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PREFACE.

THE earlier portion of this book deals with that division of
the subject which does not require a knowledge of astronomical
definitions, nor, with the exception of Great Circle Sailing, of
Spherical Trigonometry ; -the investigation of Raper’s Rules for
finding the distance from a Mountain Peak being inserted in
the chapter on “ Fixing a ship’s position on a chart.”

The second portion—the various necessary definitions having
been stated and an explanation given of the method of
constructing Nautical Astronomy diagrams—consists of the
discussion of Time, Greenwich Date, Sextant, Altitudes and the
rules for their correction; Longitude, Latitude, Chronometer and
Compass Errors; Day’s Work and Sumner’s Method. This
concludes the really practical portion, and then follows a
chapter containing the investigation of the various corrections,
Dip, Parallax, etc.; and of the errors produced in Longitude,
Latitude, ete., by small errors in time or observation. These
errors are treated geometrically, and are thus shortly and
simply explained without the use of Differential Calculus (not
admissible in an elementary work) or the long analytical
methods which usually take its place.

The last chapter contains the investigation of Latitude by
observation of the Pole Star; Equation of Equal Altitudes (the
first method a short and simple one, much preferable to the
ordinary method, which is, however, inserted as being familiar
to many); Time at which the Sun will dip in a ship steam-
ing at a high rate of speed; Interpolations; and a few other
problems of interest in Nautical Astronomy.

A number of Miscellaneous Examples is added, which it is
hoped will provide, in many cases, exercises for the student’s
ingenuity. The examples throughout the book are either
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vi PREFACE.

original (in the case of the Practical examples almost entirely
80) or such as have been set in the various examinations
connected with the Royal Naval College, Greenwich.

It must add considerably to the utility of a work on
Navigation if the student is able to actually make use of the
Nautical Almanac when working out examples, instead of
having the necessary data provided at the end of the questions.
As, however, Nautical Almanacs go out of print, and it would
make too bulky and expensive a book if the whole or a large
portion of the Almanac were bound up with it, all the
examples requiring its use have been composed for three
months of the year 1895, viz. April, June, and December,
which provide a considerable North and South Declination,
and a medium Declination of the Sun, a, sufficient variety
for all practical purposes.

Those pages, therefore, or parts of pages which contain
elements to which reference is made in the examples, viz.
Sun’s Declination, Equation of Time, Sidereal Time at Mean
Noon; the Right Ascension, Declination, Semi-diameter, Hori-
zontal DParallax, and Time of Meridian Passage of the Moon;
the requisite Lunar Distances; the Right Ascension and
Declination of the one Planet to which reference is made;
together with the Pole Star Tables—are bound up at the
end of the work.

The Right Ascension and Declination of Stars are not
included, as those recorded in any Nautical Almanac are
sufficiently near for all practical purposes: mnor are any
tables, such as Second Differences in Lunar Observations,
which do not vary with the year.

Every care has been taken to ensure the correctness of
the answers to the examples, but the notification of any
errors that may be found will be gratefully received.

It will be noticed that no definite rules are given for the
solution of the various problems in finding latitude, longitude,
etc. The principle of any problem is explained, the necessary
formulee given, and examples fully worked in illustration,
which should be sufficient, as all who have to make the
calculations required in Navigation problems must be familiar
with the use of Logarithms, and there would appear to be
more education in working thus, than in mechanically follow-
ing rules.
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For convenience of reference, the necessary definitions are
printed in italics and numbered consecutively, and the principal
formule are collected at the end of their respective chapters.
The Tables referred to are Inman’s, which are in general use in
the Royal Navy; but any set of Tables will suffice in almost
every case, if it is remembered that the Log Haversine of
Inman is exactly the same as the Log Sine Square of other
Tables, while the Half Log Haversine is half the Log Sine
Square.

Many Tables have also tables of Natural Sines, Cosines,
ete., from which the Natural Versines may be obtained by
subtracting the Cosines from unity.

N.B—The word Log is omitted in the working of the
examples, as it is easily understood that the numbers placed
against the various Sines, Cosines, etc., or the natural nuinbers,
are the requisite logarithms from the Tables.

The multiplication of methods of solving the various prob-
lems has been avoided as far as possible, the aim of the
book being to provide the student of Navigation with methods
which will enable him to understand the straightforward
principles of Navigation, leaving it to himself to select after-
wards, if he pleases, any of the various plans for shortening
his calculations, of which so many are to be obtained.

The Author’s thanks are especially due to Mr. H. B. Goodwin,
of the Royal Naval College, Greenwich, and Mr. J. M. Pask,
of HM.S. “Britannia,” from whom he has received valuable
suggestions and advice.

F. C. 8.

H.M.S. “Cambridge,”
June, 1896.






PREFACE TO THE SECOND EDITION.

A FEW alterations have been made. The chapter on Day’s
Work has been practically re-written ; the examples of Sumner’s
Method have been re-worked so as to bring them into accord-
ance with present day methods; and mention is made of a
method of determining the position line when the Sun’s Altitude
near the Meridian is greater than 60°. This is due to Mr.
W. D. Niven, C.B, Director of Studies at the Royal Naval
College, Greenwich, who also supplies a method of determining
the formula for Interpolation, based on the principles of
Kinematics, a modification of a method proposed by the
Author. '

A few examples have been added at the end of Chapter
XVIIL to show how “errors” may be readily determined by
the aid of “ position lines.”

The Double Altitude method of finding the latitude has
been retained, as observations of this description are still on
the list of those required at the yearly examination of Mid-
shipmen of the Royal Navy. Moreover, it is advisable to have
a method of finding latitude which is independent of the
-error of the chronometer.

Every effort has been made to correct misprints and errors,
and it is hoped that few now remain.

A number of miscellaneous examples has been added, selected
from those recently set at the Royal Naval College.

F. C. 8.

November, 1902.
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NAVIGATION
AND NAUTICAL ASTRONOMY.

CHAPTER L
INTRODUCTION.

DEFINITIONS IN NAVIGATION.

~ § 1. Navigation, as a general term, denotes that science by
* means of which the place of a ship on the sea, and her course
to or from any given point, are determined. This, of course,
includes the effect of winds, currents, tides, local magnetic
attraction, etc., which have to be considered. The necessary
information on these heads is to be obtained from the sailing
directions, tide tables, compass manuals, etc.; and the term
Navigation is usually restricted to the finding a ship’s position
and direct course.
This may be done in two ways: (1) by the application of
the common rules of Plane Trigonometry, the necessary angles

and distances being supplied by means of the compass aid Tog
line ; (2) by means of astronomical observations, treated b} tlm L

rules of Spherical Trigonometry.

It has been proposed to call the first of these method:s
geo-navigation (v, the earth), and the second celo-navigation
(ccelum, the heavens), but the terms Navigation and Nautical
Astronomy have become sanctioned by long use, and are there-
fore retained.

§ 2. The earth is very nearly a sphere, the length of the
longest diameter (about the equator) being 7,926 miles; and that
of the shortest (that which joins the poles) being 7,899 miles.
For all the practical purposes of Navigation the earth is con-

sidered as a sphere.
S.N. A



2 NAVIGATION AND NAUTICAL ASTRONOMY.

Def. 1. The Axis of the earth is that diameter about which
it revolves, with uniform motion, from west to east.

Def. 2. The Poles of the earth are the points where its axis
meets its surface; as N, S in the figure.

Def. 3. The Earth’s Equator i8 a great circle on its surface
equidistant from its poles; as EW.

N.B.—The plane of a great circle passes through the centre of a sphere,
the plane of a small circle does not.

%'D'Ef.:l..Meridians are great circles which pass through the
_..poles of the earth.

1350 D6 B, The Latitude of a place is the arc of a meridian

intercepted between the equator and the place, measured from
0° to 90°, N or S. A place north of the equator is said to be
in north latitude, a place south of the equator in south latitude.

Thus AL is the north latitude of the place 4, DK is the
south latitude of the place D.

Def. 8. The Co-latitude is the complement of the latitude;
thus N4 =90°— AL is the co-latitude of 4.

Def. 7. Parallels of Latitude are small circles whose planes
are parallel to the plane of the equator, all places on a parallel
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having the same latitude. Thus if 4BC be a parallel of lati-
tude, AL=BK=CM.

Def. 8. A Nautical Mile is equal to the mean length of a
minute of latitude, and is reckoned as 6080 feet.

Def. 9. The True Difference of Latitude between two places
i8 the arc of a meridian intercepted between their parallels,
expressed in minutes of arc or in nautical miles.

Thus the true difference of latitude between B and P is the
arc BD between their respective parallels.

It is evident that, if the places are on the same side of the
equator, their true difference of latitude is obtained by sub-
tracting the less latitude from the greater, while, if they are
on opposite sides, it is obtained by adding the two latitudes
together. Thus the true difference of latitude between B and P
is the sum of the north latitude BK (of B), and the south
latitude KD (of P).

The true difference of latitude is marked N or S according
as the place arrived at or im is to the north or south of the
place left or from.

Examples.—Find the true difference of latitude between Cape Clear,
lat. 51° 26’ N, and Cape Finisterre, lat. 42° 54’ N.

Lat. from, - - - - - 51° 26' N
Lat. in, - - - - - - 42 4 N
8 32
60
true diff. lat., - - - - 512 miles S

Find the true difference of latitude between Cape St. Roque, lat. 5° 25’ 8.
and Cape Verd, lat. 14° 43’ N.

Lnt. from, - - - - - 5°28 8§
Lat. in, - - - - - -14 43N
20 11
60
true diff. lat., - . - - 1211 miles N

A ship sails from 42° 14’ N, 215 miles north, find the latitude in.

Lat. from - - - - 42° 14N
true diff. lat., 215’ N= - - - 3 3N

Lat.in, - - - - - 45 49N
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A ship sails from latitude 27° 15’ S, 320 miles north, find the latitude in.

Lat. from, - - - - - 27715 S
true diff. lat., 320 N= - - - 5 20N
Lat. in, - - - - - 21 558

Find the true ditference of latitude in the following cases:—

Lat. from. Lat. in. | Lat. from. Lat. in.
(1) 27°16' N 39°41' N { (4) 35°19'S 18° 45" S
(2) 47 25 N 37 43 N ‘ (5) 12 27 N 5 16 S

(3 18 25 8 36 17 S 6 3198 22 47 N

Find the latitude in, in the following cases :—

Lat. from. true diff. lat. ' Lat. from. true diff. lat.
(7) 14°26' N 569° N (10) 39°16'S 2195’ N
(8) 29 41 N 1679 S (11) 4 21 N 916 S
(9) 17 47 S 1427 S (12) 5 27 8 1624 N

Def. 10. When two places are on the same side of the equator,
the mean of their lutitudes is called the Middle Latitude.

Def. 11. The First or Prime Meridian s that fixed meridian
by reference to which the longitude of places on the earth is
measured.

The meridian of Greenwich has been almost universally
adopted as the first meridian.

Def. 12. The Longitude of a Place i3 the smaller arc of the
equator intercepted between the first meridian and the meridian
of the place.

If G be the position of Greenwich in the ftigure, B, C' and
D are in west longitude, and P in east longitude.

Longitude may also be defined as the angle at the pole
between the first meridian and the meridian of the place, or
as the angle at the centre of the earth subtended by the arc
of the equator between the meridians.

It is reckoned from 0° to 180° E or W, but is never considered
as > 180°. Places which are more than 180° in longitude east-
ward are considered as being in west longitude, and vice versd.

Def. 13. Difference of Longitude between two places s the
smuller arc of the equator intercepted between their meridians.

If they are both in E or both in W longitude, the differ-
ence of longitude is the difference between their longitudes,
expressed in miles or minutes of arc; if one is in E longitude
and the other in W longitude, the difference of longitude is the
sum of their longitudes, taken from 360° if it exceeds 180°
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Kzamples.—Find the difference of longitude between Ushant and the
east point of Madeira.

Long. from, - - S - - -5 IW
Long. in, - - - - . - 16 39 W
11 36
60
diff. long., - - - - - 696 W

Find the difference of longitude between the Cape of Good Hope and
Tristan d’Acunha.

Long. from, - - - - - - 18° 29 E
Long.in, - - - - - .12 2 W
30 31
60
diff. long., - - - - - 1831' W
Find the difference of longitude between 120° W and 79° E.
Long. from, - - - - - - 120 W
Long. in, - - - - - - 79 E
199 E
360
161 W
60
diff. long., - - - - - 9660" W

A ship sails from longitude 1° 20 W and changes her longitude 236
miles to the eastward. What is her lougitude i ?

Long. from, - - - - - -0 20w
diff. long., 236" E, - - - - 3 56 E
Loug. in, - - - - - 2 36 E
Examples.—Find the difference of longitude in the following cases :—
Long. from. Long. in. Long. from. Long. in.
(13) 43°20W 57 18 W 17y 5 47 W 316 E
(14) 97 1 W 69 57 W (18) 4 24 E 9 37T W
(15) 117 22 E 142 19 E (19) 164 29 W 134 19 E
(16) 55 N E 39 1TE | (2127 32 E 96 47 W
Find the longitude i/n, in the following cases :—
Long. from. diff. long. Loog. from. diff. long.
(21) 27° 18 W 2461' W (25) 5° 29'E 87 W
(22) 74 18 W 3547 E (26) 4 27T W 953 E
(23) 114 29 E 1293 E (27) 169 25 E 1347 E
(24) 87 23 E 1459 W (28) 158 47 W 1729 W
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Def. 14. The Rhumb Line or Loxodromic Spiral is a curve
which cuts all meridians at the same angle.

It is generally an equiangular spiral on the surface of the
sphere, always approaching the pole, but never actually reaching
it ; the pole must always bear due north, and therefore cannot
be reached on any course except due north.

Def. 16. The Course Steered is the angle between a meridian
and the ship’s fore and aft line.

Def. 16. The Course Made Good is the angle between the
meridian and the rhumb line joining the place left and the
place arrived at.

Def. 17. The Distance between two places, or the Distance Run
by « ship on any course, is the length of the arc of the rhumb
line expressed in nwutical miles.

The Departure is the distance, in nautical wmiles, made good,
east or west, by a ship sailing on a rhumb line; or it is the
distance, in nautical miles, between two places on the same
parallel of latitude. It is marked E or W according as the
ship’s course has been towards the east or the west.

Def. 18. If an infinite number of points be taken on the
rhumb line joining two pluces, the meridian through each of
these points cuts off an arc of the parallel of latitude through the
next point. The sum of all these arcs i3 called the Departure.

(b)

Fig. 2,

P is one of the earth’s poles; A is the place left, and B is
the place arrived at. If PAE, PBQ be meridians, and AD,
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CB be parallels of latitude through A and B, and EQ the
equator; AC or DB is the difference of latitude; and EQ the
difference of longitude between 4 and B.

AB is the rhumb line between A and B, a curve similar to
that shown in (Fig. 2 (b)). A4, R, 8, T, ... are some of an infinite
number of points taken on the rhumb line AB; PR, PS, PT...
are the meridians drawn through these points; the angles PAR,
PRS, PST...are all equal, as AB is a rhumb line, and these
angles are the Course Made Good between A and B; FR, GS,
HT ... are arcs of parallels of latitude through R, S, T'.... The
sum of all these arcs FR, GS, HT...is called the Departure
between 4 and B.

This sum is clearly less than AD and greater than BC.
Hence there must be some parallel between 4D and BC such
as mn, which is equal to the departure. The latitude Em of
the parallel mn is called the True Middle Latitude (Def. 35).
In all ordinary cases of navigation, this may be considered
as the mean of the latitudes of 4 and B.

Def. 19. The Tropics are parallels of latitude, in latitude
about 23° 273 N or 8. The tropic of Cancer is in N latitude ;
the tropic of Capricorn in S latitude.

Def. 20. The Arctic and Antarctic Circles are parallels of
latitude, in latitude about 66° 32} N and S respectively.



CHAPTER 1II
COMPASS. CORRECTION OF COURSES. LOG LINE.

THE instruments used in navigation for obtaining courses,
bearings, and distances, are the compass and the log line
and gluss.

Def. 21. The Points of the Compass are divisions on the
rim of the Compass Card, whose angular distance apart is
11° 15

Def. 22. The Magnetic Meridian is the great circle in whose
plane the compass needle lies when wnagfected by local attraction.

Def. 23. The Compass Meridian is the great circle in whose
plane the compass needle lies when affected by local attraction.

Def. 24. The Dip of the Needle is the angle between the
horizontal plane and the dirvection of a magnetic needle freely
suspended at its centre of gravity.

§3. The way in which the compass card and bowl are sus-
pended and fixed in position can be much better understood
by actual inspection; a general description of the compass
card is therefore all that is now given.

The compass card is a circular plate or disc of mica or
cardboard, divided into four quadrants, each containing eight
“points” as they are called, their angular distance apart being
therefore 11° 15. Thus there are thirty-two points in all,
which are again divided into quarter points. The circumference
of the card is also divided into degrees, measured from 0° to
90° from the north and south points to the east and west
points.

These points—north, south, east, and west—called the Curdinal
points, are at the extremities of two diameters at right angles
to each other, the north point being marked by a fleur de lys,
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the east point being on the right hand when the observer is
looking towards the north.

The other points are named on the following principle :—

The middle point between N and E is - - - NE
formed by putting the letters together.

The middle point between N and NE is - - - NNE,

» E and NE is - - - ENE,

”
formed in a similar manner.

One point from N towards E is N by E or NLE,

» E » N is E by N or EbN,
» NE » N is NE by N or NEDN,
” NE " E is NE by E or NEbE,

the points in the other quadrants being formed and named in
a similar manner; NE, SE, SW, and N.W. being named Inter-
cardinal or Quadrantal points.

The half and quarter points are named from the adjacent
points, with the exception of those, such as ENE and NEbN,
which commence and end with the same letter; they are
usually expressed as briefly as possible, attention being paid
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to the sound produced. Thus between north and east we
have—

.

N}E NNE}E NE}E EbN §N
NiE NNE}E NE}E EbN §N
N3iE NNE{E NE JE EbLN }N
NbE NEbLN NEbLE EBN
NbE }E NEiN NEbLE }E EjN
NbE }E NE N NEbE E EiN
NbE {E NE}N NEbE {E E}N
NNE NE ENE

It will be observed that such a name as NNE}N is not
used, as it has a much more awkward sound than NbE}E;
the letter attached to the quarter or half point being the
same as the final letter of the adjacent point, except in the
case of those measured from the cardinal or quadrantal points,
where brevity is the object aimed at.

Similar names apply to the other quadrants.

All Nautical Tables contain a table giving the points of the
compass, with the number of points or degrees, etc., from the
north or south point.

In reading the compass it is to be remembered that the
observer is supposed to be situated at the centre, and the
reading is then so many points or degrees to the right or left
of N or S respectively.

Looking on the compass as though it were a map is a
fruitful source of error in beginners.

Thus east is to the right of north and to the left of south;
west is to the left of north and to the right of south.

Ezxamples.
NNE4E is 2% points to the right of N.

SSW é’w ” ” ”» S‘
SSE }E " " left of S.
NNW éW ” ” ” N'

Examples.—Express the following in points and degrees to the right
or left of N:—

(1) NiE (5) NEDLEJE
(2) EbLN 3N (6) NWiw
(3) NNWiw (7) NbEZE
(4) WOLN}N (8) NW{N
Express the following in points and degrees to the right or left of S :—

9) Siw (13) Ei8

(10) SbEZ{E (14) SEbLE{E

(11) SSWiwW (15) WDbS3$S

(12) W3S (18) EbS S
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§4. On the under side of the compass card are fixed one
or more magnetized needles, the direction of the needles being
parallel to the north and south diameter of the card, which
is kept in a horizontal position by small brass weights counter-
acting the “dip” of the needle.

If the north point of the compass always pointed accurately
to the north point of the horizon, .. the point in which the
meridian intersects a horizontal plane through the position of
the observer, the true course would be at once seen by the
indication of the compass.

But this is very seldom the case, as the compass needle, and
therefore also the north point on the card, is deflected from
" the true north point of the horizon by two influences: (1) that
which arises from the earth’s attraction, and is the same at
any place for every ship, and for every direction of the ship’s
head ; (2) that which arises from local attraction, caused by the
materials of which a ship is built, the direction of the ship’s
head while building, the cargo, armament, etc, which differs
for every ship, and depends on the direction of the ship’s head

at any time.

True True
N. Magn. Magn, N.

4 e N
“Comp. .
N’ p cox’-p.

(1) (2)

Fi1e. 4.

The error of the compass caused by the first is named the
Variation.

Def. 25. Variation is the angle between the planes of the
true and magnetic meridians at apy place, or the angle
between the directions of the true and magnetic north.

When, asein fig. 4 (1), the direction of the magnetic north
is to the right of the direction of the true north, the variation
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is said to be easterly; when, as in fig. 4 (2), it is to the left
of the direction of the true north, the variation is said to be
westerly.

The error of the compass caused by local attraction is named
the Deviation.

Def. 26. Deviation is the angle between the planes of the
magnetic and compass meridians, or the angle between the
divections of the magnetic and compass north.

It is said to be easterly or westerly according as the direction
of the compass morth is drawn to the right or left of the
direction of the magnetic north.

In order therefore to obtain the true course steered from the
course as shown by the compass, it is necessary to correct
the compass course for variation and deviation. To do this,
easterly variation or deviation is to be allowed to the 7ight,
westerly to the left, of the compass course, for this reason:—

In fig. 4 (1) the compass error is represented as easterly,
and it is clear that any course measured from the direction of
the compass north will be so much farther to the right or so

p\l!M

Fi6. 5.

much less far to the left, of the true north; while in fig. 4 (2),
where the compass error is westerly, any course measured from
the direction of the compass north will be so much farther to
the left, or less far to the right, of the true north.

The same reasoning applies to courses measured from the
compass south, or to the obtaining a magnetic course or bear-
ing from a compass course or bearing.
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In order to obtain the true course made good, it is necessary
further to apply a correction for leeway. This is caused by
the lateral pressure of the sea or the wind on the hull and
sails of a ship, causing her to drift somewhat sideways.

Thus, if NSA is the true course steered by the ship, the
direction of the wind being shown by the arrow, the course
made good will be NS§’, the ship’s head still pointing in the
direction 8’4" parallel to SA. (See fig. 5, p. 12))

Hence the correction for leeway must be applied away from
the direction of the wind.

Def. 27. Leeway s measured by the angle between a ship’s
fore and aft line and her wake.

mMS T
GS
2
' ,M'
N C
Fi6. 6.

Exramples.—Obtain the true course made good, having given, compass
course NEbE 4E, variation 25° 20° W, deviation 4° 10" E, leeway 4 point,
the wind being ESE.

Compass course, - - - 61° 52" 30" r of N
Deviation, - - - - 410 0 »
Magnetic course, - - - 66 2 30 »
Variation, - - - - 25 20 0/
True course steered, - 40 42 30 »
Leeway, - - - - - 37 30 !
True course made good, - -3 5 0 r

or - - N3 5 0 E
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ZN, ZC, and ZM being the directions of the true, compass, and magnetic
north—
the angle NZM =25° 20’ is the variation (westerly),
the angle ¥ZC= 4° 10’ is the deviation (easterly),
the angle CZS =61° 52' is the compass course,
the angle MZS=66" 2' is the magnetic course,
the angle NZS=40° 42’ is the true course steered,
the angle NZG=35" 5 is the true course made good,
the angle GZS = 5° 37 being the leeway, allowed away from
the direction of the wind, as shown by the arrow.

Obtain the true course made good, having given, compass course
WDbN2N, variation 35° 20' W, deviation 2° 10’ W, leeway { point, the wind
being NNW.

Compass course, - - - 73 7T 30" lof N
Deviation, - - - - 2 10 01!
75 17 30 1
Variation, - - - - 3 20 01!
True course steered, - - 110 37 30 ¢ ,,
or - - - - - 69 22 30 rof S
Leeway, - - - - 8 26 15 !
True course made good, - 60 56 15 r ,,
or - - - - S60 55 0 W
N ,
M W
c

2
S
G
c'
MI
N’
F1G. 7.
NZM =35 20 CZ8= 73 7 N'ZS=69° 23

MZC= 2 10 NZ§=110 37 N'ZG=60 55
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Examples.—Construct figures and obtain the true course made good in
the following cases : —

Compass Course. Deviation.
(1) SWbS 2° 10 E
(2) SbE}E 2 20 W
(3) Siw 1 15E
(4) EN 3 10W
(5) SWbW W 1 50 E
(6) NWiIN 4 15 W

Variation. Teeway.
18° 15 E } pt.
21 40 W i pt.

. 16 50 W 3 pt.
15 0O E 1} pt.

4 20 W } pt.

34 30 W 13 pt.

Wind.
WNW
SWiw
ESE
SEbS
SiE
NELN

If it be required to find the course to be steered by compass
in order to reach a port whose true direction is known, the
corrections must be applied in exactly the opposite direction
to that given in the preceding section, t.e. easterly variation
and deviation to the left, westerly to the right, and leeway
towards the direction of the wind. )

Ezxamples.—Find the compass course, having given, true course to be
made good N 8° W, leeway } point, wind (by compass) EbN, variation
17° 10° W, deviation 3° 20" E.

True course to be made good, 8

Leeway, - -

True course to be steered,

Variation, - -

Magnetic course,
Deviation, - -

Compass course,
or - -

NzGg = 8 O

SZG@ = 5
NZM =17
MZG =14
MZC =3

38
10
47
20

CZ@ =Compass course

=11° 27
=NbE nearly.

2 22 30 !
0 r

- 17 10

- 14
- 3 20
-1
N1

N

A

Mc

47 30°r ,,
0!

27 30 r
27 30 E

0"l of N
- 5 37 30 r
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Find the compass course, having given, true course to be made good
8 65° E, leeway § point, wind (by compass) NbE, variation 25° 30' E,
deviation 2° 10’ E.
True course to be made good, 65° 0 0! of S

Leeway, - - - - - 8 2 15 !
True course to be steered, - 73 26 15 I ,,
Variation, - - - - 2 30 0!
Magnetic course, - - - 98 5 15 I
Deviation, - - - - 2 10 0!
Compass course, - - - 101 6 151!
or - - - - - 78 53 45 rof N
or - - - - - N 79 E=EDbN nearly.
N
A M
C
N'ZG =65 O
SZ¢ = 8 26
z NZM =25 30
s CZM = 2 10
MZS =81 4
G CZS =18 54
C M’
NI
Fic. 9.

Examples.—Construct figures and find the compass course in the following
cases :—-

True course
to be Leeway. Wind. Variation. Deviation.

made good.
(7) N27°30'W 1 pt. w 18° 30’ E 3F15W
8) S47 E 3 pt. SSwW 27 40 W 3 2 E
9 STHBW 0 E 33 10 W 1 50W
(10) N69 E 13 pt. SE 14 20 E 2 50 E
(11 N 6 E  pt. NWLW 27 45 E 110W
(12) S 17 E 1} pt. Sw 22 40 W 330 W

Note.—If it should happen that the deviations are large and changing
rapidly from point to point, which is very seldom the case in the present
day when compasses are so carefully adjusted, the deviation should be
taken from the table for the nearest point of the magnetic course, so as
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to obtain an approximate compass course, the deviation being theu taken
ont for this course, and again corrected, if necessary, to any required
degree of accuracy.

If, for example, in No. (12), instead of a small deviation, the table had
given

Deviation for SSW, - - 12°W,
» SWbS, - - 15°W,
the calculation would be as follows :—
S17° 0 E
Leeway, - 14 4
S 2 56 E

Variation, - 22 40 W

19 44 W, de nearly SSW
Deviation,- 12 0 W

S31 44 W, approximate compass course.

Magnetic course, - - - - - S19 M4 W
Corrected deviation, - - - - 14 30 W
S3¢4 14 W

A further approximation gives a deviation of nearly 15° 10° W, and a
compass course of S 35° W, i.e. 3° different from the first approximation.

§5. The variation at any given place being the same for
all ships, is calculated and marked on the charts, a special
“ variation chart” also being constructed.

The deviation has to be obtained for each ship and each
position of the ship’s head. It is calculated for the “standard
compass,” the course by any other compass which may be
used for steering purposes being adjusted by reference to the
“standard.”

§6. The methods of obtaining the deviation by astronomical
observations will be discussed later (§§ 123 seqq.). The follow-
ing may be considered now—technically called “swinging
ship”:—

(1) Reciprocal bearings.

An azimuth compass is set up on shore, in sight of the
ship, in some place which is free from disturbing elements.
The ship is then swung slowly round and steadied on each
point. At given signals the bearing of the shore compass
from the ship and of the ship’s compass from the shore are
simultaneously observed, with the position of the ship’s head

et the time.
S.N. B
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It is evident that the bearings thus observed would be
exactly opposite if there were nothing besides the earth’s
attraction to affect them. Hence the difference between the
bearing of the shdre compass from the ship and that of the
ship’s compass from the shore, reversed, must be the deviation
for the observed position of the ship’s head; easterly if the
compass bearing is to the right of the reversed shore bearing,
westerly if to the left.

