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NOTES ON HYDRAULICS.

" A perfect fluid is an aggregation of particles which yields at once to

the slightest effort made to separate them from each other." A perfect

fluid has no cohesion, offers no resistance to change of shape, assumes

the shape of the vessel containing it, and its shape may be changed with-

out doing any internal work.

Fluids are divided into liquids and gases : the former are incompressi-

ble and inelastic; the latter are compressible, elastic, tend to expand

indefinitely, and therefore vary in density.

No known fluid is perfect, but all offer some resistance to change of

shape. An imperfect fluid, however, yields to the slightest effort made to

separate its particles from each other, if that effort be continued long

enough.

The mechanics of fluids is divided into Hydrostatics, Hydrodynamics,

Aerostatics, and Aerodynamics. The general term hydraulics may be held

to include them all, though generally limited to the first two.

Variation in density of gases.—Let v be the volume, w the weight, p the

pressure, and t the temperature of a given quantity of a gas. Then y, the

w
weight of a unit of volume, is equal to — . The density p may be defined

v

y w
as the mass of a unit of volume, hence it is equal to -, or p g =. y = —

g v

p» = constant.

Boyle's or Mariotte's law.—With a constant temperature, the pressure

varies inversely as the volume ; hence p v = constant, and p = c p, where
c is a constant.
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Gay-Lussac's law. —With a constant pressure, an increase of tempera-

ture of 1° C. produces in a mass of air an expansion of 0.003665 of its

volume at 0° C.

Letting subscript refer to a temperature of 0° C., we have for the

volume at any temperature t

v = v (1 X a t) hence

p — p (1 + a t).

At a constant temperature 0° C„ pressure and density vary according

to the law p = c p , hence substituting for p we have

p == ep (.1 + a$) ^s t. y IX + a t)

— k.y (1 + a t)

If yi be the weight of a cubic unit under a pressure px and temperature

h, and 72 correspond to p2 and t2 , we have

p2 = k y2 (1 + a t2)

px
— k yi (1 + a ti) hence

y2 _ j?2 • 1 + a h

"t7 Pi 1 + at2

CHAPTER I

HYDROSTATICS.

Hydrostatics treats of liquids at rest ; its theorems apply to viscous as

well as perfect liquids, for the pressures in both follow the same laws.

It is only when motion is considered that viscosity has any effect.

I. In a perfect fluid always, and in all fluids at rest, the pressure on any

plane is normal to that plane ; for otherwise there would be a tangential

component which would cause motion. The intensity of pressure is the

pressure per square unit of surface.

II. At any point in any fluid at rest, or in a perfect fluid in motion, the

pressure has the same intensity on all planes passing through that point.
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Proof (Fig. 1).—Let O X, O Y, and Z be three rectangular axes, and

O A B C any triangular pyramid. The pressures px p„ p3 > and p per

square unit on the planes O C B, O A C, A B, and ABC, are normal

to those planes. The total pressures are :

px
• O B C parallel to X.

py
• O A C parallel to Y.

pz
• O A B parallel to Z.

p - ABC normal to A B C
The forces acting on the pyramid must be in equilibrium ; these forces

are the four just named, and the external forces (such as gravity) acting

on the mass A B C, the latter being proportional to the volume of the

pyramid. Let the pyramid be made smaller, by moving the plane ABC
parallel to itself, towards O. The four pressures, since they vary as the

areas of the sides, vary as the square of any dimension, such as O A. The
internal forces acting on the mass O A B C, since they vary as the volume,

vary as the cube of any dimension, such as O A. Hence at the limit, when
the pyramid becomes infinitesimal, the latter will vanish in comparison with

the four pressures, and these pressures alone must be in equilibrium. Re-

solving them parallel to the three axes, and putting first the components

parallel to X equal to zero, we obtain the following : calling a, j3, and y

the angles which p makes with X, O Y, and O Z, the component of the

pressure p. ABC parallel to O X is p . ABC. cos. a. But ABC. cos.

a = B O C, hence p. A B C. cos. a = p. B O C. The condition that the

components parallel to X are in equilibrium becomes therefore

px BOC=r BOC
Px=P '

In a similar way we should find py = p and pz = p, hence we have

Px=Py=Pz=P '

which proves the proposition, as the result is independent of the particu-

lar plane ABC.
The following problem is one of the principal general problems in

hydrostatics. We give first the general solution; particular cases may,

as we shall see, be solved more easily.

Problem.- To find the differential equation of pressure in any liquid.

We consider simply the equilibrium of an infinitely small parallel-

epipedon ABCDEFGH (Fig. 2), whose edges are parallel to three rec-

tangular axes. The weight of a unit of volume is y, and the external

force on a unit of mass is X along the axis of X, Y along the axis of Y,

and Z along the axis of Z. The pressure at A per unit of area is p, and

the edges A B, A C, and A E are respectively d x, d y, and d z. The inten-
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sity of pressure on the plane A C G E, whose area is dy dz, is p. That on

the plane B F H D, which has the same area, but is farther from O by a

distance dx, will not be exactly the same, but will be ( p + -r— • dx
J.

The only forces acting on the parallelpipedon parallel to O X are these

two pressures, acting in opposite directions, and the force Xper unit of

mass. Placing these equal to zero, since they must be for equilibrium,

we have

^ 77 / i
dP 7 \ 7 7 • •*• dx. dy dz;O—pdydz— [p + -~--dx) dy dz + X. y. "

\ o x / y

or, reducing,

dx g

This expresses the rate at which the pressures changes as x is increased.

In a similar way we should have

6p
dy

= y_

dp
dz

= y_

&

If we change x, y, and * simultaneously, for instance, if we go from A
to H in the figure, we may pursue the path A B D H, and the total change

in p will be

dp
6x

A B +
dp

dy'
AD +

dp

Tz DH, or

dp = dp
dx

dx +
6P 7

dy
4-

dp

~6z'
dz

= 7

9
fx dx + Y dy 4- Z d ;

]

and if p is the pressure at A, then p + dp will be the pressure at H.

This is then the general differential equation of pressure.

For surfaces of equal pressure dp = 0, or X dx + Y dy + Z dz = 0.

The free surface is a surface of equal pressure, and satisfies this equation.

Application to liquids under action of gravity alone. (Fig 3.)

Here X= Y = ; Z = — g. Hence equation of surfaces of equal

pressure is

o = — g d z, whence

z = constant (horiz. planes).

To find pressure at any point

dp — — y dz.
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Let there be a pressure p on the surface, theu integrating we get

p == Po — yz

if our origin is at the surface, and z positive upwards. If z is positive

downwards,
p = po + y z.

This may be more easily obtained directly, by considering a vertical

cylinder of area unity. Thus the pressure on the bottom is evidently

Po + yz, as before. (Fig. 3.)

Application to gases.—In this case y varies, and if y be the weight of a

cubic unit at 0° C. and a pressure p , we shall have

7 — 7o tt^tl
—

it hence
' ' p (1 -f at)

dp = — y .
—

•//_,
—tt- d z.y

p (1 + at)

. p Po (1 + at)
zx
— 2 = log e . -£-. -^2± '-.

Pi yo

Z\ — z is the difference of heights corresponding to barometric pressures

p\ and p . Corrections: (1) for latitude; (2) for elevation
; (3) for tem-

perature of mercury
; (4) for temperature of air.

Pascal's theorem. — Any pressure on a liquid is transmitted with

equal intensity throughout the liquid. (Fig. 4.)

Proof. — Take any cylinder whose area is constant, but whose axis has

any shape (see fig. 4). Then by the principle of virtual velocities, since

the forces along the circumference of the cylinder act normal to its axis,

we have
p A. dx = p' A dx .*. p = p'.

This considers effect of pressure alone, and neglects gravity. (Ex-

amples of effect of both.) Applications to hydraulic press.

Pressures in liquids. —We have seen that at any depth d,

p = p + yd. or, JL = 22. + d.

y y

p-£— is called the height due to the pressure.

(Graphical representation, Fig. 5.)

Case of liquids of different densities (Fig. G).—Surfaces of separation

are horizontal.
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Then p x as p„ +• yx dx

Vi — Pi + >2 d2 = Po + n di + 72 ^2-

P3 — P2 + 73 ds = p + 7! (&! 4- 72 d2 + 73 ds, etc.

Application of the general equation of pressure to a rotating

liquid.—Let us endeavor to fiud the form of the free surface of a liquid

rotating about a vertical axis. Let A B C D (Fig. 7) be a cylindrical ves-

sel containing the liquid, which is rotated about the axis O Z with an

angular velocity w. If we suppose the co-ordinate system O X Y Z to

revolve, then the liquid is at rest with reference to the system, and we

can apply the equations of hydrostatics, provided we take account of the

fact that we have a case of relative rest only. Now, we know from

mechanics that if a body is actually in motion, and we wish to investigate

its motion with relation to a co-ordinate system which is itself in motion,

we must add to or compound with the actual velocity of the body a veloc-

ity equal and opposite to the velocity which the point occupied by the

body would have as a part of the moving co-ordinate system. In the

same way, if we are considering forces, then, to refer the case to a moving

system, we must compound with the actual forces acting on the body a

force equal and opposite to the force which would give the body the mo-

tion which the point it occupies has as a part of the moving system. Now,
in this case the liquid is actually in motion ; but at rest relative to a sys-

tem revolving with an angular velocity w. If in is the mass of a particle

at a distance r from O Z, then the actual force acting on m is its weight

or w g ; the force which would give that mass a motion of rotation about

O Z with an angular velocity w is m w2 r acting towards O Z ; hence, if we
wish to refer the motion of the revolving body to the revolving axis, we
must compound with its weight a force mw l r acting from O Z. As the

body is at rest with reference to the rotating system, then with these

forces the equations of hydrostatics apply. Resolving the centrifugal

force m w2 r parallel to X and Y we shall have on the unit of mass

X — w2 x ; Y' = w2 y ; Z = — g. hence

dp = — \w2 x dx + w2 ijclij — g dz\

and the equation of a surface of equal pressure is

gdz=.w2 (xdx + y d y\ or

• = w
-- ( * + y ) + c

= -'"*. H + C.
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Hence, in any vertical section of the liquid the free surface and the sur-

faces of equal pressure are parabolas with a vertical axis, or the free sur-

face is a vertical paraboloid of revolution.

Geometrical proof. — Let P S be m ic2 r and F\J = m g; then P T is re-

sultant, and must be normal to free surface if S is a particle at the free

surface. Produce P T to meet O Z at N. Then

PM : NM : : m w- r : m g : : w2 r : g.

hence NM= -^— = constant ; or the subnormal of the curve is con-
to^

stant, a property only of the parabola.

Application to a mass revolving about a horizontal axis (Fig.

8). — In this case, which represents a vertical water-wheel with buckets,

hence
9

X — w2 x ; Y = 0; Z = w2 z — g,

d p = — \ w2 x d x + w'2 z d z — g d z \

Equation of surface of equal pressure is

— ( x2 +z2
) — gz + C2

0, or

x2 +z2 — z Hr — C. or
w2

** +
(

s-^)
2 = a2 if we call

to4

This is the equation of a circle whose center is at M, O M being JL_.
w2

'

Hence the free surface in all the buckets are parts of circles whose com-
mon centre is at M.

Geometrical proof. — Let P S represent the centrifugal force, and P G
the weight. Then P T is resultant, and is normal to free surface. Pro-

duce P T to M. Then

OM : OP : : m g : m w2 r :: g : w2 r

0M = ^|=4-
IC2!* W2

This theorem is applied in the study of water-wheels, as the shape of

the free surface evidently determines the point at which the buckets will

begin to empty, as the wheel revolves.
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Liquid moving in a straight line (Fig. 9). — If a liquid is moving

horizontally in a straight line with a constant velocity v, then the only

force acting on it is its weight, and the force necessary to maintain it at the

velocity v is zero, because that velocity is constant. Hence the free sur-

face will be horizontal, just as though the liquid were at rest. But if it

be moving with an acceleration a, then the liquid is at rest with reference

to a system moving with the same acceleration, and in order to apply the

equations of hydrostatics we must add to its weight a force m a in a

direction opposed to the motion. Let the motion be at an angle a with

the horizontal.

X = — a cos. a; y =: ; Z = —
(J
— a sin. a.

dp =— — a cos. a dx — a sin. adz — g dz

Equation of surface of equal pressure is

— ax cos. a — az sin. a — g z =z C.

a cos. a8= — —
. , x + C, which represents a straight

a sin. a + g
l &

line inclined at an angle (j> with the horizontal, and

a cos. a
tan. <j> = —

a sin. a + g

Pressure on vertical or inclined surfaces (Fig. 10). — We shall

now consider the pressure on plane surfaces immersed in liquids. Let

A B be an immersed plane, making an angle a with the surface of the

liquid O O'. If there is liquid on both sides of A B, then the pressure on

each side is the same, and the resultant pressure zero. Our problem

is to find the pressure on one side. If A B is the side of the vessel con-

taining the liquid, there is the atmospheric pressure outside, partly coun-

teracting the pressure from within. The atmospheric pressure p on the

free surface O', however, is transmitted uniformly throughout the liquid,

just balancing that outside, and we shall leave it out of consideration.

Let us divide the area A B into a series of horizontal strips ; let b be the

length and dx the breadth of each strip. Then the pressure on the strip,

if h is its depth below the surface is b dx. y h, or b dx. y. x sin. a, x being

the distance from O. Hence the total pressure on the plane is.

P = I b dx. y sin. a. x

— y sin. a / Xl
b xdx.

t/ Xq

The quantity under the integral is the moment of the area about O,

hence equal to A times the distance of centre of gravity xm hence
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P — y sin. a . A . x = A y. x
(,

sin. a

= A . 7 %, ; if ft
fl

is the depth of the centre of gravity.

Hence the theorem :
—

The total pressure on a plane surface immersed is equal to the area multi-

plied by the pressure at the centre of gravity of the surface; or the mean

pressure is the pressure at the centre of gravity. The pressure will always

be the same if the centre of gravity is at the same depth.

Graphical representation of pressure (see flg. 11).

The pressure on the plane increases in intensity from A to B. The centre

of pressure is the point of application of the resultant pressure; it is

found as follows : the total pressure is the resultant of a series of par-

allel forces, and we get its point of application by taking moments
about two rectangular axes, one passing through O perpendicular to the

paper, and one at right angles to this axis and lying iu the plane of the

surface. Generally, however, all we care for is the depth of the centre

of pressure, or its distance from O, hence we need only take moments
about the first axis. The moment of the pressure on the strip b d x is

b d x. y x sin. a . x ; hence

/ !
b d x . y x2 sin. a

x° or
P

y sin. a I x bx2 dr
Xc =

b x d x
x

In using these equations, b is of course a variable, and must first be

found in terms of x, after which the integration may be effected. The

centre of pressure is always below the centre of gravity.

Examples.— 1. Rectangle. b = constant.

a-i
2 — Xo2

P = b y sin. a.

If Xo

2

a?i
8 — flc

Xi2 — x

XV"
Y — by sin. a. ——- •

Z

Xc = 4 X\
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2. Triangle with base horizontal and vertex upward.

6— j $— ®o
m

,
& _ base>)

#1 — %o

P &i 7 sin. a |~Xi
3 — xQ3 Xi2— ffo

2
~l

~&i~— a*,' L 3 * " 2 J

a?i
4 — x 4

a?i
3 — x 3

*c

#i
3 — #o

3
. %i

2 — %<?

If x =. o
;

X . -

P = 6i y sin. a • —

—

'
3

xc = f Xj.

3. Triangle with base horizontal and vertex down.

b = b .

*1 —
x\ —

X

Xq
(b = base.)

p _ bQ y
Xi

sin. a r
-x h xi2

2

Xo2 Xi«

3

X,

Xc

Xi
atf — x<?

3
— X!4 — Xc

4

4

xf — X 2 Xi3

3

x 3
.

If X = o ;

P = b y sin. a.
• asi"

6

Xc —
Xi

2

4°. Trapezoid. Bases horizontal. Upper base b , lower base b%.

b = b + (bi — b ) X\ Xo

P= , si, a [),
*-*+ |-^(^ - *^)]

7
Xl3 — x 8

, 6i — 6 ("Xi4 — X 4 Xi3 — Xc3 "]

°° *

3 "
+

X! - x L 4
_ ~ Xo

3 J

. Xi« — X^
Wo * n

7Jl — h fX!3 - XP
3 Xi2_— Xo2 "I+ x7^^ L

3~~ "~" *° ""

2

J
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Pressure on curved surfaces. — Here the pressure varies in direc-

tion, being everywhere normal to the surface. To find the total pressure

the surface must be divided into small areas, which may be assumed as

plane, and the pressures on these must be found, and also the centres of

pressure. Combining the separate pressures, we get the total pressure

and its point or line of application.

Pressure on both sides of a surface. — In Fig. 12, pressure on the

left is at any depth h, px = y h + p , and on the right p2 = y K + Po\
hence the resultant pressure is p = y (h — h{) = y II. Hence there is a

constant intensity of resultant pressure below the lower water surface.

The total pressure per foot on A B is

II2

The depth of the centre of pressure below A is

Hi ( H + ^L\ + 4 ff

Pressure in a particular direction. —Consider, in fig. 1, an infinitely

small plane area ABC, subjected to a pressure whose intensity is ;).

