 1147 2009 | 3880 | sr.60 | 80.84 | 107.00 | 130.08
7} 26| o087| 403] 11.63| 2314 | 88.59 | 57.06 | 81.26 | 108.48 | 139.63
= 27| o40| 412| 1179 | 2387 | 88.88 | 5882 | 81.68 | 108.97 | 140.18
° e8| o048 | 422 11.95| 2360 | 89.17| 5868 | 82.10 | 109.46 | 140.74
2 20| o046| 432| 1211 | 2382 | 89.46 | 59.08 | 82.52 | 109.95 | 141.29
b
80| o040| 442| 1227| 24.05| 89.76 | 590.40 | 82.95 | 110.44 | 141.85
8 81| o052| 452| 12.48| 24928 | 40.056 | 59.75 | 83.88 | 110.93 | 142.40
82| o056| 4.62| 12.60| 2451 | 40.85 | 60.11 | 83.81 | 111.43 | 142.96
c 88| o050| 472 1276 | 2474 | 40.65) 60.47 | 84.23 | 111.92 | 143.52
.g 84| o063| 48| 12.98| 2498 | 40.95| 60.84 | 84.66 | 112.41 | 144.98
S |ss| o6r| 492 1810| 25.21| 41.25| 61.20| 85.00 | 112.90 | 144.64
- 86| o71| 508 1827 | 2545 | 41.55 | 61.57 | 85.52 | 113.40 | 145.20
&’ 871 on75| b513| 1844 | 25.68| 41.85 | 61.94 | 85.95 | 118900 | 145.76
88 0.79 524 | 13.62 | 25.92 | 42.16| 62.81 | 86.39 | 114.40 | 146.33
89| os8s| 58¢| 1379 2616 | 42.45| 63.68 | $6.82 | 114.90 | 146.89
> 40| o087| b545| 13.96 | 26.40 | 42.76 | 68.05 | 87.26 | 115.40 | 147.46
w 41| oo1| 556 14.18| 2664 | 43.086 | 63.42 | 87.70 | 115.90 | 148.03
o 42| o98| 567 1431 | 2688 | 48.37 | 6379 | 88.14 | 116.40 | 148.60
m 43 1.01 5.78 14.49 .12 48.68 64.16 88.57 | 116.90 | 149.17
lf 44| 106| 590 1467 | 2737 | 4899 | 64.54 | 89.01 | 117.41 | 149.74
45| 110| e.01| 1485 | 2761 | 44.80 [ 64.91 | 89.45 | 117.92 | 150.31
46| 115| 613 15.08| 27.86 | 4461 | 65.20 | 89.89 | 118.43 | 150.88
471 12| e24| 1521 | 2810| 44.93| 65.67| 90.88 | 118.94 | 151.45
48 1.26 6.86 15.80 28.36 45.24 66.06 90.78 | 119.45 | 152.03
49| 1381| e48| 15.57| 28.00| 45.55 | 66.48 | 91.23 | 119.98 | 152.61
50| 18| e660| 1576 | 28.85| 46.87| 66.81 | 91.68 [ 120.47 | 153.19
g1l 142| e72| 1595| 2010 | 4618 | 67.19 | 92.12 | 120.98 | 153.77
52| 148 684 1614 | 2086 | 46.50 | 67.58 | 92.57 | 121.49 | 154.35
53| 153 696 1682 | 29.61 | 46.82 | 67.96 | 98.02 | 122.01 | 154.98
54| 159 700| 1651 | 20.86 | 47.14 | 68.385 | 98.47 | 122.58 | 165.51
55| 165 7.21| 1670 | 8012 | 47.46 | €8.78 | 98.92 | 123.05 | 156.09
56| 171 | 734| 1680 | 30388 | 47.79 | 69.12 | 94.88 | 128.57 | 156.67
37| 17| 746 1708 | 3064 | 48.11 | 69.51 | 94.83 | 124.08 | 1567.25
1.83 | 17.60
189! 772
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230.39
231.10
231.81
232.562
283.24

233.95
234.67
235.38
286.10
236.82

326.66
327.60

829.19
830.89

"

881.74
832.69

334.29
335.16

386.00
836.86
337.72

339.44

340.30
341.16
342.02

843.75

344.62
345.49

347.23
848.10

348.97

850.71
351.58
352.46

368.84
354.22
355.10
855.98
356.86

357.74
358.62
359.561
360.89
361.28

362.17
863.07
363.96

865.75

366.64
367.53
368.42
369.31
370.21

371.11
872.01
872.91
873.82
874.72

876.62
876.62
877.43
378.34
379.26

380.17
381.08
381.99
882.90

883.82

1"

