


PLANE ASTRONOMY.

,/“}""fmk\\

INCLUDING EXPLANATIONS OF CELESTIAL PHENOMENA AND
DESCRIPTIONS OF THE PRINCIPAL ASTRONOMICAL
INSTRUMENTS.

BY THE REV. A. R. GRANT, M.A,,

FFLLOW AND ASSISTANT TUTOR OF TRINITY COLLEGE, CAMBRIDGE.

CAMBRIDGE: MACMILLAN AND Co,;
LONDON: G. BELL, FLEET STREET.

1850.



CAMBRIDGE :
MecTALrPE and PALMER, Printers, Trinity Street.




PREFACE

In putting forth the first part of a Treatise on Plane
Astronomy, I feel called on to explain why I have entered
on a field already extremely well occupied: I have done so
because it appears to me that Students have been deterred
from this interesting and important study by the very com-
pleteness of the works in which it is brought before them.
I mean that the easier parts of the subject, such as explana-
tions of ordinary phenomena, and many simple applications
of geometry and analysis, have become so mixed up with
the very uninviting processes which exclusively concern the
professional observer, that the whole subject is often thrown
aside as wearisome and repulsive.

I have endeavoured to throw the elementary explanations
into a form which may be considered as either complete in
itself, or introductory to the higher branches of the subject,
which it is my purpose to treat of in another part.

I have devoted a considerable space to the description
of Instruments, because I think that in the present state of
Astronomical Science, no one can be said to have a complete
knowledge of the subject, who is not well acquainted with
the means by which observations are made with the required
exactness. And indeed, many of the contrivances for this
object are well worthy of attention in themselves, from the
mechanical skill and ingenuity displayed in them.
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In the explanations I have endeavoured to give as clear
solutions as I could of the difficulties which naturally pre-
sent themselves to a Student entering on the subject, and
in this endeavour I have neither aimed at nor avoided
novelty.

In case my memory may have led me to insert without
special notice anything I have derived from others, I beg
here to acknowledge all such assistance, and particularly to
express my obligations to Sir J. F. W. Herschel, whose
admirable work, recently republished, was in its earlier form
one of the first books I read on the subject: and also to
'W. Hopkins, Esq., to whose excellent training in my un-
dergraduate’s course I owe whatever knowledge I have of
"Astronomical Instruments.

In conclusion, I derive much consolation from the reflec-
tion, that those who will be most able to criticise my labours
are the very persons who can best appreciate and allow
for the difficulties of the undertaking—who, knowing how
hard it often is to make a single point clear to a beginner,
can form some idea of the pains required to explain a whole
subject. If, by assisting their labours as well as presenting
the subject in a more inviting form to the beginner, I am
in any degree able to promote'the study of Astronomy, I
shall not regret the time and thought which this work has
cost me.



CONTENTS.

CHAPTER I. .
Article

1—17, Plan of the work. Description of the Solar System. Geometry
of the Sphere. Figure of the Earth. Motion of the Earth.
The Seasons. Motion of the Moon, Eclipses . .
18—33. Sphere of Observation and Celestial Sphere. Apparent motions
of the Sun and Moon. Harvest Moon, General phenomena
of the Planetary motions . . . . .

CHAPTERCII.

34—39. True theory of the Universe. General remarks on Astronomical
Instruments. Accuracy of observation increased by the Appli-
cation of the Telescope, the Vernier, and the Reading Micro-
scope . . . . . . .

40—49. Description of the Altitude and Azimuth Instrument. Mural
Circle and Artificial horizon. Transit and Spirit Level. Astro-
nomical Clock. Equatoreal. Hadley’s Sextant . .

50—564, Corrections of the results of Observation. Refraction. Aberration
of Light. Parallax . . . . .

55—64. Precession and Nutation. Ellipticity of the Earth’s orbit. Time.
Terrestrial Longitude. On Observations generally. Additional
remarks on Eclipses . . .

Page

31

52

62

89

101






PLANE ASTRONOMY.

1. FroM the earliest periods, the motions of the heavenly
bodies have attracted the attention and exercised the faculties
of mankind; and although they appear arbitrary and ano-
malous to the superficial observer, it seems always to have
been the opinon of philosophical and inquiring minds that
they are in themselves orderly and regular, and that the
laws to which they are obedient may be discovered by proper
skill and application.

The efforts employed on this object have resulted in the
science of Astronomy.

There are two ways in which the subject may be treated.
We may either start from apparent phenomena, and proceed
step by step, according to successive discoveries, until we
arrive at the true theory of the universe; or, we may begin
with assuming the results of previous inquiries, and deduce
from them, one after another, the appearances which present
themselves to our observation.

The former method has the advantage of historical order,
but the latter is so much the more clear and intelligible that
we shall not hesitate to adopt it.

2. The earth on which we live was naturally regarded
for a long time as stationary, and all the heavenly bodies
as in motion about it; and this supposition, as we shall see
hereafter, was a source of great difficulty and confusion in
explaining celestial phenomena. It has now been satisfactorily
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2 PLANE ASTRONOMY.

established, not only that the earth is not the fixed centre
of ‘the universe, but that it is one of a system of bodies
called planets revolving about the sun. We shall first give
some general features common to most of these bodies, and
then briefly describe each of them in detail.

(a). The planetary form is that of an oblate spheroid, which
is geometrically defined as the solid generated by the revo-
lution of a semi-ellipse about its minor axis. In general,
the planets differ little from spheres. »

(6). Each planet has a motion of rotation about its least
axis, which axis moves nearly parallel to itself in the orbital
motion about the sun.

(¢)- The orbit in each case is an ellipse of small eccentricity,
having the sun in one focus. The planes of most of the
orbits are inclined at small angles to one another.

(). Several of the planets have satellites, which revolve
about them in the same way as themselves about the sun.

(¢). We may also mention that it has been ascertained
by observation that the squares of the periodic times, or
times of revolution about the sun, are to one another in the
same ratio as the cubes of the mean distances, or semi-major
axes of the orbits; and also that the radius vector of each
planet, that is, the straight line joining the planet and the
sun, passes over equal areas in equal times.

From these properties it may be inferred, according to
the reasoning of Newton in the 2°d and 8™ Sections of his
Principia, that each planet is attracted to the sun by a force
varying inversely as the square of the distance from the sun.

The above statements, however, respecting the forms of
the orbits, are only approximately true—though the approxi-
mation is very close—and consequently the inference we have
made is not quite an accurate statement of the physical theory
of the universe. It is sufficient here to observe that from
the mutual influence of the planets on one another, their
forms, and the phenomena presented by their satellites, Sir
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Isaac Newton established the existence in all matter of an
attractive power, by which every portion, however small, attracts
every other portion, with an accelerating force which varies
directly as the mass of the attracting body and inversely
as the square of its distance from the attracted body.

8. We shall now proceed to describe the Solar System.

(1). The Sun is a self-luminous body whose diameter is
880,000 miles, or about 112 times the diameter of the earth.
Consequently, its volume is more than a million times that
of the earth. It has a motion of rotation about its axis in
about 25 days and a half.

Many conjectures have been formed as to the nature and
constitution of the Sun. The most probable seems to be that
it consists of a solid body surrounded by a luminous atmo-
sphere. The surface, viewed through a telescope, in general
appears marked with dark spots, some of them enormously
large, which are supposed toe be breaks in the atmosphere,
through which the opaque body becomes visible.

(2). The nearest planet to the Sun is Mercury. It revolves
about its axis in 24hrs. 5min. . Its diameter is about  of
that of the Earth, and it describes a comparatively eccentric
orbit about the Sun in about 88 days. The ratio of the
minor and major axes of the orbit is about 4 : 5. The mean
distance is nearly # of that of the Earth.

(8). The next planet in order is Venus, which is rather
less than the Earth, and completes its revolution about the
Sun in something less than 225 days. It revolves about
its axis in 23 hrs. 21 min. The mean distance is  of that
of the Earth. The orbit is very nearly circular.

(4) Next to Venus is the Earth, whose distance from the
Sun is 95 millions of miles, its diameter 7985 miles, and
its periodic time 365 days and nearly a quarter. The day
of 24 hours is the time occupied by the Earth’s rotation
about its axis.

B2



4 PLANE ASTRONOMY. .

(5). The first planet without the Earth’s orbit is Mars,
at a mean distance of about 1}, calling that of the Earth 1.
Its diameter is about half that of the Earth. It revolves
about its axis in 24 hrs. 37 min., and about the Sun in 1 year
and 321 days.

(6). After Mars come four small planets, Vesta, Juno, Ceres,
and Pallas, generally called Asteroids. Their diameters are
very small. Their mean distances are between 2 and 3 times
that of the Earth, and their periodic times between 4 and
55 years, It has been supposed by some astronomers that
they are fragments of some planet destroyed by an internal
convulsion.

(7). At nearly twice the distance of the Asteroids from
the Sun, or about 5 times that of the Earth, revolves the
planet Jupiter, the largest in the Solar system, in a period
of 11 years and 315 days. Its diameter is 11 times that
of the Earth, and its rotation about its axis is performed
in the short period of 9 hrs. 55min. It is accompanied by
four satellites.

(8). The next planet, Safurn, is also of large dimensions,
having a diameter more than nine times that of the Earth.
It revolves about its axis in 10 hrs. 29 min., and about the
Sun in 29 years and 174 days. It has seven satellites, and
is besides encircled by a flat double ring, nearly concentric
with the planet, and revolving about its axis with great

velocity.

(9). Saturn was long thought the most distant planet of
the system, until, in the year 1801, Sir William Herschel
discovered Uranus, which he named Georgium Sidus in com-
pliment to George III. After this it was called Herschel,
in honour of the discoverer, but has now nearly everywhere
received the name of Uranus. It has six satellites, and revolves
about the sun in 84 years and 27 days. Its diameter is
between 4 and 5 times that of the Earth. Its mean distance
is about twice that of Saturn, and 19 times that of the Earth.
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(10). Certain inequalities in the motion of Uranus having
long perplexed astronomers, the idea occurred separately to
Mr. Adams of St. John’s College, and M. Le Verrier in France,
that the anomaly was to be accounted for by the attraction
of another planet. The search which was on this account
set on foot resulted in the discovery of Neptune, the most
remote planet yet known which obeys the law of gravitation
to the Sun.

Besides the planets, the Solar system may be said to in-
clude Comets, bodies of small density, though sometimes of
considerable dimensions, which mostly describe orbits of great
eccentricity ; periodically approaching very near the Sun, and
then receding into space beyond the limits of our observation.
They are generally surrounded by a luminous atmosphere,
which in some cases extends to a great distance from them
in the direction opposite to the Sun, forming a luminous
train of very striking and beautiful appearance.

4. The Solar system is surrounded on every side by the
Fixed Stars, which appear to pervade all space, and which are
mostly at distances too great for our powers of measurement.

In order to give some idea of the space which separates
us from them, we may observe that the distances of the
nearer heavenly bodies are computed by means of the angles
subtended at each of them by the Earth’s diameter. This
angle being determined in any particular case by observations
which we shall afterwards refer to, and the radius of the
Earth being known, we have given two parts CE and « CPE
(half the observed angle) of a right-angled triangle PCE,
and may thence find the side PC which gives the distance
of the proposed body P from the Earth’s centre.

Now, in the case of the fixed stars, not only is this angle
inappreciably small, but that =
subtended by the diameter of
the Earth’s orbit is impercep- /@
tible also, so that two lines *
drawn towards a fixed star, from two points, 190 millions of miles
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distant from one another, do not sensibly converge, but are so
nearly parallel, that the angle which one makes with the other
is too small to be determined by our instruments. Attempts
have been made to calculate the distance of one of these
stars, from observations which appear to have determined
this angle at a fraction of a second; but the numerical sym-
bols which represent the distance in miles, utterly fail to
convey any distinct notion to our minds, but only suggest
a vague notion of indefinite magnitude.

The fixed stars are supposed to be self-luminous, and
may with probability be conjectured to be the centres of
systems similar to our own, the inferior bodies of which are
invisible from their distance. Late discoveries have shewn
that several stars which appear single points of light to the
naked eye, are really systems of two bodies which revolve
about one another. Thus the law of gravitation may be
fairly extended to the whole visible universe.

5. Having given a brief account of the different bodies
with which the regions of space are peopled, we proceed
to explain the appearances which they present to the ob-
server on the Earth’s surface,—a process which is purely geo-
metrical, but involving only the simplest investigations of
geometry, requires little more than careful attention to follow
it completely.

It will be necessary to premise a few propositions relating
to the geometry of the sphere.

DEer. A sphere is a surface every point of which is equally
distant from a point within it, which is called the centre.

(1). Every section of a sphere made by a plane is a
circle.

Let APB be the curve in which the
. sphere is cut by the given plane. ”

From O the centre of the sphere, draw 4 ‘\"
OM perpendicular to the plane and meet-
ing itin M. Join MA, MP, A, P, being
any two points in the curve.

/
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Then, OP = 04, by property of sphere.
LOMA = L OMP, each being a right angle,
OM is common to the triangles OMP, OMA,
.. MP=MA,

and in the same way the distances of any two points in
the curve from M may be proved to be equal.
Therefore, the curve is a circle, and M its centre.

Der. When the cutting plane passes through the centre
of the sphere, the section is called a great circle. In all
other cases it is called a small circle.

(2). Any two great circles of a sphere bisect each other.

Since the cutting plane in each case passes through the
centre, the line of intersection of any two such planes must
be a diameter of the sphere, and consequently a diameter
of each of the circles, which proves the proposition.

(3). The diameter of the sphere which is perpendicular
to the plane of any great circle, cuts the sphere in two points
which are called the poles of that circle.

(4). The planes of all great circles passing through the
poles will evidently be perpendicular to the plane of the
proposed great circle.

Let PMP be such a circle, r
cutting the proposed circle in M.

Join PP' passing through O
the centre of the sphere.

The angle POM is evidently ¥ ¢ =
a right angle, therefore PM, MP',
are each quadrants, that is, the ‘
proposed great circle bisects the

part of any other circle inter- »’
cepted between its poles.

(5). The angle between any two arcs of great circles which
intersect, is the angle between the planes of these two circles
at the centre of the sphere.
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Hence the angle PME is a right angle, and it follows
that gll great circles passing through the poles of a proposed
great circle cut it at right angles.

(6). The angle between auy two great circles passing
through P, as PMP, PNP', is measured by the arc MN,
on the great circle of which P, P’ are poles.

For MN measures the angle MON of inclination of the
planes of the two great circles, and therefore measures the
spherical angle MPN.

(7). The position of a point on a sphere is determined by
its distance from a fixed point as P, measured along a great
circle, and by the angle made by that great circle with a
fixed great circle.

Thus, if PMP be a fixed great” circle, any point Q is
determined by the distance PQ and the angle MPN. It
is evident we may equally determine it by NQ the comple-
ment of PQ, and the arc MN. In terrestrial measurements,
the former of these is the latitude, and the latter the longitude.
They may be called the spherical coordinates of the point Q.

The great circle PQP is called the meridian of the place Q,
and all great circles passing through both poles are ealled
terrestrial meridians.

Figure of the Earth.

6. The exact figure of the Earth is that of an oblate
spheroid, or the solid generated by the revolution of an ellipse
about its minor axis. An orange is an instance of this kind
of solid; but to say that the Earth is like an orange, gives
an incorrect idea of its form, for it is so nearly spherical,
that a perfect representation of it of the dimensions of an
orange could not be distinguished by inspection from a per-
fect sphere. The difference between its major and its minor
axis is less than 14 miles, the former being 7935 miles. This is
about zi; of the whole diameter; so that, if a ten-inch globe
were constructed of the exact form of the Earth, its two axes
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would only differ from one another by J of an inch, a quan-
tity too small to be appreciated by the eye. .

The irregularities of the Earth’s surface prevent us in
general from forming any idea of the general form of the
whole; but, at sea, we have very distinct evidences of its
curved nature. If the surface were one extended plane, as
we are apt to suppose at first, an object receding from
us would be visible to any distance, as far as the eye could
distinguish it, and would become lost to us only in conse-
quence of its remoteness. Nothing would intervene to hide
it from us. But this is not the case in observations made
at sea. A ship, after receding to a certain distance, appears
to dip below the horizon, and gradually to disappear—first
the hull, and then the rest by degrees, till the tops of the
masts are hidden. This disappearance is not the effect of
remoteness, for the most powerful telescope will not restore
the vessel to our sight: nor is it the effect of the sudden
interposition of an obstacle, for it is slow and gradual. The
only explanation we can give is that the convexity of the
Earth intervenes between us and the vessel, or, in other
words, that the vessel disappears behind the eonvexity of
the Earth. Hence the surface is shewn to be—not plane,
but curved.

Again, the distance at which a receding object disappears
behind the convexity is the same in whatever direction it
is moving, and whatever may be the position of the observer,
so long as his height above the water is the same. A well-
defined line, called the ogfing, appears to bound the view
on all sides, and every point of this line is found by obser-
vation to be equally distant from the observer. Hence it
is a circle, and its magnitude depends only on the height
of the observer, and not on his position on the Earth’s sur-
face. It is also observed that a line drawn from the eye
to the offing is not exactly at right angles to a vertical line
drawn through the eye, but that the angle so formed is
slightly obtuse, the obtuseness being greater as the eye is
higher above the sea. The angle however is the same in
all directions, so long as the observer’s height is the same.
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Now, if from a point without a sphere we draw tangents
to im surface in all directions, the points of contact will all
lie on a circle, the magnitude of which will depend on the
distance of the point from the surface.

Let P be the point, PT, Pt two tangents, C the centre
of the sphere.

Join CT, C.. ol
Then, CTP, CtP are right angles, and ; .
CT = Ct, CP is common, TR
s PT= Pt .
Therefore the line TtS of points of con-
tact is a circle.
Hence, the appearances described agree
Vv

with the supposition of the Earth’s being
a sphere; and, indeed, no other hypothesis would account
for them, since a sphere only would give a circular offing
of the same dimensions at every part of the surface. These
observations are not refined enough to detect the slight varia-
tion of the Earth from the spherical form. The determination
of the exact figure and the amount of the eccentricity has
tasked the ability and energy of the most eminent scientific
men.

The line CP in the figure is the vertical direction, or
that in which the force of gravity acts. On the supposition

of the spherical form, it passes through C, the centre.

- The angle CPT is the supplement of the angle formed
at the eye between the vertical and the direction of the
offing.

If PC be produced to V, cutting the Earth’s surface in
A, we have PA.PV = PT"

In general P4 is very small compared with 4V, there-
fore we may write 4V for PV without sensible error.

Hence PT'= AV.PA nearly,

or the diameter of the circle within which an object may
be seen, varies as the square root of the observer’s height.
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And since the areas of circles are as the squares of their
diameters, the actual space commanded varies directly as the
height.

It is the result of observation that two objects each 10 feet
high just cease to be visible to each other when they are
8 miles apart.

Hence an object 10 feet high will command a circle of
4 miles’ radius. We have therefore

AV =4', or AV =16 x 528. = 8448,

which is greater than the real diameter of the Earth, because
the atmospheric refraction, by elevating distant objects, allows
us to see farther than we should be able to see without it.

Motion of the Earth.

The centre of the Earth describes about the Sun an orbit
which is of the form of an ellipse, the Sun occupying one
focus. The eccentricity is, however, small—indeed the orbit,
if accurately represented on a common sheet of paper, would
not be distinguishable from a circle.

The minor-axis of the Earth is inclined to the plane of
the orbit at an angle of about 66° 32’, and continues parallel
to itself throughout the whole rotation—that is to say, if we
take any two positions of the axis in any parts of the orbit,
they are parallel to one another.

This motion of the centre and axis is not the only motion
of the Earth. If it were so, each part of the surface would
be once presented to the Sun during each revolution in the
orbit, or there would be only one day and one night in
the year. The effect would be just the same as if the
Earth remained absolutely at rest, and the Sun moved round
it in a similar orbit to that in which the Earth actually
moves.

But, in fact, if we were to destroy the motion of the
centre and the axis, there would still remain a rotation about
the axis, none of the parts being permanently moved in

-
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space, but all periodically returning to their original posi-
tions. This rotation being referred to the axis, may be
estimated as if that axis were at rest. The time of ome
rotation will therefore be determined by the return of the
surface to the same position with respect to the axis from
which it started. As the axis remains parallel to itself, the
rotation will be completed when any radius of the spheroid
comes into a position parallel to that in which it was at
first.

This, however, is not the exact length of a day and night,
or 24 hours, but falls short of that period by about 3 minutes
and 56 seconds.

The length of the solar day is the interval from noon
to noon at any given place. This is longer than the time
of rotation of the Earth upon its axis, on account of the
motion round the Sun.

To shew this, let S be the Sun, EE part of the Earths
orbit described by the KEarth’s g
centre during one complete ro-
tation on the axis. Let the line
SE cut the Earth’s surface in
A. When the Earth has ar-
rived at E, the line E'A4', pa-
rallel to E4 will be, by what
has preceded the position of the
radius, E4. If the Earth had
remained at E, this radius would
have returned to its original posi-
tion passing through §; but as the Earth has moved to
E, its direction no longer passes through the Sun, and there-
fore the solar day is not completed. As in fact the Sun
has been left behind, somewhat more than a complete revo-
lution must be performed in order that the place 4 may
be again turned towards the Sun,—that is, the interval from
noon to noon is greater than the exact time of revolution
about the axis. The time of actual rotation is called, for
reasons which will be afterwards explained, the Sidereal day.
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Annual Motion.

7. The Earth’s annual orbit is so nearly circular that
it may be supposed accurately so in the explanations which
follow, the slight modifications which depend on the eccen-
tricity being afterwards separately explained. In the same
way the axis may be supposed to continue exactly parallel
to itself, although in fact it has slight deviations from this
position, which are the causes of minute irregularities, only
appreciable by refined instruments, and in no way affecting
the general phenomena which we have here to account for.

Let E be the Earth’s centre, Pp its axis, S the Sun,
Kk perpendicular to the plane of the orbit.

Then the angle PEK = 23° 28', which we shall call the
¢ obliquity’, and distinguish by the symbol w.

Join SE cutting the surface in M and N, and let the
axis Pp be in the same plain with SE, Kk, as in (a); therefore
PES is the complement of w.

It is evident from the position of S, that the whole hemi-
sphere of which M is the middle point is enlightened by
the Sun, and that the hemisphere of which IV is the middle
point is unenlightened. The great circle separating these
two hemispheres, and passing through K%, may be called the
boundary of light and darkness. The angular distance of P
from the nearest point of that circle is PXK, and similarly
that of p is pk.
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In the time of each rotation about the axis, the Earth
only describes 55 of its annual orbit. Consequently, during
one such rotation the position of the axis with respect to
the Sun will not sensibly vary.

By the diurnal rotation every point in the surface is carried
round in a circle, of which P and p are the poles, all of
them being small circles, except that described by a point
in the equator.

The points P, p remain stationary, and it is evident from the
figure that the former is in the enlightened hemisphere, and
the latter in the unenlightened hemisphere. There is therefore
perpetual day at P, and perpetual night at p.

Every point in the Earth’s equator  describes the circle
QEq, which is bisected by the great circle KEL, and con-
sequently half of it is in the enlightened, and half in the
unenlightened hemisphere. Thus every place in the equator
has its days and nights equal.

If we take a point at a distance from P of exactly 23° 28’,
that is, a place whose north latitude is 66° 32, it will
evidently describe a circle, which just touches the great circle
KEk at the point K. Consequently such a place will have
perpetual daylight, as well as all places nearer than it to P.
All places between it and the equator will be partly in the
unenlightened and partly in the enlightened hemisphere dur-
ing their daily revolution, but will be longer in the latter than
in the former, so that they will have longer days than nights.