In this manner a deviation table may be formed for each
position of the ship’s head.

Ezample.
Ship’s Bearing from Bearing from
Head Ship’s Compass. Shore Compass.
N S18°40W N 21°20E
NE S29 50 W N3l OE
w S47 10 W N44 50 E
SwW S75 0OW N72 30 E
M C
A
(1)
,,,,, T
< ,(/
,5«9 »
* @ 8 z
. \ Deviation
40’ E.
S c M
F16. 10 (1).

Let MZM' be the magnetic meridian. Then
MZS§=180"-21° 20'=N 158° 40' W

is the correct magnetic bearing of the shore compass from the ship. Hence
SZC the compass bearing being greater than MZS, ZC the direction of the
N point of the compass will fall to the right (as seen from Z) of ZAf.

Note.—It is better for beginners always to decide their compass errors
by reference to the north point, as it avoids confusion, although they can
of course be equally well determined by reference to the south poiut.
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The deviation is therefore easterly, and =21° 20'—18° 40'=2° 40’ E,

when the ship’s head poiuts north.

Ship's Head W

Ship’s Head NE
i 3
(2)
.‘8 .';g" r4 : ." 2
.". Deviation Deviation
R *10'E. : 2°20'W.
S
.
S
c |, MC
M
Deviation. Deviation,
1°10' E 2°90' W

Fic. 10 (2). Fie. 10 (3).

"Ship’s Head SW
CM
4

3

Deviation
2°30'W.

(¢

M C
Deviation.
2°30° W
F1e. 10 (4).
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Examples.—Find the deviation, when we have given
Ship's Bearing from Bearing from

Head. Ship’s Compass. Shore Compass.

(1) N N37°20E S 33° 50" W

Nbw N43 20 E S39 40 W

WNW N 57 40 E S5 10 W

SE S59 10 E N57 40 W

S 'S7 30 E N 67 50 W

Ship’s Bearing from Bearing from

Head Ship's Compuass. Shore Compass.

(2) SW N 79°30E S82°20 W

SSW N71 20 E S75 30 W

SLE N45 30 E S41 10 W

SE S28 50 W N 25 40 E

EbN S26 40 W N30 5 E

§ 7. Second method. By bearing of an
MC

A

TS T

o C'Mm’

F1c. 11.

object a few miles
distant.

The object selected must be at a distance
which is sufficiently large compared with
the curve described by the standard com-
pass during the operation of “swinging,”
otherwise its true bearing would differ
appreciably for the different positions of
the ship's head—about six to eight miles
is usually sufficient, or less if the ship is
warped round in a small circle (cf. § 128).

The ship is steadied as her head comes
to each point of the compass, and the
bearing of the distant object noted; the
mean of all the bearings is considered as
the correct magnetic bearing, and the
difference between it and any compass
bearing determines the deviation for the

corresponding direction of the ship’s head.

Example.—Find the correct magnetic bearing of the distant object, and
the deviations, having given

Ry SUS I UO% S onty L
Compass. ’Om:::as:r Compass. %omp';s:'

N S14°30 W S S17° O'W

NE S11 30 W SW S19 30 W

E S 930 W W S20 30 W

SE S12 O W NwW S16 50 W
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14° 30

lé gg Correct magnetic bearing, S 15° 10’ W,

12 o Let OZM=180°—15° 10'=164° 50/,

17 0o 0ZC=180°-14° 30’ =165" 30".

;g gg * Then (ZM=10, and the deviation is east on all points

on which the compass bearing is less than the magnetic;
16 50 o . . . .
— and, similarly, it will be west on those points on which

8)—112;—?3 the compass bearing is greater than the magnetic.
Therefore the deviations are
Ship’s Head.  Deviation. Ship’s Head.  Deviation.
N 0°40'E ‘ ] 1°50 W
NE 34 E | SW 420 W
E 5 40 E w 520 W
SE 3 10E SW 1 40 W

N.B.—In practice it is suflicient to take the mean of the bearings on
the eight principal points as the correct magnetic bearing.

§ 8. When the deviations are small, as is usually the case
in ships whose compasses are carefully adjusted, the deviations
for the intermediate positions of the ship’s head may be found
by means of a diagram. Take a sheet of ruled foolscap paper,
mark the points of the compass on thirty-two consecutive
lines. From a vertical line, drawn through the centre of the
paper, lay off on the horizontal lines the deviations for the
eight principal points on any desired scale, and draw a curve
through the points thus obtained. The distance from the
vertical line to the curve on the given scale will give the
deviation, with considerable accuracy, for any desired direction
of the ship’s head.

For larger deviations and greater accuracy “ Napier's Dia-
gram” may be employed. This is supplied in the “chart
box ” in the Royal Navy. :

Examples.—(1) From the following observations find the correct magnetic
bearing of the distant object, and thence the deviations.

g Hond B | s pead B of
y Standard  p gl ndard by Standard '} Poeongarq
Compass. Compass. Compass. Compass.
N S48 40 W s S52°20 W
NbE S48 10 W Sbw S50 40 W
NE 547 10 W SW S47 30 W
ENE S48 O W WbS S48 20 W
E S48 50 W w S48 30 W
SEBE S50 O W WNW S50 40 W
SE S$53 20 W NW $52 50 W

SSE S52 50 W NWOLHN S52 20W
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(2) From the following observations find the correct magnetic bearing
of the distant object, the deviations for the given positions of the ship’s
head, and the deviations for the other points by a diagram.

) Bearings of i Bearings of
Ohips Head  gictant object Ship's Head  giitant object
Com by Standard Comba by Standard
pass. Compass. ompass. Compass.

N N 88° 30 W S N87°40' W

NE S89 50 W SW N8 10 W

E S88 10 W w N84 30 W

SE S89 30 W \ NW N8 0OW

THE LOG LINE.

§ 9. The logship or log is a flat piece of wood in the shape
of a sector of a circle, the curved part being weighted” with
lead so as to cause it to float in an upright position below the
surface of the water. To this is fastened about 150 fathoms
. of line, the inner end being secured to the spokes of a reel
on which the line is wound, and which, turning freely, suffers
the line to run off when the log is thrown overboard, without
bringing it home.

About 10 to 20 fathoms from the log is fixed a piece of
bunting to mark off “stray line”; the use of the stray line
being to allow the log to get clear of the ship, and the line
run off the reel at uniform speed, before the time is taken.

From this point to the inner end the line is divided into
equal portions called “knots ”; and the number of knots which
run out in a fixed time, as measured by a sand-glass, shows
the speed of the ship, because the length of the knots is
determined by the following principle, called the “Principle of
the Log Line” :—

“The length of a knot on the line bears the same pro-
portion to the length of a nautical mile (6080 feet) as the
number of seconds in which the sand-glass runs out bears to
the number of seconds in an hour. In the Royal Navy the
standard glass is a 28-seconds glass; hence the length of a
knot should 3953 x 28 =473 feet nearly. When the ship’s
speed is greater than about six knots, a 14-seconds glass is
used, and the number of knots that has run out is doubled.”

Note.—In log-line problems, it is necessary to remember that, though
there are tico glasses, a long and a short, there is but one line ; the length
of the knots being calculated for the long glass.
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§ 10. The line may have contracted through constant wetting,
or have become stretched during hauling in if the speed is
great. There may also be errors in the length of the glass:
the condition of the sand or the size of the hole through
which it runs may be affected by change of temperature or
humidity. Hence it is necessary to know how to make allow-
ance for any of these errors.

It is evident that the longer the glass the more line will
run out, and the longer the knot the smaller will be the
number of knots which run out in a given time; in other
words, the speed shown is directly proportional to the length

of the glass, and inversely proportional to the length of a
knot.

Let ¢ seconds be the correct length of the glass.
t . erroneous
d the correct speed.
D the speed shown, the length of the knot being, so far, assumed

to be correct.
Then A:D:itit i, (1)
But if ' be the length of the knot used, and ! the correct length, D’
the speed shown,

"

D:D::l:1,
or T e (2)

If, then, both time and knot are incorrect, substituting in (1) the value
of ) from (2) we have the general formula
e
d= i D.
Or we may obtain the rame formula thus:-—
Speed shown when length of knot is { and time ¢'=10,

” ” ” 1 ') t' = ”l’.
.

” ” . ) 1 ’” 1= —ti- ’
1244

’” " ”» { ”» I = A
ne

” ”» " { " t= -

§ 11. The log line and glass are almost entirely superseded
by various patent logs, but as the log is still used in the Royal
Navy, it is as well that the principles should be understood.

The difference between a knot and a nautical mile should
be noticed.

When a ship’s speed is said to be “so many knots,” what is
meant is that so many knots run off the reel in a given
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time, and that therefore the ship is going at the rate of so
many nautical miles per hour.

Def. 28. A knot, therefore, when thus used, is a rate of a
nautical mile per hour, while a nautical mile i8 a definite
distance, the mean length of a minute of latitude.

Examples.—If the length of the knot is only 45 feet and the glass
runs out in 26} seconds, what is the true dlstance run by a ship which
by the log has run 265 miles?

Correct length of knot for 28-seconds glass=47-3 feet ;

g 265 x 45 x 28

. distance run= “473% 26} =2664 miles.
Using a 29-seconds glass, the ship ran 150 miles by the log, the true

distance by the chart being 160 miles. Required the error in the log line.

Length of knot for 29-seconds glass=60§g(;)29=49 feet.
DD =l:l
160 : 150=10": 49;
., 49x160
LU= 150 =523 feet;
~. length of knots is 3'3 feet too long.

Eramples.—(1) Taking the hautical mile to be 6080 feet, what is the
length of a knot on the log line when a 30-seconds glass is used? What
error would be introduced in the estimated run of a ship if the glass
were found to have run out in 26 seconds instead of 301

(2) If a 31-seconds glass and a 48-feet line be used, find the true distance
corresponding to a registered distance of 217 miles.

(3) The apparent speed of a ship was 9'5 kuots, but it was found that
the (short) glass ran out in 13 seconds instead of 14 seconds, and that

the length of the knots on the line was 5 iuches too long. What is the
true speed ?

(4) Show that the time a ship will take to steam a given distance in
slack water is the harmonic mean of her times with and against the tide
(supposed uniform).

A ship ran a measured mile in 3= 20* with the tide, and in 4™ 15*
against the tide. Using a log line with a 28-seconds glass, her speed was
made out to be 165 knots. What was the error in the length of a knot
on the line! Find also the rate of the tide.

(5) The distance run by log was 304 miles, and the true distance 295
miles. The short glass ran out in 13} seconds. What was the error in
the length of the knots on the log line?

(6) A ship at full-speed trial steamed a measured mile in 3™ 27* with
the tide, and in 4™ 47* against it. A common log, tested (with a 28-seconds
glass) during the trial, showed a speed of 143 knots. How long would
the ship have taken over the mile in slack water, and what was the
error in the line?
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THE «SAILINGS.” CONSTRUCTION AND USE OF TRA-
VERSE TABLE. DEAD RECKONING. MISCELLANEOUS
EXAMPLES IN THE SAILINGS. CONSTRUCTION OF
MERCATOR’'S CHART.

THE SAILINGS.

THE methods by means of which the position, course, ete., of a
“ship are determined in “ Navigation,” are called the “Sailings.”

(1) Plane Sailing, which includes Traverse, Current, and
Windward sailing.

Def. 29. Plane Sailing is a mame sometimes given to those
Jormule of mavigation which can be established by the use of
Plane Trigonometry alone, the formule namely which connect
the Course, Distance, Departure, and True Difference of Latitude.

§ 12. Suppose a ship to sail from 4 to B on a rhumb-line,
cutting the meridians in R, S, 7,.... When these points are
taken indefinitely near to one another, the triangles ARF,
RSG, STH, ... become right-angled plane triangles, and the
angles FAR, GRS, HST, ... are all equal to one another,
being the Course between 4 and B. ’

Also FR4+GS+HT ...is called the Departure between A
and B, and AF+RG+S4H ...1is the true Difference of Lati-
tude ....

Then in the triangle
FAR, FR=AR .sin FAR= AR .sin Course.
GRS, GS =RS.sin GRS = RS .sin Course.
HST, HT =8T.sin HST = ST.sin Course.
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Adding, FR+GS+HT+ ... =(AR+ RS+8T ...)sin Course.
But FR+GS+ HT+ ... Departure.
AR+ RS+ST+ ... Distance.
Departure = Distance . sin Course.
Similarly, AF+ RG+SH+ ... =(AR+ RS+ 8T+ ...)cos Course.
Or True Diff. Lat.= Distance. cos Course.

Fia. 12.

Hence, in plane sailing, the distance, true difference of latitude,
departure, and course may be represented by the three sides
and one acute angle of a plane right-angled triangle.

Def. 30. When « ship sails on more than ome course in
succession she is said to describe a “ Traverse,” uand the calcu-
lation of the total amoun! of difference of latitude and
departure made good, and the resultant single course and
distance, 18 called “ Traverse sailing.”

§ 13. Suppose a ship to sail from 4 to D (fig. 13) by means
of the courses from 4 to B, B to C, Cto D; NS and EW
representing the directions of the meridians and parallels of
latitude. Dropping perpendiculars from 4, B, C, D on NS and
EW, it is evident that the difference of latitude AM, and
departure AR, are, respectively, the algebraic sum of the several
differences of latitude and departures made good on each of
the courses.

Hence the difference of latitude and departure must be
calculated for each course, and entered in a table, with headings
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N, S, E, W respectively. Add up the columns; then the differ-
ence of the sums of those marked N and S will be the total
difference of latitude, to be marked with the name of the

N
K B8
w Al PR g
v =D
L
[}
S
Fi1G. 13.

greater; the total departure being similarly obtained from the
columns marked £ and W.
dep.
Then true diff, lat, = 1 ©OUF:
and distance = diff. lat. x sec course
by the ordinary rules of Plane Trigonometry.

§14. These calculations are facilitated by means of the
“Traverse Table.”

Def. 31. The Traverse Table is a table containing the values
of ithe perpendiculars and bases of right-angled triangles when
the hypothenuse and vertical angle are given; from 1 to 296
and 1° to 89° respectively.

In a right-angled triangle

perpendicular =hypothenuse x cos vertical angle,
base = hypothenuse x sin vertical angle.

If, therefore, for hypothenuse, vertical angle, perpendicular,
and base, we read distance, course, true difference of latitude,
and departure, we see that the solution of right-angled triangles
may be made available for the purposes of navigation in the
form of the “Traverse Table”; the distance being placed at
the top, the course, in points or degrees, at thé side, and the
corresponding difference of latitude and departure in the columns
headed diff. lat. and dep.
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As the cosine of an angle=the sine of its complement, the
diff. lat. and dep. are calculated as far as 4 points or 45°. If
the course is greater, the diff. lat. is taken from the departure
column for the complement of the course and wice versd. To
avoid mistakes the courses above 45° are placed on the right-
hand side of the table, and the corresponding diff. lat. and
departure marked at the bottom.

With courses less than 43°, therefore, look for the headings
at the top of the table; with courses greater than 45° look
for the headings at the bottom of the table.

For distances greater than 296, take out the diff. lat. and
dep. for any part of the given distance which comes within
the limits of the table, and increase them in the required
proportion.

Examples.—(1) A ship sails NEbN 115 miles from latitude 32° 15’ N.
Find the latitude in and the departure.

In this case, AB=11%,
CAB=33° 45'.
AC=115c08 33° 45/,

¢ 8 2:060698 Lat. from, 32° 15 O N
9919846 diff. lat, 1 35 37 N

1980544 Lat. in, 33 50 37 N
4C=9562. -
BC=115sin 33° 45/, dep., 64 miles.

2060698

9744739

1:805437
Fie. 14. BC=6389.

By Traverse Table, with 115 at the top and 3 points at the side, we
have diff. lat. =956, dep. =639. )

(2) A ship sails from latitude 27° 15’ S to latitude 24° 39’ S, and makes
795 miles of easterly departure. Find the course and distance made good.

Latitude from, - - - - 2715 S
Latitude in, - - - - 24 39 S
diff. lat, - - - - 2 36 N=156' N.
79
tan course = e
1-900367

2193125 Course=N 27° (' 15" E.

9707242
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Distance = 156 sec course,
2193125
10°050135 Distance=1751 miles.
2:243260
The nearest diff. lat. and dep. in the Traverse Table are 155'9 and 79+4.
The corresponding course and distance are 27° and 175 miles.

(3) A ship sails from latitude 50° 30' N as follows :—

SW i8S 40’
SSE 55
Nbw 15
WbLN 70
find the latitude in and departure.
diff. lat. dep.
N. 8. E. w.
S 34 pts. W 40, - - 309 254
sSe , E 55, - - 508 210
N1 ,, W15, - - 147 2:9
N7 ,, W7, - - 137 687
284 81°7 21°0 970
284 210

diff. lat., 533 §

dep., 760 W

Lat. from, - 50° 30 0O'N
diff. lat., - - 0 53 18 8  departure, 76 miles W.
Lat. in, - 49 36 42 N

Ezxamples—Find the latitude in and the departure in the following
cases :—

Lat. from. Course. Distance.
(1) 54°10' N EbS S 273 miles.
(2) 49 23 N SWiw 229 |,
3 2158 NiE 146

Find the course and distance made good in the following cases: —

diff. lat. dep.
(4) 1104 N 587" E
5) 948 S 1459 W
(6) 1129 N 1553 E

(7) A ship sails on the following courses; find the course and distance
made good :—-

N1iE, 75°; E{S, 66'; SWbW W, 115’; SbE }E, 98'; WNW, 47’

Note.—A few examples will be given on the direct principle of each
of the sailings, and at the end of the chapter a number of miscellaneous
examples.
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§ 15. When a ship experiences a current or tide of known
strength and direction, the distance and course on which she
would have been carried by the current is to be considered as
a separate course and distance, and included in the calculations
by Traverse Table, attention being paid to the fact that a
current is named after the point of the compass towurds which
it is flowing, unlike a wind, which is named after the point
Jfrom which it is blowing.

Def. 32. The point of the compuss towards which a current
Hows 18 called its “set,” the distance per howr its “rate,” and
the whole distance in a given time its “ drift.”

When it is required to find the course to be steered through
a known tide or current in order to reach a given port, and
in similar problems, it is generally necessary to make use of
those rules of Plane Trigonometry which apply; but results
which are wery mearly correct may usually be obtained by
means of the Traverse Table.

Examples.—(1) A ship ran NEbN 24 miles in 3 hours, through a current
setting WbS 2 miles per hour. Required the course and distance made
good.

N. S. E. W.
NEbN 24, - - - 20 12'8
Wbs 6, - - - 12 59
20 12 128 59
12 59

diff. lat., 188 N dep, 69 E

Course and distance made good—
N 20° E. 20 miles.

S

Fie. 15.

(2) What course must a ship, whose speed is 7 knots, steer through a
current setting SSE 2 miles per hour, to reach a port bearing S 52° W ?
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First, by Trigonometry.

Let S (fig. 15) be the position of the ship, 7 that of the port. It is evident
that the ship will have to steer in the direction §4, where S4 is propor-
tional to 7 miles, and AP, in a SSE direction, is proportional to 2 miles.

sin ASP_AP_2¢r_,
sin APS”AS iz ©
sin ASP=3%sin APS=%sin 74° 30"
301030
9983910

10-284940
*845098

9°439842
ASP=15°" 59, and the course to be steered=52"+16"=S 68° W.

If the distance SP is given, S4 may be easily found (by rule of sines).
This, divided by the speed of the ship, will give the time taken to
reach the port.

Second, by Traverse Table; to find the course.

Taking 4P as distance and the angle 4 PS=74° 30’ as course, AB will
represent the departure 19z (4B being drawn at right angles to SP).
Then with S4="7xr as distance, and 4B=19x as departure, the corre-
sponding course=16°, and the course to be steered=S 68° W, as before.

The Traverse Table also enables us to find the amount made good per
hour in direction of the port; thus, SP in the figure=SB+ BP="7-23, since
SB i€ the diff. lat. corresponding to distance 7 and departure 149, and =67 ;
and PR similarly ="53.

(3) A vessel sails by her log NW N 156 miles in 24 hours. Her position
by observation is 125 miles NWbW of her former position. Required the
set, drift, and rate of the current.

" diff. at. dep.
NW IN 156" gives - - 1253 N 929 W
NWbLW 125" ,, - - 694 N 1039 W
current has caused - - 559 S 110 W

set is 8 11° W ; drift, 57 miles ; rate, 3{ =23 miles per hour.

Examples.—(1) A ship sails (75 knots) for a port 15 miles SW of her.
A current sets SEbE 4 knots. What course must she steer, and how
long will she take to reach the port? The wind is SSE, causing } point
of leeway.

(2) A ship steams NNE 12 miles per hour for 5 hours through a three-
knot current setting WNW. How long will it take her to retarn to her
starting point, and what course must she steer?

(3) A ship steams SLE 16 knots directly away from a rock, through a
current setting WSW. After half-an-hour’s steaming the rock bears NbE.
Find the rate of the current.

(4) What course must a ship, steaming 10 knots, steer to reach a port
SW of her, through a current setting SSE 2 knots?
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(5) If a ship is moving through the water 10'4 knots, how must she
steer across a current setting SEbS 3 knots in order to make good an
EbN course, and what rate does she make good ?

§ 16. When a ship has to sail to a port against a wind which
is more or less foul, she has to beat to windward. Her course
will depend on the number of points from the wind within
which she can sail on either tack, on the principle that she is
to near her port as much as possible from instant to instant, ete.

In theoretical questions no time or distance is supposed to
be lost while in stays, so that the distance run is the same
whether she makes one or several tacks, and she is supposed
to be able to reach her port when her head will point directly
to it; allowing for leeway.

Current and windward sailing questions may be combined.

Erample.—A boat can sail 8 knots within 4} points of the wind, with
half a point leeway. She has to reach a ship 7 miles due East and dead
to windward. A tide is running ESE 1'5 knots. How long will she
take to reach the ship? .

Starting on the starboard tack, the boat’s course will be in direction
AC, where CAB=5 points, the current causing her to arrive at D, where
she must tack, so that, heading in the direction DE, where EDG =3 points,
the current will cause her to arrive at B.

c

A F G
F1a. 16.

The distance 4B is made up of AF, FG, GL, LB.

If ¢ be the whole time; ¢ the time that has elapsed when she tacks
AF=6t cosb pts,, FQ@=1"5¢ cos 2 pts.,
GL=6(t—t)cos b pts., LB=1-5(t—t')cos 2 pts.

AB=6tcos 5 pts.+1'5¢ cos 2 pts.
T=9333+139).
—__7_= o
=53 14 hours nearly

Two tacks only have been considered for the sake of simplicity.

Nore.—Problems of this description may be solved with considerable

accuracy by projection, if the work is carefully done.
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The value of 4B might have been obtained at once by resolving the whole
distance due to the wind and the whole distauce due to the current, in the
direction of AB.

Examples.—(1) In the foregoing example, find the distance of D from B.

(2) The wind was due East. A ship sailing 10 knots within 5 points
of the wind, through a current setting ESE, took 167 hours to reach a
port 142 miles dead to windward of her starting point. Find the rate
of the current.

(3) A ship using a 28-seconds glass and sailing within 6 points of the
wind, at an apparent rate of 6 knots, reached a buoy 14 miles to windward
of her on her second tack, in 6'5 hours. Find the error in the length of
a knot on the line.

(4) A ship wishes to weather a point of land bearing from her WbN,
distant 9 miles. The wind is WbS, and the ship lies with 5} points of
the wind with } point leeway. How far must she sail on one tack so as
just to weather the point on the next tack?

(2) Parallel Sailing.

§ 17. Plane sailing only takes account of difference of lati-
tude and the distance run east or west. It does not depend on
the ship’s position on the earth’s surface, and tells us nothing
as to how much the ship has
changed her longitude.

As soon as the idea of
longitude is introduced we
must take account of the
fact that the earth is practi-
cally a sphere. The meridians
through consecutive degrees D C
of longitude are 60" apart at
the equator and meet at the
pole. Hence the distance on B A
a parallel of latitude between
two meridians must vary with
the latitude, and, conversely, the difference of longitude corre-
sponding to a given number of miles of departure must also
vary with the latitude.

Parallel sailing is the first of the sa.xllngs to introduce the
idea of difference of longitude.

Def. 33. Parallel smlmg, as the name denotes, is the method
by means of which the position, course, etc., of a ship is deter-
mined when the ship sails on « parallel of latitude due east

or west.
S. N. C

P

Fie. 17.
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By a well-known property in Spherical Trigonometry, when
DC is the arc of a small circle on a sphere parallel to B4 the
arc of a great circle,

DC
BA
or distance =difference of longitude x cos latitude, if BA =the
arc of the equator between the meridians through C and D.
This formula solves all questions in parallel sailing.
Eramples.—A ship sails from longitude 64° 30' W to longitude 47° 19’ W

on the parallel of latitude 40°. Required the course and distance made
good.

=cos CA (see tig. 17),

Long. from, 64°30' W

Long. in, 47 19 W distance = 1031 x cos 40°.
17 11 E 3-013259
60 9-884254
diff. long., 1031’ E ' 2897513
Course, a distance=789'8 miles.

A ship changes her longitude 5° in sailing 275 miles due west. What
is the latitude of the parallel sailed on?
) 2439333
cos lat. = §§§. 2:477121

9962212
Latitude of parallel, 23° 33’ 15"

Erxamples—Find the course and distance from 4 to B, having given

Latitude. Longitude. | Latitude. Longitude.
(1) A}50° 20 N {47° 2 W L @3) “}12" s (3029 E
B 68 13 W B ‘ 79 16 E
(2) A} - {49 50 W 4 A} {83 17 E
BIB TN s ew | 3PP N o
Find the longitude in, having given
Course. Distance. Lat. from. Long from.
(5) East 675 37°18 N 59° 97 W
(6) East 981 34 57 S 39 47 E
7) West 1519 1312 N 115 35 W
(8) West 597 1419 8 348 E
(9) East 398 41 25 S 175 27 E

(3) Middle-latitude sailing.

§18. When a ship sails on a meridian she changes her
latitude only; when on the equator or a parallel of latitude,
her longitude only; in any other case she must change both
latitude and longitude.
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Def. 3. Middle-latitude sailing is the method by which a
relation 18 found between the departure and the difference of
longitude when a ship does not sail om a parallel ; the course
distance, etc., being obtained with the aid of the formule of
plane sailing.

When a ship sails from A to B (see fig. 12, § 12), it is
clear that the departure FR+4+GS+... is less than AD the
distance between the meridians in the latitude of A4, and greater
than the distance BC in the latitude of B. There must there-
fore be sqme latitude between A and B at which the distance
between the meridians is equal to the departure. It is assumed
that this is the mean of the latitudes between A and B, and it
is called the middle latitude.

If mn thus represent the departure, we have, as in parallel
sailing,

mu=EQ cos lat. of m ;

.. dep.=diff. long. x cos mid. lat. .............. i)
or diff. long. =dep. x sec mid. lat. .................... (ii.)
By plane sailing dig?‘i;t— =tan course;

diff. long. x cos mid. lat.
diff. lat.

also distance = diff. lat. x sec course, ................. (iv.)

.. tancourse = yeeemeeeneen (1H1))

These formule will solve all problems in middle-latitude
sailing.

§ 19. Since dep.=diff. long. x cos mid. lat., the diff. long. can
be found from the Traverse Table. With mid. lut. as course,
look out the dep. in the diff. lat. column, and the corresponding
distance will be the diff. long. required, or the departure can
similarly be found from the dif. long.

Eramples (use of Traverse Table).
Lat. from 37° 25' N, diff. lat. 70" N, dep. 97". Required the diff. long.
37° 25 N
110N
Lat. in, 38-3—5- N In the Traverse Table the nearest quantity in

37 25 N the diff. lat. column is 969, with course 38°. The
c— distance 123’ is therefore the diff. long. required.

Mid. lat., 38 0
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Lat. from 49° 20" N, diff. Iat. 160" S, diff. long. 167° E. Required the
departure.

49° 20' N

2 40 S
. In the Traverse Table, with 167 as distance
Lat. in, :g ;3 and 48° as course, the quantity in the dif. lat

column is 111'7, which is therefore the departure
2)96 0 required.
Mid. lat,, 48 0

The course and distance made good may then be found by looking in
the Table for diff. lat. 160, dep. 111'7. The nearest quantities are dif. lat.
15697, dep. 111'8, the corresponding course and distance being, therefore,
8 35° E, 195"

§ 20. The assumption made is not quite correct.

Def. 36. The True Middle Latitude is that latitude in which
the distance between the meridians iz equal to the departure.

This is always somewhat nearer to the pole than the mean
of the latitudes. The correction may be found in Table 6,
Inman’s Tables, new edition.