884.74

886.56
887.48
888.40

889.82
390.24
391.16
892.09
898.01

893.94
394.86
895.79
396.72
897.65

898.58
899.52

401.38
402.32

403.26
404.20
405.14
406.08
407.02

407.96
408.90
409.84
410.79
411.78

412.68
413.63
414.59
415.64
416.49

417.44
418.40
419.35
420.31
421.27

422.28
423.19
424.15
425.11
426.07

427.04
428.01

429.93
430.90

481.87

433.82
434.79
435.76

436.78
437.711
438.69
439.67
440,65

475.62

476.64
477.65
478.67
479.70
480.72

481.74
482.77
483.79
484.82
485.85

486.88
487.91
488.94
489.97
491.01

492.05
493.08
494.12
495.16
496.19

497.28
498.28
499.82
500.37
601.41

"

502.46
508.50

505.60
506.65

507.70
508.76
509.81
510.86
511.92

512.98
514.03
516.09
516.16
517.21

518.27
519.34
520.40
521.47
522.568

528.60
524.67
626.74
526.81
527.89

528.96
530.03
531.11
532.18
533.26

534.38
536.41
536.50
537.568
538.67

639.75

541.91
543.00
544.09

545.18
546.27
547.36

549.55

550.64
§51.73
552.83
653.93
655.03

556.18
557.24
668,84
669.44
560.65

561.65
562.76

564.98
566.08
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gin 17/

2gin?} P

m=

Reduction to the Meridian.

TABLE V.