In the same way, a place 28° 28’ from p, or in 66° 32' south
latitude, will have no daylight at all; and all places between
it and p will be in perpetual night, while all places between
it and the equator will have alternations of day and night,
but the latter greater than the former.

This is the position of the Earth at the time of the summer
solstice about June 20.

In the opposite position of the orbit as at (c), the axis
retaining its parallelism, the same explanations hold, if we
put north for south, and south for north in all cases. Each
hemisphere is enlightened precisely in the same way as the
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other was in the former position; the point p with a space

28° 28’ in extent all round it is in perpetual sunshine, and P

with a space of equal dimensions is in perpetual darkness.
This is the state of things at the winter solstice.

8. In position (a) we observe that the angle SEP is less
than a right angle by 238° 28'. In position (¢) it exceeds
a right angle by the same quantity. These are its least and
greatest values respectively. For the angle SEK is a right
angle, and if M be the point in which SE cuts the Earth’s
surface, we have a spherical triangle PKM, of which the
side PM measures the angle SEP, the sidle MK is always
a quadrant, and the side PK equal to 23°28'.

The angle PKM is that which the plane SEK makes with
the plane KPE, which, as the latter plane P’
is always parallel to itself, increases uniformly
with the angle described by the line SE. N

Hence, in the course of a revolution, the
angle PKM goes through all values from 0° * r
to 360°, and PM undergoes corresponding
changes.

It is clear that the greatest value of PM
is P M, and its least value P"M, P’ and P" M
being in the same line with M and K, t.e. the axis Pp
in the same plane with SE and EK.

The angle SEP is very important, for it measures the
angular distance of P at any time from the point M which
is the centre of the enlightened hemisphere. Thus the com-
plement of SEP measures the angular distance of P from
the nearest point of the boundary of light and darkness, and
therefore the angular breadth of the space about P which,
in that position of the Earth, shares with P in perpetual
day or perpetual night.

9. If we take the position at (5) 90° from (a), we find
the angle SEP is a right angle, the plane PEK being now
perpendicular to SE.
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Hence P and p are both in the boundary of light and
darkness, and every place on the whole surface describes
a circle which is bisected by that boundary. Hence days
and nights are equal in every latitude. This is the state
of things at the autumnal equinoz.

Nearly the same explanations apply to fig. (d), which
represents the position of the Earth at the vernal eguinoz.

Hence we see that the days and nights are equal all over
the globe in two opposite positions of the Earth in its orbit;
that for half a year the north pole is in perpetual light, and
the south pole in perpetual darkness, the days being longer
than the nights in the northern hemisphere, and shorter in the
southern hemisphere ; and that during the remaining half-year
these phenomena are reversed, the northern hemisphere being
put in the place of the southern, and the southern in the place
of the northern.

At the equator there is no variation in the length of the days,
which are always eqnal to the nights, because being a great
circle, it must always be bisected by the great circle which
has been called the boundary of light and darkness. The
irregularity of the length of day increases as we proceed
towards the poles, for the parallel small circles are divided
into parts more and more unequal as we recede from the
equator on both sides, until we reach the points K or %, after
which the circles are not divided at all, but are either wholly
within or wholly without the enlightened hemisphere.

The circle which passes through north latitude 66° 32' is
called the arctic circle, and the corresponding southern parallel
is called the antarctic circle.

It should be remembered that the points K, M, are not
fixed points on the Earth’s surface, but that a succession of
points continues to occupy those positions from the diurnal
rotation. If we suppose a common globe to be fitted with
a hemispherical cap which allows it to turn about its axis, the
highest point of the cap will be the point K, and the middle
point of the uncovered hemisphere will be M. Such globes
are often constructed, sometimes with a wire attached to the
cap which terminates in a point in the position of M.
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10. It is easily seen, that when any point on the Earth’s
surface is brought by the diurnal circle to the eastern edge
of the boundary of light and darkness, the Sun appears to
rise to that point, and when it arrives at the western edge,
the Sun appears to set. It also appears that the great circle
PM, which bisects the enlightened hemisphere, will bisect the
diurnal path of each such point; or, at midday, the point
will be somewhere in PM, whatever be its distance from the
equator. Thus all points on the same terrestrial meridian have
their midday or noon at the same absolute instant of time.
The point M being that in which the line joining the centres
of the Earth and Sun cuts the Earth’s surface, will be, as has
been said before, the pole of the great circle bounding light
and darkness, and the central point of the enlightened hemi-
sphere. At this point the Sun’s rays will fall vertically, that
is, in a line passing through the Earth’s centre.

Now the position of M in fig. (@) is given by the value
of PEM, for the latitude of M is the complement of that angle,
¢.e. 23° 28’ north. At the summer solstice, then, a series of
points 23° 28' distant from the equator on its north side, pass
under a vertical Sun during one revolution, and to ne other
part is the Sun vertical at that time.

In fig. (c) the angular distance of M from the equator is
the same as before, but on the south side; consequently the
Sun is vertical to places in 23° 28" south latitude. At greater
distances from the equator the Sun can never be vertical,
because the angle PEM has its greatest value in fig. (¢), and
its least in fig. (a).

In figs. (b) and (d), the point M will be in the terrestrial
equator, since the poles both lie in the great circle bounding
light and darkness. Therefore at the equinoxes the Sun is
wertical to the equator. The point M then recedes from the
equator, first towards the north, until it reaches its greatest
distance, when it returns, and after crossing the equator pro-
ceeds to its greatest distance on the south, when it again
returns. Hence, the Sun is vertical twice every year to all
places within 23° 28" of the equator on either side, except at

c
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the extreme points, where it is only vertical at the times of
the solstices.

The parallels of latitude passing through these extreme points
are called fropics, from the sun appearing to turn back again
after reaching them. The northern tropic is called the tropic
of Cancer, and the southern tropic the tropic of Capricorn.
The space included between them is called the torrid zome.
The spaces between the tropic of Cancer and the arctic circle,
and between the tropic of Capricorn and the antarctic circle,
are called respectively the Northern and Southern lemperate
zones. The polar regions bounded by the arctic and antarctic
circles are called the friged zones.

11. There are two circumstances by which climate is re-
gulated, so far as it depends on astronomical phenomena. One
is the length of the day, the other the tnclination of the Sun’s
rays.

Let us take the case of the summer solstice. The length
of the day increases from the equator, where it is 12 hours,
to the arctic circle where it is 24 hours; and, the farther a
place is from the equator, the longer is its day at that time. The
days in the southern hemisphere at the same time decrease
from the equator the antarctic circle, beyond which there is
no day at all.

If then we take the length of day alone, the climate ought
to increase in warmth from the antarctic to the arctic circles,
and should be warmest in the north polar regions. But we
observe at the same time that the part where the Sun’s rays
fall most directly is the tropic of Cancer, while everywhere
else they fall more obliquely, according to the angular distance
from the point M.

To shew this, let 4 be 5
any point on the Earth’s

surface, E the centre, § } .
the Sun. Join EA, and pro- 1'” 1
duce it to Z, and draw 4S8 ‘} ris

parallel to ES. A4S will be
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very approximately the direction of the solar rays at 4, which,
owing to the great distance of the Sun, fall nearly parallel on
the Earth. The surface at A4 is perpendicular to 4Z; and
therefore the rays fall obliquely upon it, the obliquity being
measured by the angle S4Z, or MEA, the angular distance
of 4 from M.

Let AB be a small plane: it is evident that if parallel
pencils of rays fall on it from
different points, the space 4B
will receive a larger pencil if
it comes directly, as from s,
than if it comes obliguely, as from
s’y 8". Therefore, more heat will
be communicated according as
the rays are more direct. From this cause, therefore, the
heat ought to be greatest at M, and least at the boundary of
light and darkness.

‘When these two causes are combined therefore, we find
they modify one another. Since the one cause tends to increase
and the other to diminish the heat in the northern hemisphere,
the variation of climate from the equator to the north pole is
at this time of year less than it would be if either cause acted
alone; whereas, in the southern hemisphere the two causes
strengthen one another and increase the genmeral effect. Ac-
cordingly it is found that short periods of considerable heat
are experienced within the frigid zones, sometimes greater than
in more southern latitudes, because the Sun, although not
shining so directly, continues to shine night and day without
interruption. Within the tropics, however, the verticality of
the Sun at certain’ periods, and the directness of its rays at all
seasons, compensates the effect of shorter days, and perhaps
the greatest heat is found in the equatorial regions. It is
probable that there is a point of minimum summer heat in
some high latitude of the temperate zone, to the north of
which the greater length of day more than compensates for
the diminished altitude of the Sun. '

c2
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These considerations, however, only apply to one position
of the Earth. To determine the general climate of the year,
we must take into account the other positions also. At the
winter solstice, we find the two causes strengthening one another
in the decrease of heat towards the north pole, so that the
winter temperature uniformly and rapidly decreases as we
leave the equator. At the equinoxes, the days and nights
are equal, and the Sun is vertical over the equator; there-
fore at these epochs the greatest heat falls on the equatorial
regions, and the effect is less and less as we go towards
the poles. At intermediate times the effects are intermediate
between those at the four epochs which we have examined,
changing gradually as the Earth goes through each quadrant
of its orbit. In general, as far as purely astronomical causes
are concerned, the climate is warmest in the torrid zones,
and becomes colder from thence to the poles. These con-
siderations are much modified by local circumstances, so that
we cannot apply any such uniform rule to the actual estima-
tion of climate. Islands of small size have much less varia-
tions of temperature than large continents. The elevation
of a place above the sea is an important element in its climate.
In the Andes, for instance, may be seen, on the line itself,
every variety of climate in the world, from the scorching plain
on the sea level, to the polar snows of the mountain summit.
Many places in precisely the same latitude are totally different
in respect of climate. The winters in parts of America more
southerly than any part of Britain are more rigorous than
those of the Shetland Islands, and the Canadian summers
are very much hotter than our own.

Our rule will however hold good, when we take large
intervals. It is colder in Lendon than at Naples; and Scot-
land, though very far removed from tropical heat, is more
genial than Lapland with its days of a month long.

12. Next to the changes of day and night and summer
and winter, the most important astronomical phenomena are
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presented by the Moon, which revolves about the Earth as
the Earth about the Sun. The real orbit of the Moon is
an irregular curve, the nature of which will be afterwards
described: but we gain a near approximation to its actual
motions by supposing the orbit to be a plane circle, having
the Earth in its centre, and carried round with the Earth
in its annual orbit. The effect may be illustrated by sup-
posing a wheel to move with its centre in the circumference
of a much larger wheel, a point at the same time moving
uniformly along the circumference of the smaller wheel.
Suppose E to be the Earth’s centre, M the Moon. When

the Earth has reached E’' in its orbit, let M’ be the corre-
sponding position of the Moon. Let E”, M", E”, M"”, be
other corresponding positions of the two bodies.

If EM', E'M’, E"M", be, as in the figure, all parallel
to EM, the time from E to E' will be that of half a revolution
of the Moon in its orbit, the time from E to E” will be that
of a whole revolution, and from E to E" that of two whole
revolutions. For, whenever the radius EM comes into a
position parallel to that from which it started, a revolution
in the orbit is completed.

The actual path, it is evident, is the curve MM M"M",

The radius EM is only z}; of the radius of the Earth’s
orbit; consequently the Moon’s real path in space coincides
much more nearly with the Earth’s orbit than would appear by
the figure, in which the ratio of EM to SE is much too great.
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The Moon’s orbit, such as we have described, does not
lie exactly in the plane of the Earth’s orbit, but is inclined
to it at an angle of about 5° 35. The two orbits being planes,
and both passing through the Earth, have consequently a
straight line of intersection, which also passes through the
Earth. At two opposite points, therefore, of the orbit, the
Moon crosses the plane of the Earth’s orbit. These points
are called nodes, and the line joining them, the line of nodes.
The supposition made respecting the orbit is only approxi-
mate. But a slight modification of it will serve to explain
the phenomena with accuracy. Instead of supposing the plane
of the Moon’s orbit to be fixed, or always parallel to a fixed
plane, we must suppose that it is continually changing its
position by slow degrees. If the plane did not alter its posi-
tion, but remained always parallel to some fixed plane, the
line of nodes would always be parallel to a fixed line. But
in fact, as the lunar orbit is carried with the Earth about
the Sun, this line is carried not quite parallel to itself, but
having a small angular motion in a direction opposite to that
of the Moon’s motion. This angular motion is irregular,
but in the course of a revolution is on an average about g of
the circumference; so that if NEN' be the line of nodes when
the Earth is at E, it will have the position »En’ when the
Earth returns to E after a year, the angle NEn being about
1 of 360°. At the end of 18 years 225 days, the line of nodes
returns to its original position.

It must be borne in mind that the revolving orbit and
transferable line of nodes are only geometrical artifices to
simplify the explanations. The nodes of the Moon’s orbit
are those points at which the Moon actually crosses the plane
of the Earth’s orbit, which it does twice in every revolution
about the Earth. These transits are observed to take place
earlier every month than in the preceding month, and this
circumstance is represented by the retrogradation of the
geometrical line of nodes.

The interval of time occupied by the Moon in passing
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from M to M", is called its Sidereal period; but as during
that period the Earth has moved from E to E", the Moon
has not returned to the same position with respect to the
Sun. At M it is said to be in conjunction with the Sun;
not that it is necessarily between the Earth and Sun, because
it is not generally in the plane of the Earth’s orbit, but
the angle MES then has its minimum value, or the Moon
makes its nearest approach to the Sun as seen from the
Earth. At M" this is evidently not the case, but the Moon
has to describe a farther arc in order to return to conjunc-
tion with the Sun. The time from conjunction to conjunction
is called the Synodic period of the Moon, and is what is
commonly signified by a lunar month. If the point M had
been coincident with one of the nodes, the Moon would have
then been in the plane of the Earth’s orbit, and therefore
directly between the Earth and the Sun. If it had been
near one of the nodes, a part of the Earth’s surface would
have been deprived of the Sun’s light; but in general the
inclination of the orbit is sufficient to carry the Moon en-
tirely clear of the Sun to all parts of the Earth.

18. The phases of the Moon are too well known to re-
quire description. It is mnot difficult to see that the more
nearly the Moon is between us and the Sun, the less we
see of the enlightened hemisphere, which is turned the other
way; and that the only case in which we can see the whole
of that hemisphere is when the Earth is exactly between
the Sun and the Moon, supposing the solar light not to be
intercepted by that of the Earth. In general the obliquity
of the Moon’s orbit prevents the three bodies being exactly
in a line, when the Moon reaches the part of its orbit opposite
to the Sun; but they are so nearly in a line that almost the
whole enlightened hemisphere is seen, and that in general
without any light being intercepted by the Earth. If, how-
ever, the opposition occurs near one of the nodes, the shadow
of the Earth is more or less thrown on the Moon, and it
suffers an eclipse.
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At the time of conjunction the darkened hemisphere is
entirely turned to us. Then, as the Moon gets out of the
line of the Sun, we see gradually more of the enlightened
part, first as a mere strip of light, then in the form of a
crescent, which gradually increases to a semicircle. It is
then said to be in its first quarter.

M ’/// /‘\‘ZT;(\ \S

When the Moon has reached a point M’ (fig. 9) such that the angle
SM'E is a right angle, the face which is presented to us is exactly
half enlightened and half dark, for the line EM’ cuts the Moon’s sur-
face exactly in the boundary line of light and darkness. That circle
consequently being turned edgeways to us has the appearance of a straight
line, and the Moon is technically said to be dichotomized.

It is evident that this phenomenon occurs somewhat before the Moon
has described a quadrant from M, because the angle at E is necessarily
less than a right angle. The difference between it and a right angle
is the anglt ESM’, which depends on the ratio of EM’ to ES, or the
Moon’s distance to the Sun’s. If we could accurately determine this
angle, we should have an excellent means of determining the Sun’s dis-
tance, for that of the Moon is known with great accuracy.

The only necessary observation would be the exact time at which
the Moon appeared dichotomized. Then, the time of New Moon being
known, the time of describing the angle MEM’ would be known; and,
supposing the Moon’s motion uniform, we should have the proportion,
as the whole synodic period to the time of describing MEM’, so is
the whole circumference of 360° to the angle MEM", the cosine of which

is %{‘f_, or the ratio of the distance of the Moon to that of the Sum.

The practical objection to this method is the difficulty of observing the
exact time of dichotomization, which is so great as to make the method
entirely useless.

As the Moon proceeds towards opposition, the enlightened
hemisphere continues to be more turned towards the Earth
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until the whole of it is visible, after which the same phe-
nomena take place in an inverse order, until at conjunction
the Moon again disappears.

From the point of conmjunction to the first quarter, the
greater part of the enlightened hemisphere is turned away
from us, therefore the Moon appears in the form of a crescent,
the points of which are turned away from the Sun. Between
the first quarter and the full Moon, the greater part of the
enlightened hemisphere is visible, therefore the appearance
is that of a bright circle, from which a crescent has been
cut off, the circular edge of the bright part being always
turned towards the Sun. The technical term for this appear-
ance is gibbous.

The reason of these appearances is, that the boundary
circle of the enlightened part is seen by us in different views,
according to the position of the Moon with respeet to the
Sun, and appears to us as an ellipse of different degrees
of eccentricity, according to its pesition, degenerating into
a straight line at the first quarter, and becoming a circle
at conjunction and opposition. A familiar illustration of this
elliptic appearance of a great circle when seen from different
points of view is obtained by looking at the meridians on
a globe, which resemble ellipses having the same major
axis but of different eccentricities. If we fix on one of
these meridians, and bring it into all positions by turning
the globe round, we shall get an exact representation of
the boundary of the enlightened part of the Moon on the
side away from the Sun, the edge next to the Sun being
always circular.

14. It is remarkable that the Moon revolves about an
axis perpendicular to the plane of its orbit, in exactly the
same time that it revolves about the Earth; so that nearly
the same face is always presented to us.

If both the orbital and the rotatory motions were perfectly
uniform, and the axis always remained strictly parallel to
itself, we could never see more than half the lunar surface:

/7



26 PLANE ASTRONOMY.

but owing to some slight irregularities in these respects, some
of the parts which are not generally visible occasionally come
into view, sometimes on one side, sometimes on the other.
By far the greater part, however, of the opposite hemisphere
is never visible to us. The slight changes of position by
which the Moon appears to oscillate slowly from side to side
are called lbdrations.

It will tend very much to give clear ideas on the subject
of astronomical phenomena, if we consider what would be the
appearance of the Earth to a spectator situated in the Moon.

From the remarkable coincidence of motions above de-
scribed, an inhabitant of this side of the Moon would see
the Earth nearly constantly in the same part of the heavens,
only appearing to oscillate slowly through very small spaces
on account of the librations, while an inhabitant of the
opposite side would never see the Earth at all. The apparent
diameter of the Earth would be nearly four times that of
the Sun, and its surface would present similar phases to those
we observe in the Moon, being in conjunction at our full
Moon, and in opposition at our new Moon. At intermediate
times, the darkened part of the Earth, as seen from the Moon,
would be the same portion of the surface as the enlightened
part of the Moon as seen from the Earth, and vice versd.
This is evident from the figure in which the line ME
joining the centres, cuts the enlightened
hemisphere of the Earth in the same way
as the darkened hemisphere of the Moon.

This relation is sometimes expressed by 4
saying that the phases of the Earth and @&
Moon are complementary to each other.

15. It has been said that, in general, the obliquity of the
lunar orbit is sufficient to prevent the Moon from intercepting
the Sun’s rays at conjunction, or from being obscured by
the Earth’s shadow at opposition. When however the Moon,
at conjunction or opposition, is near one of the nodes of her
orbit, the three bodies are sufficiently nearly in a line fox

~
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these phenomena to take place; in which cases eclipses of
the Sun and Moon are visible to us.

At conjunction, the Moon is in that part of her orbit
which at the time lies exactly between the Earth and Sun:
and this part is not the same in any two successive con-
junctions, since, from the annual motion of the Earth, the
Moon has had to describe more than a whole revolution
from one conjunction to another. If, for instance, a conjunc-
tion had occurred exactly at one of the nodes, the Moon
at the time of the next conjunction would have passed the
node by a considerable angle.

If the line of nodes were carried exactly parallel to itself,
which is approximately the case, it would pass through the
Sun twice every year; and if a conjunction or opposition
occurred just at the time, there would be an eclipse of the
Sun or the Moon. The times at which the line of nodes
would have these positions, would be exactly at six months’
intervals, and would occur at the same times every year.
As it is, however, the line of nodes retrogrades, and therefore
passes through the Sun earlier than it otherwise would. Hence,
in general the intervals are less than six months.

It is found by observation, that when a conjunction occurs
within a certain distance of the node, there is always an
eclipse of the Sun at some part of the Earth’s surface, and
that this distance is greater than half that which is intercepted
between the places of two successive conjunctions. Conse-
quently there must always be an eclipse of the Sun at one
at least of the conjunctions adjacent to each node; and since
each node is in conjunction with the Sun at least once a
year, it follows that there must be at least two solar eclipses
every year.

To make this more clear, let NEM be the lunar orbit,
E the Earth, M the Moon in conjunction, Nn the line of
nodes. At the next conjunction let E', M', N'n' be the
positions of the Earth, the Moon, and the line of nodes,
N'n' being very nearly parallel to Nn. Draw E'm parallel
to EM. mM' is the distance between the places of two suc-
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cessive conjunctions. And the node N’ lying between M’ and
m, the two conjunctions represented are those adjacent to

the node. Now, if N'M’, or N'm do not exceed a certain
quantity, known by observation, there must be an eclipse
of the Sun at the former or the latter conjunction; and as
this quantity is greater than half M'm, it follows that one
or other of the distances N'M’ or N'm must be less than this
quantity. Hence there must be an eclipse of the Sun at
one or other of the conjunctions adjacent to the node N'.
About half a year afterwards, the other node n will be nearly
in conjunction with the Sun, and it may be shewn in the
same way that there must be an eclipse of the Sun about
that time. Hence, two is the least number of solar eclipses
which can happen in a year. If the distances M'N', mN',
are nearly equal, they both fall within the given limit, and
then two eclipses of the Sun occur about the node N. In
like manner two solar eclipses may occur about the node n.
Thus four solar eclipses may happen in a year. Farther,
on account of the retrogradation of the line of nodes, if the
first two eclipses occur very early in the year, there may be
another eclipse about the first node before the end of the
year, thus making five eclipses of the Sun, which is the
greatest number that can possibly occur. The angular distance
from the node within which, if a conjunction occur there must
be an eclipse, and the distance within which there may be
an eclipse, are determined by observation, and are called
the solar ecliptic limits.
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Analogous quantities are also determined for eclipses of
the Moon, and called the lunar ecliptic limits. The distance
from the node within which, if an opposition occur, there
must be an eclipse of the Moon, is less than half the space
between the places of the Moon at two successive oppositions.
Consequently, both the oppositions adjacent to either node
may be too far from the node for an eclipse. Thus a year may
pass without any eclipse of the Moon; and there cannot be
more than two lunar eclipses in a year. If there are two
solar eclipses at each node, there will be necessarily one
lunar eclipse, for the two conjunctions being nearly equi-
distant from the node, the intervening opposition will fall very
near the opposite node ; since, between the two conjunctions,
the line of nodes will pass through the sun, as in the figure
at E". If there is only one solar eclipse at each node, the
conjunctions occur near the node, and there may be no lunar
eclipses at all.

The greatest number, therefore, of eclipses which can happen
in a year is seven—five of the Sun and two of the Moon;
and the least number two, which are both of the Sun.

Eclipses of the Moon.