The results, therefore, obtained by middle-latitude sailing are
not theorvetically correct—

(1) in high latitudes: because the cosines and secants of
large angles change rapidly; and a small error in the mid.
lat. produces a larger error in the dep. or diff. long., or course;

(2) when the difference of latitude is great or course small;
because the greater the difference of latitude, the farther is
the true middle latitude from the mean of the latitudes;

(3) when the two places are on opposite sides of the equator;
the principle being manifestly inapplicable.

In this case it is usually sufficiently accurate in an ordinary
day’s run to consider the departure as equal to the difference
of longitude.

No error of any practical importance is caused by the use
of middle-latitude sailing in the ordinary conditions of a day’s
run. For long distances the more accurate method of Mercator’s
sailing, which is a rigorous method, is usually employed.

Ezamples.—(1) Find the course and distance from 4 to B, having given—
Latitude. Longitude.
4, 50°15 N 4, 2719 W
B, 47 30 N B, 31 4 W
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Lat. 4, 50° 15’ N 50°
Lat. B, 47 230 N 47
2 45 2)97
60 Mid. lat., 48
diff. lat., .IE’ S
cos mid. lat., 9:818030
diff. long., 2:371068
12°189098
diff. lat., 2217484
tan course, 9971614

Course, S 43° 7 45" W.

b et et e " ST
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15" 0" N Long. 4, 27° 19 W
30 0N Long. B, 31 14 W
45 0 3 55
52 30 60
diff. long., 235' W
sec course, 10136788
diff. lat., 2217484
2:354272
distance = 226°1".

(2) Find the latitude and longitude in, having given—
Lat. from, 27° 15’ S; long. from, 93° 21’ E; course, S 61° W ;
distance, 325’ miles.

cos course, 9685571 tan course, 10256248
distance, 2511883 diff. lat., 2:197454
2:197454 sec mid. lat., 10056376
diff. lat.  =1576 2510078
—2° 38 S diff. long. =3237 W
Lat. from, 27 15 8 =5" 24’ W
Lat. in, 29 53 S Long. from, 93 21 E
27 15 Long.in, 87 57 E
2)57 8
Mid. lat.,, 28 34
Examples.—Find the course and distance from 4 to B, having given—
Latitude. Longitude. Latitude. Longitude.
(1) 4, 39°27 N 17718 W 3) 4, 12°41' N 52° 32' E
B, /36 15N 53 13 W B,18 37T N 45 21 E
(2) 4,3 268 5220E | (4).4,18478 27157 W
B,41 3S 58 19E | B,15218S 32 3W
Find the latitude and longitude in, having given—
Latitude from. Longitude from. Course. Distance.
(5) 29°18 N 57° 17" W S 49° W 381’
(6) 45 27 S 79 18 E N71 E 326
(7) 36 29 N 70 14 W N58 E 517
(8) 17 50 N 5 9 E S 43 W 109

§21. Mercator’s Sailing.

Def, 36. Mercator's sailing is the method of finding a ship’s
position, course, etc., by means of principles derived from the
construction of a Mercator’s chart.
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This obtains its name from Gerard Mercator, a Fleming
(A.D. 1569), who appears to have been the first to construct a
chart in which the length of the degrees of latitude increased
as they receded from the equator. His method was improved
upon by Mr. E. Wright, of Caius College, Cambridge (A.D. 1599).

§22. Suppose a globe or sphere, with meridians, parallels of
latitude, rhumb lines, etc.,, drawn on it, to be circumscribed
by a hollow cylinder, which touches it all round the equator,
and suppose that this globe is continually expanded until each
point of it, in succession, touches the cylinder, the expansion
at that point then ceasing, while that of the portion of the
sphere not in contact with the cylinder still goes on. The
meridians will become straight lines, and the parallels circles
on- the surface of the cylinder, the former in the direction of
the axes, the latter parallel to the base.

If now the cylinder be unrolled and spread out into a plane,
the surface thus produced will represent a Mercator’s chart,
which gives a true representation of the form of each small
portion of the earth’s surface; but varies greatly as to the scale
on which these portions are represented in different latitudes.
The polar regions, in particular, are very much distorted.

§23. From the above description it appears that the distance
between the meridians, on a Mercator’s chart, is everywhere
made equal to the difference of longitude, the
meridians becoming straight lines at right angles
to the equator.

Each parallel of latitude, therefore, must have
been increased in the ratio of seclat.:1, by the
principle of parallel sailing; the rhumb line,
which cuts all the meridians at the same angle,
becomes a straight line; and the arcs of the
meridians must, therefore, to preserve the rela-
tive proportions of the small figures, such as
ABC, CDE (fig. 18), be also increased in the same
proportion as the parallels of latitude, i.e. sec
lat.:1. Hence the degrees of latitude on a
Mercator’s chart increase as they recede from the equator, as
the secant of the latitude increases; and all the parallels of
latitude, and every part of them, are larger than they are on
the globe, in_the proportion seclat.:1.

P

om

Fic. 18.
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Hence also, though the latitudes and longitudes and bearings
of places are accurately represented on a Mercator’s chart, the
distances are distorted in various proportions.

Def. 37. The Meridional Parts of a certain latitude give
the length, expressed in mautical miles, of the distance on a
Mercator's chart from the equator to the parallel of that
latitude.

Def. 38. The Meridional Difference of Latitude between two

places is the length, expressed in nautical miles, of the line on
a Mercator's chart, which represents the difference of latitude.

To calculate the Meridional Parts for any latitude.

§24. Let PU and PV represent two meridians on the surface
of the earth; UV the equator, AB, CD, etc., arcs of parallels
of latitude. Let these arcs be expanded in fig. 19 (2) into
the distances ab, cd, etc, on a Mercator’s chart, uv being equal
to UV the difference of longitude.

(1) p (2)

~
S XN

u T

Fic. 19.

Then the differences of latitude BD, DF, etc., must be ex-
panded similarly into bd, df, etc., where
bd = BD sec lat. B,
df= DFseclat. D,
fh=FH seclat. F,
ete.= ete.
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Now suppose that BD=DF=FH ..., and that each=1" of
latitude, the latitude of B being l. Then

bd +df+ fh=meridional difference of latitude between B
and H

=gec lat. B+seclat. D+...
=secl’+sec(I°+1')+sec(°+2)+....
Now suppose B to be a place on the equator, then
bd + df+ fh=meridional parts for 3’
=sec0+sec 1’4 sec 2'.

In the same way it may be shown that meridional parts for I
=sec0+secl’ +sec2'+...+sec(I°—1°).

A closer approximation may be obtained by taking the dis-
tances BD, DF, etc., each=1", but the above is sufficiently
accurate for all practical purposes. For accurate calculation
of meridional parts a formula obtained by means of the
Integral Calculus is required; and the fact that the earth is
not a perfect sphere must be taken into account.

When the meridional parts for any latitude have been
calculated, those for any other latitude may be found by
multiplying the true difference of latitude by the secant of
the true middle latitude, which can be obtained by means of
Table 6, Inman’'s Tables, new edition (cf. §26), and adding
the result to the given meridional parts.

To obtain the meridional difference of latitude between two
places take from the Table the meridional parts for each
latitude, and then take the difference or the sum, according
as the latitudes are of the same or different names.

To show that tan course =- diff 1'_ong_._
X mer. diff. lat.

§25. Let the tigure (fig. 20) represent a portion of a Mercator’s
chart, 4 and B the positions of two places on it. Completing
the right-angled triangle ABC, BC will represent the difference
of longitude and AC the meridional difference of latitude.

Suppose that BC=departure x m, then by the principle of
the construction 4C' must = diff. lat. x m.



THE SAILINGS. 41
dep. _ dep.xm. _ difflong.
diff. lat. ~ diff. lat. x m — mer. diff. lat.’
CAB représents the course from 4 to B.

If AD be the true diff. lat, between the two places, and DE
be drawn parallel to CB, AE will represent the true distance
between them, because the relative proportions of distances, etc.,
on the globe are preserved on the chart.

S AE=ADsecEAD,

or distance = true diff. lat. x sec course.

Now tan course =

These two formul® solve all problems in Mercator’s sailing.

A
)ﬁ °
B
F1e. 20.
Considering the two expressions
tan course = _dep_._ tan course = véiﬂ" long.-‘
OWSe= Jiff. lat. = mer. diff. lat.’

mer. diff. lat.

 diff lat.

by means of which the diff. long. may be obtained from the
departure, if desired, without the use of the middle latitude.

we obtain diff. long.=dep.

§ 26. Also, since
dep. =diff. long. x cos true mid. lat.,

diff. lat.
mer. diff. lat.’
which gives the latitude in which the distance between the
meridians 48 equal to the departure made good between two
places.

If the course is nearly 90°, and there is any probability of
error in it, the diff. long. obtained from the expression

cos true mid. lat. =

diff. long. = mer. diff. lat. x tan course
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may be incorrect, as the tangents of angles near 90° change

very rapidly.

In this case it may be preferable to use the middle-latitude
method, which is used, in practice, for obtaining the diff. long.

from the departure in the ordinary daily reckoning.

Examples.—(1) Find the course and distance from A to B, having given—

Latitude. Longitude.
4, 50°15° N 4, 2719 W
B, 47 30 N B, 31 14 W
Mer. parts,
Lat. from, 50° 15' N 349787’ Long. from, 27° 19 W
Lat.in, 47 30 N 324691 Long. in, 31 14 W
2 45 25096 C 3% W
60 Mer. diff. lat. 60
diff. lat., 165’ S diff. long., 235" W
diff. long., 2:371068 seccourse, 10°136728
mer. diff. lat., 2:399605 diff. lat., 2:217484
tan course, 9971463 2:354212

Course, S 43° 7' 15" W distance, 2265

the course differing by about 30" and the distance by less than half a mile

from the results obtained by middle-latitude method.

(2) Find the latitude and longitude in, having given—
lat. from 27° 15" S, long. from 93° 21’ E, course S 61° W,
distance 325 miles.

Mer. parts.
cos course, 9'685571 27° 15 170037
distance, 2:511883 29 53 188030
2:197454 179:93
diff. lat. =1576 wer. diff. lat.,, 2:255104
=2°38 S tan course, 10'256248
Lat. from, 27 15 2511352
Lat.in, 29 53 S
— diff. long. =324'6
=525 W

Long. from, 93 21 E

Long.in, 87 66 E

which differs from the middle-latitude method result by 1 mile of longitude.
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Examples.

(In several of the following examples the data are the same as in those
given on middle-latitude sailing, as the general agreement of the two
results in ordinary cases is thus made plain. For long distances Mercator's
sailing should be used, unless the course is nearly 90°.)

Find the course and distance from . to 3, having given—

Latitude. Longitude.

(1) 4,39°27N 47° 18 W
B, 36 15 N 53 13 W

2 4,35 2 8 52 29 E
B,41 38 58 19 E

(3) 4,12 41 N 52 32 E
B, 18 371 N 45 21 E

(4) 4,32 30 8 158 12 E
B, 21 10 N 159 22 W

Find the latitude and longitude in, having given—

Latitude from. Longitude from. Course. Distance.
(3) 29°18' N 57° 17 W S 49°W 381
(6) 45 27 S 79 18 E N7 E 326
(7) 36 29 N 70 14 W N58 E 517
(8) 51 20 S 60 15W  N73E 3400

The last example worked by middle-latitude method gives 13° 55’ E as
the resulting longitude, but that method should not be used for such long
distances.

To obtain a ship's position by “ Dead Reckoning.”

§ 27. This is obtained by a combination of the various
“sailings,” traverse and middle-latitude sailings being those
principally employed. When the position is that obtained at
noon from the courses and distances sailed in the previous
twenty-four hours, the work is sometimes called the “day’s
work,” though the whole “day’s work” includes the finding
the position by observation, current, course and distance made
good, ete., as will be explained later.

The method of obtaining the dead reckoning will be best
understood by means of a fully-worked example, which is
supposed to represent data taken from a ship’s log.
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For practice in turning points into degrees the courses are
given in points. * In actual navigation courses are most usually
expressed in degrees.

Example. A ship sailed from Lat. 54° 3' N, Long. 10° 25’ W, as by the
following log account. Find the latitude and longitude in next day
at noon.

Hours. [Knots.Tonths.| o, #and¥4 | IDeviation.| Wind. |Leewas. Remrks.
- Points.

1| 7| 2 | NNW4W | 3°E | NE3N

261 8 ,

3 6 5

4 6 8

5 7 2

6 7 5

7 5 8 NbW 34w [2°30' E| NE g

8 5 5 ’

9 4 8

10 4 5

11 5 2

12 4 2 Midnight.

1 5 3

2 5 5

3 4 8 SEbE {E 1°W | NEbE 1

4 4 8

b 4 2

6 4 2 ..

7 4 8 ESE 22w | NEbN 3 {Varla!:lo:u{}owed.

8 4 8

9 3 2

10 5 2

11 7 8 EbN 2°30 W| NbW 0

12 | 8| 2 )

I.—7To correct the courses.

(1) (2 3

Course, - i le:IWé\\U ] Nbw QW’ bl'EbE'*E”

128° 7730" I N 19°41"15" I N 59° 345" 1 S
Deviation, - 3 0 0 »r 230 0 r 1 0 01
Magnetic course, 25 7 30 I N 171115 I N 60 345 LS
Variation, - 27 0 01 27 0 0 ! 27 0 0 1
True course ) 55 - 3 N #4111 IN 87 345 IS

steered, -

Leeway, - 53730 { 8 26 15 1 1115 0 r

57 45 0 I N 52 37 30 { N 7548 45 1 S
True course \ N 55° W N 53° W S76°E

made good, - J



THE SAILINGS. 45

4) (5)
Course L . {ESE EbN
’ 67°30" 0" IS 78°45' r N

Deviation, - - - 20 0! 230 !
Magnetic course, - 6930 01IS 76 15 r N
Variation, - - - 271 0 01 27 0 !
True course steered, - 96 30 0 S 4915 rN
Leeway, - - - 53730 r 0

90 52 30 IS 49 15 » N

180

89 730 rN
True course made good, N 89° E. N 49° E.

In practice it is not necessary to work to seconds. If the minutes in
the course are less than 30, they may be neglected ; if over 30, take the
next higher whole degree as the course. If great accuracy is desired, take
the course to the nearest half degree (seldom necessary).

I1.-—To find the distances.

Add l;p the knots and tenths run on each course, then

III.—Form a Table as follows, with the aid of the Traverse Table : —

g diff. lat. departure.

Course. é -
a N. S. E. w.
N 58°W 42' 223 — — 356
N 53 W 41 247 — — 327
S 76 E 18 — 44 1756 —
N 89 E 20 03 — 200 —-
N 49 E 16 10'5 — 121 —

578 44 496 683

44 496

Diff. lat.,, 534 N 187 W dep.

It is advisable, before filling up the diff. lat. and departure columns, to
draw a dash (—) in those places which will not be required. In this way
the mistake of entering in the wrong column can be avoided.
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IV. —The diff. lat. and departure having been thus obtained, to the
latitude from, apply the diff. lat. and obtain the latitude in; and thence
the middle latitude. Then, as

diff. long. =dep. x sec mid. lat.,
obtain the diff. long. Ly calculation or the Traverse Table (if the distances
are large and the course not an exact degree, the Traverse Table must
be used carefully).

Thus
Lat. from, 54° 3 O'N dep., 1-271842
diff. lat.. 053 24 N sec mid. lat., 10-236002
Lat. in., 54 56 24 N 1-507844

54 3 O
- diff. long., 322 W
2)108 59 24 :
Mid. lat., 54 29 42 Long. from, 10°25' 0" W
diff. long., 032 12 W

Long. in, 10 57 12 W

By Traverse Table, with 187 as diff. lat. and 54° 30’ as course, the nearest
distance is 32', which is practically the same as the result by calculation.
Results—Lat. in, 54° 56’ 24" N ; long. in, 10° 57" 12" W.

§ 28. It is sometimes stated that, when the latitude is greater
than 50°, the diff. long. should be calculated for each course
separately. The foregoing example, in which the courses are
almost all to the northward, treated in this manner produces
a diff. long. 31'3, which is less than one mile of longitude, and
about half a mile in actual distance, from that already obtained,
and would probably be still less had more of the courses been
to the southward. Unless there is any very great difference
of latitude, in a high latitude, the probable error resulting
from omitting to work each course separately will be less than
those arising from slight errors in steering, compass error, etc.,
and may safely be neglected, as far as an ordinary day’s run
is concerned, in all those parts of the earth in which navigation
usually takes place. For long distances and the determination
of the course the methods of Mercator’s sailing are more suitable.

§ 29. Sometimes, in examples for practice, the ship’s bearing
and distance is given from a point of land whose latitude and
longitude are known. In this case the bearing reversed (named
the departure course) and distance are to be treated like the
rest of the courses, the deviation applied being that due to the
direction of the ship’s head.

In actual navigation the position of the ship is fixed, and
the courses, ete., reckoned from that position.
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Examples.—(1) A ship in latitude 55° 52’ N, and longitude 131° 4’ W,
sailed as by the following log account. Work up the reckoning from noon
to noon.

Hours. [Knots.| Tenths. Course, Wind. |Leeway. Deviation. Rewurks.

Points.
SWbW S F 17°30°W| By,

.._
S
- |

wis SSwW 3 83W'W

OV IDOV W
It
(=]

Y bt
w
—
W

WDNIN | SW § | 8 W | Midnight.

A M.

Siw wsw 4 |3°30' W| Variation allowed,
27° K.

DTN T W~
—
o

S3iE Sw 1 2°30' W

—
»
OO CSCUMINITUIOUMOO ’ QN NOOSON®WO

Noon.

(2) A ship in latitude 27° 43’ N, and longitude 18° 10’ W, sailed as by the
following log account. Find her latitude and longitude in, next day at noon.

Hours. {Knots. | Tenths, Coirse. Wind. |Leeway. |Deviation, Remarks.
Points.

1 9 0 NOW W | NELE 4 0°30' W) r.M.

2 9 ]

3 9 5

4 10 0

5 10 0

6 [ 11| 2 | NNWiW | NE 2 2w

7 11 0

S 10 8

9 10 S
10 10 5 !
1 9| 5 EbS}S | NEbN | 3 630K
12 9 5 Midnizht.
1 9 0 AM.

2 9 8

3 10 2

4 10 d

5 10 5

(] 11 0 NbW °NE 0 1°E | Variation allowed,
7 11 5 21° W.
8 11 5 }

9 10 ) EbN NNE 1 8°30'E

10 10 8

11 10 2
12 9 5 ] Noon.
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(3) A ship in latitude 23° 30’ S, longitude 35° 50' E, afterwards sailed

as by the following log account.

next day at noon.

Find the latitude and longitude in,

Hours. |Knota.|Tenths.|  Course. Wind. |Leeway. |Deviation. Remarks. |
Points, |
1 5 4 SWbS WbN 1 |6°10°W| p.m. X
2 5 9 :
3 4 7
4 | 4| 9 |
5 6 1 Variation of com- |
6 6 3 pass, 2§ pts. W, |
7 6 0 '
8 5 1
9 5| 0 EbS NNE | 2 TIW0E |
10 7 2
11 8 7
12 7 3 Midnight.
1 5 0 SE ENE 3 2E | A
2 5 7
3 5 9
4 6 4 WSW E 0 W
5 6 0
6 5 1 A current set the
7 3 9 shipthelast four
8 4 7 hours 2 knots
9 5 2 an hour N60°E
10 5 9 magnetic.
11 6 8
12 8 4 Noon.

(4) A ship in latitude 33° 12’ S, and longitude 37° 40° W, afterwards

sailed as by the following log account.

next day at noon.

Find the latitude and longitude iu,

Hours. |Knots. | Tenths. Course, Wind. |Leeway. |Deviation. Remarks.
‘ Points.

1 7 2 EbS NE 1 8E |prM

2 7 0

3 7 8

4 7 5 -

5 7 0 SE ENE s 11I°E

6 6 5

7 6 5 Variation of com-
8 |6 | 0 pass, 21° W.
9 | 71| o SEbS E 1} | E
10 6 8
11 6 5
12 7 5 Midoight.

- R —_— e

1 8 2 A.M.

2 8 0

3 9 0 NW N NNE § 6°'W

1 8 8

5 8 5

6 9 5

7 9 2

8 9 5 SWbS N 0 W

9 9 5
10 9 5
11 9 5 .
12 10 0 Noon.
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(5) A ship in latitude 37° 28’ 8, and longitude 57° 38 W, afterwards
sailed as by the following log account. Fiud the latitude and longitude
in, next day at noon.

Hours. (Knots.| Tenths. Course. Wind. |Leeway. Doviatlon.‘l Remarks.
Points.
1 8 7 ESE S S 1°0CE | p.M.
2 9 2
3 9 5
4 10 6
5 10| 6 SEbS | SWbs | 2 2 E
6 11 2 Variation of com-
7 |11 2 pass, 1} pts. E.
8 9 0
9 10 0
10 10 b
11 10 5
12 11 5 NZE E P 33° E | Midnight.
1 11 5 AM.
2 10 0
3 10 0 SWiw SSE 3 W
4 9 2
5 9 4 .
6 9 4
7| 9| 8 | NWbw $ — | W
8 9 2
9 9 0
10 10 5 EbS 48 NEbN } 7 E
11 10 5
12 10 0 Noon.

(6) A ship in latitude 50° 10’ 8, and longitude 58° 37" W, sailed as by the
following log account. Find the.latitude and longitude next day at noon.

Honull(nou. Tenth-.l Course. | Wind. |Leeway.|Deviation. Remarks.

Vi’ointo.- T
NEbE SE P 5°29'\W | p.m.

ES SSE § |6°18’ W| Variation of com-
pass, 27° 10’ W.

[
SOOI W =~
—
[

S
—
—
—

ENE SE ¥ 6°10° W| Midnight.

|
|

AM,

NEbE 3E SE 3 (W

O RID O W~
—
—

EbS }$ 8 i |[IPI8E

L

19

L

S
CORONNOLAOIUNX | NOOCLORNONNDO

Noon.
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Formule made use of in the * Sailings,” collected for reference.
Plane sailing :

diff. lat. =dist. X CO8 COUrse, ..........ccoveureiniinniininnnns 1)
dep. =dist. X 8iN COUTBE, .....couvrviiiiiniiinennreniand (2)
_ dep.
tan e T Py AT IR 3)
dist. =diff. lat. xseccourse,...........ccoocveiiiriinn (4)
Parallel sailing :
dist. =diff. long. x cos lat.
Middle-latitude sailing :
dep. =diff. long. x cos mid. lat......................... (1)
diff. long. =dep. xsec mid. lat.,........ccc.cccoeiiiiiiiiiiii (2)
_ diff. long. x cos mid. lat.
tan course = T 20 P AR TSI (3)
dist. =diff. lat. X s€c Course, ........ovveeiiiniiiiininnnd (4)
Mercator’s sailing :
_diff. long.
tan course = mer. diff, Tt s (1)
dist. =true diff. lat. x sec course, .......c.............. (2)
. _dep. x mer. diff. lat.
diff. long. =" true diff, lat, e (3)
. diff. lat.
cos true mid. lat'=ﬁiér. diff, Jat,r oo (4)

MISCELLANEOUS EXAMPLES ON THE “SAILINGS.”

Find the compass course and distance from 4 to B, having given—

(1) 4, Lat, 22°16'S B, Lat., 22°16'S Variation, 10° E
Long., 166 55 E Loug., 171 14 W Deviation, 3 E
(2) 4, Lat, 30 25 S B, Lat, 30 25 S Variation, 27 W
Long, 101 11 E Long., 43 20 E Deviation, 4 E
(3) ., Lat, 35 20 N B, Lat.,, 47 10 N Variation, 12 E
Long., 165 17 W Long., 171 20 E Deviation, 5 E
(4) d, Lat,, 32 30 N B, Lat.,, 40 27 N Variation, 8 W
Long., 64 55 W Long, 74 1 W Deviation, 2 E

Leeway (wind NNE), 4 pt.

(5) In sailing along a parallel of latitude, I find that the distance actually
made good is 47 miles, while I have changed my longitude one degree.
On what parallel am I sailing ?

(6) A ship, in latitude 40° 25', sailing on a parallel, changes her longitude
4°15. Find the distauce sailed.
(7) A certain place on the earth’s surface is revolving 250 miles per

hour faster than a place whose latitude is 20° farther North. Find its
latitude.

(8) Two ships sail from the same place. The first sails NW z miles,
then SW z miles ; the second sails SW x miles, then NW & miles. Will
they reach the same position, and, if not, why not ?
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(9) A vessel sailed from Lat. 62° 6’ N, Long. 7° 37’ W, 196 miles due N,
196 miles due W, 196 miles due S, and 196 miles due E. How far was
she then from her starting point?

(10) A ship sails from Lat. 33° 56’ S, Long. 18° 28’ W, on a NEDE course.
In what latitude will she cross the Prime Meridian, and, in what longitude,
the Equator?

(11) A ship in Lat. 50° 12’ N, Long. 4° 16’ W, sails SW }W, until her
diff. long. is 620 miles. Required her latitude in, and the distance sailed.

(12) Two ships are chasing to windward, the wind being SE3E. At the
end of a given time the bearing of B from A4 is E 48, distance 1560 yards.
Find, by the Traverse Table, how much B has weathered on A.

(13) A ship sails from Lat. 57° 40’ N, Long. 42° 20' W, between South
and East till she arrives in Long. 40° 12 W, and her mer. diff. lat. is
496 miles. Find the course and distance made good, and the latitude in.

(14) The meridional parts for 20° 40’ being 12678, calculate those for
20° 46'.
(15) The meridional parts for 62° 18’ being 481351, find those for 62° 26'.

(16) I am bound for a port in Lat. 12° 3’ N, its longitude being 5° 13’
to the Eastward, my latitude being 18° 20° N. Next day I am in Lat.
15° 40' N, and have made departure 115 miles E. Required my course
and distance to the port.

(17) Two ships, sailing at the same rate, start together from Lat. 15° 50" S,
Long. 5° 40' W for a port in Long. 14° W. One sails due West till she
reaches the required longitude, and then due North to the port. The
other sails due North till she reaches the latitude of the port, then due
West, and is 15 miles from the port when the first arrives. What is the
latitude of the port?

(18) Two ships leave a port in North latitude sailing at the same speed
N z° W, N 22° W respectively. After a certain interval the diff. lat. was
104’ in one case, and 17’ in the other. Find the distance sailed.

(19) A ship sails on a certain course between South and West for a
distance of 109 miles, and finds that she is in Lat. 1° 13’ higher than that
of the place from which she sailed. On what course has she sailed, and
how much westing has she made?

(20) A ship sails from a place in Lat. 60° N for 360" on a course
N 20° E. Find the error in the longitude of the place arrived at obtained
by using middle-latitude sailing.

(21) Two ships, in Lat. /;, are 385 miles apart. They both sail due
North until they reach Lat. /,, when their distance apart is 420 miles.
Find [, and [, having given that ,-1,=12° 30.

(22) A ship sails WNW from Lat. 59° 40’ N, Long. 32° W, and at the
end of 24 hours finds the difference of longitude to be double of the
departure. Find the latitude and longitude in, and the average speed of
the ship.
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(23) A ship, using a 28-seconds glass, steams SELE 150 miles (true), and
finds that she has been overlogged, the T.D. lat. being 8'4’ too much,
and the D. long. 176" too much. Determine the error in the length of
the knot on the line, and the middle latitude.

(24) A boat that can lie within 5 points of the wind wishes to reach a
ship 8 miles due North of her, the wind being at NW. Required her
course and distance on each tack.

(25) A cutter is 7 miles from a ship at anchor, which bears from her
SSW. The wind is SbE, and the cutter lies within 6 points of it. How
far must she sail on the port tack, so as to reach the ship on the other tack ?

(26) A ship sails NEbE 4E 10 miles from a headland in 14 hours; she
then finds that the headland bears SW distant 15 miles. Find the direction
and strength of the current.

(27) A port bears from a ship ENE 102 miles. After proceeding on
that course for 8 hours at 104 knots, the port bore NNE 24 miles. Find
the set and drift of the current.

(28) A ship steaming 11 knots wishes to reach a port bearing WSW
75 miles. How must she steer so as to allow for a current setting S}E
2'5 knots, and how long will she be in completing the distance?

(29) A ship steaming from Gibraltar (36° 7 N, 5° 21’ W) at the rate of
156 knots by the log, passes Gozo (36° 7' N, 14° 28’ E) in 2 days 14 hours.
Find the error in the length of the knots on the log line used.

(30) The wind is NbW, and a ship, sailing 10 knots within 5 points of
the wind through a current setting WNW, took 4 hours to reach a port
36 miles dead to windward of her starting point. Find the rate of the
current.

(31) A boat can sail 6 knots within 5 points of the wind. She has to
reach a ship 10' NE and dead to windward. It takes her 4 hours to reach
the ship, starting on the starboard tack. If the rate of the tide is 2 knots,
find its direction.

