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PUBLISHER'S NOTE.

TaE continued demand for the late Professor Coffin’s
treatise, at the Naval Academy and by the profession, ren-
dered necessary a thorough revision, which has been made
by Commander Charles Belknap, U.S.N., who has brought
the work fully up to date, all the examples Being based on
the Ephemeris of 1898.

Commander Belknap being called to Manila, was unable
to see the work through the press, and in his absence the
proofs were read by Lieutenant E. H. Tillman U.S.N., As-
sistant Instructor in Navigation, U. 8. Naval Academy, to
whom the publishers take this means of expressing their
acknowledgment.
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NAVIGATION.

CHAPTER 1.

THE SAILINGS.
PLANE BAILING.

1. Supprose the compass-needle constantly to point to the
north, a ship which is steered by it upon any given course
must cross every meridian at the same angle; namely, the
angle given by the compass. She does not sail on a great
circle, except when she sails on the equator, east or west, or
on a meridian, north or south. All other great circles inter-
sect successive meridjans at varying angles.

A line which makes the same angle with each successive
meridian is called a loxodromic curve; in old nautical works,
a rhumb-line ; more commonly, the ship’s track.

The constant angle which it makes with the meridian is
the course, and is called the #rue course, to distinguish it from
the compass course.

The length of the line considered, or the distance sailed,
is called the distance. »

The corresponding increase or decrease of latitude is the
difference of latitude.

The distance between the meridian left, and that arrived
at, measured on a parallel of latitude, is the departure on that
parallel.

1



2 NAVIGATION.

The distance between these meridians, measured on the
equator, is the corresponding difference of longitude.

2. The following notation will be employed; the refer-
ences heing to Fig. 1, in which C A represents a portion of
a loxodromic curve:

C = BC A, the course.

d = C A, the distance.

! = CB = E A, the difference of
latitude.

p = the departure: CE in the
latitude of C, B A in the
latitude of B, F G in the
latitude of F.

D = C’A/, the difference of longi-

tude.
L = C’C, the latitude left, } + when North.
L’'= A’A, the latitude arrived at, } — when South.
A = the longitude left, } + when West.
)\ = the longitude arrived at, — when East.

@

Evidently =L -1, D =X—-Xx; }
whence L'=L+1 N=Xx+4 D,

in which attention must be paid to the signs, or names.*

3. If the distance is very small, so that the curvature of
the earth may be neglected, then C A may be regarded as a
right line, and the triangle C A B as a right plane triangle.
From this we have

* If N. and W. are regarded as positive, S. and E. are negative, and

may be treated as such, without the formality of substituting the signs
+and —.



PLANE SAILING. 3

cos 0=§, sin 0=§, tan 0=1;1 @

l=dcosC, p=dsinC, p=1tanC, (3)

or

in which p is the departure in the latitude of C or A ; indif-
ferently, as their distance is very small.
The Traverse Table, or Table of Right Triangles, contains

! and p for different values of C and d. Table 1 in ¢ Bow-
ditch’s Navigator ” contains / and p for each
unit of d from 1 to 300, and for each quarter- B A
point of C. Table 2 contains them for each
unit of d and each degree of C.

_ These quantities form a plane right tri- | %
angle (Fig. 2), in which

d is the hypothenuse,
C one of the angles,

! the side adjacent ) that angl Fig. 2.
p the side opposite | ab ang?e.

«Q
>

In the Tables, the columns of distance, difference of lati-
tude, and departure might be appropriately headed, respect-
ively, hypothenuse, side adjacent, and side opposite.

4. The first two of equations (3) afford the solution of the
most common elementary problem of navigation and survey-
ing, viz.:

ProBLEM 1. Given the course and distance, to find
the difference of latitude and departure, the distance

being so small that the curvature of the earth may be
neglected.

These equations also afford solutions of all the cases of
Plane Sailing. (Bownp., Art. 113.)



4 NAVIGATION.

5. ProBLEM 2. Given the course and distance, to find
the difference of latitude and departure, when the dis-
tance is so great that the curvature of the earth cannot
be neglected.

Solution. Let the distance C A (Fig. 1) be divided into
parts, each so small that the curvature of the earth may be
neglected in computing its corresponding difference of lati-
tude and departure. For each such small distance, as c a,

{=d cos C, p=d sin C.

Representing the several partial distances by dy, d;, ds,
ete., the corresponding values of / and p by 1, ,, 4, etc., and
P15 P2y Ps, etc., and the sums respectively by [d], [{], [»], we

have L4+ UL+ I+ ete. = (dy + d; + ds, ete.) cos C,
P+ 22+ ps + ete. = (dy + dy + d, ete.) sin O
or, [1]=[d] cos C, [p] =[d]sin C.

Since the distance between two parallels of latitude is the
same on all meridians, the sum of the several partial differ-
ences of latitude will be the whole difference of latitude; As
in Fig. 1. '

C B = E A = the sum of all the sides, ¢ b, of the
" small triangles;

and we shall have generally, as in PrRoBLEM 1,
l=d cos C.

‘We also have p=dsin

if we regard p as the sum of the partial departures, each being
taken in the latitude of its triangle; so that the difference of
latitude and departure are calculated by the same formulas,
when the curvature of the earth is taken into account, as
when the distance is so small that the curvature may be dis-
regarded ; or, in other words, as if’ the earth were a plane.



TRAVERSE SAILING. 5

But the sum of these partial departures, b a@ of Fig. 1, is
evidently less than C E, the distance between the meridians
left and arrived at on the parallel C E, which is nearest the
equator; and greater than B A, the distance of these merid-
ians on the parallel B A, which is farthest from the equator.
But it is nearly equal to F G, the distance of these meridians
on a middle parallel between C and A; and we take then
L, =} (L + L), as the latitude for the departure, p.

6. Middle Latitude Sailing regards the departure, p, as
the distance between the meridian left and that arrived at on
the middle parallel of latitude ; or takes L, = } (L + L).

TRAVERSE BSAILING.

7. If the ship sail on several courses, instead of a single
course, she describes an irregular track, which is called a
Traverse. ) ' .

ProsLEM 8. To reduce several courses and distances
to a single course and distance, and find the correspond-
Ing differences of latitude and departure.

Solution. If in Fig. 1 we regard C as different for each
partial triangle, and represent the several courses by Cy, C;,
Cs, ete., we evidently have

!, = d, cos C,, P =d; sin O,
L= d, cos Cy, Py = d, sin G,
ls = dy cos Cj, ete. Ps = dy sin Cy, ete.

and [l] =L+ 4L+, ete, [P] =P + P2 + ps, ete.;
or, as in the more simple case of a single course,

The whole difference of latitude is equal to the sum of the
partial differences of lutitude ;

The whole departure is equal to the sum of the purtial de-
partures. ‘
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This applies to all cases, if we use the word sum in its
general or algebraic sense.

If we represent by L, the sum of the northern diffs. of latitude,

{3 113 _L‘ 143 southern ¢ 11
“ “ P, “ western departures,
113 [{3 ‘PG 113 eastem [{1

we have as the arithmetical formulas,

[?] = Ln ~ L, of the same name as the greater,
[p] —_ Pw ~ Pe 113 143 113 113 13

which accord with the usual rules. (Bowp., Arts. 115, 155.)
The Traverse Form (pp.10 and 11) facilitates the compu-
tation.
The course, (), and distance [d], corresponding to [/] and
[ 2], may be found nearly by Plane Sailing.*

8. The departure may be regarded as measured on the
middle parallel, either between the extreme parallels of the
traverse, or between that of the latitude left and that arrived
at. In a very irregular traverse it is difficult to determine the

* C and [d] are not accurately found, because [p], the sum of the
partial departures of the traverse, is not the same as p, the departure of
the loxodromiic curve connecting the extremities of the traverse. Thus,
suppose a ship to sail from C to A by
the traverse C B, B A, her departure
will be by traverse sailing d e+ mn;
whereas, if the ship sail directly from
C to A, the departure will be o p, which
is greater or less than d e 4+ m n, accord-
ing as it is nearer to, or farther from
the equator. Thus we should obtain
in the two cases a different course and
distance between the same two points.
In ordinary practice, however, such dif-
ference is immaterial.




PARALLEL SAILING. 7

precise parallel ; but, except near the pole, and for a distance
exceeding an ordinary day’s run, the middle latitude suffices.

It is easy, however, to separate a traverse into two or
more portions, and compute for each separately.

PARALLEL SAILING.

9. The relations of the quantities C, d, /, and p are ex-
pressed in equations (3). When the difference of longitude
also enters, then some further considerations are necessary,
since the earth’s surface must now be regarded, not as plane,
but spherical.

ProBLEM 4. To find the relations between —

L, the latitude of a parallel,
P, the departure of two meridians on that parallel, and
D, the corresponding difference of longitude.

Solution. In Fig. 3, let

PA A/, PCC be two meridians.

A C = p, their departure on the paral-
lel AC, whose latitude is AOA’ gl A
= 0A B = Z, and whose radius is
BA=n~r

A’ ¢’ = D, the measure of AP C, the <
difference of longitude of the same G
meridians, on the equator A’C/, Fig. 8.
whose radius is O A’ = 0 A = R.

A C, A’ ' are similar arcs of two circles, and are therefore
to each other as the radii of those circles; that is,

AC:A’C=BA:04A, or p: D=r:R.

In the right triangle O B A,

BA=0OA XcosOAB, or r=~RcosL; (4)

P

b,
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that is, the radius of a parallel of latitude is equal to the radius
of the equator multiplied by the cosine of the latitude.
Substituting (4) in the preceding proportion, we obtain
p:D=cos L:1,
p=Decos L, D=psec L, 6)
which express the relations required. (Bowp., Art. 118.)

These relations may be graphically represented by a right
plane triangle (Fig. 4), of which

or

D is the hypothenuse, D

L, one of the angles,

P, the side adjacent that angle. P
Fig. 4.

The T'raverse Table, or Table of
Right Triangles, may therefore be used for the computation.
MIDDLE LATITUDE SAILING.

10. ProBLEM 5. Given the course and distance and
the latitude left, to find the difference of longitude.

Solution. By Plane Sailing,

. l=dcos C p=dsin C; ®)
by Arts. 2 and 6,
=L+l  L—yZ+D=L+il; @
and by equation (5),
D =p sec L,, )
or D = d sin Csec L. ®

Equations (3), (8), and (7) or (8) afford the solution required.

The assumption of L, = 4 (L' 4+ L), or the middle latitude,
suffices for the ordinary distance of a day’s run; but for larger
distances, and where precision is required, we should use
« Mercator’s Sailing” (Art. 14).
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11. Strictly, the middle latitude should be used only
when both latitudes, Z and Z’, are of the same name, as
is evident from Fig. 1.

If these latitudes are of different names, and the distance
is small, § (Z 4 Z'), numerically, may be used; or we may
even take p = D), since the meridians near the equator are
sensibly parallel.

If the distance is great, the two portions of the track on
different sides of the equator may be treated separately.
(Art. 18.)

‘When several courses and distances are sailed, as is ordi-
narily the case in a day’s run, p and / are found as in Trav-
erse Sailing, and then D by regarding p as on some parallel

midway between the extremes of the traverse. (Art. 3.)
(Bowp., Art. 155.)

12. The relations of the quantities involved in Middle
Latitude Sailing, namely,

O’d’p’ A Lo’a'nd D} E D

are represented graphically by combining g A
the two triangles of Plane Sailing and P
Parallel Sailing, as in Fig. 5, in which

C =ACB, I =CB, . ./

d =CA, L,=BAE

» =BA, D = AE,

By these two right triangles, all the ¢ Fig. 6.

common cases classed under Middle Lat-
itude Sailing (Bowp., Art. 121) may be solved, if we add the
formulas,

L'=L+41 N=A+D.
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ExaMPLE IN MIDDLE LATITUDE SAILING

1. Required the course and distance from San Francisco to
Yokohama.

San Francisco, 37°48’ N.  122°28" W. { Table 49,
Yokohama, 35°26’N. 139°39" E.( Bowbp.

l= 2°22 =142 D =97°53 = 5873’
L,=36°27" 1 cos 9.90546
log D 3.76886
ar. co. log ? 7.84771 logl 2.15229
C=28.88°17 W. 1 tan € 11.52203 1. sec C 11.52222
d = 4726 log d 3.67451

ExAMPLES IN TRAVERSE SAILING.

13. A ship from the position given at the head of each
of the following traverse forms sails the courses and dis-
tances stated in the first two columns; required her latitude
and longitude.

1. August 8, noon — Lat. by Obs., 35°35" N.
Long. by Chro.,18° 38’ W.

COURSES. DisT. N. S. E. W.
’ ’ ’ ’ ’
N.N.E.} E. 50 44.1 23.6
S.iW. 46.2 45.7 6.7
S. by E. 4 E. 16.5 15.8 4.8
N. E. 38 26.9 26.9
S.S.W.3W. 41.8 37.8 17.9
192.5 71.0 99.3 55.3 24.6
S.E.{ E. 41.5 28.3 30.7
38 = D.

August 9, noon — Lat. by Acet., 35° 7/ N.
Long. by Acct., 18° 0’ W.
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2. Apr. 23, noon — Lat. by Obs., 41° 31’ N.
Long. by Chro., 178° 25’ W.

COURSES. DisT. N. S. E. w.
S. 21°W. 29 27.1 10.4
S. 871°W. 20.6 16.5 12.4
S. 56° W. 72 40.3 59.7
S. T1I°W. 16.4 5.3 16.5
S. 82° W. 23.7 3.3 23.5
N. 88° W. 45 1.6 45

1.6 92.5 166.5
90.9 D =219.8

Apr. 24, 7 o.M, Lat. by Acet.,, 40° 00’.1 N.
Long. by Acect., 177° 55'.2 E.

In this example the courses are expressed in degrees,
which is the preferable method.

MERCATOR'S SAILING.

14. Middle Latitude Sailing suffices for the common pur-
poses of navigation ; but a more rigorous solution of problems
relating to the loxodromic curve is needed. These solutions
come under “ Mercator’s Sailing.”

ProBLEM 6. A ship sails from the equator on a given
course, C, till she arrives in a given latitude, L ; to find
the difference of longitude, D.

Solution. Let the sphere (Fig. 6) be projected upon the
plane of the equator stereographically. The primitive circle
ABC. .. .M is the equator.

P, its centre, is the pole (the eye or projecting point being
at the other pole).*

The radii, P A, P B, P C, etc., are meridians making the

* Principles of stereographic projection.
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same angle with each other in the projection as on the sur
face of the sphere.*

The distance P m, of any point
m from the centre of the projec-
tion, = tan } (90° — L), the tan-
gent of } the polar distance of the
point on the surface which m rep-
resents, the radius of the sphere
being 1.*

This curve in projection makes
the same angle with each merid-
ian as the loxodromic curve with
each meridian on the surface.*

A M is the whole difference of Longitude .D.

If we suppose this divided into an indefinite number of
equal parts, A B, BC, C D, etec., each indefinitely small, and
the meridians P A, P B, P C, etc., drawn, the intercepted small
arcs of the curve A dc....m may be regarded as straight
lines, making the angles P A3 Pbc¢, Pcd, ete., each equal
to the course C'; and consequently the triangles P A b, P b,
P c d, ete., similar. We have then

PA:Pb=Pb:Pc=Pc:Pdete,

or the geometrical progression,

If then H : HETEPRrE
D = the whole difference of longitude,

d = one of the equal parts of D,

g will be the number of parts, and

: g+ 1 the number of meridians P A, Pb....Pm,

* Principles of stereographic projection.



MERCATOR’S SAILING.

13

or the number of terms of the geometrical progression: and,

employing the usual notation,

the first term e =P A =1,
the last term = P m = tan } (90° — L),

n — 1 = E,
. Pb
the ratio r=ﬁ

To find this ratio, we have in the indefinitely small right

triangle A B, Bb

tanBAb=cotPAb=ﬁ’

PA_Pb
——d ’
whence PA—-Pb=d cot C;

Pb=PA —d cot C,
and, since P A =1, Pb

or cot C=

r= PA= 1—dcotC
Then by the formula for a geometrical progression,
l=arm),

(ALGEBRA, p. 240) we have

fan § (90° — L) = (1 — d cot C)e.

Taking the logarithm of each member, we have

log tan } (90° — L) ='g log (1 —d cot O).

But we have in the theory of logarithms
nt n® ot

(Naperian) 10g(1+n)=n_,-§+§_z+etc

and n

(Common) log (1 + n) =m[n—7—2lf+-3-—%‘+etc....

in which the modulus m = .434294482.

®)

.....
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Hence, putting 7= —d cot C,
log (1 —dcot C)=m[—dcot C—} d?cot? C
— } d®cot® C'—ete..... 1,

and substituting in (9) and reducing,
log tan } (90° — L) = — m X D [cot C+ } d cot? C
+ 4 d® cot® '+ ete....]. (11)
This equation is the more accurate the smaller d is taken,
so that if we pass to the limit and take d = 0, it becomes per-
fectly exact. The broken line Adc....m then becomes a
continuous curve, and our equation (11) becomes

log tan } (90° — L) = —m x D cot C;
whence
De _ log tan } (90

m

— L tan e (12)

But in this equation D is expressed in the same unit as
tan C, that is, in terms of radius. (Pr. TriG., Art. 11.)

To reduce it to minutes we must multiply it by the radius
in minutes, or ' = 3437'.74677.

Substituting the value of m, we shall have (in minutes),

_ 343774677
434294482
To avoid the negative sign, we observe that

_ 1 _ 1
)= ot 3(90° — L) tan } (90° 4 L)’

D= long tan } (90° — Z) tan C.

tan } (90° — L

or that
— log tan } (90° — L) = log tan } (90° + ).

Hence we have, by reducing,
D = 791570447 long tan (45° + } L) tan C. @13)

NoTE. — Problem 6 may be more readily solved, and equation (13)
obtained by aid of the Calculus.
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In Fig. 1, suppose c a to be an ele-
ment of the loxodromic curve C A:

cb will be the corresponding element
of the meridian, and

ba X sec L, the element of the equator;

L being the latitude of the indefinitely
small triangle ¢ a b.

By Articles 5 and 10, using the no-
tations of the Calculus, we have

dL=cosCdd dp=tanCdL
dD=sec Ldp =tan Csec LA L,

in which C is constant.

By integrating the last equation between the limits L = 0 and
L = L, we shall have

L,
D =tan cf sec Ld L,
0

the whole difference of longitude required in Problem 6.
To effect the integration, put

sin L = x, then by differentiating,
L= cgst ’ and multiplying by sec L,
dx dx
dL = =
sec L o L 1—sil’ "
sec LdL=-3%_.
1— x32

Resolving into partial fractions, we obtain

_ dx dx
sec LAL = % [1+x+—l—x] and

L
f sec Ld L = 4 [log (1+ x)—log (1 —x)]
0
14x
=1 ‘/_
8 1—x
=log /1+s§nL
1—sinL

= log tan (45°+ 4 L) PL. Tr1e. (154).
Whence we have D = log tan (45°+ 4 L) tan C.
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But in this the logarithm is Naperian, and D is expressed in terms of
the radius of the sphere. To reduce to common logarithms, we divide
by m = .434294482, and to minutes by multiplying by r’ = 3437°.74677,

and oblain 1 01570447 log tan (45° + 4 L) tan C,
as in (13).

15. Formula (13) is based upon the assumption that the
earth is a sphere. Allowing for the meridional eccentricity
of the earth, which according to Bessel is

29T152_8 — 0.003342773 = ¢,
the formula used for computing the table of meridional parts
is M — 79157045 log tan (45° + § L)
— a (¢ sin L+ } ¢* sin® L) (19

in which e =v2c¢— ¢ = 0.0816968,
and ae? = 22'.9448, 3 aet = 0.051047.

The values of M computed by (14) for each minute of Z
from 0° to 86° form the Table of Meridional Parts or Aug-
mented Latitudes. (Bowp., Table 3.)

In practice, then, we have only to take the value of M cor-
responding to L, and D is then found by the formula,

D =M tan C. (15)
M has the same name, or sign, as L.
16. ProBLEM 7. A ship sails from a latitude, L, to

another latitude, L', upon a given course, C; find the
difference of longitude, D.

Solution. Let
M be the augmental latitude corresponding to Z,
M« “ “ 13 A
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The difference of longitude from the point, 4, where the
track crosses the equator to the first position, whose latitude

is L, will be
.D/ =M tan C;

and to the second position, whose latitude is Z/,
D, =M tan C;
and we shall have
D=D,— D =M — M) tan C; (16)
or, when M’ < M,
D=D,—D,=(M— M) tan C;

since the sign of D is determined by the course,
1f L and I’ are of different names, so also are M and M",
and we have numerically

17. The difference, M’ — M, is called the meridional, or
augmented, difference of latitude. Representing this by m, we
have

The relation between these quantities
is represented by a plane right triangle E D F
(Fig. 7), in which

C is one of the angles,
m = C E, the side adjacent,
D = E F, the side opposite.

The triangle of ¢ Plane Sailing” has

the same angle C, with

! = C B, the adjacent side,
and p= B A, the opposite side. Tig. 7.
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Fig. 7 represents these two triangles combined. By them,
all the common cases under Mercator’s Sailing can be solved,
either by computation or by the Traverse Table. (Bowb.,
Art. 128.)