16. These phenomena are visible alike to all parts of the
Earth’s surface from which the Moon can be seen at the
time ; because the Earth actually deprives the Moon of the
solar light, causing its shadow to fall on the surface, and
thus nothing depends on the position of the observer, so long
as the Moon is visible to him. In the case of solar eclipses,
on the contrary, the light of the Sun being intercepted by
a much nearer body, and not actually obscured, the position
of the observer is an important consideration, so much so that
in one place the Sun may be totally eclipsed, and in another
no eclipse at all be visible. This may be familiarly illustrated
by holding up a hat between the eye and the Sun. It is
sufficient, if held close enough, to shut out the light, but if
the observer moves a few inches to the right or the left, it

/
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will no longer be in his way; while any object on which
the shadow of the hat falls will appear equally obscured,
from whatever point of view it is observed, so long as the
hat is kept in the same position.

The Earth’s Shadow.

17. The Sun being much larger than the Earth, causes the
latter to cast a conical shadow into the opposite parts of
space; since if we draw common tangents to the Earth and
Sun, on the same side of their centres, they will all converge
to a point, and within the space enclosed by these tangents
no light can fall from the Sun, it being all intercepted by
the opaque body of the Earth.

=7 ,

If P be a point within the cone, and we draw tangents
from it to the Earth, the angle included by these tangents will
be the apparent diameter of the Earth as seen from 2, which
will evidently exceed the apparent diameter of the Sun, and
. thus the Earth will be sufficient to obscure the whole of the
Sun to an observer situated at P.

If the observer be supposed placed at V, the vertex of
the above described cone, the diameters of the Earth and
Sun will appear to subtend the same angle, and the Earth
to cover the Sun exactly. If the observer be placed beyond
V, as at P, the angle subtended by the diameter of the
Earth will be less than that subtended by the Sun, and the
Earth will not be able to obscure the whole of the Sun at
the same time. Consequently 7~ is the farthest point which
can be deprived at once of the whole solar light. If the
Moon’s distance from the FEarth’s centre exceeded EV, it
could never be totally eclipsed; as it is, the distance is con-
siderably less: and if the opposition occur exactly at the node,
the Moon passes through a considerable part of the dark cone.
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Sphere of Observation.

18. To an observer, at any point of the Earth’s surface, the
heavens present the appearance of an immense hemispherical
vault, the centre of which is occupied by the eye of the ob-
server, and its radius is of vast and indefinite dimensions. If
the observer be at sea, the visible horizon or offing will appear
to be the boundary of the vault: on land, his view of it will
be more or less interrupted by terrestrial objects.

This appearance probably arises from our inability to esti-
mate the distances of the heavenly bodies, or to discern any
differences between them. The process of estimating the com-
parative distances of terrestrial objects is learned by habit and
observation, but no such power can be acquired with respect
to the stars. Hence, we tacitly regard them as equally remote,
and this is equivalent to supposing these bodies to be on the
surface of a sphere of unknown diameter of which the eye
occupies the centre. This is the same thing as measuring their
apparent distances from one another by the angular spaces
between them, for the arcs of a sphere are to one another as
the angles they subtend at the centre, independently of the
magnitude of the radius.

If in looking at a landscape we see two familiar objects such
as houses or trees, we estimate their relative positions by various
circumstances which we have been accustomed to employ in-
tuitively in the formation of our opinion. They may be nearly
in the same line, but, from the difference of their apparent
magnitude and relative distinctness, we may judge them to be
a mile apart, and their distance from one another may subtend
a considerable angle, although it may not be more than a
hundred yards. These circumstances we have learned by long
practice to take into account, and are generally tolerably correct
in our judgments: but if we see two stars near together, there
is nothing to shew us whether they are really close, or whether
they are only nearly in the same line. We cannot judge by
their relative brightness, for we do not know their actual mag-
nitudes. In default therefore of the means of estimation, we
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compare distances by the angle they subtend at the eye, which
is equivalent to measuring them by arcs of an indefinite sphere,
of which the eye occupies the centre.

This sphere we shall call the spkere of observation. It has
been before stated, that not more than half of it is generally
visible, although at sea the dip of the horizon enables us to see
a very small zone of the lower hemisphere. We shall in
general, however, suppose that our view of the sphere is limited
by a plane touching the surface of the Earth at the point of
observation, and intersecting the sphere of observation in a
great circle called the Aorizon. This plane is perpendicular to
the Earth’s radius at the proposed point, and therefore to the
direction of gravity which, on the supposition of the sphericity
of the Earth, passes through the centre.

The point in which the Earth’s radius produced intersects
the sphere of observation is called the zenith, and from
spherical trigonometry, it is on that account the pole of the
horizon.

This property of the direction of gravity enables us to
measure the positions of bodies relatively to the horizon by
means of the plumb-line and spirit-level. The plumb-line, as
is well known, always hangs vertically, and the spirit-level
enables us to determine the horizontal direction.

It may be as well to explain one of the simplest methods
of observation by which the position of a body in the sphere
of observation may be determined. The instrument used is
a quadrant of a circle made of any rigid material, and graduated
from 0° to 90° along the limb.

Let ACB be such an instrument, to the z

centre of which a plumb-line is fastened.
Let D, E, be two small sights, or pieces c
of metal with a hole in the centre of each,
through which an observer looking at the
star S, and bringing them into coincidence
with it, brings the line 4 C into coincidence
with the line A4S, or the direction in which AP
S is seen from the eye.
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The angle ACP, measured by the arc 4P, and con-
sequently indicated by the point of the graduation on which
the plumb-line rests, is equal to ZCS, the zenith distance
of the star. The complement of this angle is called the
star’s altitude, being its perpendicular distance from the
horizon.

The position of a point on the sphere of observation is
determined by its zenith distance, and by the angle which
. the great circle passing through it and the zenith makes
with some fixed great circle, according to the method de-
scribed in Art.5 (7). This angle is called the azimuth. The
zenith distance, therefore, and azimuth, or the altitude and
azimuth, completely determine the position of a point in the
sphere of observation.

The altitude may be readily determined by the method
already described. We shall hereafter describe methods by
which much greater accuracy may be attained. The azimuth
is measured from an arbitrary position, which we shall ex-
plain in a future part of the subject.

19. From what has been said of the sphere of obser-
vation, it is obvious that there is a different sphere of this
kind for every place, and that every observer refers the
heavenly bodies to a sphere of his own. Not only are the
centres of these spheres different, but also the directions of
their zenith lines, which all converge to the Earth’s centre.

Hence it has been found convenient to refer the places
of the heavenly bodies to a fixed sphere, namely, that which
would be the sphere of observation to the centre of the Earth.
‘We shall call this the ‘celestial sphere,” and we shall shew
that although it is impossible to make observations from the
position in which the observer is supposed to be placed,
yet we may very easily reduce observations on the Earth’s
surface to those which would be made by a person stationed
at the centre.

Let 4 be a point on the Earth’s surface, C' the Earth’s
centre. Join CA4, and produce it to Z. Join AP, CP.

D
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Then, if the zenith distance of z
P be measured from the point
A, it will be the angle ZAP.
If similar observations could be
made at C, the result would be |
the angle ZCP. The difference
between the two observed angles
is APC, and if we can find that
angle, we may reduce the zenith
distance observed at 4 to that which would be observed at C.
We shall afterwards shew how this angle APC may be
found. It evidently depends on the distance of P, and
would vanish altogether, if P were so distant as that AC
should be indefinitely small compared to CP or AP.

20. In order completely to determine the positions of the
heavenly bodies, we must have a fixed point of reference
and a fixed great circle in the celestial sphere, from which
to measure their distances.

Two fixed points are given by the intersection of the axis
of the Earth produced with the celestial sphere. These are
called the North and South Poles. The former is generally
taken as the point of reference. The great circle, of which
it is the pole, is called the celesttal equator.

Now, supposing an observer to be placed at the Earth’s
centre, and to partake of the rotatory motion of the Earth,
he would see the whole celestial sphere apparently revolving
about an axis which is the prolongation of that of the Earth,
for he would suppose himself to be at rest, and refer all the
motion to the heavenly bodies. The two poles only would
appear stationary, every other part of the heavens partaking
of the rotatory motion. The equatoreal parts would describe
great circles, and all the other parts small circles, decreasing
in magnitude as they approached the poles. The effect would
be precisely the same as if, the observer being at rest, the
celestial sphere actually revolved upon an axis passing through
the two poles in the course of a day and night. This would
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very clearly be the appearance to an observer at the Earth’s
centre. The question is how that appearance would be mo-
dified to a spectator at the surface. In order to investigate
this, we must remember that the sphere of observation is
of indefinitely great magnitude, as also the celestial sphere:
and if we consider the latter as a sphere actually revolving
about the poles, those poles are so distant that their direc-
tion from the point A does not differ perceptibly from their
direction as seen from C. Consequently the direction in
which the pole is seen from A is virtually parallel to the
Earth’s axis. Hence, an observer at A sees the sphere of
observation apparently revolving about a point P, which is
so situated that AP is parallel to the Earth’s axis.

Let Z be the zenith, P the pole at the place 4. Join
AZ, AP. .

Let C be the Earth’s centre, CP its axis.

Then ZAP = ACp, which is the angular distance of the
place 4 from the pole of the Earth, and therefore the com-
plement of the latitude.

Hence PAN is the latitude of the place, NV being a point
in the horizon; or the altitude of the pole above the horizon
is equal to the latitude of the place.

The great circle through P, Z, is called the celestial
meridian of the place 4, because it bisects all those por-
tions of the diurnal paths of the heavenly bodies which are
above the horizon.

It has been said that the whole visible sphere appears
to revolve about P, that point alone being stationary. When
any body is brought by that revolution above the horizon
it r¢ses, and when it is carried below the horizon it sets.
When it passes the meridian it culminates, being then at
its greatest altitude. For, if § be a star, P§ its polar dis-
tance, and PZ the co-latitude of the place remain constant,
while the angle SPZ and ZS vary. In general PZ, ZS are
together greater than PS, or Z§> PS- PZ. But when §
is on the meridian, ZS = PS - PZ, and therefore at that point
the zenith distance is least, or the altitude greatest.

D2
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It is an important question in what manner the diurnal
circles described by the heavenly bodies are divided by the
horizon, as on that depends the proportion of the whole time
of rotation during which they are above the horizon, or
visible to the observer.

If we take a circle between P and N, or at a less distance
from P than N, it is evident that such a circle is wholly
above the horizon, so that bodies between P and N never
set at all, but are always visible. Similarly, bodies between
the opposite pole P’ and the opposite part of the horizon
to N, never rise at all, nor are ever visible to the observer
at A. The celestial equator being a great circle, will be
bisected by the horizon, and consequently all bodies there
sitnated will be equal times above and below the horizon.
Between the equator and the parts N and M, the diurnal
circles will be unequally divided by the horizon, but the
northern circles will have their greater part above, and the
southern circles their greater part below. Consequently,
bodies in the former position will be longer above the horizon
than below, and bodies in the latter position will be longer
below than above.

21. From these results it follows that the whole of the ce-
lestial sphere can become visible during one revolution only to
an observer who has the poles in his horizon, that is to
say, an inhabitant of the equatoreal regions of the Earth;
while, in every other part of the Earth’s surface, a certain
part about the depressed pole is continually invisible, a corre-
sponding part near the elevated pole being always in sight. It
follows also that at the equator every one of the heavenly bodies
is as long above as below the horizon, because the horizon
cutting all the diurnal circles at right angles, bisects them.

If an observer could place himself at either pole, he would
see continually one hemisphere which would never vary, the
other hemisphere being entirely out of sight.

22. The celestial equator is often taken as the circle of
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reference, and the positions of bodies in the celestial sphere
determined in the same way as those of places on the Earth’s
surface. The names, however, of the co-ordinates are different ;
that which answers to longitude being called Right Ascension,
and that which answers to latitude Declination. The circles
which on the terrestrial sphere are called meridians, are called
Declination-circles in the celestial sphere. The rotatory motion
of the Earth and therefore the apparent motion of the heavens
being uniform, each declination-circle is carried uniformly
round,—its angular distance at any time from the meridian
of any place being proportional to the time which has elapsed
from its last coincidence with that fixed circle.

28. The above remarks suppose the celestial sphere to
be an immoveable whole, appearing to revolve in consequence
of the motion of the observer, which he attributes to sur-
rounding objects. Consequently they are strictly applicable
to the fixed stars only. The time in which the sphere appears
to complete its revolution, or in which any star revolves from
the meridian to the meridian again, is a sidereal day, which
is so called on this account. The sphere of the fixed stars
is so vast that the change of position of the Earth in its
annual course makes no difference in the phenomena, and
the effect is the same as if the Earth were at rest in the
centre, and the whole sphere revolving about it.

The only motion therefore observable in the fixed stars
is the diurnal motion, they keeping their relative positions,
and appearing to revolve en masse about the Earth in a
sidereal day.

The other heavenly bodies, namely the Sun, Moon, Planets,
and Comets, all change their places with reference to the
fixed stars, or have other apparent motions besides the diurnal
motion, arising either from the change of position of the Earth,
or from their own proper motions combined with it.

24. The apparent motion of the Sun arises wholly from
the annual rotation of the Earth, which by a common illusion
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produces the same appearance as if the Sun described about
the Earth an orbit exactly similar to that which the Earth
describes about the Sun.

The Sun will therefore appear to move among the fixed
stars in the same way as if it described an annual orbit
about the Earth. The plane of this orbit will be the same
as that of the Earth’s actual orbit, and consequently inclined
at an angle o to the plane of the Earth’s equator. This plane
will therefore intersect the celestial sphere in a great circle
inclined to the equator at an angle w. This circle is the
apparent path of the Sun among the fixed stars, and is
called the Ecliptic.

The Sun’s motion would be easily observable, but that
the brilliancy of its rays prevents our seeing the stars among
which it is moving. Every day we should see a sensible
variation in its position, and in a year we should find that
it had returned to its first place to describe the same path
over again. This motion being in a direction contrary to
that in which the whole heavens are apparently carried by
the diurnal motion, we should find the Sun come later every
day to the meridian than if it remained at rest. Thus if a
star and the Sun passed the meridian at the same time on
one day, we should find the star pass before the Sun the next
day, by between three and four minutes of time. This is
exactly the same thing which was shewn in Art. 6, where it
appeared that, after the Earth has completed a revolution
about its axis, it has still to turn a little further round, in
order to return to the same position with respect to the Sun.

Although we cannot trace the Sun’s motion among the
fixed stars, yet we may very easily satisfy ourselves of the
fact that it moves in the manner described. The only neces-
sary observation may be made by any one who possesses a
good watch. Let a fixed star be observed when a little to
the east of some wall, or other vertical object, not very near
the eye of the observer. After a little time, the diurnal
motion will cause it to disappear behind the selected object.
Let the exact time of its disappearance be noted, and let
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the same observation be repeated for several successive nights,
care being taken to make them from exactly the same place.
It will be found that the disappearance occurs between three
and four minutes earlier every night. Now the time of dis-
appearance indicates the exact completion of a sidereal day.
The time by which the observer’s watch is regulated is solar
time, measured by the length of a solar day. The observation
shews that the sidereal day is shorter than the solar day by
nearly four minutes. The exact time is 8' 56"

It has been said that the Sun’s apparent motion is not
in the celestial equator, but in another great circle of the
celestial sphere, making with the equator an angle equal to
o. These circles, by the principle of spherical trigonometry,
intersect one another at two opposite points. Thus the Sun
is for half the year on one side of the equator, and for the
remaining half of the year on the other side. The exact posi-
tion of the Sun is determined by its right ascension and declina-
tion, the former of which is measured from the point in which
the ecliptic cuts the equator in passing from south to north.

The greatest amount of declination is equal to @ the angle
of obliquity, this being the greatest possible angular distance
of any point in the ecliptic from a corresponding point in
the equator. The declination reaches this its greatest amount
when the Sun has passed through a quadrant of the ecliptic
from its passage across the equator. After this point it begins
to approach the equator again, and after traversing another
quadrant, again crosses it. Thus the declination increases
from 0° to ® in a quarter of a year, in the next quarter it
diminishes to 0° again, in the third quarter it increases on the
other side of the equator till it reaches the maximum value,
and in the last quarter it again diminishes to 0°

25. The phenomena of the seasons are easily derivable
from this apparent annual motion of the Sun. When the Sun
is in the equator, the diurnal motion causes it to remain equally
long above and below the horizon, consequently the days and
nights are equal in all latitudes.

When the Sun is to the north of the equator, or has north
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declination, the diurnal circle which it describes is cut un-
equally by the horizon, so that to places in north latitude
the days are longer than the nights, and to places in south
latitude the nights are longer than the days. If the Sun’s
north polar distance be less than the latitude, it does not
set at all, but after sinking towards the horizon in the north,
rises again without disappearing. In order that this may be
the case, the latitude must be greater than the complement
of o, or than 66° 32'. Therefore the phenomenon described
can only occur between the pole and the arctic circle. When
the Sun has south declination, the same thing occurs within
the antarctic circle, and the days in the northern hemisphere
are shorter than the nights.

26. The meridian altitude of the Sun is at once ascer-
tained when his declination and the latitude of the place
are known. For the altitude of the celestial equator above the
horizon is the complement of the latitude, and this is also evi-
dently the meridian altitude of the Sun when in the equator.
‘When the Sun is not in the equator we must add its decli-
nation, if on the same side of the equator as the latitude,
or subtract it if on the opposite side. That is,.if the latitude
be north, we must add the declination when north, and sub-
tract it when south; and if the latitude be south, we must
subtract the declination when north, and add it when south.

Let Pp be the north and south celestial poles, EQ the
celestial equator, and let =N be the s _Z
horizon of any place. The arc £ = P
is the co-latitude. Let S be the Sun,
having the altitude =8 above the
horizon. =S=3E+ES, or is the sum
of the co-latitude and declination. If
the declination had been south, as
ES', we should have had =§' = ZF
- ES', or we should have had to
subtract the declination from the co-latitude in order to get
the meridian altitude.

If, reversing the figure, we take ZpNN for the visible half
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of the celestial sphere, we get the case of a place having
south latitude Zp, equal to the mnorth latitude NP of the
place under consideration. The meridian altitudes of the
Sun as seen from that place will be NS, NS, corresponding
to the altitudes =S, =§" in the former place. It is easy to
see that the former of these is obtained by subtracting, and
the other by adding the declination to the co-latitude, as be-
fore stated.

It may be observed that, conversely, if we know the Sun’s
declination, and can ascertain his meridian altitude, we are
immediately in possession of the latitude of the place.

When the sum of the co-latitude and declination is exactly
90°, the Sun is vertical at noon. This can only happen when
the co-latitude is greater than the complement of w, or the
latitude itself less than w. Thus the Sun can only be ver-
tical to places between the tropics.

In this manner, from the Sun’s apparent orbit we may
obtain all the phenomena before derived from the consider-
ation of the actual course of the Earth.

27. Similar explanations will apply to many of the lunar
phenomena. The Moon, as we have seen, does not move in
a plane coincident with that of the Earth’s orbit; therefore its
apparent path in the celestial sphere does not coincide with
that of the Sun. If its orbit in space were an immoveable
plane, its apparent path in the celestial sphere would be a
fixed great circle intersecting the ecliptic in two opposite points.
As it is, the orbit, though of an irregular form, may be well
represented as a moveable plane, as has been before described,
and therefore the path in the celestial sphere as a moveabdle
great circle, which has small periodical variations in its incli-
nation to the ecliptic, and whose points of intersection with
the ecliptic have a constant variation of position.

These points of intersection are called, like those in which
the actual lunar orbit in space intersects the plane of the
Earth’s orbit, the Moon’s nodes. That by which the Moon
passes from the south to the north of the ecliptic is called
the ascending node, and the other the descending node.
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These points have a retrograde motion on the ecliptic, which
carries them completely round it in 18 years 225 days, because
in this period the actual line of nodes of the lunar orbit in
space, after describing a complete circle, returns to its original
position. The Moon’s place in the celestial sphere is often
referred, for convenience, to the ecliptic as the great circle
of reference. The co-ordinates by which it is determined are
called longitude and latitude, these terms having the same
signification as when employed to mark the position of a point
on the Earth’s surface referred to the terrestrial equator. The
perpendicular distance of the Moon from the ecliptic is called
the latitude, and the longitude is measured from that point
of intersection of the equator with the ecliptic, from which
right ascension is also estimated.

Two bodies are said to be in conjunction when their lon-
gitude is the same, in opposition when their longitudes differ
by 180°. It follows from spherical trigonometry that the Moon’s
latitude cannot exceed the angle of inclination of the Moon’s
orbit, which we shall call ¢, and whose average value is 5° 35'.
That is, the centres of the Sun and Moon when in con-
junction cannot be further apart than the length of the arc «.

The average apparent diameters of the Sun and Moon are
respectively 82 and 81 minutes; so it is evident that where
the latitude at all approaches its maximum value, the Moon
must be so far from the Sun that there is no possibility of
the latter being obscured by it.

In fact, as we have explained before, no obscuration or
eclipse of the Sun takes place, unless the conjunction occurs

near one of the nodes.

28. During one revolution of the Moor in its orbit, the
Sun moves through an arc of the ecliptic which is equal to
nearly one-thirteenth of the whole. Consequently when the
Moon returns to the place from which it started, the Sun
has advanced by a considerable space, and the Moon has to
traverse a further arc before it is again in conjunction. Thus
each successive conjunction occurs at a different part of the
heavens, and similarly cach successive opposition.
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When the position of the Sun and Moon at conjunction
is within a certain distance from that of either of the nodes,
the latitude of the Moon is so small, or it approaches so near
the Sun, that an eclipse occurs to some part of the Earth; and
this interval being greater than half that which is passed
over by the Sun in the ecliptic during a lunar month, it
follows that there must be an eclipse at one of the two con-
junctions between whose positions one of the nodes is situated.
If one of those conjunctions adjacent to the node occur very
near the node, there is no eclipse at the other; but if they
are about equidistant from the node, eclipses occur at each
of them. Thus there must be twa eclipses of the Sun in a
year, one at each node, and there may be four eclipses, two
at each node. This however is not the greatest number which
can possibly take place, since if the first be very near the
beginning of the year, the node near which it occurs may
be brought by its retrograde motion into such a position that
the last conjunction in the year may be near enough to it
for a fifth eclipse.

When the position of the Moon at the time of opposition
is within a certain distance of one of the nodes, there is a
lunar eclipse. This interval is less than half that between
two successive oppositions, and consequently, if the two ad-
jacent oppositions to a node be nearly equidistant from the
node, there may be no eclipse. And if the same thing happen
near the other node, there will be no eclipse of the Moon in
the course of the year. There cannot be more than one
eclipse at the same node, because if one opposition be within
the distance, the other will be necessarily without it.

In the former case, where there is no eclipse, the con-
junction between the two oppositions will occur very near the
opposite node, and thus there will be only one eclipse of the
Sun. In the latter case, if an opposition occur very near the
node, the two adjacent conjunctions will be about equidistant
from the opposite node, and so there will be two eclipses of
the Sun. :

Thus there may be only ‘wo cclipses in a year, both of
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the Sun, or as many as seven, five of the Sun and two of the
Moon.