Pl 1= 18= 19= 20= | 21= 220 | 23m 24 25m
8 n " " " n 1 ’ 2 "
0| 567.2 | 6359 | 7084 | 7849 | 865.8 | 949.6 | 1037.8 | 1129.9 | 1225.9
1| 5683 | 687.0| 709.7 | 786.2 | 866.6 | 951.0 | 1039.8 | 1131.4 | 1227.5
2| 569.4 | 638.2| 710.0 | 787.5 | 868.0 | 952.4 | 1040.8 | 1183.0 | 1229.2
8| 570.5 | 639.4| 712.1 | 788.8 | 869.4 | 953.8 | 1042.3 | 1134.6 | 1280.8
4| 5711.6| 640.6 | 713.4 | 790.1| 870.8 | 955.8 | 1043.8 | 1136.2 | 1282.5
5| 5728 | e41.7| 7146 | 791.4 | 872.1 | 956.7 | 1045.83 | 1187,8 | 1234.1
6| 573.9 | 6429 | 7159 | 792.7 | 878.5 | 958.2 | 1046.8 | 1139.3 | 1285.7
7| 575.0 | 644.1 | 717.1| 794.0 | 874.9 | 959.6 | 1048.8 | 1140.9 | 1237.8
8| 576.1 | e45.8| 718.4 | 7954 | 876.3 | 961.1 | 1049.8 | 1142.5 | 1289.0
9| 577.2 | 6465 | 719.86 | 796.7 | 877.6 | 962.5 | 1051.8 | 1144.0 | 1240.6
10| 578.4 | 6477 | 7209 | 798.0 [ 879.0 | 963.9 | 1052.8 | 1145.6 | 1242.8
11 ] 5795 | 6489 | 722.1 | 799.3 | 880.4 | 965.4 | 1054.8 | 1147.2 | 12439
12| 580.6 | 6500 | 728.4 | 800.7| 881.8 | 966.9 | 1055.9 | 1148.8 | 1245.6
13| 5817 | 6512 | 724.6 | 802.0| 883.2 | 968.3 | 1057.4 | 1150.4 | 1247.2
14| 5829 652.4 | 725.9 | 808.83 | 884.6 | 969.8 | 1068.9 | 1152.0 | 1248.9
15| 584.0 | 653.6 | 727.2 | 804.6 | 886.0 | 971.2 | 1060.4 | 1153.6 | 1250.5
16| 585.1| 6548 | 728.4| 808.0| 887.4 | 972.7 | 1062.0 | 1155.2 | 1252.2
17| 586.2 | 6560 | 720.7| 807.8 | 888.8 | 974.1 | 1063.5 | 1156.8 | 1253.8
18 | 587.4 | 657.2 | 780.9 | 808.6 | 8Y0.2 | 9755 | 1065.0 | 11568.8 | 1255.5
19 | 5885 | 6584 | 732.2 | 809.9 [ 891.6 | 977.0 | 1066.5 | 1159.9 | 1257.1
20 | 580.6 | 659.6 | 788.5 | 811.3 | 803.0 | 978.5 | 1068.1 | 1161.5 | 1258.8
21| 590.8 | 660.8 | 734.7| 812.6 | 8944 979.9 | 1060.6 | 1163.1 | 1260.5
29 | 591.9 | 662.0 | 786.0 | 818.9 | 895.8 | 981.4 | 1071.1 | 1164.7 | 1262.2
23 | 593.0 | 663.2 | 737.8 | 8152 | 897.2 | 982.9 | 1072.6 | 1166.3 | 1263.8
24 | 594.2 | 664.4 | 738.6 | 816.6 | 898.6 | 9844 | 1074.2 | 1167.9 | 1265.5
25| 595.8 | 665.6 | 789.8 | 817.9| 900.0 | 985.8 | 1075.7 | 1169.5 | 1267.1
26 | 596.5 | 666.8 | 741.1| 819.2 | 90141 9873 | 1077.2 | 1171.1 | 1268.8
27| 597.6 | 668.0 | 742.8 | 820.5 | 9V2.8 | 983.8 | 1078.7 | 1172.7 | 1270.5
28 | 598.7 | 669.2 | 748.6 | 821.9 | 9U42 | 990.3 | 1080.8 | 1174.8 | 1272.1
29 | 599.9 | 670.4 | 744.9 | 828.2 | 905.6 | "991.8 | 1081.8 | 1175.9 | 1273.7
30| 601.0| e671.6| 746.2 | 824.6 | 907.0 | 9932 | 1083.8 | 1177.5 | 1275.4
31| 602.2 | 672.8| 747.4| 8259 | 9084 | 9947 [ 1084.8 | 1179.1 | 1277.1
82| 603.8| 674.1| 748.7| 821.8 | 9U9.8 | 996.2 | 1086.4 | 1180.7 | 1278.8
33 | 6045 | 6758 | 750.0 | 828.6 | 911.2 | 9976 | 1087.9 | 1182.8 | 1280.4
84| 605.6 | 676. 751.8 | 820.9 | 912.6 | 999.1 | 1089.5 | 1183.9 | 1282.1
85| 606.8 | 67| 752.6 | 831.2 | 914.0 | 1000.6 | 1091.0 | 1185.5 | 1283.8
36| 607.9 | 6718.9 | 758.8 | 832.6 | 915.5 | 1002.1 | 1092.6 | 1187.1 | 1285.5
37| 609.1 | 680.1 | 756.1 | 833.9 | 916.9 | 1003.5 | 1094.1 | 1188.7 | 1287.1
88| 610.2 | 681.8| 756.4 | 835.8 | 918.3 | 1005.0 | 1095.7 | 1190.8 | 1288.8
89 | 611.4| 6826 | 757.7 | 836.6 | 919.7 | 1006.5 | 1097.2 | 1191.9 | 1290.5
40| 612.5 | 683.8 | 759.0 | 838.0 | 921.1 | 1008.0 | 1098.8 | 1193.5 | 1292.2
41| 618.7| 685.0 | 760.2 | 839.3 | 922.5| 1009.4 | 1100.3 | 1195.1 | 1293.8
42| 614.8 | 686.2 | 761.5 | 840.7 | 923.9 | 1010.9 | 1101.9 | 1196.7 | 1295.5
43| 616.0 | 687.4 | 762.8 | 842.0 | 920.8 | 1012.4 | 1103.4 | 1198.3 | 1297.2
44| 617.2 | 688.7 | 7641 | 843.4 | 926.8 | 1018.9 | 1105.0 | 1199.9 | 1298.9
45 | 618.3 | 689.9 [ 765.4 | 8447 | 928.2 ) 1015.4 | 1106.5 | 1201.5 | 1800.5
46 | 619.5 | 691.1 | 766.7 | 8461 | 929.6 | 1016.9 | 1108.1 | 1203.1 | 1302.2
47| 620.6 | 692.4 | 768.0 | 847.5 | 9310 | 1018.4 | 1109.6 | 1204.7 | 1303.9
48 | 621.8 | 698.6 | 769.3 | 848.9 [ 932.4 | 1019.9 | 1111.2 | 1206.4 | 1805.6
49 | 623.0| 6948 770.6 | 850.2 | 933.8 [ 10214 | 1112.7 | 1208.0 | 1807.8
50 | 624.1| 696.0 | 771.9 | 851.6 | 9380.2 | 1022.8 | 1114.3 | 1209.8 | 1309.0
51| 6258 | 697.8 | 718.1 | 862.9 [ 936.6 | 1024.8 | 1115.8 | 1211.2 | 1310.7
52 | 626.5 | 698.5 | 774.5 | 854.3 | 938.1 |1025.8 | 1117.4 | 1212.9 | 1312.4
53| 627.6 | 699.7 | 775.7| 835.7| 989.5 | 1027.8 | 1118.9 | 1214.5 | 1314.1
54| 628.8| 701.0 | 777.1| 857.1 | 94V.9 | 1028.8 | 1120.5 | 1216.1 | 1315.7
55| 630.0 | 702.2 | 718.4 | 858.4 | 942.8 | 1030.8 | 1122.0 | 1217.7 | 1817.4
86| 631.2 | 703.5 | 779.7 | 850.8 | 948.8 | 1031.8 | 1123.6 | 1219.4 | 1819.1
57| 632.8| 704.7 | 781.0 | 861.1 | 945.2 | 1038.8 | 1125.1 | 1221.0 | 1820.8
58 | 6885 | 705.9 | 782.3 | 862.5 | 946.6 | 1034.8 | 1126.7 | 1222.6 | 1822.5
891 6347 7071 ! 736! =639 1036.3 1324.2