Then the total pressure on A B C is p. A B C. The component of that

pressure parallel to X is p. A B C. cos. a, or p. A B C. In a similar way

the component parallel to Y is p. O A C, and parallel to z is p. O A B.

Hence we have the theorem :
—

The component parallel to any given direction, of the pressure on an ele-

ment of area, is equal to the intensity of pressure multiplied by the projection

of that element of area on a plane at right angles to the given direction.

If we consider a finite plane surface, then the pressures on each element

are parallel ; if A be any element, then its projection will be n A, in any

given direction, and if h be the height due to the pressure on the element,

then the total pressure in the given direction will be 2 y h. n A. In this

case, the following rule evidently holds good; the pressure in any particu-

lar direction against a plane area is equal to the weight of a column of water

whose base is the projection, of the given surface on aplane perpendicular to

the given direction, and whose height is the depth below the surface, of the

centre of gravity of the given area. For, in this case, the total pressure is

w 2 y h. A. For curved surfaces, however, the law does not, in general,

hold ; for the ratio of any element to its projection will not be constant,

and we shall have for the total pressure 2 y h. n A. in which n is a vari-

able. For some curved surfaces — as, for instance, a cone the ratio ;/,
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will be constant for some planes, as one parallel to the axis, in which

case the same law holds as for plane surfaces.

Generally we wish to find vertical or horizontal pressures; for the

former we therefore take the horizontal projection, and, for the latter, the

vertical projection of the given surface. (Examples : horizontal pressure

on inclined reservoir wall; pressure in pipes and spheres.) The follow-

ing rule, however, may be stated in regard to horizontal pressures : the

horizontal pressure of a liquid against any surface whatever, plane or curved,

equals the weight of a column of water whose base is the area of the vertical

projection of the given area, and whose depth is the depth of the centre of

gravity of the projected area.

Equilibrium of immersed bodies. — Let fig. 13 represent a body im-

mersed in water. On any element of its surface, as a b, there acts a pres-

sure y h. A, if A be the area. This pressure acts normal to the .surface,

and may be resolved into three rectangular components, V, H, and Hi,

the latter acting perpendicular to the paper. Let a b c d be a horizon-

tal cylinder in the direction of H, and a b c' d' a vertical cylinder iu the

direction of V. Then H = y h. F' and V = y h. F, if F' and F are the

areas of these cylinders. Now, it is clear that H will be balanced by an

equal force on on c d, and in the same way Hx would be balanced, so that

clearly the horizontal pressures on any immersed body are exactly balanced.

With regard to the vertical pressures, the cylinder a b c' d' is acted upon
by its weight and the two pressures V and Vi, the resultant of which is

V — Vi = V = y (h — hx ) F = weight of a volume of liquid equal to the

volume of the cylinder a b c' d'. Hence the resultant pressure exercised

on any cylinder as a b c' d' is an upward pressure equal to the weight of

its volume of liquid. Hence it follows that, any body immersed in a liquid,

wholly or partially, loses a weight equal to the weight of the liquid displaced.

There are two forces thus acting ou such a body, namely, its weight and
the upward pressure of the water. The former acts through the centre of

gravity of the body. Regarding the latter, the upward pressure on any
cylinder as a b c' d 1

is proportional to the volume of the cylinder, regard-

less of its weight; hence the resultant upward pressure on the entire

body acts through the centre of gravity of the volume of water displaced.

If the body were homogeneous, and entirely immersed, the centre of
gravity of the body would coincide with that of the volume displaced, but
not if the body were unhomogeneous.

In order that an immersed body may be in equilibrium, its centre of grav-

ity and that of the displaced water must lie in the same vertical, or else a mo-
ment must be applied to the body to maintain its equilibrium.

If a body weighs more than its volume of liquid, it will tend to sink indefi-

nitely. (Specific gravity greater than unity.) If it weighs less than its volume

of liquid, it will tend to rise above the surface, until its own weight is exactly
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equal to the weight of the displaced liquid. This enables us to find how
deep a body, whose specific gravity is less than unity, will sink.

Let fig. 14 represent an immersed body. Let W be its weight, acting

through its centre of gravity G, and P the upward pressure of the liquid,

acting through the centre of gravity of volume. C. If the line G C is ver-

tical, the body does not tend to rotate (lower fig). If G is below C, then

the body is in stable equilibrium, for if turned, as in the upper figure, the

couple formed will tend to bring it back to its former position. If G is

above C, then the equilibiium is unstable. C and G are fixed points in

the body, and C is called the metacentre ; hence, for stability, the meta-

centre should be above the centre of gravity. If the two coincide, the

body is in equilibrium in any position.

The same theorems are true of bodies whose specific gravity is less

than unity, and which float upon the surface. (Applications : raising

bodies out of water; drawing out piles; lessening draught of ships,

etc.)

Stability of floating bodies. — In bodies which are entirely sub-

merged, the centre of gravity of the body, and also that of the displaced

water, are fixed points. Hence the two forces, weight and buoyancy,

always act through fixed and definite points. With a floating body the

case is different, aud the problem much more difficult. (See figs. 15 and

16.)

Let C and S be the centres of gravity of the body, and of the displaced

liquid, when K F is vertical. Now, if the body be rotated, as in fig. 15,

the point S is transferred to Si, towards the side of greater immersion,

and the weight P acting downward through C, with the buoyancy, equal

to P, acting upward through Si , form a couple tending to rotate the

body. If M is the point where the upward force cuts the axis F K, then

the equilibrium is stable if M is above C, and unstable if M is below C,

and the moment of stability is P- C D, or P c sin. <j>, if c is the distance

C M, and </> the augle of rotation.

This case is generally treated, as first proposed by Bouguer (1746), under

the supposition that the area H K R remains constant. This might be so

with bodies of the same cross-section throughout, but with ordinary

bodies, and ships, whose cross-section varies, the immersed area at any

one section need not remain constant. And eveu with bodies of constaut

section it should be supposed that they might have their equilibrium dis-

turbed in such a way as for a moment to displace a greater or less quan-

tity of water, thus changing the area immersed, iu which case the body

would be thrown into vibration. A more general solution than Bouguer's

has been given by Duhamel, the results of which are the following :
—

Let G be the centre of gravity of the body, and that of the water dis-

placed ; call the section of the body by the water-surface the plane or

area of floatation : let I be the moment of iuertia of this area about an
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axis passing through its centre of gravity, and lying in its plane; and let'

V be the volume of the liquid displaced. Then the following theorem is

true :
—

To ensure stable equilibrium, it is necessary and sufficient that the centre of

gravity of the body, G, should be below a point P, which point P is located at

a distance O P above the centre of gravity of the water displaced, O, and in

the line G, equal to — : The point P is called the metacentre.

Hence, in this case, the point G need not be below O, but only below

P. The value of I will vary with the axis about which it is taken, hence

We must take its least value.

The general problem of the stability and oscillations of a body exposed

to waves is yet far from being solved.

(Applications in ship-building. For approximate treatment, see Weis-

bach's Mechanics.)

Example. — In fig. 17 we have 1—^6 P (or I 53
, according as I or b is

the smaller); V = b h I. s it's = sp. gravity of the body; .-. equilibrium

is assured if centre of gravity is below P, O P being lS-r— We have O G
12 hs

h — y h (1— s) •= ——— — —^ • Hence equilibrium is stable if
z 2

h (1 — s) l>2— < l*hJ °"f

I- smallest horizontal dimension _ .p or —
h

" ** V* s
(
1-s)

For s = i we have —— :> 1.225; hence smallest horizontal dimen-

sion must be greater than 1.225 h.

Specific gravity.— Let V = volume of a body, s\ its specific gravity,

s2 the specific gravity of liquid in which it is immersed. Then its weight is

G = V 7 8X

and the weight it loses when immersed is

F = V 7 s2 ; hence

G sx _ G
F
m

« ; Sl - S2
F

'

If we immerse in water, s x
— — .

If s x is less than unity, we may attach the body to a heavier body whose
specific gravity is known. Let
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Gi = weight of heavy body; Vi its volume; si its specific gravity.

Go = weight of light body ; V2 its volume ; s2 its specific gravity.

S = specific gravity of combination.

Then Gx = y si Vx ; G2 = 7 s2 V2 .

Gi + G2 = 7 s (Vi + V2) ;

but Vx + V2 = -S- + -5?- hence
y Si ys2

Gl + G2 = ys(^ + \)\y sx 7 «2/

From this we find

G2

"_Gi +
_G2 _J&i

S S Si

These principles enable us to determine the specific gravity of any

solid substance.

Liquids. — Let G = weight of an empty vessel ; Gi its weight when
filled with water ; G2 when filled with the given liquid ; then

_ G2 — G
s - Gi - G

'

(Specific gravity of liquids also easily found by hydrometers. See

Physics.)

HYDRODYNAMICS.

Before proceeding to the subject of hydrodynamics, it will be conveni-

ent to recall some of the principles of mechanics which we shall most
apply.

1.° The force F, which imparts in a unit of time an accleration a to a

body of mass m, is equal to m a.

2.° The work which a force F does in moving its point of application

over a distance d s, making an angle a with the direction of F, is F d s .

cos. a.

3.° To change the velocity of a body from v to v\ requires a work
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4.° If v is the velocity, a the acceleration, and F the force acting on a

body of mass ra, and if these be resolved along three rectangular axes

X, Y, and Z, and the components denoted by subscript letters, then we
shall have

F^ — m ax ; Fy = m ay ; ~FZ = m az .

vx = v cos. a ; vy = v cos. (3 ; vz = v cos. y .

if a, /?, and y are the angles which v makes with the axes of X, Y, Z

respectively.

From these we get

Yx d t =. m ax d t = m d vx

Fy d t = m ay d t = m d vy

J?z d t = m az d t = m d vz .

and if the velocities are changed from vx° , vy° , vz° at the time t to vx ,

^' ,
-y
3

'

, at the time t\ , then we shall have

W — vx°) — /'

t

h Fx d t

.

etc.

In words, we may say that mass multiplied by change in velocity equals

force multiplied by time.

From the equation

Fx d t = m d vx we get

Fx vx d t = m . vx d vx = Fx d x .

Hence Fa; d x = m vx d vx

Fy dy — mvy avy

Fa dz = mve dvz .

and integrating the first of these we get

i m (^'2 - Vx°i) = yj
1 Fa dx

or, in words : /orce multiplied by space equals change in energy.

These equations apply to a material point. If we wish to apply them
to a finite body of mass M , we must take account not only of the exter-

nal forces but of the internal forces. Thus if m denote the mass of an
elementary particle, we shall have, summing up for all these particles

2mvx ' — 2m vx°= 2 f£ Fx d t . + S f*1

f'x dt
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in which /'
,
/" , are the interior forces exerted on the particle by the

other particles of the system. But as action aud reaction are equal and

opposite, if we exteud our summation over all the particles of the body,

these terms with /' , etc., will each be balanced by a corresponding term

with opposite sign. Heuce we shall have

2 m v'x — 2 m v°x = 2 .f
tx Yx dt

.

e/ to

Regarding the change of energy, the work done by the inner forces will

not reduce to zero, but we shall have

2 i m vx
' 2 — Zhm vx

° 2 = 2 /' h Yx dx +
t/ to

2 J f dx + 2 if dx etc.

With a fluid which is perfect and incompressible, the inner forces can

do no work, and the terms with /' , etc., vanish.

Permanent motion. — Permanent, as distinguished from variable mo-

tion, occurs when at any time, and through the entire volume of the fluid, the

particles which pass any particular point have the same velocity (both in

amount and in direction), the same pressure, and the same density. These

quantities vary from point to point of the fluid, but are constantly the

same at any one point. It is with permanent motion that we have prin-

cipally to deal.

Bernouilli's theorem (fig. 18). — This theorem is one of the most
important in the whole subject of hydraulics, and was first demonstrated

by Daniel Bernouilli, in 1738, in his Hydrodynamica. We suppose the

motion permanent, and the fluid perfect. Let, now, A B be the path of a

particle, or, rather, a cylinder inclosing the path of a number of particles.

Its normal section is very small, and is w at A and w1 at B. All tne parti-

cles which enter the cylinder at A remain entirely within it, and pass out

at B. Let p and v represent the pressure and velocity at A, p1 and v1 those

at B. Let us now apply the principle of work to the system A B, equating

the work done by the outer forces to the increase of energy. The exterior

forces are the pressures and gravity. The internal forces do no woik,

because we suppose a perfect fluid. Of the pressures, only those on the

end sections at A and B do any work, because the others are normal to

the direction of the motion. Let A B move to A1 B 1 during a time d t;

then A A1 — v d t ; B B 1 = v1 d t. The volume of the cylinder A A1 = w v d t

= B B 1 = w1 v1 d t. as the quantities passing A and B in the same time

must be equal. Call w v = w1 v1 = Q. Then

work done by p=+pw.vdt=+pQ
)
dt

work done by p
l =, —

»

px w1
, vl dt .

— — px Q <z t
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The work done by gravity is the same as that done by transferring the

volume A A1 to B B1
; hence if the height of A and of B, above any fixed

plane, be represented by z and z x , we have

work done by gravity = + y . w . v d t . (z— z1
) = + yQdt{z— z1

)

We have now to find the change of energy of the system. A B has

moved so as to occupy the position A1 B1
; but in A1 B there is at each

moment, at any point, a constant velocity, because the motion is perma-

nent. Hence the only difference is that in A B we have A A1
,
while in

A1 B1 we have B B1 instead ; hence the change of energy is that of B B1

minus that of A A1
; or

energy of B B1 = | . y -^— . v12

energy of A A1 = \
—-— . v2

Hence change of energy = ^-^ d t (v12— v2
)

Then we have finally

|- • Q d t (V 2 - v2) = y Q dt (z—zi) + (p—p1
) Q d t

p v2 p1 v12

y 2g y 2g

which is Bernoulli's theorem.

This theorem shows that if we follow the same molecule of a mass of

p v2

liquid in motion, the quantitv z + -4-—1- — remains forever the same,

the motion being permanent, the liquid perfect, and there being no losses

P
of energy such as would be due to shocks or impact. Now — represents

the height of a column of liquid which would produce a pressure p. If

at any point in a liquid, where the pressure is p, we were to insert a ver-

tical tube, open at the bottom, and with a vacuum at the top, the liquid

IP

would rise to the height — ; this we call the height due to the pressure.
7

v2

Also, -<r— is the height due to the velocity. Hence, following the same

molecule, the actual height, plus the heights due to the pressure and

P
velocity, make a constant sum. If the liquid is at rest, z + — = con-

7

p v2
stant, as in hydrostatics. We call — + —— the head at the given point.

It varies along the path of a given molecule,
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If the fluid is not perfect, or if losses of energy occur, we can take ac-

count of them as follows : Let z, p, and v refer to a position A of a mole-

cule, and at
1

, p l
, v1

, to some point beyond A in the path of the same
molecule; let there be losses of energy, or internal work, represented by

W, between the two points. Then

z +A + ^i = 2l + lL + !!! + w .

y zg y zg

All that is necessary, therefore, is to find the value of W.

Application of Bernoulli's theorem. — The most frequent prob-

lem in hydraulics is to find the velocity or the pressure of water under

certain conditions. The point in the liquid which is considered, i.e., the

value of z, is considered as known; then the theorem z + -^— + — =
y zy

constant, gives us a relation from which, having determined the con-

stant, we may tind either v or p, if the other be known. In deciding when
we may assume p as known, the following theorems are of value :

—
1.° If at any section of a fluid vein all the particles move in parallel

straight lines, and with uniform velocities, and if no external circum-

stances determines a uniform pressure around the circumference of the

vein, then the pressure will vary in the vein acccording to the laws of

hydrostatics. For the forces of inertia are zero.

2.° If, however, the vein is discharged into the atmosphere, so that the

pressure is the same all around the vein, then the pressure is constant

throughout the vein.

3.° If the particles of a liquid have any motions, in any directions, the

velocities being very small, the pressure will vary in the liquid sensibly

according to the law of hydrostatics ; for the liquid is almost in a condi-

tion of rest.

4. c If a mass of liquid be moving through another liquid at rest, and if

at auy section the particles of the moving liquid be moving in parallel

straight lines, normal to the section, and with uniform velocities, then

the pressure at that section throughout the entire mass will vary accord-

ing to the laws of hydrostatics.

5.° To apply Bernoulli's theorem in cases of relative motion we have

only to introduce a term expressing the work done by the forces of

inertia.

These remarks enable us to find o in many cases, p being known.

In a liquid, p cannot be negative. If the results of theory give negative

pressures, it shows that we have made some false hypothesis, or that the

motion is not permanent, or cannot take place under the conditions
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assumed. Theoretically, so long as it is not negative, the pressure can

be as small as you please ; but water is charged with air to a consider-

able extent, and when the pressure falls below the atmospheric pressure,

at which the air has been absorbed, it tends to escape. In many cases,

therefore, we have in practice to see that p does not fall much below the

atmospheric pressure.

Flow of liquids Thkouh Orifices.