29. The times of rising and setting of the Moon will de-
pend on two circumstances, its age and its declination. At
conjunction, being near the Sun, it passes the meridian about
noon, and at opposition, being opposite to the Sun, about
midnight. Speaking roughly, its meridian passage is about
fifty minutes later every day than the day before, thus going
through the whole twenty-four hours in its synodic period
of twenty-nine days and a half. If the Moon’s declination
remained unaltered, its rising and setting would each be fifty
minutes later every day than the day before, because the same
diurnal circle would be always described, and the time above
the horizon would be always the same. As it is however, the
Moon’s declination varies considerably. When its ascending
node coincides with the vernal equinoctial point, the incli-
nation of its orbit to the equator is  + ¢; and when the de-
scending node coincides with the same point, it is @ - ¢, the
former being the greatest possible and the latter the least
possible inclination. Consequently the inclination is always
between @ - ¢ and ® + ¢, and therefore the Moon’s declination
in the course of each revolution varies at least from ® - ¢in
one side of the equator to @ - ¢ on the other.

The effect of a change in the declination is to vary the
time of the Moon’s being above the horizon, without altering
the time of passing the meridian. And as the Moon passes
over a considerable part of its orbit in a day, there may be a
considerable change of declination in that interval. Suppose
the effect of that change to be the augmentation of the Moon’s
time above the horizon: the time of rising will be earlier
and the time of setting later than if the declination had not
varied. Similarly, if the effect of the change in declination
be to diminish the time above the horizon, the rising will
occur later and the setting earlier than if the declination had
not varied. In the first of these cases, the time of rising
will be less and the time of setting more than 50 minutes
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later than the day before. The opposite effect will take
place in the second case. If, for instance, the time of the
Moon’s being above the horizon—or what we may call the lunar
day—is increased by an hour in consequence of the change
in declination, then the time of rising is half-an-hour earlier,
and the time of setting half-an-hour later than if there had
been no such change. Hence the time of rising will be 50 - 30
or 20 minutes, and the time of setting 50 + 30 or 80 minutes
later than the day before, the meridian passage being 50
minutes later, as we have already shewn.

In places whose latitude is north, the lunar day is greatest
when the Moon’s northern declination is greatest, and "con-
tinually increases when the Moon is in that part of its orbit
which goes from south to north. If the Moon’s orbit coin-
cided with the ecliptic, the lunar day would be on the in-
crease, while the Moon passed from the tropic of Capricorn
to the tropic of Cancer. During all that time, therefore, the
Moon would rise less than 50 minutes later, and would set
more than 50 minutes later every day. And this effect would
be greatest just as it crossed the equator, for at that point
the declination increases most rapidly. From the tropic of
Cancer to that of Capricorn, the declination varying in the
opposite direction, the effect on the rising and setting would be
opposite. As it is, the lunar orbit being not very far from the
ecliptic, the time at which there is least variation in the time of
rising, and most in the time of setting, owing to the augmenta-
tion of the lunar day, is when the Moon is in that part of its
orbit which is near the vernal equinox.

‘When the Sun is near the opposite equinox, that is about
the 22" of September, the Moon’s opposition occurs near the
vernal equinox. The consequence is that the nearest full
Moon to the autumnal equinox in high northern latitudes
rises very nearly at the same time for several days together;
a phenomenon which has given to this lunation the name of
Harvest Moon. It follows from what has been said, that the
time of setting is as much more than 50 minutes later each
day as the time of rising is less.

e
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In southern latitudes the same phenomenon occurs, as may
be easily seen, at our vernal equinox, which, owing to the
.opposition of the seasons, is the autumnal equinox to the
inhabitants of those regions.

The Planets.

30. These bodies, as we have seen, revolve about the Sun
in elliptic orbits of small eccentricity, whose planes are in-
clined at small angles to the plane of the Earth’s orbit. If we
could observe the planetary motions from the Sun, they would
appear very simple and straightforward, like those of the
Moon about the Earth: but as we are limited to looking at
them from the Earth, which not only is not the centre of
their motion, but has a motion of its own besides, their
apparent orbits are by no means so easily traced. The appear-
ances presented by the inferior planets, or those which are
between us and the Sun, being very different from those of
the superior planets, whose orbits are without that of the
Earth, we shall take each case separately.

81. The inferior planets Mercury and Venus, having orbits
lying within that of the Earth, can never be in opposition to
the Sun; and in fact such a planet can never be seen at
above a certain angular distance from the Sun, depending
on the magnitude of its orbit. This angle is half that sub-
tended by the whole orbit at the Earth, it being manifest
that the extremities of the orbit on each side of the Sun,
as seen from the Earth, are the farthest points to which
the planet can reach. Owing to the small inclination of the
orbit to the ecliptic, it is seen nearly edgeways from the
Earth, and consequently has nearly the appearance of a straight
line, having the Sun in the middle. This effect may be illustrated
by observing a candle carried round and round a circular
table, at a little distance, on a level with the eye. The curved
motion of the candle will be lost in consequence of the circle
in which it is carried being seen edgeways, and the appearance
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will be much the same as if the candle were carried backwards
and forwards in a straight line. Thus an inferior planet appears
to oscillate backwards and forwards about the Sun, appearing
to turn when it has reached its greatest distance on one side,
and proceed in the opposite direction till it has reached its
greatest distance on the other side.

Its motion appears most rapid when it is just crossing
the Sun, for then its path is exactly perpendicular to the
line of vision: and supposing the motion to be uniform and
the orbit circular, which is not far from the case, the same
arc occupies a greater apparent space than at any other part
of the orbit.

To make this more clear, suppose S to be the Sun, P an

E,

inferior planet, E the Earth: and for simplicity we shall first
suppose that the Earth is at rest. Join ES, and draw the
tangents EA, EB. The angle AEB is that subtended at the
Earth by the orbit of P, and therefore AES or BES is
the greatest angular distance from § at which P can be seen
from E.

Suppose P, moving in its orbit, to arrive at A, and to
proceed towards B.
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Its first direction is towards E. When it arrives at p’' in
the line between &§ and E, its direction is exactly across SE:
and if we take equal arcs pp’, PP, we find that the angle
subtended at E by the former is greater than that subtended
by the latter, and the more so the nearer P is to 4.

Now it must be remembered that E being the centre of
the celestial sphere, the apparent motion of P is measured by
the angle through which it appears to move as seen from E.
Therefore the apparent motion is quickest at p', and again
diminishes as far as B. It then changes to the opposite direc-
tion, the planet describing the part BA of its orbit, and appear-
ing to move through the angle BEA in the opposite direction
to that in which it was first moving.

It is evident that in its passage from A to B and back
to 4 again, the planet P will be twice in conjunction with
the Sun. The former of these is called the #nferior and the
latter the superior conjunction. At the former, if the planet
be sufficiently near the node of its orbit, it passes between
the Earth and the Sun. This phenomenon is called a transqt.

We thus observe that, supposing the Earth to be fixed,
and an inferior planet to revolve about the Sun in an orbit
edgeways to the Earth, the planet would appear to move
backwards and forwards within a certain angular distance,
its velocity being greatest about conjunction and least at the
extreme points of its orbit. In astronomical language, the
motion of an inferior planet is first direct, or from west to
east; then refrograde, or from east to west. Between these
two it is for a short time stationary.

32. We have here supposed the Earth to be fixed. It
remains to investigate the effect of its motion on the phenomena
of an inferior planet.

If the Earth be at E when the planet is at 4, let E' be
the position of the Earth when the planet has arrived at B;
which, in the former case, was the position of greatest elonga-
tion. Draw the tangents E'A', E'B. The planet at B is
evidently not in its position of greatest elongation as seen
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from E', but would have to move in order to be so through
the arc BB. And as, when it has arrived at B’, the Earth
will have advanced from E’', the planet will not be at its
greatest elongation as seen from the Earth, till it has arrived
at a farther point b, where de a tangent to its orbit passes
through the Earth’s place e.

Similarly, if the planet had been at B when the Earth
was at E, it would have had to go beyond 4 before it came
into the position of greatest elongation on that side of the
Sun.

The effect of the Earth’s motion, therefore, is to prolong
the time from one elongation to another, without interfering
with the general phenomena above described. The time from
one conjunction to another is similarly prolonged, so that the
appearances are exactly the same as if the Earth were at rest,
and the period of the planet were increased. The apparent
period as seen from the Earth is called the Synodic period,
the actual time of revolution being the Sidereal period.

The one is easily calculated from the other. For, let §
be ‘the synodic period, o the sidereal period, P the sidereal
period of the Earth.

Then, as — t.o so is the angular velocity of the planet

P’
to that of the Earth,
Therefore in the time S, the arcs described by the planet

and the Earth respectively will be - the whole circum-

S
’ P’
ference being represented by unlty. Now the planet has
described a whole circumference more than the Earth, and

therefore
S 8§ PS

;=ﬁ+l 0r¢=P+S.

The inferior planets deriving all their light from the Sun,
and therefore being unenlightened in the hemisphere which
is turned away from that luminary, present phases like those
of the Moon. At the time of inferior conjunction they would

B

/
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be invisible to us, unless when crossing the Sun’s disc, even
if they were not lost in the Sun’s rays, for their darkened
part would be turned towards us. At superior conjunction,
if we could see them so near the Sun, their enlightened hemi-
spheres would be turned towards us, and we should see them
fully illuminated. As it is, they are not visible till they are
at some distance from the Sun, owing to the brightness of the
solar rays. At the points of greatest elongation on each side
they appear dichotomized, or like the Moon in its first quarter,
the angles SAE, SBE being right angles. From A to 3, the
angle SPE is obtuse, and therefore more of the darkened
hemisphere is seen than of the other. Consequently the planet
appears crescent-shaped. From b to the next point of greatest
elongation on the other side, the angle SPE is acute, and
therefore more of the enlightened than of the darkened hemi-
sphere is visible. The planet is then said to be gibbous.

It has been said that the orbits of the inferior planets are
inclined to that of the Earth. The consequence is, that in
general they are sufficiently far from the ecliptic to pass clear
of the Sun at conjunction. Transits of Venus are very rare,
and those of Mercury only occur at considerable intervals
of time: those of Venus are of important use in Astronomy, for
the determination of the distance of the Sun.

The above phenomena are very little affected by the ellip-
ticity of the orbits. The principal difference is that the times
of elongation do not occur at exactly regular intervals, and
that the distances from the Sun at which the planet begins
to turn and move in the opposite direction are not always the
same, the elliptic orbits not subtending the same angle at
the Earth in all positions, like the supposed circular orbits.

33. The superior planets are those whose orbits are ex-
terior to that of the Earth. Consequently, they can never
come between the Earth and the Sun, but there is no limit
to their angular distance from the latter. A superior planet
is in opposition when the Earth lies between it and the Sun.
It is in conjunction when the Sun lies between it and the
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Earth. In both these cases the illuminated part of the planet
is turned towards the Earth, but in the latter case it is not
visible, owing to the strength of the Sun’s rays.

A superior planet can never appear crescent-shaped, because
the angle SPE is always less than a P
right angle, and consequently more
than half the enlightened hemisphere
is always visible. 4

If we join PS, cutting the Earth’s
orbit in M, it is evident that SPE
cannot be as great as a right angle,
for then SME, the exterior angle,
must be obtuse, which is impossible.

The sidereal period of a superior
planet may be found by a similar method to that of an inferior
planet.

The notation being the same as before, the Earth will have
described a whole circumference more than the planet, and

therefore

S 1_:S’ Ord_»PS
PR LA 2
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CHAPTER II.

84. Wz have now explained the principal appearances of
the heavenly bodies to a spectator on the Earth’s surface,
deduced from an assumed theory of their motions. In order,
however, to divest our inquiries of all unnecessary complexity,
we have made some suppositions which are only approximately
true, such approximations being near enough for the purpose
of explaining general phenomena. If this were the only object
of Astronomy, we need not perhaps go any farther, but as
the applications of this science require the utmost attainable
accuracy, we cannot rest contented with mere approximations.

We have supposed that the Earth is spherical, whereas
really it is a spheroid of very small ellipticity. We have
treated the orbits of the Earth, Moon, and Planets as circles,
whereas really they are curves nearly resembling ellipses of
small eccentricity.

We shall find that the substitution of the true theory in all
these cases for the simpler hypothesis which we have adopted,
will very little affect the general description of the phenomena ;
but when we come to measurements and minute observations,
we shall find it no longer a matter of indifference which view
of things we proceed upon. The modifications of the general
phenomena consequent on these modifications of the theory
have been at once the principal difficulties, and the causes
of the principal discoveries of Astronomy. When increasing
accuracy of observation shewed that our first suppositions are
not accurately correct, all the ingenuity of the most penetrating
minds was employed to determine what the suppositions should
be. The first result was that more complex suppositions were
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made; but as light increased they were abandoned, and it
is the triumph of inductive discovery that the whole range
of the phenomena is embraced by one grand and simple law.

It was probably with no small regret that men were forced
to abandon the simple theory of circular motion and uniform
velocity in the heavenly bodies; but it is surely an abundant
consolation to us now, that the very irregularities which reduced
earlier theorists to despair, are the constant verifications of
Newton’s great discovery: and of this we need only mention
one recent and striking example, that Astronomers of our day,
by means of the perturbations of a planet which the ancients
never saw, have discovered a yet more distant subject of the
empire of gravitation.

35. We shall now endeavour to trace the effects of adopting
the true hypothesis in all cases respecting the celestial motions ;
and as we now pass from popular explanations into the domain
of scrupulous accuracy, we shall begin by explaining the means
of exact observation. We shall endeavour to shew by what
instruments and by what calculations an observer in any given
place may determine the positions of bodies in the celestial
sphere, and thence find his own position on the Earth’s sur-
face.

36. By means of Astronomical instruments we determine
the place of a body in the sphere of observation,—either its
altitude or its azimuth, or both together. We have already
shewn how the former may be roughly measured. Such an
instrument, however, as that above described would be almost
useless in the present state of astronomical science; for, even
supposing it to be mounted on a frame, so that it might be
placed in a perfectly firm position, with its plane accurately
vertical, the observations made by it would be liable to errors
large enough to deprive it of all utility. In the first place,
it would be very difficult to graduate the arc to any great
nicety. = A single degree would occupy so small a space on
a circle of moderate size, that it would be next to impossible
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to make divisions as near to one another as single minutes.
But an angle of a second is of importance in astronomical
observations. Besides, if the graduation were made as minute
as this, it would be a matter of great difficulty to make out
which line exactly the plumb-line coincided with, even were
it the finest that could be contrived. In earlier times Astro-
nomers endeavoured to meet this difficulty by making instru-
ments of enormous size, but it was found that the advantage
of this was very much counteracted by the liability of such
instruments to bend, from the weight of their parts. It is
to be remarked too, that instruments in which the observed
body is brought to coincide with simple sights by the naked
eye are incapable of sufficient accuracy, however good the
graduation, because of the inability of the eye to appreciate
the very small angular quantities with which modern science
deals.

The contrivances, therefore, by which such quantities are mea-
sured do not consist only of refinements of graduation and read-
ing off the observed angles, but also of optical aids to the sight.
Neither of these means would be of any great use without the
other. The adaptation of the telescope to astronomical in-
struments is justly called an era in the science of practical
Astronomy. The telescope usually employed is that which
is called, for that reason, the astronomical telescope. In its
simplest form it consists of two lenses, the object-glass and
the eye-glass, on the same axis, and so placed that their prin-
cipal foci coincide. When the tube in which the lenses are
contained is directed to a heavenly body, pencils of parallel
rays from every part of the body fall on the object-glass,
and an inverted image is formed at the principal focus. This
image being by the construction in the focus of the eye-glass, is
made visible by parallel rays to an eye looking into the telescope.
In practice the object-glass consists of two lenses in contact,
so as to destroy as much as possible the effects of aberration
and colour, whence this combination is called ackromatic. The
eye-piece also is generally composed of two lenses, near to
one another, although it cannot be made achromatic without
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sacrificing other advantages. The general effect of the im-
proved telescope is, however, quite the same as that of the
simpler instrument. The difference is that the final image
is more distinct and free from colour.

The final image is evidently tnverfed, but that is of little
consequence ; and the usual contrivance for producing an erect
image in telescopes for terrestrial objects being composed of
four lenses instead of two, the loss of light from absorption
by the glass is too great a drawback to make up for any ad-
vantage that might be gained. It is perfectly easy in practice
to make allowances for the inverted appearance. This telescope
enables us to detect differences of position which would be quite
inappreciable by the naked eye.

But this is not sufficient for observation. It is obviously
necessary that there should be a fixed line of sight into which
the observed object must be brought, for merely to bring it into
the field of view would not be sufficient. The method in use is
to fix two very fine threads, or spider-lines, at right angles to
one another in the focus of the eye-glass, intersecting one
another nearly in the axis of the tube, just where the image
of the observed object is formed by the object-glass. The line
Jjoining the intersection of these spider-lines, or cross-wires (as
they are called from their appearance when magnified by the
eye-glass), with the optical centre of the object-glass, is called
the line of collimation of the telescope; and as the image of
every point in the object is in the same straight line with the
centre of the object-glass and the point of which it is the image,
it is clear that when an object appears to the observer to coin-
cide with the intersection of the cross-lines, it is really in the
line of collimation produced.

If therefore we had a quadrant, with such a telescope
instead of the line of sight, we might make observations more
delicate than those made with the naked eye in proportion
to the magnifying power of the telescope. We should in that
case, however, be obliged to use corresponding care in so
adjusting the telescope that its line of collimation should be
exactly perpendicular to the line joining the centre of the
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arc with the zero line of graduation, so that the reading should
be exactly zero when the telescope is horizontal.

With such an apparatus, however, the method of reading
the graduation by a plumb-line would be, as was said before,
wholly insufficient.

37. There are two principal methods in use for the supply
of this defect, the vernier and the reading microscope.

Before proceeding to explain these contrivances, we may
mention that it will not be necessary to have a plumb-line
at all, if we have any means of determining in what position
of the instrument the line of collimation is accurately horizontal
or vertical. If, for instance, we have a fixed index which coin-
cides with the zero point of graduation, when the telescope
is horizontal; then, when we have brought the intersection
of the cross-wires into coincidence with the body to be observed,
the reading of the index will give its altitude. The horizon-
tality of the telescope is often ascertained by means of a spirit-
level. It is obvious that if the reading of the index, when the
telescope is horizontal, be not zero, but some given number
of degrees, minutes, and seconds, we shall come to the right
result by subtracting that reading from the reading obtained
by directing the telescope to the objeet which is to be observed;
for all we want to do in that particular observation is to mea-
sure the angle between the direction of the telescope in its
horizontal position and its direction when pointed to the star.

Thus, when we have once either found that the index marks
zero when the telescope is horizontal, or observed what it does
mark if it is not zero, we are in a condition to make any number
of observations without troubling ourselves farther about the ho-
rizontal position. The problem in fact reduces itself to finding
the angular interval measured on the arc of the instrument, or
limb as it is technically called, between two given positions of
the index, the intercepted arc measuring the angle between the
two directions of the telescope. And this is the general problem
in all astronomical instruments which are graduated. There
is a limb sometimes consisting of a whole circle, sometimes of

™~



PLANE ASTRONOMY. 57

a part only, according to the object contemplated by the con-
struction. A telescope revolves about an axis differently placed
according to circumstances. Sometimes it carries with it an
index by means of which the angle it describes is marked
on the limb. Sometimes it is fixed to the circle, which revolves
with it, and then the angle described is indicated by a fixed
index, as in the case above alluded to. The principle in all these
cases is the same, and the desideratum is, by delicacy of gra-
duation and other contrivances, to measure with all possible
exactness the portion of the limb passed over.

38. The first instrument we shall describe is the Pernier.

The most simple kind of index is a pointer or hand carried
along the arc—or remaining’stationary while the are is moved,
according to the construction of the instrument—and indicating
the angular interval by the graduation, like the time by the
hand of a clock. The vernier is an improved index by which,
with the same graduation, much greater nicety of measurement
is obtained. The simple index will not determine intervals
much nearer than those of the graduation, although when it
does not coincide exactly with one of the lines of graduation, we
may guess roughly by inspection at the fraction of the interval
represented ; just as when the hand of a clock is between two
divisions we guess at the fraction of a minute to be added
to the former of the two readings in order to get the true time.
The vernier, however, accurately subdivides the intervals of the
graduation into a great number of equal parts. To continue
the illustration of the clock: with a simple index we obtain
a reading no more accurate than that of the minute-hand,
whereas the vernier may be made to give us the same accuracy
as a hand which marks seconds.

In the case of the common index, a single point is carried
along the graduated scale by means of an arm revolving about
an axis which passes through the centre of graduation. In the
vernier index, instead of the single point there is a-small por-
tion of the circumference of a circle concentric with the circle
of graduation, and marked with divisions which we shall pre-
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sently describe. This arc by the motion of the index is made
to slide along the limb, and from its construction always coin-
cides with a portion of the graduated arc.

The length of the vernier arc is made such as to include
exactly some particular number of divisions of the limb. This
length is then divided into a number of equal parts exceeding
by one the number of divisions in that part of the limb with
which it coincides. It is evident that if the two extremities of
the vernier be made to coincide with certain lines of graduation
of the limb, none of the intermediate lines of the vernier will
coincide with those of the limb.

The first division of the vernier will fall short of the first on
the limb, the second will fall short by twice the space, the
third by three times the space, and so on till the last, which of
course falls short by a whole division.. Hence the space by
which the first division of the vernier falls short of that on the
limb will be that fraction of a division of the limb whose nume-
rator is unity and whose denominator is the number of divisions
in the vernier. If therefore, from the position in which the ex-
tremity of the vernier coincides with a line of graduation of the
limb, we push forward the vernier through the above space, its
next line of graduation will coincide with the next line on the
limb. If we push it through such another space, the next line
will coincide, and so on ; and conversely, if we see any line of
the vernier coinciding with one on the limb, we may know, by
counting the number of lines from the end, through how many
spaces it has been pushed from its first position. And this we
may tell by inspection, if we mark the extreme line zero, and
the rest one, two, three, &c. Hence, if the zero line, which we
may take for the index point, do not exactly coincide with any
line of graduation of the limb, we have only to carry on the eye
till we see some farther division coincident, and by observing
its number we may estimate that fraction of a division of the
limb by which the zero point is distant from the line of
graduation. It is evident that only one line of the vernier
at a time can coincide with one on the limb, excepting the
two extreme lines.



PLANE ASTRONOMY. 59

In many instruments the graduation of the limb is made to
the third part of a degree. Each division therefore contain 20'.
The vernier is made to coincide with 19 divisions of the limb,
and is divided into 20 parts, the one extremity being marked
zero. Thus we are enabled to read off to 3 of each division on
the limb, or to measure angles true to a minute of space.

Suppose in taking an observation we see the zero point
between two lines of graduation of the limb. We look to see
which line of the vernier coincides with one of the limb, and
we add that number of minutes to the angle obtained by taking
the first line of graduation of the two that are adjacent to the
zero point.

We annex a figure of a vernier index with a corresponding
part of the limb.

The zero point marks 30°,
taking the next line behind
it.

The line marked 6 in the (" 2p
vernier coincides with one on
the limb, and therefore we [] ; 3

35
add 6’ to the former angle,
and the true result of the observation is 30° 6'.

The delicacy of reading by means of a vernier may be con-

siderably increased by the use of a magnifying lens.

g o S

39. Another contrivance which is extensively employed for
the same purpose as the vernier is the Reading Microscope. It
consists of an object-glass and an eye-glass placed in a tube,
which tube is usually fixed with its axis parallel to the plane of
the instrument, and directed towards the graduated limb, the
divisions of which are made on the outer circumference.

In the tube, and perpendicular to its axis, is an oblong
rectangular frame, at a distance from the eye-glass equal to its
focal length. In the position of diagonals to this frame are two
spider-lines intersecting one another in its centre. The whole
frame is moveable in the direction of its length, backwards or
forwards, by means of a screw, and thus the point of intersec-
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tion of the spider-lines is made to pass across the field of view.
When the microscope is properly placed, an image of part of
the graduated limb is formed by the object-glass in the focus
of the eye-glass, and is seen to coincide with the image of the
spider-lines. The adjustments are so made that the point of
intersection of the spider-lines is carried from one line of
graduation to the next by a certain number of turns of the
screw, the head of which is graduated and furnished with a
pointer to shew how many turns and parts of a turn it has
made.