948.1

1128.3 ' 1224.2
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: = 0
P 27= 28> 29 n::g'.'l: l?,P For rate. 201 /
8 1" M " R
0 1om | 1onnhseso| £ 42| P | n |Rae| Log
1 1431.4 | 1539.8 1 1650.9 | 8 o 7 | m 8| 8
2 1433.2 | 1541.1 | 1652.8 | @ o0l0.00| 20 0/1.49| —30 [0.999 6985
‘g 14349 | 1542.9 | 1654.7] 1 olo.oo| = 10/1.54] 29 7085
4 1436.7 | 1644.8 | 1656.6 | 2 elo.0oo| 20/1.60] 28 7186
8 0{0.00 801.65] 27 7286 1
6 1440.8 | 1548.4 | 1660.4 | ¢ olo-o'l  Bolii7e e
7 1442.1 | 1550.2 | 1662.8 : 25
8 1443.9 | 1552.1 | 1664.2 | @ 0l0.01) 21 0j1.82| 24 7588
9 1445.6 | 1558.9 | 1666.1 | 7 0/0.02| 10/1.87| 28 7688
8 00.04] 20/1.98] 22 7780
Titos | 1oore | 1acog | 13 Qo-061  Soeo) ) T
. . . 0.09|  40[2.06
14510 | 18505 | 16719 | 19 0991 0% 2 7990
1452.8 | 1561.3 | 1673.8 < 18 8191
1454.5 | 1663.2 | 1675.7 | 12 108'%8 22 182'%3 n 8991 -
1456.8 | 1565.0 | 1677.6 20/0.22|  20[2.82| 16 8392 4
1458.1 | 1566.9 | 1679.5 80/0.23|  30[2.39| 15 8492 r
1459.9 | 1568.7 | 1681.4 40(0.24|  4do[2.46] 14 8593 m
1461.6 | 1570.5 | 1683.3 600.25|  50[2.54| 18 8598 <
1463.4 | 1572.4 | 1685.2 13 0l0.26| 28 of2.61| 12 8794 h
1465.2 | 1674.3 | 1687.2 |  100.28( ~ 10[2.69| 11 8894 -
1466.9 | 1576.1 | 1689.1 |  20/0.80)  20/2.77f 49 8095 | X
1468.7 | 1578.0 | 1691.0 80/0.31 8012.85| 9 9095 by
1470.5 | 1579.8 | 1892.9 40/0.83)  4012.93{ g 9196 c
1472.3 | 1581.7 | 1694.8 50/0.34]  50/3.01 g gggg Q
1474.1 | 15835 | 10p6.7 | 14 0/0-33| ¥4 03.10 S
1475.9 | 1585.3 | 1698.6 20(0.39 205 97| 8 9497
1477.7 | 1587.2 | 1700.5 300.41 o03.38] % 9698 g
iigs.g iggg.é 1702.5 w00.43| 03 45 g 37633 o
148;.1 15692.7 i:ﬁ: o 533'55 1 [0-999 9899 s
: . .3 | 15 0[0.47] 25 0{3.64
14849 | 1504.6 | 17082 | * 100.40| * 10.74| Lo [PUP 0| =
1486.7 | 1696.6 | 1710.2 2010.52 20|8.84 2 0201 )
1488.5 | 1698.3 | 1712.1 800.5¢| 80(804| 3 0802 s,
1490.3 | 1600.2 | 1714.0 400.56| 40l4.05| 4 0402 e
1492.1 | 1602.1 | 1m15.9 |  500-59) 80151 os08| S
1493.9 | 1604.0 | 1717.9 | 16 0/0.61| 26 0l4.26] ¢ 0808 :
1495.7 | 1605.9 | 1719.8 10/0.64|  1014.37| ¢ 0704
1497.5 | 1607.7 | 1721.7 20/0.67 20/4.48] g 0804
1499.3 | 1609.6 | 1723.6 ggg.gg 4381.&2) 9 0905
1501.1 | 1611.5 | 1725.6 50(0.75 504;3 10 1005 Il
1502.9 | 1613.3 | 1727.5 1 1106 i
1504.7 | 1616.2 | 1729.5 [ 17 0/0.78] 37 014.96} 13 1208 | B (&
15065 | 1617.1 | 1731.5 |  10/0.81) = 105.08] 13 1807 | |
1508.4 | 1619.0 | 1788.4 §88’§§ ?;82'33 14 1407 | =
1510.2 | 1620.8 | 1736.8 40(0.91 40l5.46| 16 1508
1g1§.g iggi.g 1787.2 50(0.95 50(5.60 }g %ggg
1513. .6 | 1789.2
15156 | 16265 | 17412 | 18 00-981 28 08.78) 18 1809
1517.4 | 1628.3 | 1748.1 | o0li706]  a0lgio1| 1P 1910
1519.2 | 1630.9 | 1745.1 | 801091  80i8.15| 20 2010
1521.0 | 1632.1 | 1747.0 4011.13)  4016.80) £, - 8911
loéog 1634_8 %;49'8 50(1.18 50/6.44 23 2312
1524.7 | 1635. 50.9 1 19 o[1.22| 29 0/6.59
15265 | 16377 | 1752.8 | 12 1011 55| 22 108-% g‘; gﬁg
1628.8 | 1639.6 | 175 2011.20  206.80
. ) 54.8 a0 3| 30706 26 2613
1530.2 | 1641.5 | 1756.8 whiol doreel 27 2714
1532.0 | 1643.3 | 1758.7 soliaa| sol7es| 28 2814
1538.8 | 1645.2 | 1760.7 1' 7'55 29 2915

1535.6 | 1647.1 | 1762.6 | 20 0 +80 10.000 3015




202

TABLE VI.