The relations between the several parts involved are

= d cos C, L' =L+
» =d sin C, m=M — M,
D = mtanC, N=A4+D; @18)
and since p=1tan C,
l:m=p:D.

18. ProBLEM 8. Given the latitudes and longitudes
of two places, find the course, distance, and departure.
(Bowp., Art. 128, Case I.)

Solution. Z and L’ being given, we take from Table 3 M
and M’. :
We have l= L' — L, m=M — M, D=)—x;

by Mercator’s Sailing, tan C = D

m )
and by Plane Sailing, d=1lsec C, p=1Itan C;

7, m, and C are north or south according as L’ is north or
south of L.
D, p, and C are east or west, according as X is east or west
of A.
If the two places are on opposite sides of the equator, we
have numerically
l=L'+ L, m=M 4+ M.

ExAMPLES.

1. Required the course and distance from Cape Frio to
Lizard Point, England.
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Cape Frio,
L=23°01'S. A =42000'W. M = 1410.7S.

Lizard Point,
L'=49°58 N. N = 5°12W. M =3453.8 N. log: D = 3.34400
1 =725 N. D=2386°48E. m =4864.5N. log m = 3.68704

C = N.24°24'48” E. 1. sec C = 0.04068 1. tan C = 9.65696
log | = 3.64137
d = 4809, log d = 3.65205

2. Required the course and distance from San Francisco to
Yokohama.

San Francisco,

37°48’ N. 122°28° W, M = 2439
Yokohama,
35°26’ N. 139°39" E. M’ = 2262.8 log D = 3.76886
1=2°22’S.D = 97°53 E.= 5873’ m = 176.2 co.log m = 17.75399
C = N. 91°43" W. 1. sec = 11.52308 1. tan C = 11.52285
or, S. 88°17" W. log! = 2.15229
d = 4735.5 log d = 3.67537

19. The loxodromic curve on the surface of the earth and
its stereographic projection (Fig. 6) present a peculiarity
worthy of notice. Excepting a meridian and parallel of lati-
tude, a line which makes the same angle with all the merid-
ians which it crosses would continually approach the pole,
until, after an indefinite number of revolutions, the distance
of the spiral from the pole would become less than any as-
signable quantity. It is usual to say that such a curve meets
the pole after an infinite number of revolutions. Still, how-
ever, it is limited in length.

For we have for the length of any portion,

by Plane Sailing, d= (L’ — L) sec C.
If L=0 andL’=90°=g,

the whole spiral from the equator to the pole will be, with
radius = 1,
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d =ZsecC.

jud

2

If L.—_—90°=_12', andL'=90°—_-’2i‘,

we have, as the entire length from pole to pole,
d==sec C.

If also C = 0, or the loxodromic curve is a meridian, d = =, a
semicircumnference, as it should be.

So also the length of the projected spiral 4 b¢. .. (Fig.
6) from A to m can readily be shown to be (calling this
length 3);

8= Mmsec C=[1— tan (45° — } L)] sec C,
or (PL. Trie., 151), 8= 2_;%2;
and its length from the equator to the pole, taking Z = 90°,
8 =sec C. -

A MERCATOR'S CHART.

20. On a Mercator’s chart, the equator and parallels of
latitude are represented by parallel straight lines; and the
meridians also by parallel straight lines at right angles with
the equator. Two parallels of latitude, usually those which
bound the chart, are divided into equal parts, commencing at
some meridian and using some convenient scale to represent
degrees, and subdivided to 10/, 2’, 1/, or some other convenient
part of a degree, according to the scale employed.

Two meridians, usually the extremes, are also divided into
degrees, and subdivided like the parallels of latitude, but by
a scale increasing constantly with the latitude : so that any
degree of latitude on such meridian, instead of being equal to
a degree of the equator, is the uugmented degree, or augmented
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difference of 1° of latitude, derived from a table of ¢ merndi-
onal parts.” (Bowp., Table 3.) The meridian is graduated
most conveniently by laying off from the equator the aug-
mented latitudes ; or from some parallel, the augmented differ-
ence of latitude for each degree and part of a degree, — using
the same scale of equal parts as for the equator.

21. As on other maps and charts, parallels of latitude and
meridians are drawn at convenient intervals; places, shore
lines of continents and islands, harbors and rivers, etc., are
plotted, each point in its proper position; and such configu-
rations of the land represented as the purpose of the map
requires.

22. To plot on a chart a point whose latitude and longitude
are given. By means of the scales at the sides, draw a paral-
lel of latitude in the latitude, and by means of the scales at
the top or bottom, a meridian in the longitude of the point;
or so much of each as suffices to find their intersection.

23. In nautical charts the soundings in shoal water are
put down, and even the character of the bottom ; and on those
of a large scale, also, the contour lines of the bottom, or lines
of equal depth. The variation of the compass at convenient
intervals, and lines of equal variation, are valuable additions.

24. The meridians on this chart being parallel, arcs of par-
allels of latitude are represented as equal to the corresponding
arcs of the equator: thus each is expanded in the proportion
of the secant of its latitude to 1; as is evident from the
formula

D = psec L.

It can be shown that very small portions of the meridians
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are expa:nded in the same proportion; as for example, a de-
gree whose middle latitude is 60° is 120, or,

60’ of the equator X sec 60°.
But the two half degrees are unequally expanded ; for

from 594° to 60° is represented by 59,
“ 60° to 604° “ “ 61, nearly.

A small circle on the surface of the earth of 1° diameter at
the equator is then represented by a circle, whose diameter is
1°;
in lat. 30° nearly by a circle, whose diameter is 1° X sec 30°,

143 60° “ €@ 1 “« 1° X sec 60°,
I L {3 {3 13 ¢« 1° X sec L;

but not exactly by a circle, since the meridians are augmented
more rapidly as the latitude is greater.

Such a chart, then, while representing a narrow belt at the
equator in proper proportions, presents a view of the earth’s
surface expanded at each point, both in latitude and longi-
tude, proportionally to the secant of its latitude.

25. If we take any two points, C F, on
this chart, and join them by a straight
line, and form a right triangle by a merid- B - /a
ian through one, and a parallel of latitude
through the other, we shall have the tri-.
angle of Mercator’s sailing (Fig. 8) : for the
intercepted portion of the meridian, C E,
is the augmented difference of latitude;
and of the parallel of latitude, E F, is the
difference of longitude. Hence the angle ¢
E CF is the course. (Art.17.) Moreover,

Fig. 8.
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the loxodromic curve is represented by the straight line CF;
for if we take any intermediate point of this curve, and let ¢
be its position on the chart, ¢ must be in the line CF, other-
wise when we construct the triangle of Mercator’s Sailing we
shall have an angle at C different from E CF, the course,
which for every point of the loxodromic curve is the same.

Thus a Mercator’s chart presents two decided advantages
for nautical purposes; viz.,

1. The ship’s track is represented by a right line.

2. The angle which this line makes with each meridian
is the course.

To find the course from one point to another on the chart,
all that is necessary is to draw a line, or lay down the edge
of a ruler, through the two points, and measure its angle
with any meridian. A convenient mode is to refer such line
by means of parallel rulers to the centre of one of the com-
pass diagrams, which usually will be found on the chart, and
reading the course from the diagram.

When such diagrams are constructed with reference to the
true meridian, the course obtained is the ¢rue course, and not
the magnetic course.

26. The distance C F, however, is an augmented distance,
which we may measure nearly by the augmented scale on the
meridians of the chart (the middle latitude of the scale used
being the same as that of the line CE). Or we may con-
struct the proper distance, C A, by constructing the triangle,
C B A, of Plane Sailing, in which C B is the proper difference
of latitude, the scale for which is on the equator.

The distance here spoken of, though represented on this
chart by a straight line, is not the shortest distance between
the two points; for on the surface of a sphere, the shortest
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distance between two points is the arc of a great circle which
joins them. To find this belongs to great-circle sailing.

27. In Polyconic Projection each parallel of latitude is
developed upon its own cone, the vertex of which is on the
axis at its intersection with the tangent to the meridian at
the parallel. The advantage of a chart so constructed is that
those portions lying near the central meridian will be but
little distorted.

The method of construction, together with ‘tables for the
Polyconic as well as Mercator’s Projection, are given in Pro-
jection Tables for the use of the United States Navy. (Bur.
Naven.).

GREAT-OIROLE SAILING.

28. The rhumb-line, or spiral curve, which cuts all the
meridians at the same angle, was used formerly by navi-
gators in passing from point to point on account of the
simplicity of the calculations required in practice. But, as
has been stated, it is a longer line than the great circle
between the same points, and therefore the intelligent navi-
gators of the present day are substituting the latter wherever
practicable.

On the Mercator chart, however, the arc of a great circle
joining two points, not on the equator or on the same me-
ridian, will not be projected into a straight line, but into a
curve longer than the Mercator distance, and still greater
than the distance on a rhumb-line. Hence it is an objection
to the Mercator chart, that the shortest route from point to
point appears on it as a circuitous one; and this is, doubtless,
one main reason why merely practical men have made so
little use of the great circle. Many of those unacquainted
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with the mathematical principles of the subject are unable
to comprehend how the apparently circuitous path on their
chart should actually be the line of shortest distance.

29. ProBLEM 9. To project on a chart the arc of a
great circle joining two given points on the globe.

Solution. It will be necessary to project a number of
points of the are, and trace through these points the curve
by hand. To project a point on the chart, we must know its
latitude and longitude.

The two given points, A and B
(Fig. 9), and the pole, P, are the
three angular points of a spher-
ical triangle, formed by the arcs
joining these points with each
other and with the pole. If from
P we draw P C, perpendicular to
A B, the point C, is nearer the
pole than any other point of A B;
that is, it is the point of maximum :
latitude. This point of greatest latitude is called the vertex
of the great circle.

To find the latitude and longitude of this vertex.

This may be done by a direct application of the rules of
Spherical Trigonometry, first finding the angles A and B by
Case 1. of Spx. TRr1G., and then solving one of the right tri-
angles A P (Cy, or BP C, But in practice the following
method is preferable.

Let L, = (90° — P A), and X, be the latitude and longitude
of A, the point left.
L, = (90° — P B), and X;, be the same of B, the point
arrived at.
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L, = (90° — P C,), and A, be the same of the vertex, C,.
A = (A; — Ay), is the difference of longitudes of A and B.

A B = d, is the distance between A and B. Draw A per-
pendicular to P A, dividing it into PD = ¢ and A D = 90°
— (L4 $)

Then in the triangles A B D, and B D P, by Napier’s Rules
(Sen. Trig., Art. 46) we have

cos A = tan ¢ tan Z, or, tan ¢ = cos A cot L, (19)

sin ¢ = cot A tan A (20)
cos (L, + ¢) = cot 4 tan K or,
cot 4 = cos (L, + ¢) cot A cosec ¢. (21)

A is the course from A.
In the right triangle P C; A, we have

cos L, =cos L, sin' A (22)

sin L, = cot 4 cot (A, — A;) or,
cot (A; — A,) = sin Z, tan 4. (23)
sin d sin 4 = cos L, sin A (check). (24)

30. 7o find any number of points, C', C", C", ete., C,, C,,
C,, etc., we may assume at pleasure the differences of longi-
tude from the vertex C, P C’, C, P C”, C, P C", ete. It is best
to assume them at equal intervals of 5° or 10°.

Let )M = C, PC, L = (90° —P C’), the lat. of C/,
A =C,P c”, L" = (90° —-P C"), ¢ c”,
)\”I — Co P C///, L — (900 —P C”’), « C’”

ete. ete.

then the right triangles C,P ¢/, C, P c”, C, P C”, ete., give

tan Z' =tan L, cos X,
tan Z” = tan L, cos )", (25)
tan L"” = tan L, cos X", ete.
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Or we may assume values of L', L”, L, etc., and find the

corresponding values of X, A”, A", ete., by the formulas

cos X' =tan L’ cot L,,
cos A" = tan L” cot L,, (28)
cos X' = tan L' cot L,, etc.

from which we shall have two values of A for each value
of L.

Having thus found. as many points as may be deemed
sufficient, we may plot them upon the chart, and through
them trace the required curve.

31. ProBLEM 10. To find the great-circle distance and
course between two given points.

Solution. Let d be the distance between the two points .4
and B (Fig. 9).

Then in the triangles BDP and 4DB, by Napier’s
Rules, we have,

sin L, = cos ¢ cos K, @7
cosd = sin (L, + ¢) cos K, (28)
cosd = sin (L, 4+ ¢) sin L, sec ¢, (29)
cotd = cos 4 tan (L, + ¢). (Check.) (30)

d, reduced to minutes, will be the distance in geographic miles.

The course from 4 is found by (21).

The course from B may be found from the right triangle

BC P, cos B = sin L, sin (A, — Xg). (31)

The vertex lies between A and B, unless either 4 or B is
> 90°.

32. ExamprLe. To find the great circle from San Fran-
cisco to Yokohama. (Formulas 19, 21, 22, 23, 25, 29.)
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San Francisco, ,

. o ‘.
Lat. L, = 37 48 N. Long. 122 28 W.
Yokohama,
L,= 35206 N. 139 39 E.
A —A,= 9753 cos—9.13722 cot — 9.14134
L,= 8526 cot 0.14870 sin 9.76324
L= 3748
@’ = 169°05'21” tan 9.28502 cosec 0.72290 sec — 0.00792
L, + ¢ = 206°53 21" cos — 9.95031 sin — 9.65540
C = N. 56°5240” W. cot 9.81455
d = 14°30'44” = 447016 cos 9.42656

o ’ 2

L,= 3748 cos 9.89771 sin 9.78739

C 56 52 40 sin 9.92299 tan 0.185456
L,=" 48 83 55 cos 9.82070
A=Ay = 46 47 26 cot 9.97284
=169 15 26 W.
LoNga.
FROM lcos!. 1. TAN L. LATITUDE. LONGITUDES.
VERTEX.

”

o o ¢ o 4 o ‘
0 0.00000 0.05421 48 3¢ N. 169 15W. 169 15W. (Vertex.)
+ 5 9.99834 0.052556 48 27 30 164 15 174 15

+ 10 9.99335 0.04756 48 08 159 15 179 156 W.
+ 15 9.98494 0.03915 47 36 154 15 175 45 E.
+20 9.97299 0.02720 46 48 149 15 170 45

+25 9.956728 0.01149 45 45 30 144 15 165 45
+30 9.93753 9.99174 44 27 30 139 15 160 45

35 9.91336 9.96757 42 52 134 15 155 45
+ 40 9.88425 9.93846 40 57 129 15 150 46
+45 9.84949 9.90370 38 42 124 15 145 46
+ 50 9.80807 9.86228 36 04 119 15 W. 140 45 E.

Course N. 56° 52"40” W. from San Francisco.
Distance = 44703 miles.
Distance by Mercator’s Sailing = 4735} miles.

33. To follow a great circle rigorously requires a contin-
ual change of the course. As this is difficult, and indeed in
many cases is practically impossible, on account of currents,
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adverse winds, ete., it is usual to sail from point to point by
compass, thus making rhumb-lines between these points.

When the ship has deviated from the great circle which
it was intended to pursue, it is necessary to make out a new
one from the point reached to the place of destination. It is
a waste of time to attempt to get back to an old line.

34. As the course, in order to follow a great circle, is
practically the most important element to be determined,
mechanical means of doing it have been devised. Towson’s
Tables and Bergen’s Tables are used by English navigators.

Charts are constructed by a gnomonic projection, on which
great circles are represented by straight lines; but by these,
computation is necessary to find the course.

35. A great circle between two points near the equator,
or near the same meridian, differs little from a loxodromic
curve. But when the differences both of latitude and of
longitude are large, the divergence is very semsible. It is
then that the great circle, as the line of shortest distance,
is preferred.

But it is to be noted that in either hemisphere the great-
circle route lies nearer the pole, and passes into a higher
latitude, than the loxodromic curve. Should it reach too
high a latitude, it is usually recommended to follow it to
the highest latitude to which it is prudent to go, then follow
that parallel until it intersects the great circle again.

36. A knowledge of great-circle sailing will often enable
the navigator to shape his course to better advantage. Let
A B (Fig. 10) be the loxodromic curve on a Mercator’s chart,
A C B the projected arc of a great circle.

The length on the globe of the great circle A C B is less
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than that of the rhumb-line A B, or of any other line, as
A D B, between the two. But A C B is also less than lines
' that may be drawn from A to B on
the other side of it, that is, nearer
, the pole; and there will be some
T line, as A D’ B, nearer the pole than
the great circle, and equal in length
to the rhumb-line. Between this and
the rhumb-line may be drawn curves
E Q from A to B, all less than the rhumb-
Fig. 10, line. If the wind should prevent
the ship from sailing on the great
circle, a course as near it as practicable should be selected.
If she cannot sail between A B and A C, there is the choice
of sailing nearer the equator than A B, or nearer the pole
than A C. The ship may be nearing the place B better by
the second than by the first, although on the chart it would
appear to be very far off from the direct course.

37. This may be strikingly illustrated by the extreme
case of a ship from a point in a high latitude to another on
the same parallel 180° distant in longitude. The great-circle
route is across the pole, while the rhumb-line is along the
small circle, the parallel of latitude, east or west; the two
courses differing 90°. Any arc of a small circle drawn be-
tween the two points, and lying between the pole and the
parallel of latitude, will be less than the arc of the parallel.
Hence the ship may sail on one of these small circles nearly
west, and make a less distance than on the Mercator rhumb,
or parallel due east. This is, indeed, an impossible case in
practice, but it gives an idea of the advantage to be gained
in any case by a knowledge of the great-circle route.
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It is possible in high latitudes that a ship may have such
a wind as to sail close-hauled on one tack on the rhumb-line,
and yet be approaching her port better by sailing on the
other tack, or twelve points from the rhumb-line course.

38. The routes between a number of prominent ports rec-
ommended by Captain Maury are mainly great-circle routes,
modified in some cases by his conclusions respecting the
prevailing winds.
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CHAPTER II

REFRACTION.—DIP OF THE HORIZON.—
PARALLAX. —SEMIDIAMETERS.

REFRACTION.

39. It is a fundamental law of optics, that a ray of light
passing from one medium into another of different density
is refracted, or bent from a rectilinear course. If it passes
from a lighter to a denser medium, it is bent toward the per-
pendicular to the surface which separates the two media; if
it passes from a denser to a lighter medium, it is bent from
that perpendicular. Let

M and N (Fig. 11) represent two me-
dia each of uniform density, but
the density, or refracting power,
of N being the greater;

a b c, the path of the ray of light
through them

P b, the normal line, or perpendicu-
lar, to the separating surface at &.

If a b is the incident ray, b c is the refracted ray; Pba
is the angle of incidence; P b a’ is the angle of refraction.

Paa

Fig. 11.

If ¢ b is the incident ray, b @ is the refracted ray, and
Pbd and P ba are respectively the angles of incidence and
refraction.

Moreover, these angles are in the same plane, which, as it
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passes through P §, is perpendicular to the surface at which
the refraction takes place; and we have for the refraction
dba=Pba—-Pbd,
or the difference of direction of the incident and refracted rays.
A more complete statement of the law for the same two
media is, that
sinPba
sinPbdo
or, the sines of the angles of incidence and refraction are in a

constant ratio.
This law is also true when the surface is curved as well as

=m, a constant for these media;

when it is a plane.

40. If the medium N, instead of being of uniform density,
is composed of parallel strata, each uniform but varying from
each other, the refracted ray & ¢ will
be a broken line; and if, as in Fig. 12,
the thickness of these strata is inde-
finitely small, and the density gradu-
ally increases in proceeding from the
surface b, b ¢ will become a curved
line. But we shall still have for any
point ¢ of this curve, ca’ being a
tangent to it,

sinPbda

sinPed

a constant for the particular stratum in which ¢ is situated.
This law, which is true for strata in parallel planes, ex-

tends also to parallel spherical strata, except that the normals

P b, P’ c are no longer parallel, but will meet at the centre of

the sphere. But the refraction takes place in the common

plane of these two normals.
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41. The earth’s atmosphere presents such a series of par-
allel spherical strata, denser at the surface of the earth, and
decreasing in density, until at the height of fifty miles the
refracting power is inappreciable. .

In Fig. 13, the concentric circles M N represent sections
of these parallel strata, formed by the vertical plane passing
through the star S and the
zenith of an observer at A.
The normals CAZ at A,
and C B E at B, are in this
vertical plane. S B, a ray
of light from the star S,
passes through the atmo-
sphere in the curve B A, and
is received by the observer
at A.

Let A S’ be a tangent to
this curve at A; then the Fig. 18.
apparent direction of the
star is that of the line A §’; and the astronomical refraction
is the difference of directions of the two lines BS and A §'.
This difference of directions is the difference of the angles
EBS, ED S/, which the lines S B, 8’A, make with any right
line C B E, which intersects them. If, then, » represent the

refraction, we have
r=EBS—-EDSF¥.