Flow through a very small orifice in a thin plate. — Let E F
(fig. 19.) be an orifice of very small dimensions in the side or bottom of a

vessel. Let a condition of permanent motion be established, the water-

level being maintained constant, at a height h above the orifice. ' Then it

is known that the velocity with which the water will be discharged is

y^2 g h . This law was announced by Torricelli, in 1643, having been

discovered by experiment. We may prove the theorem as follows : Let

the thickness of the wall of the vessel be so small that the vein does not

touch it except at its inner edge, E F ; for this to be true the thickness

must be less than half the smallest dimension of the orifice, or else the

orifice must be bevelled off to a sharp edge on the inside. Under these

circumstances, the liquid particles will converge till they reach a b, where

they move in parallel straight lines, a b is the smallest section of the

vein, and is called the contracted vein. The orifice being small, the

velocity in the contracted vein may be taken as constant. Now, apply

the theorem of Bernouilli to a particle passing a b. This particle came
from some point to1 inside the vessel, and we have

. p . v2
. . p1 v12

7 2g 7 2g

But v1 = o , and p1 — p" + y h', because the velocity at m1 is very small,

or zero, hence we find — = h + * - . or
2a y

v=
l
/2g ih+ P'~P}

7

p" being the pressure on the surface of the liquid in the vessel, and p that

on the contracted vein. If p" = p : v = \/2 g h •

If we wish to be still more accurate, we may prove that

4
A '2

in which a is the area of the orifice and A that of the vessel at the water

level.
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Let O be the area of a b : then — is called the co-efflcient of contrac-
ts

tion, /i. The real velocity will be n v, n being the co-efflcient of velocity.

The discharge through the orifice, it p" = p\ will be

Q = //a.« * 2 g h = ma *2 gh.

m being the co-efficient of discharge, n must be less than unity, and is

found by experiment to be from 0.92 to 1.00, and it is generally taken as

about 0.97. That it is less than unity is due to losses of head due to fric-

tion and other causes. The value of /z is found by theory only in one
case ; in others it is found by experiment. If fig. 20 represents the jet,

then we have the following proportions :
—

From Bossut's experiments a : b : c : : 100 : 81 : 50

From Michelotti's " a : b : c : : 100 : 79 : 39.

so that (i is about 0.64.

Poncelet and Lesbros found the following laws in regard to the co-

efficient m :
—

1.° For rectangular orifices, m depends upon the smallest dimension, no
matter whether that dimension is horizontal or vertical, and is independ-

ent of the other dimension, provided it is not over 20 times the first.

2.° The form of the sides, or bottom, of the containing vessel does not
affect w, so long as the orifice is removed from them by over 2.7 times

the breadth of the orifice.

3.° With a rectangular orifice m depends upon the head h, and becomes
larger the smaller the area of the orifice and the smaller h, with some
unimportant exceptions.

Hydraulic pressure. — The pressure in a liquid in motion is called

hydraulic pressure, in distinction from hydrostatic pressure, in a liquid at

rest.

Consider the case shown in fig. 21. It would seem that by increasing

the length of the tube indefinitely, if the velocity through the area g h =
A1 was V 2 g h , we could increase the discharge indefinitely. This is

not so, because in the tube the pressure is less as we ascend, for z + -—
2 g

is greater thau at g h, hence the pressure is less. The maximum dis-

charge will occur when pressure at e f= o; then maximum

O = A ? 9n ( h, 4- P-°-,<*+*)
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and if the discharge through A1 is to be given by

Q = A1 ^ 2gh
we must have

7

1.° Hence if A is a given length

Ai ^ A ^ hx +—~ _ 7_
&

(a) If A1 is smaller than this, Q is smaller, and

Q = A1 ^ 2g h.

(b) If A1 is larger, Q remains the same, or

Q = A ^2 CjQly + ^)
2.° If A = A1

, but h varies, then

h ^ In + J^.
7

(a.) If h is smaller than this, Q is smaller, and

Q= . A.1V2 g h .

(b.) If h is larger, Q remains the same, and

Q = A^2g (*i + y")

In both the cases (&), the water discharges through A into a vacuum,

and the velocity through A1 is less than v2 g h. A new water level will

form in the tube, at a height x, sufficient to carry off the quantity Q through
A1

; thus

max. Q = A ^2 „ (*, + -*
) = A' V2 „

*-*~~)

If A = A' , then x = J* .

y
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We have supposed in this case, as shown by the figure, that the orifice

at the top were rounded so that the co-efficient of contraction is 1. The
reason of this will soon be seen.

Hydraulic experiments. — Experiments to determine the values of

the co-efficients described are made as follows : The water is discharged

from an orifice and allowed to flow continually, the quantity discharged

being measured in some measuring vessel. By finding Q, and measuring

the area of the contracted vein, the value of v is found ; v may also be

found, with a small orifice, by observing the vein, and measuring the two
co-ordinates of some point upon it.

Inversion of the vein. —When the orifice is not very small, the par-

ticles issuing do not all have the same velocity, those coming from the

top having less velocity than those from the bottom. Hence they tend to

pursue different trajectories, and the paths of the different particles inter-

sect, as shown in figure 21. This gives rise to a distortion in the shape of
the vein, known as the inversion of the vein. If the orifice is a square,

the shape of the vein at a certain distance from the orifice becomes a

square, whose sides make angles of 45° with those of the orifice. Pon-
celet and Lesbros found other and very curious shapes.

Discharge from large orifices. —When the orifice becomes so large

that the velocities of different particles would be sensibly different, we
must take account of this variation in our expression for the discharge.

We consider several cases.

1.° Rectangular orifice (Fig. 22). — The breadth being b, the discharge

from any small horizontal strip bdy at a distance H + y from the surface

of the water will be

d^ — m .bdy ^2 g (H + y)

(1.) .-. Q=|m6 ^2 J(H + a)
8 '

2-H^].

The discharge may also be obtained by assuming that the average

velocity through the orifice will be the velocity at the centre of gravity.

This gives

v\
(2.) Q}=zmba V 2g

V (r +
|)

The ratio of these two is

_Q_ _ . (H + «)3'
2 -H3'2
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Or for different values of ^—.— » as follows :
—

H + a

~— = 0.0 0.2 0.4 0.6 0.8 1.00H + a

-§- — 0.943 0.974 0.992 0.997 0.999 1.000

This shows that the two formulae give results almost identical, and

never over 6 per cent different. Hence one is just as good as the other

for practical use, for the suppositions made in deducing (1) are not

fulfilled actually, and it can claim no more accuracy in reality than (2).

We may therefore put Q = m a V2^, where z is the depth of the centre

of gravity of the orifice

2.° Triangular orifice (Fig. 23). b=y.

I

d Q,= m. y . dyV 2g (H + y)

Q = -A- to V 2# [§ a (H + ay2 - -^-(H + a)*', + — H*'2
]

3.° Triangular orifice (Fig. 24). b = (l—y) .

a

dQ = to. (a— y)— . d x ^2 g (H 4- y)

Q = J_ .m^Yg [JL(H + *)«', - -1 m'2 - § aW2

^

These equations will be referred to again. For the practical calcula-

tion of discharge through triangular orifices the equation Q= m a V2 g

z

may be used, and in fact for orifices of any shape. Hachette's experi-

ments, 1805, showed that the discharge through orifices was practically

independent of their shape, so long as there were no re-entrant angles.

4.° Circular orifices. — The exact expression for the discharge may be

found as in the previous cases, although in this case the integration

results in an infinite series. It may be shown, however, that the greatest

difference between the results of the formula obtained, and those given

by the formula taking the average velocity at the centre of gravity, is

not over 4 per cent. Hence we may always use the ordinary formula.

Q = to A V2 g z.

Co-efficients. —We have see that to = (i n, hence the co-efficient of

discharge equals the product of the co-efficients of velocity and of con-

traction. For small orifices we saw that approximately // = .64 and n =
0.97, hence m = -91 very nearly.
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For rectangular orifices, the results of Poncelet and Lesbros' experi-

ments may be used, as given in the tables appended :
—

Values of m in the Formula

H being depth of top of orifice, and h the height of orifice.

From Poncelet and Lesbros.

Rectangular vertical orifice in a thin plate, with complete contraction;

width of orifice, 8 inches.

Head
above
top of

Co-efficient m for height of orifice.

(Inches.

)

orifice

H* « * 2 1.2 0.8 0.4

Inches.

0.2 - - - - - 0.705

0.4 - - 0.606 0.629 0.659 0.700

0.6 - 0.592 0.611 0.631 0.659 0.696

0.8 0.571 0.595 0.614 0.633 0.658 0.693

1.0 0.574 0.597 0.617 0.635 0.658 0.690

1.5 0.580 0.602 0.622 0.639 0.658 0.684

2.0 0.584 0.604 0.624 0.639 0.657 0.678

4.0 0.591 0.610 0.630 0.636 0.654 0.666

8.0 0.597 0.614 0.630 0.632 0.648 0.655

12.0 0.600 0.616 0.629 0.632 0.644 0.650

16.0 0.601 0.617 0.628 0.631 0.642 0.647

24.0 0.604 0.617 0.627 0.630 0.638 0.642

40.0 0.605 0.615 0.626 0.628 0.633 0.632

60.0 0.602 0.611 0.620 0.620 0.619 0.615

80.0 0.601 0.607 0.613 0.612 0.612 0.611

120.0 0.601 0.603 0.606 0.608 0.610 0.609

* Head measured at a point in reservoir where water is absolutely quiet.



26 NOTES ON HYDRAULICS.

Values of m in the Formula

Q = m V 2g z.

From Ellis' Experiments.

Kind of Orifice.
Head on
Centre.

Co-efficient.

feet.

Vertical Orifice, 2' horizontal by 1.99975'

vertical.

2.069

3.049

0.610

0.597

3.541 0.606

1.813 0.597

3.035 0.599

Vertical Orifice, 2' horizontal by 1' vertical. 6.866 0.598

8.476 0.599

11.314 0.605

1.423 0.611

2.905 0.611

Vertical Orifice, 2' horizontal by i' vertical. 6.356 0.608

11.563 0.604

16.965 0.600

1.487 0.585

3.699 0.598

6.769 0.598

Vertical Orifice, one foot square. 9.863 0.599

12.005 0.600

15.132 0.601

17.565 0.597
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For circular orifices, the following tables wall serve as a guide

27

Diameter. Head on Centre. Co-efficient. Authority.

0.4 inches. 25.6 inches. 0.628 Weisbach.

0.4 9.84 0.637 <<

0.8 25.6 0.621 ii

0.8 9.84 0.629 <«

1.2 25.6 0.614 ii

1.2 9.84 0.622 "

1.6 25.6 0.607 <<

1.6 9.84 0.614 <<

1.06 12.5 feet. 0.616 Bossut.

2.13 12.5 0.618 ii

6
•

2.15 0.599 Ellis.

6 6.35 0.604 "

6 10.51 0.601 i<

6 14.47 0.601 ii

6 17.26 0.596 ii

12 1.15 0.574 ii

12 4.82 " 0.590 (<

12 10.89 " 0.594 <i

12 14.13 0.595 (<

12 17.73 0.600 ii

24 1.77 0. 589 it

24 4.48 0.603 «

24 5.84 0.609 <<

24 8.35 0.612 »

24 9.64 0.615 ii
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For other shapes of orifice these examples must serve as a guide in the

absence of reliable experiments.

Theoretical determination of //.— Navier has given an ingenious

theoretical determination of \i which gives a result remarkably near that

found by experiment, although his suppositions are arbitrary. He sup-

poses that all the particles pass the plane of the orifice with the same

velocity with which they pass the contracted vein, i.e., with the velocity

iz +P~P )• The angle which the direction of their motion, how-
7

ever, makes with the plane of the orifice will vary, and he assumes it to

vary from 0° at the centre to 90° at the edges. Let d a be the element of

area which is passed by a liquid particle with a velocity v, at an angle j3

with the plane of the orifice ; then the quantity passing in a unit of time

will be
d Q = d a. v. sin. j3. and

Q = Id a. v sin. {3 — v / sin. j3. d a .

Now, there are an infinite number of elements d a, and an infinite num-

ber of angles (3. If d a represents the entire area over which the angle (3

is the same, then each j3 corresponds to a certain d a, though there will

still be an infinite number of elements d a, and the same number of angles

/?. Now, if 90° be divided into the number of parts that there are angles

(3, to each (3 will correspond a d a, and we may write

d a : a : : d (3 : — . •. d a = d (3

2 7T

a being the entire area of the orifice. Inserting this in the equation, and

integrating, we obtain

q — 2 al f-2 sin. (3. d /?= 0.637 a v.
77 Jo

Hence (i = 0.637.

The co-efficients given apply only to orifices in a thin plate, Avith com-

plete contraction, and no mouthpiece of any kind. We have seen that

the average co-eflicient is thus about .61, that we may alter this value by
altering the character of the orifice so as to change the value of the con-

traction, increasing it or decreasing it. We will now show how we may
decrease the co-efficient of contraction to 0.5, and explain at the same time

this remarkable case, which allows of a theoretical determination of that

co-efficient.

Borda's mouthpiece (Fij?. 25). - Let B F be a small orifice in the side

K L of the vessel, in which the water is kept at a constant level CD; and
let the re-entering pipe or mouthpiece A B F E be fitted to the orifice as
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shown. The length A C must be so short that the vein shall not touch

B F after leaving B, or A E should not be greater than A B. If the

orifice were on the bottom of the vessel the distance A E could be greater.

Now, in this case, the particles along the entire wall D E and F L, even

at E and F, have small velocities, which would not be the case were the

mouthpiece removed. Hence, the pressure on the wall D L may be con-

sidered to vary sensibly according to the law of hydrostatics, and those

pressures will just balance those on the opposite wall C M, except the

pressure acting on O P, which is the orifice A B projected across hori-

zontally. Now assume a horizontal axis of reference, and apply to the mass
of liquid between C D and c d (the contracted vein) the equation express-

ing the variation of momentum during the time d t. In this time the

mass CD c d passes to C D' c' d'. The portion C D' c d is occupied dur-

ing the time by a varying mass of liquid, at every point of which the con-

dition of things remains exactly the same constantly, because we are con-

sidering permanent motion. In order to find the change of momentum
of the mass, therefore, we must only recollect that at the beginning of the

time we have the volume C D C D', while at the end of the time we have

replaced this by c d c' d'. Now the volume c d c' d' is O v. d t (O being

the area of the contracted vein) ; its mass is ; and this is also
g

the mass of CDC D'. The momentum of C D C D', however, with

reference to a horizontal axis, is zero, as its motion is vertical; that of

c d c' d' is > and this is the change of momentum of the entire

mass C D C D' in the time d t. The forces acting on the mass are grav-

ity, the pressures on the sides of the vessel, and the atmospheric pressures

on C D and A B. As the vertical forces have no component along the

axis assumed, we have only to consider the horizontal forces. The press-

ures on the side of the vessel are balanced, except that on O P, which is

(p + 7 h) a, and it acts toward the right, as we must consider the forces

exerted on the mass of water. The atmospheric pressure on A B is p a,

and it acts toward the left, or opposed to the direction of motion. Hence
we have the equation

r.Ov*dt_
, dt= \(Po + 7 h) a — Po a
|

.

g

= 7 h a d t\ hence

v2 . , . v2= h a but —— = .

g 2<7

v2

'
~g~

2 O = a

—
ft
— \ .

a

= 2h
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This demonstration may be extended to the case of inclined surfaces

(fig. 26), as follows : We will only outline the steps in this case, which is

exactly similar to the previous one. We take as axis a line perpendicular

to E F, and through its centre of gravity, which will also be approxi-

mately the centre of gravity of the contracted vein. Consider a mass of

liquid between c d and a circular cylinder M N P Q described about the

axis of reference, and large enough so that on all its surfaces the liquid

has small velocities, except at the orifice. Then, as before, the change of

momentum reduces to y
, if we can neglect the velocities in P Q.

Those inQM, PN are at right angles to the axis. Let S be the area P Q,

G the centre of gravity of FE, and h its vertical depth below the surface

A B ; also let z be the depth of O. Then the component of gravity is

+ S. O G. y d t. cos. a = (h— z) S. yd t. The pressures on Q M and PN
have no component. That on P Q has a component + (p + y z) S ; that on

E M and F N has — (pa + y h) (S — a) ; that of the atmosphere on A B
has — p a\ hence we have

7 ° v2 d l = (h—z) S.ydt + (p +yz)Sdt—(j> + yh) (S—a) d t—p a d

t

= g h a d t

= h a = 2 h O .'. — =± I, as before.
9 a

In this case the co-efficient of contraction is about \. In the case of a

simple orifice, the particles move along the wall at E and F with appre-

ciable velocities, so that the pressures at those points do not balance

those on the opposite wall. The force acting to increase the momentum
is, therefore, increased, or the right hand side of the equation becomes

larger ; hence, instead of having 7 =yhadt, we have

> y h adt , or ——> I , as we know to be the case.
9 &

Incomplete contraction occurs when the vein touches the sides of

the orifice after leaving its inner edge (where the walls of the vessel are

thick, for instance), when the orifice is not in a plane surface, or when
contraction is partially suppressed by a plate extending inward from
some part of the circumference of the orifice. The effect of incomplete
contraction is to increase the co-efficient, except in cases analogous to

Borda's orifice, and which really do not come under this head.