When an observation is made, the graduated limb being
attached to the telescope and moveable with it, the microscope
acts the part of a fixed index ; or to speak more exactly, the
intersection of the spider-lines may be taken as the index, when
it is in the middle of the field of view, the pointer on the
screw-head being so adjusted as to mark zero at the same time.
If the observer, on looking into the microscope, sees some line
of graduation exactly coincident with the intersection of the
lines when so adjusted, he reads off at once from the limb.
But if, as is generally the case, the intersection of the lines is
between two adjacent lines of graduation, he only gets the
reading roughly from the limb, and the object of the microscope
is to determine how much must be added to that first reading
on account of the index being beyond the line of graduation
from which it is taken.

The method is to turn the screw-head in such a way as to
move the point of intersection of the wires backwards, till it
coincides with the line of graduation from which the reading
has been taken, to count the number of whole turns, and to
read off on the screw-head the number of parts of a turn which
the screw has made. Then, the number of whole turns being
known which bring the index from one line of graduation to
the next, the space required may be found by proportion.
Thus we may subdivide the divisions on the limb into a number
of parts, which is the product of the number of turns which
carries the index from one line of graduatien to the next, and
of the number of dtvisions on the screw-head.
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In general, the instruments to which the reading microscope
is applied have divisions on the limb to 5’ of space, the screw
makes 5 turns between two adjacent lines of graduation, and the
screw-head is divided into 60 parts. Hence the reading may
be made accurately to single seconds.

In practice, a fixed frame is placed in the field of view
edged with teeth, by which the number of whole turns of the
screw may be read by inspection, so that it is not necessary to
count them.

'We subjoin a representation of the appearance of the field
of view of the reading microscope; a, b being two adjacent
lines of graduation on the limb, and ¢ an imaginary line with
which the point of intersection of the spider-lines coincides
when the pointer on the screw-head marks zero. The true
reading is therefore that given by the line of graduation a
added to the number of minutes and seconds contained between
a and c.

The exact position of the line ¢
is not of great comsequence, so
long as it is near the middle of
the field of view. It is deter-
mined by being the nearest posi-
tion of the index to the middle
of the field when the pointer on
the screw-head marks zero.

The most important adjustment
of the microscope is that by which
the images of two adjacent lines of graduation are made to
lie just at that distance from one another which is passed over
by the index in the given number of turns. This adjustment
is made by placing the object-glass at a proper distance from
the limb, and at such a distance from the eye-glass that the
image may be formed in its focus; for the magnitude of the
image depends on the distance of the object from the lens, and
its distinctness to the eye om its being in the focus of the
eye-glass.
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If, for instance, the microscope be placed nearer to the limb,
the images of the lines of graduation will be formed farther from
the object-glass, and will subtend a greater angle at the centre
of the object-glass, since they subtend the same angle at that
point as the lines themselves. Therefore the eye-glass must be
drawn out in order that the images may be distinctly visible,
and the effect of the change will be that the screw must make
more turns to carry the index from one to the other. If the
microscope, on the other hand, be moved further from the limb,
and the eye-glass properly placed, the effect will be just the
opposite. Thus the microscope may be accurately adjusted.
In practice, however, a perfect adjustment is not attempted, it
being found better to determine the error by observing the
exact reading given by the screw-head when the index is
brought from one line of graduation to the next. This error
is called the error of rums, and must be allowed for in the
result of every observation.

It may be as well here to make the general remark, that
though astronomical instruments are usually furnished with the
means of accurate adjustment, yet in practice such adjustments
are only approximately made, and the small deviations from
perfect accuracy are observed and allowed for. This method
gives quite as accurate results as if the instruments were per-
fectly adjusted, and are much more to be relied upon than
if perfect adjustment were attempted; for it is impossible to
keep an instrument in exact adjustment for any length of time,
«on account of changes in the weather and the necessary strains
on the parts in making observations. Besides, the stability of
the instrument, which is a most important element in its useful-
ness, is very apt to be injured by perpetual changes of the
positions of its parts.

The Altitude and Azimuth Instrument.

40. This instrument consists of an astronamical telescope
so mounted as to determine by one and the same observation
the altitude and azimuth of a heavenly body.
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The telescope is firmly fastened to a graduated circle whose
plane is parallel to the line of collimation. This circle revolves

about an axis through its centre, which axis itself revolves
about another axis at right angles to it. The latter axis is
made to pass through the centre of another circle, to the plane
of which it is perpendicular.

‘When the instrument is in adjustment, the plane of the
latter circle is horizontal, and therefore that of the former circle
vertical. The telescope is therefore capable of motion in a
vertical plane, and also the plane in which it moves is capable
of motion about a vertical axis. The angles described in each
case are indicated by verniers.

The adjustment is usually performed by three screw legs
on which the lower circle rests, and the horizontality of the
circle is determined by spirit-levels. The upper circle has
also a spirit-level to determine the reading when the telescope
is exactly horizontal.

When a heavenly body is observed, supposing the instru-
ment to be perfectly adjusted, the reading of the upper circle
gives the altitude; and when the direction of the meridian is
known, the lower circle gives the azimuth.
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The ordinary method of finding the meridian direction is by
taking equal altitudes of a star before and after its meridian
passage.

The star is observed some time before passing the meridian,
and the reading of the azimuth circle noted. It is observed
again when it comes back to the same altitude after passing
the meridian, and the reading of the azimuth circle again noted.
Now the star’s path is exactly symmetrical with respect to the
meridian, therefore its azimuth must be the same in the two
positions, only on different sides of the meridian. Therefore
the reading of the azimuth circle when the telescope points
to the meridian must be half-way between the two observed
readings. If R, be the reading at the first observation, R,
at the second, }(R, + R)) will be the meridian reading; and
this being ascertained, the azimuth of any body afterwards
observed will be easily found.

By this means bodies may be observed at all points of the
sphere of observation, whenever a firm support can be found
for the instrument. As however observations of bodies on
the meridian are the most important, it is usual in observa-
tories to employ altitude circles which are restricted to moving
in the plane of the meridian. The supports of such instruments
may be made more firm, and there being only one axis of
revolution, the ‘general stability is more perfect.

The axis of revolution is usually of the form of a truncated
cone, and works in a socket which is firmly fixed in a wall.
Hence the instrument is called the Mural Circle. Its im-
portance requires a separate description.

41. The Mural Circle consists of an astronomical telescope
furnished with vertical and horizontal cross-wires, firmly fixed
to a circle graduated from 0° to 360°. It revolves about a
horizontal axis very strongly supported. The reading-off is
made by means of the microscope above described.

Besides the horizontal and vertical fixed wires in the focus
of the eye-piece, there is a moveable horizontal wire, called
the micrometer wire, which is made to move parallel to itself
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by means of a screw. This contrivance enables the observer
to find the difference of altitude between two points which are

in the field of view at the same moment, as for instance two
stars near together: for it may be ascertained, by using a
known distance, through what space the wire is moved by each
turn of the screw, and the screw-head being graduated, the
exact distance of the moveable wire from the fixed horizontal
wire may be determined. One means of ascertaining the in--
terval due to each turn of the screw is by measuring in this
way the Sun’s diameter, which is given for every day in the
Nautical Almanac. 'When the Sun enters the field of view, the
telescope is so placed as that the Sun’s limb appears just to
touch the fixed wire, and the micrometer wire is made to touch
the other limb. Then the moveable wire is brought into co-
incidence with the fixed wire, and the number of turns and
parts of a turn necessary to bring it into such coincidence is
noted. This number corresponding to a known interval, the
value of each turn of the screw is easily found by proportion.
‘When the field of view is too small to include the whole disc
of the Sun, as is the case in large instruments, two known stars
near together, having nearly the same right ascension, may be

used instead.
F
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42. TIn order to observe altitudes with the Mural Circle, it
is necessary, as in the case of the instruments described before,
to have some means of knowing the reading when the telescope
is exactly horizontal or exactly vertical. 1t is not necessary
that the reading should be zero at either of those points,
because we can always apply the required correction to the
observed angle by simple addition or subtraction. If, for in-
stance, we know the reading when the telescope is horizontal,
and then observe a star as it crosses the meridian, the difference
between the rendings will give the angle through which the
telescope has been moved from the horizontal direction to that
of the star, and therefore the altitude of the star.

We shall explain only two methods out of several which are
in use to find the horizontal or vertical position.

A trough of mexcury is placed immediately below the centre
of the circle, and the telescope is directed towards it, with the
line of collimation pointing nearly vertically downwards. An
image of the cross-wires is formed by reflection in the trough
of mereury by means of pencils of parallel rays; for the cross-
wires are in the focus of the object-glass, and therefore pencils
diverging from them emerge parallel from the object-glass upon
the mercury. 'The emergent pencils therefore from the mer-
cury by which the reflected image is formed are parallel, and
falling on the object-glass converge to its focus. Thus the
image of the cross-wires is formed close to the cross-wires
themselves. When the reflected image appears to coincide
with the cross-wires, the line of collimation is perpendicular to
the surface of the mercury, or accurately vertical ; and from the
reading of the instrument when in this position, it is easy to
find that when the telescope is horizontal. :

The trough of mercury above referred to is, however, often
employed in a different manner, which, besides giving the
horizontal reading, has the advantage of shewing the altitude
of the observed star at once.

If an observer be so placed as to see the image of a star
reflected from a trough of mercury, the pencil of light by which
it becomes visible to him makes with the surface of the mercury
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the same angle as the incident pencil. Therefore the angle of
depression of the image of the star below the horizontal line is
equal to the angle of altitude of the star itself from the surface
of the mercury. And the altitude of the star from the observer’s
eye is the same as its altitude from the surface of the mercury ;
therefore the angle between the directions of the star and its
reflected image is twice the altitude of the star.

If QPR be the trough of mercury, K the eye, PS the
direction of the star, then the angles QPS, RPE are equal to

one another and to the angle PEH. Now ES parallel to PS
is the direction of the star as seen from K, and by parallel
lines the angle HES is equal to QPS, and therefose’ to HEP.
Therefore PES is twice the altitude of the star.

If we could observe the star at the same time by direct
vision and by reflection, we could thus immediately determine
the altitude and the horizontal reading of the instrument: for
if R, R, were the readings so obtained, j(R,- R,) would be
the altitude, and }(R, + R,) the horizontal reading, being that
corresponding to the position of the telescope when half-way
between the two observed positions.

Although it is impossible to make the observations simul-
taneously, yet the same result may be obtained by the following
method, which is founded on the principle, that just as the star
culminates, and changes its motion from ascending to descending,
there is very little change of altitude for some few seconds.

First the telescope is directed to the trough of mercury at
an angle of depression nearly equal to the altitude of the star,

which must be approximately known, so that it may be secured
F2
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that the star shall pass through the field of view. The reading
of the limb in this position is accurately noted down. When
the star in its transit has approached near the vertical wire,
the micrometer wire is brought into coincidence with it, and
immediately the instrument is directed towards the star itself,
which is observed in the usual manner just after it has passed
the meridian. The reading of the micrometer wire in the first
case has to be added to or subtracted from that of the limb,
according as the star has passed above or below the horizontal
wire ; and then this corrected reading, being subtracted from
the second reading, will give the double altitude.

43. In observations by the Mural Circle, it is usual to
employ six reading-microscopes attached to the wall by which
the axis is supported, and at equal angular intervals from one
another. One object of this is to get rid of the errors which
arise from imperfect centering, that is, from the geometrical axis
about which the instrument revolves, not passing accurately
through the centre of graduation—a source of error which
mechanical skill cannot entirely remove. We will briefly ex-
plain the principle of this compensation.

Let O be the centre of graduation, C' a point in the axis of
the instrument, 4 an index. Let A
the instrument be turned till the
point @ coincides with the index. \d
The angle through which the tele-
scope has been moved is 4 Ca, but
the angle measured by the gradu-
ation is 40a—a less angle than
ACa. Suppose B to be another
index opposite to 4, b the point 4
of the arc which is brought into
contact with it when @ comes to 4.
The angle indicated by the limb in this case is BOb, a greater
angle than BCb.

The angles, therefore, shewn by the opposite indexes are
affected with opposite errors, and the excess of the one, namely

B
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the angle OBC, is equal to the defect of the other, that is
0AC, for the triangle OAB is isosceles; therefore if we take
the half sum of the two angles, it will be equal to the angle
through which the telescope has actually moved.

From this it appears that two microscopes at opposite points
would be sufficient to correct the error of false centering, sup-
posing the graduation to be perfect, and the reading off liable
to no error. As it is, however, there is a liability to error on
both these grounds, to correct which three pairs of opposite
microscopes are used, and the mean of all the readings taken as
the result of the observation.

And, as the absolute values of the observed angles are of no
consequence, it being only necessary to measure the angle
through which the telescope must be turned from one position
to another, this method is just as well suited to the purpose
as if there were a single index giving the direct result at
once. '

The student should carefully distinguish between the two kinds
of error which are corrected by means of the six microscopes.
The error of centering, if any, is entirely and certainly got rid
of by having the microscopes in pairs at opposite points, as the
investigation above given shews. The errors of graduation and
reading off are not of the same definite nature, nor can we in
the same way make exact compensation for them. The errors
of graduation arise from the limb of the instrument not being
accurately divided into equal parts. There is certainly a com-
pensation in this respect: for if one division is too small, there
must be some other too large, in order that the circumference
may contain the proper number; but we cannot tell where this
compensation is to be applied. Errors of reading off are still
more purely accidental, being such as arise from the defects of
the microscope, or unavoidable mistakes on the part of the
observer. The only mode of compensation applicable to these
errors is that of having several indexes, it being improbable
that all the accidental errors should be in the same direction,
and therefore it being to be expected that they will correct one

another.
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If all the errors were in the same direction, that is all in
excess, or all in defect, the mean result would be affected by
the mean of the errors; but if some be in defect and some in
oxcess, the gross result will be affected by the excess of the
errors in one direction over those in the other, and this divided
by the number of o*servations will be the only error in the
mean result. If as many errors were in defect as in excess,
tho whole error would be very small, and on this principle the
result of tho mean of a number of observations is more likely
to bo true than that of a single one. This principle should be
carofully recollected, as it is of constant and very important
applioation in Astronomical Observations.

d4. ‘The azimuth and altitude instrument, it will be seen, is
theorotically sufficient to determine the place of a body in the
sphere of observation, supposing it to be accurately adjusted,
wnd tho meridian correctly ascertained. It has, however, ap-
poared that the general determination of altitude and azimuth
wt any time is not of much importance in the greater number
of obeorvations, so that an altitude circle limited to the plane
of the wmeridian is sufficient for ordinary purposes, besides
pusewsing the great advauntage of stability. The mural circle
{s abviously a modification of the altitude and azimuth instru-
ment, inasmuch as it determines the azimuth to be zero at the
thne of the obwervation. Hence, with the assistance of a clock,
such an instrument would give the means of determining the
exaat time at which & body passed the meridian—a very im-
portaut obeorvation for many purposes. It has been explained,
however, that the change of altitude just at the culminating
point v for u short time nearly imperceptible, and it is obvious
that as the whole motion of the body is there parallel to the
horluon, its motion in asimuth is most rapid ; consequently a
much more acourate adjustment is required for observing the
oxuct moment of transit across the meridian than for determining
the altitude: on this account it is found more convenient to
employ a soparate instrument for the purpose of observing
transits. 'T'his we shall now proceed to deseribe.
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45. The Transit Instrument. This instrument consists of
an astronomical telescope, so moveable about a horizontal axis

that when it is in perfect adjustment, its line of collimation
moves in the plane of the meridian.

The axis, which consists of two strong arms terminating in
two cylindrical pivots, rests on two equal supports, called Y’s,
(from their resemblance in form to that letter), which supports
are firmly fixed in t:/o strong piers standing east and west.
One of the Y’s is capable of u horizontal and the other of a
vertical motion, given to them by means of screws.

In the focus of the eye-piece of the telescope are five or
seven vertical wires, and one horizontal wire. These wires are
capable of being illuminated by a lamp placed in one of the
arms, which is hollow, so that observations may be made at
night-time.

There is also a small altitude cirele furnished with a spirit-
level, by means of which the meridian altitude of the body
to be observed is approximately known, and the instrument
may be so directed that the body shall pass through the field
of view.

‘When this arrangement has been made, the observer having
the clock beside him watches for the appearance of the star
in the field of view. As soon as he sees it, he observes the
position of the seconds-hand of the clock, and then returns to

-
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the telescope, in which the star is now approaching the first
of the wires. He counts the beats of the clock, and remem-
bering the number of that with which he began, he notes the
time of transit over the first wire. This he can always do
accurately to the nearest second, but an expert observer can
obtain greater nicety still.

The star moving through the field of view will not generally
coincide exactly with the wire at a particular beat of the clock,
but between two adjacent beats. At the former of these beats
it has not yet arrived at the wire, at the latter it has passed
it by a certain interval. Therefore a fraction of a second has
to be added to the time given by the former beat. Now a
practised observer compares in his mind the apparent distances
from the wire at the two adjacent beats, and thus estimates
roughly the proper fraction to be added. In this way transit
observations are given to a tenth of a second.

The time of the passage of the first wire being noted down,
the successive transits over all the wires are similarly observed
in succession, and the mean time of the whole is taken for the
actual transit over the meridian.

This is not only a mode of getting rid of errors of observation
according to the general principle of compensation, but it gives
additional opportunities of observation when the atmosphere
is cloudy, there being a  greater probability of seeing the transit
over one of five or seven wires than over only one wire. It
not unfrequently happens that the time of passing one or more
of the wires cannot be observed, owing to temporary obscuration
of the star. In this case, when the mean time of transit is to be
found, allowance must be made for the missing wire or wires.

46. In order that the observed time of transit may be that
of the actual meridian passage, it is necessary that the line of
collimation should move in the plane of the meridian; or,
according to the principle which has been before explained
with respect to astronomical instruments in general, that we
should have the means of detecting and allowing for any de-
viation from the right position.
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The line of collimation has before been defined as the line
joining the optical centre of the object-glass with the point
of intersection of the vertical and horizontal wires, in cases
where there is only one vertical wire. This definition must be
slightly modified in the case of the transit instrument. If the
time of passing the middle vertical wire coincided exactly with
the mean of the times over all the wires, then the line joining
the centre of the object-glass with the intersection of the middle
vertical wire with the horizontal wire would be the line of
collimation. But as these times do not necessarily coincide,
though they are very nearly the same, the true line of colli-
mation, over which the star passes at the observed time of
transit, is the line joining the centre of the object-glass with
the point where the horizontal wire is intersected by an ima-
ginary wire nearly but not quite coincident with the middle
vertical wire. This is sometimes called the mean of the wires.

For our present purposes, however, we may consider the
mean of the wires to coincide with the middle wire.

The deviations of the line of collimation from its true
position are of three kinds.

(1). It may not be perpendicular to the geometrical axis
about which the telescope revolves.

(2). The axis of the telescope may not be horizontal.
(3). The axis may not point exactly east and west.

. In the first case, the line of collimation describes a conical
surface with a very large vertical angle, instead of lying in one
plane; and therefore the series of points in the sphere of ob-
servation to which the telescope is successively directed lie in
a small circle instead of a great circle. In the second case,
supposing each error to exist alone, the points to which the
telescope is directed lie in a great circle, but in one which
is inclined to the horizon. In the third case the great cn'cle
is vertical, but does not coincide with the meridian.

In general all these errors coexist, but as they are very
small—the instrument being kept nearly in adjustment—they
may be investigated and allowed for separately. They are
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called respectively, the error of collimation, the error of level,
and the error of deviation from the meridian. We shall ex-
plain here hoy their existence is detected, but it will be
beyond our present province to enter into the calculation of
their amount and the corrections to be made for them in the
time of observation. As it is necessary that the errors should
be small, in order that the corrections may be applied separately
for each, the instrument is furnished with the means of ad-
justment, by which it may be placed approximately in its right
position. The line of collimation is adjusted oy an apparatus
for moving the system of cross-wires horizontally across the
field of view. ‘The axis is adjusted by means of the screws
attached to the Y sockets.

(1). The existence of the collimation error is ascertained
by reversing the axis, that is, by lifting the telescope off its
bearings, and replacing it with each arm on the opposite pier
to that which it before occupied. If the line of collimation
is accurately at right angles to the axis, its direction will be
the same after this change as before; but if not, whatever
angle it made with the axis on one side, it will make the
same angle with it on the other side. The test therefore
of true adjustment will be that the same distant object will
appear to coincide with the intersection of the horizontal and
-middle vertical wires before and after the reversing of the axis.

Supnose the instrument to be out of adjustment.

Let O fig. (a) be the centre of the object-glass, OC per-
pendicular to the axis of the instrument, 0 )
OM the line of collimation, if being the rl_ i
intersection of the horizonta: and middle i
vertical wires.

‘When the telescope is reversed, the l
direction of OC'. will not be cl.mxfged, since ) | \ /8)
that of the axis to which it is perpen- i
dicular is the same as before; but OM |
will make the same angle with OC on the | n
other side of it, as is represented in fig.(8). | ' a |
Thus, if a distant object appear to coincide l_[_{_;
with the intersection of the wires before

-
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reversing, it will not appear to coincide with it after reversing,
for its direction is in the line 1fO produced, since its image
is.formed at i/, and therefore in the second figure its image
will he formed at 2{, as far from C on the left, as .it is on the
right. Therefore it is only when. the line of collimation coin-
cides with OC, that the same distant object can coincide with
the intersectioni of the lines before and after reversing.

If the distance JiZAf' can he measured, it gives twice the
collimation error, or twice the space through which the cross-
wires must be roved to correct the error. It is not absolutely
necessary that the distant object should exactly coincide with
the point M at the first observation, for the same result is
obtained by measuring the difference of apparent distances
between it and the intersection of the wires before and after
reversing, that difference being the space Z/M’, or twice the
error. It should be remembered that the principle of the
method is the shifting of the point ./ to the same distance
as before from C on the other side of it, the point C and the
position of the image of the distant object not being affected
by the reversing of the axis.

The distant object must obviously be terrestrial, as it must
not alter its position. It must also be nearly due south of the
observer. It is usual in observatories to erect a small well-
defined object for this purpose at a considerable distance, and
in such a position as to be included in the field of view of the
telescope. The meridian mark of the Cambridge Observatory
is a small cross of wood on the tower of Grantchester church.

(2). The error of level. 'This error is determined by means
of a spirit-level, an instrument which it may be as well here to
describe in detail, although its general principle and uses are
well known.

The Spirit-level consists of a hollow glass tube of uniform
bore, nearly filled with spirits or sulphuric ether, and closed
at both ends. The tube is not quite straight, but has a slight
uniform curvature, such as would result from its being a small
part of a circular ring of very large diameter. When the level
is placed in such a position that the convexity of the tube is
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uppermost, the upper surface of the fluid being necessarily

horizontal, it follows that the air-bubble above the fluid oc-
cupies the highest portion of the tube, or to speak more
accurately, that the highest point of the tube is half-way
between the two extremities of the bubble.