Also, E BS is the angle of incidence, and Z A §’, the appar-
ent zenith distance, is the angle of refraction; and we have

sinEBS
sinZAS

a constant ratio for a given condition of the atmosphere and
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a given position of A; but varying with the density of the
atmosphere, and for different elevations of A above the sur-
face. For a mean state of the atmosphere and at the surface
of the earth, experiments give m = 1.000294.

The principles of Arts. 39 and 40, applied to this case,
show that astronomical refraction takes place in vertical
planes, so as to increase the altitude of each star without
affecting its azimuth. The refraction must therefore be sub-
tracted from an observed altitude to reduce it to a true alti-

tude; or heH —r,

in which h is the true altitude,
k, the apparent altitude,
r, the refraction.

These laws are here assumed. The facts and reasoning on
which they depend belong to works on Optics. (Bowb., Art.
248.)

42. After a profound investigation of the problem, Laplace
obtained a complicated formula for determining the refrac-
tion. Bessel has modified and improved Laplace’s formula.
His tables of refraction are now considered the most reliable.
They are found in a convenient form for nautical problems in
Table 20, BowpircH. The mean refractions in this table are
for the height of the barometer 30 inches, and the temperature
50° Fahrenheit.*

43. Tables 21 and 22, BowpiTcs, contain corrections to be
applied to the normal refraction for changes in temperature
and barometric height, deduced also from Bessel’s Tables.

* Chauvenet's Astronomy, I, 127-172, contains a thorough investi-
gation of the problem of refraction, especially of Bessel’s formulas.
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44. When 4 = 90°, or the object is in the zenith, r =0;
that is, the path is a straight line.

When % =0, or the object is in the horizon, the ray of
light, nearly horizontal, describes near the earth’s surface a
curve which is approximately the arc of a circle whose radius
is seven times the radius of the earth; or,

R'=T7R.

This, however, is in a mean condition of the atmosphere.
The curve is greatly varied in extraordinary states of the at-
mosphere, or by passing near the earth’s surface of different
temperatures; in very rare cases even to the extent of becom-
ing convex to the surface a short distance.

DIP OF THE HORIZON.
45. ProBLEM 11. To find the dip of the horizon.

Solution. Let A (Fig. 14) be the position of the observer
at the height B A = A, above the
level of the sea; A H, perpendicu- H
lar to the vertical line, C A, repre-
sents the true horizon.

The most distant point of the
horizon visible from A is that at
which the visual ray, H” A, is tan-
gent to the earth’s surface.

The apparent direction of H”
is A H’, the tangent to the curve
AH”at A. AH=HAHis the
dip of the horizon to be found.

Let C be the centre of the earth,

(', the centre of the arc H” A.

H”, C, ¢, are in the same straight line, since the arcs H” B,
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H” A are tangent to each other at H”,
C A, C’ A, are perpendicular respectively to A H, A H’; hence
' CAC =HA H = A H, the dip.
Let R = C B, the radius of the earth;
then R4+ A=CA,
7 R=C' A = C'H”, the radius of curvature of H” A,
6 R=CC.

We have, then, in the triangle C A C’, by Pr. Trre. (268),
: 6 & —}h) (3h)
A H = \/gv M
sin § TRRERA+L
and, since % is comparatively very small, and may therefore
be omitted alongside of R,

. 3h
AH= -
sin § | R
or, putting sin § A H= 4 A Hsin 1",
2 3h 2 3 n
AH=—"_\/"=_—"_\/— .
wmr’ViE —sm1’VTRVE (32)
46. Taking R = 20902433 feet, we find the constant factor
2 /3 ”
A H=59".071 Vh, (33)
and log A H = 1.77137 4 4 log A,

% being expressed in feet, which is nearly the formula for
Table 14 (Bowbp.).

Since sin_21" \/7%% is constant, depending only upon the
radius of the earth, A A is proportional to V4, or the dip
is proportional to the square root of the height of the ob-
server above the level of the sea.
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47. Were the path of the ray, H” A, a straight line, we
should have ANH=HAH’'=H"C A
and in the triangle H”C A,

R
cos A, H= -m’
whence, 2sin? 4 A" H = R{l{- i = 1%, nearly,
and = sin 1" ' R
or with A in feet, A" H = 63".803 Vh. (34)

Comparing this with A H = 59".07 V&, we find
AH=NH—4"733Vh=AH— 074 A H,

or that the dip is decreased by refraction by .074, or nearly
P of it.

But from the irregularity of the refraction of horizontal
rays (Art. 44), the dip varies considerably, so that the tabu-
lated dip for the height of 16 feet can be relied on ordinarily
only within 2. When the temperatures of the air and water
differ greatly, variations of the dip from its mean value as
great as 4’ may be experienced. In some rare cases, varia-
tions of 8’ have been found.

The dip may be directly measured by a dip-sector. A
series of such measurements carefully made, and under dif-
ferent circumstances, both as to the height of the eye, tem-
perature and pressure of the atmosphere, and temperature of
the water, is greatly needed.

48. Professor Chauvenet (AsTrON., [, 176) has deduced the
following formula, which it is desirable to test by observa-
tions. —
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in seconds, A H = A’ H — 24021” —"—H-

or in minutes, A H = A’ H — 6'.67 -A,—;
in which ¢t is the temperature of the air,

t, that of the water,
by a Fahrenheit thermometer.

When the sea is warmer than the air, the visible horizon
is found to be below its mean position, or the dip is greater
than the tabulated value; when the sea is colder than the
air, the dip is less than its tabulated value. (RAPER’S Nav.,
p. 61.)

This uncertainty of the dip affects to the same extent all
altitudes observed with the sea horizon.

49. Near the shore, or in a harbor, the horizon may be
obstructed by the land. (Bowp., Art. 253.) The shore-line
may then be used for altitudes instead of the proper horizon.
Table 15 (Bowbp.) contains the dip of such water-line, or of
any object on the water, for different heights in feet and dis-
tances in sea miles. It is computed by the formula

3 o
D =7d+ 0565147 (35)

in which
/ is the height in feet ;
d, the distance of the object in sea miles;

D, the dip in minutes.

50. ProBLEM 12. To find the distance of an object of
known height, which Is just visible in the horizon.

Solution. If the observer is at the surface of the earth at the
point H” (Fig. 15), a point A appears in the horizon, or is just
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visible, when the visual ray A H”
just touches the earth at H”. Let
h = B A, the height of A,

d =H" A, the distance of A.
As this arc is very small, we have
d=H'CAsinl”x C'A

=TRXxH"C Asinl”,
since CA=T7R.

From the three sides of the tri-
angle C C’ A by Pr. Tric. (268),

. " A — TA(R+1LA)

sin § H"C' A o m

ornearly 4 H”C Asinl"= 84LR’

and H” ¢ Asin1” =/

21 R
This, substituted in the expression for d, gives

d=1 R\/g=\/<§]i’h). | (36)

In this, d, A, and R are expressed in the same denomination.
But if 4 and R are in feet,

. . 1 7
1 d=_——— !
in statute miles, 5980 \/ <3 R h>,

. . . 1 7
hical mile d=_——\/[ = .
1n geographica ny es, 60802 \/ <3 R ];,)

Taking B = 20902433 feet as before, we find
in stat. miles d = 1.328 V/4, or log & = 0.12156 + } log A, -
ingeog. “ d=1.148 VA, orlogd = 0.05994 + } log A. @7)

The first of these is nearly the formula given in BowbpiTcu
for computing Table 6.
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51. Were the visual ray, H” A, a straight line, we should
have from the right triangle ¢ H” A,

H’"A= /(CA*—H"C?,ord' =V 2R+ h) h;
or nearly d'=V2R x Vh

Introducing the same numerical values as before, we have
in statute miles
& =1.225 Vh
Comparing this with the expression above, we see that the
distance is increased about {4 part by refraction. This, how-
ever, is subject to great uncertainty. :

52. If the observer is also elevated at the height of B’ A’
(Fig. 16), and sees the object A in his horizon, then its dis-
tance is AHY 4 H” A,

. or the sum of the distances of each
4_H A from the common horizon, H”.

B By entering Table 6 with the heights
of the observer and the object respect-
ively, the sum of the corresponding

¢ distances is the distance of the object

Fig. 16. from the observer. The distances in

this table are in statute miles. Multi-

pl?;ing them by 60802 = .86839, reduces them to geographical
miles.

PARALLAX.

53. The change of the direction of an object, arising from
a change of the point from which it is viewed, is called paral-
lax ; and it is always expressed by the angle at the object,
which is subtended by the line joining the two points of view.
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Thus in Fig. 17, the object S would be seen from A in the
direction A S; and from C in the direction C S. The angle
at S, subtended by A C, is the difference of these directions,
or the parallax for the two points of view, C and A.

V' 54. In astronomical ob-
servations, the observer is
on the surface of the earth;
the conventional point to
which it is most convenient
H A to reduce them, wherever
S~ they may be made, is the
earth’s centre. In those
problems of practical as-
tronomy which are used by
the navigator, we have only
to consider this geocentric
parallax, which is the dif-
ference of the direction of a body seen from the surface.and
from the centre of the earth. It may also be defined to be
the angle at the body subtended by that radius of the earth
which passes through the place of the observer. Thus, in
Fig. 17, if

s

Fig. 17.

C is the centre of the earth, and
A the place of the observer,

the geocentric parallax of a body, S, will be the angle
' S=ZAS—-2ZCS,
at the body subtended by the radius C A.

If the earth is regarded as a sphere, C AZ will be the
vertical line through A, and will pass through the zenith, Z.
Then will the plane of C A 8 be a vertical plane;
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Z A S, the apparent zenith distance of S as observed at A ;
Z CS, its geocentric or ¢rue zenith distance; and
ZAS>ZCS.

Thus we see that this parallax takes place in a vertical plane,
and increases the zenith distance, or decreases the altitude, of
a heavenly body without affecting its azimuth.

55. This suffices for all nautical problems except the com-
plete reduction of lunar distances.
For these and the more refined obser-
vations at observatories, the spheroidal
form of the earth must be considered.
Then, as in Fig. 18, the radius CA
does not coincide with the normal or
vertical line C’ A Z, but meets the Pig. 10.
celestial sphere at a point Z’, in the
celestial meridian, nearer the equator than the zenith, Z.

We may remark here that
A C” E, the angle which the vertical line makes with the

equator, is the latitude of A ; and
A CE, the angle which the radius makes with the equator is
its geocentric latitude.

56. ProBLEM 13. To find the parallax of a heavenly
body for a given altitude.

Solution. In Fig. 17 let
p = 8, the parallax in altitude;
z=2Z A S, the apparent zenith distance of S, corrected for
refraction ;
R = C A, the radius of the earth;
d = CS8, the distance of the body S, from the centre of the
earth.
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Then from the triangle C A S, we have

A CA .
SIDUSA=C—SSIDCAS,

. Rsinz

or, sinp=—g7—, (38)
If the object is in the horizon as at H, the angle A HC is
called its horizontal parallax; and denoting it by P, we have

from (38), or from the right triangle C A H,
| sin P = %, (39)
which, substituted in (38), gives
sin p = sin P sin 2. (40)

If A =90° — 2z, the apparent altitude of the object, we
have —
‘ sin p = sin P cos A; 41)

or nearly, since p and P are small angles,

p= P cos h. (42)

57. The horizontal parallax P, is given in the Nautical
Almanac for the sun, moon, and planets. From Fig. 17 it is
obviously the semidiameter of the earth, as viewed from the
body. As the equatorial semidiameter is larger than any
other, so also will be the equatorial horizontal parallax. This
is what is given in the Almanac for the moon. Strictly, it
requires reduction for the latitude of the observer, and such
reduction is made at observatories, and in the higher order of
astronomical observations. It is given in Table 19 (Bown.).

58. Tables 16 and 17 (Bowp.) are computed by formula
(42).

Table 23 contains the correction of the moon’s altitude for
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parallax and refraction corresponding to a mean value of the
horizontal parallax, 57° 30”. It should be used, however,
only for very rough observations, or a coarse approximation.

59. Table 24 contains, to each minuté of horizontal paral-
lax, and every 10’ of altitude from 5°, the combined correction
for parallax and refraction of the apparent altitude of the
moon’s centre: barom., 30”; therm., 50° F. Before using
this table, the observed altitude of the moon’s limb should
be corrected for instrumental errors, dip, and semidiameter.

APPARENT SEMIDIAMETERS.

60. The apparent diameter of a body is the angle which
its disk subtends at the place of the observer.

ProBLEM 14. To find the apparent semidiameter of a
heavenly body.

Solution. In Fig. 19, let M be the body ;

d = C M, its distance from the centre of the earth;

d = A M, its distance from A ;

» = M B, its linear radius or
semidiameter ;

¢ = M C B, its apparent semidi-
ameter, as viewed from
C;

¢ = M A B, its apparent semi-
diameter, as viewed from
A (B and B’ are too near
each other to be distin-
guished in the diagram);

R = C A, the earth’s radius. Fig. 10.
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1. For finding s, the right triangle C B M, gives
. r
sin 8 = 7 (43)

Were the body M in the horizon of A, or Z A M = 90°, its
distance from A and C would be sensibly the same, so that
the angle s is called the Aorizontal semidiameter.

In (39) we have for the horizontal parallax,

. R R
Slh.P:'('i—, Ord=§h1_P,
which, substituted in (43), gives
sin s = 112 sin P, (49)
or nearly, since s and P are small,
r
8= 7] P, (46)

,
R

ratio of its linear diameter to that of the earth.
For the moon,

is constant for any particular body, as it is simply the

r

7= 0.272,
s= 0272 P,
' _ ’ (46)
and . log s = 9.43457 + log P.

By this formula the moon’s horizontal semidiameter may
be found from its horizontal parallax. (NavuT. ALm., p. 506.)

The Nautical Almanac contains the semidiameters as well
as the horizontal parallaxes of the sun, moon, and planets.

2. For finding ¢, the apparent semidiameter as viewed
by an observer at A on the surface of the earth, the right tri-
angle A B' M gives

sin ¢ = g; (a7)
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In the triangle CM A,
sintMAC_CM
sinhMCA AM’
or, putting h =90° — Z A M, the apparent,

and K = 90° — Z CM, the true altitude of M,
cosh d
cos X (48)
whence, & =a =¥ ’
cos A

which, substituted in (47), and by (43), gives

Lo 7 cos A . cosh
sin ¢ = =ging——
dcosh’ cos K’
. h
or approximatel & =5 2%8 49
PP ¥ cos 7’ (49)

by which 8’ may be found when s and % are known.

Since A < //, cos h > cos /, and consequently ¢’ > &; that
is, the semidiameter increases with the altitude of the body.
The excess

A s = § — s, is called the augmentation.
The moon is the only body for which this augmentation is
sensible. It is given in Table 18 (Bowb.).
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CHAPTER IIL
TIME.

61. 7Transit. The instant when any point of the celestial
sphere is on a given meridian is designated as the transit of
the point over that meridian.

62. Hour-angle. The hour-angle of any point of the sphere
is the angle at the pole which the circle of declination pass-
ing through the point makes with the meridian. It is prop-
erly reckoned from the upper branch of the meridian, and
positively toward the west. It is usually expressed in hours,
minutes, and seconds of time. The intercepted arc of the
equator is the measure of this angle.

63. Sidereal Time. The intervals between the successive
transits of any fixed point of the sphere (as, for instance, of
a star which has no proper motion) over the same meridian
would be perfectly equal, were it not for the variable effect
of nutation. . This correction, arising from a change in the
position of the earth’s axis, is most perceptible in its effect
upon the transit of stars near the vanishing point of that
axis, i.e., near the poles of the heavens. Hence, for the exact
measurement of time, we use the transits of some point of the
equator, as the vernal equinox. This point is often called the
JSirst point of Aries. Its usual symbol is ep.
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64. The interval between two successive transits of the
vernal equinox is a sidereal day,; and such a day is regarded
as commencing at the instant of the transit of that point.
The sidereal time is then 0# 0™ 05 This instant is sometimes
called sidereal noon.

The effect of nutation and precession in changing the time
of the transit of the vernal equinox is so nearly the same at
two successive transits, that the sidereal days thus defined
are sensibly equal. It is unnecessary, then, except in refined
discussions, to discriminate between mean and apparent
sidereal time.

65. The sidereal time at any instant is the hour-angle of
the vernal equinox at that instant, and is reckoned on the
equator from the meridian westward around the entire cir-
cle; that is, from O to 244 Tt is equal to the right ascension
of the meridian at the same instant.

66. Solar Time. The interval between two successive
transits of the sun over a given meridian is a solar day, and
the hour-angle of the sun at any instant is the solar time of
that instant.

In consequence of the motion of the earth about the sun
from west to east, the sun appears to have a like motion
among the stars at such a rate that it increases its right
ascension daily nearly 1°, or 4™ of time. With reference to
the fixed stars, it therefore arrives at the meridian each day
about 4™ later than on the previous day; consequently, solar
days are about 4™ longer than sidereal days.

67. Apparent and Mean Solar Time. If the sun changed
its right ascension uniformly each day, solar days would be
exactly equal. But the sun’s motion in right ascension is not
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uniform, varying from 3™ 35* to 4™ 26* in a solar day. There
are two reasons for this, —

1. The sun does not move in the equator, but in the
ecliptic.

2. Its motion in the ecliptic is not uniform, being most
rapid at the time of the earth’s perihelion, about January 1,
and slowest at the time of the aphelion, about July 2.

To obtain a uniform measure of time depending on the
sun’s motion, the following method is adopted. A fictitious
sun, called a mean sun, is supposed to move uniformly in the
ecliptic at such a rate as to return to the perigee and apogee
at the same time with the true sun. A second mean sun is
also supposed to move uniformly in the egquator at the same
rate that the first moves in the ecliptic, and to return to each
equinox at the same time with the first mean sun.

The time which is measured by the motion of this sec-
ond mean sun is uniform in its increase, and is called mean
time.

That which is denoted by the true sun is called ¢rue or
apparent time.

The difference between mean and apparent time is called
the equation of time. It is also the difference of the right
ascensions of the true and mean suns.

The instant of transit of the true sun over a given merid-
ian is called apparent noon.  The instant of transit of the
second mean sun is called mean noon. The mean time is
then 0* 0™ 0s.

Mean noon occurs, then, sometimes before and sometimes
after apparent noon, the greatest difference being about 16m,
early in November.

68. Astronomical Time. The solar day (apparent or
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mean) is regarded by astronomers as commencing at noon
(apparent or mean), and is divided into 24 hours, numbered
successively from 0 to 24.

Astronomical time (apparent or mean) is, then, the hour-
angle of the sun (true or mean) reckoned on the equator
westward throughout the entire circle from 04 to 245,

69. Civil Time. For the common purposes of life, it is
more convenient to begin the day at midnight; that is, when
the sun is on the meridian below the horizon, or at the sun’s
lower transit. The civil day begins 12* before the astronomi-
cal day of the same date; and is divided into two periods of
12* each, namely, from midnight to noon, marked A.m. (ante-
meridian), and from noon to midnight, marked p.m. (post-
meridian). Both apparent and mean time are used.

The affixes A.mM. and p.M. distinguish civil time from astro-
nomical time. During the p.M. period, this is the only distine-
tion, — the day, hours, etc., being the same in both.

70. Sea-Time. TFormerly, in sea-usage, the day was sup-
posed to commence at noon, 12* before the civil day, and 24»
before the astronomical day of the same date ; and was divided
into two periods, the same as the civil day. Sea-time is now
rarely used.

71. To convert civil into astronomical time, it is only neces-
sary to drop the a.M. or .M., and when the civil time is A.M.,
deduct 1¢ from the day, and increase the hours by 12

To convert astronomical into civil time, if the hours are
less than 125 simply\aﬁix p.M.; if the hours are 12% or more
than 124, deduct 124 add 14, and affix A.m.
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ExAMPLES.
ASTRONOMICAL TIME. CIVIL TIME.
da h m s d B m s

1860 May 10 14 15 10 = 1860 May 11 2 15 10 A.M.
1862 Sept. 8 9 19 20 = 1862 Sept. 8 9 19 20 p.M.
1863 Jan. 3 23 22 16 = 1863 Jan. 4 11 22 16 A.M.
1863 Jan. 4 0 330 =1863Jan. 4 0 330P.M.

72. The hour-angle of the sun (true or mean), at any nie-
ridian, is called the local (apparent or mean) solar time. The
hour-angle of the sun (true or mean) at Greenwich at the
same instant is the corresponding Greenwich time.

So also the hour-angle of % at any meridian, and its hour-
angle at Greenwich at the same instant, are corresponding
local and Greenwich sidereal times.

73. The difference of the local times of any two
meridians Is equal to the difference of longitude of those
meridians.

Demonstration. In Fig. 20, let
P M, P M’ be the celestial meridians
of two places; M
P S, the declination circle through o
the sun (true or mean); 3
M P S, the hour-angle of the sun at M
all places whose meridian is P M, Fig. 80.
will be the local time (apparent or mean) at those places ;
soalso -
M’P S will be the corresponding local time at all places
whose meridian is P M’; and
MPM =MPS — M'P S will be the difference of longitude
of the two meridians.
If P < is the equinoctial colure,
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MP % and M’ P ¥ will be the corresponding sidereal times at
the two meridians; still, however,
MPM=MPY —MP°r. :
The proposition is true, then, whether the times compa,red
are apparent, mean, or sidereal.
The difference of longitude is here expressed in time. It
is readily reduced to arc by observing that

244 — 360° o —gn
1» = 15° ,
or 11" =4
i = 15 o
15 = 15”7 =1s

In comparing corresponding times of different meridians,
the most easterly meridian is that at which the time is great-
est.