If the orifice be made in a thick plate, and of the shape of the con-

tracted vein, or if a mouthpiece be fitted to it, having that shape, the co-

efficient of discharge from the outer orifice will be ft, as there will be no
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co-efficient of contraction, or m = .97. We see, therefore, that by vary-

ing the arrangement of the orifice, we may vary m between the values of

0.50 and 0.97.

Lesbros has studied the discharge through ordinary sluices in which the

walls were about two inches thick, and the contraction partial. He found

m to vary with different arrangements between 0.59 and 0.71, the lower

figure occurring when the contraction was nearly perfect.

For cases where contraction is suppressed on one side, as shown in fig.

27, Lesbros found that the co-efficient of discharge is increased, not in

proportion to the number of sides on which contraction is suppressed,

but in the ratio of the fraction of the total perimeter of the orifice on

which contraction is suppressed ; and, other things equal, the increase is

greatest when the base is among the sides where contraction is sup-

pressed. Bidone gave the formula m\ as m ( 1 + A —\ in whichm
1

is the co-efficient for partial and m for complete contraction under the

same conditions, p the total perimeter of the orifice, and n the part of the

perimeter on which the contraction is suppressed. A is a constant which

Bidone gives as

A = 0. 1523 for rectangular orifices.

A = 0. 1280 for circular orifices.

Weisbach finds from his experiments

A = 0.1343 for rectangular orifices.

n
In using these formulae, however, it is essential that — shall not ap-

P
proach too nearly to unity, or else we shall approach the condition of

Borda's mouthpiece, or another case to be subsequently treated. The
formula of Bidone does not agree very well with Lesbros' experiments,

the results of which are given in the tables on the following page.

Effect of inclined guide. — If the water is guided to the orifice by an in-

clined plate at its upper side, as in fig. 28, as is often the case where

water is admitted to water-wheels by an inclined gate, the contraction will

be partial, and the co-efficient increased. Experiments on this point are

very few, but it is clear that the co-efficient will be greater the greater

the angle a. The following rule agrees with some experiments by Pon-

celet : find Q as though the orifice were vertical, and multiply by 1 + 0.47

sin. a. This is only a rough rule, and should only be used when a < 45."
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Co-efficient of Discharge for Partial Contraction.

(Lesbros.)

Rectangular orifice in thin plate, 8" wide, and of various heights,

discharging freely into air.

Head on Co-efficients for various heights of orifice.

top of (1 nches.)
'

orifice

in

inches. 8 4 2 1.2 0.8 0.4

0.8 0.598 0.623 0.663 0.691 0.703 0.754

n 1.0 0.600 0.625 0.664 0.688 0.702 0.750

1.5 0.604 0.631 0.665 0.686 0.700 0.743

1 a3 2.0 0.607 0.634 0.666 0.085 0.699 0.735

^3 4.0 0.614 0.642 0.668 0.683 0.697 0.721
Ph CO
3 ^ 8.0 0.620 0.647 0.670 0.680 0.695 0.711

2 »

.2 o

12.0 0.621 0.647 0.669 0.680 0.694 0.708

16.0 0.622 0.647 0.668 0.680 0.694 0.705
+3 1—

1

24.0 0.623 0.647 0.668 0.678 0.693 0.703

gS 40.0 0.623 0.646 0.666 0.675 0.692 0.701
-1-3

60.0 0.623 0.643 0.664 0.674 0.687 0.667"

6 80.0 0.618 0.640 0.663 0.674 0.682 0.692

120.0 0.613 0.638 0.661 0.674 0.679 0.688

0.8 0.655 0.715

1.0 0.654 0.710
03 1.5 0.651 0.701

1 M 2.0 0.648 0.649 0-695

4.0 0.645 0.645 0.683

8.0 0.641 0.642 0.675

« Is 12.0 0.639 0.642 0.671
S3
°

16.0 0.639 0.641 0.668

Si 24.0 0.638 0.637 0.665
8-5 40.0 0.638 0.631 0.658
is «
if o 60.0 0.637 0.627 0.651
S3
°

o 80.0 0.636 0.621 0.647
O 120.0 0.634 0.614 0.644

O o> 2.0 0.700

45 *s 4.0 0.696

8.0 0.708 0.693
g o 12.0 0.687 0.691
P. 4J
Ph *h 16.0 0.682 0.690
3 0)

24.0 0.679 0.688

S3^ 40.0 0.676 0.685

60.0 0.672 0.681

+3 03 80.0 0.668 0.680

SI 120.0 0.665 0.678
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Loss of energy of vein. — The theoretical velocity with which the vein

should issue from an orifice is v\ =: V 2 g h . The real velocity is n v.

The theoretical energy of a mass of water m issuing from the orifice, and

its actual energy-, are

Theoretical energy = i m v2
.

Actual energy = \ m. n2 v2 .

Hence, loss of energy = k m v'
2 (1 — n2

). Taking n == 0.97 we have

1 — n2 = 0.06. Hence, the loss of energy is 6 per cent of the total energy

of the water. This is independent of the co-efficient of contraction.

Submerged orifices.—An orifice is submerged if, instead of discharg-

ing freely into the air, so that the air surrounds the contracted vein, it

discharges into a channel or basin in which the water stands at a level

above the bottom of the orifice. If it stands above the top of the orifice

the latter is completely submerged ; if it stands at a level between the top

and bottom, the orifice is partially submerged. We distinguish three

cases, shown in figs. 29, 30, and 31.

Case I (Fig. 29). — Applying the theorem of Bernouilli between the

upper reservoir and the contracted vein, we find at once

V.
H + P-

7

Po

Q
1 -(--r

= V 2 JfH.or, generally,

« V2 gB.

Case II (Fig. 30). — The same formulae apply to this case.

The value of m will of course depend upon the form and arrangement

of the orifice. If a mouthpiece having the shape of the contracted vein

be used, then m = 0.97 approximately.

Case III (Fig. 31). —We may consider the discharge here to be inter-

mediate between that into free air and that in Case II. In fact, we may
consider the orifice in two parts ; first, a b, the discharge through which
we consider as the same as into free air; and, second, b c, in which we
consider the discharge the same as in Case II. We thus arrive at the

formula

Q = mi b h,_ V2 g Hi + m2 b (ft — h x) J 2 g (h2 +^-^-1

^)

for the most common cases.
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Unfortunately the values of mi and wi2 are not known.

Regarding Cases I. and IT., Bornemann deduced the following formula

from his experiments (see fig. 32) :
—

Q = (o.63775 + 0.30 -^-\b e V2 g (hi — h2)

o
in which h% = h2 — —— •

2

In these experiments, however, the contraction was probably not com-

plete, and the co-efficient therefore too large.

Bornemann has given a later formula, which he considers more exact,

as follows :
—

Q= [0.43479 + 0.25666J—77+ 0.03121—J--J *
] 5eV2^^

* hi + - hi + — *

This value of m, however, is too complicated for ordinary use.

In Case II. the usual procedure is to calculate just as though the dis-

charge was into open air, and then use a co-efficient. Lesbros has given a

table, from his experiments, which may be used.

Ellis found for circular and square submerged orifices, under varying

heads, a co-efficient in the formula a V 2 g H almost constant, and

= 0.602.

Losses of head.— We have hitherto considered cases in which there

were no losses of head, and in which Bernouilli's theorem had the form

z + — + —— = constant. We have now to consider what losses of
7 2<7

head may occur. These losses are of three kinds. (1.) Losses from the

internal friction of the molecules, due to the fact that adjacent particles

do not move with exactly the same velocities, and that we have to deal

with a fluid which is not perfect. This loss always occurs, and as we do

not know the laws of distribution of velocity among the particles, nor

the co-efficient of velocity, we cannot take account of it in our calcula-

tions. Some mathematicians, however, by means of certain suppositions,

have discussed the subject in a general way, but the results are not of

practical utility. It is this loss, together with the second, which causes

the real velocity to be less than V 2 g h in the case of discharge through

an orifice.

(2.) Losses due to the friction of the liquid on the surfaces containing

it, as against the sides and bottom of a canal, or the circumference of a

pipe. This loss is a very important one in cases where the distances

considered are large. For small distances, such as we ftre now consider-
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ing, it may be neglected. We shall consider its laws later, in connec-

tion with the flow in channels and pipes.

(3.) Losses due to sudden reductions in the velocity of the liquid, such

as occurs when a pipe is suddenly enlarged at a certain point, and the

velocity of the liquid flowing in it correspondingly diminished. This loss

is analogous to that occurring in the case of a shock, or the impact of

two elastic bodies. This case must now be considered.

Effect of an abrupt change of section in a closed tube (Fig. 33).

— Suppose a liquid to pass from the tube A B C D through the orifice G F
into the tube L M K I. Let E H be the contracted vein, and I K a plane

where the particles are again supposed moving in parallel straight lines

normal to the section. The space F H Ki M and G E I x L is filled with a

mass of liquid not participating in the general motion, but sensibly stag-

nant, although probably more or less agitated and possessed of an eddy-

ing or rotary motion. In this case it is clear that some work is done, and
some loss of energy caused, and before we can apply the theorem of Ber-

nouilli to two points between which such a loss occurs, we must first find

the value of the loss. In order to solve this problem, we must make the

following reasonable suppositions, and afterwards we may test our re-

sults experimentally.

(1.) According to what has been said regarding slow velocities, we
assume the pressure in the mass of liquid F H Ki M— G E Ii L to vary

according to the law of hydrostatics, so that if we should put a piezo-

meter in at any point of this mass, or in the section E Hx the water would
rise to the same height in both.

(2.) The pressure in the section I K varies according to the laws of

hydrostatics. Now, let two tubes, Q and P, be put down, as shown in the

figure, and let h be the height of the water in P above that in Q ; = loss

of head ; v = velocity in E H ; v = that in I K ; a = the angle between

O V and O V, which represent these velocities in magnitude and direc-

tion ; U = the velocity represented byV V„; S = area of I K. Now
apply the theorem of Bernouilli to a particle passing E H and I K, and

we have plain letters referring to E H and primed letters to I K.

7 2g

\ y J \ y J 2g 2g

y 2
<tf2

But the first term of this equation is h .-. h + = - .

2g 2g

In order to find d, we must find h. For this purpose apply the theorem

of change of momentum (which we have seen eliminates the action of in-
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ternal forces) to the mass of liquid LGEHFMKI. In a time d t this

mass changes to L G E1 H1 F M K1 11 , and the change of momentum is the

momentum of IKK1 11 minus that of E H H1 E1
. The volume IKK1 !1

is S d v t, hence the change of momentum is (v — v cos. a), our
9

axis being taken parallel to that of the cylinder L K. We have now to

find the impulse of the outer forces, which may be found as follows s

suppose, for an instant, the liquid at rest, then the outer forces are all in

equilibrium, hence their projection on any axis is zero. Now, when mo-

tion takes place, the only difference in the state of things, so far as it

affects the equilibrium of the outer forces, is that on the plane I K the

pressure is that due to a hydrostatic level h higher than that on L M,

while before the hydrostatic levels were equal. Hence the value of (force

X time) is — y h. S d t, because P is supposed higher than Q. [A more

rigid proof of this may easily be given.] Hence we have the equation

y Sv dt , N a , , ,-'— (v — v cos. a) =z — y S h d t .'.

9

_ v ( Vp cos, a) — v ) m_
^

Substituting this in the equation for 0,

=—- (vo2 — v2 —2vv cos. a + 2v*\

1 / \ U 2= ( v 2 + v2 — 2 Wo cos. a ) = —— .

2g \ / 2 g

The velocity U is that which must be compounded with v to produce a

resultant v , hence the loss of head is equal to the head due to the geometri-

cal diminution of velocity.

Tf „ _ n . f) — (Vo — V) 2

2g

We have Q = S v = m S v<> '•

S being the area of the orifice G F.

• = SL'C-1 LV
2g \m So S /

Application. — Let fig. 34 represent a short tube attached to a reservoir,

and divided into compartments by the diaphragms as shown. Let the

a v,eas of the orifices, commencing at the reservoirs, be A, A2 , A2 A„

.

Let the areas of the different sections of the tube, commencing at the

reservoir, be S, Sl5 S2 , S „— i. Let h be the difference of level

between the water in the reservoir and the centre of gravity of the last
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orifice. Required : the quantity Q discharged per second, and the velocity

V at the last orifice. The theorem of Bernouilli applied between the

reservoirs and A„ gives

z+ _&L + = z > + lL+Xl + di or
7 7 *y

y-z£_(*.+*=*)-. (!)

If the tube is so short that we may neglect friction on its sides, we shall

have

2g L V m A S / I mAx sj \ m A2 S2 / J
w

Q = m A„ V . . . . (3)

From these three equations we may find the three unknown quantities,

Q, V, e.

Thus eliminating V, we have, calling p =p f

,

-^= ft_QLrS (-l._If| or
g m2 A „

2 2 g L W A S/ J2

Q2 - -

V2 =

_i_+ s^J L\

2j^
l + m2 A„ 2 2 f-L— JL.^\mA s /

The above formulae afford an excellent means of testing the accuracy of

the value we have found for 0. Eytelwein took a circular tube 0.0262m -

in diameter and 0.942m - long, divided by two intermediate diaphragms

into three chambers. The areas in the diaphragms and in the ends were

0.00655 ,n in diameter. Hence we should have

h _ m2 A2 h

y
ra2 A2

V rn, A S / \ S /

Q = A V2 g h

^1+3 (l —/ 1 — mA_V
v "s ;

A 1
Taking ra = 0.62, and — = —— , we have

S 16
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Q,=z0.319 A^r 2g h. while experiment gave

Q = 0331 A V'2gh .

This experiment is close enough, considering the uncertainty in m, to

show that our assumptions in deducing are admissible. Moreover, it was
found in the above case that the diaphragms were too close together, so

that there was not room between them for the liquid to attain a motion

in parallel straight lines filling the entire tube. Hence the co-efficient

found was too large ; and experiment showed that it decreased as the

diaphragms were moved farther apart.

Loss of head between two reservoirs. — Let fig. 35 represent two
communicating reservoirs, in which the levels are kept constant Then,

V2

if we neglect the small velocities at the points A and B, we have = ——
,

and by applying Bernouilli's theorem between those points we shall find

V — -+ 2 g (z + £^2—
J

as we have already found in another way.

Let fig. 36 represent a reservoir with two partitions, and let it be re-

quired to find the discharge Q and the velocity V from the last compart-

ment P. Let «i , a2 , «3 i
etc. ,...«„ represent the area of the orifices

in the partitions, supposing that there may be any number : Xi , x2 , x8 ,

etc., the differences of level between successive compartments, and h the

distance of the centre of gravity of the last orifice below the upper level.

Then Q = m «i 'V 2 g Xi

Q = ra a2 V2gx2

etc.

Q = ma„V2^(ft — xi— x2 . . . . )

Hence Q2

2 g m2 a x
2

x2 - —Q—
2 g w2 a2

2

h — Xi — x2 — . . . =
2 g m2 a„

h — Q2 _ Q2 Q2

2 g m2 a{2 2 g m2 a2
'2

'
'

'

2 g m2 o„ 2
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h =
29 m2 a2

4.
=J-2

-9 *

m2 a2

Effect of velocity of approach upon co-efficient of discharge.
— In finding the discharge through any orifice, as the one at the extrem-

ity of the tube in fig. 37, we apply Bernoulli's theorem to a point at the

orifice, and in the reservoir behind it, where v and p are known. The dis-

charge which results is, therefore, theoretically independent of the veloc-

ity in the tube A B. Weisbach has found, however, that the co-efficient

m in such a case is affected by that velocity, as it is affected by the prox-

imity of walls, or the supression of contraction. Let—— = x = ratio of
A

area of orifice to that of vessel just above orifice. Then, according to

Weisbach,

m' — m|l + 0.04564 (14. 821* — 1) |
= m x for circular orifices.

= mfl + 0.076 (9* — 1) 1 for rectangular orifices.

The use of the formula may be dispensed with, and the following tables

used instead:—

I. Circular Orifices.

x
|

0.05
|
0.10

|

0.15
|
0.20 0.25

|
0.30 0.35 0.40 0.45 0.50

X 1-007 1.014
|

1.023 1.034 1.045 1.059
|

1.075 1.092 1.112 1.134

X 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

X 1.161
|

1.189 1.223 1.260 1.303 1.351 1.408 1.471 1.546 1.613

II. Rectangular Orifices.

X 0.05
|
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

X 1.009 1.019 1.030 1.042 1.056
|

1.071 1.088 1.107 1.128 1.152

x
|

0.55 0.60 0.65 0.70 0.75 0.80
|
0.85 0.90 0.95 1.00

X 1.178 1.208
|

1.241 1.278 1.319
|

1.365
|

1.416
|

1.473 1.537 1.608

In cases where the open vessel, or reservoir, is itself so small that there

is an appreciable velocity, the formula for discharge through an orifice in

it becomes, as we have seen,
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or m' =

A2

Weisbach has found that the co-efficient m' is really larger than found

by this formula, and is given by the equation
,

i' = k m = m fl + 0.641 -^-1

-£- 0.05 0.10 0.15 0.20
|
0.25 0.30 0.35 0.40 0.45 0.50

K 1.002 1.006 1.014 1.026 1.040 1.058 1.079 1.103 1.130
|

1.160

The ratio — should not be much over — for the proper use of this
A 20

formula.