Augmentation of Moon’s Semi-Diameter on Account of Apparent Altitude.

Appar- Horizontal Semi-Diameter.

ent

Alti- o 7 ron " n ron ron

tude. | 1430 | 150( 1580| 160 |16 80| 17 0

1" 1 " n 1" r

0 | 010 012| 013 014| 0.15| 0.17
2 | 0.58| 0.62| 066 0771| 0.76| 0.81
4 | 1.05| 12| 1.20| 1.28| 1.37| 1.46
6 | 1.51| 1.62| 174 | 1.88| 1.98| 210
8 | 1.88| 212| 2.27| 242| 288 2.7
10 | 244 262| 2.80| 2.99| 3.18| 8.39
12 | 290 | 8.11| 3:33| 33| 3.718| 4.0
14 | 3.36| 3.61| 88| 4.11| 4.37| 468
16 | 3.82| 4.10| 4.38| 4.67| 4.97| 5.28
18 | 4.28| 4.58| 4.89| 522 | 5.56| 5.90
20 | 4.72| 5.06| 5.41( 5.76| 6.14| 6.5
22 | 5.16| 5.53| 5.91| 6.30| 6.71| 7.18
24 | 5.60 | 5.99| 6.41| 68| 7.27| 7.7
26 | 6.03| 6.45| 6.90| 7.85| 7.83| 881
28 | 6.45| 6.01| 7.38| 7.7 8.37| 8.8
80 | 6.86| 7.35| 7.85| 8.37| 8.91| 9.46
82 | 7.27| 7.78| 8.32| 8187 | 9.44| 10.02
8 | 7.67| 821| 8.77| 9.35| 9.95| 10.57
3 | 8.06| 8.62| 9.22| 9.88| 10.46{ 11.11
8 | 8.43| 9.08| 9.65| 10.29 | 10.95 | 11.63
40 | 8.80| 9.42| 10.07 | 10.74 | 11.43 | 12.14
42 | 9.16| 9.80 | 10.48 | 11.17 | 11.89 | 12.68
44 | 9.51] 10.17 | 10.88 | 11.60 | 12.34 | 13.11
46 | 9.8 10.54 | 11.26 | 12.01 | 12.78 | 1357
48 | 10.16 | 10.88 | 11.63 | 12040 | 1320 | 14.02
50 | 10.48 | 11.22 | 11.99 | 12.78 | 13.60 | 14.45
52 | 10.78 | 11.54 | 1233 | 13115 | 13.99 | 14.86
54 | 11.07 | 11.84 | 12.65 | 13150 | 14.86 | 15.25
56 ! 11.34 | 12.14 | 12.97 | 13183 | 14.72 | 15.68
58 | 11.60 | 12.42 | 13.27 | 14.15 | 15.05 | 15.99
60 | 1184 | 12.68 | 13.55 | 14.44 | 15.37 | 16.82
62 | 12.07 | 12.98 | 1381 | 14.73 | 15.67 | 16.64
64 | 1220 | 13.16 | 14.06 | 14.99 | 15.95 | 16.94
66 | 12.49 | 18.87 | 14.29 | 15.24 | 16.21 | 17.22
68 | 12.68 | 18.58 | 14.50 | 15.46 | 16.45 | 17.47
70 | 12.85 | 13.76 | 14.70 | 15.67 | 16.67 [ 17.7
72 | 13.00 | 13.92 | 14.88 | 15.86 | 16.88 | 17.93
74 | 13.14 | 14.07 | 15.04 | 16.08 | 17.06 | 18.12
76 | 18.97 | 14.21 | 16.18 | 16.18 | 17.22 | 18.29
"8 | 18.88 | 14.82 | 15.80 | 16.81 | 17.36 | 18.43
80 | 18.47 | 14.42 | 15.40 | 16.42 | 17.47 | 18.56
82 | 18.54 | 14.50 | 15.49 [ 16.51 | 17.57 | 18.68
84 | 18.60 | 14.56 | 15.56 | 16.50 | 17.65 | 18.74
86 | 13.64 | 14.61 | 15.60 | 16.64 | 17.70 | 18.80
88 | 18.67 | 14.63 | 15.63 | 16.67 | 17.73 | 18.83
90 | 13.67 | 14.63 | 15.64 | 16.68 | 17.74 | 18.85
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Form No. 1.
ERROR OF SIDEREAL TIME-PIECE BY MERIDIAN TRANSIT
OF STAR.
Station, WesT PoIiNt, N. Y, Latitude, 41°_ 28’ 22’/.11. Chronometer No........ s by el
Date:
Observer.
Recorder.
Transit.
Illumination,
Name of Star.
A E. W. |[EE W. [EE W. |E. W,
Level. {
Reversed. E W E W E. W E. W.
hms| hms| hms| hmes
< [E
£|m
B
g IIL
21 Iv.
“lw
:o: .
g ("‘
& VI
Sum
Mean.