The common use of the level is to determine when the line
joining the two lower extremities of the tube is horizontal;
and this is done to a sufficient degree of exactness by observing
when the bubble stands about the middle of the tube: for
if the radius of the circular ring, of which the tube may be
supposed to form part, be very large, the position of the bubble
will be affected by a very small change of inclination in the

tube.
To shew this, let a Hb be a vertical section of the tube, ab

»

[

C

the straight line joining its lower extremities, C the centre

of the circle of which ab is an arc; H the highest point.
Let the inclination of the level be changed, and o, &', H', C’,

the new positions of a, b, H, C.
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Draw C'% vertical. % is now the highest point, and the arc
hH', through which the middle point of the bubble will have
shifted is the arc subtended at the centre by the angle through
which CH and consequently ab has been turned.

Consequently, the greater the radius, the greater will be the
space through which the bubble will move for a given change
of inclination in @b, or in technical language, the greater will
be the sensibility of the instrument.

It follows from this, that if the arc ab be truly circular,
the angle through which the base ad is moved may be mea-
sured by means of a scale.

The instrument as applied to astronomical purposes is fur-
nished with such a scale accurately graduated, and is calculated
to detect variations of level of a very minute order.

The level used for the transit instrument is furnished with
two equal and similar legs ending in notches, just so far apart
as to rest on the cylindrical extremities of the telescope axis,
and of such a length that the tube lies across the telescope
without touching it.

There is a smaller level placed at right angles to the other
in order to ensure that the convexity of the larger tube should
be exactly uppermost.

The scale is graduated in both directions from the zero
point, which ought to be the highest point when the axis
on which the legs are placed is horizontal.

Thus, if the adjustment of the scale were perfect, the hori-
zontality of the axis would be denoted by the readings of the
two ends of the bubble being the same.

This adjustment however is not necessary, even if it could
be made without risk of error; for we may obtain a perfect
test of horizontality by reversing the level, or placing it
with its legs on the opposite extremities of the axis to those
which they occupied before. In this case, supposing the
axis perfectly horizontal, and its extremities as well as those
of the legs of the level to be perfectly equal and similar,
the bubble will evidently assume the same position as before.
But if, on reversal, the bubble assumes a different position,

/'
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the space through which it passes gives twice the angle by
which the axis deviates from exact horizontality, the middle
position between the two being the position the bubble ought
to have when the axis is exactly horizontal.

Let 7.7 be tke axis, 015 the ievel; A the highest point,

(/] ) 4
HI
(]

a w

E

O the point which would be highest if EW were horizontal.
Then the arc OH measures the inclination of the axis; and
if the level be reversed, the point « being placed at W and
b at E, the same inclination will be measured by an arc OH"
on the other side of O.

The middle point of the bubble will therefore move from
H to H', where OH' = OH. The scale gives the means of
determining the middle point of the bubble, by taking the
mean between the readings of the two ends.

In the figure, the curvature of the level and inclination of
the axis are purposely very much exaggerated for facility of
explanation.

In order to adjust the axis, that extremity of it which is
capable of vertical motion must be raised or lowered, according
as the bubble after reversal approaches or recedes from that
end of the level which at first coincided with the adjustible
extremity of the axis.

(8). The error of deviation is determined by observing the
upper and lower transits of a circumpolar star, that is, of a star
which does not set, but passes the meridian below the pole.
If the instrument is in complete adjustment, so that the tele-
scope moves in the meridian plane, these transits occur at
exactly equal intervals of time, since the meridian bisects all
the diurnal circles described by the stars: but if there be a
deviation error, the observed transits of the star being not

~
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across the meridian but across another vertical great circle,
do not occur at equal intervals, but the time from the upper
transit to the lower is either greater or less than the time
from the lower to the upper, according to the direction in
which the error lies.

Let # be the pole, Z the zenith, 2Z\" the meridian,

S'ZN' another great circle, meeting the horizon in N, =\
First, let § Ye ¢ star whose polar distance PS is less than
PZ. It will cross the meridar at .§ and §.

If 2 be on the west side of =, as represented in the figure,
or the deviation error west, the star will come to the great
circle £ ZN' just after it has passed the meridian at the lower
transit, and it will pass the same circle again just before it
arrives at the meridiau at the upper tramsit: consequently,
if the telescope be so placed as to comi:ana the great circle
S'ZN' instead of the meridian, the observed time fron: the
lower transit to the upper will be less tham it ought to be,
and of course the timc from the upper to the .ower will be
greater than it ought to be. Hence, any inequality in the
times will detect an error of deviation, which is either to the
east or to the west, according as the time between the upper
and lower transit is less or greater than that between the lower
and the upper.

Again, iet ¢ be a star whose polar distance is greater than
PZ. 1t wili pass the meridian at o+ and o', the former point
being south of the zenith.

As before, it will come to the circle X' ZV after passing the
meridian at the lower transit; but as the meridian and the
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circle 2'ZN' intersect in Z, it will not come to the latter circle
again till after it has passed the meridian at the upper transit.

Hence both the observed transits will be later than the true.

Since however oZ is a smaller arc than ¢'Z, the one being
the sum and the other the difference of the arcs Po and PZ,
the space between the meridian and the circle 2'ZN is less
at o than at o', and therefore the observed upper transit occurs
nearer the true time than the observed lower tramsit. Thus
the time from the lower to the upper transit is less than it
should be, and the result is the same as before.

In general it is advisable to select a star for observation
which, as in the first case, makes both its transits on the same
side of the zenith, for then the inequality of the times is most
perceptible. In fact, the nearer the star is to the pole (its
diurnal motion being slower), the greater is the effect on its
times of transit of a given deviation from the meridian. On
this account the pole-star, commonly called Polaris, which
is about a degree-and-a-half from the north pole, is very often
observed for the deviation error.

It is obvious that in or near the equator this method is inapplicable,
owing to the pole being nearly in the horizon. In this case the same
result may be obtained by observing the transits of two stars, one of which
passes the meridian near the zenith, and the other near the horizon. It is
necessary, however, that the difference of right ascension of the two stars
should be known beforehand. Then the time intervening between the true
transits of the two stars will be known, being the same part of 24 sidereal
hours that their difference in right ascension is of 360 degrees. If therefore
the instrument is in adjustment, the interval between the observed transits
will be the time so obtained. But if the telescope command the circle
3'ZN’ instead of the meridian, the star passing near the zenith will cross
this circle much about the same time as it crosses the meridian, while the
star near the horizon will have a much larger space to pass through between
the two circles. Thus the time of transit of the first star will be much less
affected than that of the second, and therefore the interval between the
transits will be altered by the error. Thus the error of deviation may be
detected when there is no opportunity of observing a circumpolar star.

47. The Astronomical Clock. 1t is evident from what has
preceded, that a clock which can be depended upon is an
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essential part of the furniture of an Observatory. The con-
trivances by which the necessary accuracy is obtained in clocks
used for astronomical observations distinguish them so com-
pletely from the coarser time-pieces which are sufficient for
ordinary purposes, that the astroromical clock may be looked
upon as a separate instrument, and its description may properly
occupy a place in an astronomical treatise.

The moving power of the clock is a weight, which is more
suitable than a spring, on account of the uniformity of its
action. There is no striking apparatus or superfluous machinery
of any kind to interfere with the regularity of the working.
The pendulum, which vibrates seconds, is made to move with
its extremity in a cycloidal arc, and is fitted with a contrivance
by which the effects of change of temperature on the rate of
going are obviated.

It will be recollected that the period of vibration of a simple
pendulum depends on its length. Such a pendulum obviously
can only exist in theory, as it is supposed to consist of a heavy
particle at the end of a rod without weight. In opposition
to this, all pendulums in use are called compound pendulums,
and it may be stated, without entering into farther explanations,
that the period of vibration of any compound pendulum depends
jointly on its form and on the distance of its centre of gravity
from the axis about which it revolves. The ordinary pendulum,
as is well known, consists of a rod on which slides a piece of
metal, technically called a 05, capable of being raised or lowered
by means of a screw. The principal weight being in the dob,
the centre of gravity of the whole is thus varied in position
without much change of form, and the period of vibration is in-
creased or diminished at pleasure. Thus, theoretically, a clock
might be regulated to any degree of accuracy, the action of the
works on the pendulum being uniform. Since, however, all
known metals expand with heat and contract with cold, it is
found that the time of vibration of a common pendulum changes
with the temperature, the length of the rod being greater in
warm weather than in cold. To obviate this, instead of the
ordinary bob, a cylindrical glass vessel is used, containing a

G
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large quantity of mercury. When the rod expands so as to
lower the bottom of this vessel, the mercury also expands and
rises in the vessel, The centre of gravity of the mercury is
therefore farther from the bottom of the vessel than it was be-
fore, and this effect compensates that of the lengthening of the
rod; so that when the quantity of mercury is properly appor-
tioned to the weight of the pendulum, the position of the centre
of gravity of the whole is unchanged, and the time of vibration
is unaffected.

By this and other contrivances the astronomical clock has
been brought to great accuracy. The grand desideratum is
uniformity in the rate of going: for when this is secured we
may regulate to any required rate, or by observing the difference
between the actual rate and the required rate, we may obtain
the means of applying corrections to the observed times. The
latter is the method commonly employed. The time lost or
gained in a day is determined by observation, and is technically
termed the rate. The clock error at any time is the amount
to be added to or subtracted from the observed time in order
to get the true time. When the clock error and rate are known,
the true time at any subsequent observation may be found, by
adding to the observed time the error and the amount of the
rate multiplied by the number of days and parts of a day inter-
vening since the error was determined. In practice the clock
is so regulated as to have a small losing rate, and is set a little
too slow. Thus the corrections are additive. The error is never
allowed to exceed a small amount.

The error of rate is the difference between the rates of two
successive days. If the clock were perfect there would be no
such error, and in the present state of mechanical skill it is
kept within very small limits. An habitual error of rate
amounting to a second would entirely condemn a clock for
astronomical purposes.

The astronomical clock is usually set to sidereal time, that
is, so as to mark 24 hours between two successive transits of
a star. Thus it is independent of the variations in the Sun’s
position. The sidereal day begins when the vernal equinoctial
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point, called the first point of Aries (from its being the point
where the Sun enters the zodiacal sign Aries), passes the meri-
dian. This occurs about noon when the Sun is in equinox,
and earlier every subsequent day by mearly four minutes till
it comes round to noon again. It is not, however, to be sup-
posed that any visible point shews by its transit when the
sidereal day begins, the first point of Aries being an imaginary
point indicated by no appearance in the heavens, and only
geometrically determined by its being at the intersection of the
equator and the ecliptic. If such a point existed, the sidereal
clock might be set at once by observing its transit. The actual
mode of setting it is, however, a matter of much greater diffi-
culty, which we are not yet far advanced enough in the subject
to explain.

The rate is easily found by observing two successive transits
of the same star; and for this purpose it is not necessary that
the transit instrument should be in very accurate adjustment,
only that it should not be moved between the two observations,
for a fixed star occupies exactly 24 sidereal hours in revolving
from any given point to the same point again.

A succession of such observations would detect any error
of rate.

48. The Equatoreal. This instrument consists of two
graduated circles revolving about axes at right angles to one
another in the same manner as those of the altitude and azimuth
instrument. They are however. differently placed, the lower
circle having its plane parallel with that of the celestial
equator, and consequently inclined to the horizon at an angle
equal to the co-latitude. The axis, therefore, which bears the
upper circle points to the pole, whereas that of the altitude
and azimuth instrument points to the zenith.

The equatoreal, if in exact adjustment, would determine
at once the declination of an observed body. For, suppose
the telescope to be directed to a star, so that the cross-wires
appear to coincide with it; the reading of the upper circle
gives the angular distance of the star from the plane of the

G2
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lower circle, that is, from the celestial equator. On this account
the upper circle is called the declination-circle. Supposing also
the zero point of graduation of the lower circle to be that
marked by the index when the telescope is directed to the
meridian, the reading of the lower circle will give the angular
distance of the star from the meridian at the time of observation,
measured along the celestial equator. This angle will be the
same as that between the meridian and the declination-circle
of the star. It is commonly called the kowr-angle of the star,
and the circle on which it is measured is called the kour-circle.
Let P be the pole, EQ the celestial equator, S a star.
The equatoreal gives the
arcs SM and EM, the former £
of which is the declination,
and the latter is equal to the
angle EP M, included between ax
PE the meridian, and PS the
declination-circle of the star. Q
EPM is called the hour-angle, because whatever part it is
of 360°, the same part of 24 hours is the time of § from the meri-
dian, that is,'the time § will take in getting to the meridian, or
the time by which it has passed the meridian, according as it is
on the east or the west of the meridian at the time of observation.
In practice the equatoreal is not much used for accurate
determinations -of declinations and hour-angles, which may
be more certainly made by other methods. Its chief use is
in giving approximate positions of bodies observed out of the
meridian, and in such observations as occupy any considerable
time, as those of double stars by micrometers; for by turning
the telescope about the polar axis, which is parallel to that
of the diurnal motion of the heavens, a star may be kept
continually in the field of view, the space commanded by the
telescope in its revolution being in fact the star’s diurnal path.
In the case of large instruments the telescope is made to
move in this manner by clockwork, properly regulated, so that
the observer may devote his whole attention to micrometrical
measurements, or whatever other object he may have in view.
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49. Hadley’s Sextant.

From the preceding descriptions it is evident that the in-
struments which have hitherto occupied our attention depend
for their efficiency on the firmness of their supports, without
which all modes of adjustment would be vain. Such instru-
ments, therefore, are inapplicable to a very large and important
class of observations, namely those made at sea. In fact, the
roughest determination of the position of the observer by means
of the heavenly bodies, would be perfectly hopeless except in
the calmest weather, if we had no instruments to depend on
excepting such as have been already described.

The instrument of which a representation is subjoined is
found completely to answer all nautical purposes. It is called
by the name of its reputed inventor, Hadley, but we have Sir
J. Herschel’s authority for ascribing it to Newton.*

It consists of a strong frame in the form of a sector of a
circle, including, as the name imports, one-sixth of the circum-
ference. The two extreme radii are firmly braced together, as
represented in the figure. A moveable radius, having a vernier
at its extremity to read off the divisions on the arc, carries a
small mirror called the indez-glass, which stands upon it at right
angles to the plane of the instrument, and in such a position
as to be bisected by the axis of revolution produced. On
the extreme radius, and facing the index-glass, is fixed the
horizon-glass, which is half silvered, the other half being left
so that objects may be seen through it. It is of about the same
size as the index-glass, and is fixed in such a manner that it is
parallel to the index-glass when the index is at the opposite
extremity of the arc. Its plane is therefore perpendicular to
that of the instrument, and nearly parallel to the extreme radius
on the other side.

A telescope is so fixed that its line of collimation passes
through the centre of the horizon-glass, meeting its surface at
the same angle as the line drawn from the same point to the
centre of the index-glass. Hence a ray of light reflected from

¢ Outlines of Astronomy, p. 115,
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the centre of the index-glass to that of the horizon-glass is again
reflected along the line of collimation of the telescope.

In the accompanying figure, I is the index-glass, H the
horizon-glass, T' the telescope, and V" the vernier-index. The
object of the instrument is to measure the angle between two
distant objects. -

Let S be such an object. If the light from § fall upon
the index-glass at I in such a way that the lines S and HI

make equal angles with the surface, it will be reflected at 7 and
H, and will emerge from the horizon-glass in the direction of
the line of collimation of the telescope, so that an image of
S will be seen through the telescope by reflection at the
silvered part of the horizon-glass. Since there have been two
reflections, the deviation of the course of the light, that is the
angle which the line of collimation makes with 87, is double
the angle of inclination of the mirrors. And if another object
&' be at the same time in the line of collimation produced, the
angle between IS and HS', or between the directions of §
.and &', is twice the angle of inclination of the mirrors. There-
fore, if the observer can bring the image of S, seen by reflection
at 7 and H, to coincidence with that of §' seen directly, which
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may be done just at the common edge of the silvered and
unsilvered parts of the horizon-glass, he may conclude that
-the angular interval between § and §" is twice the angle by
which the index-glass is inclined to the horizon-glass.

If then the limb be so graduated that every division of one
degree shall count for two, and the zero point be that marked
by the index when the index-glass and horizon-glass are
parallel, the vernier will give the exact angular interval re-
quired ; for the arc passed over by the index is the measure
of the angle through which the index-glass revolves.

In this way a sextant is capable of measurmg an angle of
120° It is obvious that when the index-glass is parallel to the
horizon-glass, there is no deviation, or ST is parallel to the line
of collimation. Hence, when the index is at zero, the image
of § seen by reflection ought to coincide with that seen directly
through the unsilvered part of the horizon-glass, (8 being a
distant object, and therefore its direction from H being the
same as from I). This gives an easy test of the right adjustment
of the instrument. The horizon-glass is furnished with a screw
by which it may be turned on its axis through a small angle,
and so may be brought to parallelism with the index-glass when
the index marks zero. In practice, however, it is usual to
bring the direct and reflected images of some well-defined
object to coincidence by moving the index only, and then to
observe the reading of the limb, which may be applied as a
correction to the angles afterwards observed. This is called
the tndex-error, and must be added to or subtracted from the
angles afterwards observed, according as the index was behind
or before the zero point at the time of coincidence of the
images.

In this way the angle between two stars may be observed,
or the angle between the moon and a star, the image of the
moon’s limb as seen by reflection being made to touch the
direct image of the star. The latter observation, as will after-
wards appear, is of great use in navigation. The principal use,
however, of the sextant at sea is in taking altitudes, the reflected
image of the observed body being brought into contact with the
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sea-line or offing seen through the unsilvered part of the object-
glass.

The following is the usual mode of finding the altitude of
a star. The observer holding the sextant in his right hand,
with its plane vertical, directs the telescope to the star, the
index being in such a position that the mirrors are parallel.
The reflected image therefore coincides with that seen by direct
vision. The observer then moves the index gradually forward
with his left hand, causing the reflected image to leave the direct
image, and, by the principle of the instrument, to descend
through twice the angle described by the index. The observer
follows the image in its descent by gradually lowering the tele-
scope until at last the sea-line appears in the field of view. If
the plane of the instrument were accurately vertical, it would
be sufficient to bring the star into coincidence with the middle
point of the sea-line in the horizon-glass, and then the observed
angle would be the altitude of the star above the visible horizon :
but if the plane of the instrument be not vertical the observed
angle will be too great, the distance of the star from the point in
the offing vertically below it being less than its distance from
any other point.

Thus, if S be the star, AB
the sea-line, it would not do to
observe the distance of § from
any point P in the offing, the

altitude required being 8D, S <4
where the arc SD is perpen- 7 B
dicular to 4B.

There is, however, a very easy practical method of deter-
mining the right altitude.

If the plane of the instrument be turned through any
angle, without altering the inclination of the index-glass to the
direction of the star, or moving the index, the reflected image
of the star will still remain visible, and will appear to describe
a circular arc, since it is always at the same angular distance
from the star itself. This kind of motion is easily communicated
to the instrument with the hand; and if the index be moved

~
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till the arc described by the reflected image appears just to
touch the sea-line, the resulting angle will be the true altitude
above the visible horizon.

The altitude of either limb of the sun or moon may be
found in the same way by making it appear just to sweep the
horizon as the instrument is moved backwards and forwards.
In order to take off the glare of the sun, the sextant is furnished
with a set of glasses of different degrees of darkness, which may
be applied at pleasure between the index-glass and the horizon-
glass. There is also generally a shaded glass beyond the horizon-
glass, to diminish the light reflected from the sea.

50. The object of all the instruments above described is to
give the place of a body at any time, or to determine the time
at which a body occupies a place before determined on, in the
sphere of observation.

The true place of the body on the sphere of observation is
that point in which the sphere is intersected by a straight line
passing through the eye and the body. The observed place is
that point in which the sphere of observation is intersected by
a straight line drawn from the eye in the apparent direction
of the body. The observed place and the true place will coin-
cide if light proceeds from the body to the eye in straight lines,
for then the apparent and the true direction will be the same.
But if the light proceed from a body in a curved instead of
a straight line, the apparent direction will be that of the tangent
to the curve just as it enters the eye, for the eye is only affected
by the light just at the end of its course, and in that case the
apparent direction will not necessarily coincide with the true
direction.

This is in fact the real state of the case. The Earth’s
atmosphere deflects the light from the heavenly bodies out of
the straight line in which it would proceed if it continued in
vacuo, and therefore their apparent directions are not the same
as their true directions.

The atmosphere is a refracting medium which surrounds the
Earth on all sides, its outer surface being nearly spherical, and
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its density decreasing with its distance from the Earth. A ray
of light falling on such a surface undergoes continual refraction
throughout its passage, and describes a curvilinear path. This
may be shewn by taking a supposed case of a series of uniform
media of finite breadth, each of less density than that which it
envelopes, and then passing to the limit when the number of
such media is indefinitely increased and their breadth indefi-
nitely diminished.

Let a ray of light from a body & fall upon a series of such
media, they being concentric spherical shells of small thickness

whose common centre is C. It will be refracted at each surface
and proceed in a straight line through each medium, and there-
fore it will pursue the polygenal path PQRTV. If an eye be
situated at ¥, the direction in which the light will strike it will
be T'V, giving the impression of a body §' in the direction V7'
produced. Now if we pass to the limit, the case will be exactly
that of light passing through a medium whose density decreases
with the distance from the centre, and the path will be the limit
of the polygon in the hypothetical case, that is to say, a curve.
The direction of the light just as it enters the eye at 7 will be
the tangent to the curve, and in that direction § will appear
to be.

The only case in which the apparent and the #rue directions
coincide will be when the incident light is perpendicular to the
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surface, in which case it will suffer no deflection. And, ceterss
paribus, the more oblique the direction of incidence, the greater
will be the deflection.

The hypothetical polygon PQRTV lies entirely in one
plane ; for any two consecutive sides of it, as QR, RT, lie in
the same plane with the normal at R, by the law of refraction.
Therefore the normals at @ and 7, which meet the normal at
R in C, both lie in that plane. And thus it may be shewn that
the normals at all the points P, Q, R, T, ¥V, lie in the same
plane. Hence the whole polygon lies in the same plane with
CP, CV, the two extreme radii. In the limit, therefore, the
path of the light will be a plane curve, and its tangent at ¥ will
lie in the same plane with the radius at V7, and the original
direction of the light, PS. If we draw V8 parallel to PS, it
will be the direction in which S, which is very distant, would
appear to be if there were no refraction. Hence the apparent
direction lies between the true direction and the vertical in the
same plane with these lines.

From this we gather that the effect of refraction is to bring
a heavenly body nearer to the zenith, or to diminish its zenith
distance. And the displacement being directly towards the
zenith, the azimuth of the body will not be affected.

Hence, all altitudes have to be corrected for refraction,
while the observed and the true azimuth are the same. The
amount of the correction of the altitude increases with the
zenith distance, being zero at the zenith and about 33 in the
horizon. It does not however increase uniformly, but accord-
ing to a law which we cannot now enter into. Its value is
about 57" at an altitude of 45°.

As the azimuth of a body is not affected by refraction, the
observed time of transit over the meridian requires no correction
on this account. .

It may be here observed that the length of the day is in-
creased by refraction, the Sun’s centre when in the horizon
being elevated through a space rather greater than its diameter.
In fact, when the Sun appears to us to be just on the heorizon,
it is really entirely below. Where the diurnal path of the Sun
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makes a small angle with the horizon, as is the case in high
latitudes, the day is by this cause very considerably lengthened.

51. Another effect of the Earth’s atmosphere is the pheno--
menen of twilight. If there were no atmosphere, night would
begin suddenly and abruptly as soon as the Sun disappeared
below the horizon. In fact, there would be no light anywhere
except in actual sunshine. The atmosphere however, being
itself illuminated by the Sun’s rays, reflects them upon the
Earth’s. surface, and thus not only gives light in parts which
are not directly enlightened by the Sun, but protracts the day
even after the Sun has set. The part of the atmosphere visible
to any place is a segment of a sphere eut off by a supposed
tangent plane to the Earth’s. surface at the proposed point.
Now as long as any part of this segment is illuminated, it will
reflect light upon the Earth ; and it is only when the Sun is so
far below the horizon that its rays cannot reach any part of the
visible atmosphere, that total darkness ensues.