74. If (Fig. 20) P M is the meridian of Greenwich,
M P S is the Greenwich solar time, and
M P M’ the longitude of the meridian P M’.
MPM=MPS-MPS;
soalso MPM=MPY —-MPY¥;

or, the longitude of any meridian i3 equal to the difference be-
tween the local time of that meridian and the corresponding
Greerwich time.

76. If we put

T, = M P S, the Greenwich time,

7 = M’'P S, the corresponding local time,

A = M P M/, the longitude of the meridian, P M,
we have A=T,— T,
and Ty=T + A } (50)
in which X is 4 for west longitudes, and 7, and 7" are sup-
posed to be reckoned always westward from their respective
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meridians from 0* to 24%; that is, 7} and 7 are the astronom-
ical times, which should always be used in all astronomical
computations.

76. Usually the first operation in most computations of
nautical astronomy is to convert the local civil time into the
corresponding astronomical time (Art. 71).

The Greenwich time should never be otherwise expressed
than astronomically. On this account it would be convenient
to have chronometers intended for nautical or astronomical
purposes marked from 0* to 24% instead of 0* to 12* as is now
customary with sea-chronometers.

77. The second operation often required is to convert the
local astronomical time into Greenwich time. For this we
have (50), which numerically is

+ when the longitude is west,

T,=T {
0 £M_ when it is east,
and, in words, gives the following

Rure. Having expressed the local time astronomically,
add the longitude, if west; subtract it, if east: the result is
the corresponding Greenwich time.

TIME.

ExAmpLES.

1. In Long. 76° 32" W., the local time being 1898, April
149237 10* A.M., what is the Greenwich time ?
Local Ast. T. = March 31921% 3m 10*

Longitude = + 56 8
G.T.=April 1 29 18
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2. In Long. 30° E., the local time being March 20¢ 6" 3™
A.M., what is the G. T.?

Loc. Ast. T. = March 194184 3m
Long. = - 20

G. T. = March 19 16 3

3. In Long. 105° 15" E., the local time being August
21444 3m p.m., what is the G. T.?
Loc. Ast. T. = August 219 44 3m»
Long. = - 71
G. T. = August 2021 2

By reversing this process, that is, by subtracting the longi-
tude if west, or adding it if east, we may reduce the Green-
wich time to the corresponding local time.

When observations are noted by a chronometer regulated
to Greenwich time, an approximate knowledge of the longi-
tude and local time is necessary in order to determine whether
the chronometer time is A.m., or p.M., and thus fix the true
Greenwich date. If the time is A.m., the hours must be in-
creased by 125,

ExAMPLES.

1. In Long. 5* W, about 3" p.M., on August 3% the Green-
wich chronometer shows 8 117 74, and is fast of G. T. 6™ 10
What is the Greenwich time ?

Approx. Loc. T. Aug. 393* G. Chro. 8h11m 70
Long. +5 Correction — 6 10
Approx. G. T. Aug. 3984 G.T. Aug."398% 4m 57+

2. In Long. 10* E., about 1 a.m., on December 74, the G.
Chro. shows 3%14m 13¢5, and is fast 251847, Find the G. T.

Approx. Loc. T. Dec. 64134 G. Chro. 3h14m 1325
Long. —10 Correction —25 187

Approx. G. T. Dec. 64 3% G. T. Dec. 69 2 48m54+.8
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3. In Long. 9* 12™ W,, about 2* A.m., on February 13¢,
the G. Chro. shows 11%* 27 1343, and is fast 30™ 30%.3. Find
the G. T.

Approx. Loc. T. Feb. 124 14* (om G. Chro. 11227m 1323
Long. + 912 Correction — 30 303

Approx. G. T. Feb. 12923 12m G. T. Feb. 12422h56m 43,0

The operations on the approximate times may be per-
formed mentally.

78. Standard Time. By this system, introduced origi-
nally for the convenience of railways and now adopted by the
United States and other countries, the civil mean time of cer-
tain standard meridians is used throughout the adjacent dis-
tricts. The standard meridians are one hour (15°) apart, and
those in use in North Amerleca are the 60th, 75th, 90th, 105th
and 120th meridians west from Greenwich; the times are
designated respectively Intercolonial, Eastern, Central, Moun-
tain, and Pacific. The belts of territory for 7}° on each side
of a standard use as far as possible the time of that meridian.

To reduce Local Mean Time to Standard Time. If the
local meridian is E. of the standard, subtract the difference
of longitude between the two meridians from the 1. m. t., and
if W., add it.
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CHAPTER IV.
THE NAUTICAL ALMANAC.

79. TaE American Ephemeris and Nautical Almanac «is
divided into two distinct parts. One part is designed for the
special use of navigators, and is adapted to the meridian of
Greenwich. The other is suited to the convenience of astron-
omers, on this continent particularly, and is adapted to the
meridian of Washington.”

80. The Nautical part of this Ephemeris and the British
Nautical Almanac give at regular intervals of Greenwich time
the apparent right ascensions and declinations of the sun,
moon, planets, and prinecipal fixed stars, the equation of time,
the horizontal parallaxes and semidiameters of the sun, moon,
and planets, and other quantities, some of which little concern
the navigator, but are needed by astronomers.

81. Before we can find the value of any of these quanti-
ties for a given local time, we must first find the correspond-
ing Greemwich time (Art. 77). When this time is exactly one
of the instants for which the required quantity is put down
in the Almanae, it is only necessary to transcribe the quan-
tity as it is there given. When, as is mostly the case, the
time falls between two Almanac dates, the required quantity
is to be obtained by interpolation. And generally, except
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when great precision is desired, it is sufficient to use first
differences omly ; that is, regard the changes of the quantity
as proportional to the small intervals of time which are em-
ployed. :

Thus, for a day, the change of the sun’s right ascension
may be regarded as uniform, so that for 1% it is g of the
daily change; for 2%, & ; and in general for any part of a day
it will be the same part of the daily change.

Generally, then, if

A, represent the quantity in the Almanac for a date preced-
ing the given Greenwich time;

A,, its change in the time, T';

t, the time after the Almanac date for which the value of the
quantity is required, expressed in the same unit as 7, and

A, the required value;

we have, A=A4,+ _tf' A (61)

When 4, is increasing, A; has the same sign as A4,; but
when 4, is decreasing, A, has the opposite sign.

82. If the given time is nearer the subsequent than the

preceding Almanac date, it may be convenient to interpolate
backward. If, then, 4, represent the quantity in the Almanac
for a subsequent Greenwich date, and ¢’ the time before the
Almanac date, we have

A=Al—%A1. (52)

83. The Almanac contains the rate of change, or difference
of each of the principal quantities for some wunit of time.
Thus, in the Ephemeris of the sun and planets, the ¢« Diff. for
147 in part of that of the moon, the « Diff. for 17’ are given.
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If ¢ or ¢’ is expressed in the same unit of time as that for

which the « Diff.,” A,, is given, formulas (51) and (52) become
A= AO + ¢ Al,} (63)
A=A, -t A,

Thus, for using Aowrly differences, we wish the hours,
minutes, etc., of the Greenwich time expressed in hours and
parts of an hour; for using the differences for 17, we wish
the minutes and seconds of Greenwich time expressed in min-
utes and parts of a minute. Decimal parts are usually most
convenient, though some computers prefer aliquot parts.

84. The quantities in the Almanae, as commonly in other
mathematical tables, are approximate numbers, that is, each
is given only to the nearest unit of the lowest retained order;
and no refinement of interpolation can give a result to a
higher degree of precision. In interpolating, more than one
lower order in any case is superfluous. Thus, the sun’s dec-
lination is given to the nearest 0”.1, and in no way can we
by interpolation obtain a value which will be reliable within
a narrower limit.

Moreover, the Greenwich times are uncertain to a greater
or less extent; and if first differences only are used, the in-
terpolated result can be regarded as true only within much
wider limits than the approximation of the Ephemeris.

In interpolating, then, it is well to consider the degree of
approximation which is wanted in any particular case; and
if the nearest 1’, or 10”, or 1” suffices, contract the interpo-
lation so as to retain at the most one lower order; or else,
consider the degree of approximation attainable in any par-
ticular case, and contract the work so as to retain only the
reliable figures. All lower orders are superfluous, and are
deceptive, as giving the appearance of a higher degree of
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accuracy than has actually been obtained; as, for instance,
using tenths and Aundredths of seconds, when the data will
give a result reliable within 2’ or 3 only.

85. Should it be desirable to interpolate more accurately
than can be done by first differences alone, the reduction for
second differences may be introduced by a simple process.

Let A; be the change of A, in the time 7".. Then, instead
of A,, as found in the Almanac for the nearest Greenwich
date, we may substitute

14
A+ Wi Ay (64)

that is, the value of A,, interpolated for } ¢, or to the middle
instant between the Almanac date and the given time. This
is simply using the mean rate of change during the in-
terval.

If A, is a “Diff. for 1»” given for the Almanac for each
day, 7" = 24*; if A, is a “Diff. for 1m” given in the Al
manac for each hour, 7"’ = 60™.

The interpolation of A, to the middle instant may often
be performed mentally.

ExaAmMPLE.

If the sun’s right ascension for 1898, Jan. 30, 8* 9™ time
be required, we find in the Almanac,
for Jan. 30 0* A, =10".244
A, = — 07.035
31 0% A, =10".209
and by interpolation for Jan. 30 4% the middle instant be-
tween Jan. 30 0* and Jan. 30 8%

A, = 10".244 — 0".006 = 10"”.238,
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which is the mean hourly change in the interval from 0%
to 8~

86. Formula (54), however, applies only to an Ephemeris
where the differences for 1* or for 1, which are designated
by A,, are given for the same instants of Greenwich time
as the functions, 4, to which they belong.* For instance,
the « Diff. for 1*” given for noon Jaun. 14, is in the Ameri-
can Ephemeris the change per hour at Jan. 14 0#; and the
same in the British Almanac.

87. ProBLEM 15. To find from the Almanac a required
quantity for a given mean time at a given place.

Solution. The preceding considerations lead to the fol-
lowing rule:—

1. Express the given mean time astronomically, stating
the day as well as the hours, etc., and reduce it to Green-
wich mean time by adding the longitude, if west; subtracting,
if east.

2. Take from the Almanac for the nearest preceding mean
time date the required quantity and the corresponding ¢ Diff.
for 14" or « Diff. for 1™,” noting the name or sign of each;
multiply the «Diff. for 1»” by the hours and parts of an
hour, or the «Diff. for 1™” by the minutes and parts of
a minute, of the remaining Greenwich time; and add the
product algebraically.

Or, take out for the nearest subsequent date the required
quantity and its difference; multiply the ¢« Diff.” by the
hours and parts of an hour, or the minutes and parts of a

* The ‘ Prop. Logs. of Diff.” of the Lunar Distances are given
for the middle instant.
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minute, of the interval from the given Greenwich date to the
Almanac date; and subtract the product algebraically.

When greater precision is required, interpolate the differ-
ence to the middle instant between the given Greenwich date
and the Almanac date, and use the result instead of the dif-
ference given in the Almanac.

This rule is applicable to all those quantities which are
given at regular intervals of Greenwich mean time, except the
moon’s meridian passage and age and lunar distances.

For the «“Sidereal Time at Greenwich Mean Noon,” on
p- II of each month, the «Diff. for 1*”.is 9%.8565; Table 3
of the American Ephemeris, for converting a mean solar into
a sidereal interval, may be used for the interpolation.

The ¢“Mean Time of Sidereal 0% on p. III, is given at in-
tervals of 24* of sidereal time. The ¢ Diff. for 1#” is — 95.8296;
and Table 2, for converting a sidereal into a mean solar inter-
val, may be used.

88. The quantities given in the American Ephemeris for
Washington mean time may be interpolated in the same way,
by reducing the local time to Washington time instead of to
Greenwich time.

89. The apparent places of the fixed stars are given in
the British Almanac for the upper transit over the meridian
of Greenwich; in the American, for the upper transit over
the Meridian of Washington. In the latter, the Washington
mean time is given. The sidereal time at either place for the
instant of transit is the right ascension of the star (Art. 65).

Generally, the position given for the nearest day suffices.
But if greater precision is required, it is necessary to reduce
the local mean time to the sidereal time of the prime merid-
ian, and interpolate for it.
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90. In the following examples the required quantities are
taken from the American Ephemeris, and interpolated to the
nearest second by first differences (53), and to the highest
precision attainable by 2d differences (64). [Ordinarily, in-
terpolation to the nearest second by (53) suffices for the
practical purposes of navigation.]

ExAMPLES.
For the local mean time, 1898, Jan. 30¢ 9 14m 30° A.m.
in Long. 163° 14" W., find the following quantities from the
Nautical Almanac: —

The equation of time.

©’s right ascension, D’s declination,
©’s declination, ’s horizontal parallax,
D’s right ascension, D’s semidiameter;

The R. ascension and declination of o Scorpii (Antares).

Ast. mean time, 1865, Jan, 299 215 14™ 30¢

Long. + 10 52 56
G. mean time, 1865, Jan.30 8 7 26
8 7.433
8.1239
1. The Equation of Time (Page II).
m s m s 8
Jan. 80, 0%, 13 34.14 + 0.387 13 84.14 4 0.387 A, = —.035
8.124 .035
S.22% —0 g = —,
3.1 24 * 006
+3.15 { .04 + 0.381 (at 4%)
.01 8.124
13 37.29 3.048
.038
3.10
+ .008
Subtractive from mean time, 13 37.24

2. The O’s right ascension (Page II).
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A m s A m s
Jan. 80, 0% 20 52 32.2 + 10.244 20523223+10244 A, =—.035
82. 035
— = x4=—.006
+1232 { 1.0 24 *
2 +10.288 (at 44)
20 53 56.4 81.904
+123.17 { 1.02¢
205356.40 - 041
3. The O’s declination (Page II).
Jan. 30,  — 1734060 4ild2 —1731040 +41.42 A= 4+.77
831.4 7—21 x 4= +.13
+536.5 8 41.55 (at 4%)
amas - 332.40
—1723 21 418
+531.88] o0
—172826.44° 17
4. The D’s right ascension (Page XII).
Am s Am s
Jan. 30,84,  32330.8+42.1083 3 2330.77 +2.1083 A, = + .0026
7.433 0026 _
148 . Tgo X3T=+.0002
+ 15.7{ 8 + 2.1085 (at 3™.7)
1 7.433
3 23 46.5 14760
15.8
+ 15.67 43
3 23 46.44 6

5. The D’s declination (Page XII).

o v uw

Jan. 30, 3%, +2326059+624 + 23 26 05.9 +6240 A= —.109

3. 109 av_
+4e.4{2.5 —go X 3T=—00
2 + 6.283 (at 3m.7)
+232652.3 T
4 2.49
+463] 249

+232852.2 ¢ 02
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6. The D’s horizontal parallax (Page IV).

¢ i

”

Jan. 30,04,  5424.7—0.78 54247— 018  As= +0.21
63 21
- 2l 4 =
831 1 RXt=t 0
54 18.4 —0.71 (at 4%)
5.68
N
54 18.9

7. The D’s semidiameter (Page IV).

4 ’” ’” / 4
Jan. 80, 04 14 51.4 — 2.2 in 12k 14 51.4 5 Vi
—1.5 in 8% : 272
14 49.9 115
—1.6 {.040
.001
14 49.8

In Art. (60) we have for the moon, s = .272 P; whence
As=.272 A P:
so that the reduction of the semidiameter may be readily
found by multiplying that of the horizontal parallax by .272,
as in the above example. (NaAuT. ALm., p. 506.)

The right ascension and declination of « Scorpii (Antares).

The Washington (long. + 5* 08™ 12¢) mean time is Jan. 30,
2* 59™ 14¢, or Jan. 30.124. On page 299, which serves as an
index, the mean R. A. is 16* 23m. The apparent R. A. and
Dec. (p. 346) are for Jan. 29.8 m. t. Washington.

A m s

o s w ”
R. A. 16 23 09.92 +035 Dec. —26 12 24.6 — 0.7 (10d)
change in + 0.325d + .01 — .02
16 23 09.43 — 26 12 24.62

91. ProBLEM 16. To find from the Almanac the sun’s
right ascension and declination, and the equation of time
for a given apparent time at a given place.
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Solution. This differs from the preceding problem simply
in using the apparent instead of the mean time, and in taking
the quantities from page I for the month, where they are
given for apparent noon, instead of from page II, where they
are given for mean noon.

92. ProBLEM 17. 7o find the right ascension and dec-
lination of the sun, and the equation of time at apparent
noon of a given place, or when the sun is on the meridian.

Solution. The local apparent time is 0* 0™ 0%, The Green-
wich apparent time is then equal to the longitude if west ; that
is, it is after the noon of the same date by a number of hours,
etc., equal to the longitude. If the longitude is east, the
Greenwich apparent time is before the noon of the same date
by a number of hours, ete., equal to the longitude.

Hence, take these quantities from the Almanac for Green-
wich apparent noon (p. I) of the same day as the local (eivil)
day, and apply a correction equal to the hourly difference mul-
tiplied by the hours and parts of an hour of the longitude;
observing to add or subtract the correction, according as the
numbers in the Almmanac may require, for a time after noon,
if the longitude is west,; for a time defore noon, if the longi-
tude is east.

ExAMPLES.

1. Find the sun’s right ascension and declination, and the
equation of time for apparent noon, 1898, Jan. 30, in Long.
163° 14’ W.

A m s A m s
1. Long. + 10 52 56 O’'s R. A. 20 52 34.55 + 10.237 »
= + 10.882 102.37 in 10
+151.40 8.19 in .8
in .08

20 54 25.95 .02 in  .002
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m s L]
© @©’sdec. —17°83'547.6 + 417.61 Eq. of t. + 13 34.28 + 0.379

416”.1 3.79
’ Qo 33 .29 + 4.12 { .30
27,
+ 7828 3 .33 .03
.08
—17°26'21".8 + 18 38.35

2. For apparent noon, 1898, March 21, in Long. 163° 14’ E.

A m s Ams [
2. Long. — 10 52 56 ©’'s R. A. 003 20.43 4 9.103
= — 10.882 . 91.03
7.28
—139.08
M8
.02
0 01 41.37
m s s
©’s dec. +0°21"44”.8 + 59”.28 Eq. of t. + 7 13.44 — 0.752
592”.3 .52
‘447 477.38 + 8.18 { .60
— 10" 44”.5
0 4”714 .08
12

+ 0°11°00”.3 . + 721.62

In the first and second examples the Diffs. for 1* have
been interpolated for 5.5 or half the longitude, forward in
the first, back in the second ; ordinarily such precision is un-
necessary.

93. ProBLEM 18. To find the right ascension of the
mean sun for a given time and place.

Solution. At the instant of mean noon, or when the mean
sun is on the meridian, at any place, the right ascension of the
mean sun is equal to the sidereal time. The quantity on page
II of each month, in the Almanac, called ¢ sidereal time,” is
also the right ascension of the mean sun at Greenwich mean
noon, and may be interpolated for a given local time in the
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same way as the right ascension of the true sun. (Pros. 15.)
The constant ¢ Diff. for 17 is 9.8565. A table for convert-
ing mean time into sidereal time intervals (Table III) facili-
tates the interpolation.

We have also the right ascension of the mean sun equal to
that of the true sun 4 the equation of time, using for the
equation of time the sign of its application to mean time.

94. ProBLEM 19. To find the mean time of the moon’s
transit over a given meridian on a given day.

Solution. The Almanac contains the mean time of each
transit of the moon over the meridian of Greenwich (p. IV).
This mean time is the hour-angle of the mean sun (Art. 72)
when the moon is on the meridian; and is therefore the dif-
ference of right ascension of the moon and the mean sun. As
this difference is constantly increasing, in consequence of the
moon’s more rapid increase of right ascension, the mean time
of each transit is later than that of the one preceding by a
number of minutes, varying, according to the rate of the moon’s
motion from 40™ to 66™.

If, then, T, and T, denote the mean times of two successive
transits of the moon over the Greenwich meridian, T, — T, is
the retardation of the moon in passing over 24* of longitude;
so that for any longitude A (expressed in hours) the retarda-
tion is nearly

A
o (T—T). (55)

The mean time of a transit is, then, reduced from the
Greenwich to any other meridian by interpolating for the
longitude; jforward, if the longitude is west,; backward, if
the longitude is east, since east longitudes are regarded as
negative.
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The American Ephemeris gives also the hourly differences,
which facilitate the interpolation. For greater exactness,
these differences may be interpolated for iaif the longitude.
The practical rule will be: —

Take from the Almanac the mean time of meridian passage
for the given astronomical* day, and add to it the product of
the « Diff. for 1"’ by the longitude in hours, if the longitude
is west; subtract that product if the longitude is east,; or it
may be taken from Table 2 (Bown.). The mean time of merid-
ian passage for the given day, and that for the day folowing
in west longitude, or for the day preceding in east longitude,
are those which are commonly used. But it is more exact to
use half the difference of the times of meridian passage for
the day preceding and the day following the given day: g of
this is the « Diff. for 1*” of the American Ephemeris.