To construct a Mercator's chart.

§30. Draw a straight line near the lower margin of the
paper if the chart is to represent north latitude; near the upper
margin if it is to represent south latitude; or at a suitable
position towards the centre if both north and south latitudes
are to be represented; or it may be found convenient to take,
as the line of reference, a parallel about the middle of the
paper. Divide this line into equal parts to represent longitude
according to the scale on which the chart is to be constructed,
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and the number of degrees of longitude required. At each
extremity erect perpendiculars. Take out the meridional parts
for each convenient degree of latitude for the limits between
which the chart is to be drawn, and take the difference between
each successive pair, thus obtaining the meridional differences
of latitude.

As the given scale represents 60 miles of longitude, multiply
the scale by the number of miles in the meridional differences
and divide by (0; the results will be the lengths, on the given
scale, between the chosen degrees of latitude. Lay off these
lengths successively on the perpendicular lines, and through the
points thus obtained (but not through half degrees, unless the
scale is very large) draw straight lines parallel to the original
line, to represent parallels of latitude. Draw also straight lines
at convenient intervals parallel to the perpendiculars to represent
meridians.

The frame of the chart is thus completed. Its accuracy
should be tested by seeing whether the two diagonals of the
rectangle thus formed are equal, and whether the intervals
representing longitude are of the same length at each end of
the chart.

The intervals representing latitude and longitude should then
be divided conveniently, the principal divisions numbered, all
lines inked in, a neat margin added, and pencil lines rubbed
out, when the chart is ready for use, such positions, land, etc.,
as may be required, being inserted.

§31. (1) To fix a position on the churt.

Place the edge of a parallel ruler along the parallel of
latitude nearest to the given latitude: move it until it passes
through this latitude on the graduated edge of the chart.
Measure the distance of the given longitude from the nearest
meridian, and lay off this along the edge of the ruler. The
position thus obtained is the position required, which should
be marked by a small cross.

The latitude and longitude of any position may be taken
from the chart by the reverse of this method.

(2) To lay off courses or bearings.

On charts for actual use compasses are drawn; those for use
near the land, on the magnetic meridian, marked to quarter
points, and, in recent charts, to degrees.
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On those made for practice it is sufficient to draw one or
more straight lines, representing the magnetic meridian and
passing through the intersection of a meridian and a parallel.

Correct the given compass course or bearing for the deviation
due to the direction of the ship’s heud, so as to obtain the
magnetic course or bearing. Lay this off from the magnetic
meridian ; a line parallel to it through the given position will
be the required course or bearing.

The intersection of the bearings of two or more points thus
laid off fixes the position of the ship; as she must be somewhere
on each line, and, therefore, at their intersection.

The converse of this method will obtain the course between
any two positions, or the bearing of any point, ete.

(3) To find the distance between two points.

The distance is found (nearly) by transferring the interval
between the two positions to the graduated meridian, as nearly
as possible opposite to the positions, 7.c. as much below the
more southern latitude as above the more northern: this space
turned into minutes is the distance required. If the two places
have the same latitude, half the distance should be measured
on the graduated meridian on each side of the parallel of
latitude; the total space measured, expressed in minutes, is
(nearly) the distance required. If the places have the same
longitude, the algebraic difference of their latitudes will be
the distance between them.

(4) To lay off a given distance, take it, similarly, from the
graduated meridian and apply it to the line representing the
course or bearing.

The whole subject may be illustrated by the following ex-
ample, worked in full.

Example.—Construct a Mercator’s chart on a scale of 1'5 inches to a

degree of longitude, extending from 53° 30" N to 55° 30’ N, and from 8° W
to 11° W. Place on it the following positions (fig. 21):

Clare Island Light, - 53° 50' N 9° 59’ W
Achill Head, - - 53 58 N 10 15 W
Carrigan Head, - - 54 37T N 8 41 W
Rathlin O’Birne Island, 54 40 N 8 50 W
Horne Head, - - 55 14 N 8§ O W
Tory Island Light, - 565 17 N 8 15 W

Nore.—For construction of charts on the (Gnomonic projection, for use
in high latitudes, see Great Circle Sailing.
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A ship’s position was fixed by Cross Bearings, the variation allowed
being 25° 20°' W.

{Clare Island Light, SEbE} Deviation, 2° 50’ W.

Achill Head, NNE
Afterwards sailed as follows:
coms,f:.‘;d&im. Deviation.  Distance. Croes Bearings.
NNW W 2°50 W 31’
E 5 40 E 5 B {Rath.lin O’Birne Island, N W
Carrigan Head, E}s
N W 3 0W 60
ESE 5 30 E 60 C Horne Head, SiwW

Tory Island Light, SWbW W
Lay down the various courses and fix the positions 4, B, C.

(1) To construct the Frame.

Meridional
Diff. Lat.
Mer. Parts for 53° 30, 381390
5074
. 54 0, 386464
103°33
1 55 O, 3967-97
5263
" 55 30, 402060
Inch. Inch. 4 inch.
15 5074
5074 x 60> T-—l ‘2685 =2-5370
. 1510333 .
103-33 x 60="10 =2'58325=51665
15 5263
5263 x 0= 40 -=1 315?!-5 26315
Total length of chart=516750
402060 mer. parts for 55°30 2067 x 15 _ 2067
381390 ” 5330 60 40
=51675

206°70=mer. diff. lat.

This result, agreeing with the one obtained by considering the separate
mer. diff. lats., shows that the work is correct. This method should be
always used as a check.

Draw a line near the lower margin of the paper at such a distance as
to bring the completed chart symmetrically in the centre ; divide it and
erect perpendiculars as directed ; lay off the distances, taken from a diagonal
scale, which represent the mer. diff. lat. ; draw parallels through latitudes
54° and 55°, and through 55° 30', as it is the Northern limit of the chart ;
also meridians through longitudes 9° and 10°. Divide each degree of latitude
and longitude into 6 parts to represent 10. As the variation is assumed
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ss ° 10%0" 10° 9° 50’ Q° 8%’ 8°sso
30! 3 1 T k)
A
Tory Island Light¥ DR\‘l
Horne Head
St —_— - ——— 55
= Rathlin 0'Birne Island
4-
% Carrigan Head
= O
saf DR B Asa]
3o 79
.- 9,5° '2"()’"
54 . 54"
Achill |Head
A *+Clare Island Light
g': ' ) 1 :‘;{-}7
u® 10%50" 10 9°50" 9 8%' 8°
Walker 8 Bowtall sc.



MERCATOR’S CHART. 57

to be the same over the whole chart, draw a line making an angle of 25° 20’
with a meridian to represent the magnetic meridian, from which to lay
off the courses and bearings. (If desired, the courses, etc., may be corrected
for variation as well as deviation, and the results laid off from the true
meridian.)

(2) Fix the given positions.

(3) Correct and lay off the bearings and courses—

Clare Island Light. Achill Head. 1st Course.
S 56°15 E N 22°30' E N 23° 8§8W
2 50 W 2 50 W 2 50 W
39 5 19 40 30 58
8 59° E N 20° E N3I°w
2nd Course. Rathlin O’Birne Island. Carrigan Head.
S 90° 0E N 5°38 W S 87°11'E
5 40 E 5 40 E 5 40 E
84 20 0 81 31
S 844° E North S 81" E
3rd Course. 4th Course. Horne Head. Tory Island Light.
N 82I'W S 67°30'E S 82w S 64°41' W
3 0w 5 30 E 5 30 E 5 30 E
11 27 62 0 13 57 70 11
N1y W S 62° E S14W ST70°W

N.B.—In laying off courses, when a position has been fixed by cross-
bearings, the next course should be laid off from the position thus obtained,
and not from the extremity of the line representing the previous course,
as this latter position is only an approximate one.

A B : C
Results—Lat., 53° 50' N 54° 35' N 55° 24' N
Long., 10 13 W 8 4 W 8 3 W



CHAPTER IV.
METHODS OF FIXING A SHIP’S POSITION ON A CHART.

To lay off on a chart the bearing of any object.

§ 32. Correct the given compass bearing for the deviation
due to the direction of the ship’s head. Measure this corrected
bearing, which will be the magnetic bearing, on the nearest
compass drawn on the chart (such compasses being constructed
on the magnetic meridian), by placing the parallel rulers so
that the edge passes through the centre of the compass and
the requisite degree on the circumference. Then move the
ruler till the edge passes through the object, when the line
drawn along the edge will represent the bearing required. If
the compass on the chart is not marked to degrees, correct the
magnetic bearing for the variation, and measure off this true
bearing from the true meridian. A line parallel to this through
the object will represent the bearing required.

(1) Cross Bearings.

§ 33. If the bearing be taken of a headland, lighthouse, or
other well-defined object, and this bearing laid off on a chart,
it is manifest that the position of the ship must be somewhere
on this line.

Similarly, if the bearing of another object, taken immediately
after, be laid off, the position of the ship must be somewhere
on this line. And, as the only point common to two lines is
the point where they meet, the position of the ship on the
chart will be at the point of intersection of the two lines of
bearing.

The objects should be chosen so that the lines do not intersect
at a very acute angle, as the point of intersection, in such a
case, is somewhat doubtful. In practice the bearing of a third
point is always taken as a check.
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(2) By bearing and sextant angle.

§ 34. If two well-defined objects cannot be seen at the same
time from the standard compass, the position may be fixed by
taking the bearing of one object, and the sextant angle between
it and another object.

Lay off the bearing of the first object, and from any point
of it lay off the sextant angle. A line through the second
object, parallel to the line thus obtained, will cut the bearing
of the first object in a point which is the position of the ship.

(3) Doubling the angle on the bow.

§ 35. The angle between the direction of the slupq head
and the bearing of an object is called “the N c
angle on the bow.” Let this angle be observed 4
and the time noted; and, when the angle on
the bow is doubled, let the time be again
noted. Then the distance of the ship from
the object is equal to the distance run by
the ship in the interval. Lay off the second
corrected bearing and on the line - measure
the distance run, the point obtained will be
the position of the ship.

Proof —Suppose that the ship is proceed-
ing in the direction ABC (fig. 22), and, when
she is at A, let BAD be the “angle on the A
bow,” i.. the difference between the ship’s
course and the bearing of the object D. Let B be the position of
the ship when the angle on the bow is doubled, i... pagn. N.
when CBD=2BAD. But CBD=BAD+BDA. %
Therefore BDA must=BAD, and the side BD =
the side BA, .. the distance of I from the
ship=the distance run.

Erample (fig. 23).—A ship steering S36° E by compass Al
observes that a lightship bears S8° E; after running 2
miles the angle on the bow is observed to be doubled.
Required the magnetic bearing of the lightship at the
second observation ; the deviation being 2° W ;

BAS=38°
LAS=10
BAL=2—§=a.ngle on the bow,
CBL=56
and CBS'= s
y LIIS’—-IS Fie. 23.
i.e. magnetic bedrmg of lightship at second observation is S 18° W

Fic. 22
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Laying off N 18° E 2' from the lightship the position of the ship is
obtained. The compass bearing will be S 20° W. In this manner the
required compass bearing, when the angle has been doubled, may be
calculated, and all that has to be done is to note the time when the
object has this calculated compass bearing.

Or, since ALB=BAL, the position of the ship may be obtained by
drawing from L a line LB, making with .IZ ap angle equal to the angle
on the bow, and on this line measuring the distance run.

(4) Fouwr-point bearing.

§ 36. This is a particular case of the previous method.

The object is observed when its bearing is four points or
45° from the direction of the ship’s head, and again when on
the beam : the distance from the object at the second observation
being clearly the same as the distance run in the interval.

These observations are easily made by means of a brass plate,
with radiating lines, let into the bridge, the compass therefore
not being required.

(5) Two bearings of the same object, and the distance run
in the interval.

§ 37. Lay off, from the object, the second bearing reversed,
and the course of the ship; on the latter lay off the distance
run in the interval, and from the point thus obtained draw a
line parallel to the first bearing. The point in which this
meets the second bearing will be the position of the ship at
the second observation.

A Table based on trigonometrical calculation of these positions
is inserted as Table 15 in the new edition of Inman’s Tables.

In these cases, in which there is an interval between the observations,
the results can only be approximate, as the ship’s course will be affected
Dy tides, etc. But, if the interval is not large, the results will be sufficiently
accurate for the purposes of navigation.

(6) Angles observed with the sertant only.

§ 38. When the view from the standard compass is obstructed,
the position of the ship may be obtained by sextant angles..
Three objects are selected, and the angle subtended between the
central object and each of the others measured with a sextant.

The position of the ship is determined on the following
principle :—

If the positions of the central and right-hand objects be
joined, and, on the joining line, a segment of a circle described
containing the angle subtended between them, the position of
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the observer must be somewhere on the arc of that segment;
and similarly, he must be somewhere on the arc of the segment
described on the line joining the positions of the central and
left-hand object. Hence his position must be at the point
where the segments intersect. From Euclid’s construction for
describing segments of circles containing given angles, illustrated
by the accompanying figures (fig. 24), it follows that when the
given angle is less than a right angle, its complement should be

(1) (2)
C
C
A B
A B
D
D .

Fic. 24.

laid off from each end of the line towards the position of the
observer; the lines meeting at the centre of the required seg-
ment ; but when the given angle is greater than a right angle,
the difference between it and 90° must be laid off from each
end of the line away from the position of the observer.

Thus the given angle being BAD, to which ACB in the
segment is equal, OAD A
being a right angle in
each figure, in fig. 24(1),
OAB and OBA each=
90°— BA D, in fig. 24(2),
UOAB and OBA each=
BAD-90°.

Erxample.—Let 4, B, ¢
(fig. 25) be the objects and
suppose the anglesubtended
between 4 and B=50°, and
between B and (=110, Fia. 25.
or as it is usually written 4 50° B 110° (.

Angles =40° being laid off from each end of 4B, and =20° from each end

of BC on the opposite side, the centres of the segments are found to be 0
and O, and the position required is at P, where the segments intersect.
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The positions of the three objects must not lie nearly on
the circumference of either circle, because in this case the two
circles would nearly coincide. The objects selected should, if
possible, be nearly in a line, or with the central one nearer
than the other two.

§ 39. In practice, the position is determined by means of the
“Station Pointer.” This consists of a graduated circle, with three
arms radiating from the centre (fig. 26). The middle one, OA,
is fixed, OB and OC are moveable, and can, by means of a
clamping screw and vernier, be adjusted to any required angle.
The arms having been thus adjusted, the arm 04 is placed
over the central object and the instrument moved about until
the other arms pass over the other objects; the position
required is then immediately underneath the centre 0. Or,
the angles may be-laid off on a piece of tracing paper, and
the position will be at the point where the lines meet, when
they pass over the positions of the selected objects.

A
c B c

Fie. 26. Fia. 7.

The following problems may perhaps be profitably inserted
here, though not actually pertaining to the subject of the
chapter.

$ 40. Ryder's Hovizon Method for finding distance of « taryet
at sea (see fig. 27).

Let C be the position of the observer at a height h above
the water, 4 the target, CB the tangent to the horizon, 8 the
angle subtended at the centre O by the distance SA.
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The angle OCA is known, as it is the difference between
the observed angle ACB and the ¢
complement of the dip; call it ¢.
In triangle OCA4
sin CAO _ OC _r+h
sin0CA 04 » "~
r+h
P

. sinf+¢= sin ¢.

Hence 6 may be found. S S 3
Very little practical error is Fia. 28.
caused by finding SA4 from the expression

S84 =h.cot (observed angle+dip) (fig. 28).

§$41. To find the distance of the ship from the base of a
mountain peak, ete., of known height.

Let P be the summit and A the base of the mountain, ete.,
observed from C (fig. 29).

Let .a be the observed altitude (corrected for index error
and dip, { of the estimated distance being also subtracted to
allow for the effects of terrestrial refrac- ) p
tion), 6 the angle subtended at the
centre of the earth by the distance C4,
d the true dip due to the height PA =h.
Then

PCO=90°+aq,
CPO=180°=(90°+a+6)=90"—a+8.
In triangle CPO

sinCPO_CO _r

=ar = =C0S d,

. cosa+6

cosd,
cos a

cosat+0=c0o8a.Co8d, . .......ooiiiiiiiiiii )

This gives a+6, and, a being known, 6 is obtained.
If a is a small angle, as is usually the case, (1) may be
modified thus,

(1 -2 §in2a-i2' 6) = (1 -2 sin“%’)(l -2 sinz(é)
=1-2 sinﬁt—;l -2 singg,
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the term 4sm’—sm2d being neglected as it is of the 4th power.

2
z+_9 d

. 2@ | s ol
... sin - =81n°= 4-81n® =
2+ >

writing ‘a+0sin 1’ for sina+6, ete.,

(a+0)=a*+d>
Hence, as a general rule, add the square of the altitude (in
minutes) to the square of the dip (in minutes) due to the
height of the mountain, and from the square root of the result

subtract the altitude. The result will be the distance required
in miles.

§ 42. To find the distance of the ship from a mountain of
unknown height, by means of two altitudes, and the distance
run (in the direction of the mountain) in the interval between
the observations.

By the previous article
cos a+0=cos a.cos d,
where 0 is the distance. Similarly, if 8 be the altitude when
0+¢ is the distance, ¢ being the angle subtended by the
distance run in the interval (the distance being obtained, if
the run has not been directly towards the mountain, ete., as
in the “correction for run,” § 121).
cos B+60+¢=cos B.cosd,
cosat+6_cosB+6+¢
" cosa cos 3
cosa—cosa+60 cosa
cos B—cos B+0+¢ cosf
co8

a R "
cos B—l very nearly, in all probable cases of the

But

problem, « and B being a.lwa)s small angles.

2a+0 . 23+9+¢ 0+¢ .
2 b

‘. SIn

p) sin ‘—) =8in = sin

or, since all the angles are sma.ll, writing 2a+0sin 1’, etc.,
for sin2a+6, ete,
(2a+6)0=(28+6+ X0+ ¢),

. 8a—B—9)=0(8+),

#(8+9)

a—B+¢

. 0=
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Hence, multiply the distance run towards the object by the
sum of the first altitude (in minutes) and half the distance,
and divide the product by the difference between the second
altitude (in minutes) and the sum of the first altitude (in
minutes) and the distance run.

The quotient will be the distance, in miles, at the time of
the second observation.

$§41 and 42 are the investigation of the practical rules
given in Raper’s Practice of Navigation, 10th Edit., § 355,
359, 363.

§ 43. Danger Angle.

If it is desired to pass outside a danger which does not
show above water, this result may be obtained by calculating -
the “danger angle,” on the following principles:—

Let A and B be two well-defined objects on the shore, R
the position of the submerged rock, shoal, etc. If the angle
ARB be measured by a protractor, the same angle will be
subtended between 4 and B at any point on the segment of

R
F1c. 30.

a circle passing through 4, R, B, angles in the same segment
of a circle being equal to each other. If, therefore, an angle
less than. ARB be placed on a sextant, so long as this angle
is subtended between A and B, the ship must be outside the
segment ARB, and therefore clear of the danger. ARB is
called the “danger angle.”

If it is desired to pass at any given distance outside R, a
circle must be described with R as centre and radius equal
to the given distance.

A circle must then be described through 4, B, touching this
circle, and the angle subtended between 4 and B at the pomt

of contact will be the “danger angle.”
8. N. E
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If there be a point whose height is accurately known, a
vertical danger angle may be calculated

p h

and so long as the observed altitude of P
is less than PRB, the ship must be out-
side R.

N.B.--The chart used in the following examples
is 1824b, West Coast of Ireland, which provides a
great number of points suitable for observation.

No examples have been given on the use of the

R Fic. 31 B Station Pointer or on the Danger Angle, as they

T belong to the subject of Pilotage rather than to

“Navigation” as defined at the commencement of this book, though it
was thought advisable to state the principles on which they depend.

Eramples.—N.B.—All bearings are by compass.

Cross Bearings.

(1) Daunt’s Rock nght,shlp, - - S81rwW
Roche Point, - - - - N2 W }Deviation, 2° E.
Poor Head, - - - - - N29 E

(2) Sheep Head, - - - - - N 1783 E
Three Castle Head, - - - - S 504 E }Deviation, AW,
Mizen Head, - - - - - S 264 E

(3) Great Skellig Light, - - - - NZ2E
Hog Island Centre, - - - - N8l E }Devia.tion, 3w
Bolus Head, - - - - - Ns51 E

Bearing and Sextant Angle.

(4) Old Head of Kinsale, - - - N 434° E Deviation, 14° E.

Sextant angle between Old Head of
Kinsale and Seven Heads, - - 73° 50’

(5) Kerry Head, - - - - S 28° E Deviation, 23° W,
Sextant angle to Loop Hea,d - 594°

(8) Clare Island Light, - - - - S61°E  Deviation, 2° E.
Sextant angle to Achill Head, - 78°

Doubling the angle on the bow.

(7) A ship steaming S 72° E 16 knots, observes the Fastnet Light 24° on
the bow. A quarter of an hour after the angle on the bow was doubled.
Deviation, 4° W,

(8) A ship steaming N 84° E 15 knots, observes the Old Head of Kinsale
Light 16° on the bow. After. 20 minutes the angle on the bow was
doubled. Deviation, 3° E. -
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(9) A ship steaming N 9°'W 10 knots, observes the Great Skellig Light
24° on the bow. Half an hour after the angle on the bow was doubled.
Deviation, 2° W.

‘ Four-point bearing.
(10) A ship steaming N 8° E 12 knots, observes Black Rock Light 4 points

on the bow. A quarter of an hour afterwards the Light was abeam.
Deviation, 5° E.

(11) A ship steaming N 82°W 15 knots, observes the Fastnet Light
4 points on the bow. Twenty minutes afterwards the Light was abeamn.
Deviation, 5° E.

(12) A ship steaming N 50° E 12 knots, observes Daunt’s Rock Lightship
4 points on the bow. Ten minutes afterwards the Lightship was abeam.
Deviation, 4° E.

Two bearings of an object, and the distance run in the interval.

(13) A ship steaming S 3°E, observes the Great Skellig Light bearing
S 41°E; after she has run 5 miles the bearing is N 57° E. Deviation, 7° W,

(14) A ship steaming N 46°E, ohserves Achill Head bearing S 85°E ;
after she has run 4 miles the bearing is S 18°E. Deviation, 4’ E.

(15) A ship steaming N 60°W, observes Tory Island Light bearing
S 88°W ; after she has run 3 miles the bearing is S 55°W. Deviation,
4°W.



CHAPTER V.
GREAT CIRCLE SAILING. COMPOSITE SAILING.

Great Circle Suiling.

§ 44. The introduction of steam power having rendered steam-
ships practically independent of the direction of the wind, they
are able to steer towards their port by the most direct route.

This most direct route is the smaller arc of the great circle
passing through the position of the ship and that of the port.

The larger the diameter of the circle drawn through any
two points, the more nearly will the arc coincide with the
chord joining them. And, as a great circle is the circle of
largest diameter that can be drawn on a sphere, its arc will
be the shortest distance on any circle joining the two points.

On a Mercator’s chart the rhumb line is represented by a
straight line, and the great circle by a curve; so that, at first
sight, it may appear that the distance on the rhumb line is
less than that on the great circle. But the rhumb line appears
as a straight line because of the distortion of the chart; and,
if a series of points on it be taken, and their positions marked
on a globe, it will be found that the length of a piece of string
which passes through these points will be longer than that
which measures the arc of the great circle.

If, then, a ship could be kept on a great circle, her head
would be always pointing directly towards her port, and all
her distance would be made good. This, however, would
necessitate a continual alteration of the course (unless, as is
not very likely, the ship’s track was due E or W on the
equator, or due N or S on a meridian), unlike the rhumb line
course, which remains the same, although the ship’s head does
not actually point towards the port until it is in sight.

In practice, therefore, points are taken on the great circle,
at a convenient distance apart, and the ship kept on the rhumb
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line from point to point. In this manner the benefits of great
circle sailing are obtained, without frequent change of course.
As the smaller arc of the great circle is the shortest distance,
it is evident that its curve must always be turned towards
the elevated pole.

§ 45. Def. 39. The first course sailed on in Great Circle
sailing s called the Initial course, and the last one the Final
course.

In fig. 32 the angle PAB is the initial course, and P’BC
(1), or PBC (2), the final course. The angle PBA is not the
final course.

Def. 40. The Vertex of a Great Circle is the point at which the
highest lutitude is reached, or the point at which the curve most
nearly approaches the pole, and is at right angles to the meridian.

The smaller arc of the great circle being the one always
referred to in great circle sailing, it is not necessary to speak
of more than one vertex, although there are of course two to
every great circle.

If both the angles at the base of the triangle formed by the
great circle and the meridians of the two places are less than
90°, the vertex will lie between the two points; if one of these
two angles is greater than 90°, the vertex will lie on the arc
produced, on that side on which the angle is greater than 90°.

(2)

AN

P’ P
Fie. 32.
In (1) the angles PAB and PBA are each less than 90°;
<. V lies between A and B, the angles at V being right angles.
In (2) the angle PBA is greater than a right angle; V
lies on 4B produced on the side nearer to B.
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§ 46. Since all great circles on a sphere bisect each other,
the great circle and the equator bisect each other.

Hence EVQ and ECQ each equal 180°. (Fig. 33.)

Also in the right-angled triangles PVE, PVQ, PE and PQ
are equal, being quadrants, and PV is common; ... EV=QV.

[

Fia. 38.

oo QV=90° or the vertex of a great circle is 90° from the
point in which it would cut the equator.

PQV, the course on crossing the equator, is equal to the
arc PV, since QV and QP each equal 90°; e the comple-
ment of the course on a great circle when crossing the
equator is equal to the latitude of the vertex.

§ 47. Problems in great circle sailing may be solved by the
ordinary rules of Spherical Trigonometry according to the
data in each case. As this would involve a considerable
amount of calculation, various tables and diagrams have been
devised in order to shorten the labour. One of the simplest
of these is that proposed by Mr. Godfray of St. John's
College, Cambridge, by means of a chart on the Gnomonic
Projection.

In this projection a tangent plane is supposed to touch the
earth at the pole, the eye of the observer being supposed to
be at the centre of the earth. The meridians will then appear
on the tangent plane, as straight lines radiating from the
pole; all great circles will be represented by straight lines
(because the planes of the meridians and all great circles
pass through the centre of the earth); and the parallels of
latitude will appear as concentric circles whose radii are pro-
portional to the cotangent of the latitude.
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Let acb be a portion of the tangent plane, P the pole, O the
centre. (Fig.34.) Then Pa or Pb= PO tan POB= PO cot lat B.

Fic. 34.

Hence a chart on this projection may be very easily drawn
to any desired scale: the accompanying figure (35) being
constructed between the limits 75° and 35° of latitude, the
radius for lat. 45° being 1'25 inches, and the meridians being
drawn for each 10° of longitude.

The great circle being drawn as a straight line joining the
two points, it can be seen at once if its course is interrupted
by land, or would take the ship into too high a latitude.

The latitude and longitude of the vertex can be seen by
inspection, or the latitude may be obtained accurately by
measuring its distance from the pole, and from the given
scale obtaining the cotangent. (A Table of natural cotangents
is given in Inman’s Tables, new edition.) '

The longitude may be obtained accurately by measuring with
a protractor the angle between the nearest meridian and that
of the vertex; the latitudes and longitudes of as many points
as may be desired can be transferred to the Mercator’s chart,
and the courses and distances between them found.

Godfray’s chart is accompanied by a diagram which gives
the different courses, and the distance to be run on each, so
as to keep within an eighth of a point of the great circle
course,
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On the figure is laid down the great circle track from 46° S,
171° E, to 49° S, 75° 30" W ; the latitude and longitude of the
vertex appearing to be in about 63° S, 131° W, calculation
giving 63° 30" S, 130° 30" W.

The gnomonic chart gives a very distorted representation
of low latitudes, but, in such parts of the earth, great circle
sailing has not so much advantage over Mercator’s, and practical
navigation very much depends on Trade Winds, Monsoons, ete.
Great Circle sailing is of most advantage in high latitudes,
when the difference of latitude is not very great compared
with the difference of longitude. It is not so useful when the
difference of latitude is great compared with the difference of
longitude.

§ 48. If two ships sail from point to point, one on the great
circle, the other on the rhumb line, their tracks at first
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separate, and at last meet again. There must, therefore, be
some intermediate points at which the courses must be parallel;
and as at these points their difference of latitude is greatest,
the point on the great circle is called “the point of maximum
separation in latitude.”

§ 49. The principles of great circle sailing may prove useful
in the case of a sailing ship meeting a head wind, as they will
show which is the more favourable tack. The ship will make
more distance good towards her port on that course which is
nearer to the great circle track; and, if she is on a long
voyage and does not need to tack often, she may really be
gaining a great deal, although a comparison of her course with
the rhumb line course will not show it.