Cylindeical mouthpiece. — If an orifice in a thin plate is followed by

a tube of the same size, and whose length is from 2 to 3 times its diame-

ter, there will be no contraction at the end (ft = 1), but the velocity will

be but 0.82 V 2 g h , hence n = 0.82 ; m — ftn — 0.82. Or

v = 0.82 \ '•'<*+*7*)

Q = 0.82 a V 2 9 (* + ~)

2g s\ ^ r )

B = loss of head

These facts, found by experiment, are accounted for as follows (fig. 28)

:

the vein contracts from A B, the edge of the orifice, to a b, the con-
tracted vein, beyond which it expands and fills the tube, flowing full at

C D if the tube is not too short. Experiment has shown the proper
length to be from 2 to 3 times the diameter. If the length is less than
this, the discharge takes place as through a thin plate, the vein not touch-
ing the tube : if it be greater, there is a loss by friction on the sides of the

tube, and the discharge is diminished. In the case supposed, then, there
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is a loss of head due to the enlargement of the vein beyond c d, from the

area m a to the area a. Hence

e = Q
'

2

(1 - A2- *- (-L - i V
2 g a2 \ m / ' 2g \ m )

and we therefore have

v
'2 - z + P—P'

m + P=Z

f (- -
1

2g \ m J

If we suppose w = 0.62, we find from the above formula

0.273 (z + P —\

while, as we have seen, experiment shows the co-efficient to be 0.33. To
be more accurate, experiment shows that

v'2= 0.487 — .

2<7

(1 \ v2
1 )
—

m / 2g

The value of m which would make these two equations agree, is m =
0.59, which is not far from its real value, and sufficiently close to show
that our theory accounts for the phenomena.

The effect of the mouthpiece is, therefore, to increase Q and to diminish

i>. Now, the only way in which (the contraction remaining the same) the

discharge from a given orifice can be augmented, is by an increase in the

pressure p in the reservoir, or a decrease in the pressure on the con-

tracted vein. In the present case it must be the latter reason. Let us

find the pressure p" on the contracted vein, by applying the theorem of

Bernouilli between the reservoir and the contracted vein ; then

y j_ P —* + P" .

v
"'2

7 7 2 9

= 22 + 2^+
Q!

p — p

y 2g m2 a'2

+ z =
2 g m2 a2

Q} = 2gm2 a'2 (z + P ~ P
"

)
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But we have found by experiment

Q2 = (0.82)2 a2
. 2g f e + ^ZL\

Equating these two values of Q2
-, we have, calling 0.82 == mi

from which

jL _j^ = ('.iV.+ta!)
y y \m2 /\ y /

As mi > w this is always positive, hence p' > p''

values of m and mi (0.62 and 0.82), we find

Replacing the

p'—p"

K' + .'-T*)

p
£)

Hence the height due to the pressure on the contracted vein should be

less than that due to the pressure at C D, or p'
, by three-fourths of the

head ( « +

Venturi confirmed these results by some remarkable experiments (fig.

79). He first found by experiment that n == 0.822. He then bored twelve

small holes in the mouthpiece, around the contracted vein, the result of

which was that C D did not run full, and Q was exactly the same as if

there had been no mouthpiece, while not a drop of water ran through the

small holes. He then inserted a glass siphon into the contracted vein,

the small holes having all been closed. The siphon dipped into colored

f)
—7)'

water at its lower end, and the value of z +- was 0.88m - As soon as
7

the discharge was allowed to take place, the colored water rose in the

siphon to a height of 0.65 1"-, which is almost exactly three-fourths of

0.86'"-. If we had taken m = 0.62, mx = 0.8175, the result of the experi-

ment would agree exactly with the theoretical result.

We have hitherto compared theory with experiment only in cases where

the discharge occurred through a thin plate, where m was about 0.62. In

any other case our general equation will give correct results, if we substi-

tute the proper value of m. Thus, Bidone found from experiments with a

re-entering mouthpiece that the thickness of the mouthpiece had a con-

siderable effect upon the discharge, as shown in the following table, where
r = radius of cylindrical mouthpiece, and e = its thickness. It is to be

remembered that the tube could be made to flow full, like a long outside

mouthpiece, or could be allowed to flow as an orifice, without the water

touching the sides of the tube : —.
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Tube not Filled. Tube Filled.

Minimum valu«

of e, almost 0.
e > 0.414 r. e almost 0. e > 0.414 r.

m = 0.50. m = 0.61 . m = 0.7071. m — 0.8125.

These results are very easily explaned with the tube not filled; a thin

tube gave the theoretical co-efficient 0.50; while with a thick tuba the

condition of things was more like an orifice in a thin plate forming the

side of the vessel, and the co-efficient was 0.61. With the tube filled, the

value of m should be theoretically

according to the equation on page 41, in which m is supposed to be the

co-efficient if there is no mouthpiece, or if it does not flow full. Hence

for a thin tube m =0.50 in the above value, and the resultant co-eflicieut

is 0.707, exactly as given in the table. For a thick tube, supposing the

co-efficient with the tube not filled to be 0.61, the value of the co-efficieut

in the last column should be 0.843, which agrees tolerably well with the

result in the table.

The mouthpiece just discussed, having the effect of increasing Q at the

expense of v, and therefore decreasing the energy of the issuing liquid,

should be used only when the object is to augment the discharge, and not

when it is desirable to obtain as much work as possible from the water.

We have found that

7 Y \ mfi / V It '

In order thatp" shall be always greater than 0, it is necessary that

f >(£--0(< +
*-t9

ot

7

4 p'

f
> I • 5 • < T 7 •

or
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z < ± 34'

^ < 45' •

Hence if2 is greater than about 45 feet, the discharge cannot take place as

supposed, at least, not with the assumed values of mi and m.

Conical mouthpiece. — Such mouthpieces may be convergent or diver-

gent.

(a.) Convergent mouthpiece. — Up to a certain limit, the effect of con-

vergent mouthpieces is to increase Q still more than in the case of cylin-

drical mouthpieces ; for // still remains sensibly equal to unity, while there

is less loss of head. The co-efficient depends upon the angle of conver-

gence, or the angle at the apex of the cone, a ; and it appears from ex-

periments of d'Aubuisson and Castel that as a is increased, m increases,

reaching its maximum at 13° or 14°, then decreasing to the ordinary

value of about 0.61 for a = 18° ; while the co-efficient of velocity increased

regularly with a, from 0.82 to 0.98 when a — 180°.

Divergent mouthpiece. — Let fig. 40 represent a mouthpiece composed
of the part A B C D, having the shape of the contracted vein, to which is

fitted tangentially a conical divergent mouthpiece C D E F, the curves

being so smooth and gradual that no loss of head occurs anywhere.

Then, supposing the mouthpiece to flow full, we find the velocity v at

E F to be

= ^2, (>+*=*) and
'

if S is the area of E F. It would seem, then, at first sight that by in-

creasing S we could increase Q as much as we pleased ; but, as we have

seen, such increase can only be due to a corresponding decrease of press-

ure on the contracted vein C D. Let p" be the pressure on the con-

tracted vein, and v" the velocity through it; then

he contracted vein,and, if A is the area of the contracted vein
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Equating the two values of Q .

z + P—P— = /
y

.

A V . + ^^
y

and the maximum possible value of S will occur when p" = , or

. + JL
S _ L

If p = p'
, we have

S

-V
max. -~ = I--V

z + ^- - . 1 + yj

max. Q = A-/2gr(a +
-±—

J which is the same as the discharge into a

vacuum.

This effect of a diverging tube may be entirely suppressed by boring a

few capillary holes around the contracted vein, as Venturi found by ex-

periment.

Submerged diverging tube. — Let fig. 41 represent a diverging tube

whose axis is at a depth h2 below the lower water. Then if S and v refer

to E F, and A, v " and p" refer to C D ; p being the pressure on the surface

in the upper reservoir, and^' on the lower reservoir; we have

" = V 2 "( H + "-7£
)

=«V*K H+£7
£:
)

Q=A^2,(A
1 + ^') ...

s -
/

P—P"
7

A \U +
7
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max. —— = / L_

Up 7

"^ Q= « v/ -

I

?

<'i + -y-)

These principles find their application in the so-called diffuser, used

with some turbine wheels.

We have thus far considered that the divergent mouthpiece is so shaped

as to avoid all loss of head. Should it, however, be a simple conical

tube, there would be a loss of head at the entrance, and this loss would

be greater than in the case of a cylindrical mouthpiece. Experiments on

this point are not numerous, and the co-efficients are not well known.

Time required to empty vessels by discharge through an ori-

fice. — We have hitherto considered only cases of discharge under a con-

stant head, or where the level of the water was kept constant in the reser-

voir. We have now to consider a case where that level is allowed to sink

according to the quantity of water discharged, being unsupplied. Let

it be required to find the time necessary to lower the water level in a ver-

tical prismatic vessel of area A from a height hi to a height h2 above its

horizontal base, the water being discharged through an orifice of area a in

that base (fig. 82). In a time d t the discharge will evidently be, if the

head is x,

madtv2gx = — A d x or

d t = '

x-i d x

aVm a v 2 g

A
, x-i d X
him a */ 2 g

m a V 2 g
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For h2 = 0, we find the time necessary to empty the vessel from a

height h x to be

to = 2 A
=- VTr

a V 2 g

The quantity which has been discharged is A h. Had the water been

kept at a constant height h, the time necessary to discharge this quantity

would be

i =—A/t = —^~= vr.
m a 'V 2 g h m a 'V 2 g

Hence the time necessary to empty a cylindrical vessel is just double that

necessary to discharge the same quantity under the constant head h. This

theorem is not exactly true, for we have supposed the discharge to take

place to the very last with the orifice running full. But, as is well

known, before the water is entirely discharged, a funnel will be formed

over the orifice, and the law of discharge somewhat interrupted, the time

being increased to some extent.

Discharge over weirs (Fig. 43). — A weir is an orifice uncovered at

the top. The formulae for orifices may, therefore, be applied to weirs by

making H = 0. Weirs are generally rectangular, with a horizontal crest

or sill, and vertical sides, in which case they are commonly called notches.

The contraction on a weir takes place, as in an orifice, on all four sides,

when the edges of the orifice are sharp ; for it is found that the surface

falls for some distance back from the weir, so that the depth of water d

actually passing the weir is less than the depth h of the sill below the

water level some distance back. Let I = length of weir, h this depth, and

Q the discharge, then from the formulae for orifices we shall have the fol-

lowing formulae for this case :
—

(A.) Not taking account of the velocity of approach.

(1) Approximate : Q = m A V 2 g—
2

= m I h

V 2

= 0.707 mlh V 2 g h .

(2) By integrating Q = 0.667 mlh V 2 g h .

(B.) Taking account of velocity of approach.
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\ 2 a —
(3) Approximate : Q = mi A " 2

V7
in which Ai is the area of channel of approach, and mx is co-efficient of

discharge. We have seen that the velocity of approach affects the co-

efficient, so that mi is rather larger than m.

The formula (3) may be written

(4) q = 0-W "I » ft V77I (approx.)

A2

V.

Or, if we wish this in another form, we have

(5)
«=«*** V1'

'Of + S) (
aPProx->

r„ being the velocity of approach. More exactly, by integrating, we shall

have

(6) Q = 0.667 «H I VT<j
[
(k + ^) !-( ij)»]

If, in equations (1) and (2), we substitute m = 0.61, we shall have

(7) Q = 0.43 Z/i V2gh= 3.45 Z/i 2 (approx.)

(8) Q = 0.4U/iV2(//i = 3.29U'2

Experiments have generally, however, determined directly the value of

the co-efficient f m — c , so that

(9) Ih V 2 a h— d Ih''.

is the general formula used for calculating the discharge over rectangular

weirs. Lesbros found c from 0.371 to 0.424 (c
1 from 2.975 to 3.40) for

weirs 8 inches long, with complete contraction, and where I was less than

one-tenth B, but greater than three and a quarter inches, B being the

width of the channel of approach. For weirs without end contraction,

Lesbros found c = 0.45 (c' = 3.61) (average).

In order that contraction may be complete, the up-stream face of the

weir must be plane and vertical, and the edges of the crest and sides

sharp and thin, or else bevelled off down stream. The edges must not be
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rounded or bevelled on the up-stream side to any extent. Lesbros found
that the effect of thick edges and crest was to increase the value of c. In

order that contraction may be complete, it is further essential that the

crest and sides of the weir should be sufficiently removed from the bottom
and sides of the channel of approach respectively. If a weir is set in a

channel so as to extend completely across it, there will be no end con-

traction and c will be correspondingly greater. Castel found that as the

ratio

table :

increased, so did also the value of c, according to the following

l

B 1.0
|
0.90 1 0.80 0.70 0.G0 0.50 0.40 0.30 0.25

C 0.443 0.438 0.431 0.423 0.416 0.410 0.405 0.399 0.397

These results may be expressed by the following formula :
—

Q =( 0. 381 + 0.062 -l-)z h V 2 g h = 3.05^ 1 + 0.163 -A- )z fts

For I = B ; this becomes

Q = (0.381 + 0.062) IhV 2gh

= 0.443 Ih V 2 a h . = 3.55 I h 2

In order that this equation should be applicable, the following condi-

tions must be satisfied: —
1°. The weir must have a sharp, horizontal crest.

2°. The crest must be at least 2 h above the water below the weir.

3°. Z h must be less than £ the area of the channel of approach.

4°. Z must be at least equal to i B.

J. B. Francis, of Lowell, has given a weir formula, which is better

suited for practical use than any other, though not applicable in all cases.

He considers the contraction at the sides independent of Z, at least when
Z is greater than a certain limit, and he finds that contraction to be pro-

portional to h. At each end of the weir, therefore, where there is com-

plete contraction, he considers the effective length of the weir diminished

by (0.10 h). His formula is, therefore,

Q = 3.33 (Z — 0.1 nh)h\.

in which n is the number of end contractions. In an ordinary weir, with

perfect end contraction, n = 2 ; if the weir has a length equal to B, then

n = ; and if the weir be divided into two parts by a vertical pier or par-

tition, then each part may be considered separately, or the two may be
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taken together, by making n — 4. The constants for this formula were

obtained from experiments on weirs ten feet long, with heads up to 19",

while all previous experiments had been made on weirs of very small

dimensions. His formula is only applicable under certain conditions,

viz. :
—

(1.) It applies to rectangular weirs in the side of a dam which is verti-

cal on the up-stream side ; the crest being horizontal, sides vertical, and

edges sharp, so that the vein will not touch the sides of the weir after

once passing its up-stream edge.

(2.) It is only applicable when I > 3 h, and it is not applicable to very

small heads; the limits of h in the experiments were from 1" to 19", but

the equation would probably apply from h = 6' to h — 24".

(3.) The end contraction must be either complete or entirely sup-

pressed. The least distance from the end of the weir to the side of the

canal is h ; the least depth of the channel of approach is 3 h.

(4.) The form of the channel of approach should be such that the veloc-

ity over all parts of the weir should be the same, and if the water reaches

the channel in a turbulent condition, gratings, or wooden dams perfo-

rated with a number of one-inch holes, should be placed in the channel,

as far from the weir as possible, to calm the water before it approaches

the weir.

(5.) The under side of the vein, after passing the weir, should have free

communication with the atmosphere, the water below the weir should not

be higher than k h below the crest of the weir, and should be lower still

when I is large. Mr. Francis' experiments showed that by raising the

water, under certain circumstances, an increased discharge would result,

owing to the formation of a partial vacuum under the vein on the down-
stream side. With no end contraction, this formula becomes

Q = 3.33 1 As

Tables may be calculated giving according to this formula the values of

Q for any h. Probably the best method of studying weir formula? is to

first find a formula like the above, applicable to a sharp-crested weir, with

no end contraction, and with no appreciable velocity of approach, and
then to determine the corrections to be made for other conditions. This

method was followed by Fteley and Stearns, in their paper giving an ac-

count of their experiments at Framingham (Trans. A. S. C. E., 1883).

These experimenters found for a weir with no end contraction and no
velocity of approach the general formula

Q = 3.31 I h\ + 0.007 I .

This applies where h is not less than 0.07 feet.

Correction for end contraction. —We have seen that Francis diminishes

the length of the weir by 0.1 h for each end contraction. Fteley and
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Stearns' experiments showed that the diminution was by no means pro-

portional to h, but was very irregular. The amount of diminution will

evidently vary with the velocity of approach, for we have seen that such

velocity always affects the co-efficient of contraction.

Correction for velocity of approach. — There are three methods of cor-

recting for velocity of approach :
—

1°. By substituting for h) in the formula the quantity

according to the formula already given,

This method is followed by Mr. Francis, whose formula becomes

«

=

8 -33 ('-«• !»*)[(» +-g) !

-C0~]

This cannot be exact, as it ignores the effect of the velocity of approach

on the co-efficient. In the application of this method v is first to be sup-

posed zero, and an approximate Q calculated, from which a close value of

v is obtained. The above formula is then applied, and a new value of Q
obtained. If necessary, the operation may be repeated a sufficient num-

ber of times to give an accurate result.