The times of transit are given only to tenths of a minute,
which suffices the purposes of the navigator. They may be
found more exactly for any meridian by the method here-
after given in PROBLEM 27.

95. ProBLEM 20. To find on a given day the mean
time of transit of a planet over a given meridian.

Solution. The mean time of each meridian passage at
Greenwich is given, in the Almanae, for each planet. It
may be reduced to any meridian in the same way as for the
moon ; except that, in the case of an acceleratwn, the sign of
the reduction is reversed.

* It is important to notice whether the mean time of transit is more

or less than 125, 1In the former case, the astronomical day is 14 less
than the civil day.
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ExaMPLEs.

1. InLong. 100° 15’ W., find the times of meridian passage
of the moon and Jupiter for 1898, June 7 (civil day).

Long. 4 6*41™0* = - 6*.683.

) A m m ."M »n
M. T. of mer. pass., June 6, 14 32.2 + 2.49 June 7,6 59.4 —38.8 inld.
14.94 0.96 in 6+ |
1.49 -11 .10 in .6
+16.61 "~ 99 { 01 in .08
.01
June 7, 248.8, A.M. June 7, 6 58.3, P.M.

2. In Long. 100°15" E., for 1898, June 7 (civil day), find
the times of meridian passage for the moon and Jupiter.

Long. —6*41"0* = — 6*.683.

D ]
A m m A m »n
M. T. of mer. pass., June 6, 14 32.2 4- 2.56 June 7,6 59.4 —3.8 in1d.
15.30 0.95 in 6%
—17.04 188 +1.1 { .10in .6
.20 .01 in .08
.01
June 7, 215.2, A.M. June 7, 7 00.5, P.M.

In the case of the moon the hourly differences have been
interpolated for half the longitude. (Ordinarily this pre-
cision is unnecessary.)

96. ProBLEM 21. To find the right ascension or dec-
lination of the moon, or a planet, at the time of its
transit over a given meridian on a given day.

Solution. Find the local mean time of transit, as in Pros-
LEM 19; deduce the corresponding Greenwich time by ap-
plying the longitude; and for this Greenwich time take out
the right ascension or declination, as in PrRoBLEM 15.
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If the time of transit has been noted by a clock or chro-
nometer, regulated to either local or Greenwich time, it should
be used in preference to the time of transit computed from
the Almanac.

97. ProBLEM 22. To find the Greenwich mean time
of a given lunar distance.

Solution. The angular distances of the moon from the sun,
the principal planets, and several selected stars, are given in
the Almanac for each 3* of Greenwich mean time.

If d represent the given distance;

d,, the nearest distance of the same body in the Almanac

preceding in time the given distance;

A,, the change of distance in 3*;

t, the required time (in hours) from the date of dy;

by (51) we have approximately, using 1st differences only,
¢
d= do + 3_5 4,

whence, for the inverse interpolation,

3)&
= A (@ — dy), (56)
or, with ¢ in seconds of time, which is better for computation,
10800
t= @— d,), (57)

“in which it is most convement to express A, and (d — d;) in
seconds.
Then by logarithms :

log ¢ = log (@ — dy) + log 10800

(68)

_A1_ s the change of distance in 1*; hence log 10800 , is the

10800 4,
ar. complement of the «log diff. for 1°.”
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It is given in the Almanac for the middle instant between
the tabulated distances under the head «“P. L.* of Diff.”;
the index, which is 0, and the separatrix being omitted.

In the same way, if

d, represent the distance in the Almanac following the given
distance ; and
t, the interval before the date of d,

we shall have by (62)

d=d1—3—t:An

35

and V== (d — d),
A,

or with ¢ in seconds, and by logarithms,

10800
A,

log ¢'=log (d, — &) + log (69)

The computation is simplified by using a table of ¢loga-
rithms of small ares in space or time.” It differs from the
common table of logarithms only in having the argument in
sexagesimal instead of natural numbers. With such a table
it is unnecessary to reduce differences of distance to seconds,
or to first find the intervals of time in seconds.

From (58) and (69) we have the following rule: Find in
the Almanac the two distances between which the given
distance falls; take out the nearest of these, the hours of
Greenwich time over it, and the «P. L. of Diff.” between
them. Find the difference between the distance taken from
the Almanac and the given distance; and to the log. of this
difference add the ¢«P. L. of Diff.” from the Almanac. The
sum is the log. of an interval of time to be added to the hours
of Greenwich time taken from the Almanac, when the earlier

* Proportional Logarithm. t Table 34 (Bowb.).
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Almanac distance is used ; to be subtracted from the hours of
Greenwich time when the later Almanac distance is used.
(Chauvenet’s “ Lunar Method,” p. 8.)

98. The result, however, may not be sufficiently approxi-
mate, owing to the neglect of 2d differences. To correet it for
2d differences, Table 10 of Chauvenet’s Method, Table I of
the Almanac, or Table 35 (Bowp.) may be used. For either,
take the difference between the two Prop. Logs., which pre-
cede and follow the one taken from the Almanac. With half
this difference, and the interval of time just found, enter the
table and take out the seconds, which are to be added to
the approximate Greenwich time when the Prop. Logs. are
decreasing, but subtracted when they are increasing.

Second differences may also be introduced by first finding,
or estimating, the Greenwich mean time to the nearest 10m,
and interpolating the Prop. Log. in the Almanac to the middle
instant between that time and the Almanac hour used, as in
Art. 88 for direct interpolation.

99. Maskelyne, the author of the present arrangement of
lunar distances, to facilitate their interpolation, devised what
he chose to call proportional logarithms.

If n represent any number of seconds, either of space or
10800

n
Table 45 (Bowbp.) contains these proportional logarithms

for each second of n from 0 to 3°, or to 3% the argument being
in°’” or in #m 4  But such a table is less useful for other
purposes than Table I of the American Ephemeris, previously
referred to.

Dividing both members of (57) by 10800, and inverting,
we have

time, the proportional logarithm of n is the log. of
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10800 _ A, x 10800
) 10800 © d — &y’
and P.logt="P.log (d — &) — P.log A, (60)
which accords with the rule in Art. 310 (Bown.).

100. ExamPLE.

1898, Oct. 27, the distance of Fomalhaut from the-moon’s
centre is 52° 3’ 35", what is the Greenwich mean time ?

o s uw

d= 52 335
Oct. 27, 15% d, = 514115 P. log 0.3328 diff. — 22
d—d,= 2220 log 8.1271

t =+ 04800 log 3.4594
Red for 2d diff. + 05 Table 35 (Bown.).

G. m. t., Oct. 27, 15 48 05
or, by back interpolation,

o s w
d = 52 335
Oct. 27, 184, d;= 53 5 P. log 0.3323 diff. — 22
d—d= 1125 log 3.5664
=—2h12m log 3.8987
Red for 2d diff. + 05

G. m. t., Oct. 27, 15 48 05
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CHAPTER V.

CONVERSION OF THE SEVERAL KINDS OF TIME.—
RELATION OF TIME AND HOUR-ANGLES.

CONVERSION OF TIME,

101. PROBLEM 23. To convert apparent into mean
time, or mean into apparent time.

Solution. For the same instant, let

T,, represent the local mean time;

T,, the local apparent time ; and

E, the equation of time with the sign of its application to
apparent time. .

Then, since the equation of time is the difference of mean and

apparent times (Art. 67),

Tm= Ta +-E;}

T, -T,—E (1)

The reduction, then, is made by finding from the Almanac the
equation of time for a given apparent time, from page I of
the month (Pros. 16), or for a given mean time from page II
(Pros. 15), and applying it to the given time according to the
precept at the head of the column where it is found.

102. The equation of time on page I is sometimes called
the mean time of apparent noon ; and on page II the apparent
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time of mean noon. Regarding it, as in (61), as the reduction
of apparent to mean time, it indicates, when additive and in-
creasing, or subtractive and decreasing, that mean time is
gaining on apparent time.

103. ProBLEM 24. To convert a mean into a sidereal
time Interval, or a sidereal into a mean time interval.

Solution. The sidereal year is 365.25636 mean solar days,
or 366.25636 sidereal days; so that the same interval of time
which is measured by 365425636 reckoned in mean time, is
measured by 3664.25636 if reckoned in sidereal time. Since
both are uniform measures of time, if we represent any inter-
val by

¢, if expressed in mean time,
8, if expressed in sidereal time, then
8 _ 366.25636

Z = 365.25636 — 1.0027379;
whence
8 =1.0027379 ¢t = ¢t + .0027379 ¢, (62)
t = 0.9972696 s = s — .0027304 s, (63)

by which the reduction from one to the other may be made.
The computation is facilitated by Table II of the American
‘Ephemeris, for converting sidereal into mean solar time, which
contains for each second of s the value of .0027304 s; and by
‘Table III, for converting mean solar into sidereal time, which
contains for each second of ¢ the value of .0027379 .
Tables 8 and 9 (Bown.) contain the same quantities.

104. If in (62) ¢ = 24*; s = 24* 3™ 56°.5553; or in a mean
solar day sidereal time gains on mean time 3™ 564.5553. In
1% of mean time the gain is 92.8565.

If in (63) s = 24"*; t = 24" — 3m 5549094 ; or in a sidereal
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day mean time Joses on sidereal time 3m 55:9094. In 1% of
sidereal time the loss is 9°.8296.

If ¢ and s in the last term are expressed in Aours (62), and
(63) become

8 =04 9.8565 ¢, } o)

t=8— 9.8296 s;

by which the reductions may be more readily calculated,
when the tables are not at hand.

105. ProBLEM 25. To convert mean time at a given
place into sidereal time.

Solution. Let )
A represent the longitude of the place, expressed in time,
+ when west,
T, the local mean time,
8, the corresponding sidereal time,
¢, the interval from mean noon in mean time (differing
from 7" only by omitting the day),
8, the same interval in sidereql time,
§,, the sidereal time of mean noon at Greenwich,
§,/, the sidereal time of mean noon at the place;

then, since A expresses the Greenwich time of local noon,
(Art. 92), '
8y = 8,4+ .0027379 A ;
evidently S= s+ 8,/ (65)
and by (62) s = t+4.0027379 ¢;
whence we have :
S= t+ 8,4+ .0027379 (A 4+ ?). (e8)
The Almanac (page II) contains S, for each Greenwich
mean noon, under the head ¢ Sidereal Time.”” It should be
taken out for the given astronomical day of the place;
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.0027379 X is then the reduction for longitude, additive in
west longitude, subtractive in east. It, as well as .0027379 ¢,
the reduction to a sidereal interval, may be taken from Table
IIT of the Almanac, or from Table 9 (Bown.); or either may
be computed by (62), or first of (64).

From (66), then, we have the following rule:

To the local mean time add the sidereal time of Greenwich
mean noon of the given astronomical day, the reduction of this
sidereal time for the longitude of the place, and the reduction
of the hours, minutes, etc., of the mean time to a sidereal
interval.

The astronomical (solar) day is usually retained. But if
it be desirable to state the sidereal day, as well as the hours,
etc., of the sidereal time, we prefix to §, the sidereal day at
- the instant of mean noon, which is the same as the astronom-
ical day after the vernal equinox of each year; one day less
before that date. At the instant of the vernal equinox the
sidereal time and mean solar time coincide. Before that time
the mean sun transits before the vernal equinox; after that
time it transits after the vernal equinox.

106. 7'+ X is the Greenwich mean time. When this is
given, or found in the course of computation, it will be more
convenient to take out &, for the Greenwich day, and the
combined reduction, .0027379 (¢ 4 X), for the hours, minutes,
ete., of Greenwich mean time, instead of for ¢ and X separately.

It should be noted, however, that in the first method (Art.
105), 8, is taken out for the local day; in this, it is taken
out for the Greenwich day, provided X 4 ¢, as used, expresses
properly the Greenwich time.

107. S, 4 .0027379 (¢ 4 A) is the «“sidereal time ” of the
Almanac interpolated for the Greenwich mean time. Tt is
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more convenient to term it the right ascension of the mean sun
(Art. 93) ; and then the translation of (66) will be, the sidereal
time is equal to the right ascension of the mean sun + the mean
time.
This is also evident from Fig. 21, in which
P is the pole;
"P M, the meridian; ‘ P
%, the vernal equinox ;
¥ M, the equator. M
¥ M is also the right ascension
of the meridian, and measures S
MP o, the hour-angle of <, or Fig. 21.
the sidereal time (Art. 65).
If P8 is the declination-circle passing through the mean
sun, % S is the right ascension of the mean sun, and
MPS is its hour-angle or the mean time (Art. 72), and is
measured by the arc of the equator, S M. ,
Evidently Y M= S48 M (67)
The hour-angles M P ¢y M P S, are reckoned from the
meridian toward the west; hour-angles east from the meridian
are then regarded as negative.
If PS is the declination-circle of the true sun, then will
% S be the right ascension, and
M P S the hour-angle of the true sun; and
S M will measure the apparent time,
and the interpretation of (67) will be, the sidereal time is equal
to the right ascension of the true sun + the apparent time.

ExAMPLES

1. Find the sidereal time of 1898, Jan. 30, 10* 15~ 26+.6,
ast. mean time in long. 150° 13’ 10” (10* O™ 52:.7) W.



80 NAVIGATION.

FIRST METHOD.

A m s
L. m. t., Jan. 30, 10 15 26.6
S,, 20 38 58.09
Red. for long.,, + 138.71
Red. of L.m.t., + 141.1
Sid. time, 667 44.6

S8ECOND METHOD.

A m 3
L. m. t., Jan. 30, 1015 26.6
Long. + 10 052.7
G.m. t.,, Jan. 30, 2016 19.3
L.m.t., 10 15 26.6
So, 20 38 58.09
Red. for G.m.t., + 319.81
Sid. time, 657445

2. Find the sidereal time of 1898, Jan. 30, 10* 15™ 26.6,
ast. mean time in long. 10* 0™ 5247 E.

A m 3

L. m. t., Jan. 30,
o,

Red. for long., -
+ 141.10
6 54 27.08

Red. of L. m. t.,
Sid. time,

10 15 26.6
20 38 58.09

188.71 ) maple 111

3. Find the sidereal time of 1898, Sept. 25, 21* 16™ 15%, in

long. 60° 13" (= 4* 0™ 52°) W.
A m s
L. m. t., Sept. 25, 21 16 15
Sy 12 17 18.26
Red. for long., + 0 39.67
Red. of L. m.t., + 3 29.66
Sid. time, 9 37 42.49

A m 3
L. m. t., Sept. 25, 21 18 15
Long., + 4 052
G.m.t., Sept. 26, 11707
Sy, 12 21 14.82
Red. G. m. t., + 012.67
Sid. time, 9 37 42.49

4. Find the sidereal time of 1898, Sept. 25, 3*16™ 15%.0, in

long. 8* 16™ 2543 E.

h m s
L.m. t., Sept. 25, 3 16 15
So» 12 17 18.26
Red. for long.,, — 121.55
Red. of L. m. t., 4 032.24
Sid. time, 15 32 43.95

Am s
L.m. t., Sept. 25, 316 15
Long., — 816 25.3
G.m. t., Sept. 24, 18 59 49.7
Sy, 12 13 21.71
Red. for G. m.t., + 3 07.25
Sid. time, 15 32 43.96
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108. ProBLEM 26. To convert sidereal time at any
place Into mean time.

Ist Solution. The sidereal time at mean noon at the place
is from (65)
Sy = 8§, + .0027379 A;

the sidereal interval from mean noon,

8=8—8'=8— 8 —.0027379 A ; (68)
and from (63) the corresponding mean time interval,
t =28 —.0027304 s. (69)

The mean time 7"is completed by prefixing to ¢ the astronom-
ical day.

From (68) and (69) we have the following rule:

From the local sidereal time subtract the sidereal time of
Greenwich mean moon of the given astronomical day and the
reduction of this sidereal time for the longitude of the place ;
and from the sidereul interval thus obtained subtract the reduc-
tion to a mean time interval ; and to the result prefix the given
astronomical day.

The local sidereal time may be increased by 24” if neces-
sary. The reduction for longitude, .0027379 A, may be taken
from Table III of the Almanac, or from Table 9 (Bown.); nu-
merically, it is subtractive in west longitude, additive in east,
as applied to the given sidereal time. The reduction of the
sidereal interval, .0027304 s, may be taken from Table II, or
from Table 8 (Bown.), and is always subtractive.

2d Solution. Let
M, represent the “mean time of the preceding sidereal 0*” at
Greenwich ;

M,’, the “mean time of the preceding sidereal 0*” at the
place ;
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S, the interval from 0? in sidereal time ;
t, the same interval in mean time:

then, since A will be the sidereal interval between the Green-
wich and local sidereal 0* (Art. 92),

My = M,— 0027304 ),

evidently, T=1t+ M/,
and by (63) t= 8 —.0027304 S;
whence we have
T= 84 M,— .0027304 (A 4 S). (70)

The Almanac (page IIT) contains, M, for the Greenwich
sidereal 0* on each mean day. The Almanac date of the pre-
ceding sidereal 0* is generally the same as the local astronom-
ical date when the sidereal time is Jess than the ¢ sidereal
" time at mean noon” (page II), but 1¢ less when the sidereal
time is greater than that at mean noon. The doubtful case is
when the mean time is within 4™ of noon: the comparison
must then be made with the sidereal time at the nearest local
mean noon.

The reduction of M, to the local meridian is —.0027304 A,
which may be taken from Table II, or from Table 8 (Bown.).
It is subtractive in west longitude, additive in east. :

The reduction of the sidereal interval, .0027304 S, may be
taken from the same tables; it is always subtractive.

The combined reduction, .0027304 (A + §), may be taken
out for the Greenwich sidereal time, (A + &), instead of for
A and S separately; but with these precautions, that when
A+ 8> 24 M, may be taken out for 14 later than stated
in the previous precept, and interpolated for the excess
of (A 4+ 8) over 24*; and when (A 4 §) is negative, to retain
its negative character, or else take out M, for one day
earlier.
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3d Solution. From (66) we have
t=8—[8,+.0027379 (t+ N)], (1)

so that, when the Greenwich mean time (¢ + A) is sufficiently
known, we may find for it the right ascension of the mean
sun (Art. 107),

8, + .0027379 (¢t + A),

and subtract it from the given sidereal time: or, the mean
time 18 equal to the sidereal time — the right ascension of the
mean sun. So also we have from Art. 107 the precept: the
apparent time 13 equal to the sidereal time — the right ascension
of the true sun.

ExAMPLES.

1. 1898, Jan. 30 (ast. day), in long. 10* 0™ 52.7 W., the
sidereal time is 6* 57™ 44°.5; find the mean time.

A m s Am s
L. sid. t., 6 57 44.5 L. sid. t., 6 57 44.5
8, {Jan. 30), — 20 38 58.09 M, (Jan. 30), 3 20 28.98
Red. for A, —138.71  Red. for A, —138.44
Sid. int., 10 17 07.7 Red. of sid. t., —108.4
Red. of sid. int.,, —141.1 L. m.t., Jan. 30, 10 15 26.6

L. m. t., Jan. 30, 10 15 26.6

2. 1898, Jan. 30 (ast. day), in long. 10*0™52-.7 E., the
sidereal time is 6* 54™ 27°.08 ; what is the mean time ?

A m s Am s
L. sid. t. 6 54 27.08 L. sid. t. 6 54 27.08
8, (Jan. 80), — 20 38 58.09 M, (Jan. 30), 3 20 28.98
Red. for A, +138.71 Red. for A, +1388.44
Sid. int., 1017 177 Red. for sid. t., —107.9
Red. of sid. int., —141.1 L. m. t., Jan. 30, 1015 26.6

L.m. t., Jan, 30, 10 15 26.6

3. 1898, Sept. 26, 9* A. ., in long. 4* 0™ 52¢* W., the side
real time is 9* 37" 42.49; find the mean time. '
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A m s A m s
L. sid. t., 9 87 42.49 L. sid. t., 9 37 42.49
8, (Sept. 25), — 12 17 18.26 M, (Sept. 25), 11 40 46.62
Red. for A, —39.57 Red. for A, — 39.46
Sid. int., 21 19 44.66 Red. for sid. t., — 184,65
Red. of sid. int., —3 29.66 L.m.t., Sept. 25, 21 16 15

L. m. t., Sept. 25, 21 16 16

4. 1898, Sept. 25, 3% p.m., in long. 8*16"25'3 E., the

sidereal time is 15* 32" 43°.95; find the mean time.

A m A m s
L. sid. t., 15 32 43.95 L. sid. t., 15 32 43.95
S, (Sept. 25), — 1217 18.26 M, (Sept. 24), 11 44 47.52
Red. for A, + 121.55 Red. for A, +121.33
Sid. int., 316 47.24 Red. of sid. t., —232.80
Red. of sid. int., —32.24 L.m.t., Sept. 25, 31615

L.m.t.,Sept.25, 31615

RELATION OF HOUR-ANGLES AND TIME,

109. ProBLEM 27. To find the mean time of meridian
transit of a celestial body, the longitude of the place or
the Greenwich time being knowan.