It is. found by observation that twilight lasts till the Sun’s
perpendicular depression below the horizon is 18°. Henee, the
more oblique the diurnal path is to the horizon, the longer the
twilight lasts. At the equator, where the diurnal path is at
right angles to the horizon, the twilight is shortest.

52. The proper correction being determined for each ob-
served altitude, which is done by a process we cannot now
enter into, we are enabled to find the direction in which the
star would appear if the atmosphere were removed ; and if this
direction being produced would pass through the star, the
place so corrected would be the true place of the body in the
sphere of observation. But this is not exactly the case, as we
shall endeavour to shew. Another correction is. still necessary
to reduce the observed to the true place. There is indeed no de-
flection of the light from its rectilinear course till it reaches the
atmosphere. The cause of the displacement to which we now
refer is the motion of the Earth in its orbit at a rate which
bears a finite though very small ratio to the velocity of light.
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If the Earth were stationary, the light of a heavenly body
‘would always proceed in the same straight line, in the direction
of which the body would be seen. If the transmission of light
were instantaneous, the line joining the body with the eye at
any moment would be the apparent direction of the body,
whether the Earth were in motion or not. But the -case is
different when the velocity of light is not indefinitely great
compared to that of the Earth ; for then the observer, supposing
himself at rest, attributes his own velocity in a contrary direction
to the light ; and this being combined with the actual motion of
the light, produces a resultant motion, the direction of which
is that in which the body appears. To make this clear, let .E
be the Earth in its orbit, o a distant body. Let E'E be a

¢ g

small arc of the Earth’s orbit, nearly coincident with the tan-
gent TE produced backwards. Take P such a point in Eo
that PE may be to E'E as the velocity of light to that of the
Earth. Then if a ray from o fall on the Earth at E, the Earth
will be at E' when the light is at P. The direction in which ¢
will be seen from E will be that in which the light, considered
as a moving body P, strikes E, or the direction of the relative
motion of the light with respect to E. This relative motion will
be unaltered if we suppose the Earth to remain stationary, and
its velocity to be communicated to P in the opposite direction,
for this is equivalent to impressing the same velocity on both



94 PLANE ASTRONOMY.

bodies, which does not affect their relative motions. If therefore
we suppose the Earth to remain at E’, while P has the com-
pound motion which would carry it through PE and EFE’, at
the end of the time P will arrive at E’, and its direction will be
PE'. Hence, when the Earth arrives at E, the light will
appear to strike it not in the direction o E, but in the direction
¢'E which is parallel to PE’, that being the direction of the
relative motion.

This effect of the observer’s motion may be illustrated by
a familiar example. If a man runs at a rapid pace in a shower
of rain which falls vertically, he finds that the drops beat into
his face exactly in the same way as if he stood still in a driving
shower. If instead of running he were carried along uncon-
sciously to himself, he would not be able to distinguish the
effect of his own motion from that of the rain. This is quite
analogous to the displacement of a heavenly body, the direction
of the light being changed.

The displacement due to this cause, which is called the
aberration of light, is measured by the angle o Ed’, or its equal
EPE'; that is, the arc of the sphere of observation which is
subtended by the angle o Ed’ is the correction to be applied to
the observed place of the body on this account. On account
of the great distance of the observed body, we need make no
distinction between the sphere of observation and the celestial
sphere. In order to apply the correction, it is necessary we
should know its amount and its direction.

From the triangle PEE', we have, using the circular measure
of the small angle EPE' instead of its sine,

. EE' . )
EPE PE sin PE'E,

!

where the ratio _EP'% is that of the velocity of the Earth to that

of light. The angle PE'E is evidently equal to ¢’ E7,, that is,
the angle between the apparent direction of the body and the
tangent to the Earth’s orbit. Now if S be the Sun, the line SE
is perpendicular to E7, on the supposition of the orbit being
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circular, and ET lies in the plane of the ecliptic; therefore ET
intersects the sphere whose centre is E in a point of the ecliptic
90° behind the Sun’s apparent place, and the arc of the sphere
which is subtended by the angle ¢’ET is that joining the star’s
apparent place with a point in the ecliptic 90° behind the Sun.
It appears from the above investigation that the displacement
lies in that circle, which is therefore called the great circle of
aberration.

Let the circle §8,8,S, represent the ecliptic, K its pole,
o the place of a star. Draw the great circle §,5, through

S2

K and o, and also the great circle S,S, through o and the
poles of the former great circle.

Suppose the Earth to be in such a part of its orbit that the
Sun’s apparent place is S,. Then §, is 90° behind the Sun,
and the great circle §,S, will be the great circle of aberration.
Therefore the star is displaced in that circle towards the point
8,

Let oo, be the displacement. Then, by the above equation,
oo, = %sin a,S,;
but as oo, is a very small arc never exceeding 20".1, we may
without sensible error write oS, for 4,8, ; therefore
oo, = 2 sin a8,

7
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Similarly, if o,, o,, o, be the apparent places of the star when
the Sun occupies the positions S,, S, S, respectively, we have

v .
vo, = —sinos,

V

v .
oo, = —sinaS,,

78

v .
90, = p;8in a8,

And if S be any other portion of the Sun, 8’ the point 90°
behind it, and &' the corresponding apparent position of o, we
have

v .
od' = —sinof',
vV

It is to be observed, that since the sine of an arc is equal
to the sine of its supplement, the displacements corresponding
to any two oppesite positions of the Sun will be equal. Thus
o0, = ga,, and oo, = go,. Also, since S, §, are the poles of
the great circle through Ko, ¢S, and ¢, are each arcs of

90°, therefore oo, = oo, = and this is the greatest possible

v
1—7:
amount of displacement. It is found to amount to 20".1, of
which angle TE’ is therefore the circular measure.

If we wish to express the correction in seconds, we may
substitute 20".1 for ;}, and writing a for the correction, and
¢ for the arc on whose sine it depends, and which is technically
called the Earth’s way, we have

a = 20".1 sin ¢.

Now &8, is the greatest arc, and S, the least which can be
drawn from o to the ecliptic, and o, is equal to the latitude
of the star; therefore, calling it A, we have 20”.1 sinA for the
least value of the correction for aberration.

It is evident that the star appears to describe in the course
of the year a symmetrical curve about its true place, and it may
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be shewn by an investigation foreign to our present purpose
that the curve is an ellipse.

The major axis of the ellipse is 40”.2, the minor axis that
quantity multiplied by the sine of the latitude. Therefore
a star situated at the pole of the ecliptic appears to describe
a circle, while a star in the ecliptic moves backwards and for-
wards in the same line.

58. The corrections for refraction and aberration being
applied, we arrive at the true place of the observed body in
the sphere of observation. The next process is to reduce the
place in the sphere of observation to that in the celestial
sphere, which makes the result independent of the place of
observation.

Let A be the place of observation, C' the Earth’s centre,
Z the zenith, HO the horizon, § a heavenly body, whose place

z

”l' B G SIS,

is determined by observation. Draw the great circle ZSM
cutting the horizon in M.

Then SM is the altitude, HM the azimuth of S,

Since A is the centre of the sphere of observation, if we
join A4S, AM, the angle SAM will measure the altitude, and
HAM the azimuth.

Through C draw a circle H'M’ 0’ parallel and equal to HO.

- .
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In it draw CM' parallel to AM, and complete the rectangle
CM, which evidently lies in the same plane with C, 4, and S.

The circle H'O'M' is called the rational horizon, HOM
being called the sensible horizon. The former is the horizon
of the celestial sphere, the latter the horizon of the sphere
of observation.

Hence the angle H'CM' measures the azimuth of § in the
celestial sphere, or as seen from the centre of the Earth; and
SCM' measures the altitude in the celestial sphere. Therefore
SCM', H' CM', are the reduced altitude and azimuth of S.

If we join HH', which will be parallel to MM’, we see at
once that the angle H'CM' is equal to the angle HAM, there-
fore the reduced azimuth is the same as the observed azimuth.

The reduced altitude is greater than the observed altitude
by the angle CSA4, which evidently depends on the distance
and the altitude of . )

Let CA the Earth’s radius be represented by r, CS, the
distance of § from C, by R, the observed altitude SAM by a.

CA sin CSA sin CSA

Then CS " 5in CAS " sin ZA4S’

therefore sin CS4 = _;-?, .COSQ. ...

In most cases % is a very small fraction, and CS4 a very

small angle, therefore we may write the circular measure of
CSA for its sine, and calling it p, we have

p= L cosa.
R

when ¢=0, p = % which we may call P, and thus we shall

get p = Pcosa.

The correction p, which has to be added to the observed
altitude in order to obtain the reduced altitude, is called
parallaz ; its value when the altitude is 0° is called the Aors-
zontal parallaz.
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The above equation expresses therefore the relation between
the parallax, the altitude, and the horizontal parallax.

54. We have now given the means commonly employed to
determine the altitude and azimuth of a body when observed
at a particular place, and to reduce the results of the obser-
vation to those of a contemporaneous observation supposed
to be made by a fictitious observer at the Earth’s centre.

If the position of the place of observation be accurately
known, it is easy to translate these results, which are given
with reference to the rational horizon of the place, into terms
which refer to the fixed circles of the celestial sphere: for the
position of the horizon of any place with respect to the celestial
equator is always known when the latitude is known.

In the case of meridional observations, we can at once obtain
the right ascension and declination from the time of transit and
the meridian altitude.

The declination, as has been shewn before, may be found
from the altitude and the known latitude by simple addition
or subtraction.

Also the time intervening between the transits of any two
bodies over the meridian is proportional to their difference
of right ascension, for it is the same part of 24 hrs. that the
angle at the pole between their declination circles is of 360°.
Therefore if the astronomical clock be accurately set, or its
error exactly known, which comes to the same thing, the time
of transit will be the difference of right ascension between the
observed body and the first point of Aries, t.e. the actual right
ascension of the body.

Thus the place of the body as referred to the celestial
equator is completely determined. It may be remarked that
right ascension is generally expressed in time, on account of
the kind of observations by which it is determined. It may,
however, easily be reduced to the ordinary measure of arc, by
allowing 15° to an hour, or a degree to every 4 minutes.

It is very important that the student should bear in mind

the nature of each of the corrections for refraction, aberration,
H2
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and parallax. The first two are rendered necessary by the
circumstance that the direction of the light which enters the
eye from a heavenly body is not the direction which if pro-
duced backwards would pass through the body. The third
is not required on account of any remaining error in the
position of the body as determined at the place of observation,
but is applied for the convenience of reducing all observations
to such as would be made at the centre of the Earth.

The amount of the first two corrections depends only on the
position of the body with reference to the horizon and the
ecliptic respectively, and not on its distance from the Earth.
The correction for parallax depends on the ratio of the Earth’s
radius to the distance of the body, that ratio being the sine
of the horizontal parallax. This circumstance makes a great
distinction between parallax and the other two errors, for in
the case of the fixed stars the ratio is quite imperceptible;
it is small in the case of the Sun and most of the planets. The
only ‘body which on aecount of its nearness is much affected
by parallax, is the Moon.

The determination of the horizontal parallax is of great
importance, not only for the purpose of reducing observations,
but also for the determination of the distance of the preposed
body, it being the angle CPE in page 5.

It was mentioned in page 5, that not only is the herizontal
parallax of a fixed star inappreciable, but also the angle sub-
tended by the radius of the Earth’s orbit is in general too
small to be determined, giving an overwhelming idea of the
vastness of the distances of these bodies. The latter angle,
from analogy to that subtended by the radius of the Earth,
is called the annual parallaz.

It was in the endeavour to detect annual parallax by ob-
servations of extreme delicacy on the star ¢ Draconis, that
the aberration of light was discovered. Bradley, by whom the
observations were made, discovered the annual displacement
which we have attempted to describe, and for some time was
unable to account for it. He ascertained that it could not
be due to the annual parallax which he sought; and as it
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occurred in other stars, it could not arise from proper motion.
At last he conceived the true cause, and acting upon his idea,
soon resolved the difficulty. It is a remarkable proof of the
accuracy of this theory, and of astronomical observations gene-
rally, that the ratio of the velocity of the Earth to that of light
given by the phenomena of aberration, is the same as that
determined by quite independent observations on the satellites
of Jupiter. It was found by Romer, that the eclipses of these
bodies occurred sometimes later than the time calculated and
sometimes earlier, according as the distance of Jupiter from
the Earth was greater or less. He accounted for this seeming
irregularity by supposing that light occupied a finite time
proportional to the distance, in passing frem Jupiter to the
Earth. He calculated on this hypothesis the velocity of light,
and found it would take about 16} minutes to traverse the
Earth’s orbit through the centre. It would thus take about
52 minutes to go round the orbit, supposed circular. The
ratio of 52 minutes to 865 days and a quarter would therefore
be the ratio of the velocity of the Earth to that of light; and
this result, as has been stated, agreed with Bradley’s to a great
degree of accuracy.

Precession and Nutation.

55. The instruments above described afford the means of
making observations, which when properly corrected and re-
duced give the right ascension and declination of a heavenly
body. An observer therefore, who knows his own position
and has an astronomical clock rightly set, may form a catalogue
of the fixed stars by writing down the right ascension and
declination of each. He may also, by an easy process in
spherical trigonometry, determine their latitudes and longitudes.
And these results being once obtained would be always true,
supposing the stars to have no proper motion, if the circles
of the celestial sphere always retained the same place. This,
however, is not exactly the case. The pole of the heavens
is subject to variations of position among the fixed stars, which,
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as will be seen, have nothing to do with the stars themselves,
but depend solely on the position of the Earth’s axis; and
of course the celestial equator has consequent variations. Thus
the declination is subject to change, not from any motion of the
stars, but from that of the circle to which they are referred.
The first point of Aries also varies in position, so that it is not
strictly accurate to define a sidereal day as the interval between
two successive transits of a star, although the error in one day
is so small as to be scarcely perceptible.

These changes in the position of the pole are caused by
a deviation of the axis of the Earth from parallelism, too small
to affect the general phenomena of the seasons, and only mani-
fested by delicate and long-continued observations of the fixed
stars. The cause of this deviation is the spheroidal form of the
Earth, which gives rise to a disturbing action from the Sun and
Moon. If the Earth were perfectly spherical, its axis would
always keep its parallelism, for the whole attraction of the Sun
and Moon on every point of the Earth would produce the same
effect as if it acted with the same intensity on the centre alone.

But in the actual case there is an additional action on that
part of the Earth which would be cut off by a sphere having
the minor axis as its radius. That part is in the form of a shell
whose thickness is greatest at the equator and vanishes at the
poles. The attraction on this mass produces a twisting effect,
which is small, on account of the smallness of the deviation
from sphericity, and the consequence is that the axis does
not keep exactly parallel to a fixed line, as it would if the
Earth were a perfect sphere.

To explain the effect, let
C be the centre of a sphere
of any radius, CK perpen-
dicular to the Earth’s orbit,
CP parallel to the Earth’s
axis at any time. If there
were no deviation from pa-
rallelism, CP would always
remain fixed; but to repre-
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sent the actual case, CP must revolve in a direction contrary
to that of tie Earth’s motion, and maintaining nearly the same
inclination to CK. Therefore the point P must describe nearly
a small circle about K, the arc KP being equal to o the
obliquity of the ecliptic. The motion of the axis is completely
represented by supposing P to move in the circumference of
a very small ellipse whose axes are 18".5 and 18".7 respectively,
the centre of the ellipse moving uniformly about K in a small
circle whose radius is . Thus P’s motion is of an undulating
character, as in the figure, though the undulations are much
smaller than there represented.

The centre of the ellipse revolves about K at a rate which
would carry it through the whele circamference of the circle
in 25,868 years, the annual arc described being 50".1. The
period of revolution in the small ellipse is about 19 years.

If we suppose C to be the centre of the celestial sphere,
and P its pole; then CP being always necessarily in the line
of the Earth’s axis, the point P will describe about K the pole
of the ecliptic, just such a path as in the supposed sphere.
This will continually alter the position of the equator with
respect to the ecliptic. The intersection of these two great
circles evidently lies in a great circle A£Q perpendicular to KP,
and consequently revolving with it. Therefore the equinoctial
points go backwards along the ecliptic at a rate which is nearly
uniform and averaging 50".1 in a year, while the inclination
of the equator to the ecliptic undergoes fluctuations whose
period is about 19 years.

The ecliptic being nearly fixed in space, we may consider
these motions of the pole as absolute. The effect is that the
fixed stars are subject to continual changes of right ascension
and declination. It is to be observed, however, that the
latitude and longitude being referred to the ecliptic, do not
change except in consequence of the change in the position
of the equinoctial point from which longitude is measured.
The latitudes therefore are unaltered, while the longitudes
increase by an average of 50".1 a year.

The general effect of the deviation of the axis from paral-
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lelism is usually separated into two parts, precession, arising
from the average retrogradation of the equinoctial points, or
the effect which would arise from supposing the pole to move
uniformly in the small circle whose radius is KP; and nutation
arising from the undulations on each side of the circle when we
take into account the superadded motion of the pole in the ellipse.

In consequence of precession, the pole and the first point
of Aries occupy very different positions now from those im
which they were in the first ages of astronomical observation.
The pole-star has not always been so near the pole, neither
will it keep its present position.

For some very remarkable facts of historical interest on this
subject, the reader is referred to Sir J. Herschel’s Astronomy.

The obliquity of the ecliptic is subject not only to the above-
mentioned fluetuations, but also to a very slow diminution which
depends on a change in the plane of the Earth’s orbit, and has
nothing to do with the position of its axis.

It must be carefully recollected, that though the pole of the
heavens and the celestial equator vary in position with respect
to the stars, they never change their position with reference to
the horizon of a particular place, for it is ascertained beyond
a doubt, that terrestrial latitudes are invariable. Therefore at
the same plaee the pole is always at the same altitude, and the
equator occupies the same position with respect to the horizon.

56. Effect of the ellipticity of the Earth’s orbit.

Let S be the Sun, E the Earth in its orbit, pSa the major-
axis of the orbit. Since § is the focus of the p
orbit, p is the point at which the Earth is
nearest to the Sun, and @ the point at which
it is at the greatest distance. These tweo
points are called the perihelion and aphelion
respectively. From p to a it is evident that : B
the Earth’s distance increases, and from a to '
p it diminishes.

The line pSa is called the line of apses.
It is not exactly fixed in space, but has a a
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slow progressive motion of about 11” in a year. Not that
the orbit is really a revolving ellipse, but that this supposition
explains the phenomena as in the case of the Moon’s orbit.
The actual orbit of the Earth is indeed very nearly elliptical,
and would be quite so but for the perturbations caused by
the other bodies of the solar system. One effect of these per-
turbations is to retard the times of greatest and least distance
from the Sun, so that they occur at intervals of rather more
than half-a-year from each other; and this is the same thing
as if the orbit were an ellipse, whose line of apses had a cor-
" responding angular motion.

In consequence of the varying distance of the Earth from
the Sun, the apparent diameter of the Sun varies continually,
being greatest at the beginning of January when the Earth is
in perihelion, and least about the beginning of July when the
Earth is in aphelion.

It will be remembered that the radius vector, or line joining
the Earth and Sun, passes over equal areas in equal times.
Consequently it must describe varying angles about § according
to the distance of E. For the greater the radius vector, the less
will be the angle it must pass over in order to describe the
same area. Thus the angular velocity of E about § will be
greatest at » and least at a. It will increase from 4 to p, and
decrease from p to a.

Now the apparent motion of the Sun is the same as the
actual motion of the Earth. Therefore the Sun will appear to
move with varying velocity in the ecliptic, the arc which it
describes in any given time being proportional to the angle
described by the radius vector. On this account the Sun’s
motion in longitude will be most rapid in January, and least
rapid in July, changing gradually from one of these times to
the other.

As the Sun appears to describe about the Earth an orbit
exactly similar to that of the Earth about the Sun, it is often
convenient to speak of this apparent orbit instead of the true orbit
of the Earth. Thus we speak of the Sun being in apogee and
perigee, instead of the Earth being in aphelion and perihelion.
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57. On Time. Solar time, as has been said before, depends
on the position of the Sun with reference to the meridian.

If a great circle be drawn joining the pole of any plane with
the true position of the Sun, and the angular distance of that
circle westward from the meridian be converted into time,
allowing 15° to an hour, the result will be the apparent solar
time, as estimated in astronomy. Consequently the astronomical
day begins at noon, and instead of beginning the hours again
after 12, we reckon on up to 24. The civil day begins on the
midnight before ; therefore, in translating ordinary dates into
astronomical language, if the time is between midnight and
noon, we must refer it to the day preceding, and add twelve to
the number of hours. Thus 8 o’clock A.M. on the 10th of
January is, in astronomical terms, 20h. on the 9th of January.

The angle between the meridian and the great circle passing
through the Sun increases continually from the diurnal motion
of the heavens, but not so rapidly as it otherwise would, because
the Sun is all the time moving in the opposite direction from
west to east. The angle is in fact that through which the
heavens have revolved since the Sun was on the meridian,
diminished by the Sun’s motion in right ascension during the
same time.

Now the motion of the heavens is uniform, and therefore
if the Sun’s motion in right ascension were uniform, the angle
which measures apparent time would increase uniformly. But
the Sun’s motion in right ascension is not uniform, partly
on account of the ellipticity of the Earth’s orbit, which
we have already considered, and partly because of the in-
clination of the axis, the effect of which we shall presently
shew. Consequently apparent time does not increase uni-
formly. On this account it is impossible to regulate a clock
to follow the Sun exactly, as to do this its rate must con-
tinually change.

Hence clocks are generally regulated to mean time, or the
time which would be indicated by a body moving uniformly
in right ascension with the mean or average velocity of the
Sun.
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Now as no such body can be observed, but apparent time
only can be obtained by observation, it is necessary to find
what correction must be applied to it in order to obtain mean
time. Such a correction is called the equation of time.

The direct method of finding the equation of time is by
determining the Sun’s true right ascension, and taking the
difference between that and his mean right ascension. This
difference expressed in time is the correction required. We
may, however, explain the general nature of the correction and
its comparative amount at different times, without entering into
these calculations. There are two causes, as has been observed
before, from which it arises—the ellipticity of the orbit, and the
inclination of the axis; each of which produces its effect, and
by taking these effects separately, we may greatly simplify our
explanations. We cannot indeed, in strictness, consider the
effect of each as if the other did not exist, for each is modified
by the other. The correction due to the obliquity of the
ecliptic is not the same as it would be if the orbit were circular,
nor that due to the ellipticity of the orbit the same as if the
ecliptic coincided with the equator. But the whole amount
of the correction is small, and therefore we may without per-
ceptible error form a general estimate of its nature by taking
each part independently.

First let us take the part due to the ellipticity of the orbit,
and for simplicity we shall suppose the Sun to move in an
ellipse about the Earth in one focus. Let a body § move with
the Sun’s mean angular velocity, starting with the Sun from
perigee. It will at first fall behind the Sun, because the Sun’s
motion is there quicker than the average. But the Sun’s
velocity is gradually diminishing, and at some point about
half-way between perigee and apogee becomes equal to its
mean velocity. After this point its velocity will be below the
mean, and therefore § will begin to gain on the Sun. The
two bodies will arrive at apogee at the same time, because
from perigee to apogee is exactly half the ellipse, and the Sun
therefore describes it in half-a-year. From apogee to perigee
the same thing will occur in inverted order. Therefore from
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perigee to apogee S is behind the Sun, and from apogee to
perigee before it. The distance between § and the Sun is
greatest at points about half-way between apogee and perigee,
where the Sun’s velocity becomes equal to its average value;
for then § will begin to gain on the Sun between perigee and
apogee, and to lose on it between apogee and perigee.