2.° By multiplying the quantity given by the formula

Q = 3.33(2 — 0.1 nh)h\ ,

h being the observed depth on the weir, by a constant depending upon

the ratio of (I h) to (B T.). Hunking and Hart have found that re-

sults identical with these obtained by the method just explained may be

obtained by multiplying Q by the quantity

k=l + 0.2489 &iL=£i"»i

and they give a table of values of k which saves time in computation.

The use of this method, giving results identical with that just described,

is affected by the same errors. To be correct, the co-efficient should be

larger the larger the velocity of approach. Weisbach corrects for veloc-

ity of approach in a similar manner. He gives the following general

formulae for weirs :
—
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If Z < B:

Q=im [l + 1.718(1^)*] J A V 2 gh

IfZ = B:

Q= |m|" 1.041 + 0.3693 (-*r)
2
~| Ih V 2gh

In these equatioDs B and T are the breadth and depth respectively of

the channel of approach, and m is the co-efficient derived from Lesbros'

experiments on small orifices, varying from 0.371 to 0.424. The fact that

this formula depends upon Lesbros' experiments, which were made on a

small scale, renders it of little use in practice.

(3°.) The third method of taking account of velocity of approach is to

correct the observed depth on the weir, h, by adding the quantity C, before

applying the formula for weir discharge. Fteley and Stearns have found

the value of this correction for various cases; they should only be used,

however, when the weir formula of those authors is also used. When
Francis' formula for weirs is used, his method of correcting should be

used also, as his experiments and calculations were made in this way.

Fteley and Stearns found

C — 1.5 h for weirs without end contraction.

C = 2.05 h for weirs with end contraction.

Effect of a wide crest. — All the formula? thus far given suppose a sharp

crest which the liquid vein does not touch after leaving its up-stream edge.

Fteley and Stearns have experimented on the effect of a wide crest, using

crests from two to ten inches in width, and with values of h from 0.12 to

0.89 feet. They found that for any given crest, of width w, there was a

certain value of h at which no correction was required, the flow being the

same as with a sharp crest and the same h. This value of h, which we
may call h1

, was
/i
1 = 1.614 w.

If h was below this value, a certain correction C must be subtracted from
the depth on the wide crest to obtain the equivalent depth on a sharp crest.

If h is above the value, a correction C must be added to the length on the
wide crest. The correction is given by the formula

C = 0.2016VV + 0.2146 to2 — 0.1876 w

where y == 0.807 w — h.

They give a table, from which this correction may be obtaiued with
ease.
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Effect of a rounded crest. —We have hitherto supposed the up-stream

edge of the weir to be sharp. If it is a quarter circle with a radius li,

Fteley and Stearns have found that the value of h should be increased by

adding C = 0.7 R. This is only applicable, however, when li > £", and

when h is great enough so that the vein is raised from the crest, as in a

sharp-crested weir. Experiments were made on a weir with both wide

and rounded crest, in order to see whether each could be corrected for as

above, but it was fouud that the correction for the rounded edge was
0.41 R. This value is limited to cases where R is less than k" , and h is less

than 0.17' and 0.26' for radii of \ and i inch respectively, and vo = 4" to 5."

Other formulae for iveirs.

1°. Boileau. —Weirs without end contractions.

V I—

i

h

Q = . lhV2gh.

h = depth on weir measured far enough back to be beyond where cur-

vature of sheet commences.

d = actual depth over crest.

s = height of crest above bottom.

This formula is of little practical value now.

2°. Braschmann.

Q = [ 0.3838 + 0.038G -L + _M^1 X h V 2 yh.

If I — B

.4224 +Q= [0.
- 000^lz;i V27i:
h J

3°. Bornemann.—Weirs with no end contraction

Q = (o.5673 — 0.1239 Q. \ I h V 2 g h

if h < i T

.

Q s (o.6402 — 0.2862 /A \ l (h + h{)V 2 g (h 4- ft,

if h > i T.

y 2

in which /ii = _°-
2r/
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Oblique weirs. —Weirs oblique to the axis of the channel are generally

calculated as though they were weirs of equal length at right angles to

channel, although in reality the quantity discharged by them is smaller.

Boileau found where the weir made angles of 45° and 63° .25' with the axis

of the channel the quantity discharged was, respectively, 0.911, and 0.942

of that given by the usual formula applied to the same length of weir.

Experiments on weirs. —There are two methods of experimenting upon

flow over weirs. First, by measuring directly the quantity flowing in a

given time, varying the conditions according to the object to be attained.

This method involves an accurate measurement of quantity, of time, and

the beginning and end of the experiment must be accurately controlled,

so that the method is difficult and expensive with large quantities. Sec-

ond, a constant quantity of water may be allowed to flow over weirs under

different conditions, and from the varying depths on the weir the effect of

those conditions may be determined. Thus, if the same quantity be

allowed to flow over a sharp-crested weir, and then over a wide-crested

weir, the change in depth will show the effect of the wide crest. This

method dispenses with a direct measurement of quantity, but does not

allow of a complete solution of all questions relating to weirs. To show
its application to the determination of constants, suppose a weir without

end contraction, and let the formula for flow be assumed of the form

Q = c I h c
, in which c and x are unknown. Then, if we allow the same

Q to flow over two weirs of lengths I and I', at depths h and h', we have

Q = clhx = cV h'* .-.

log. V — log. I

log. h — log. h'

We may thus, by two experiments, find the power of h which will give

the same Q in both cases. In order to find c, a direct measurement of Q
would be necessary. Fteley and Stearns used the second method in

studying the effect of velocity of approach, end contraction, wide and
rounded crests.

The experiments on weirs, previous to those of Mr. Francis, were
made on such a small scale that the results are of little value. The best

experiments of late years are those of Francis, and of Fteley and Stearns.

Mr. Francis experimented with a weir 10 feet long, with h from 7 to 19

inches, the measuring vessel being a lock chamber with a capacity of 12138

cubic feet. Fteley and Stearns used a weir 5 feet long, and one 19 feet

long, with three measuring vessels, the smallest with a capacity of 359

cubic feet, the largest with over 300,000 cubic feet. The results of these

experiments have been already given.
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Effect of height of water on down-stream side.—For the application of the

weir formulae which have been given, the under side of the weir should

have free communication with the atmosphere. Mr. Francis found that

by raising the water on the down-stream side, the discharge could some-

times be increased, clue to the exhaustion of the air from beneath the sur-

face of the sheet, where there is no end contraction, and the sheet is pre-

vented from expanding laterally after leaving the crest. When h was
0.85' no effect was observed when the water on the down-stream side was
0.235' below crest; when level with the crest, the effect was very small;

when f" above the crest, the discharge was increased by 0.7 of one per

cent, and when 1.25" above the crest the discharge was decreased, the

change being rapid for greater heights, the weir being then submerged.

It is best to keep the lower water at least i h below the crest of the weir,

when the under side of the sheet communicates freely with the atmos-

phere at the ends. Fteley and Stearns found that if h is considerable, the

lower water could rise to the level of the crest of the weir without affect-

ing the discharge, and that the error would not be over one per cent, if the

lower water should rise to a height of .15 ft above the crest.

Measurement of ft. — The value of ft, to be used in the formulae given,

denotes the height above the crest of the weir of the water in the still

pond, or back of the point where the curvature of the surface com-

mences. Mr. Mills has shown that in order that a peizometric column
shall indicate truly the height of the surface of water in motion, the

velocity should be neither increasing or decreasing, the currents flowing

parallel to the sides of the conduit, and the orifices of the peizometers

should have edges parallel to the direction of the current, or in the plane

of the side of the conduit, and passages normal to that direction. These

conditions being fulfilled, the value of ft should be measured at a distance

equal to 2.5 S back of the weir, S being the height of the crest above the

bottom of the channel. The channel of approach should be of uniform

section. The measurement of ft may be made with a hook gauge. The
experiments of Francis, as well as those of Fteley and Stearns, show that

there is a triangular space between the weir and the bottom of the chan-

nel, extending back for a distance of about 2| S, within which the pres-

sure is greater than farther from the weir, although the amount of the

excess of pressure is quite uncertain.

Triangular notch. — The formulas for triangular orifice give for a notch,

q=^-«vtt: -
l

h
-.h'>

The constants for this formula have not been much studied. We may,

however, give to m the same value that it has in Francis' formula for

weirs. This gives us for the notch
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Q = 1.333-/- . h*^ h

5

2.6667 cot. a . h 2

if a is the angle the edge of the notch makes with the horizontal. From
this we may find a formula for a weir whose crest is not level. Let Qi

,

Q2 > Q3 5
be respectively the quantities flowing through the areas A J) B,

A F G, and F G D B, in fig. 44. Then if 15 D = h ; F G = h2 ; F B = h

5

Qi — 1.333 cot. a . If1

cot. a s=
h

h

— h2

Q3 = 1.333
h-

h

^h2

Q2

Q3
— Qx

— Q2 = 1.333 cot. a T h* —^H

f s n
L ^2— h2 J

Correcting for end contractions, this formula becomes

7 a 1
h + h*

h— O.ln —-—
6 5

W= 1.333-
h_ h/ (^-^)

a formula applicable under the same limitations as Francis' weir formula.

This formula is very useful where the crest of a weir is not exactly hori-

zontal.

Depth on crest of weir. — Fteley and Stearns found the actual depth on

the crest of the weir to vary from 0.852 h to 0.882 h when the velocity of

approach varied between 0.389 and 1.529 feet per second.

Submerged weirs (Fig 45).—A weir is submerged if the lower water rises

above its crest, as in fig. 45. We have seen that if H"' is small, the effect

of the submergence is inappreciable. If H'" is large, the usual formula
is obtained by considering the discharge in two parts, and is

Q = c. § I V 2 g (H" — TL">y + c' I H"'V 2 g (H"— II'")
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Mr. Francis finds from his experiments

Q = 3.33 I (H"— H'")* + 4.51)88 I H"'V h" — H'

— 3.33 I Vh"_H'" (H" 4- 0.381 H'")

or, if there is end contraction,

Q = 3.33 (I — 0.1 n H")Vh" — H'" (H" + 0.381 H"')

Fteley and Stearns propose the formula

Q=cz(h" +^-Wh"-H"'
for weirs without end contraction, and with no velocity of approach.

They found c to vary with the ratio of H"' to H" , and gave a table from
which its value could be taken at once. They consider that although in

their experiments the value of H" only varied from 0.3251' to 0.8149' , the
H"

formula will apply to much greater depths. For values of less than

0.08 the formula is not applicable. Correction may be made for end con-

tractions in the usual way ; also for velocity of approach ; but the form-
ula should not be used if the velocity of approach, or that with which the

water leaves the weir, is large. The channel, on the down-stream side,

should be sufficiently deep and wide to make the velocity small, and this

precaution is more important as the weir becomes more submerged.

Lesbros gave the formula

Q = m I H"V 2 g (H" — H'")

V2^H"Vh' H

His experiments were made with a weir 0.24m long, and with end con-

traction. The following are his values of m :—
H"—H"

0.002 .003 .004 .005 .006 .007 .008 .009 .010 .015

m .295 .363 .430 .496 .556 .597 .605 .600 .596 .580

H—H"
.020 .025 .030 .035 .040 .045

|

.050 .060 .080 0.10

in .570 .557 .546 .537 .531 .523 .522 .519 .517 .516

H"-H"—vr~ 0.15 .20 .25 .30 .35 .40 .45 .50 .55 .60

m .512 .507 .502 .497 .492 .487 .480 .474 .466 .459

H"_H"
H" 0.70 0.80 0.90 1.0

1 1 1

m .444 .427 .409 .390
1 1 1 1
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The most general formula for a submerged weir, taking account of

velocity of approach, would be

Q = ZWg
{
| c' [(H"~H- + ^-)»-(|^)»]

+ c" H'" (h"— H" + |^)^]

Bornemann finds in this formula

c' = c" = 0.702 — 0.2226 J H"—H'" + 0.1845 (g^)*

CHAPTER III.

Plow of Water in Open Channels.

Definitions.— Considering a portion of the stream which is approxi-

mately straight, take a section at right angles to the stream, and we let

F = area of water section.

p = wetted perimeter.

b = width at surface of water.

F
tm = -j—= mean depth.

F
* R ==— == hydraulic mean depth.

(a) Rectangular section (Fig. 46).

F = 6 d

p = b + 2d

n — JL- bd — d

P ~b+2d~
r
,2d

b
tm =i d .

d F
If -v-is very small, R = d = fm ;== -:-
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(b) Circular section. Radius r.

F= nr*
; p = 2 7T r (if flowing full).

The value of R is the same whether the section be full or half full.

(c) Trapezoidal section (Fig. 47).

2

= B T + T2 cot. a

= T (Bo + T cot. a)

= T (Bx — T cot. a)

2 T
p =B +

sin. a

R _ F _ T (B + T cot, a)

sm. a

To find the values of B and Bi with a given F and T, we have

FB = -^ T cot. a

F
Bi = -tjt + T cot. a

Hence, p =— + ^— (2 - cos. a)

JL— _L - - _L + T(2— cos, a)
,

F ~~ R
—

T F sin. a

(d) Irregular section. Find F by Simpson's rule and measure p. For
ordinary streams, p = 6 very nearly, or very accurately^ = 1.01 6.

Form of section for maximum R. — We shall see shortly that, in

some respects, the section which has the maximum value of R is in some
respects the most favorable. Assuming a constant area F, we find the

proper proportions as follows :
—

(a) Bectangular section. Call b & = F = c.

c
Then R =

r+ 2 d
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If R is a maximum —~ = 2 d , or b .
= 2d.

Hence the shape is that of a half square.

In this case R = - .

4

(b) Circular section.— To find the level of water corresponding to

maximum R (Fig. 48).

Y = r2 (a— i sin. 2 a)

p = 2 a . r

sin. 2 <r
R

r / sin. 2 a\

-TV 2
i
-

y

R will be a maximum when

2 a = tan. 2 a .

Solving this by trial, we find

a =128° 43' 36.5"

Here we find

R = 0.629 r .

(c) Trapezoidal section. —It is a theorem of geometry that of all equal

polygons, with the same number of sides, the regular polygon has the

minimum perimeter. Hence the shape of section for which R is a maxi-

mum will always be a half or an entire regular polygon ; and for the

trapezoidal section the semi-hexagon would give the greatest R.

Comparing polygons with different numbers of sides, it is a theorem of

geometry that of all isoperimetric plane figures the circle has the largest

area. Hence the greater the number of sides of a regular polygon, the

greater will R be ; and the absolute maximum of R will occur for the

circle.

It is not always possible to make the trapezoidal section hexagonal in

shape, with the sides sloping at 60°. Generally, a is given by the nature

of the material, and, in this case, to find the most favorable form, we

have to make — a minimum, or

1 T (2 — cos, a)

T ~ F sin. a

V
F sin. i

2— cos.
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T==
2F = Bi-B,
p 2 cot. a

P =
-Y"

- BX + B,

R=A /Fsim_
\2— cos.

f it is desired to design a canal according to these principles, to carry

a certain quantity of water, the steps to be taken are as follows: (1)

Assume the velocity, with reference to the character of the bed. (2)

Calculate F =^-5_ . (3.) Assume a. (4.) Calculate the proper propor-
v

tions. (5.) Find the necessary slope from the formulae to be given. If

this does not suit, a different v may be chosen, necessitating a change in

F.

Distribution of velocity in cross-section. —The velocity varies

in different parts of the same cross-section, and a knowledge of the rela-

tion between the mean velocity and the velocity at different points is of

great importance, as we shall see. It is mean velocity that we have to

deal with in calculating discharge, but it is, in most cases, impossible to

measure this mean velocity.

Considering a vertical at any point of the stream, the velocity at dif-

ferent points is found to decrease from the bottom towards the surface.

The best observations show that it reaches its maximum a short distance

below the surface, this depth varying, according to the observations of

Humphreys and Abbot on the Mississippi, from 0.1 to 0.5 of the total depth

in the vertical considered, and being generally, in clear weather, at about

0.3 of the total depth. In very wide streams, however, like the La Plata

near its mouth, the maximum velocity has been found at the surface.

Regarding this phenomenon, many explanations have been advanced.

It was at first thought to be due to the retardation at the surface due to

the friction of the atmosphere ; but Humphreys and Abbot found that,

although the direction of the wind influenced the position of the point of

maximum velocity, yet even when the wind was down stream the maxi-

mum velocity occurred below the surface, thus showing that the friction

of the atmosphere could not account for the phenomenon. The true

cause is, probably, that, on account of resistances met with along the bed

and banks, some of the slower-moving water near the bottom is trans-

ferred to the surface, coming up in boils in the current, and ascending

almost continuously along the banks, and spreading out over the surface.

The wider and deeper the stream, the more likely, therefore, the maxi-

mum velocity is to be at the surface.
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If we lay off horizontally, from a vertical line representing the depth,

the velocity at each point, we shall obtain a curve, called the vertical

velocity curve. Many hypotheses have been made regarding its form,

but the three principal ones are : (1) that it is a parabola, with horizontal

axis a short distance below or at the surface (Humphreys and Abbot)
;

(2) that it is a parabola with vertical axis, and vertex at the bottom or a

short distance below, thus always giving the maximum velocity at the sur-

face (Hagen)
; (3) that it is a straight line inclined to the vertical, thus

always giving the maximum velocity at the surface (Revy and Weisbach).