Solution. In the case of the sun the instant of meridian
transit is apparent noon of the place; for which we have (61)

T,, = E, the equation of time,

which can be taken from page I of the Almanae, and interpo-
lated for the longitude, which in this case is also the Green-
wich apparent time; or from page II, and interpolated for
the Greenwich mean time. When Z is subtractive, the sub-
traction from the number of days can be performed.

The apparent right ascension of any body at the instant of
its meridian transit is also the right ascension of the merid-
ian, or sidereal time. (Art. 65.) It suffices therefore to find
the right ascension of the body, and, regarding it as the side-
real time, reduce it to mean time by PrRoBLEM 26.
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The American Ephemeris contains the apparent right as-
censions of two hundred principal stars for the upper culmi-
nations at Washington; the British Almanac contains the
positions for the upper culminations at Greenwich. They are
reduced to any other meridian, when necessary, by interpolat-
ing for the longitude.

The right ascensions of the moon are given for each hour,
and of the planets for each noon, of Greenwich mean time,
and may be found for a given Greenwich mean time by Pros-
LEM 16. If, however, the longitude of the place is given, the
local mean time of transit of the moon, or a planet, may first
be found from the Almanac to the nearest minute or tenth
(Pross. 19, 20); then for this mean time the right ascensions
of the moon, or of the planet (ProB. 15), and of the mean sun
(ProB. 18), may be computed. Subtracting the right ascen-
sion of the mean sun from the right ascension of the moon or
‘planet, will give the mean time of transit (Pros. 26, 3d Solu-
tion.) If it differ sensibly from that previously obtained, the
process may be repeated with this new approximation.

If the time of transit has been noted by a clock, or chro-
nometer, regulated either to local or Greenwich time, it should
be used in preference to the approximate time of transit found
from the Almanac in computing the right ascensions.

The American Ephemeris contains also the right ascen-
sions of the moon and principal planets at their transits of
the upper meridian at Washington. They can be reduced to
any other meridian by interpolating for the longitude from
Washington.

This solution will give the time of the upper culmination
of a heavenly body. To find the time of a lower culmination,
12% may be added to the right ascension of the body, if suffi-
ciently well known; or, as is generally preferable, 12* may
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be added to the longitude of the place.

The instant of a lower

culmination on any meridian will be that of an upper culmi-

nation on the opposite meridian.

ExAMPLES.
1. Find the times of meridian passage of the moon and
Jupiter for 1898, June 7 (civil day), in long. 100° 15" W.

(Example 1, Art. 95, p. 70.)
>

LI
Approx. m. t., June 6, 14 48.8
Long. + 6 41.0

G.m. t., June 6, 21 29.8
D’sR.A., June 6 215,
A m s s
19 50 50.93 + 2. 5350 A, —.0079
_ .0079
X 156= —.002
T60
+ 2.5633
29.8
Aomos 50.66
Red.forG.m.t., 4+ 115.49 {22.80
2.03
R. A. at transit, 19 52 06.42
S, 4 59 40.55
Red.forG.m.t., 3 31.88
Sy, 508 12.43

M. t. of transit,
June 6, 14 48 53.99
Diff. f. appr. t. + 5.99
Ch.of R.A., + .253
In 5991 _ ch.of 5,, —.016
M. t. of transit,
June 6, 14 48 54.13

110. ProBLEM 28.
for a given place and time.

A m
June 7, 6 58.3
6 41.0
June 7, 13 39.8 = 18%.665

A m s

12 04 08.50 0%21 A, +.028
8
S0 6.8=.
o4 X 6.8=.008
0.289
13.665

.76

+ 3.95{ 27
.02

12 04 12.45

503 37.11
2 14.59
5 05 51.'70

June”, 6 58 20.75

+ 2.6

To find the hour-angle of the sun
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Solution. The hour-angle of the sun, reckoned from the
upper meridian toward the west, is the upparent time reckoned
astronomically (Art. 72). Its hour-angle east of the meridian
is negative, and numerically equal to 24* — the apparent time.

A given mean or sidereal time must then be converted into
apparent time; for this, the longtitude, or the Greenwich
time, must be known approximately.

111. ProBLEM 29. To find the hour-angle of the moon,
a planet, or a fixed star, for a given place and time.

Solution. In Fig. 21, as described in Art. 104,

9 M is the right ascension of the meridian, and measures
M P <, the sidereal time.

Let

P 8 be the declination-circle of the
mean sun, then P

o9 S is the right ascension of the
mean sun, and M

MPS is the mean time, and is
measured by the arc of the s
equator, S M.
Let ‘

P M’ be the declination-circle of some other celestial body;
then

o M’ is its right ascension, and

M P M’ is its hour-angle, and is measured by the arc M’ M.

M
Fig. 21.

From the figure,
MM=¥YM—-9M=S+SM—o9M. (12
If o Sis the right ascension of the ¢rue sun,
S M will measure the apparent time.

From (72), then, we have the following rule:
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To a given apparent time add the right'ascension of the
true sun; or to a given mean time add the right ascension
of the mean sun, to find the corresponding sidereal time.
Then from the sidereal time subtract the body’s right ascen-
sion; thedifference is the hour-angle west from the merid-
ian. If it is more than 12*, it may be subtracted from 24*:
the hour-angle, then, is —, or east of the meridian. It is
necessary to know the longitude, or the Greenwich time,
sufficiently near to find the right ascensions of the sun and
body.

112. ProBLEM 30. To find the local time, given the
hour-angle of the sun and the Greenwich time.

Solution. The hour-angle reckoned westward is itself the-
local apparent time, which may be reduced to mean or sidereal
time (Props. 23, 24), as may be required. The Greenwich
time, or the longitude of the place, is needed only for this
reduction.

113. ProBLEM 31. To find the local time, given the
hour-angle of some celestial body and the Greenwich .
time.

Solution. Find from the Almanac for the Greenwich time
(ProB. 15), the right ascension of the body. Then, from (72),

we have M= M+ MM,

from which, and Arts. 105, 107, we have the following rule,
regarding hour-angles to the east as negative:

To the right ascension of the body add its hour-angle; the
result is the sidereal time. From this subtracting the right
ascension of the #rue sun gives the apparent time; or the right
ascension of the mean sun gives the mean time.
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The Greenwich time is needed for finding the required
right ascensions.

If the longitude of the place is given, but not the Green-
wich time, we may first use an estimated Greenwich time, and
then revise the computations with a corrected value, until the
assumed and computed values sufficiently agree.

114 ExampLEs.

1. 1898, Jan. 12, 12» 157 174.6, mean time in long. 150°
13 10” W, find the hour-angle of the moon.

A m s A m s
L.m.t., Jan., 12,12 15 17.6 L. m.t., Jan. 12, 12 15 17.6
Long., + 10 00 52.7 Sy, 19 28 00.06

G.m. t., Jan. 12, 22 16 10.3 = 16m.17 Red. for G.m.t., +339.5

D'sR.A. .
(Jan. 12, 224), 11 36 04.83 + 1.9622

19.62

Red. for G. m. t., +31.78 11.;; L. sid. t., 746 57.16
14

D'sR.A.atdate . . . . . . . . . 1186 36.56

D ’s hour angle, — 3 49 89.4

2. 1898, Jan. 12, 22*16™10°.3, G. m.t., the moon’s hour
angle is — 3*49™39°.4; find the L. m. t.

A m s
P ’s hour angle, —34939.4
D’'s R. A, Jan. 12, 225, 11 36 04.83 + 1.9622
16.17
19.62
Red. for G.m. t., +3173 11.;3
14
L. sid. t., 7 46 57.16
8,, Jan. 12, 19 28 00.06
Red. for G.m. t., 3 39.50

L.m. t., Jan. 12, 12 15 17.6
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3. 1898, Jan. 12 (12* nearly), in long. 150° 13’ 10” W., the
moon’s hour-angle is — 3*49™ 39'.4; find the L. m. t.

A m s
Long., 10 00 52.7
P’sh a, —349.7

ch.of R.A., — 7.5

h
In 381 _ch.of S,, +0.8

D’s h. a.,
D’s R.A., Jan. 12, 224,

Red. for G.m. t.,

L. sid. t.,

- 8,, Jan. 12,
— Red. for G. m. t.,
2d L. m. t.,

Long.,

2d G.m.t,,

Diff. from 1st G. m. t.,

3d L.m.t.,, Jan. 12,

P ’s mer. pass.,
Red. for long.,

Long.,

A m s

—349394 ,
11 36 04.83 4 1.9622

16.1

19.62
+ 31.59 { 1.7
20

T 46 57.02

19 28 00.06

3 39.49

12 15 17.47
10 00 52.7

-22 16 10.17

+ 4.17
12 15 17.6

A m

Jan. 12, 15 53.5+1.84
+ 18.4
Jan. 12,16 11.9
— 8 56.6

1st approx. L.m.t., Jan. 12, 12 15.3

+ 10 00.8
1st. approx. G.m.t., Jan. 12, 22 16.1

ch. in 4 4217 4 .136

—ch. in + 42.17 —.012

cor. for 4*.17

+ .124
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CHAPTER VI

NAUTICAL ASTRONOMY.

ALTITUDES.—AZIMUTHS.-HOUR-ANGLES AND TIME.

115. NauTicAL AsTRONOMY comprises those problems of
Spherical Astronomy which are used in determining geograph-
ical positions, or in finding the corrections of the instruments
employed. In general they admit of a much more refined
application on shore, where more delicate and stable instru-
ments can be used, than is possible at sea, where the insta-
bility of the waves and the uncertainty of the sea-horizon
present practical obstacles, both to precision in observations
and to the accuracy of the results, which cannot be obviated.

116. In the problems which are here discussed, the follow-
ing notation will be employed :

L = the latitude of the place of observation
h = the true altitude of a celestial body ;

z = 90° — A, its zenith distance;

d = its declination;

p = its polar distance;

t = its hour angle;

Z = its azimuth.

Let the diagram (Fig. 22) represent the projection of the
celestial sphere on the plane of the horizon of a place:
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Z, the zenith of the place; N Z 8, its meridian;

P, the elevated pole, or that whose
name is the same as that of the
latitude;

M, the position of a celestial body ;

ZM H, a vertical circle; and

P M, a declination-circle, through M.

N

Then, in the spherical triangle
PMZ,

P Z = 90° — Z, the co-latitude of the
place ;
PM = p = 90° — d, the polar distance of M;
ZM = 90° — A, the complement of its altitude or its zenith ’
distance;
ZP M = ¢, its hour-angle;
PZM = Z, its azimuth.

Fig. 22.

The angle P M Z is rarely used, but is sometimes called
the position angle of the body.

This triangle, from its involving so many of the quantities
which enter into astronomical problems, is called the astro-
nomical triangle. As three of its parts are sufficient to deter-
mine the rest, if three of the five quantities Z, d, A, ¢, and Z
are known, the other two may be found by the usual formulas
of spherical trigonometry. These admit, however, of modifi-
cations which better adapt them for practical use. The fol-
lowing articles point out how Z, d, A, and ¢ may be obtained.

117. The latitudes and longitudes of places on shore are
given upon charts, but more accurately in tables of geograph-
ical positions, such as are found in books of sailing directions,
and in Table 49 (Bowp.). At sea it is sometimes necessary



NAUTICAL ASTRONOMY. 93

to assume them from the dead reckoning brought forward
from preceding, or carried back from subsequent, determina-
tions. (Bowp., Art. 155.)

118. The altitude of an object may be directly measured
at sea above the sea-horizon with a quadrant or sextant; on
shore, with a sextant and artificial horizon, or with an altitude
circle. All measurements with instruments require correction
for the errors of the instrument. Observed altitudes require
reduction for refraction and parallax; for semidiameter, when
a limb of the object is observed ; and at sea, for the dip of the
horizon. The reductions for dip and refraction are subtractive ;
for parallax, additive. Strictly, the reductions should be made
in the following order: for instrumental errors, dip, refraction,
parallax, semidiameter. In ordinary nautical practice it is
unnecessary to observe this order.

Following it we should have,

1. The reading of the instrument with which an altitude
is measured; '

2. The corrected reading or observed altitude of a limb;

3. The apparent altitude of the limb;

4. When corrected for refraction and parallax, the true
altitude of the limb;

5. The true altitude of the centre.

Except with the sea-horizon, the observed and apparent
altitudes are the same. For the fixed stars, and for the plan-
ets when their semidiameters are not taken into account, the
altitudes of the limb and the centre are the same. For the
moon, see Art. 59.

Unless otherwise stated, the true altitude of the centre is
the altitude which enters into the following problems, and is
denoted by /. '
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119. The Aour-angle of a body can be found when the
local time and longitude, or the Greenwich time, are given.
(Probs. 28, 29.) For noting the time of an observation, a
clock, chronometer, or watch is used ; at sea, only the last two;
but it will be necessary to know how much it is too fast or too
slow of the particular time required.

120. The declination of a body can be found when the
Greenwich time is known. (Pros. 15.) ‘
The polar distance of a heavenly body is the arc of the
declination-circle between the body and the elevated pole of
the place; that is, the north pole, when the place is in north

latitude ; the south pole, when it is in sowth latitude. If

P P’ (Fig. 23) is the projection of

/4 v
M M the declination-circle through
Q v " an object, M;
M P, the north pole;
g P’, the south pole ;
E Q, the equator; then the polar
distances,
R PM=PQ—QM=90°—d.
Fig. 28. PM=PQ+QM=290°4d.

That is, the polar distance is 90° — d or 90° + d, according
as the pole from which it is reckoned is N. or S. This, how-
ever, is regarding declination, like the latitude, as positive
when N., negative when S.

To avoid, however, the double sign in the investigation of
the formulas of Nautical Astronomy, we shall in most cases
- consider the declination, which is of the same name as the
latitude, as positive, and that which is of a different name
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from the latitude, as negative; hence the polar distance will
be represented b
P Vo p=90°—ad.
‘When the :declination is of a different name from the lati-
tude, we have numerically

p=90°+d.
.ALTITUDE AND AZIMUTH.

121. ProBLEM 32. To find the altitude and azimuth
of a beavehly body at a given place and time. (Time-
Azimuth.) = - '

Solution. Find the declination of the body and its hour-
angle at the given time. (Pross. 15, 28, and 29.)

Then in the spherical triangle P M Z (Fig. 24), we have

given PZ=90°— Z, N
PM=90° — d,
ZPM=1¢ P
to find
ZM = 90° — A, Z
PZM=Z. i\
By Sen. Trie. (122), (123), if in
the triangle A B C (Fig. 25), we
have given b, ¢, and A to find ¢ and m§“
B, we have
_tan ¢ = tan b cos A,
__cos (c—¢)cosd 5 e
Co8 a = “cos ¢ ]
. _ c B
cotB=sm(c : ¢)cotA’ =
sin ¢ Fig. 95.

which, by substituting the corresponding parts of the triangle
PZM, give
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tan ¢ = cot d cos ¢,
. _sin(¢ 4 L)sind
sin /= cos ¢ ’ (73)
cot Z = 8 (¢ + L)cot ¢
' - sin ¢ ’
If we put ¢ = 90° — ¢', these become
tan ¢’ = tan d sec ¢,
cos (¢/ — L)sind
= ’

sin A sin ¢’ (74)
oot Z = sin (¢’ — L,) cot t,
cos ¢

which afford the convenient precept, ¢ Aas the same name, or
sign, as the declination, and i8 numerically in the same quad-
rant as t.

122. When ¢ = 6% ¢’ =90° and the 3d of (74) assumes
an indeterminate form. But from the 1st we have
tan d
cot t=tan ¢ sinz’
which, substituted, gives
sin (¢’ — L) tand

cot Z = sin ¢’ sin ¢

’ (75)

which may be used when ¢ is near 63

123. £ is the true altitude of M. TIf the apparent altitude
is required, the parallax (Art. 54) must be subtracted, and
the refraction (Art. 41) added.

It is sometimes necessary to compute the altitude of one
or both bodies, to use in connection with an observed lunar
distance. The rules for this purpose in Art. 313 (Bowb.)
are derived from the above formulas. The result is evidently
more accurate, the smaller the hour-angle ¢, especially if the
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altitude is near 90°. In these rules it is best to find the «si-
dereal time,” or ¢ right ascension of the meridian,” from the
mean local time, instead of the apparent (Art. 105).

Z is the true bearing, or azimuth, of the body, reckoned
from the N. point of the horizon in north latitude, and from
the S. point in sowth latitude. It is generally most conve-
nient to reckon it as positive toward the east, which will re-
quire in the above formulas — Z for Z, since ¢ is positive when
west. Restricting, however, Z numerically to 180°, it may be
marked E. or W., like the hour-angle.

124. In Fig. 24, if M m be drawn perpendicular to the

meridian, then
, Pm=¢=90°—¢,
Zm=(p+L)—90°=L—¢;
or, ¢ is the polar distance of m,
' ¢', its declination,

L — ¢, its zenith distance, positive, or of the same name as the
latitude, toward the equator. A convenient precept is to mark
it N. or 8., according as the zenith is N. or S. of the point m.
m falls on the same side of the zenith as the equator when
Z > 90°; at the zenith when Z =90°; and on the same
side as the elevated pole when Z < 90°. It falls between
P and Z only when ¢ and Z are both less than 90°.

125. In the case of a Urse Minoris (Polaris), whose polar
distance is 1° 25’, the more convenient formulas derived from
(73) will be, since p and ¢ are small,

¢ =pcost,
(which gives ¢ within 0”.5)
cos p

sin & = sin (L+¢)cos¢

’
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_ tan psintcos ¢
tan Z = cos (L+¢) ’
h=L+ ¢,
Z =p sin ¢ sec (L + ¢).

Z is a maximum, or the star is at its greatest elongation,
when the angle Z M P (Fig. 24), or Zn P (Fig. 30), is 90°.
We then have

or approximately,

sin Z = sin p sec Z,
or nearly
Z = p sec L.

126. ProBLEM 33. To find the altitude of a heavenly
body at a given place and time, when its azimuth iIs not
required.

’

Solution. The 1st and 2d of (73) or (74) may be used;
or, by Sen. Tria. (4),

cos @ = cos b cos ¢4 sin b sin c cos A,
we have sin A = sin Z sin d 4 cos L cos d cos ¢. (18)
which, since cost=1—2sin? } ¢,
reduces to :
sin A=cos (L —d) —2cos Lcosdsin®}t. (17

(L — d) becomes numerically (L + &) when L and d are
of different names.

Table 44 contains for the argument ¢ in column p.m. the
log sin } ¢ in the column of sines; which, doubled, is log
sin? } ¢. It is well to note this; for mistakes are often made
by regarding the logarithms in this table as log sin, log cos,
etc., of ¢ instead of } ¢.

127. ProBLEM 34. To find the azimuth of a heavenly
body from its observed altitude at a given place. (Alti-
tude-Azimuth.)
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Solution. In this the Greenwich time of the observation
must be known sufficiently near for finding the declination

N of the body. The observed altitude
must be reduced to the true alti-

P tude. Then in the triangle PZ M
we have given the three sides to

z find the angle P Z M.

B M n In the triangle A BC, putting

s=4%(a+ b+ c), we have, Sem.
Tric. (33),

S sm sin 8 sin (s — §)

Fig. 26, cos } B = \/ prap— )).

For the triangle PZ M,
B= 27 a = 90° — A, A being the true altitude,
b = p, the polar distance,
¢ = 90° — Z, the co-latitude,
8=90°—§ (L+ 2 —p),
8—0=90°—3} (L+h+p)
and the formula becomes
cos § Z= <cos 3 L+hr+pcos(L+h— p))
cos L cos A
or, if we put §=%(L+r+p),

cos } Z = <cos cos & cos (8 — p) > (18)

cos L cos A

which accords with Bowpircu’s rule, Art. 334.
In a similar way we may find from the formula

sin § B = <siu (s — @) sin (s — c)),

sin @ sin ¢

sin} Z= <003§(00L+h+d)sm1}(0012+h d))

cos L cos A
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in which coL=90°—1L;
orif weput & =4 (co L+h+d),
sin} Z= \/ cos &’ sin (8" —d)\. (79)
cos L cos A

(78) is preferred when Z > 90°; (79) when Z < 90°.
If the body is in the visible horizon, then nearly

h= — (36’ 30" + the dip).

128. If the bearing of the body is observed with a com-
pass at the same time that its altitude is measured, or if the
bearing is observed and the local time noted, the error of the
compass can be found. For the true azimuth, or bearing,
of the body can be found from its altitude (ProB. 34), or from
the local time (ProB. 32); and the compass error is simply
the difference of the ¢rue and compass bearings of the same
object, determined simultaneously if the object is in motion.
It is marked E. when the true bearing is to the right of the
compass bearing, W. when the true bearing is to the lef? of
the compass bearing. (Bowp., Art. 323.)