Nore.—For a convenient method of finding the initial course by inspection
from the “ Azimuth Tables,” see remarks at the end of Mr. H. B. Goodwin’s
pamphlet, The Ex-Meridian considered as a problem in Dynamics, or the
more complete explanation in the Nautical Magazine for July, 1895. The
priuciple is that the formula for computing the courses in great circle
sailing are the same as those for computing time azimuths, the two latitudes
and the difference of longitude in the former case corresponding to the
latitude, declination, and hour angle in the latter. If neither latitude is less
than 23°, a point whose latitude is 23° can easily be found on the great
circle, and the courses to this point from any position on the great circle
will be the courses required ; the practical use of great circle sailing
being, not to find, as in theoretical examples, the initial and final courses
only, but to find the necessary courses from time to time from any selected
points.

Composite Sailing.

§50. As the great circle track would sometimes take the
ship into too high a latitude, into a region of ice or bad
weather, or as land might come in the way, a method of
sailing, named “Composite Sailing,” has been devised, so as.
to combine the advantages of great circle sailing with that
of being able to determine the highest latitude it will be
convenient to reach.

This latitude being decided on, the course is then on a
great circle which passes through the starting point and
touches the parallel of the highest latitude, then along the
parallel, and, finally, along another (not the same) great circle
touching the parallel and passing through the point to be
reached. Thus a ship on a composite course from A4 to B

.
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(fig. 36), CD being the parallel of highest latitude, would sail on
the great circle AC touching CD at C; along the parallel to D,
the point in which the great circle through B and touching
CD meets the parallel; and, finally, along DB to B.

(1) (2)

AN

F1e. 36.

In this case the angles PCA, PDB are right angles, as the
great circles touch the parallel at C' and D, and are, therefore,
at right angles to the meridians at those points. CD is, of
course, the arc of a small circle parallel to the equator.
Composite sailing problems are, therefore, solved by means of
the solution of right-angled spherical triangles, and parallel
sailing.

§ 51. The chart on the gnomonic projection may be used in
this case also; the great circles being represented by straight
lines touching the parallel of highest latitude.

If, in the example already taken (fig. 35), it had not been
desirable to go to a higher latitude than 55° S, the points
C and D will be found to be in about longitudes 146° W and
112° W; calculation giving 145° 36" W, and 111° 35" W.

Ezamples.

(1) A ship sails on a great circle from Cape Hatteras (Lat. 35° 16’ N,
Long. 75° 30' W) to the Lizard (Lat. 49° 58’ N, Long. 5° 12’ W); find the
initiul course and the distance sailed.

(2) A ship sails on a great circle from Lat. 45° 47’ S, Long. 170° 46' E
to Lat. 12° 4’ S, Long. 77° 14’ W. Find the distance sailed and the initial
course.

(3) In sailing on a great circle from Lat. 40° S, Long. 16° E, to Lat.

48° 8, Long. 147° E, find the initial and final courses and the highest eouthern
latitude reached.
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(4) A ship sailing on a great circle leaves a place in Lat. 20° S, Long.
57° E on a SEbE course. What will be her latitude, longitude, and course
after she has sailed 2000 miles?

(5) Two ships sail from 4 to B; one on a great circle, the other on a
rhumb line. Find the longitude of the vertex of the great circle and the
latitude of the first ship when her course, as laid off on a Mercator’s chart,
is parallel to that of the second.

Lat. 4, 42° ¥ N Long. 4, 70° 6 W
Lat. B, 51 25 N Long. B, 9 20 W

(6) In examples (1) and (2) find the distance saved by sailing on the
great circle instead of on the rhumb line.

(7) A ship leaves a place 4 in Lat. 34° 29’ S, Long. 18° 23’ E, for another
place B to the westward, on a composite track, and she is not to go to a
higher latitude than 45° S. Find the course at A, the lougitude of the
place where she will reach the parallel of maximum latitude, and the
distance of the place from 4.

(8) A ship sails on a composite track from Cape Cod (Lat. 42° 3' N,
Long. 70° 6’ W) to Cape Clear (Lat. 51° 25’ N, Long. 9° 29° W), not going
North of Lat. 52° N. What distance does she sail along the parallel of
52° N?

(9) A ship sails on a composite track from Lat. 30° S, Long. 32° E, to
Lat. 43° S, Long. 148° E. The initial course is S 48° E, the final course

N 61° 30’ E. What was the highest latitude reached, and the distance
sailed on the parallel ?



CHAPTER VL

NAUTICAL ASTRONOMY DEFINITIONS. CONSTRUCTION
OF FIGURES.

Astronomical Terms and Definitions.

§ 52. Def. 41. The Celestial Concave is an imaginary spherical
surface of infinite radius, having the eye of any spectator for
its centre, and which may be considered as a ground on which
the sun, stars, etc., are seen projected as in a vast picture.

The heavenly bodies are, of course, at very different distances
from the observer in the depths of space, and it is an optical
illusion by which he imagines himself to be at the centre of
the universe.

For if A be the position of the observer on the surface of
the earth (represented, for the sake of clearness, by the small
circle pAp,), m the position of a heavenly body, it will appear
to the observer as if it were situated at M, on the celestial
concave PQP,Q..

Had the observer been situated at the centre of the earth C,
the body m would appear at M, on the celestial concave.

Def. 42. The Apparent Place of a Heavenly Body is the
place on the celestiul concave in which its centre is seen by
an observer.

Def. 43. The True Place of a Heavenly Body s the point
in which a line, joining the centre of the earth to the centre
of the body, meets the celestial concave.

Def. 44. The Axis of the Heavens is anm imaginary line
coincident with the earth’s axis produced.

The celestial concave appears to revolve about this line from
east to west on account of the earth’s revolution on its axis
from west to east.
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Def. 45. The Poles of the Heavens are those points on the
celestial concave towards which the earth’s axis is directed ;
P and P, in the figure.

p
M,

m

A

an
D

P,
Fie. 37.

Def. 46. The Celestial Equator or Equinoctial 1is the great
circle of the celestial concave, marked out by the indejinite
extension of the plane of the terrestrial equator.

The poles of the heavens are, therefore, the poles of the
celestial equator.

Def. 47. The Earth’s Orbit is the plane and nearly circular
curve described by the earth in its annual motion round the
sUn.

a’

F1e. 38.

Def. 48. The Ecliptic is the upparent path of the sun on the
celestial comcave. It is the great circle in which the plane of
the earth’s orbit cuts the celestial concave.



78 "NAVIGATION AND NAUTICAL ASTRONOMY.

The earth in its annual motion round the sun causes the sun
to appear to describe a great circle on the celestial concave.
Thus let Aab (fig. 38) represent the earth’s orbit, S the sun. An
observer, when the earth is at a, will see the sun apparently on the
celestial concave at a’, and, when the earth arrives at b, will see
the sun apparently at . So, when the earth has again arrived
at a, the sun will appear to have described a great circle, the
ecliptic, on the celestial concave.

Def. 49. The Obliquity of the Ecliptic is the angle at which
the plane of the ecliptic is imclined to the plane of the celestial
equator.

It has been found by observation to be about 23° 27"

P
Z

3

N ]
7
Fic. 39.
The earth is not exactly a sphere, but an oblate spheroid,

cf. §2. Its ellipticity is much exaggerated in fig. 39.

Def. 50. The True Latitude of a Place is the angle between
a perpendicular to the earth’s surface at that place, and the
plane of the equator; AQGq in the figure.

Def. 61. The Reduced or Central Latitude of a Place is the
angle between the eartk’s radius at that place, and the plane
of the equator; ACq.

The true and reduced latitudes are the same at the equator
and at the poles, the angle CAG or angle of the vertical having
its greatest value about lat. 45°.
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For the ordinary purposes of Navigation and Nautical Astro-
nomy, these two latitudes are assumed to be the same, the
earth being considered to be a sphere, but in some problems
the difference is of importance.

Def. 62. The Sensible Horizon 18 a plane touching the earth
at the position of an observer and extended to meet the celestial
concave; hr in the figure.

Def. 63. The Rationil Horizon 8 a plane passing through
the centre of the earth parallel to the semsible horizon, and
extended to meet the celestial concave; as HR.

At the infinite distance of the celestial concave an object of
the size of the earth would be imperceptible. Hence the great
circles in which the sensible and rational horizons meet the
celestial concave are coincident.

Def. 54. The Celestial Horizon or the Horizon 18 the great
circle im which the planes of the sensible and rational horizons
meet the celestial concave.

Def. 66. The Sea Horizon 8 that small circle of the celestial
concave which bounds the vision of the observer. It is the
apparent meeting of sea and sky.

Def. 68. The Dip of the Sea Horizon 18 the angle between a
horizontal plane through the position of an observer and a
line drawn from that position to the sea horizom.

Def. 67. The Zenith and Nadir of an observer are the two
points on the celestial concave, vertically over his head and
vertically under his feet; Z and N in the figure, the points
in which GA, produced both ways, meets the celestial concave.
These points are poles of the horizon.

Def. 88. The Reduced Zenith is the povnt in which the radius
of the earth, which passes through the place of the observer,
meets the celestial concave; as Z,.

Def. 59. The Celestiul Meridian of an observer is the great
circle marked out on the celestial concave by the prolongation
of the plane of his terrestrial meridian.

It passes through the poles of the heavens and the zenith;
as PZP,.

The arc ZQ on the celestial concave measures the angle AGg;
hence the arc of a celestial meridian, between the zenith and
the equator, measures the latitude of a place.
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The arc Z,Q measures the angle ACq; hence the reduced
latitude of a place is always less than the true latitude.

Def. 60. Circles of Altitude or Vertical Circles are great
circles on the celestial concave passing through the zenith and
nadir; as ZXH. (Fig. 394.)

The celestial meridian is a circle of altitude which passes
through the poles of the heavens.

S
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Def. 61. The North and South Points of the Horizon ave
those points where the celestiul meridian cuts it; as N and 8.

Def. 62. The Prime Vertical is a vertical circle perpendicular
to the celestial mc'ridiwg; as WZE.

Def. 63. The East and West Points of the Horizon are those
points where the prime vertical cuts it; as E and W.

Def. 64. Circles of Declination are great circles passing
through the poles of the heavens; as PXR.

Def. 65. Parallels of Declination are small circles whose
planes are parallel to the plune of the celestiul equator.

Def. 68. The Declination of a Hewvenly Body s its angular
distance from the celestiul equator, measured on a circle of
declination ; as XR.

Declination is measured from 0° to 90°, N or S.
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Def. 67. The Polar Distance of a Heavenly Body 1s its
angular distance from the pole, measured on a circle of
declination ; as PX.

It is equal to 90° Fthe declination, according as the latitude of
the place of observation and the declination of the body are
of the same or of different name.

Def. 68. Circles of Celestial Latitude are great circles passing
through the poles of the ecliptic; as P XM.

Def. 69. Parallels of Celestial Latitude are small circles whose
planes are parallel to the plane of the ecliptic.

Def. 70. The Latitude of a Heavenly Body 18 the arc of a
circle of latitude imtercepted between the ecliptic and the place
of the body; as XM.

It is measured from 0° to 90°, N or S, from the ecliptic.

Def. 71. The ecliptic AL and the equinoctial WAE intersect
in two points. That im which the Sun passes from the South
to the North of the equinoctial s called the First Point
of Aries or the Vernal Equinox. That im which the Sun
passes from the North to the South of the equimoctial 1is
called the First Point of Libra, or the Autumnal Equinox;
as A and L.

Def. 72. The Right Ascension of a Heavenly Body 18 the arc
of the equinoctial intercepted between the First Point of Aries
and the circle of declination passing through the place of the
body, measured from the First Point of Aries from 0 hrs. to
24 hrs. in a direction opposite to that of the motion of the
hands of a watch; as AR.

Def. 73. The Longitude of a Heavenly Body is the arc of the
ecliptic intercepted between the First Point of Aries and the
circle of latitude passing through the place of the body, measured
from the First Point of Aries from 0° to 360°, in a direction
opposite to that of the motion of the hands of a watch; as AM.

Hence the position of a heavenly body is fixed, when its
right ascension and declination, or its latitude and longitude,
are known.

Def. 74. A Polar Angle is the angle at the pole .between the
circles of declination of two heavenly bodies, or between two

positions of the circle of declination of the same body.
S.N. F
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Def. 76. The Hour Angle of a Heavenly Body is the angle
at the pole included between the hour circle (or circle of declin-
ation) passing through the place of the body and the celestial
meridian of the place of observation, measured from the
meridian from O hrs. to 24 hrs. westwards;

Or, it 8 the arc of the equinoctial expressed in time inter- -
cepted between the celestial meridian and the body's hour-circle
(or circle of declination) measured f'mm the meridian from
0 hrs. to 24 hrs. westwards.

Thus the angle ZPY or the arc QT measures the hour angle
of the body ¥; but the hour angle of the body X is measured
by 24 hours—the angle ZPX, or 24 hours—the arc QR.

Hour angles are thus measured in conformity with the
apparent diurnal motion.

Def. 76. The Altitude of a Heavenly Body is its apparent
angular elevation above the horizon, measured on a circle of
altitude; as XH.

Def. T1. The Zenith Distance of a Heavenly Body 1is the
complement of its altitude, or the arc of a circle of altitude
intercepted between the zenith and the place of the body; as ZX.

Def. 78. The Azimuth of a Heavenly Body is the angular
distance, measured on the horizon, between the North (or South)
point and the circle of altitude through the place of the body ;
as NH;

Or, it is the angle comprised between two vertical planes, one
passing through the elevated pole, and the other through the
place of the body; as PZX.

The Azimuth is measured from 0° to 180°, eastwards or west-
wards, from the North or South Point.

Def. 79. The Amplitude of a Heavenly Body is the angular
distance, measured on the horizon, between the East point and
the place of the body, when rising, or between the West point
and the place of the body when setting; as EH, if H represent
the place of a body when rising;

Or, it 18 the angle comprised between two vertical planes, one
passing through the East or the West point, and the other
through the place of the body; as EZH.

Def. 80. The Solstices or Solstitial Points are the two points
on the ecliptic which are most distant from the equinoctial.
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Def. 81. The Siz O'clock Hour-Circle is that circle of declin-
ation which passes through the East and West points.

Hence, when the latitude of the place and the declination of
the sun are of the same name, the sun will rise before and
set after six o'clock; and, when they are of different names,

" will rise after and set before six o’clock.

Def. 82. The Equinoctial Colure s the circle of declination
passing through the equinoctial points.

Def. 83. The Solstitial Colure is the circle of declination
passing through the solstitial points.

Def. 84, The Zodiac is the belt of the heavens included
between 8° N and 8° S of the ecliptic.

Def. 84a. The Signs of the Zodiac are twelve equal divisions,
each containing 30° of longitude, into which the Zodiac 1is
divided.

Def. 85. Twilight is the phenomenon caused, before sunrise
and after sunset, by reflection of the rays of sunlight from
the vapours and minute solid particles which float in the
atmosphere, while the sun 8 between the horizon and a small
circle parallel to and about 18° below it.

Def. 88. The Twilight Parallel is a small czrcle parallel . to
the horizon and about 18° below it.

Def. 87. The Duration of Twilight s the interval that
elapses between sunset and the time when the sun is on the
twilight parallel, or the corresponding interval at sunrise.

Def. 88. Parallax is the upparent angular shifting of a
body arising from a change in the point of view.

Def. 89. The Correction for Parallax in altitude is the
angle subtended at a heavenly body by a radius of the earth
passing through the place of the observer—as AMC in fig. 37.
Cf. Defs. 42, 43.

Def. 90. The Transit or Meridian Passage of a Heavenly
Body 18 its passage over the celestial meridian; the wpper
transit 18 the one mearer to the zenith, the lower is the one
Sfurther from the zenith.

Def. 91. The Geographical Position of a Heavenly Body is
that spot on the surface of the earth, which has the centre of
the heavenly body in its zenith.
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Construction of Figures for Nautical Astronomy Problems.

These figures are constructed on the Stereographic Pro-
Jjection, either on’ (1) the plane of the horizon, (2) the plane
of the equator, (3) the plane of the meridian, the last being
very seldom used.

In the stereographic projection (or the projection of a solid
on a plane) as applied to a sphere, the eye is supposed to be
placed at some point on the surface, and a plane drawn through
the centre at right angles to the diameter through the position
of the eye. The apparent position, on this plane, of points or
circles on the opposite hemisphere, as obtained by means of lines
drawn from the assumed position of the eye, constitute the
stereographic projection on the plane.

Circles on the sphere whose planes pass through the position
of the eye will appear as straight lines, others as circles; and
the angle between two circles when projected will be the same
as the angle between them on the sphere.

In (1), cf. fig. 40, which is most useful when it is required
to represent declinations, altitudes, daily motions, etc., the eye
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is supposed to be placed at the Nadir. The zenith, therefore,
will appear to be the centre, the meridian and circles of
altitude straight lines through Z; the equator, ecliptic, circles
and parallels of declination, being represented by the circleg
EW, AL, PX, XX'. P is the pole, N, S, E, W the north, south,
east, and west points respectively.
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In (2), cf. fig. 41, which is most useful when time alone is
considered, the eye is supposed to be placed at the end of the
axis of the heavens opposite to the elevated pole. The pole,

Q’
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therefore, will appear to be the centre, the meridian and circles
of declination straight lines through the pole; circles of altitude,
if required, appearing as circles.

In (8), cf. fig. 42, the eye would be supposed to be placed
at the east or west point. The west or east point would appear

=]

FiG. 42.
at the centre; the equator and horizon as straight lines ; circles
of altitude and declination as circles.
A little practice will enable the student to construct these
figures with sufficient accuracy, and no problem should be
attempted without the assistance of « figure.



CHAPTER VIL

SEXTANT. VERNIER. CORRECTIONS IN ALTITUDE.
ARTIFICIAL HORIZON.

The Sextant.

§ 53. The sextant is an instrument by means of which angles
can be measured in any plane. The principle of its construction
may be understood by reference to the accompanying figure.

AB is an arc of a circle, of rather more than 60°; whence
the name sextant. 7 and H are two glass reflectors whose
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planes are perpendicular to the plane of AB, the whole of 7
(called the index glass) and the lower half of H (called the
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horizon glass) being silvered at the back. [/ is moveable by
means of a radius CF (called the index bar) about the centre
C of the arc AB; H is fixed at D (so that its plane is parallel
to that of /, when the radius CF passes through the zero
graduation of the arc), in such a position that a ray of light
reflected from the moveable reflector shall be reflected from
H to the eye of the observer.

Suppose now that it is required to measure the angular
distance between two objects O and 0. The moveable reflector
having been turned through such an angle that the reflected
image of O coincides with the direct image of 0, seen through
the unsilvered portion of H, CED measures the angular distance
required, and DGC or FCA measures the angle between the
planes of the reflectors. But since the angles of incidence and
reflection at the surface of a plane mirror are equal (by a well-
known law of optics), the angles OCI and DCF, which are
the complements of these angles, are also equal; and the angle
GCE is equal to the opposite vertical angle OCI. Hence the
three angles OCI, DCG, GCE are all equal; and, similarly,
the three angles HD(O', HDC, EDG. Let each of the former
angles=a, each of the latter=0, and CED=6.

The exterior angle 0’DC=the interior angles CED, DCE,

i.e. 2B=2a+0.

Similarly HDC=DGC+ DCG.
. B=u+DGC.
s. DGC=B—a.
-. from (1) 6=2DGC,

or the angle at the eye of the observer is twice the angle
between the planes of the mirrors.

But DGC=FCA, the angle through which the moveable
mirror has been turned, which is measured by the arc AF.

Hence the angle at E is twice the arc AF. If, therefore, the
arc AB is graduated in such a manner that each half degree
is marked as a degree, the number of degrees, etc., read off
on the arc AF will measure the angle OEO'.

Sextants are usually cut to 10" of arc, and graduated for a
short distance to the right of the zero, in order to allow small
measurements “off the arc.”
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Adjustments of the Sextant.

§ 54. These are four in number, viz.:

I. The index glass I must be perpendicular to the plane of
the instrument.

To determine if this is the case, place the radius CF about
the middle of the arc and look obliquely into the index glass.
If the plane of 7 is perpendicular to the plane of the instrument,
the arc and its reflected image will form a continuous line.
But if the reflected image appears above or below the are,
I is out of adjustment and must be adjusted by screws at
the back. This is rarely necessary in good instruments, but
in any case where it is necessary, the instrument should be
sent to a maker.

II. The horizon glass H must be perpendicular to the plane
of the instrument.

To determine if this is the case, look through the telescope
and the horizon glass at the sun, or other well-defined object,
as a bright star. Move the index bar so that the image shall
pass over the object. If it does so exactly, the adjustment is
correct ; if not, the adjustment is to be made by means of a
screw, sometimes placed under the glass, sometimes behind,
sometimes at the side. (In the sextants supplied to cadets on
board H.M.S. “Britannia,” it is the upper of the two screws
at the back of the horizon glass.) This error is usually called
“Side Error.” '

III. The line of collimation, or optical axis of the telescope,
must be parallel to the plane of the imstrument.

To determine if this is the case, fix the inverting telescope
in the collar and turn the eye-piece round until the two wires
are parallel to the plane of the instrument. Select two heavenly
bodies, as the sun and moon, not less than 90° apart, and make
a contact between the limbs at the wire which is nearer to
the sextant. Then moving the sextant slightly, bring the ‘two
bodies to the other wire. If the limbs are still in contact, the
adjustment is correct ; if they overlap, the farther end of the
telescope is inclined away from the plane of the sextant, and
the adjustment must be made by slackening the screw in the
collar nearest to the instrument, and tightening the other; and
vice versa if the limbs have separated. The adjustment is
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not often required at sea, as the error does not sensibly affect
the ordinary observations, and when once made is not very
liable to alteration.

For the calculation of the effect of an error in the line of
collimation on an observed angle, see § 192.

IV. The horizon glass should be parallel to the index glass
when the index 18 at zero.

Sextants are frequently out of adjustment in this respect,
the error being named “Index Error,” but it is not usually
removed unless it is larger than about 8. Its amount is found
and applied to the observed angle.

The adjustment may be made, if required, by means of a
screw attached to the horizon glass (the lower of the two in
“ Britannia” sextants).

Let A be the position of the index when the two mirrors
are parallel, instead of its coinciding with Z, as it should
do; and let F be any other position of the index. Then it

c

Fia. 44.

is clear that the angle ZCF read off would be too small;
while the opposite would be the case if A were to the left
of Z.

§ 55. The required correction is usually obtained by measuring
a small angle, as the sun’s diameter, on and off the are, t.c. to
the left and right of Z.

Let B be the point on the arc through which CA passes
when there is a contact between the direct and reflected images
of a limb of the sun “on the arc,” D the corresponding point
when the contact is made “off the arc.” Then, since the direct
and reflected suns must coincide when CA passes through 4,
the arc AB=the arc AD.
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Let ZB=d, the measure of the diameter on the arc,

ZD=d, » » " off
ZA =c, the correction required,
AB=d+c¢, AD=d —c,
o de=d —c,
2c=d-~d,
c=d«d’
2 b
or the correction equals half the difference of the readings on
and off the arc.

It is evident from the figure that the correction is additive
when the greater reading is off the arc, and subtractive when
the greater reading is on the arc. '

As the are BD must measure twice the sun’s diameter, the
sum of the readings on and off the arc, divided by four, ought
to correspond with the value of the sun’s semi-diameter, given
in the Nautical Almanac for the day of the observation. This
provides a check on the correctness of the observations.

If the sun has a low altitude the horizontal semi-diameter
should be measured instead of the vertical, as in such a
case the difference in the effect of refraction on the upper
and lower limbs may render invalid the semi-diameter obtained
as a check.

The index error may also be obtained by observation of
the horizon. The direct and reflected images of the horizon
being made to form a continuous line, the index should point
to zero. If it does not, the reading on the sextant is the
index error, additive if off the arc, subtractive if on the arc.
Or the direct and reflected images of a star may be brought

M into contact, when the reading on the
sextant will be the index error.
Sextants are liable to errors of
centering. Let M be the centre
of rotation of the index, OB a circle
of centre M. Let A be the centre of
o the arc OC of the sextant. Then the
angle OMR should be read off on
Fro. #a ORB, but is read off on OR'C.

This error, which may amount to several minutes, may be

ascertained by comparing the observed distances of stars, reduced

A
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to the distance as referred to the centre of the earth, with those
obtained by calculation from their elements as recorded in the
Nautical Almanac, or from the meridian altitudes of stars
observed in artificial horizon where the latitude of the place
is exactly known.

Sextants can be examined and certificated at the Kew
Observatory.

Reading off on the Sextant.

§ 56. The arc of a sextant is divided into degrees, which are
further sub-divided into 20’, 15, or, in the best instruments,
10" divisions. .

At the end of the moveable radius is fixed the index plate,
at the right-hand side of which is a spear-head shaped mark
called the index. If the index points exactly to a division on
the arc, eg. the third division to the left of 40°, the reading
would be at once obtained as 40° 30". But if, as is more
probable, the index points between two divisions, eg. between
the third and fourth to the left of 40°, the reading would be
about 40° 35. In order to obtain a more accurate reading, a
scale called a Vernier is cut on the index plate, the principle
of which may be thus explained:

The scale is made of such a length that n—1 divisions on
the arc coincide with » divisions on the vernier.

Let a=value of a division on the are,
v= » » » vern ier,

nv=(n—1)a,

n-1
T
n—1
a—v=a— -
n
a

Hence the difference between an arc division and a vernier
division is pos? of an arc division.

This difference is called the “Least Reading” or the “ Degree
of Accuracy.”
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A similar result is found more generally if pn—1 divisions
on the arc are taken to coincide with » on the vernier.
We then have
nv=(pn-—1)a,

pn—1

V=

a,

e ma—emy PP
S pa—v=pa e

a

n

As this shows that the value of p does not affect the accuracy
of the reading, by taking p=2 or 3..., we obtain the advantage
of being more exactly able to distinguish the divisions which
coincide.

In the sextant the value of p is usually taken as 2, so that
60 divisions on the vernier correspond with 119 on the are.

The value of m is usually 60, while a=10’, therefore the

’

degree of accuracy = %—g =10".

§ 57. Thus by means of the vernier more accurate readings
may be obtained, for if the first division on the vernier

. . . . . a
coincides with a division on the are, the index must be -

beyond the division on the arc next before it. If the second
division on the vernier coincides with a division on the are,

the index must be 2 beyond, and generally, if the m® division
on the vernier coincides with a division on the arc, the index
must be 'r_n";_a, beyond. Hence if the 26th division on the

vernier coincides with a division on the arc in the example
already taken, the correct reading is 40° 30"+10" x 26, t..
40° 34’ 20°.

To simplify the reading, each sixth division on the vernier
is longer than the rest, and marked 1, 2, 3.... These represent
the minutes, :

In the above case the division which coincides is seen to
be the second past the linc marked 4, which gives 4° 20" as
before.

A microscope is attached to the index bar to facilitate the
accurate reading of the Vernier.
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If readings are made “off the arc” the vernier must be
read from the 10 minute line and not from the index, or it
may be read in the usual manner and the result taken from 10’

The principle of the vernier is applicable to any scale, straight
or curved, and pn+1 divisions may, if desired, be taken as
well as pn—1, but this is not desirable in the case of the
sextant, as the vernier would always have to be read backward.

Corrections to be Applied to the Observed Altitude of a
Heavenly Body.

§ 58. The altitude, as observed with a sextant, is called the
observed altitude, and is affected by several errors: index error,
dip, refraction, parallax; and in the case of the sun and moon,
the semi-diameter has to be applied. Then the true altitude of
the centre is obtained. The semi-diameter of planets need not
be taken inta account in observations with the sextant, as the
telescopes are not sufficiently powerful to show them except as
bright points.

Index error.—The calculation of this has just been explained.

Dip.—This arises from the fact that the observer, at O, k feet
above the sea level, observes the angle SOH, instead of SOH

S
(o) H
S
ry G

Fi1c. 45.

or SAG. The value of the correction is ‘984,/h and is sub-
tractive (see § 158).
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Refraction.—This arises from the fact that rays of light
passing through the earth’s atmosphere are deflected more and
more from their straight path as the atmosphere becomes more
dense. Hence rays from a heavenly body S will travel by a

2l
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curve SCA, and the body will appear to an observer at 4 to
be in the direction AS’, where AS’ is the tangent to the path
of the ray at A.

It is evident that bodies appear to be raised by refraction,
and that the correction is therefore subtractive (see § 160).

Parallax—This arises from the fact that observations are
made on the surface of the earth and not at the centre. The
correction for parallax reduces observations to what they would
have been if taken at the centre of the earth.