Red. to Mid. Wire,

Chron. Time of Transit over Mid.
Wire = T. }

Level Error = b.

Level Correction = Bb.

Collimation Error = é.

Collimation Correction = Ce.

Azimuth Error = a.

Azimuth Correction = 4a.

Chron. Time of Transit.
App. R. A. of Star = a.

Error of Chron. = E.
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ForM No. 2.
ERROR OF MEAN-SOLAR TIME-PIECE BY MERIDIAN TRANSIT
OF SUN.
Date. Station, WesT PoINT, N. Y.
Latitude 41° 23’ 29,11, Longitude 4.98%,
Observer. Recorder.
Transit No....... By oo Mean-Solar Chron. No....... By.......

Chronometer Time of Transit of West Limb. Wire I

Chronometer Time of Transit of East Limb. “

SUM.
Chron. Time of Transit of Center over Mean of

Wires = Mean.

Reduction to Middle Wire.

Level Error............ Level Correction.  .............. ceeseeteeniiecnaien,

Col. B eerenes ....Col. s o sseenes ceerecennes PIETTSPN
Azimuth  ** ... ... Azimuth ¢

Chronom. Time of App. Noon.

Apparent ‘¢ ¢ ¢ ’

Eq. of Time.

Mean Time of Apparent Noon.

Error of Chronometer on Mean Solar Time at

App. Noon. tesesaseien PRT TP, o
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Form No. 3.
ERROR OF SIDEREAL TIME-PIECE BY SINGLE ALTITUDE OF

STAR. NAME.............
- Date. . Station, WesT PoiINT, N. Y.
Observer. Recorder.
Sextant No........ By........ Sidereal Chronom. No........ By....... .
° ’ ” h m 8
©Observed Double Altitude. Chronom. Time.
. “ “" “ "
“ “ [ “" [
(13 “ " .“ [
" " " —_— “ .“
‘Mean “ B eere e aetiaey Sum ..o
Index Error. = ... Cireeeeeniaen t Mean =t,
Eccentricity. Barometer cetescesannaanns
Corrected Double Altitude. Att. Thermom . . .ceeeevnnnns
i Altitude =a,. Ext. f L, ceeeie
#Refraction =r. Refraction ...l
‘True Altitude —a [ N
Latitude =¢. ..41°,.28/. . 2.11.. a.c.logcosd  .iieeiiiennen.
N. Polar Dist. =d. L1 N 2,
m_ai-:ii. vocesnserrrnrannanne OEOSM  eeereeneininnens
m — a. esesscssstencssrcnne ¢ gin(m - a)
“gintp P iiiiiiiee...
“ gin} P
t+P
P
Pin Time
Apparent R. A. of Star
Sidereal Time =R. A. 4+ P .....ccocuunn...
Mean of Chron. Times ={¢,
Error of Chronometer

*The correction to be added to this value of r, if desired (see Note 8, Text), is
sinr _ 2sin? a, - 4)

2 Sntag mEn 1 A denoting the different corrected altitudes, a, their mean, and

n the number of observations. The values of 2%_—41 are taken from Tables (first

converting a, — A4 into its equivalent in time), as explained under * Latitude by Circum-
Meridian Altitudes.”

+ The correction to be added algebraically to this value of t, if desired (see Note 3,

1 sin Pcos ¢ sin d' 28in? (T — ¢,)
Text) is, after computing P in arc, 1‘,’[cot. P- cosacola wein1” ’ Tbeing
the different chronometer times. The last factor is taken from Tables as before.
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Form No. 4.

ERROR OF MEAN-SOLAR TIME-PIECE BY SINGLE ALTITUDE
OF SUN'S............LIMB.

Date. Station, WesT PoInT, N. Y.
Observer. Recorder.
Sextant No....... By.coviee anen ceeeeens M. 8. Chronom. No......... By. ceiiiiiie aenn
o« 1 » hms
Observed Double Altitude. Chronom. Time,
“ “ “" ‘% “
(13 “" “w " “
“" " “ “ “"
“ “ “ “ “
Mean “ “ teeiiee sesasiennaes Sum ... ...
Index Error.  cciieeeneees cereenes +Mean = t,
Eccentricity. cesecncetsesesanonas Barometer ceeniees
Att. Th L e
Corrected Double Alitude. .....cveereeerers Fat. oo
“ Altitude = @g.  -ecivreiiiennninnnn Refraction ..

*Refraction = r.
Semi-diameter. '
Apparent Altitude = a .