[In the triangle P M Z (Fig. 26), representing the positive
angle, P M Z, by M, we have by Napier’s “ Analogies”
tan § (Z — m) =cot } t sin } (L — d) sec } (L + d) ,
tan § (Z 4 m) = cot } t cos § (L — d)cosec}(L+d)} (80)
The Azimuth Tables (Hydrographic Office, No. 71), issued by
the Bureau of Navigation, were computed by means of (80).
From them the azimuth of any heavenly body whose declina-
tion does not exceed 23° may be found, its hour-angle, decli-
nation, and the latitude being known. '

These tables afford a very simple as well as accurate
method of ascertaining the azimuth, and are therefore spe-
cially valuable for the usual compass-work on board ship.]
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129. The amplitude of a heavenly body when in the true
horizon is its distance from the east or the west point, and
is marked N. or 8., according as it is north or south of that
point; it is, then, the complement of the azimuth.

ProBLEM 85. To find the amplitude of a heavenly body
when in the horizon of a given place.

Solution. Let the body be in

the horizon at M (Fig. 27), 4 =

W M, its amplitude. The trian- P

gle PMN is right angled at N, z

and there are given - W E
PN = I, 7
PM=90°—d,

to find

NM=2Z=90°— Fiz. 97
We have cos PM =cos PN cos N M,
or sin d = cos L cos Z,
whence cos Z = sin 4 = sin d sec Z, (81)

as in BowpiTch, Art. 326. By (81) 4 is N. or 8. like the
declination.

As the equator intersects the horizon of any place in the
east or west points, it is plain that the star will rise and set
north or south of these points, according as its declination is
N.or 8. )

Table 39 (Bowp.) contains the amplitude, 4, for each 1° of
latitude up to 70°, and each }° of declination to 30° computed
by (80). The convenience of this table, in the case of the sun,
is the only reason for introducing amplitudes. It is generally
best to express the bearing of an object by its azimuth.
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In this problem the body is supposed to be in the true
horizon, or about (36’ 4 the dip) above the visible horizon.
Hence the rule to ¢ observe the bearing of the sun, when its
centre is about one of its diameters above the visible horizon.”
Or, the body may be observed in the visible horizon and a
correction (Table 40, Bowp.) applied for the vertical displace-
ment. Art. 326 (Bowb.).

Exampres. (Pross. 32-35.)
1. 1898, Jan. 25, 2* 33™ 13* local mean time in lat. 49°
30’ S., long. 102° 39’ 15” E.; required the sun’s true altitude
and azimuth.  (74)

am s Jan.25, @’sdec. Eq.oft.m .
L.m.t.,Jan.25, 28318 —18°52 54”.3 +437".34 —12 37.22—0.561

Long. — 65037 149.4 2.24
-2 40”.3{ 7.5 + 2.40{ A1
G.m.t. Jan. 24, 19 42 36 3.4 .05
or Jan. 25, — 4.29 18° 55’ 84” —12 84.8
Eq. of t. — 12 84.8
L. ap. t. 2 20 38.2
L] ¢ v
t= 3850933 l.sec. 0.08748 L. cot. 0.15221
d= 185534 1.tan.9.53516 L sin. 9.51101
¢'= 2245614 1 tan.9.62264 1.cosec.0.41254 1. sec. 0.03518
L= 4930 S :
¢'—L=—264446 N l.cos. 9.95085 1. sin. 9.65325 n.
h= 482930 1. sin. 9.87440
Z=S12443W 1. cot. 9.84064 n.

The reduction for refraction and parallax of A = 48°5 is
+ 45”; and the apparent altitude is A'= 48° 30’ 15”. If the
compass bearing of the sun at the same instant had been
N. 34° 200 W. =S. 145° 40’ W., the compass error would
have been 20° 57" W.
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2. 1898, July 20, 5* 58™ 20* a.mM., mean time in lat. 38°
19’ 20” N., long. 150° 15’ 30" E.; required the sun’s azimuth

(¥5).

» m o Julyl9,@'sdec. Eq.oft. m .
L. m. t. July 19, 17 58 20 +20° 48" 477 —277.48 —6 02.72 —0.169
Long. —10 01 02 192.4 1.18
G.m. t. July 19, 7 57 18 24.7 —1.34 2 .15
= 7.955 —3 3967 14 g .01
.1
Eq. of t. — 6 04.1 +20 4508.4 —6 04.06

L. ap. t. July 19, 17 52 15.9
t= 91°56" 02” E. 1. sec. 1.47178 n 1. cosec. 0.00025
d= 20 45 08 N. 1 tan.9.57854 L. tan. 9.57854
¢’= 956 0523 N. 1. tan. 1.05032 n 1. cosee. 0.00171

L= 388 19 20 N.
¢'—L= 56 46 03 N. 1. sin.  9.92244

Z=N"72 20 23 E. L cot. 9.50294

Entering Azimuth Tables (p. 89) with lat. 38, dec. 20° 45/,
we find by interpolation for 1. ap. t. 5* 52" Az. = N. 72° 14’ E.
In the same way with lat. 39° (p. 91), we find Az. = N. 72° 26’
E. .. The true azimuth for 38}° = N. 72° 18’ E.

3. At sea, 1898, May 20, 15* 23~ 16* mean time Green-
wich, in lat. 40° 15" 8., long. 107° 15" W., the observed alti-
tude of the sun’s lower limb 10° 15’ 20”, index correction of
sextant 4 3’ 20”, height of eye 18 feet, bearing of sun by
compass N., 41° 45’ E.; required the sun’s azimuth and the
compass error (78).

G. m. t., May 20, 15 23m 16¢
= May 21, — 8.6
© 101520 (Le + 330 Dip —400
+958{S.d. + 1550 Ref. —512
Par. + 9



104 NAVIQATION,

© v w © ¢ «u ”
h= 102518 1. sec. 0.00723 ©'sdec. 4+ 20 14 55 + 30.21

L= 4015 ‘1. sec. 0.11734 — 420 (241.7
= 1101035 +201035 { 18.1
2 8= 1605053

s= 802527 1. cos. 9.22108
S—p=—204510 1. cos. 9.93861

9.28421
4Z= 63°56Y 1. cos. } 9.64211
True Z=S 127° 68’ E. = N. 52° 02’ E.

Comp. bearing N. 41 45 E.
Comp. error 10 17 E.

The 1. ap. t. is 8* 18™ nearly. Entering Azimuth Tables
~ (p- 178) with lat. 40° and dec. 20°, by interpolation we find
Z=1.. 127° 58 E. In same manner with lat. 41° (p. 179)
we find, at 8.18 o.M, Z = 8. 128° 06’ E. The true azimuth for
lat. 401° 8. is then, by Table, S. 128° E. or N. 52° E.

4. 1898, Sept. 20, in lat. 30° 25’ N, long. 50° 16’ W., the
compass bearing of the @ when its centre was in the visible
horizon was S. 79° 30" W. Required the true bearing and
the compass error (81).

The 1. ap. t. of sunset for lat. 30 N. and dec. 1° N. is
6* 02=. Azimuth Tables (Bur. Nav.), Table 10 (Bown.).

A m
L. ap. t., Sept. 20, 6 02 @©’s dec. Sept. 20 (Page I)
Long. +38 21 + 0° 59" 06”.3 — 58”.35
G. ap. t., Sept. 20, 9 23 526 .2
—9.38 - 907.4{ 17 .5
+0 49 59 4 .7
o v
d= 0 50 1. sin. 8.16268
L= 30 25 1. sec. 0.06431
True azimuth = N. 89 02 W. 1. cos. 8.22699
Comp. bearing N. 100 48 W,
Comp. error 11 46 E.
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Entering Azimuth Tables (p. 72) with lat. 30°, by interpo-
lation for d. 50/, we get the same result, Az. = N. 89°02' W,
with lat. 31°, the Az. = N. 89° 03’ W.

Very nearly the same result is obtained from Table 39
(Bowp.), by interpolation.

HOUR-ANGLE AND LOCAL TIME.

130. ProBLEM 36. To find the hour-angle of a heavenly
body in the horizon.
Solution. In the diagram of the last problem,
MP Z = ¢, the hour-angle;
and in the triangle P M N are given

PN=Z, find 180°
P M = 900 }to nd MPN =180° —+
tan PN
We have co8 MPN—m,
whence cos ¢ = — tan d tan L. (82)

" 131. From this it is apparent that when the latitude and
declination have the same name, ¢ > 6% and consequently that
2 ¢, or the time that the body is above the true horizon, > 12%;
and when the latitude and declination are of different names,
t<6*and 2 ¢t <12%,

2t is an interval of sidereal time for a fixed star, of appar-
ent time for the sun.

In the case of the sun, £ would be the apparent time of sun-
set, were the refraction and dip nothing, and (24* — ¢) would
be the apparent time of sunrise.

Table 10 (Bowp.) contains ¢ for different values of L
and d.
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132. ProBLEM 37. To find the hour-angle of a heavenly
body at a given place, and thence the local time, when the
altitude of the body and the Greenwich time are known.

Solution. Find the declination N

of the body for the Greenwich
time, and reduce the observed al- P
titude to the true altitude. Then
in the triangle P Z M (Fig. 28) are _—1%
given H {m

PZ=90°—- L,

PM= ¥

ZM = 90° — A, rufsa.
to find

ZPM =1

For the triangle A B C (Fig. 29), we have, (Spn. Tri1G., 31),
sin§ A — (sin (8 — &) sin (s — 9)’

sin b sin ¢ A
in which, putting A = ¢ y) e
a=90° — k,
b= § C B
¢c=90°—- L, m:.no.

we have 8 —b=90°— } (L4 p + »),
s—c=} (L+p—h),

sin } z=\/<9<1ﬁ (L+p+h)siny (12+p—'9));

cos L sin p,

and

or, if we put
¢=4}(L+p+h),

sin § ¢ = \/(cos ¢ sin (¢ — k))’ (83

cos L sin p
which is BowpiTcr’s rule, Art. 262.
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From Table 44 (Bowp.) we may take ¢ directly from col-
umn p. M., corresponding to the log sin } ¢.

t is — when the body is east of the meridian.

When the object is the sun west of the meridian, ¢ is the
apparent solar time; when the sun is east of the meridian,
(24* — ¢t) is numerically the apparent time.

When the object is the moon, a planet, or a star, we have
(Pros. 31), denoting its R. A. by a.

the sidereal time = a + ¢,
and the mean time =a— 8/ +¢,
in which 8, is the “right ascension of the mean sun.”
(Art. 93.) Or the sidereal time may be converted into mean
time by one of the other methods of ProBLEM 26. '

[The Sunrise and Sunset Tables (Hyd. Office, No. 111)
were computed by applying the equation of time to the local
apparent times found by (83), assuming & = — 56’ 08", (ref.
— 36’ 29”; 8.D. — 16'; parallax, 4 9”; dip — 3’ 48”) for lati-
tudes between 60° N. and S.

From them the local mean time of sunrise and sunset may
be found, the declination and latitude being known.]

133. By the formula
cos } A= \/(smssm sin s sin (s — @) ), Sen. Tr1G. (32),

sinbsinc
we may obtain for the triangle P Z M (z being the zenith
distance),

cos‘H=\/(sm1}(col+p+z)sm\}(coL+p_z)>

cos L sinp

or, putting s=1}(coL+p+2),
cos §o= \/<sinssin (s — zz>, (84)

cos L sin p
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(84) is preferable to (83) when ¢ considerably exceeds 6%
which may be the case in high latitudes.

If L = 90°, the horizon and equator coincide, and p 4 A
= 90° and p = z; so that both (83) and (84) become indeter-
minate. In very high latitudes, then, these equations approach
the indeterminate form, and it is impracticable to find with
precision the local time from an observed altitude.

So also if d = 90°, the star is at the pole and Z = 4; and
the problem is indeterminate. A great declination is there-
fore unfavorable.

134. If the object is in the visible horizon (rising or set-
ting), A = — (36’ + dip) nearly. With the sun, the instants
when its upper and lower limbs are in the horizon may be
noted, and the mean of the two times taken as the time of
rising or setting of its centre. The irregularities of refraction
would affect nearly alike the dip and the apparent position of
the sun.

135. If the time at which the altitude is observed is noted
by a watch, clock, or chronometer, we may readily find how
much the watch or chronometer is fast or slow of the local
time. (Pros. 46.) For, let

C be the time noted,

7, the local time deduced from the observation :

¢ = T — C will be the correction of the watch or chronometer
to reduce it to apparent time, when 7" is the local appar-
ent time ; to mean time, when 7'is the local mean time ; or
to sidereal time, when 7 is the local sidereal time.

136. The observed altitude is affected by errors of obser-
vation, errors of the instrument, and errors arising from the
circumstances in which the observation is made; such as irreg-
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ularities of refraction affecting both the position of the body
and the dip of the horizon. Errors of the first class are dimin-
ished by taking a number of observations. Thus several alti-
tudes may be observed, and the time of each noted ; and the
mean of the altitudes taken as corresponding to the mean of
the times, so far as the rate at which the body is rising or
falling can be regarded as uniform during the period of ob-
servation. This period should then be brief.

137. We may easily find how much a supposed error of 1’
in the altitude will affect the resulting hour-angle, by dividing
the difference of two of the noted times by the difference in
minutes of the two corresponding altitudes.

The effect will evidently be least when the body is rising
or falling most rapidly. This will be the case when its
diurnal circle makes the smallest angle with the vertical cir-
cle. An inspection of the diagram (Fig. 30) shows that this
is the case when the object is nearest the prime vertical, or
bears most nearly east or west.

Thus Z» being tangent
to the diurnal circle n#/,
the angle which it makes
with it is 0; and is there-
fore less than the angle
which any other vertical
circle, as Z~/, makes with
nn'.

The diurnal circle m '
makes a smaller angle with
Z m, the prime vertical, than

S

with any other vertical circle,
Fig. 80 as Z m/.
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The diurnal circle 00’ makes a smaller angle with Zo
than with Z o'.

The diurnal circles make right angles with the meridian ;
so that at the instant of transit, the change of altitude is 0.

138. At sea, and to a less extent on the land, the latitude
is uncertain. To ascertain the effect of an error of 1’ in the
assumed latitude, the hour-angles may be found for two lati-
tudes separately, differing, say, 10’; and the difference of
these hour-angles divided by 10.

This is an essential feature of Sumner’s method, which
will be explained hereafter. This method will also show that
an error in latitude least affects the deduced hour-angle when
the body is nearest the prime vertical.

_ Exampres. (Pros. 37.)

1. At sea, 1898, March 20, 10* 15” 20* G. mean time, in
lat. 41° 15’ 8., long. 86° 45" W. (by account); observed p.m.
altitude of the sun’s lower limb 18° 20’; index. cor. of sextant
— 8 20”, height of eye 18 feet; required the local mean
time (82).

G. m. t., Mar 20, 10% 15m 20° @©'s dec. Eq. of t.
o v " “” m s ]
= 10.256 — 0 02 04.5 4+ 59.28 7 31.56 — 0.749
592.8 7.49
11.9 —17.68 3 .15
+ 10 08.1 3.0 ‘04
4
+ 0 08 04 7 23.9

+50 { Par. + 08 Dip. — 4 09
Ref. — 2 54

+ 16 13 —15 23

@ = 18° 20" 00~ 3 S. d. 4+ 16" 05” I.c. — 8207



HOUR-ANGQLE AND LOCAL TIME. 111

h= 18° 20" 50”

L= 41 15 1. sec  0.12387
p= 90 08 04 1. cosec 0.00000
28=149 43 b4

s= T4 51 57 1. cos 9.41677

S—h= 56 31 07 L. sin  9.92120

' 9.46184

L. ap. t., Mar. 20, 4% 20m 28:.3 1. sin § 9.73002
Eq. of t. +7 23.9

L. m.t., Mar. 20, 4 27 62.2

Subtracting the local mean time from the G. mean time
gives the long. 4 5* 47™ 27°.8 = 86° 52’ W. If we take
L = 41°25’'S., we shall find the 1. ap. t. 4*20™12°.3; so that
for AL=10"S, At = — 16*.

At sea, 1898, Sept. 2, 8* 4™ 16%, G. mean time, in lat. 46°
16’ N., long. 152° 0’ E., the observed altitude of the moon’s
upper limb, W. of the meridian, was 21° 19’; index cor. of

octant, — 3’; height of eye, 20 feet; required the local mean
time.

M m s o s w
G. m. t., Sept. 2, 8 04 16 > 21 19 00 D ’s dec.
= 8 04.27 Le. -3 + 8°47017.8 +137.787
54 .9
Dip. — 423 +58.6{2.7
1.0
S. D. — 1556 <4 8 48 00

K= 205542 S. diam. 15 49” + 6”

Par. and Ref. + 5187 H.P. 57 55
h= 214719
Am s . L= 4616 1. sec 0.16083
D’sR.A. 03000.5+2.0957 p= 8112 1. cosec  0.00514

8.38
+ 8.9 g 42 23=1491519
15 8= T43740 1. cos 9.42339
03018.4 8—h= 525020 1 sin 9.90142
- 9.40028
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D’s H. A. 443017 . . . . . . . Lsin} 974514
L. sid. t. 5 00 35.4

— S, 10 46 37.6

— Red. G.m. t. 1 19.6

L. m, t., Sept. 2, 18 12 388.3

Long. —10 08 22.3 = 152° 05’ 35” E.

139. ProBLEM 38. To find the hour-angle of a heavenly
body when nearest to, or on, the prime vertical of a given
blace.

Solution. If d > L, and with the same name, as for the
body whose diurnal path is »n#' (Fig. 30), P Zn will be
greatest, or nearest to 90°, when Z n is tangent to n#/, and
consequently Znp = 90°. We then have

CoSl=—=~L =——, (85)

If d < L, and with the same name, as for the body whose
diurnal path is m », the body will be on the prime vertical
at m, and P Zm = 90°; whence we have

(86)

If d and L are of different names, the diurnal circle inter-
sects the prime vertical below the horizon, if at all, and the
visible point nearest the prime vertical is in the horizon.
The hour-angle of this point can be found by (82), omitting
the effect of refraction,

cos ¢t = — tan d tan L.
Altitudes less than 8°, however, are to be avoided.
If d =L, the diurnal circle passes through the zenith, and

the body would be on the meridian and prime vertical at
the same instant; so that, when & and Z are nearly equal,
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latitudes observed within a few minutes of the meridian
passage of the body may be used for finding the time. It
is only necessary that the change of altitude shall be suffi-
ciently rapid. '

But when the body is very near the meridian in azimuth
the change of altitude is proportional, not to the intervals
of time, but to the squares of the hour-angles. (Art. 150.)
Hence, when the body is in such a position, the mean of
several times does not correspond to the mean of the alti-
tudes.

From the hour-angle the local time may be found by
ProBLEMS 30 and 31

‘When the declination of the body does not exceed 23°, ¢
may be taken from Azimuth Tables (Bur. Nav.) with suffi-
cient accuracy for ordinary purposes. (See Art. 128.)

Exampre. (Pros. 38.)

1898, June 25, in lat. 40° 15’ N., long. 65° 17" W., re-
quired the times when o« Lyre and a Aquile are on the
prime vertical.

a Lyre. a Aquile.
L=+440°15 l.cot0.07234 L= +40°15" 1. cot 0.07234
d=+438 41 .3 1.tan9.90354 d=+4 8 36 L. tan 9.17965
t=F 1%15m7 l.cos9.97588 ¢ = 3 5" 18m.8 L cos 9.25199

RA. = 1833 .5 RA.= 19 4 .9
L.sid.t. = 17 17 .8 or 19% 49m.2- 14 27 .1or 1* 04m7
-8 6 15 .3 6 156 .3 615.83 6153
Sid. int. 11 02.5 13 33 .9 8 11 .8 18 49 4
red. -1.8 -2 .2 -1.3 -8 .1

L. m. t., June 25,
11 00.7 13 381 .7 June25 8 10.5 18 46 .3
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CHAPTER VII
LATITUDE.

140. ProBLEM 39. To find the latitude from an ob-
served altitude of a heavenly body on the meridian.

Solution. Let the diagram (Fig. 31) be a projection of
the sphere on the plane of the meridian NZ S:

Z, the zenith;

N 8§, the horizon;

P, the elevated pole;

PP, the axis of the sphere;

EQ, the equator;

QZ, the declination of the ze-
nith, and

NP, the altitude of the pole,
are each equal to the lati-

Fig. 31. tude, L.

Let

M be the position of the body;

QM = d, its declination;

MZ =z = 90° — A, its zenith distance, which it is conve-
nient to mark N. or 8., according as the zenith is north
or south of the body.

From the diagram, we have QZ=QM + M Z
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or, L=z44d, (87)

which is the general formula.
If the body is at M’, numerically

L=z—d;
if at M”, L=d-—z;

or “the latitude is equal to the sum of the zenith distance
and declination, when they are of the same name§ to their
difference, when of different names; and is of the same name
as the greater.”

If the body is at M"”, or below the pole,

QM” =180°—~d, and L =180°—d—z3,

numerically ; or (87) is the correct formula, provided we use
180° — d, or the supplement of the declination, instead of the
declination.

But in this case we have also from the diagram

L=p+h (88)
as in BowpiTch, Art. 274,

The declination of the body must be found from the Alma-
nac for the time of meridian passage. (Pross. 17,21.) The
observed altitude must be corrected for dip, refraction, ete.,
and the true altitude derived.