If X (fig. 47) be the position of a heavenly body observed at 4,
ZAX is the zenith distance, while ZCX is the zenith distance
as referred to C. The difference between these is. the angle
AXC, called the parallax in altitude. When the body is in
the horizon, as at H, the angle AHC is called the horizontal
parallax, which is recorded in the Nautical Almanac. The
parallax in altitude is found from the expression Parallax-
in altitude=horizontal parallax x cos altitude (corrected for
refraction) (see § 169). .
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It is evident from the figure that the effect of parallax is
to cause bodies to appear below their true place, and the
correction is. therefore additive.

The corrections for dip, refraction, and parallax have been
calculated and formed into tables, so that they can be taken
out by inspection. In the cases of the sun and moon, the
corrections for refraction and parallax have been combined, and
tables formed, “Corrections of sun's apparent altitude,” and
“Correction of moon's apparent altitude”; the former being
subtractive, as refraction is greater than parallax in the case
of the sun; the latter being additive, as parallax is greater
than refraction in the case of the moon.

P4
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Semi-diameter.—If the lower limb is observed, the semi-
diameter must be added to obtain the altitude of the centre;
if the upper limb is observed, it must be subtracted.

In the case of the moon a correction must first be applied,
called the “Augmentation of the moon’s horizontal semi-
diameter,” for the following reason:

The moon’s semi-diameter, tabulated in the Nautical Almanac,
is the horizontal semi-diameter, or the semi-diameter when the
moon is on the horizon. '

Let M (fig. 48) be the moon on the horizon, M’ another position
above the horizon, 4 the place of observation, C' the earth's
centre. When the moon is at M, CM and AM are practically
equal. But AM is less than CM’, and the difference between
CM’ and AM’ increases the nearer M’ approaches the zenith.

The moon will, therefore, appear larger as the altitude
increases, and it will, therefore, be necessary to increase the
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tabulated semi-diameter before it is applied to the observed
altitude, in order to obtain the altitude of the centre.

A table has been calculated for this correction (see § 171).

The correction for refraction and parallax is to be applied
before the semi-diameter in the case of the sun, as the refraction
is calculated for the point observed, and the parallax is small
and does not alter.

In the case of the moon the semi-diameter is applied first,
as the correction is calculated for the moon's centre.

The observed altitude is that read off on the sextant. When
this has been corrected for index error, dip, and semi-diameter,
the result is called the apparent altitude of the centre, and the
application to this of the correction in altitude produces the
true altitude of the centre.

Ezamples.

(1) The obs. alt. of the Sun’s Lower Limb was 47° 15’ 50". The index
error was 2’ 50" —, the height of the eye 21 feet, and the semi-diameter
16’ 15”. Required the true altitude of the centre.

47° 15' 50" oba. alt.
2 50 —index error.

47 13 0
4 31 —dip for 21 feet.

47 8129
48 — Refraction-parallax.

47 7 41
16 15+ semi-diameter.

47 23 56 true altitude of centre.

(2) February 5th in longitude 47° E, about 5 p.M. mean time, the obs.
alt. of the Moon’s Lower Limb was 49° 18’ 20”. The index error was
2' 10"+, and the height of the eye was 24 feet. Required the true altitude
of the centre.

Moon’s Horizontal

H. M. Semi-Diameter. Parallax.

Feb. 6th, - -5 0 Noon, - - - - 16" 85" 59’ 83"
Long., - - 3 8 Midnight, - - - 16 161 59 360
Feb. 5th, G M.T., 1 52 Change in 12 hours, - 76 277
~  Change in nearly 2 hours, 12 45

16 87 59 128
Augmentation, - - 128 R

16 215
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49° 18 20" obs. alt.
2 10+index error.

49 20 30
4 49— dip for 24 feet.

49 15 41
16 21 +4semi-diameter.

49 32 2
37 28) for 59
9

correction in altitude ;
for 13"

50 9 39 true altitude of centre.

(3) The observed altitude of Venus’ centre was 37° 43' 10”. The index
error was 1’ 50" —, the height of the eye 22 feet, and horizontal parallax 31"
Required the true altitude.

37° 43’ 10" obs. alt.
1 50 —index error.

37 41 20 7
4 37 -dip for 22 feet.

37 36 43
1 15 refraction.

37 35 28
25+ parallax.

37 35 53 true altitude of centre.

The above is an extreme case of parallax of a planet. As a rule, the

correction for parallax is inappreciable in Nautical Astronomy observations,
and, with the semi-diameter, may be neglected.

(4) The observed altitude of Spica (a Virginis) was 67° 42’ 50”. The
index error was 3’ 10"+, the height of the eye 19 feet. Required the true
altitude.

67° 42’ 50” obs. alt.
3 10+index error.

67 46 10
4 17-dip for 19 feet.

67 41 53
23 — refraction.

67 41 30 true altitude.

8. N. G
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The Artificial Horizon.

§ 39. The artificial horizon is an instrument by means of
which altitudes can be observed when there is no sea horizon,
or when great accuracy is desired. '

It consists of a trough which can be filled with mercury,
and covered with a roof to keep the surface of the mercury
free from dust, etc. The roof is made of two pieces of plate-
glass fixed into a frame. The upper and lower surface of each
plate of glass should be perfectly parallel to each other. In
this case the direction of a ray of light, after passing through
a plate of glass, is parallel to its former direction. . Hence the
angular measurement is unaltered. It is, however, advisable in
important cases to reverse the roof after a few observations
have been taken, so as to eliminate possible errors.

To show that the altitude observed by means of the artificial
horizon is double of the true altitude.

Let MM’ be the surface of the mercury, which is a horizontal
plane, E the observer, ES the direction of the heavenly body,
which is parallel to AS on account of the distance of S compared
with EA. The altitude of the body is SEN or SAM’; the

Fi1G. 49.

angle measured is the angle SAS’, as the body will appear, in
the mercury, to be in the direction EAS’; and, by the optical
law already referred to in the case of the sextant, the angles
SAM’, SAM, being equal to the complements of the angles
of incidence and reflection, are equal to one another.

Hence the angle observed is twice the angle SAM’; that is,
twice the angle SEN, the body’s altitude.
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When a heavenly body’s altitude, therefore, is observed in
an artificial horizon, the angle obtained is to be corrected for
index error and then divided by 2. This is the observed
altitude, to which are to be applied semi-diameter (if necessary),
refraction, and parallax.

The correction for “dip” is not applied, having nothing whatever to
do with the problem.

By this method errors, whether in the observer or in the
sextant, are divided by 2. Hence it is more likely to give
accurate results than the horizon method, even if the horizon
is clear and suitable. It is, therefore, used when observations
are taken to obtain the error and rate of a chronometer. '




CHAPTER VIIIL
TIME.

Definitions velating to Time, collected for comvenience
of reference.

Def. 92. A Day is the interval between two successive transits
(both upper or both lower) of some point in the heavens, or some
celestial body, over the sume celestial meridian.

N.B.— Tt is, of course, the meridian of the earth which rotates (diurnal
motion), and it is the earth which revolves about the sun (annual motion) ;
but, for convenience, the earth is supposed to remain at rest, and the sun'
etc.,, to move.

Def. 93. A Year is the interval between two successive arrivals
of the sun, in its orbit, at some point in the heavens.

Def. 94. A Sidereal Day s the interval between two successive
transits of the first point of Aries over the same celestial meridian,
or it is the time occupied by one complete rotation of the earth
upon its aris.

Def. 96. A Sidereal Clock is an instrument constructed to
show 24 hours in the interval between two successive transits
of the first point of Aries over the same celestial meridian.

Def. 96. A Sidereal Year is the imterval between the sun’s
leaving a fixed point in the heavens and returning to it again.

Def. 97. A Solar Day is the interval between two successive
transits of the sun over the same celestial meridian.

Def. 98. A Solar Year is the interval between the sun's leaving
the first point of Aries and returning to 2% again.

Def. 99. A Mean Solar Year is the mean length of a large
number of solar years.
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Def. 100. The Mean Sun is an imaginary body which is
supposed, to move along the equinoctial with the average angular
velocity of the real sun.

Def. 101. A Mean Solar Day is the intervul between two
successive tramsits of the mean sum over the same celestial
meridian.

Def. 102. Apparent Time is the hour angle of the reul sun.
Def. 103. Mean Time is the hour angle of the mean sun.

Def. 104. Sidereal Time is the hour angle of the first point
of Anries.

Def. 106. Apparent Noon is the instant of the wpper transit
of the real sun.

Def. 106. Mean Noon is the instant of the upper transit of
the mean sun; Mean Midnight, of its lower transit.

Def. 107. The Astronomical Day is the interval between two
successive mean moons, measured from 0 hours to 24 hours.

Def. 108. The Civil Day 18 the interval Letuém two sucersnive
mean midnights, and is divided into f'ew jnferw& ('ach rfmm
0 hours to 12 hours. RPN

Def. 109. The Equation of Time s the dzﬁerenw betwean
mean and apparent time at any instant; or it is the polar
angle of the real and mean suns; or it is the arc of the equi-
noctial (expressed in time) between the circles of declination
of the real and mean suns.

Def. 110. The Greenwich Date is the Greenwich astronomical
time of any observation.

Time.

§60. In order to obtain a distinct notion of that to which
we give the name of time or duration, we must refer, as
standards of measurement, to the intervals which elapse
between the successive occurrences of certain well-defined
celestial phenomena.

Those which most naturally occur to us as most universally
suitable, are, the rotation of .the earth on its axis, and its
revolution in its orbit.
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The former provides the measure of a “day,” the latter of
a “year”; the interval between two successive transits of
some point in ‘the heavens, or some heavenly body, over the
same celestial meridian being called a “day”; the interval
between two successive arrivals of the sun, in its orbit, at
some point in the heavens being called a “year.”

The interval between the sun's leaving a fixed point in the
heavens and returning to it again is called a “sidereal year.”

The interval between two successive transits of the first
point of Aries (which is practically a fixed point as regards
daily motion) over the same meridian is called a “sidereal
day.”

§ 61. These standards are invariable, and are therefore of

great use in astronomy; but they are not adapted to the
ordinary purposes of life, for which the sun provides the
standard of measurement: the interval between two successive
transits of the sun over the same celestial meridian being
called a “solar day”; the interval between two successive
passages of the earth in its orbit (or the sun, if considered to
mo\mi througn the ﬁrst point of Aries being called a “solar
yea.r i —_
'l.’he length of the so]ar year is not, however, quite invariable,
owmg to various irregularities in the motion of the sun and
of the first point of Aries. Observations of the sun’s longitude,
extending over long periods, have given as the mean length
of the solar year, and called a “mean solar or tropical year,”
a period of 365242242 days.

§ 62. The length of the mean solar year differs from that of
the sidereal year, because the first point of Aries is not fixed,
the equinoctial points moving back along the equinoctial to
meet the sun 50'2° each year.

This movement is called the “ Precession of the Equinoxes,”
and is caused by the attraction of the sun and moon on the
protuberant parts of the earth, the earth being a spheroid and
not a perfect sphere.

A result is that the longitudes of the fixed stars increase 50”
a year. The signs of the zodiac have moved back about 30°
since the time of Hipparchus, and the first point of Aries,
though retaining the name, is not in the constellation of Aries
at all
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The equinoctial points make a complete revolution in about
26,000 years, the poles of the heavens describing circles of
about 47° diameter round the poles of the ecliptic.

On account of this motion of the first point of Aries, the
sun will arrive at it again before he has described a complete
circle of the heavens, and his arrival at that point will precede
his arrival at some fixed point by the time he takes to describe
502", i.e. about 20 m. 23 s.

Hence a mean solar year contains 365d. 5h. 48 m. 47s.

A sidereal year contains 365d. 6h. 9m. 10s.

Length of Solar Day mot comstant.

§ 63. If the sun's motion in Right Ascension were uniform,
all solar days would be of the same length. But this is not
the case. The sun does not move uniformly in its orbit, which
is an ellipse and not a circle ; and even if it did move uniformly,
the corresponding motion in RA would not be uniform, as the
ecliptic is inclined to the equinoctial.

In order, therefore, to obtain a uniform measure of time
depending on the sun, an imaginary body, called the “Mean
Sun,” is supposed to move along the equinoctial, with the
average angular velocity of the real sun. The days measured
by this sun will be equal, their length being the average of
the length of all the apparent solar days throughout the year;
and a clock which goes uniformly may be regulated to the time
shown by this mean sun, such a clock showing “mean time.”

It is necessary to fix a starting point for the mean sun, so
that mean and apparent time may never differ by a large
interval. Hence a body, which may be termed an imaginary
sun, is supposed to move in the ecliptic with the average
angular velocity of the true sun, and to start with the true
sun at perigee (7.e. when the sun is nearest to the earth).
Then the mean sun is supposed to start from the first point
of Aries at the same time as this imaginary sun. Hence the
Right Ascension of the mean sun is equal to the mean longi-
tude of the real sun, which is the longitude of the supposed
imaginary sun.

§ 64. Mean noon is the instant when the mean sun is on
the meridian, and mean time is reckoned by the westerly
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hour angle of the mean sun, measured from 0 hours to 24
hours.

These 24 hours of mean time constitute the astronomical
mean day, which commences at mean noon.

The civil day, however, commences at midnight and ends at
the next midnight, being divided into two periods of 12 hours
each.

Hence astronomical and civil time are only expressed by
the same number of hours in the afternoon of each day: thus

Jan. 10th at 8 p.M. civil time is Jan. 10th 8 hours
astronomical time.

Jan. 10th at 3 AM. civil time is Jan. 9th 15 hours
astronomical time,

15 hours having elapsed since the previous astronomical noon
on Jan. 9th.

From this we obtain the practical rule: “Civil time pP.M. on
any day is represented in astronomical time by the same
number of hours on that day; but in order to represent civil
time A.M. in astronomical time, 12 hours are added to the civil
time and the date is put one day back.”

§ 65. The equation of time is the difference between apparent
and mean time at any instant, or is the angle at the pole or
the arc of the equinoctial, expressed in time, between the circles
of declination of the real and mean suns.

The equation of time arises from the fact that the ecliptic
is inclined to the equinoctial, and that the sun moves in its
orbit with varying velocity.

The two causes may be examined separately, and the algebraic
sum of the effect will be equal to that due to their combined
action.

(1) Neglecting the fact that the sun’s orbit is an ellipse.

§ 66. Suppose the sun to describe the orbit 48’L with uniform
angular velocity, while the mean sun describes the equinoctial
ASL with the same velocity. Suppose them to start together
from 4. Then when the true sun is at B the mean sun will
be at C, where AB=AC. 1f PBD be the sun’s circle of
declination, CD will measure the equation of time, and it is
clear that C and D will only coincide at the equinoxes and
solstices, when the real and mean suns are on the same circle
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of declination. From equinox to solstice C will be in advance of
D, and behind it from solstice to equinox. Hence a meridian
of the earth (which revolves on its axis in the direction of the

Fie. 50.

arrow) will arrive at D before it arrives at C, and apparent
noon will precede mean noon, or the equation of time will be
subtractive from equinox to solstice, and vice versa from solstice
to equinox. '

Fi1G. 50 a.

To illustrute this practically let Af represent the ecliptic

and Af’ the equinoctial between the vernal equinox and summer
solstice.
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Let Af and Af’ be divided into six equal portions Aa, ab ...
Aad, aly’....

Through «, b, c...draw the circles of declination PaB, PbC,
PcD, ete.

It is then evident that though Aa” is greater than AB, ef
is less than Ff’, i.e. the sun’s longitude at first changes more
rapidly than its right ascension, but as it approaches the
equinox the longitude changes more slowly than the right
ascension. Hence the numerical value of the equation of time
will increase to & maximum value and then decrease to 0 at
the solstice, where the real and mean suns are again on the
same circle of declination.

Solving the equation

tan Aa=tan AB.sec 23° 27"

by giving to AB. successively the value 1 h, 2 h,...6 h, we
obtain

h.m.s. { h.m. s h.m. s. h. m. s. h.m. s. | h.
AB- - - =100|200|300|400(500 6
da’'=da - - =158 2844 | 3952 4 8 37 54 45 ' 6
Equation of time= 5 8 8 44 | 9 52 8 37 | 445 , 0

Thus the maximum value occurs about half-way between
the equinox and the solstice. The exact period may be obtained
from the expression

cossun’s declination = ./ cos obliquity of ecliptic.
Similar results may be obtained for the other quadrants.

(2) Neglecting the obliquity of the ecliptic, consider the fact
that the sun’s path is elliptical.

§67. Let E be the earth at one focus of the ellipse; let P
be perigee, and A apogee; B the place of the real sun, and ('
that of the mean sun or imaginary sun; B and C coinciding

8" g at P and 4 only.
When it is nearest the
/W&: earth, by the laws of
A e /)" planetary motion, the real
v sun has its greatest velo-
: city. (If B, B, B’ be

Fig. 51. positions of B after equal
intervals of time, the areas BEP, BEB, B’EB’ are all equal.
hence PB is greater than BB, BB’ than B'B”, etc.) Hence B
will be in advance of C from perigee to apogee, and behind
it from apogee to perigee.
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Hence from perigee to apogee the meridians of the earth will
pass over the mean sun before they pass over the real sun,
mean noon will take place before apparent noon, and the
equation of time will be additive; and wvice versa from apogee
to perigee.

The above explanation is sufficient as an illustration. For the
actual calculation of the equation of time, works on astronomy
must be consulted.

§68. It is found that the greatest value of the equation of
time, due to the obliquity of the ecliptic, is 10 minutes in
time very nearly, while that due to the unequal motion in the
orbit has 7 minutes as its greatest value.

Hence a simple graphical representation will show the value
of the equation at different periods and also that it vanishes
four times a year.

Draw a horizontal line XY to represent the time, equal
intervals representing equal periods. Draw a curve AA4AAA
so that its ordinates, i.c. the perpendicular distances of points

S
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on it above and below XV, may represent that part of the
equation of time for each day which depends on the obliquity
of the ecliptic; while the curve BBBB similarly represents
that part due to the unequal motion in the orbit. 4444 will
cross the line XY at the equinoxes and solstices, and the
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greatest value of the ordinates will be 10 m. at intermediate
times. BBBB will cross the line XY at perigee and apogee,
with 7 m. as the greatest value of the intermediate ordinates,
positive values being measured above XY, negative values
below. :

The value of the equation of time due to the combined
action of the two causes may be represented by a curve whose
ordinates are the algebraic sum of the ordinates of the two
former curves.

Let it be the curve ('CCC drawn with respect to the line
X'Y (parallel, equal, and similarly divided to XY), to avoid
confusing the figure. It will be seen that the equation of
time vanishes about April 15th, June 15th, August 3lst,
December 24th, and has maximum values 4145 m. about
February 11th; —4 m. about May 14th; +6 m. about July
26th; —16'5 m. about November 3rd.

Difference in length between a solur and a sidereal day. '

§69. Owing to the immense distance of the fixed stars, the
earth’s orbit by comparison becomes a mere point. Hence
any given meridian revolves from a fixed star to the same
star again in the same time that the earth takes to revolve
on its axis, i.e. a sidereal day. This would be the case with
the sun if the earth had no annual motion. But as the earth
revolves round the sun, it advances almost a degree eastward
in its orbit while it revolves once on its axis. If, then, the
sun be on the meridian of any place on a given day, the earth
must perform rather more than a complete revolution on its
axis before the sun is again on the meridian on the day follow-
ing. In other words, the earth must perform one complete
revolution and as much in proportion of another as it has .
advanced in its orbit in that time, viz. about ;}5 part of a
revolution at a mean rate.

The earth, therefore, must perform about 366 revolutions in
about 365 days, and the period of each revolution being a
sidereal day, there must be about 366 sidereal days in a mean
solar year.

And, generally, since the time of the rotation of a planet
on its axis is i¢s sidereal day, the number of sidereal days will
always exceed by one the number of solar days, whatever it
may be.
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This may be illustrated by a figure.

Let E and E’ be the positions of the earth in its orbit on
two successive days, S the sun, F the direction of a fixed
point, as a fixed star, which is on a meridian PP’ of the
earth at the same time as the sun when the earth is at Z.

F

F

/_
S

[

]

Q E

P 5

F16. 53.

When the earth is at £’ next day, and the fixed point is
again on the meridian, PP’ will have revolved through 360°,
but it will have to revolve in addition through the angle
FES, or E'SE, before it again passes over the sun (PF is
parallel to PF owing to the immense distance of F).

The value of the arc EE’ varies from about 61’ to about 57"
Its average value may be thus found.

§ 70. The mean sun describes the equinoctial in a mean
) 360° s e
solar year, and therefore descnbes—3-65_~§ 49245 =09 833" in a
mean solar day; that is, a meridian of the earth has to revolve
through 360° 59’ 833" in a mean solar day.

Equavalent sidereal and mean solar intervals.

§71. A mean solar year contains 365242242 days; there
are therefore 366'242242 sidereal days in the same time.

Hence if M and S be the measures of the same interval
expressed in mean and sidereal time respectively,

M 365242242
Interval  one mean solar year
S 366242242

and R cfifotnifinpudl
Interval ~ one mean solar year’
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M 365242242

" 5 = 3tozazzez 1T
and S 144,
where = -00273043
and x'= -00273791,

S M= 99726957 S
and S=100273791 M.

From these expressions the tables of time equivalents in
the Nautical Almanac are calculated; also the tables for
acceleration of sidereal on mean time, and retardation of mean
on sidereal time.

§ 72. The same results may. be obtained by considering that
a meridian of the earth revolves through 360° in a sidereal
day, and through 360° 59" 8:33” in a wean solar day.

y___360°

S 7 360° 59" 833"

S _360° 59 939"

M 360° ’

which expressions give exactly the same results as before
obtained for M and S in terms of each other.

Hence

Ezamples.-—Convert 17 h. 27 m. 47 s. mean time into the equivalent in
sidereal time.
By Time Equivalents.

h. m. ..
17 h. mean time =17 2 4756 sidereal time.
27 m. " = 27 444 "
47 5. . = 4713 N
17 30 3913 "
By Tables.
L. m. 8.
17 27 47
Correction for 17 h., 2 4756
» 27 m., 444
’ 47 8., ‘13

17 30 3913



EXAMPLES. 111

Convert 19 h. 27 m. 18 s. sidereal time into the equivalent mean time.

By Time Equivalents.

h. m. 8.
19 h. sidereal time=18 56 53:24 mean time.

. 27 m. N = 28 5558 "
18 s. ’ = 1795 2
19 24 677 .
By Tables.
h. m. A,
Correction for 19 h., 3 676
- 27 m., 442
,, 18 s., 05
Total correction, 3 1123 to be subtracted.
19 27 18
19 24 677
Leap Year.

§ 73. As the mean solar year consists of 365-242242 days,
while it is necessary for the ordinary purposes of life that
the civil year shall consist of an exact number of days, a
plan has been devised to render the error in the calendar
thus produced as small as possible.

The mean solar year containing very nearly 365} days,
three consecutive years are considered to consist of 365 days,
and each fourth year (with the exceptions to be mentioned)
to contain 366 days. This is named “Leap Year.”

The error thus produced would amount to about 31 days
in 400 years. The extra day is therefore not added in the
case of three out of four “century” years, thus reducing the
error to about ‘1 of a day in 400 years, or one day in about
4000 years.

Thus to find leap year, divide the number of the year by 4.
If there is no remainder it is leap year, except in the case
of a “century” year, when the divisor must be +00. Thus
the year 1900 was not a leap year.



CHAPTER IX.

TO CONVERT ARC INTO TIME, Erc. GREENWICH DATE.
CORRECTION OF ELEMENTS FROM “NAUTICAL ALMANAC.”

To convert arc into time and the converse.

§ 74. The longitude of a place is defined to be the smaller
arc of the equator intercepted between the first meridian and
that of the place. It may also be considered as a difference
in time. Thus the interval between two consecutive passages
of the mean sun over any meridiaft is 24 mean solar hours.
Hence 24 hours in time correspond to 360° of arc; from which
we obtain that

1 hour of time corresponds to 15° of are.

1 minute ,, » 15’ "
1 second " 15”7,
-Also that
15 degrees of arc " 1 h. of time.
1 degree ” 4 m.
1 minute ,, ” 48
1 second ,, " . T8

by means of which arc can be turned into time and the
converse.

Examples.—Convert 115° 17 45” into time.

-1

115° =3# h. =7}2 h.
17 = m =14 m.
45" = {§s. =38 =

03
- o B

w o o

115° 17 45" = 7 41 11
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Convert 9 b. 47 m. 23 s. into arc.

9h =9x15°= 135° 0 0
Tm=4 =11=11 45 0
23s. =23 = b5§= 5 45

9h.47m 23s.=146 50 45

§ 75. Hence we obtain the practical rules:

To convert arc into time, “Divide the degrees, etc., by 15
and multiply the remainder by 4.” This will give hours and
minutes, minutes and seconds, seconds and fractions of seconds
respectively.

To convert time into arc, “ Multiply the hours by 15, divide
the minutes, ete., by 4, and multiply the remainders by 15.” *
This will give degrees, degrees and minutes, minutes and seconds
respectively.

Ezamples.—Convert the following arcs into time :

(1) 47° 19 15 i (4) 163° 46’ 50"
(2) 98 47 30 | (5) 147 29 42 .
(3) 119 26 45 !

Convert the following times Tnto -arc:

h. m. s h. m.
6 3 25 16 (9) 10 19 475
(7 4 17 19 (10) 8 16 293
8) 9 27 27

In a similar manner hours, etc., of right ascension, or sidereal
time, may be turned into the corresponding degrees, ete., of arc.

In some Nautical Tables the tables of log sines, etc., and
log haversines are calculated for time as well as arc, and the
conversion of time into arc, or the converse, can be effected
by inspection.

§ 76. From the above considerations it appears that the longi-
tude of a place shows the difference in time between that
place and Greenwich, from which longitude is reckoned; for
the longitude converted into time shows the interval which
will elapse between the passage of the mean sun over the
" meridian of Greenwich and that of the given place, if in west
longitude; or which has elapsed between its passage over a
meridian in east longitude and that over the meridian of
Greenwich. As the earth revolves from west to eust, easterly
meridians will pass over the mean sun earlier than that of
Greenwich; westerly meridians will pass later. Hence the

S.N. H
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time at a place east of Greenwich is before Greenwich time,
and after it at a place west of Greenwich.

Further, the difference of longitude between any two places
converted into time will give the difference between the local
times at those places at any given instant.

The Greenwich date.

§ 77. If, then, we wish to obtain the time at Greenwich
corresponding to the time at any other place, we must apply
to the local time the longitude turned into time, adding it if
the longitude is west, subtracting if the longitude is east.

If it is required to obtain the time at any place corresponding
to a given Greenwich time, the longitude in time must be
subtracted from the Greenwich time if the longitude is west,
and added if the longitude is east.

The Greenwich time thus found, to the nearest minute, is
called the Greenwich date. The knowledge of it is required
in almost every nautical problem, because the right ascensions,
declinations, etc., of the various heavenly bodies are tabulated
in the Nautical Almanac for certain instants of Greenwich
time. Before, therefore, we can make use of these elements
in the solution of Nautical Astronomy problems, it is necessary
that we should know the Greenwich time corresponding to
the times of observation, in order that the proper values of
the elements may be obtained.

The Greenwich time may be found more accurately by means
of a chronometer whose error is known. The known error on
Greenwich mean time being applied to the chronometer time
will produce the Greenwich mean time required. It is, how-
ever, necessary to know the local time and the longitude, at
any rate approximately, as chronometers are only marked up
to 12 hours, and it could not be decided whether or no the
correct Greenwich mean time was more or less than 12 hours
without a knowledge of the local time and the longitude.

Examples.—Feb. 15th in longitude 45° W, find the Greenwich dates
corresponding to local times 8 h. A.m. and 3 h. 15 m. .M.

h. m. h. m.
Feb.14th, - - - 20 0 Feb.16th, - - - 315
Long. in time, - - 3 0W Long. in time, 3 0OW
Greenwich date,Feb. 14th, 23 0 .~ Greenwich date, Feb. 15th, 6 15
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Feb. 16th in longitude 117° E, find the Greenwich dates corresponding
to local times 8 h. A.x. and 3 h. 15 m. p.M.

h. m. . h. m.
Feb 14th, - - - 20 0 | Feb.15th, - - - 315
Long. in time, - - T48E ! Long. in time, - - T748E
Greenwich date, Feb. 14th, 12 12 | Greenwich date, Feb. 14th, 19 27

In the second part of this example, as the longitude to be subtracted
is greater than the local time, it is necessary to add 24 hours, 27 h. 15 m.
on Feb. 14th corresponding to 3 h. 15 m. on Feb. 15th.

Feb. 15th in longitude 45° W, at about 7 A.M. local time a chronometer
showed 9 h. 47 m. 45 s,, its error on Greenwich mean time being 13 m. 15 s.
slow. Required the Greenwich mean time.

h. m. s h. m.
Chronometer time, - 9 47 45 Feb. 14th, - - - 19 0
Error, slow, - - 13 15+ Long. in time, - - - 30

101 0 Greenwich date, Feb. 14th, 22 0

12 0 0 —
Greenwich mean time, 22 1 0

In this case the Greeuwich date shows that 12 hours must be added
to the 10 h. 1 m. obtained by applying the error of the chronometer to
the chronometer time. :

To take out the Sun’s Declination.