Longitude = 4.981 hours.
Assumed Error of Chronom. = ........
Resulting Greenwich Time of Obs.=

Sy U
Parallax in Altitude, Log. Eq. Hor. Parallax -;94{. ¥2
True Altitude = a. “ 2:,8 o 74 ?? 3 é
Latitude = ¢. ..41°,.28/..22.11.. Parallax in Altitude.
N. Polar Dist. = d. eteessse seisseess.. Dec. at Greenwich Mean Moon.  ........
_at+é+d Hourly Change X Greenwich Time ........
m= ———z . eeeeresseresacessnn s“n's Declination.
m-a. eesss00ssssscsesasen a.c.logcosd ...
ot gind 0 Laieeeeee o s
COSM  iiieeieeeane.s
sin (m — a) -
sin? § P ceeeiee e
P
Pin Time
Apparent Time
Equation of Time.
Mean Time.
Mean of Chron. Times = ¢,
Error of Chronometer. ........ ceceens
* See foot-note to Form 8.
‘, “ . " " “" “"

Note.—For correction of Semi-diameter due to difference of refraction between limb
and center, see ** Longitude by Lunar Distances.”



A

_ Tl 4T,,,

o E-oa=
NN
)
;.
A
N FORMS. 209
Form No. 5.

ERROR OF SIDEREAL TIME-PIECE BY EQUAL ALTITUDES OF
A STAR.

Station, WesT PoInT, N. Y.

Latitude, 41° 23’ 22”711 = ¢.

Observer.......cooeeeenenenann Recorder....... ......... ..
Sextant No........ ) : 2 8id. Chronom. No ... .. By...... N
Name of Star. ........ccecevveecnssnns App. Declination = 8..........ccovvevvinnnnnn.
Observations East. Date...c..oovvnnvennnns
Observed Double Altitudes. Chronometer Times.
° ’ ” h m 8
1 Barom. = ........
1L Att. Thermom. ........
1. . Ext. e,
18t Refraction ........
MeAn = 2. ..oueveirnnnirenniies veinnn caee Sum
(Correct this for index error, if correction 1st Mean........... teecsesessenisnesses e soeens
for refraction be taken into account.)
. Observations West. Date........... eeneees .
Observed Double Altitudes. Chronometer Times.
° ’ ” h m P
L Barom. = ........
IL Att. Thermom. ........
1. Ext. “ ceer e
2d Refraction
18t “
Mean =2a.......ccciiiiniiiiiiaan teceoens . Bum .............. . Difference
(Same as above). 2 Mean.................. Log Difference ........
1st Logcosa.  ........
a. c. log 30
Elapsed Time. sessecsssessesanssonns a.c.logcos¢p ........
16 Elapsed Time in arc = ¢. . ..a.c. log cos &
a.c. logsin t
Middle Chronometer Time. teeeceserntenee aeean Log Correction

Correction for Refraction.

Chronom. Time of Transit.

App. R. A. of Star.

Frror of Chronom. at Time of Transit.

Correction
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Form No. 6.

ERROR OF MEAN-SOLAR TIME-PIECE BY EQUAL ALTITUDES
OF SUN'S................LIMB.

Station, WesT PoinT, N. Y. ¢ = Latitude, 41° 28’ 22 11. Longitude 4.931", west.
Observer.........ccccoveeenes Recorder....................
Sextant No........ By ....... [P M. 8. Chronom. No ....... By .ccocvunennnnnnn
Sun’s App. Dec. at local App. Noon (or midnight) =8 =... ........ ...
Hourly change in § at same time, =k =................
Observations East. Date ............ ceecenes
Observed Double Altitudes. Chronometer Times,
° ’ ” h m 8
L Barom. = ........
1. Att. Thermom. ........
IIL N Ext. .
1st Refraction ........
Mean = 2a......... e i Sum ____ 000000
(Correct this for index error, if correction 1st Mean.......................
for refraction be taken into account).
Observations West. Date.... .icieviieinnn
Observed Double Altitudes. Chronometer Times.
o ’ ” h m 8
1. Barom.
1L Att. Thermom. ..
III. Ext. “
2d Refraction
1 st “
..Difference
Log Difference ..
Log cos a
‘a. ¢. log 30
Elapsed Time.......cccoiiiiiiiiieiiees ceeeicennninennnnanns a. c. log cos ¢
1§ Elapsed Timeinarc =¢. ........iieeiaea a. c.log cos 8
a. c. log sin t
Middle,Chronometer Time. see . ereesesseccees Log Correction
Correction for Refraction. —_  Correction
Equation of Equal Altitudes. Logd  ..oonn.
Chronom. Time of App. Noon. et e eeiaiaaes “ ko e,
App. of Time at App. Noon. L.12B 0™ 0%, ¢ tang
Eq. of Time at App. Noon. e

Mean Time of App. Noon.
Error of Chronometer at App. Noon.

18t Part 4 2d Part = Eq. of Equal Altitudes. _.___
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ForM No. 7.