Call v the mean velocity in the vertical ; v = surface velocity ; vB =
velocity at bed ; v\ = maximum velocity, occurring at a depth ti ; vx =
velocity at a depth tx ; t = total depth in vertical : V = mean velocity in

entire cross-section ; then Humphreys' and Abbot's equation for the ver-

tical velocity curve was

(a) („ -I, a.Jj^(^±), '«

^ Vt+1.5
V '

(tx — tx)* = P (% — vx)

Here we have

v = £ [ 2 vx + v s + A ( v — vs ) J
(b) Weisbach gave

vx=( 1 — 0.17 -y-V

Here the mean velocity occurs at mid-depth, and equals \ (v + v*)

(c) Hagen assumed the equation of the velocity curve as follows :
—

vx= C+pVh.
where h = height above bottom.

Here the average velocity in the vertical is

v — C + f pV t

5
and occurs at a depth of — t .

y

Hagen recommends careful measurements at this depth, instead of

many measurements at different points. But it would be more conveni-

ent still if we could find a relation between v and v , which would render

unnecessary anything but a surface measurement. Hagen finds

1 4- 0.15 Vo.9711 *
V —Vo

1 + 0.225 Vo.9711
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In a later work (1883) Hagen assumes the equation y
b = p h, if y is the

velocity at a height h above the bottom. Here

v= -
6
-V p t

5
and v = —- v , or entirely independent of the depth. Moreover, the

o
mean velocity occurs, according to this law, at a height of 0.403 t above

the bottom, or at a depth of 0.597 t.

In 1876, Hagen gave the equation

v = v ( 1 — 0.0322V

Humphreys and Abbot consider that their measurements showed
v

that the ratio — of the mean velocity to that at any point in the verti-
vx

cal is, approximately, constant for but one point, viz., at micl-depth, and
that the mean velocity is equal to the velocity at mid-depth multiplied by
a ratio a little less than one. Ellis, in his measurements on the Connec-

ticut River, found the ratio to vary from 0.92 to 0.96, the average being

0.94. He also found the depth of the thread of mean velocity to be at

from 0.622 to 0.656 of the total depth, the grand mean being 0.636 t.

Call v ' = maximum surface velocity, vs
' == velocity at bed in same ver-

tical with v '. Then Dubuat gave, from his experiments on artificial

channels,

Prony gave the following :
—

V = v ' + 7.78

vj ~ v ' 4- 10.34

When v ' was between 0.65 and 4.92 feet per second, he found that the

equation V = 0.816 v ' was correct within 4 per cent, and V =: 0.8 vj was
correct within 10 per cent.

None of these formulae take any account of character of bed, or of the

dimensions of the stream. Darcy and Bazin proposed the following, based
on careful experiments :

—

V 1

Vo'

1 + v a + /3

R
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The following are the values of a and (3 :
—

1°. Beds of smooth cement, without sand ; or

planed boards, carefully laid .... 0.00015 0.00001476

2°. Cement with sand; paved walls; brick;

planks not planed 0.00019 0.000043624

3°. Rougher walls ; stonework or paving . . 0.00024 0.0001968

4°. Earthen bed 0.00028 0.001148

These results are the best for artificial channels, because the experi-

ments were made on such.

For rough calculations, we may assume :

v = 0.9 v

V
= 0.9 v >

= 0.8V . ]

Formulae for Flow.

General principles. —When water flows in open channels, its flow is

governed by the laws of fluid friction. These laws are almost the reverse

of those of the friction of solids, as will be seen from the following com-

parison :
—

{varies as the pressure

;

is independent of surface

;

" " " velocity.

{is independent of the pressure

;

varies with the surface

;

" " " velocity.

We consider here only the case of uniform and permanent motion, and

in this case the channel is supposed to have everywhere the same section,

and the water to stand at the same depth at every point. The bed must,

therefore, be inclined, as the flow depends upon the inclination of the

surface, which must, therefore, be parallel with the bed in order that the

motion may be uniform, or the same at every cross-section.

Applying the theorem of Bernouilli to two points at a distance d I

apart, the only loss of head is that due to friction, which is

,_ pdl. f{v)e- j,

since friction varies as the area p d I , and as some function / (v) of

the velocity ; the loss of head will evidently vary with -^— • Hence,

if we call v and z the velocity and elevation of the water surface at
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some starting point, and vu and z„ the corresponding quantities at some
point at a distance I from the first, we shall have

2g 7 2 g y «/
o
F

or since p = p u and 7i = « — z R \s the difference in level or fall in the dis-

tance I ,

H^=WI -§-<»•/(«)

This is the general equation for permanent motion, either uniform (the

same in all cross-sections) or varied. For uniform motion it becomes,

since v = v „ :

h F
or calling —— = i , and — = R , R i = / («)

Z i>

This is the general equation for flow, and the basis of all the formulae

which have been proposed. These differ simply in the function of v

according to which the different authors suppose the friction to vary.

Old formulae. —Chezy assumed / (v) = av2
, where a is a constant

;

hence,

v =* c V R i

c being another constant, which is given by different writers, and for dif-

ferent kinds of channels, all the way from 60 to 100. Eytelwein's co-

efficient, deduced from experiments by Dubuat, is 92.1 for feet measure.

Now v, in the aboA^e equation, is really the velocity at the bed, upon
which the friction depends ; but we intend it shall represent the mean
velocity, because that is what we wish to determine ; hence the co-efficient

c must involve the ratio between these two velocities. But there is no

constant ratio between them ; hence c cannot possibly be a constant, and

in fact it is found to vary considerably. All formulas, however, may be

reduced to this form, the only difference between them being in the value

given to c, some authors making c vary as the cross-section changes,

others with the velocity, others with the slope, etc.

Girard put / (» i = a v + a v2
.

Prony put / (v) = A v + Bi) !
, and gave the values
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A = 0.00004445
,

B = 0.0000943

,

based on Dubuat's experiments.

Eytelwein determined the values of A and B, taking, in addition to Du-

buat's experiments, others by Briinings, Woltmann, and Funk, and found

A = 0.0000243

,

B = 0.000112.

Lahmeyer proposed f (v) = a v\

St. Venant proposed f (v) = a v\\

Dupuit advocated / (v) = a va + b v ,
2

, v» being velocity at bottom.

Weisbach makes

/ W =^[o.oor,o9
(
1 + 5^)]

All these formulae make / (v) and c vary simply with the velocity; but

experiments show it to vary with the slope, hydraulic mean depth, and,

above all, with the character of the bed. Hence all the above formulae

are, at the present clay, of no value.

Newer formulae.

1°. Humphreys and Abbot, from their measurements on the Mississippi

Eiver, gave the formula

= [V 0.0081 6+>fe-£- -0.09 V7Jp + w
where w = width at water surface, and

1.69
b —

Vl.5 4- R

This formulae may be applied to streams flowing in beds of variable sec-

tion, and with bends. To apply it, proceed as follows : trace, approxi-

mately, the centre line of the current as a series of straight lines making

a2 n sin. 30°
deflection angles of 30° with each other ; calculate h' = —- '

where n = number of deflections, and v = assumed mean velocity of cur-

rent; subtract h' from the fall h between the two end sections, and use

the remainder in calculating i ; in other words, assume the head h' to be

lost in overcoming losses due to bends and changes of section. In using
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the formula, all quantities should be average values for the stretch of

river considered. This formula is applicable only to large streams, and

not to smooth, artificial channels with uniform section. According to

Gen. Abbot, it is applicable only when F is greater than 100 square feet,

and i less than 0.0008. When F is smaller than this limit, Abbot pro-

poses to subtract a term 2.4 V v' , v' being the velocity as found from

the formula as originally given. It is better to limit the application of

this formula to very large rivers, as we shall see that there are others

giving better results for small streams.

2°. Grebenau, the translator of Humphreys' and Abbot's work into Ger-

man, proposed to simplify the formula to

• = *>/
225 r As/ i (-.4)

as the terms omitted are generally small. Without the constant (3 the

above formula gave too large a velocity as the stream was smaller. He
gave values of fi as follows :

—

Small streams ; less than 1 square meter in section

Streams ; from 1 to 5 square meters in section .

Streams ; from 5 to 10 square meters in section

Rivers ; from 20 to 400 square meters in section

Large rivers ; over 400 square meters in section

In this formula the constant c has the form

0.8543

0.8796

0.8890

0.9223

0.9459

Wi
Both these formulae are not applicable to artificial channels, or streams

with large fall.

3°. Darcy and Bazin. — These experimenters tried the four different

kinds of bed enumerated on page 64, and falls from 0.001 to 0.009. They
gave the formula

or, reduced to feet measure,

* =1 - 81>hFv~ R i

in which 6 has the following values for the four categories of bed

:
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I. bl = 0.00015 ( i + ?fM)

II. fc = 0.00019 ( 1 + *§*)

III. 6! = 0.00024 ( 1 + °*1
)

IV. h = 0.00028 ( 1 + -4£-"1

These are excellent formulae, and applicable to all cases except where
the fall is very small. For smooth, artificial channels of uniform section

they are as good as any ; but if the form of cross-section is much differ-

ent from those experimented on (circular or trapezoidal) the results will

be in error.

4°. Gauckler's formula, based on Darcy and Bazin's measurements, is

as follows :
—

f for i > 0.0007 ; V^aVrVj
c = a2

6VR

for i < 0.0007 : Wv = (3 Ve V i

Czrzfil VR5V t

Regarding this formula, it may be said that it is in principle wrong to

have two formulae, and that these do not agree well with experiments.

4°. Bornemann's formula, obtained by discussing Gauckler's, and adding
some results of his own experiments, was

W= a Via VT
This formula is also of little value.

6°. HagerCs formula. His first formula was v = a V R \A-

, in which

a = 4.38925 for foot measure.

This formula, making no distinctions regarding character of bed, is, of
course, valueless. Hagen's latest formula? are

v = 4.90 R Vt , for small streams.

v = G.045 V RW i , for large streams.
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These two values become equal for R = 1.52 feet; hence the former

formula applies when R is less than this value, and the latter when it is

greater. The bed is supposed of earth.

7°. Ganguillet and Kuttefs formula is as follows :
—

23+ _L+ 0,00155

n i

( 230.55 +( 23 +
0.00155 \ n

Ri

—JV R

in which n is a co-efficient depending on the roughness of the bed, as fol-

lows :
—

1

0.010 100.00

0.012 83.33

. 0.013 76.91

0.917 58.82

0.025 40.00

0.030 33.33

1°. Smooth cement, or carefully planed boards

2°. Boards

3°. Cut stone, or jointed brick

4°. Rough stone

5°. Earth ; stream, and rivers

6°. Streams carrying detritus, and with plants

This formula is the best yet proposed ; it agrees with Darcy and Bazin's,

and also with Humphreys and Abbot's measurements.

8°. Harder (1878) believes that his experiments near Hamburg show that

both Darcy and Bazin's, and Ganguillet and Kutter's formulae gave too small

a velocity for small streams. He proposes,

1°. Very smooth bed :

v = ( 127.605 + 7.254 V R \ V R i .

2°. Smooth bed ; boards ; masonry ; brick :

v = ( 1.0136 + 7.254VrWri .

3°. Earth, and rough masonry bed :

v = I 65.65 + 7.254 V R \ Vri.

These formulae agree quite well with experiments.

In applying these formulas for flow the following problems may occur;
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1°. Given, cross-section of channel, Q, and i; to find depth of water.

(Solved by approximation, assuming depth at first.)

2°. Given, section of current, and i ; to find Q. (Apply formulas di-

rectly.)

3°. Given, section of current, and Q ; to find i. (Calculate t>, and solve

formula for i.)

4°. Given, Q and i; to design cross-section. (Assume shape of sec-

tion, and proceed as in l
c
.)

Backwater. — If, in a channel in which water is flowing with perma-

nent and uniform motion, the water-level be raised at some point, as by a

dam, the motion becomes varied, and the depth of water behind the dam
generally decreases up stream as far as the effect of the dam is felt ; in

other words, within that distance the water-level is raised above its

former position, and the shape of the surface is not a plane, but a curve.

It is often important to find the shape of this curve, and to determine

how far the effect of such a raising of the water-level is felt. When the

channel has a regular shape, mathematical solutions of this problem may
be arrived at, and the equation of the water-surface found; but, in prac-

tice, the channel is never constant in shape, and an approximate solution

is just as accurate, and more easy of understanding.

The first step is to make or procure a topographical map of the stream

for some distance above the proposed site. Next, the height of dam being

assumed, calculate how high the water will stand on its crest at the stage

of the water for which it is desired to calculate the backwater. Starting

with this water-level, the motion is considered uniform (the surface par-

allel to.the bed) for a short distance. Applying Kutter's formula, we have

everything given except i and n. The latter being assumed, calculate i.

In assuming n, a gauging of the stream may be made, together with a

determination of the slope, to find n more accurately. Having found t,

the depth of water at the upper end of the section considered is found, a

new R and v calculated, and so the operation is repeated, proceeding in

short steps up stream.

Backwater due to partial obstructions, such as bridge-piers (Fig. 49). —Let
A B be the natural surface of the water in a channel whose shape is known,
and let it be obstructed by some bridge-piers of width w, and with a clear

distance I between them. Then the water will be obliged to flow more
rapidly between the piers, and hence the level of the water will be raised

above them until the necessary additional head is produced, while be-

tween the piers the depth will be less than before. Then, referring to

the figure

:
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Section above piers = h L.

Section between p ers = m h' I
,

m being the co-efficient of contraction at the head of the piers. Further,

if Q is the discharge,

mean velocity above piers = v = ~-^
h Li

mean velocity between piers = v' = —-f^-, .m h' I

Hence, we have clearly

h — h' = 2=^- [ -2 !>o> — -tAtI
2 g [_m2 h'2 I

2 h 2 L2 J

Generally, we may assume h1 = H. Hence,

z - Q 2 f i
? n

2 g L m2
Z
2 H2 L2 (H + s) 2J

This equation is solved by successive approximation, and m will depend

on the shape of the pier. Eytelwein found m — 0.95 when the front is tri-

angular or oval, and m = 0.85 when it is square. Generally, it may be

taken as 0.90.

CHAPTER IV.

Hydkometry.

Hydrometry treats of the measurement of quantities of water flowing in

natural or artificial channels. The quantity may be found in four differ-

ent ways

:

1°. By direct measurement in a measuring vessel. This is only suit-

able for very small streams, and will not be further considered.

2°. By measurement of the flow through orifices or over weirs. This

necessitates building a dam across the stream, and is only applicable to

small streams, or to cases where facilities already exist. It consists

simply in applying the formulae already explained.
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3°. By calculating from the measured slope and cross-section, accord-

ing to one of the formulae for flow. This is really a calculation, and not a

measurement of flow, and does not belong under the present head.

4°. By measuring the velocity of the flowing water at different points

in the cross-section, and thence determining the discharge. This is now
to be considered.

Instruments for measuring velocity. —We must distinguish

1°. Velocity at the surface.

2°. Velocity at any point of the cross-section.

3°. Mean velocity in a vertical.

4°. Mean velocity in entire section.

All instruments are of two kinds :

(a) Floats.

(b) Stationary instruments.

1°. Surface velocity.— Measured by (a) floats
;

(b) log; (c) patent log; (d)

hydrOmetric wheel
;

(e) any of the instruments used for velocity at any

point.

2°. Velocity at any point

:

(a) Double floats (Humphreys and Abbot ; Ellis ; Hagen ; Cunningham

;

Gordon).

Advantages : convenient for great depths.

Disadvantages : error due to connecting cord ; error due to surface

float ; wind ; vertical movement of lower float.

Method of correcting error clue to surface float, by having both floats of

same size, and observing first surface velocity, and then velocity of floats

connected. If vi = surface velocity ; v2 = velocity at lower float ; vs =
velocity of connected floats ; then

Vi + v2

v2 = 2 v3 — Vi ,

(b) Castelli's hydrometric pendulum.

(c) Michelotti's hydraulic balance.

(d) Lorgna's hydraulic lever.

(e) Zimenes' hydraulic vane.

(f) Briinings' tacheometer.
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These instruments are not now used. They are inconvenient for great

depths, and inaccurate.

Cg) Pitot's tube (1730), very inaccurate ; height of column fluctuates,

and cannot be read accurately ; inconvenient for large depths.

c V2flfL

(h) Darcy's tube : modified form of Pitot's tube
;
quite accurate. Dis-

advantage at great depth, and that it only gives velocity at a particular

moment, while it would be more accurate to get the average for a few
moments.

Advantage : that it requires no measurement of time, and can be used

close to bed and banks.

(i) Current meter, or Woltmaun's wheel ; first used by Woltmann before

1790.

This is the most generally applicable instrument. For great depths, it

must be arranged to slide along a rope attached to a sinker.

Principal disadvantage of original instrument was that it had to be

taken out of the water after each measurement to read the number of

revolutions. This difficulty was obviated by Henry's electrical register,

and Wagner's acoustic apparatus.