§ 78. The sun’s declination is tabulated in the Nautical
Almanac for each day at noon at Greenwich.

If it is required to find its value at the time any observation
of the sun is taken, the Greenwich date must first be obtained,
and then the hourly variation multiplied by the hours and
fractions of an hour in the Greenwich date. This will give
the correction to be applied to the declination at noon at
Greenwich, added if the declination is increasing, subtracted if
decreasing. .

This is the general principle of the rule, but there are
modifications which require notice.

The hourly variation represents the rate of change of the
declination at noon of the given day, but this rate is not
constant throughout the 24 hours, as may be seen from the
fact that the hourly variation varies from day to day.

When, therefore, the Greenwich date is more than 12 hours,
the declination should be taken out for the nmearer Greenwich
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noon, and corrected for the difference between the Greenwich
date and 24 hours, the correction obtained being subtracted if
the declination is increasing, and vice versa.

If great accuracy is desired, the hourly variation used should
be that for the time midway between the Greenwich date and
the nmearer Greenwich noon; but for the ordinary purposes of
navigation, the hourly variation at the nearer noon is usually
sufficient.

Example.—Find the sun’s declination on Feb. 16th at 10 h. A in
longitude 79° W.

Variation

h. m. Declination. in one hour.
Feb. 15th, -22 0  Feb. 16th, at Greenwich — 521"

12°18' 55" S
Long., - - 516+ mean noon, - 9 52— 33
Greenwich date,} 1563
Feb. 16th, Je——= declination required, - 1216 3 1563

17193
2’ 52"

The hourly variation is multiplied by 33, as 16 m. is very
nearly ‘3 of an hour (6 minutes is {4 or ‘1 .of an hour, so that
the number of minutes of the Greenwich date divided by 6
gives the decimal part of an hour).

The change is subtracted from the noon declination as the
declination is decreasing.

Next let us take an example in which the Greenwich date is
over 12 hours.

FEzample.—Find the sun’s declination on June 19th at 11 A.x. in longi-
tude 33° E.

Hourly
. h. m. Declination. variation.
June 18th, - 23 0 June 18th, at Greenw:ch} 93° 95 123" N 331
Long. E, - - 2 12— mean noon, 1 88 208
Greenwich date }' - PP
120 4 2648

June 18th, — declination required, - 23 26 21 6620
68848
1' 88"

The hourly variation, having been taken for noon on June
18th, and multiplied by the hours, ete., of the Greenwich date
produces a result which is greater than the declination for noon
June 19th, i.e. 23° 26’ 19”, showing that the principle used must
be incorrect.
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Taking, therefore, 20 h. 48 m. from 24 h., we obtain 3 h. 12 m.
as the intérval that will elapse before noon June 19th when
the hourly variation is 2:28".

228" x 3:2="17-3", the correction which must be subtracted from
23° 26" 19" to obtain a more correct value of the declination
at the given time.

The same method applies to the sun’s apparent right ascen-
sion, which is not, however, often required in navigation.

§79. The sun’s declination is tabulated for both apparent
and mean noon at Greenwich.

As the time kept on board ship at sea is apparent time, if
the Greenwich mean time of an observation, such as latitude
by meridian altitude, deviation by altitude azimuth, etc., where
the G. M. T. is not required to be known accurately, is wanted,
the ship time would have to be corrected for the equation of
time before finding the Greenwich date. But by applying the
longitude directly to the ship time, the Greenwich apparent
time can be found at once, and the declination for apparent
noon corrected, so as to find the declination at the time of
observation.

The practical difference will not be great, but, as a matter
of principle and showing an understanding of what is being
done, the point is worth notice.

Examples.—Required the sun’s declination :

Mean time.
Day. h. m. Longitude.
(1) April 6th, 11 15 p.x,, 74° 30 W
(2) April 27th, 9 AN, 69 40 E
(3) Jume 5th, 3 p.M, 117 30 E
(4) June 23rd, 7 AN, 47 O W
Day. Apparent time. Longitude.
(5) Dec. Tth, 9 AN, 147° OW
(6) Dec. 29th, 4 p.M, 87 20 E

To take out the Sun’s Semi-diameter.

§ 80. This changes so slowly that no correction is needed
and the semi-diameter tabulated for Greenwich mean noon may
be considered as correct for any hour of the day.
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To take out the Equation of Time.

§ 81. Obtain the Greenwich date, take out the equation of
time for the mnearest Greenwich mean noon, multiply the
variation in one hour by the hours and parts of an hour of
the Greenwich date, or of the interval between the Greenwich
date and 24 h., when the Greenwich date is over 12 h., and
apply the correction thus obtained; adding if the equation
of time is increasing, subtracting if it is decreasing, in the
first case, and vice versa in the second case.

Examples.—Required the equation of time at 6 h. 18 m. P.M. on June 6th
in longitude 53° 20" W.

uation
of time. Variation
h. m. s m. 8. in 1 hour.
June 6th, - - - -6 18 0 Noon, June 6th, 1 3741 445
Long. W, - - - -3 33 20+ 438 - 985
Greenwich date, June 6th, 9 51 20 1 3303 2225
-_— 3560
4005
4'38325

Required the equation of time at 6 h. 18m. AM. on June 6th in
longitude 53° 20° W. .

uation
of time.  Variation.
h. m. s m. 8.
June 5th, - - - - 1818 0 Noon, June 6th, 1 3741 445
Long. W, - - - - 3332 ‘96 2:15
Greenwich date, June 5th, 21 51 0 1 3837 2225
24 0 O _— 445
890
2 9 0 -
‘95675

Here the correction is + because the equation of time is
decreasing, but the Greenwich date is before noon on June 6th.

Care must be taken to mark the equation of time as
additive to or subtractive from mean or apparent time, as the
case may be, at the time that it is taken out.

It should always be taken out for mean noon. When it is
necessary to reduce ship apparent time to ship mean time for
the purpose of finding the Greenwich date, it is sufficient, in
practice, to apply the equation of time to the nearest minute
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Ezamples.—(1) Required the equation of time at 11 h. 13 m. a.mM. in
longitude 117° 29’ E on June 8th.

(2) Required the equation of time at 9 h. 14 m. A.m in longitude
104° 23 W on April 15th.

(3) Required the equation of time at 4 h. 46 m. P.M. in longitude
165° 19 E on December 1st.

To take out the Right Ascension of the Mean Sun.

§ 82. The right ascension of the mean sun at Greenwich
mean noon is found in the column headed “Sidereal Time” on
page II. of each month in the Nautical Almanac.

Since sidereal time is the hour angle of the first point of
Aries, or the right ascension of the meridian when the mean
sun is on the meridian of Greenwich, the mean sun’s right
ascension is that of the meridian, and is therefore the same
as sidereal time at Greenwich mean noon.

As the right ascension of the mean sun increases regularly
3 m. 5555 8. in every 24 hours, its value at any other time
than Greenwich mean noon can be found by simple proportion,
or more easily by the tables of time equivalents in the Nautical
Almanac, or by the table “ Acceleration of Sidereal on Mean
Time” in Nautical Tables.

Ezample.—Required the right ascension of the mean sun at 6 h. 15 m.
p.M. in longitude 49° W on June 15th.

h. m. h. m. s
June, 15th, - 68 15 Sidereal time at Greenwich mean noon, 5 34 420
Long. W,- - 316 Increase for 9 hours, - - - - 1 2871

— . 5 31 minutes, - - - 509

Greenwich date, 9 31 —
== Right ascension of the mean sun, - - 535 38

Ezamples.—(1) Required the right ascension of the mean sun at
3 h. 57 m. r.u. in longitude 94° 25° W on April 6th.

(2) Required the right ascension of the mean sun at 6 h. 18 m. a.m.
in longitude 114° 33’ W on June 14th.

(3) Required the right ascension of the mean sun at 2 h. 15m. p.M.
in longitude 76° 21’ E on December 19th.

To take out the Moon’s Right Ascension and Declination.

§ 83. The moon’s R.A. and declination are tabulated for each
hour of the day, and the change in 10 minutes of time at the
commencement of each hour is also given.
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Therefore, find the Greenwich date, take out the R.A. or
declination for the hour of the Greenwich date, multiply the
change in 10 m. by the number of minutes in the Greenwich
date, and mark off one more decimal place in the result. Add
the correction so found, in the case of the R.A., and add or
subtract in the case of the declination according as the declina-
tion is increasing or decreasing.

If the change in 10 m. is changing rapidly, take out the
RA. or the declination for the mearest hour, and apply the
correction accordingly, as in the case of the sun’s declination.

Ezamples—Required the moon’s right ascension aud declination at
5 h. 25 m. .M. in longitude 41° 27 W on April 6th.

h. m s
April5th, - - - - - 17 2 0
Long W, - - - - . 2 45 48+

Greenwich date, April 5th, - - 20 10 48
Moon's R.A. Variati , o as Variation
MomtBA  Vaeon s dodiuion.  VoTs
At20h, 10 19 11-26 22'48 12° 21’ 279" N 161'1"
2428 108 2 539- 108
10 19 3554 242-784 12 18 34 173988
2428 - 1739

h. m. [S
Moon’s R.A,, - - - - 10 19 3554
»  declination, - - - 12 18 34N

Required the moon’s declination at 10 h. 15 m. p.M. in longitude
49° 30" E on April 1lst.

Variation

h. m. Moon’s declination. in 10 m.

April 1st, - - 10 15 At6h., 23° 39° 178" N 494
Long., - - - 3 18 2815 57
Greenwich date, - 6 57 23 39 4595 28158
28°15

The result thus obtained is greater than the declination at
7 h., which should therefore be taken and corrected for the
3 m. which will elapse between 6 h. 57 m. and 7 h. This is,
of course, an extreme case, taken to illustrate the principle.

Eramples.—(1) Required the moon’s R.A. and declination at 11 h. 18 m.
P.M. in long. 95°21' W on June 12th.

(2) Required the moon’s R.A. and declination at 9 h. 43 m. p.x. in long.
72° 47 E on December 23rd.
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To take out the Moon's Semi-diameter and Horizontal
Parallax.

§ 84. These are tabulated for noon and midnight of each
day.

The Greenwich date having been found, the correction is
obtained by simple proportion for the hours that have elapsed
since Greenwich noon or midnight.

Ezxample—Required the moon’s semi-diameter and horizontal parallax
at Y bh. 15 m. A.M. in long. 116° 10° E on June 4th.

h. m. =& Moon’s semi-diameter.
Junedrd, - - - - 21 15 0  Midunight, June 3rd, 15 523"
Long. E., - - - - 7 4 40 Noon, June 4th, - 15 488
Greenwich date, June 3rd, 13 30 20 Change in 12 h,, - 35
» 14 h, - 44

Semi-diameter required, 15’ 51'86".
Moon’s horizontal parallax.

Midnight, June 3rd, - - - - 58 89"
Noon, June 4th, - - - - 57 561
Change in 12 h., - - - - 12'8

" 14h., - - 16

Horizontal parallax reqmred 58" 7-3".

The horizontal parallax inserted in the Nautical Almanac
is the equatorial horizontal parallax, which is greatest at the
equator and decreases as the latitude increases; but as the
greatest value of the difference is about 12", for almost all
purposes of Nautical Astronomy the parallax thus found may
be considered as the value at the place of observation.

Eramples.—(1) Required the moon’s semi-diameter and horizontal
parallax at 7 h. 15 m. P.x. in long. 87° E on December 17th.

(2) Required the moon’s semi-diameter and horizontal parallax at
3h. 14 m. Ax in long. 116° 277 W on June 11th.

(3) Required the moon’s semi-diameter and horlzontal parallax at
9h. 17 m. a.x. in loog. 43° E on April 10th.

To take out a Planet's Right Ascension and Declination.

§ 85. These are tabulated for Mean Noon and for Time. of
Transit each day at Greenwich.

The Greenwich date having been found, the proportional
part of the change in 24 hours will give the required correction
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to the values inserted for Mean Noon. The correction may
also be obtained from the variation of R.A. or dec. in one
hour of longitude.

To take out the Right Ascension and Declination of a fired
Star.

§ 86. Look out the R.A. of the star in the Table “ Mean places
of stars,” turn to the corresponding R.A. in the Table “ Apparent
. places of stars,” and take out the R.A. and dec. for the nearest

day.

Ezample.—The R.A. of Capella on December 27th differs by 7 s. from
its mean value. Hence using the mean value would cause an error of
nearly two miles of longitude, if the star were observed in order to
determine the longitude.




CHAPTER X.

PROBLEMS ON TIME. MERIDIAN PASSAGES.
HOUR ANGLES.

Given apparent time and the equation of time, to find
mean time; or given mean time and the equation of time, to
find apparent time.

§ 87. Since the equation of time is the difference between
mean and apparent time, its value, corrected for the Greenwich
date, and applied with the proper sign to apparent or mean
time, will produce mean or apparent time respectively.

Given mean time, to find sidereal time.

§ 88. Let QAQ" represent the celestial equator, QPQ’ being
the meridian, 4 the first point of Aries, m the mean sun,
west of the meridian in (1), east in (2). The sidereal time

(1) (2)
Q Q
A
P P
m
m
Q
Fi6. 54.

is measured by the angle APQ or the arc AQ, as it is the
westerly hour angle of the first point of Aries. or the time that
has elapsed since the first point of Aries was on the meridian.
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In (1)
Sidereal time=AQ=Am+mQ
=Right ascension of the mean sun (corrected for
the Greenwich date)+4mean time.
In (2)
Sidereal time=AQ=Am—mQ
=R.A. mean sun (corrected for Greenwich date)
—(24 h.—mean time)
=R.A. mean sun+mean time—24 h.
Hence, generally,
Sidereal time=R.A. mean sun<+mean time,
24 hours being subtracted from the result if over 24 hours.

Ezamples.—April 18th, in long. 49° E, the mean time was 5 h. 6 m. 18 .
P.M. ; required the sidereal time.

R.A.M.8.
h. m. s. h. m, s
S.M.T, April 18th, - - 5 618 1 45 23'89
Long., - - - - - 316 0- Correction for 1 h,, 986
, , 50 82l
Greenwich date, April 18th, 1 50 18 v i i
— 1 45 4196
h. m. s
Corrected R.A.M.S,, - - 145 42
SMT., - - - - - 5 618
Sidereal time, - - - - 6562 0

December 19th, in long. 77° W, the mean time was 2h. 16 m. 15s. A.X. ;
required the sidereal time.

R.A.M.S.
h. m. = h. m. s.
S.M.T., Dec. 18th, - -1416 15 17 47 2367
Long., - - - - - 5 8 0+ Correction for 19 h., 3 727
» 24 m. 394
Greenwich date, Dec. 18th, - 19 24 15 ’ ? s _—
I 17 40 3488
h. m. s
Corrected R.AM.S,, - - 17 40 35
SMTI, - - - - 141615
31 56 50

24 00

Sidereal time, - - - 7 56 50
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If the time given is apparent, as in the case when it is
required to find the sidereal time in observation of the pole
star at sea, where the time kept is apparent, it must be
reduced to mean by the application of the equation of time,
which may for all practical purposes of navigation be taken
out to the nearest minute.

Examples.—(1) April 24th, in long. 119° E, given ship mean time 8 h.
14 m. 21 8. P.M.; required sidereal time.

(2) June 11th, in long. 57° W, given ship mean time 7 h. 19 m. 16 8. A.M. ;
required sidereal time.

(3) June 28th, in long. 115° 50’ E, given ship apparent time 5 h. 21 m. A.M. ;
required sidereal time.

(4) December 16th, in long. 73° 20° W, given ship apparent time 11h.
19 m. P.X.; required sidereal time.

(5) December 27th, in long. 23° E, given ship apparent time 6 h. 19 m.
A.M. ; required sidereal time.

Given mean time or apparent time, to find what heavenly
body will pass the meridian mext after that time.

§ 89. Let AQ represent the celestial equator, PQ the celestial
meridian, A the first point of Aries, m the mean sun, X a
heavenly body passing the meridian.

Then m@ is the given mean time, or the given apparent
time corrected for the equation of time, P
and Am the R.A. mean sun (corrected
for the Greenwich date).

The RA.of X=A4Q

=Am+mQ A X
=R.A. mean sun "3
+ mean time. Fie. 55.

Hence that star in the catalogue in the Nautical Almanac
whose right ascension is equal to that found will be on the
meridian at the given time, or if there is no star with that
R.A,, the one whose R.A. is the next greater will be the first
to pass the meridian after the given time.

It is often convenient to know what bright stars will pass
the meridian between two given times. The R.A. of the
meridian must be found, as above, corresponding to each of
the given times, and the stars whose R.A’s. lie between the
sidereal times thus determined will be the stars required.
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Stars that are thus on the meridian will not necessarily be
available for observation. This depends on the latitude, and
it will be easily deduced from the method of finding the
latitude by observations on the meridian, that the zenith dis-
tance of a heavenly body is equal to the difference between
the latitude and declination when they are of the same name,
and the sum when they are of different names.

Stars, therefore, whose declination of opposite name is greater
than the complement of the latitude, will be below the horizon
when on the meridian. And further, in practice, stars cannot
as a rule be observed unless their altitude is greater than 5°

Ezamples.—On April 25th, what bright star will be the first to pass
the meridian after 11 p.M. apparent time, in longitude 15° W?

R.A.M.S.
h. m. s h. m. s.
April 25th, - - - 11 00 2 12 598
Equation of time, - - 211 Correction for 11 h., 1 484
' " , 58m., 95
SMT, - - - - 105749 I
Long.,, - - - - 100 2 14 57
e S.M.T,, - - 105749

Greenwich date, April 25th, 11 57 49

R.A. of meridian, 13 12 46

a Virginis (Spica), whose R.A. is 13 h. 19 m,, is the star required.

Which bright stars will be available for observation on the meridian
between the hours of midnight, Feb. 10th, and 6 a.x., Feb. 11th (apparent
time), in latitude 47° N, longitude 124° W ?

h. m. h. m.
Feb.10th,- - - - 12 0 Feb.10th,- - - - 18 0
Long., - - - - 816+ 8 16
Greenwich date, Feb. 10th, 20 16 Greenwich date, Feb. 11th, 2 16
Equation of time. Equation of time.
14 m. 26 8. +apparent time. 14 m. 26 s.
R.A.M.S. R.AMS.
h. m. s h. m. s
21 21 148 21 256 113
Correction for 20 h., 3171 Correction for 2 h., - 197
. ,» 16 m., 26 ” » 16m, 26
21 24 33 21 25 33
SMT., - - - 12 14 26 18 14 26
9 38 59 15 39 59
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The bright stars whose Right Ascensions lie between 9 h. 38 m. 59 s.
and 15 h. 39 m. 59 s. are a Leonis (Regulus), a Crucis, a Virginis (Spica),
B Centauri, a Bobtes (Arcturus), and a Centauri; but of these, a Crucis,
declination 62° 8, 8 Centauri, 60° 8, and a Centauri, 60° S, will be below
the horizon.

Hence Regulus, Spica, and Arcturus are the principal stars required.

N.B—In the 1896 Nautical Almanac the magnitudes of the stars are
arranged on a new system. Hence by “bright stars” is meant “stars of
magnitude not lower than the second.”

Ezamples.—(1) Which bright stars will pass the meridian between the
hours of 8 p.u. and midnight, apparent time, longitude 62° W on April
18th?

(2) Which bright stars will pass the meridian between the hours of
midnight, June 12th, and 4 A.M., June 13th, apparent time, longitude
73 E?

(3) Which bright stars will pass the meridian between the hours of
midnight, December 14th, and 6 a.M., December 15th, apparent time,
longitude 145° E?

(4) Which bright stars will be available for observation on the meridian
between the hours of 8 .M. and midnight, apparent time, December 1st,
in latitude 35° N, longitude 136 W ?

Given sidereal time, to find mean time or apparent time.

§90. Let QmAQ represent the celestial equator, Q@ the
meridian, P the pole, A the first point of Aries, m the mean
sun, west of the meridian in (1), east in (2).

(1) (2)
Q' QI
A
P P
m
m
Q Q
F16. 56.

Then AQ is the right ascension of the meridian, or the given
sidereal time, Am the right ascension of the mean sun, m@
in (1) and 24 h.—Q@Qm in (2) the mean time required.
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mQ=4Q—Am, fig. (1),
mean time =sidereal time — R.4. mean sun.
Qm=Am—-A4Q, fig. (2),
24 h. —mean time= R.4. mean sun —sidereal time,
or mean time =24 h.+sidereal time— R.4. mean sun.
Hence we have, generally,
mean time =sidereal time — R.A. mean sun,
24 hours being added, if necessary, to the sidereal time.

But as we cannot obtain the R.A. mean sun until we know
the mean time, we must obtain an approximate value of the
mean time by using in the above formula the R.A. mean sun
for the day as tabulated in the Nautical Almanac. To this
approximate mean time apply the longitude, and get a Greenwich
date with which to obtain a more correct value of the R.A. mean
sun. This being subtracted from the given sidereal time will
give a more correct value of the mean time, by means of which
a still more correct value of the R.A. mean sun may be obtained;
and so on to any desired degree of approximation, the second
being usually sufficient for navigation purposes.

Example.—Given sidereal time 9 h. 47 m. 10 s, find mean time at the
same instant on December 18th in longitude 67° W.

R.AM.S.
h. m. s h. m. s

Sidereal time, - - - 94710 Noon, 17th, - 17 43 27111
R.A. mean sun at noon, 18th, 17 47 24 Correction for 20 h., 31713
- 27 m. 4436
Ship mean time, nearly, 17th, 15 59 46 ? 46 ’ ‘128
Long, - - - - 4% 0 " b T
17 46 48804
Greenwich date, 17th, - 20 27 46 ——

Second Approzimation.

R.AM.S.

. . h. m. s. h. m. s
Sidereal time, - -. 94710 17 43 27°11
R.A. mean sun, - - 17 46 488 Correction for 20 h., 31713
Ship mean time, - - 16 0 212 ” 28 m., 4:60

498 0 . 21 s, 058
Greenwich date, - - 20 28 21 17 46 48°898

The new value of the R.A. mean sun differs, therefore, only by 094 of
a second from that already found. Hence 16 h. O m. 21 s. is the mean
time required, or 4 h. O m. 21s. a.M.

If apparent time is required, the corrected equation of time is to be
applied to the mean time thus found.
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Ezamples.—(1) Given sidereal time 14 h. 16 m. 29s. on June 28th in
longitude 74° 20' W. Find the apparent time.

(2) Given sidereal time 1h. 14 m. 37s. on April 26th in longitude
114° E. Find the apparent time.

To find the time when a heavenly body will be on the meridian.

§91. This is a pa.rticu]ar case of the preceding problem
When a heavenly body is on the meridian its right ascension
is equal to the right ascension of the meridian or sidereal time.

Hence the mean time of meridian passage of a heavenly
‘body is found by subtracting the right ascension of the mean
sun from that of the body, increased, if necessary, by 24 hours,
the right ascension of the mean sun being corrected to any
desired degree of accuracy.

The apparent time requlred to find the time of a stars
meridian passage at sea is obtained by application of the equa-
tion of time.

Example.—Find the apparent time of the meridian passage of Regulus
(a Leonis) in longitude 73° W on June 12th.

R.A.MS.
h. m. s bh. m. s
StarsRA., - - - - 10 248 5 22 1452
R.A. mean sun, approximately, 5 22 14 Correction for 9 h,, 1 2871
a0 54 ” 33m., 542
Long, - - - - - 4520 5 23 48'65
Greenwich date, - - - 932 34
h. m. s . s
StasRA, - - - - 10 248 Equation of time.
B.
R.A. mean sun, - - - 52349 28
Mean time of passage, - - 43859 _5_
_23 23+ to mean time.
apparent time, - - S 43922

§92. It is necessary to remember that the ship’s clock shows
correct apparent time only at noon, or, in ships of high speed, at
such other times as may be found convenient, and that it will be
too fast if the ship has run to the westward from noon or such
other time till the time of observation, and too slow if to the
eastward, four minutes of time for each degree of longitude.

Examples.—(1) Find the apparent times of the meridian passages of
a Boites, a Scorpii, a Aquilae on June 14th in longitude 27° W.
S. N. I :
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(2) Find the apparent times of the meridian passages of « Tauri,
a Orionis, @ Argus on December 16th in longitude 39°E.

(3) Find the time which will be shown by a clock, put right at apparent
noon, when the star a Leonis (Regulus) is on the meridian_on April 6th
in longitude 97° E, the ship having changed her longitude 67 miles to
the eastward at the time of the observation.

To find the time of the Moow's Meridian - Passage in any
longitude.

§93. The time of the moon’s meridian passage at Greenwich
is tabulated for each day in the Nautical Almanac; and, if
the moon were like a star with a constant right ascension,
the Greenwich time of passage would give the local time of
passage at any other meridian, allowing for a small change
in the right ascension of the mean sun. If the time of a
star’s passage were, say, 8 P.M., the local time at that instant,
at a meridian 45° west of Greenwich, would be 5 p.M.; by
the time the meridian came to the star, 3 hours due to the
difference of longitude would have elapsed, and the star’s
meridian passage would be 8 pM. in local time at that place
also; and so for any other meridian.

But the moon’s R.A. increases much more rapidly than that
of the sun, on account of the motion of the moon in her
orbit. Therefore the time of the moon's meridian passage is
considerably later each day, the amount, 40 m. to 66 m.,
depending on the number of minutes by which the increase
of R.A. of the moon exceeds that of the mean sun.

,

m
Fie. 57.

If m be the mean sun on the meridian, A and M the corre-
sponding positions of the first point of Aries and of the moon;
when m is-on the meridian next day, 4 will be at 4
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(AA’=4 m. nearly), while'M will be at M’, RR’ being (very
nearly) the moon’s change of R.A. and (very nearly) the
retardation of the meridian passage. This is to say, the moon
is farther to the eastward each day with regard to the
meridians, which revolve from west to east with the earth.

Hence the interval between the moon’s meridian passage
over an easterly meridian and that of Greenwich will be
greater than that due to the difference of longitude, because .
the meridian will have to revolve through the difference of
longitude, and, in addition, the amount the moon has mean-
while moved to the eastward. .

In other words, the local time of passage over an easterly
meridian is earlier than the time tabulated for the meridian
passage at Greenwich; and, similarly, the local time will be
later at a westerly meridian.

To find the amount of the correction.

§94. Let L be the longitude, D the difference between the
tabulated times of the moon’s meridian passage, between which
the required time of passage lies.

Then, as the retardation D takes place in 24 hours or 360°
of longitude, by proportion

306:L: :D:correction.
. L
. correctxon:mx D,
and is subtractive for east longitude, additive for west longitude.

Hence the rule: “ Take out the times of the moon’s meridian
passage for the given day and the day before for east
longitude; or for the given day and the day after for west
longitude ; calculate or take from the tables the correction,
subtract it from the time for the given day for east longitude,
or add it for west longitude.” The result will be the local
(not the Greenwich) mean time of passage over the given
meridian.

The longitude in time must be applied in the usual way to
obtain the Greenwich date.

It is to be noticed that the day, and day before or after,
are to be understood as astromomical day, etc., a point often
overlooked in the working of examples.

The “Lower Meridian Passage” is used in finding the time
of high water, and not in finding the latitude.
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Ezamples.—Find the time of the moon’s meridian passage on April 5th
in longitude 47° W.

h. m.
Mer. passage, April 5th, - - - 8585
” » Gth, - - - 9 502
517

Correction from table, - 6
S.M.T. of passage, - - - - 9 45
Long., - - - - - - 3 8+

Greenwich date, - - - - - 1212 April 5th.

Find the time of the moon’s meridian passage on April 16th in longitude
53° E.

h. m
Mer. passage, April 16th, - - - 17 436 April 15th.
" , 15th, - - . 16508 , 14th.

528

Correction, - - - - - 8
S.M.T. of passage, - - - - 17 356 » 15th.

Long., - - - - - - 332-
Greenwich date, - - - - 14 36 ,» 16th.

Find the ship mean time and the Greenwich mean time of the moon’s
meridian passage :

(1) April 6th, longitude 73° W. | (4) June 8th, longitude 116° W.
(2) April 8th, longitude 49° E. | (5) June 27Tth, longitude 127° E.
(3) April 20th, longitude 89° E. | (6) Dec. 5th, longitude 81° W.

To find the time of a Planet's Meridian Passage in any
longitude.