LATITUDE BY CIRCUM-MERIDIAN ALTITUDES OF
SUN'S................LIMB.

Barom.... ....... Att. Th.... ...
M. 8. Chronometer, No [T
Error of Chronometer = E =................ Rate of Chronometer =r =.......... ceeees
omj{ﬁ‘ﬁ.‘:’ ble Chronometer Times. Hour Angles.| m. | =n.
o 1 m h m 8 App. Time of m. 8. 8. 8.
T App.Noon 12 0 O
II. Eq. of Time at _ .
{Ivl App. Noon .......
v, Mean Time of
. App. Noon .... ...
VVI}:{: Chron. Error ........
IX. Chron. Time of
X. App. Noon ........
Sum. Log. Eq. Hor. Pa......... Sums.|...........oofoeened] oine
Mean. “p ceengens P, me, | no
Eccentricity “ cosa*r  ........ Means.|........ooenfeuninn]. 2.
Index Error. ¢ Parin Alt, .......
Cor.D. Alt.  ......ccunnnnenn s Eq. of Time at Py...............
)
“ 8.0« —_— Longitude
Refraction Correspond’g Greenwich Time.................
Semi-diam. “ ' O 8peneen b
Par. in Alt.
True Alt.=ao+ a, = 85+ 90° — ¢. ¢ =38,490° —a,.
Agmg +
Boyng — ____Changein Eq. of Timein 24k =e€......... cicveeiveiiennnen.
Sum — [T Rate of Chronometer ¢ =1
90° 4 .90°..0°.0..0.0.
5 +

* a is obtained by applying refraction and semi-diameter to Corrected Single Altitude.
Note.—For correction to Semi-diameter due to difference of refraction between limb
and center, see Longitude by Lunar Distances. .
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ForM No. 8.

LATITUDE BY CIRCUM-MERIDIAN ALTITUDES OF (NAME OF
STAR).cecciveinnnnns

Ohﬂﬁ?“?;f‘m" Chronometer Times. . Hour Angles.| m,
’ ” h. m. m. 8.

8.

X

T App. R. A. of
II. Star ceeieees
IIL Chron. Error ........
v. Chron, Time of
Transit / ........

Sums.| ... s feeeen]ennns
Mean. oee
Eccentricity. ................ Means.[.....ccevvuvvnc]enieifennnt.
IndexError. ___ ==
Cor.D. Alt,  ..c.cciiuiiannan Star’s App. Declination =8, ......c....c.ceunnnn. .. eee
R a, = 8+ 90° — ¢, ¢ =8 490° —a,.

Refraction,
True Alt.=ay+
Agmg+

Byng —

Sum —
90° 4 .90°..02.0..0.0. ‘ seca,
5 + . “ N

¢ cocesncs.cncsees b my
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ForM No. 9.
PROGRAMME FOR ZENITH TELESCOPE. (LATITUDE.)
Station, West PoInT, N. Y. Approximate Latitude........ Observer........

No. | Catalogue g;'g Mag. |Mean R. A.| Mean Dec. 73&‘3’ g- Setting.

W -

oo B

S® »®N

—-

ForM No. 9a.
OBSERVATIONS WITH ZENITH TELESCOPE.
Gtation, WesT PoInt, N. Y. Recorder.... ... Sheet No........
Telescope No........ Chronometer Error........
}
DaTtE. STAR. LEVEL. CBRONOM. REMARES
Catalogue I+
I N _ " " a Tl n
?J::ug%t:. 8. My &My My —mg 1, & Uy |l & Uy gy Time.

Note.—Form No. 9 is for the observer's use.
Form 9a is for the recorder's use.
The records of the different nights at a given station are then collated, and the
reductions made as per Form No. 9b, which is for the computer’s use.
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Form No. 11.

LATITUDE BY EQUAL ALTITUDES OF TWO STARS.

Station, WesT Point, N. Y. Observer.................... Recorder.........cccene..
Date.........oeevveennnn Sextant, No......... .. By.......... Ceress.cecccsscses

Chron. | True :
Hour | Hour I |
Name Time | TiMe | App. | Angle | Angle | AP0 &' — 8% + 8P~ P|P4 P
of the Star. | 0. | Obger. |B-A-|,in |inAre.| So's |
vation.| vation, Time. | P& P

Ll Al KB K

(29

2.

P—P
2 IO

Log tan
Log cot ‘ST_S

/
Log cot S—Tjj

Logtan M | .....cion coieei]ivennienn o fiiiiiiiiiiini e i
M
@.C.loBCOSM|... vevriiiiiieni]ienniinininenie]iiieiiiiiiieriins]iieiiiiiiiies] ceriiiiiiiiaian
P —P|
P2 PR PRI Y P T arssevesens

U
Logtan 5—;"4

Log cos

Log m
P+ P

2

M
APy ;
2 |
Log cos \

P’+P_M

2 T [eeee e, ISUUPUN U evereeaeas | ................... e
Log m |
Logtan ¢ |........... B Y PO R OO PP
¢ !

Mean
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