These instruments are rated experimentally by moving them with a

known velocity through still water.

( j ) PerrodiPs torsion plate, for low velocities.

3°. Mean velocity in a vertical

:

(a) Loaded tubes, or Cabeo's rod. First used by Cabeo in 1646. Now
very generally used for smooth channels. Not generally applicable to

channels of varying section and depth.

Tubes of different lengths are used for different depths of water. This

instrument gives the average velocity in the depth taken by the tube, but

as the latter can never reach to the very bottom, a correction must be

applied to the results obtained by it. Francis gives this correction as

follows : Let vx be the velocity found by the tube; then if d is the mean
depth of the water along the course taken by the tube, and d' is the depth

to which the tube is immersed, the true mean velocity in the vertical

will be

== vi [" 1 — 0.116 (Vd- 0,1 )1

in which D =
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This instrument is best applicable to rectangular flumes of constant

section, and is so used in Lowell and Lawrence.

(b) The current meter may be so used as to give the mean velocity in a

vertical, by starting it at the bottom, and moving it slowly and uniformly

to the top. It is essential that this motion should not take place too

rapidly, or at a rate not over five per cent of the velocity of the current.

Such a measurement is called a vertical integration.

4°. Mean velocity in entire cross-section.—When the cross-section is rect-

angular, this may be determined by the current meter, by moving it

diagonally from top to bottom, and back, moving it horizontally about

one-fifth of the depth each time, making what is called a diagonal inte-

gration. When the channel is not rectangular, this method does not apply

unless the distances it is moved horizontally each time be determined

mathematically. The method is best adapted to rectangular flumes.

Of the instruments which have been named, the double float, current

meter, Darcy's tube, and loaded tube, are in use most extensively at

present.

Other methods of gauging small quantities of water have been pro-

posed, depending upon analysis of the water, observation of the tempera-

ture, etc.

Methods of determining Q from measurements of velocity.

(a) Measurements with loaded tubes in rectangular flumes.

Plot the velocities on cross-section paper, distances from the side of

the flume being abscissas. Divide the points obtained into consecutive

groups, not more than ten observations to a group. Pass a regular

curve among the points obtained in such a way that within each group

the sum of the distances of the different points from the curve is zero.

The area of this curve, multiplied by the depth, and corrected as ex-

plained, is the discharge.

(b) If v is the average velocity in any small area a, then the total dis-

charge is Q = 2 v a . If the velocity has been measured at different

points, this equation may be applied. Generally, the velocity is measured

at a number of points in a series of equidistant verticals, or the mean
velocity in these verticals is measured by integration. In either case,

there are several methods of reducing the observations. (1) The mean
velocity in each vertical may be considered the mean in the vertical strip

of which the vertical is at the centre. (2) The average of the mean
velocities in the verticals maybe taken as approximately the mean veloc-

iiy of the entire section.

Abbot gives the following methods of finding the mean velocity from

measurements of the mid-depth velocities in a series of equidistant verti-

cals :
—
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(1) The mean of all the mid-depth velocities [multiplied by 0.94] gives

nearly the mean velocity in the section.

(2) The most exact method is as follows :
—

In the formula

I* L_V&ti . . . .(i)
12

in which d* is the mid-depth velocity, » the mean velocity in the entire

section, and
l.u9&= L5TD

(D being the mean depth in a vertical strip), substitute for u x the mid-

depth velocity in each strip, and multiply by the area of the strip ; the

sum of the equations so obtained will equal v F ; or

12

f being the area of a strip.

The lesser root of this equation is the mean velocity in the cross-

section.

(3) >: = (Yl.OS ut + 0.002 6 V — 0.045 V b ~|

Iu this equation u x = mean of the mid-depth velocities, and

1.69

V 1.5 + R

CHAPTER V.

Theory of the Plantmeter.

In fig. 50. B D is the area to be measured ; B is the tracing-point of the

instrument, attached to the arm A B, hinged at A to the arm A O. O
being the tixed point of the instrument. The point A thus describes arcs

of a circle, with <) as a centre and A = r as radius, while B may de-

scribe figures of different shapes. Let A B and A B be two consecutive
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positions of the arm A B, and call AB = a, and A C = b. At C a roller

is placed, with axis parallel to A B, so that it revolves at every motion at

right angles to A B. Call the angle AOA' = d^ and the angle that

A A' makes with the horizontal = . Produce A B and A' B' till they

meet in M, and call the angle BMB' = d^ and the angle that A B makes

with the horizontal <j) . Then we have the rotation of the roller equal to

M C . d(j> = du .

To find this, we must first find M C :

A M : A A' : : sin. A A' M : sin. A M A'
;

or, AM : r d 6 :: sin. (<j> — 0) : d <j>

AM= rdd— sm.(<p— d)
^

d(j>

du — rdd. sin. (<p — 0) + b d (j>

u — r I sin. (<p — d)dO+bld$.

But as the point B, after traversing the circumference of a figure, re-

turns to the starting-point, f d <j> = o ; hence,

— rf sin. (^ — 0) a .

We have now to find an expression for the area of the figure B D. The
area ABB'A'= the parallelogram A B B" A' + the triangle A' B" B' , or

A B B' A' = a . rdd. sin. (<£ — 0) + i a2 d
<f>

.

.-. A = ar /sin.
(<f>
— 0) d

since the integral of the last term becomes zero. This expression, then,

represents the area B D. Comparing it with the value of w, we see that

A = a u

Let c = circumference of roller,

n = number of revolutions made.

Then A = a u = a n c

If a c = 1 ; then A — n .

Planimeters have also been made which give the statical moment and
the moment of inertia of any plane figure about any axis.
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The above demonstration supposes that the point O is outside of the

figure whose area is to be measured, so that the integral of d (j> is zero.

But another case arises if the point Q is within the area considered, for

in this case the integral of d <p will be 2 ix , and we shall have

u = r I sin. {</> — 0) d + 2 n b.

A' = a rf sin.
(<f>
— d) d d + w a?

But in this case the area A' does not represent the area to be measured,

but that comprised between the outline traced and the circle described

by the point A , whose radius is r ; hence

A = cr / sin. (<j> — 6) d d + tt a2 + n r2

= a u — 2 it a b + tc a2 + ir r'
2

The last three terms ir a2 + tt r 2 — 2 re a b represent the area of a circle

of correction, whose radius is V a2 + r2—2ab, and whose area is always

to be added to the result given by the instrument in this case. It is

determined by measuring a large circle of known area.

CHAPTER VI.

The Flow op Water in Pipes.

The flow of water in pipes differs from that in open channels, in that in

the former case the pressure may vary at different points along the pipe,

while in the case already treated, the pressure at all parts of the channel

on the water-surface is the same. From this it follows that, whereas in

open channels no velocity can be produced without a slope of the water-

surface, in a pipe, water may be made to flow up-hill, any increase of ele-

vation and of velocity being compensated by a diminution of pressure.

The laws of the motion may be deduced by applying the theorem of Ber-

nouilli, taking account of the losses, which may be due : (a) to friction of

the liquid particles among themselves and upon the sides of the pipe
;

(b)

to bends and curves
;

(c) to branches, and (d) to sudden enlargements,

which produce a sudden diminution of velocity.
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The velocity in a closed pipe under pressure varies in different points of

the cross-section, being least at the circumference, and greatest at the cen-

tre. The law of change of velocity has been investigated mathematically,

and it has been determined that the mean velocity occurs at a distance from

the centre equal to from two-thirds to seven-tenths of the radius of the

pipe. In our equation for flow in pipes, we wish to consider the mean
velocity in the entire section; hence, since the friction upon the sides is

due not to that mean velocity, but to the velocity at the circumference, the

same remarks apply here that were made on page 65 regarding the con-

stant c in the formulae for flow in open channels.

The formulas for flow in pipes depend simply upon the determination

of the losses clue to the causes just named. For we may apply the the-

orem of Bernouilli as follows to the case shown in fig. 51 : Let the ele-

vation of the centre of the tube at A and B be respectively z and z' ; let

the pressures at those points be respectively^ and p', and let the velocities

be v and v' . Then we have clearly

I P I "^ /I P' I

V
''2

! 1z + -— + ~—- = z' •+ -— + -— + losses
;

7 2(J 7 2g

the losses to be considered being those which arise between A and B.

Let P be the point to which the liquid would rise in a closed tube inserted

at A, and Q the corresponding point for B. Then the difference of level

of P and Q is z + — ( z' + --— \ , which we may call h . Hence,

A = (i?-^) +losses -

We proceed to find the values for the losses :

(a) Loss due to friction.

Call d the diameter ; r the radius
; p the perimeter ; F the area, of a

pipe of a uniform diameter; v the velocity; Q the quantity passing in

one second; and I the length considered. Then the loss due to friction

in the distance I will be

. P h'
or, If -j- = l

;

i di=f (v)

If the pipe is of uniform section, or v and d are constant, then i is con-

stant. In this case, the only loss is that due to friction, and it is rep-
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resented by h in flg. 51, so that i is the sine of the angle which the line

P Q makes with a horizontal.

It will be convenient to define here two terms which are of fre-

quent use. The hydraulic gradient of a pipe is the line obtained by

connecting all the points obtained by laying- off at each point of the

pipe the quantity *V — + -|-— • Thus at the point A, in fig. 51, the

hydraulic gradient would be at a distance - above P, while atB it would

be above Q . If there were no losses this line would be straight and

horizontal. If there were the same loss in every horizontal foot of the pipe,

as would sensibly be the case if the pipe were of uniform section, and with

no branches, curves, or obstructions, it would be a straight but inclined

line. In reality it is a broken liue, with sudden drops at places where

sudden losses of head occur. In practice, it is convenient to consider the

hydraulic gradient not as above defined, but at a distance -^— below the
7

line described, pQ being the atmospheric pressure ; this pressure being

therefore neglected, and simply the excess of pressure above the atmos-

pheric considered. We shall in future consider the line iu this sense.

If one point of the hydraulic gradient is given, we may construct the

liue by drawing through the given point a horizontal, and laying off be-

low or above that horizontal, according as we proceed in the direction in

which the water is flowing, or in the contrary direction, the losses of

head occurring between the given point and the poiut in question. Thus,

in fig. 52, which represents a pipe-line connecting two reservoirs, the

upper line represents the hydraulic gradient.

The pressure-line is the locus of the points representing z + - --
, such

as P and Q, in fig. 51, except that we consider p as simply the excess over

the atmospheric pressure. Hence the pressure-line lies at a distance - —
below the hydraulic gradient, and represents the height to which water

would rise in a tube open to the atmosphere, instead at any point of the

pipe. If we can draw, in any case, the hydraulic gradient, and the press-

ure-line, we can solve all problems which may occur.

The different formulae for flow differ only in regard to the value of/ (v)

assumed in the term representing loss of head due to friction. This value

is found from experiments. Thus, in fig. 52, if hi, 1h , etc., represent

losses due to other causes than friction, we shall have

V l « 7

2 g

f(v)

gr • / («) + hi + h2 + . . .

hi — hz— ....——
- g F

i
~p
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and, by measuring Q , d , and h , and arranging to have no losses hi , h2 ,

etc., we may find / (v) .

We have found the loss due to friction, which may be expressed

We shall also express this loss in the following form :
—

d 2 g

a form which will be found very convenient in calculation.

(a) Prony (1802).

h' —
-J-

(o.G000693256 v + 0.000424 v*\

h> = (0.027S571 +
°-00Um)Jr.* .

\ v J d 2g

(b) d'Aubuisson.

h'=
-J-

^0.0000752 v + 0.000416 v2 )

V v J d 2 g

(c) Eytelwein (1814).

ft' =
-J-

(o. 0000888 u + 0.000341376 iA

*' = (0.02196
+^0571872^ Z v2

(d) Dupuit.

h'=-^- • (o.00047v2
)

h' = 0.030268 -4- • -o— •

d 2g

(e) St. Venant (1851).

&'= -4- (0.000506 0-7")

0.0325864 2 «2
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(f) Weisbach.

h'=z
—J-

(o.0002G6 v] + 0.000223 v 2

)

0.0171427 . I

fe^(o.01439 +
°-0im27 \4

^ V7 )
* 2g

All these formula? were founded 011 some old experiments of Couplet,

Bossut, and Dubuat, Weisbach adding eleven of his own.

(g) Darcy began in 1849, aud completed in 1851, a series of experi-

ments the most valuable that have ever been made. He experimented on

pipes of iron, lead, glass, etc., new and old, with diameters of from 0.5

inch to 20 inches, and with velocities from 6 inches to 17 feet per second.

He showed that in new pipes the friction varies considerably with the

nature aud polish of the surface, that this effect is gradually lost as the

pipe becomes covered with deposits, and he assumed

f (v) = a v -f- b V2
,

adding, that if the pipes have been in use some time, it will be sufficient

to put

/ (V) = &! * .

As all pipes are liable to deposits, it is safest to use the last formula;

hence,

(0.0000184+^^)^7 /- __. , 0.00005 17G
h _ ,

d

t /n aqoqo- i

0.003333 \ I v 2

h' = ( 0.03982o + , 1 --,— - — •

V d / d 2 g

This formula is for pipes partially coated with deposits. Darcy con-

sidered that these deposits would double the friction, so he doubled the

co-efficients obtained from clean pipes. For clean pipes we should have

i'= (o. 01991
0^00 1666 \ _l_ v*2

d ) d ••
2 g

The general value of the quantity in the parentheses for the range of

sizes in ordinary use will not vary much' from the following v

For clean pipe's, 0.^207

For old pipes, 0.0414
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(h) Hagen proposed, in 1869, a formula based upon Darcy's experi-

ments, taking account of the temperature, which he considered to have

considerable effect upon the co-efficients.

Other formulae have been given by other experimenters, but of all those

which have been given the best to use are Darcy's and Weisbach's. The
former is best applicable in all ordinary cases occurring in practice, in

questions of water supply. The latter agrees best with the experiments

where the velocity is very large,— say over 20 feet per second.

We have considered simply the loss due to friction. The losses due to

bends and angles have been determined experimentally by Weisbach, but

in most practical problems the values of such losses are so small compared

with that clue to friction that they may be neglected. The same may be

said of the loss due to branches.

Regarding sudden enlargements, we have seen that if the velocity v

is suddenly diminished to v x there is a loss equal to
^~^ . Thus, in

2 g
fig. 52, at the entrance to the pipe, if such entrance is not rounded, the

v2

loss will be ^.—— ; while, at the lower reservoir, the loss will be

V2

— • Valves cause losses depending upon the same general principle
2 g
of a contraction of the water-way, and the value of the losses may be

given; but, in many questions, such losses may be neglected.

Application of the equations.

Pipe of uniform section. —Draw on the profile of the pipe-line a hori-

zontal line through a given point A on the hydraulic gradient. If the

pipe runs from a reservoir, this line may be the level line through the

surface or the water in the reservoir. Let h be the distance from this

level line clown to the pressure line at a point distant I from A. Then we
shall have the two following equations, which suffice for the solution of

all cases in practice :
—

Q=^-.- .... (l)

h =

4

3 g
+ losses

V*

2 g 2 g 2 g

I «^
d ' 2 g

(2)

In eq (2), all the terms, except the first and last, represent losses of

head clue to valres, curves, branches, etc.; 6 X , 2 , etc., expressing the

fractions of the height due to the velocity. Thelast term is the loss due

to friction. It is to be remarked here, that, in practice, the hydraulic
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gradient aud the pressure-line may be considered as identical, inasmuch

as they are only -— apart, which can rarely be much over a foot, in
2 g

ordinary cases.

Iu these two equations there are four quantities which may be unknown,
namely, Q , d , v , aud h . Any two Of these being given, the other two
may be found, and the following problems thus arise :

—

(1) Given d and h, to find v and Q ; or to find the quantity and velocity

in a pipe of given diameter, with a given loss of head.

The problem is solved by finding the value of v from (2) , and substitut-

ing it in (1) . Thus, from (2),

2 g h

V —r
(3)

* 1 + 0i 4- 0-2 + 0' —r-

and, substituting in (1) , we find

Q=^V=
2 g h

+ 01 + 02 + 0'—

-

CI

If we may neglect all losses except friction, we have more simply

/
2~g h dv=yj—

d
T-- — • • • • (4)

„ nd? I 2 g h d A _ D _
4

/ 2 g ffi h

If we call 0' equal to 0.0414 , we have

Q = 30.98 yp^~ (6)

(2) Given d and c; to fiud h and Q. h is found directly from eq. (2),

and Q from eq. (1).

(3) Given d and Q; to fiud h and v. v is found directly from eq. (1),

and then h from eq. (2).

(4) Given v and Q ; to find d and h. d is found from eq. (1), and h

from eq. (2) at once.
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(5) Given v and h; to find d and Q. d is found by successive approxi-

mation from (2), and then Q from (1).

(6) Given h and Q; to find d and v. Find the values by successive

approximation. Or, if we may neglect all losses but friction, we have

from (5)

^^/^ w=y 01
j Qii

" h

or, calling e' = 0.04144,

d =«V4
This last equation is the one most used in practice,, and tables may be

calculated giving values of d for various values of Q and h.
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