§ 94.* The principle is the same as in the case of the moon,
except that the time of passage on any day is not always
later than that on the preceding day. The moon’s right
ascension constantly increases from O h. to 24 h., and the
daily change of R.A. is always greater than that of the mean
sun; hence the time of the meridian passage is always later
day by day. But, as the apparent motion of a planet, as
seen from the earth, is a combination of the actual motions
of the two bodies in their respective orbits, the right ascension
of a planet is sometimes increasing and sometimes decreasing.
So long, therefore, as the planet’s R.A. is increasing more
rapidly than that of the mean sun, the time of its meridian
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passage will be later day by day. When the rate of increase
is equal to that of the mean sun the time of passage will be
practically the same on successive days; when it is less, or
when the planet's R.A. is decreasing, the time of passage will
be earlier day by day. These changes can be easily traced by
inspection of a planet’s elements in the Nautical Almanac.

Thus, in 1895, the R.A. of Venus increased at a gradually
decreasing rate from January lst until about August 26th,
after which it decreased until about October 8th, and then
increased until the end of the year. The time of meridian
passage was later day by day until June 28, when it remained
the same for three days; it was then earlier day by day until
November 29th, when it remained the same for five days, after
which it was later again day by day until the end of the year.

It is therefore necessary, in finding the time of a planet’s
meridian passage, to notice whether the time of passage is
accelerated or retarded.

N.B.—For the mathematical investigation of a planet’s stationary points
and retrograde motion, see Godfray’s Astronomy, 4th edition, pp. 276, seqq.

Given the latitude of the place, and the zenith distance and
declination of a heavenly body, to find its hour angle, and
thence the mean time.

§95. Let NEWS represent the horizon, NS the meridian,
P the pole, Z the zenith, X the heavenly body, west of the
meridian in (1), east in (2).

(1) (2)
N N
0 o ﬁ \
w > E w 7 E
K \ X
S S
Fia. 58.

Then ZPX is the body’s hour angle in (1), and 24 h.—the
hour angle in (2).
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Let ZPX =h,
: PZ=90°- lat.=c¢,
PX =90°tdec.=p,
ZX =90°— alt.=2z.
In the triangle ZPX the three sides are known, to find the
angle ZPX.
. by the well-known formula of Sphencal Trigonometry,
ha.v ZPX
=cosec PZ.cosecPX~ hav (ZX + PZ~ PX) hav (ZX — PZ - PX).
Nore.—It is better for beginners to use this formula, as the quantities
used represent the sides of the triangle PZX, and the difference of PX and
PZ is always to be found.
The work is, however, usually shortened by the use of the formula
hav hA=sec!.secdv/ hav(z+(t d)hav(z—-I £ d),
since PZ ~ PX=1[e«d when latitude and declination are of the same name,
and /+d when they are of different names.

If the table of haversines is not at hand, the formula can
be adapted to the ordinary table of log sines, etc., by writing

sm20 hav 6,

. sin”;—cosecPZ cosec PX sin ZX+1;Z PX ZX —‘l;Z PX

If the haversine table is used, the hour angle is taken from
the top of the page when the heavenly body is west of the
meridian, and from the bottom when the heavenly body is
east of the meridian.

The hour angle having been found, which is the apparent
time in the case of the sun, the application of the equation
of time will produce the mean time required.

A different method is necessary in the case of any other
heavenly body.

Let QAQ represent the celestial equator, QQ the meridian,
m the mean sun, X the heavenly body, AR its right ascension,
A being the first point of Aries.

QPR or the arc QR is the hour angle in (1), and is 24 h.
—the hour angle in (2).

mean time=m@Q=A4Q—A4Am in (1),
=RQ+AR—-Am
=heavenly body’s hour angle+its right ascen-
sion —R.A. mean sun.
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(1)
q

-

Fie. 59.
24 h. —mean time =m@
=QR— Rm in (2),
=QR—(AR—-Am)
=24 h.—body’s hour angle —its right ascension
+R.A. mean sun,
or mean time = hour angle 4 right ascension — R.A. mean sun.

By drawing figures for other cases it will be found that the
above expression (24 hours being added or subtracted if neces-
sary) holds good generally.

It is really this expression that is used in the case of the
sun, as the equation of time is the difference between the
right ascensions of the mean and apparent suns.

Examples will be found in the next chapter, on finding the
longitude.

To find the length of the day at any place.

§96. Let | be the latitude, d the sun’s declination, h the
sun’s hour angle at rising or setting. Then 2 =length of day.
In the quadrantal triangle PXZ (fig. 60),
cos h= —tanl.tand, if [ and d are of the same names.
cos h=tanl.tan d, if l and d are of different names.
If 1=0, cosh=0,
. h=90° or 6 hours;
at the equator, therefore, the day is always 12 hours long.
If d=0, cosh=0,
.*. h=90° or 6 hours;
at the time of the equinox, therefore, the sun rises at 6 o'clock
all over the earth, and day and night are each 12 hours long.
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If 1=90°-d, cosh= -1,
.*. h=180° or 12 hours;

the 'sun, therefore, does not set, but just reaches the horizon
below the elevated pole, at midnight.

N
Pl
X
w va E
xI
S
Fi1G. 60.

If 1>90°—d,cos h>—1, which is impossible; the sun, there-
fore, neither rises nor sets, but continues, above the horizon,
and there is continuous daylight.

If {=90°—d, when ! and d have different names, cosh=1,
‘. h=0, and the sun comes to the horizon when on the
meridian and does not rise at all.

If 1>90°—d, when | and d have different names, cos’>1,
which is impossible; the sun, therefore, neither rises nor sets,
but continues below the horizon, and there is continuous
darkness.

The formulae cosh=—tanl.tand,
i.e. cos(180°—h)=tanl.tand
(when ! and d are of the same name),

and cos’=tanl.tand
(when ! and d are of different name):
show that cos (180°—/L)=cos I,

.. 12 hours—h =M/,
h+h'=12 hours,

1.e. when the latitude and declination have the same name, the
sun rises as much before 6 o'clock as it rises after 6 o'clock
when they are of different names.
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In the foregoing calculations, the theoretical rising and setting
of the sun’s centre have been considered. But, when the effect
of refraction is taken into account, it is evident that there
will be rather more daylight than the calculations account for,
eg. the sun will really rise a little before 6 o'clock at the
vernal equinox in north latitude, and will rise at 6 o’clock
when the sun’s declination, of opposite name to the latitude,
is equal to the correction in altitude at the horizon.

Similarly, there will be some sunlight at each pole for a
little more than half the year.

Formulee in “ Time Problems,” cullected for reference.

(1) Mean time=apparent time + equation of time.

(2) Sidereal time=right ascension of mean sun+mean time (24 h. being
subtracted, if necessary).

(3) Right ascension of that heavenly body which will pass the meridian
at a given time=right ascension of mean sun+given mean time.

(4) Mean time =sidereal time —right ascension of mean sun (24 h. being
added to sidereal time, if necessary).

(5) Mean time of meridian passage of a heavenly body=R.A. of body
—R.A. of mean sun (24 h. being added to R.A. of body, if necessary).
(6) Hour angle of heavenly body
hav A =cosecc cosecpvhav{z+(p~c)jhavi{z—(p~¢)},
where ¢=co-latitude, p =polar distance, z=zenith distance; or
Z_**(g;f) i=(p~0),

sin =—
2

hour angle
2

sin? = cosec ¢ cosec p sin

(7) Mean time=hour angle of heavenly body+R.A. of heavenly body
—R.A. of mean sun (24 h. being added or subtracted, if necessary).
(8) Equation of equal altitudes (cf. § 99),
E=‘{—f_:secdcotPXZ,

dp being the change of declination in % elapsed time, £ being positive if
the polar distance is increasing, and negative if the polar distance is
decreasing ; or

.

E= ‘Tigtan dcot } elapsed time — (11—1; tan [ cosec § elapsed time,

the signs of dp, tanl, and tand being positive when the sun is moving
to the north, and ! and d are north ; otherwise negative.



CHAPTER XI

LONGITUDE. ERROR OF CHRONOMETER: (1) BY SINGLE
ALTITUDE; (2) BY EQUAL ALTITUDES.

Longitude.

§97. From what has already been said, it will be gathered
that the longitude of any place on the earth’s surface, ex-
pressed in time, is the difference between local mean time and
Greenwich mean time at the same instant.

Local mean time may be found by the methods of §95;
Greenwich mean time is obtained from a chronometer, or from
the mean of several chronometers whose errors on Greenwich
mean time are known, a chronometer being a timekeeper
specially constructed to keep accurate time, dnd whose error
on Greenwich time varies only slightly and with great regu-
larity from day to day.

Another method of finding the longitude, by lunar observa-
tions, will be discussed later.

Ezample.—(1) Local or ship mean time, found from observation of the
sun E of meridian.

April 18th, in latitude 40°16’N, longitude by account 35° 45’ W, about
7h. 10 m. ship apparent time, the true altitude of the sun’s centre (E of
meridian) was 19° 50’ 307, when a chronometer showed 11 h. 18 m. 19s.
On April 8th at Greenwich mean noon the chronometer was 1 h. 47 m. 15s.
fast on Greenwich mean time, and its daily rate was 4:3s. gaining.
Required the longitude. )

Greenwich date. Rate of chronometer.

h. m. April 17th at 213 hours.
SAAT,- - - 1910 Apl 17th. »w 8th, 0
Long. W, - - 223+ interval, - - 944 days
Greenwich app. time, 21 33 =99 days.
equation of time, - 1- daily rate, - - - 43
Greenwich date, - 21 32 Apl. 17th. 297

24 0 306

2 28 accumulated rate, - 4257
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Greenwich mean time.
h. m. s

11 18 19
1 47 538

9 30 21
12 0 0

chronometer,
error,

Greenwich mean time, 21 30 21

Change
per hour.

Sun’s declination.
April 18th, 10°50° 9" N
2 11-

52
2

10 48 0
90 0 O
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polar dist., 79 12 0

To find the sun’s hour angle.

co-lat.,
polar dist.,
diff,, -

zen. dist.,

29 28 0
70 9 30

99 37 30 } hav 4883057
40 41 30 } hav 4541187

sum, -
diff., -

hav 2 =9-549456
Sun’s hour angle, 19 h. 7 m. 44 s.

2" 11"

49° 44’ 0" cosec 10°117450
79 12 0 cosec 10007762

139

h. m. s.
1 47 15 fast.
43 gained.

error, April 8th,
rate,

error at time of

observation, 1 47 58 fast.

To find zenith distance.
90° 0’ 0"
19 50 30

altitude,

zen. dist., 70 9 30

Eq. of time. Change.
8. 8.
58
25

145

-4”
5

4125
1-45

398
Sub. fr. app. time.

To find the longitude.
h. m. s

19 7 4
40 -

ship app. time,
equation of time,

ship mean time, 19 7 4
Greenwich mean time, 21 30 21

2 23 17
35°49' 15" W

long. in time, -

Long.,

As the Greenwich time is greater than the ship time, the longitude is west.

If the ordinary table of log sines is

used, the work is as follows :

co-lat., - - 49° 44 07 cosec 10117450
polar dist.,, - 79 12 0 cosec 10007762
diff, - - 20 28 0
zen. dist., - 70 9 30
sum, - - 99 37 30
diff, - - 40 41 30
- h. m. s
dsum, - - 49 48 45 sin 9883057 L_g og g
3diff, - - 20 20 45 sin 9541187 2 5
219549456 - =
ko 4 52 16
sin 5= 9774728 24 0 0
Sun’s hour angle, 19 7 44 as before.
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(2) Local or ship mean time found from observation of the sun, W of
meridian.

June 29th, in latitude 39° 25’ S, longitude by account 58° 15° W, about
2 h. 50 m. p.m. ship apparent time, the true altitude of the sun’s centre
(W of meridian) was 15° 47’ 20", when a chronometer showed 5 h. 45 m. 19s.
On June 19th at Greenwich mean noon the chronometer was 1 h. 2 m. 15 s.
slow on Greenwich mean time, and its daily rate was 3-8 s. gaining.
Required the longitude.

Greenwich date. Ratc of chronometer.

h. m. June 29th at 7 hours.
S.AT, - - - 2 50 June 29th. » 19th , 0
Long. W, - - 353+ interval, - - 105 days
Greenwich app. time, 6 43 . =103 days.
equation of time, - 3+ daily rate, - ° ° ﬁ 8.
Greenwich date, - 6 46 June 29th. 824

— 309

Greenwich mean ﬁ:"'m . accumulated rate, - - 3914

chronometer, - - 54519

_ _ i -1 136 h. m. 8.
error, = error, June 19th, - 1 2 15 slow.
Greenwich mean time, - 6 46 55 rate, - - - 0 0 39 gained.

To find zenith distal . error at ti_me Of)
© find zenith dis ;85 o o observation, 1 _1 3Gslow.
altitude, - - - 1547 20
zen. dist., - - - 74 12 40
Eq. of time. Change.
Sun's declination. Change. m. s 8.
23°14'45" N 83" 3 94 68
56— 68 34 5
23 13 49 5644 313 34
9 0 o additive to app. time.
polar dist., 113 13 49
To find the longitude.

To find the sun’s hour angle. h. m. s
co-lat., - 50°35 0”7 cosec 10°1112074 Shlp apparent time’ - 250 2
polar dist., 113 13 50 cosec 10036715 equation of time, - 313+
diff, - - 62 38 50 ship mean time, - 253 38

zen. dist.,, - 74 12 40 Greenwich mean time, 6 46 55
sum,- - 136 51 30 % hav 4'968465 longitude in ti .
diff, - - 11 33 50 }hav 4003214 ongitude in tm:e, o 3 53 17
—_— Long., 58° 19’ 15" W.
hav % 9:120468

Sun’s hour angle, 2h. 50 m. 25s.

As the Greenwich mean time is greater than the ship mean time, the
longitude is west.
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(3) Longitude by altitude of the moon, west of meridian.

April 1st, about 8 h. 30 m. p.M. ship apparent time, in latitude 38° 15’ N,
longitude by account 15° E, the true altitude of the moon’s centre (W of
meridian) was 47° 9’ 50", when a chronometer showed 5 h. 56 m. 23s. On
March 22nd, at Greenwich mean noon, the chronometer was 1 h. 37 m. 21 s.
slow on Greenwich mean time ; daily rate, 4 s. losing.

Greenwich date.

h. m. Rate of chronometer.

S.AT, - - - 8 30 April 1Ist. April 1st at 74 hours.

Long. E, - - 1 0- March 22nd,, 0,

Greenwich app. time, 7 30 interval, - - 10}§ days

equation of time, - 4 =103 days.

4

Greenwich date, - 7 34 April lst. -—

— accumulated rate, - - 412
Greenwich mean time.

h. m. s h. m. s.
chronometer, - - 556 23 error, March 22nd, 1 37 21 slow.
error, - - - 138 2+ rate, - - - 41 losing.

- error at time of 1 2a o
G.M.T,, - - 73492 observation, 138 2slow.
Moon’s R.A. Change. R.A. mean sun.
h. m. s. 8. Moon’s declination. Change. ) m. s
5 49 195 28-87 28°39'42" N 2:1” 38 22-47

1279 34 7 34 1 9
550 474 87958 28 39 49 714 53’_’
— {
To find zenith distance. 9_0_00 39 37
90° 0 0" polar dist., 61 20 11 39 3713
47 9 50 altitude.
42 50 10 zen. dist.
To find the longitude.

To find the moon’s hour angle. h. m. =
co-lat., - 51°45" 0" cosec 10°104955 Moon’s hour angle, - 3 22 52-3
polar dist., 61 20 10 cosec 10°056780 » R.A. - - 550 474
dif,, - 93510 9 13 397
zen. dist.,, 42 50 10 R.AM.S, - - 39 37
sum, - 52 25 20 4 hav 4'645108 S.M.T, - - - 834 27
diff., - 3315 0 3 hav 4456528 G.M.T, - - - 73425

hav % 9263471 Long. in time, - - 59 377

h=3h.22 m. 523 s, Long. 14° 54’ 30" E.

Greenwich time being less than ship time, the longitude is east.
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(4) Longitude by altitude of a star, east of meridian,

December 7th, about 1h. 30 m. aA.M. ship apparent time, in latitude
32° 27’ 8, longitude by account 117° 30" W, the true altitude of « Leonis
(east of meridian) was 21° 21’ 30", when a chronometer showed 10 b. 57 m.

43 8.

On November 7th, at Greenwich mean noon, the chronometer was

1 b. 44 m. 41 s. fast on Greenwich mean time ; daily rate, 3-2 s. gaining.

Greenwich date.

h. m.
S.AT, - - - 13 30 Dec. 6th.
Long. W, - 7 50+

21 20
equation of time, - 8-
Greenwich date, - 21 12 Dec. 6th.

Greenwich mean time.

h. m. s
chronometer, - - 10 57 43
error, - - - - 14617
911 26
12 0 0
Greenwich mean time, 21 11 26

To find zenith distance.
90° 0 0"
21 21 30

zen. dist., - - - 68 38 30

a Leonis R.A., 10 h. 2m. 51 s,

To find the star’s hour angle.
co-lat.,, - 57°33 0" cosec 10073730
polar dist., 102 28 30 cosec 10010377

- 44 55 30

diff.,

zen. dist.,, 68 38 30

sum, - 113 34 0 3 hav 4922520
diff.,, - 2343 0 3 hav 4312796

hav £9:319423
hour angle=20h. 22 m. 34 s,

Rate of chronometer.

Dec. 6th at 21 hours.
Nov. 7th ,, 0 ,,
Interval, - 297 days
=299 days.
32

accumulated rate, - 9568

h. m. s.
error, Nov. 7th, - 1 44 41 fast
rate, - - - 136
error at time of’ -

observation, lﬁ_l_‘ fast.

R.A mean sun.
h. m. s
17 0 5

3 27
2

17 3 34

declination, 12° 28’ 30” N
polar dist., 102 28 30

To find the longitude.

h. m. s

Star’s hour angle, - 20 22 34
., RA, - 10 251
30 25 25

R.A. mean sun, - - 17 3 34
S.M.T., - - - 13 21 51
GMT, - - - 211196
Long. in time, - - 74935

Long. 117° 23’ 45" W.

Greenwich time being greater than ship time, the longitude is west.
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Examples.—-(1) April 27th, about 7 h. 30 m. A.m. apparent time, in lati-
tude 53° 18’ 30" N, longitude by account 5° 45" W, the obs. alt. sun’s L.L.
was 24° 15’ 30", when a chronometer showed 7 h. 23 m. 23s. On April
16th, at G.M. noon, the chronometer was O h. 27 m. 59 s. slow on G.M.T. ;
daily rate, 6'6 s. gaining. The index error was 2’ 50" —, and the height of
the eye 18 feet.

(2) June 4th, about 9 A.M. apparent time, in latitude 16° 47’ S, longitude
by account 62° 10' E, the obs. alt. sun’s L.L. was 30° 44' 40", when a
chronometer showed 6 h. 7m. 43s. On April 27th, at G.M. noon, the
chronometer was 1 h. 17 m. 6 s. fast on G.M.T. ; daily rate, 2'8 s. gaining.
The index error was 1’ 40"+, and the height of the eye 23 feet.

(3) April 18th, about 3 h. 20 m. p.m. apparent time, in latitude 24° 40’ S,
longitude by account 26° W, the obs. alt. sun’s L.L. was 29° 12’ 30", when
a chronometer showed 3 h. 51 m. 358. On March 15th, at G.M. noon, the
chronometer was 1 h. 15 m. 43 s. slow on G.M.T. ; daily rate, 31 s. gaining.
The index error was 3'—, and the height of the eye 26 feet.

(4) June 10th, about 6 h. 25 m. A.M. apparent time, in latitude 40° 20’ N,
longitude by account 42° 30" W, the obs. alt. sun’s L.L. was 19° 17" 207,
when a chronometer showed 9 h. 45 m. 50 s. On May 20th, at G.M. noon,
the chronometer was 0 h. 29 m. 42 8. fast on G.M.T.; daily rate, 3-8 s.
gaining. The index error was 2’ 40"—, and the height of the eye 20 feet.

(5) June 28th, about 3 h. 20 m. p.M. apparent time, in latitude 19° 15’ S,
longitude by account 169° 45’ E, the obs. alt. sun’s L.L. was 25° 7' 20",
when a chronometer showed 7 h. 9 m. 46 s. On May 31st, at G.M. noon,
the chronometer was 3 h. 6 m. 46 s. fust on G.M.T. ; daily rate, 19 s. losing.
The index error was 2’ 10"+, and the height of the eye 24 feet.

(6) December 10th, about 7 h. 30 m. A.M. apparent time, in latitude
32° 40" §, longitude by account 71° 10° W, the obs. alt. sun’s L.L. was
30° 12’ 40", when a chronometer showed 10 h. 17 m. 25s. On November
9th, at G.M. noon, the chronometer was 1 h. 51 m. 17 s. slow on G.M.T. ;
daily rate, 33 s. gaining. The index error was 1’ 20"+, and the height of
the eye 22 feet.

(7) April 6th, about 6 h. 40 m. p.M. apparent time, in latitude 33° 12'S,
longitude by account 71° 20’ E, the obs. alt. moon’s L.L. (E of meridian)
was 28° 57’ 40", when a chronometer showed 3 h. 49 m. 16 s. On March 8th,
at G.M. noon, the chronometer was 1 h. 50 m. 58 s. fast on G.M.T. ; daily
rate, 23 s. gaining. The index error was 2’ 50"+, and the height of the
eye 20 feet.

(8) December 23rd, about 10 h. p.m. apparent time, in latitude 16° 16’ N,
longitude by account 67° W, the obs. alt. noon’s U.L. (W of meridian)
was 26° 40', when a chronometer showed 3 h. 51 m. 35s. On November
30th, at G.M. noon, the chronometer was 1 h. 23 m. 36 s. fast on G.M.T. ;
daily rate, 2'5 s. gaining. The index error was 2’ 10"+, and the height of
the eye 26 feet.

(9) April 25th, about 6 h. 15 m. A.M. apparent time, in latitude 36° 14’ S,
longitude by account 76° 30’ E, the obs. alt. a Scorpii (W of meridian)
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was 38° 23’ 40", when a chronometer showed 3 h. 47 m. 20s. On March
31st, at G.M. noon, the chronometer was 2 h. 39 m. 28 s. fast on G.M.T. ;
daily rate, 34 s. gaining. The index error was 2’ 40"+, and the height of
the eye 19 feet.

(10) April 2nd, about 6 h. 30 m. p.M. apparent time, in latitude 28° 14’ N,
longitude by account 17° 30 W, the obs. alt. a Tauri (W of meridian)
was 49° 53’ 30", when a chronometer showed 5 h. 47 m. 11 s. On March
17th, at G.M. noon, the chronometer was 1 h. 57 m. 22 a. slow on G.M.T. ;
daily rate, 5-2 8. gaining. The index error was 1’ 30"—, and the height
of the eye 22 feet.

(11) June 1st, about 9 h. 30 m. p.M. appareut time, in latitude 51° 10" N,
longitude by account 2° 50’ E, the obs. alt. a Lyrae (E of meridian) was
43° 15’ 20", when a chronometer showed 11 h. 14 m. 39s. On may 20th,
at G.M. noon, the chronometer was 1 h. 57 m. 10 s. fast on G.M.T.; daily
rate, 42 8. gaining. The index error was 3’ 10" -, and the height of the
eye 17 feet. "

(12) June 18th, about 7 h. 30 m. p.M. apparent time, in latitude 32° 16’ N,
longitude by account 142° 35’ E, the obs. alt. a Scorpii (E of meridian)
was 16° 37’ 50", when a chrounometer showed 7 h. 49 m. 47 5. On May 21st,
at G.M. noon, the chronometer was 2 h. 9 m. 6 s. slow ; daily rate, 3-8 s. losing.
The index error was 2’ 20"+, and the height of the eye 24 feet.

(13) April 15th, about 7 h. 20 m. p.M. apparent time, in latitude
52° 18 N, longitude by account 47° 13° W, the obs. alt. Jupiter's centre
(W of meridian) was 46° 37’ 30", when a chronometer showed 7 h. 31 m. 16 s.
On March 20th, at G.M. noon, the chronometer was 2 h. 58 m. 32 s. slow;
daily rate, 2'5 s. gaining. The index error was 2’ 20" —, and the height of
the eye 19 feet.

(14) December 2nd, about midnight apparent time, in latitude 7° 55 S,
longitude by account 148° E, the obs. alt. Jupiter’s centre (E of meridian)
was 22° 34’ 50", when a chronometer showed 4 h. 19 m. 35s8. On November
1st, at G.M. noon, the chronometer was 2 h. 19 m. 42 s, fast on "t M.T.;
daily rate, 42 5. gaining. The index error was 1’ 40"+, and the beight of
the eye 22 feet.

Error and rate of Chronometer by single altitude.

§ 98. When the longitude is known accurately, the error of
the chronometer can be determined. The mean time is found
in the usual manner from the observed altitude of a heavenly
body. To this the longitude in time is applied, and the
Greenwich mean time determined; the difference between this
and the chronometer time of observation is the errcr required.

Two errors having been thus determined, with a sufficient
number of days’ interval between the observations, the daily
rate is found by dividing the difference of the errors by the
days and parts of a day (if any) contained in the interval.
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These observations are usually taken in the artificial horizon,
the sea horizon being seldom sufficiently reliable when accurate
results are required.

In all observations it is better to take several.altitudes at
small intervals, and use the mean of the altitudes as the
observed altitude, and the mean of the times as the chrono-
meter time, since this mean is more likely to be accurate than
any single altitude.

For ordinary observations three altitudes are usually taken;
but for error and rate of chronometer less than five should
not be taken. An odd number is preferable, as the mean
should then nearly agree with the middle observation, and
this affords a check on error.

Ezamples.

N.B..—The altitudes are to be considered as the mean of several.

(1) April 4th, about 8 h. A.M. mean time, in latitude 50° 22’ N, longitude
4° 10’ 15" W, the obs. alt. sun’s L.L. in artificial horizon was 46° 0’ 44",
when a chronometer showed 11 h. 47 m. 16 s. Index error 2’ 30" +.

(2) April 23rd, about 7 h. 45 m. a.M. mean time, in latitude 22° 16’ 30" N,
longitude 114° 10° E, the obs. alt. sun’s L.L. in artificial horizon was
57° 27°, when a chronometer showed 9 h. 46 m. 48 s. Index error 2’ 10"—.
Find the daily rate, if the chronometer was 2 h. 19 m. 49 s. slow on G.M.T.
at G.M. noon, April 14th.

(3) April 30th, about 9 h. 35 m. p.M. mean time, in latitude 35° 53' N
longitude 14° 31’ E, the obs. alt. Procyon (W of meridian) in artificial
horizon was 40° 53’ 30", when a chronometer showed 10 h. 12 m. 3 8. Index
error 3'—. Find the daily rate, if the chronometer was 1 h. 36 m. 27 s.
fast on G.M.T. at G.M. noon, April 1st.

(4) June 26th, about 9 h. p.M. mean time, in latitude 34° 11’ 30" S,
longitude 18° 31’ 456” E, the obs. alt. a Crucis (W of meridian) in arti-
ficial horizon was 100° 51’ 56", when a chronometer showed 9 h. 18 m. 4 s.
Index error 2’ 20" —.

(5) December 16th, about 8 h. 40 m. P.M. mean time, in latitude
7° 55 30" S, longitude 14° 25" 30" W, the obs. alt. a Orionis (E of
meridian) in artificial horizon was 71° 36’ 27, when a chronometer showed
7 h. 499 m. 37 8. Index error 1' 40"+. Find the daily rate if the chrono-
meter was 1 h. 48 m. 35 s. slow on G.M.T. at G.M. noon, December 1st:

(6) December 5th, about 4 h. 30 m. .M. mean time, in latitude 33° 52’ §,
longitude 151° 12’ 45” E, the obs. alt. sun’s L.L. in artificial horizon was
56° 32’ 44", when a chronometer showed 2 h. 14 m. 37 s. Index error 40" —.
Find the daily rate, if the chronometer was 4 h. 9 m. 14 s. slow on G.M.T.
at 8 A.M., November 22nd, in longitude 116° 45" E.

S. N. K
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Error of Chronometer by equal altitudes of the sun.

§ 99. If the sun’s declination did not alter, the mean of the
chronometer times at which the sun has the same altitude on
opposite sides of the meridian would be the chronometer time
of apparent noon. But the sun’s declination does alter, and a
correction called the “Equation of equal altitudes” must be
applied to the mean of the chronometer times. The difference
between the chronometer time of apparent noon, thus found,
and the Greenwich time of apparent noon is the error of the
chronometer on Greenwich mean time.

In §§ 185, 186 it is shown that the equation of equal altitudes
is to be found—

(1) from the expression

E in time= ;tg secdec. cot PXZ,

dp being the change of declination in half the elapsed time
between the observations, cot PXZ being found from the values
of the latitude, declination, and zenith distance; while the sign
of E is positive if the polar distance is increasing, a.nd negative
if the polar distance is decreasing;

(2) from the expression

E= cllg . tan dec. cot } el