Taking this cause alone, therefore, and supposing the clock
to be regulated by the body &, if the clock and the Sun are
together at perigee, they will also be together at apogee. From
perigee to apogee, S being behind or to the west of the Sun,
will come to the meridian before it. Hence the clock will be
before the Sun. From apogee to perigee the clock will be
behind the Sun.

Again, let us consider the effeet of the inclination of the
Earth’s axis, or the inclination of the ecliptic to the equator.

E<T \]:>Q

DS’ N 5D

Let EMQ, ENQ be the ecliptic and equator, intersecting
in the points E, Q. Each of these arcs therefore is a semicircle.
Let EM, EN be quadrants, and join MN. The angles at M, N
are both right angles, because E is the pole of MN.

If § be the Sun at any point of its orbit, and SD an arc
drawn at right-angles to the equator; ES is the longitude and
ED the right ascension. If S be between E and M, we have
a right-angled triangle in which the hypothenuse ES is neces-
sarily greater than the side ED. If § be between M and Q,
we have in like manner SQ greater than DQ, and therefore ED
greater than ES. If § coincide with M, D will coincide with N.

Therefore, from the equinox E to the solstice M, the longi-
tude is greater than the right ascension. At the solstice M the
longitude and right ascension are equal. From the solstice to
the equinox, the right ascension is greater than the longitude.
The same thing may be shewn in the other half of the orbit
from Q to E.
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Now if a body §' move in the equator at the same rate as §
in the ecliptic, we shall have ES' = ES; and if we suppose the
motion in longitude uniform, ES’ will be the mean right ascen-
sion, ED bLeing the true right ascension. Hence the mean
right ascension will be greater than the true from the solstice to
the equinox, and less from the equinox to the solstice.

If then we take the equation of time arising from this cause
alone, regulating the clock by ', the clock and the Sun, being
together at E, will always agree at the equinoxes and solstices.
The clock will be before the Sun from solstice to equinox, and
behind it from equinox to solstice. Between each equinox and
solstice will be points where the clock and the Sun have their
greatest difference, and after that begin to approach one another
again.

The whole equation of time is found by adding together,
with their proper signs, the corrections due to the two causes
separately.

The general effect may be shewn very simply by means of
a diagram, as we shall proceed to explain.

a F4

Let ap be a curve* whose ordinate at any point is pro-
portional to the correction due to the ellipticity of the orbit, at
the time of year indicated by the abscissa. Let p represent the
perigee, a the apogee ; therefore at those points the curve will
cross the axis. From p to a the Sun is behind the clock, there-
fore the curve will be below the axis ; and similarly, from a to p
the curve will be above the axis. The maximum distance of
the curve from the axis will be at points intermediate between
pand @, @ and p.

Similarly, we may represent the correction due to the in-
clination of the ecliptic by a curve, cutting the axis at the points
M, A, W, 8, representing the summer solstice, the autumnal

® For this method I am indebted to Prof, Fischer, Fellow of Clare Hall.
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equinox, the winter solstice, and the spring equinox, respec-
tively.

If we describe both curves on the same axis, giving them

- their proper relative position, and describe a third curve whose

ordinate at any point is equal to the sum of the ordinates of the

other two, with their proper signs, that third curve will repre-
sent the whole equation of time.

The Sun being in apogee about the beginning of July, and
in perigee about the beginning of January, the point @ will be
a little beyond M, and p a little beyond W. The dotted line in
the second figure will represent the curve in the first.

The maximum value of the second correction is rather
greater than that of the first, therefore the dotted curve must
not recede so far as the other from the axis.

The simplest way of drawing the third curve is by describing
the other two curves on opposite sides of the same axis ; that is,
for instance, by drawing the first curve delow the axis from a
to p, and above it from p to a. Then the distance between two
corresponding points of the two curves will be the sum of their
ordinates taken with their proper signs, and therefore equal to
the corresponding ordinate of the third curve.

Drawing the curves in this way, we observe that they inter-
sect in four points, at which points therefore the third curve
cuts the axis. Two of these points are between § and M, one
between M and A4, and one between W and p.

r,
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The curve which actually represents the equation of time
will be approximately that in the last figure. The clock will
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be behind the Sun between p, and p,, p, and p,. It will be
before the Sun between p, and p,, p, and p,. The greatest
difference will be between p, and p,. Thus it appears that
the equation of time vanishes four times a-year at irregular
intervals.

68. The Sidereal Year is the time occupied by the Earth
in making a complete revolution about the Sun. The period
which we commonly call a year is, however, somewhat less
than this; on account of the motion of the equinoctial points
in the opposite direction to that of the Earth. This causes
each equinox and sclstice to occur earlier than it otherwise
would, and therefore the course of the seasons to occupy some-
thing less than the time of a sidereal revolution. In astronomy
this period is called the Tropical year.

The Anomalistic Year is the period of the Earth’s revolu-
tion from aphelion or perihelion to the same point again: since
the line of apses moves in the same direction as the Earth, the
anomalistic year is rather longer than the sidereal year. The
respective lengths of the sidereal, tropical, and anomalistic years
are

865d. 6h.9m. 10.7s.; 365d. 5h. 48m. 51.6s.; 365d. 6h. 13m. 44.6s.

The tropical year being nearly 365 days and a quarter, the
ordinary reckoning of 365 days to a year with the addition of
a day every four years is nearly correct: but this addition is
rather too great, as the excess over 365 days is 11 minutes less
than 6 hours. Consequently the average length of the ordinary
year exceeds that of the tropical year. Fo remedy this we take
away 3 days every four centuries. This is generally done by
reckoning as an ordinary year the year which completes a
century, unless the number of centuries which it indicates is
divisible by 4. Thus the year 1800 was not a leap-year,
as it completed the 18th century, and 18 is not divisible
by 4.

The addition of one day in four years is called the Julian
correction, having been introduced by Julius Cwsar. For a
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long time it was thought sufficient; but it was found that
in consequence of the average year being thus made too long,
the seasons did not occur at the same times as at first. In fact
the vernal equinox, which was at first fixed on the 21st of
March, fell several days earlier. The present arrangement was
introduced by Pope Gregory in 1582, and bears his name. It
was not adopted in this country till the year 1751, when 11 days
had to be left out. The former method of reckoning is still
called Old Style. The difference between it and our present
reckoning is now 12 days, another day having been left out
in the year 1800. Thus old Christmas-day is the 6th and
old New-year’s day the 13th of January.

59. Terrestrial Longitude.

It has been already explained that the longitude of a place
on the Earth’s surface is the angle included between the meri-
dian of the place, and some fixed meridian whose position is
arbitrary. It is usual in this country to take the meridian
passing through the Observatory of Greenwich as the origin
of longitudes, and to measure them both eastward and west-
ward up to 180°

The terrestrial meridian, it will be remembered, is a great
circle passing through the poles of the Earth and the proposed
place. It is therefore the section of the Earth’s surface made
by a plane passing through the proposed place and the Earth’s
axis.

Since this plane passes through the Earth’s centre, it will,
if produced to the celestial sphere, pass through the zenith of
the proposed place; and since it includes the Earth’s axis,
it will also pass through the pole. Therefore it will intersect
the celestial sphere in the celestial meridian of the place.
Hence the angle between the celestial meridians of any two
places is equal to their difference of terrestrial longitude.

‘We have seen that the apparent time at any place is mea-
sured by the angle included between the great circle joining
the Sun’s true place with the pole and the celestial meridian.
Now the difference between this and a similar angle measured
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from the meridian of another place must be equal to the angle
included between the meridians of the two places, that is,
the difference of their terrestrial longitudes. Therefore the
difference between the apparent times in two places, at the
same absolute instant, is, when converted into arc at the
rate of 15° to an hour, the difference of their terrestrial
longitudes,

The same thing may be shewn of the difference of their
mean times and their sidereal times; for the demonstration
would have been exactly the same if instead of the actual
position of the Sun, we had taken the place of the fictitious
body which regulates mean time, or the first point of Aries
which regulates sidereal time.

Since the angle which measures time is estimated westward
from the meridian, it will be greater at the more easterly
of the two places than at the other, and therefore the time
at the former place will be in advance of the time at the
latter.

Hence, if a traveller proceed in an easterly direction from
Greenwich, carrying with him a watch shewing Greenwich
time, he will find his watch too slow by four minutes for every
degree of longitude through which he has travelled. In the
same way, if he proceed westward, he will find his watch too
fast. If he extend his journey either to the east or west
through 180° of longitude, he will find his watch just twelve
hours different from the time at the place where he has arrived.
But if he has travelled eastward, it will be twelve hours too
slow, and if he has travelled westward, it will be twelve hours
too fast. Hence, two travellers meeting at such a place would
agree as to the time of day, but would differ as to the day
itself, for their reckonings would differ by twenty-four hours.
Supposing for instance they met at noon, the Greenwich time
being midnight, the eastward traveller would reckon it the
noon succeeding the Greenwich midnight, and the westward
traveller would reckon it the noon preceding the same mid-
night. The former would be in fact a day in advance of the
latter. Supposing the same travellers to continue their progress

1
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and to meet at Greenwich after having completed the circuit
of the Earth, the one would find his watch twenty-four hours
too slow and the other twenty-four hours too fast. They would
therefore differ in their reckonings by two whole days. In
fact, since the one has gone round the Earth in the direction
of its motion, he has made one more revolution than the place
from which he started, and so his journey has appeared to
occupy one more day than it really did. Similarly, the other
having gone round in the contrary direction to the Earth, his
journey has appeared to him to occupy one day less than its
actual time.

60. Having now described some of the most simple astro-
nomical phenomena, and also the instruments in common use,
and the corrections which are to be applied to observations
made by them; we shall devote a brief space to the description
of some of the most ordinary observations, and the uses to
which their results are applied.

We may remark that observations are divided into two
great classes: those which are purely astronomical, or intended
solely for the purpose of determining the positions of the
heavenly bodies; and those which may be called in contra-
distinction geographical, whose object is to determine the
positions of places on the Earth’s surface.

Observations of the former kind are made in fixed obser-
vatories, with every resource of art and science which can
promote accuracy. Those of the latter kind are made chiefly
at sea, in unexplored countries, and for the measurement of
arcs of the Earth’s surface in order to determine its figure and
magnitude. It must not, however, be thought that these
classes of observations are independent of one another. It is
necessary that the geographical position of an observatory
should be most accurately known, in order that observations
made there may have any value; and again, it is by tables
constructed from theory on the data furnished by these obser-
vations, that we are enabled to determine geographical positions
with readiness and certainty.
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We shall begin with observations for finding the latitude
and longitude of a proposed place. We shall only give the
most simple methods in use, the others being reserved for the
second part of this work.

61. To find the latitude. This may be done by taking the
meridian altitude of any body whose declination is known, as
will appear from page 41.

It may also be found by taking the altitudes of a circum-
polar star at its upper and lower transit. In this case the
declination need not be known, for since the polar distance
always remains the same, the half-sum of the observed altitudes
will give the elevation of the pole, and therefore the latitude.

All the altitudes must be corrected for refraction. Those
of the Sun, Moon, and Planets must also be corrected for
parallax : and as the upper or lower limb is the part observed,
the semi-diameter must also be added or subtracted to give the
altitude of the centre.

The practical method of finding the meridian altitude, when
the time of passing the meridian is not exactly known, is to
observe the body some little time before its transit, following
it with the instrument as long as it continues to rise, and
leaving off as soon as it begins to sink. Thus the altitude
indicated by the instrument is the greatest which the body
has attained, and therefore the meridian altitude required.

At sea this observation is made with the sextant, chiefly
on the Sun. The lower limb of the Sun’s image being at first
made to touch the horizon, as has been described before,
appears to rise from it after a while, if the altitude is increasing.
The observer brings it down again by moving the index for-
ward, and continues to do so as long as it rises. As soon,
however, as the limb appears to dip below the horizon, he
knows that the meridian has been passed, and that the reading
of his instrument is the altitude required.

On land the observation is best made with an altitude and
azimuth instrument. It may, however, be made with a sextant,
by taking the angle between the body and its image reflected

12
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from a trough of mercury. As however the result of this
observation is twice the altitude, and the sextant is not capable
of measuring angles much exceeding 126°, this method is very
often impracticable.

62. To find the longitude.

‘We cannot find the longitude at once like the latitude, for
it is not marked by any peculiarity in astronomical phenomena,
and is in fact only an arbitrary quantity depending on the
position of the place from which we choose to measure it.
It is, however, absolutely necessary to the complete deter-
mination of geographical positions, and also to travellers on
sea or land in order to make use of the charts on which such
positions are laid down.

It will be seen from what has preceded that what is required
is to determine the time simultaneously at the place of obser-
vation and at the place from which longitudes are measured.
Now the time at the place of observation may be easily found,
as we shall proceed to shew ; but to ascertain the time at Green-
wich, or any other place seleeted as the origin of longitudes,
is a matter of no small difficulty, and has long exercised the
ingenuity of scientific men.

For a long time the progress made in the solution of this
problem was very slow, and therefore the longitude could not
be determined with any degree of certainty. The importance
of greater accuracy to navigation induced the Government to
offer large rewards for improvements in this respect; and we
are now enabled to arrive at a great degree of exactness,
though still inferior to that which is attainable in finding the
latitude.

- We shall first shew how the time may be found at the
place of observation. ‘

The most direct way is by observing the transit of the Sun
or any known body across the meridian.

The transit of the Sun occurs of course at apparent noon,
and that of any other body at the sidereal time which is equal
to its right ascension converted into time.
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This method, however, requires a fixed instrument and a
knowledge of the meridian. It is therefore useless at sea.
The time of transit may however be roughly ascertained by
observing the meridian altitude with the sextant; but as the
altitude varies very slowly about noon, the result is not to be
depended on for great accuracy.
If the altitude be observed out
of the meridian, and the latitude
be known, then three sides of a
spherical triangle SZP being s
known, we may find the angle ZPS, which gives the apparent
time.

The difficulty of this method at sea is, that owing to the
constant change of position the latitude is not accurately known,
except when a meridian observation can be taken. If, how-
ever, the Sun be not near the meridian, a very exact knowledge
of the latitude is not necessary, and it is sufficient to use the
approximate latitude estimated from the distance the ship has
run and the course she has steered since the last determination.

By these and other methods, which we cannot now enter
into, the apparent or the sidereal time at a given place may
be found, and the mean time may of course be derived by
the application of the equation of time. We now proceed to
explain some of the means employed to determine the time at
Greenwich.

If it were possible to construct a chronometer such that its
going might be perfectly depended onm, it would be sufficient
to carry such an instrument regulated to Greenwich time to
any place whose longitude was to be ascertained ; and a ship
provided with such a chronometer would be furnished with
the means of determining the longitude whenever an oppor-
tunity occurred of observing the time.

It is impossible, however, to construct time-pieces accurate
enough to be implicitly relied on, even if we employ several
at once, and take the mean of their results, which is much
nearer the truth than the time shewn by any one by itself. It
is necessary, therefore, to find independent means of determining

P
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Greenwich time. It is obvious that if any phenomenon can be
observed of which the Greenwich time is known by previous
calculation, it will answer the purpose. Of this nature is the
beginning or ending of an eclipse of the Moon, which is seen
at the same absolute time from all parts of the Earth to which
the Moon is visible, and the time of which at Greenwich may
be accurately calculated. As, however, eclipses of the Moon
rarely occur, they are not of much use; besides which, owing
to the undefined nature of the Earth’s shadow, it is difficult
to tell exactly when the Moon enters it or leaves it. The
eclipses of Jupiter’s satellites are more available, for they occur
frequently, and the moment of their immersion in the shadow
of the planet or emergence from it may be generally observed
with considerable precision. As, however, a telescope of con-
siderable power is required, the unsteadiness of a ship renders
it impossible to make these observations at sea.

The method which is most used in navigation—indeed the
only method generally available at sea—is that of lunar dis-
tances ; or observing with the sextant the angular distance of
the Moon from the Sun, or from certain stars selected for the
purpose. The Moon’s motion among the stars is sufficiently
rapid to cause perceptible variations in its distance from any
one of them in short intervals of time. The distances from the
selected stars are tabulated for every three hours of Greenwich
time in the Nautical Almanac, being calculated from the lunar
tables with all attainable accuracy; and by this means, if any
one of these distances be observed at the proposed place, we
may find by simple proportion the Greenwich time of the
observation, supposing the distance to vary uniformly during
the short period of three hours, which will generally be the
case. The observed distance will generally be found to lie
between two tabulated distances; and by finding in what pro-
portion it divides the difference between them, we can deter-
mine the time which must be added to that of the first tabulated
distance in order to give the true time of the observation.

The tabulated distances, however, are calculated for the
celestial sphere. Therefore the observed distance must first be

™
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corrected for refraction and parallax, which by altering the
altitudes of the bodies will also change their apparent distance.
In order to make these corrections, the altitudes of the bodies
must be observed simultaneously with the distance; and this
will have the farther advantage of giving the time at the place
of observation—the apparent time if one of the bodies be the
Sun, the sidereal time if it be a known star: and thus at the
same time all the data for the determination of the longitude
will be obtained.

63. Such are the usual methods of determining geographical
latitude and longitude. In observatories a great many deter-
minations of the geographical position are made, and thus more
accurate results are obtained than by any single observations.
When the geographical position is perfectly known, the mural
circle and transit instrument are employed to determine very
accurately the right ascensions and declinations of the Sun,
Moon, planets, and fixed stars ; and these results are constantly
compared with those of calculation from theory, in order to
correct and improve the tables by which the motions of these
bodies are predicted, The fixed stars having but very small
variations in position, catalogues of their places at given epochs
are formed, from which, by the application of the corrections
for precession, nutation, and aberration, their places at any
other times may be found.

If an observatory has to be erected in a new place, it is
necessary to place the transit and mural circle in their right
positions, and to set the sidereal clock. The transit may be
approximately placed by the method before described for find-
ing the meridian direction by equal altitudes of the Sun. Then
its errors of collimation and level being as much as possible got
rid of, the error of deviation may be corrected by the transits
of a circumpolar star. The mural circle may be adjusted by
means of the transit, when that instrument is accurately placed.

To set the sidereal clock, it will be sufficient, if the observer
have a catalogue of the stars, to observe the transit of a star
whose right ascension is known. This will give the sidereal
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time at once, and continued observations of the same or other
stars will give the rate.

64. We shall conclude this part of the subject with a few
general remarks on the subject of eclipses.

It has been already shewn that lunar eclipses present the
same appearance to all observers to whom the Moon is visible
at the time. It is therefore sufficient to calculate them as they
would be seen from the centre of the Earth, which may be done
with great exactness from tables which give the positions of the
Moon and of the Earth’s shadow. It then only remains to find
in what parts of the Earth the Moon is above the horizon at the
time of the eclipse.

Let S be the centre of a section of the Earth’s shadow at the
distance of the Moon. The point §is of course exactly opposite

"/

to the Sun, and therefore moves along the ecliptic at the same
rate as the Sun. The Moon’s centre, when in opposition, is in
conjunction with S, or in some point O in a great circle per-
pendicular to the ecliptic at §; and, if O be near enough to §,
the Moon’s orbital motion, which is much quicker than that of
the shadow, will cause it to pass through part of the shadow
and to be eclipsed.

‘We are able to find from the tables the exact time of op-
position, the latitude of the Moon at the time, the apparent
diameters of the Moon and the shadow, and the velocities of
each ; and from these data we can calculate the time when the

Moon enters and emerges from the shadow. The shadow,
" moving in the ecliptic, has of course only a motion in longitude,

-
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while the Moon, moving in an inclined path, varies both its
longitude and latitude.

The apparent path of the Moon with reference to the shadow
is found by applying to each the velocity of the shadow in the
opposite direction, that is, by supposing the shadow to remain
fixed, and subtracting its velocity in lengitude from that of the
Moon.

Taking this relative velocity in longitude and the true velo-
city in latitude, as found from the tables, we may find the
Moon’s relative path, such as MM’ represented in the figure.
If SM and SM’ be equal to the sum of the radii of the Moon
and shadow, M and M’ will be the positions of the Moon’s
centre for the beginning and ending of the eclipse, and the
times of its being in these positions may be calculated from
the tables. Thus all the circumstances of lunar eclipses may
be calculated.

It is to be observed, that although the Moon at opposition
may pass much within the cone of the Earth’s shadow, and may
therefore be entirely deprived of the direct solar light ; yet some
light bent out of its course by the Earth’s atmosphere finds
its way within the shadow, so that in general the Moon is
discernible throughout a total eclipse, appearing of a dull red
colour.

Solar Eclipses.—Suppose two observers, 4 and B, to stand
on different points of the Earth’s surface about the time of con-
junction of the Sun and Moon, as seen from C the centre of the
Earth.

4 M
T §
e

B

Let M be the Moon, S the Sun. Join A3, BM, CM, and
produce them indefinitely. If CM produced meet the Sun’s
surface, AM and BM may fall without it on different sides, so
that the Sun may be eclipsed to C' while 4 and B have an
uninterrupted view of it. And if the Moon come to a point M’
where it passes between 4 and the Sun, there may be no
eclipse at B or C.
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Thus it is by no means sufficient to calculate an eclipse of the
Sun as seen from the centre of the Earth, for the appearances
vary according to the position of the spectator on the surface,
and must therefore be separately calculated for any proposed
place.

The places on the Earth’s surface also to which the eclipse
is visible are not at all so easily ascertained as in the case of
a lunar eclipse, for they depend on many circumstances besxdes
the Sun’s being at the time above the horizon.

It is evident that the Moon, like the Earth, casts a conical:
shadow in the direction opposite to that of the Sun, and that
from all points within the shadow the Sun’s light is completely
shut out. Now we may calculate the path of the Moon’s
shadow just like that of the Earth’s shadow in a lunar eclipse,
and if we can find the parts of the Earth which it successively
obscures, we know to what places the Sun will be totally
eclipsed. The shadow, however, does not always extend as
far as the Earth, for the orbit being elliptic and not circular
the distance of the Moon varies, and sometimes the shadow
comes to a point without reaching the Earth. When that is
the case, the Sun cannet be totally eclipsed, for it will subtend
a larger angle than the Moon from any point of the Earth’s
surface. In that case, when the observer is in the direct line
of the axis of the shadow, the Moon will appear surrounded by
a bright ring of the Sun’s surface. Such eclipses are called
annular. When an eclipse is central, it is fofal or annular
according as the apparent diameter of the Moon is greater or
less than that of the Sun. The difference between the diameters
is never very great, so that neither of these appearances can
last very long.

If E be the Earth as seen from the Moon, we may calculate
the path SS' of the centre of the
shadow, or of the point where the <
axis of the shadow, produced if
necessary, meets the surface. The
times corresponding to § and &'
will be the times of beginning
and ending of the central eclipse upon the Earth. An observer
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at § at the first of these times will see the Sun rise centrally
eclipsed, and an observer at 8" will see it set centrally eclipsed,
and all places on the line 8§’ will have a central eclipse at some
part of the day. Of course partial eclipses will be seen over
a much larger part of the surface.

If the Earth had no motion of rotation, the path of the
central eclipse would not be difficult to find, Jbut the diurnal
motion makes the calculation very complicated. The student
will best understand the nature of the path by consulting the
maps which are given every year in the Nautical Almanac.

END OF THE FIRST PART.
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