From (87) we see that an error of 1’ in the altitude will
produce an error of 1’ in the resulting latitude.

ExAMPLES.

1. At sea, 1898, June 30, in lat. 24° N., long. 105° 18’ W.,
the observed meridian altitude of the sun’s lower limb was
69° 15’ 20”, sun bearing N.; index cor. 4+ 8’ 20”; height of
eye, 20 feet; required the latitude.
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Long. 4 Th1m 12¢ = 74,02

© 69°16"20” (In.cor. <+ 3 20~ : ©’s dec.
S. diam. +15 46 23°10 11”.6 N. — 9”.32
MR P — 423 —15.2 62
Ref. & p. — 19 d=23 09 06 W. ‘
= 69 29 44 z =20 30 16 S.
"L= 2 88 50N

2. At sea, 1898, June 30, 1n lat. 434° N, long. 150° 15’ E.
© = 69°15'20”; on meridian bearing 8. ; index cor. + '3’ 20”;
height of eye, 20 feet; required the latitude.

Long. — 10* 1™ 0* = — 10%.02

© 69°15°20” ( In. cor. + 320" @©'s dec.
[s. diam. +15 46 23° 10 117.6 N. — 9.32
+14 2, 403 +133.2 932
Ref.&p. — 19 d=123 11 46 N.
h =69 29 44 z=20 30 16 N.

L =43 42 01N.

3. At sea, 1898, Aug. 9, about 5 A.M., in lat. 17° 40’ S,
long. 85° 15’ W., obs’d mer. alt. of »’s upper limb, 50° 18;
moon north ; index cor. — 2; height of eye, 16 feet ; required
the latitude.

Long. + 5 41™ = 5%.68
D’'s mer. pass. Aug. 8, 1'% 38m.9 4 2n.03 D’s S. diam. 15’ 03”4 11~

107,15
Red. for long. +11 .5{ 1.22 D’'sH.P. 55 08
.16
L. m. t., Aug. 8, 17 50 .4
G. m. t., Aug. 8, 23 31 4
D = 50°18’ Le. — 2700~
D’s dec. + 21°47117.9 4+ 77.165 —21.09 g S.d. —15 14
214”.9 Dip — 3 55
+ 03 45 g 7.2
. 2.9 W =49° 56" 517
d = 21° 50’ 57”7 N. + 34 40 Par and Ref.
z =39 28 290 S. h =60 31 81
L =17 387 32 S.
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4. At sea, 1898, Oct. 9, 5 p.M., in lat. 654° N., long. 150°
E.; obs’d mer. alt. of a Lyrae 63° 17, bearing S.; index cor.
+ 8 30”; height of eye, 17 feet; required the latitude.

% ’s alt. 63° 17” ¢ In. cor. + 3°.5

_1{Dip —4.0

h=63 16 Rt — 5
2 =206 4N
d =38 42 N.
L =65 26 N.

1f the star bore N., the latitude would be 11° 58’ N,

5. At sea, 1898, June 18, in lat. 23}° N., long. 163° 0’ E. ;
obs’d mer. alt. of @’s N. limb from N. point of the horizon,
89° 50’ ; index cor. 4 1’ 20”; height of eye, 21 feet ; required
" the latitude.

Long. — 10* 52m 0* = — 104.87 @©'s dec. 23° 25’ 25” N. + 3”.02

O 89°50' ( Imcor. + 18 —-33
+ 12.64 S. diam. 4+ 15.8
Dip — 4.5 =23 24.9N.
h=9 2.6 z= 0 26N.
L =23 215N.

In this example, the corrected altitude of the ®’s centre is
more than 90°; this changes the sign of z.

6. At sea, 1898, May 18, in long. 180° 0’ E,, the true mer.
alt. of the sun was 75° 18’; sun bearing S.; required the
latitude.

Long. — 124 0’ 0~ d=19°30".5 N.
: z=14 42 N.
L=34 12°’.5 N.

7. At sea, 1898, May 17, in long. 180° 0’ W.; the true
mer. alt. of the sun was 75° 18’; sun bearing 8. ; required the
latitude.

Long. 4 12* Om 0¢ d=19°30.5 N.
* 2z2z=14 42 N.
L=34 12.6 N.
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Examples 6 and 7 are identical, the Greenwich apparent
time being May 17, 12» for both. They illustrate the neces-
sity as well as propriety of the rule for navigators near the
meridian of 180° to add 14 to the date when they pass from
west longitude to east; to subtract 14 from the date when
they pass from east longitude to west. For instance, May 18,
5% in long. 180° 15’ E., is identical with May 17, 5% in long.
179° 45" W.

141. The common mode at sea of measuring a meridian
altitude of the sun, is to commence observing the altitude 20
or 30 minutes before noon, repeating the operation until the
highest altitude is attained ; soon after which the sun, as seen
through the sight-tube of the instrument, begins to dip, or
descend below the line of the horizon.

It is preferable, however, to find, from A.M. observations
for time and by allowing for the run of the ship in the inter-
val, the time of apparent noon by a watch, and observing the
altitude at that time within 1™ or 2m.

A meridian altitude of the moon, or a star, can be much
more conveniently observed by finding beforehand the watch
time of its culmination, and measuring the altitude at or very
near that time.

When the sea is heavy, it is recommended to observe three
or four altitudes in quick succession, within 2™ of the time of
culmination.

142. If the body is changing its declination, or the ob-
server his latitude, the maximum altitude is not at the instant
of meridian passage; but after, if the body and zenith are
approaching; defore, if they are separating. Let
¢t be the hour-angle of this culminating point, in minutes ;
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A d, the combined change * of declination and latitude in 17,
if it is expressed in seconds; or in 1% if it is expressed in
minutes ; '

Ay h, the change of altitude in 1™ from the meridian passage
due solely to the diurnal rotation (from Table 26) ;

A h, the reduction of the maximum altitude: both expressed
in seconds.

Now in the time ¢
t A d will be the excess of altitude produced by the change of
_ declination and latitude;

* Ay & (as will be shown in Art. 150), the diminution of alti-
tude due to diurnal rotation ;

and we shall have

Ah=tAd—ak
But at a point whose hour-angle is 2 ¢, the altitude will be
the same as the meridian altitude, or
0=2:ad— (20)Ah;

whence t= A—d
Aok 2 (89)

Ad= B
YY)

which accord with the rule in Bowprrch, Art. 277.

2
be

and

ExaMPLE.
A ship in lat. 62 N., on March 21, sails south 14 miles
per hour.
A d=14'+ 1" = 15 per hour, or 15” per minute;
Ak =1".0;

* Their sum, if they both tend to elevate or both to depress ; other-
wise their difference.
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1—22 =T"; Ah= 14—5 x 15” = 56.”

The uncertainty of altitudes at sea makes such a correc-
tion of little practical importance; but it is generally ne--
glected by those navigators who work out their latitudes to
seconds, supposing that they have attained that degree of
accuracy. In the above example, the maximum altitude of
the sun would have been greater than the meridian altitude,
and the latitude obtained from it in error, by nearly 1’. The
sun would not have sensibly dipped until 9 or 10 minutes
after noon.

t =

143. A difficulty occurs at sea in measuring the meridian
altitude of the sun when it passes near the zenith, on account
of its very rapid change of azimuth; the change being made
from east to west, 180°, in a very few minutes.

What is wanted is the angular distance of the sun from
the N. or S. points of the horizon. One of these points may
‘be sufficiently fixed by means of the compass, and then the
angular distance from this ‘point observed within 17 or 2m of
the meridian passage as determined by a watch regulated to
apparent time.

144. From (87) we have
e=L—d, (90)
by which the zenith distance may be found when the latitude
and declination are given.

Also d = L — z, which may be used at sea for estimating
the declination of a bright star from its estimated meridian
altitude. If the time when it is near the meridian be also
noted, and converted into sidereal time, we have the right
ascension and declination of the star sufficiently near for
determining what star it is.
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ExAMPLE.

July 16, 8245™, in lat. 11° N., a bright star is seen near
the meridian S., at an estimated altitude of 55°.

L. m. t. July 16 8*456m L=11°N.

So 787 2=35 N.
L. sid. t. 16 22 d=24 8.

The R. A. of a Scorpii (Antares) is 16» 23m, and its declina-
tion 26° 13’8.

145. ProBLEM 40. To find the latitude from an alti-
tude of a heavenly body observed at any time, the local
time of the observation and the longitude of the place
being given.

Ist Solution. Reduce the observed altitude to the true al-
titude, and from the local time and
longitude find the declination and
hour-angle of the body. (Pross. P
21, 28, 29.) Then in the triangle
PZM (Fig. 32) there are given

z
ZPM =g
PM —90° — d, H m
ZM=90°—h
to find
PZ=090°_— L. e ss.

By Spa. Trie. (146), if in the triangle A B C (Fig. 33)
are given q, b, and A, we find ¢ by the forn.ulas

tan ¢ = tan b cos A,

cos ¢ CoS @ A

/ —

Cos ¢ =055’ ) .
c=¢ L+ ¢;

which, applied to the triangle P Z M, c B

give Fig. 88.
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tan ¢ = cot d cos ¢,

, €oS ¢ sin A
COS¢=W, (91)
90° — L=¢ L4

These may be changed into a more convenient form for
practice, if we put ¢ = 90° — ¢"; then

tan ¢” = tan d sec ¢,
sin ¢” sin A

sin d

L=¢"F ¢

Here, observing that 4 and — may be rendered by N. and
8. respectively, we mark ¢” N. or 8. like the declination, and
¢’ either N. or 8.; then the sum of ¢” and ¢’ when of the
same name, their difference when of different names, is the
latitude, of the same name as the greater. There are two
values of L corresponding to the same altitude and hour-
angle, but which, unless ¢’ is very small, will differ largely
from each other; so that we may take that value which agrees
best with the supposed latitude (at sea the latitude by ac-
count). When ¢> 6% ¢” > 90°, as in (74).

¢’ is positive if Z > 90° and negative if Z < 90°; the sign
of ¢’ may therefore be determined by the bearing of the body.

cos ¢’ =

(92)

146. In Fig. 32, if M m be drawn perpendicular to the
meridian, we shall have

¢ =Pm, the polar distance of m,
¢ = 90° — P m, the declination «
¢ =Zm, the zenith distance ¢«

When ¢’ is very small (that is, when M m nearly coin-
cides with M Z), ¢’ cannot be found with precision from its
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cosine. If not greater than 122, it can be found only to the
nearest minute with 5-place tables; if only 2° it can be
found only within 3’. The more nearly, then, that M m coin-
cides with Z m, or, in other words, the nearer the body is to
the prime vertical, the less accurate is the determination of
the latitude. If the body is on the prime vertical, ¢’ cannot
be found within 30'.

147. To find the effect of an error in the altitude, differen-
tiate the second equation of (91), regarding ¢’ and A as varia-
bles ; and we have

,__ s8in¢” cosh
d¢'=-— sin d sin ¢’
or, since
cos ¢’ _ sin ¢”
sinh  sind’

d¢’= —ad A cot ¢’ cot A. (93)
But in the triangle M Z m,

cosMZm=—cosMZP=tanmz~

tan M Z’
that is, Z being the azimuth,
tan ¢’
—cos Z= ot ‘z, or sec Z = — cot ¢’ cot A, (94)
and therefore,
d ¢ =dhsec Z (95)

If the body is on the meridian, Z = 0 or 180° and numer-
ically d ¢'=d A.

The nearer Z is to 90°, the greater isd ¢. If Z = 90°, or
the body is on the prime vertical, sec Z = oo, and d ¢’ is in-
calculable. If Z is near 90°, (95) is inaccurate.
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‘A star which transits the meridian near the zenith, changes
its azimuth very rapidly. Unless observed on the meridian,
it cannot be depended on for latitude.

148. To find the effect of an error in the time, and
consequently in the hour-angle, we may take the form-
ula (76):—

sin A = sin Z sin d 4 cos L cos d cos ¢,

and differentiate regarding Z and ¢ as variables ; which gives,

cos L cos d sin ¢
=— .de
d L sin Z cos d cos ¢ — cos L sin d, ‘
But, cosd sin ¢ = cos A sin Z ) Spa. Trie.
and sin Z cos dcos? — cos L sin d = cos hcos Z } (114).
so that,
dZ=—15d¢cos Ltan Z, (96)

which requires that the azimuth should be known.

At sea the chief uncertainty of this problem is in the time,
either from its imperfect determination by observation, or
from unavoidable errors in allowing for the run of the ship
in the interval between the observations for time and for
latitude.

By (96) it appears that the effect of an error in the time
is 0 when Z= 0 or 180°, that is, when the body is on the
meridian ; and the effect is incalculable when Z = 90° or 270°,
or the body is on the prime vertical.

Moreover, the effect is opposite on different sides of the
meridian, and would be eliminated by two observations of the
same body, or of different bodies, at the same azimuth E. and
W. of the meridian.
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149. 2d Solution. If the latitude is already approxi-
mately known, we have (76)

sin A = sin L sin d 4 cos L cos d cos ¢;
whence

cos (L — d) =sin A+ 2 cos L cos d sin? 4 ¢;

or since (L — d) is the meridian zenith distance of the body,
(87), denoting it by z, and the meridian altitude by 4,, we
have

€08 2y = 8in Ay =8in A + 2 cos L cos d sin? } ¢, 97)
in which we may use the approximate value of L in comput-
ing the term 2 cos L cos d sin? } ¢, which term is smaller
the nearer the observation is taken to the meridian. Having
found the meridian zenith distance, we may find the latitudes -
as in ProBLEM 39. If the computed value of L differs largely
from the assumed value, the computation should be repeated,
using this new value.

150. 3d Solution. Reduction to the Meridian. When the
observation is taken very near the meridian, we may find the
correction to be applied to the observed altitude to reduce it
to the meridian altitude, thus:

From (97) we have

sin A, — sin A =2 cos L cos d sin? } ¢,
whence, by Pr. Trie. (106),
cos } (h, + %) sin § (h, — ) = cos L cos d sin? } .
But h, and 4 differing very little, we may put

cos 4 (h,+ A) = cos A, =sin z, = sin (L — d),
so that
cos L cos dsin® } ¢

sin § (h — ) = 2= LG T 2L (98)
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Put A A= h, — h, the reduction of the observed to the
meridian altitude, or, as it is usually called, 7%e reduction to
the meridian ; and, since A h and ¢ are quite small, put
sin 4 A A = 4 A hsin 1” (A & being expressed in seconds of arc),

singt=4¢tXx 15sin1”"( « “ “ of time),
then (98) reduces to
112.5 sin 1” cos L cos d

= 2.
Ak sin (L —d) X &%
or, since sin 1”7 = 0.000004848,
/7
AA— 0 .009545 cos L cos d X % (¢ in seconds).

sin (L — d)

In this formula ¢ is in seconds of time; but if, as is usual,
¢t is expressed in minutes, we must put (60 £)? for ¢% so that

we have

17.96349 cos L cos d g
Ah= sin (Z — d) Xt (99)

If ¢ = 1m, the formula expresses the change of altitude in
one minute from the meridian. Representing this by A, 4, we

have
1796349 cos L cos d

Bk = sin (L — d) (100)
Ah=1t2A,h,
and (101)
hy = h + A h, the meridian altitude.

Whence the latitude is found as by a meridian altitude
(Pros. 39). Art. 278 (Bowb.).

Bowbpirca’s Table 26 contains the values of A,/ for ea.ch 1°
of declination from 0 to 24° and each 1° of latitude from
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0 to 70°; except when L — d < 4°, for then A A is so large
that (99) and (100) become inaccurate. In this case the body
is near the zenith, and altitudes out of the meridian do not
afford a reliable determination of the latitude.

Bowbpitcu’s Table 27 contains ¢? for each 1¢ of ¢ from 0 to
13m,

When 4 is small, the reduction to the meridian may be
found by this method quite accurately, even when ¢ is as great
as 12m,  If A is near 90° ¢ must be taken within much nar-
rower limits. Indeed, in this case z,, or its equal (Z — d), is
very small, and consequently A A becomes large. Unless then
¢ is sufficiently small, A 4 will be too great for the assumption
sin § Ah=Ahsin 1",

Ifd> L, sin (L — d) = sin z, is negative; that is, z, will
have a different name or sign from Z (Art. 140). Properly
h, hy, and Ajh would also become negative to correspond.
Still, however, we shall have numerically

hy=h+ Ak

‘We may therefore disregard the sign of L — d in (100),
and consider A and A, as always positive.

If the star is observed at its lower culmination, then ¢ will
be the hour-angle from ‘the lower branch of the meridian, and
for d we may use 180° — d (Art. 140). A A and A A are then
numerically subtractive.

Exampres. (Pros. 40.)

1. At sea, 1898, July 17, 1% p.m., in lat. 36°38’ S., long.
105°18’ E., by account; time by Chro., 5*47™145; ©, 30°15’;
N. W’y; index cor. 4 2’30”; height of eye, 17 feet; Chro.
cor. (G. m. t.) + 14m3¢; required the latitude.

(By 128) —
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©’s dec. 174 Eq. of t. 1'%

. / ’” m s
T. by Chro. + 124, 17 47 14 +911003.6 —36.7 —5 53.51 4-0.214
Chro. cor. + 14 3 — 6 —6
G.m.t July16 18 117=18.021  +4234.2 —1.28
— Long. +7 112 154.2
L.om.t Julyl?T 1 229 42112 87.8 —554.79
Eq. of t. —5548 @30175 (Lec + 230 Dip —i62
L. ap. t. 0 56 34.2 +12 43 |S.d. + 15 47 Ref. & Par —1 32
., . h=302743 L sin  9.70497

t* = 14 08 33 1. sec 0.01337

d =2112388 1. tan 9.58892 1. cosec 0.44154

¢”=214842N. 1tan9.60220 1 sin 9.57002

o =58378328. L cos 9.71653

L =3648508.

If we suppose an uncertainty of 3’ in the altitude and 20’
in the longitude, by (94), (95), and (96)

1. cot (—h)0.2305n 1. cos L 9.903
l.ecot¢” 97852 —dt = —20" log 1.301n
Z=S.164°40’'W. lL.secZ 0.01567n 1. tan Z9.438 n
dh=+8% log 0477 —dL=+ 4.4log 0.642
dL=-38.1 log 0.493 n

That is, an increase of 3’ in the altitude will numerically
decrease the latitude 3’.1; and a numerical increase of 20’ in
the assumed longitude will increase the latitude 4’.4. This
may be conveniently expressed in the following way :

Long. 105°18’ 4 20’ E.; ©, 30° 15" L &'
L= 36°48'8 4+ 44 F3.18.

* Instead of changing ¢ into arc, we may enter col. P.M. of Table 44
with 2 ¢ = 1* 53™ 22",
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2. At sea, 1898, Dec. 6, about 5 a.m., in lat. 50°30’ N.,
long. 135° 25’ W. (by account), time by Chro. 2*00™ 52¢; Chro.
cor. (G. m. t.) — 12m 34¢; Obs’d alt. of Mars, 58°10" 8. W’y ;
index cor. — 3’; height of eye, 19 feet; required the lati-
tude. (92.) .

Am & A m s 8.
T. by chro. 2 00 52 Mars’ R.A. 847163 + 0578
Chro. cor. — 12 34 .+ 1.0 .58
G.m.t.,Dec. 6, 14818 = 15,8 84717.3 { 46
Se 17 01 10.2 o 4 w ”
Red. for G. m. t. 17.8 Mars’ dec. + 20 49 29.3 4+ 4.66
G. sid. t. 18 49 46 + 8.4 {4.7
Long. 901 40 + 20 49 37.7 3.7
L. sid. t. 948 06 k= 58° 10 Le. —38.00
Mars’ R. A. 847173 — 7.48.) Dip —4.16
t = 100 48.7 P.and R.—.32

h=2568 02.12 Lsin 9.92860

t = 15°12' 11”7 1. sec 0.01548

d =20 49 38 N. L tan 9.58026 1. cosec 0.44910
¢” =21 30 53 N. L. tan 9.59573 1. sin  9.56436
4,’ =28 56 35 N. 1. cos 9.94206
L =50 27 28 N.

Ifdh= + 5 and A\ = + 15, d¢ = — 15’; and by (94),
(95), and (96),

L cot (— k) = 9.79491 n 1. cos L 9.80388
1. cor ¢’ = 0.25722 — dt = 415 log 1.17609
Z =N. 152° 29’ W. L. sec Z = 0.05213 n 1. tan Z 9.71679 n
dh =+5" log. 0.69897 dL = — 5 log0.69676 n
d¢'=dL= — 5.5 0.74110 n

3. 1898, May 15; in lat. 41°30" N. (approx.); long. 4*
47m30* W.; obs’d alt. © 67°18', bearing S’ly.; Chro. T. 5
38 28¢; Chro. cor. (G. m. t.) — 51485 i.e., — 1’ 50" ; height
of eye, 256 ft. Required the latitude. (101.)
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Mmoo

Chro. T. 53828 @’s dec. (Page 1I.).
Ch. cor. — 51 48.5 + 15° 5667 2074 +4-356”.2
G.m.t. 4 46 39.5, May 15, 44.78 140”.8
Long. 4 47 30 + 2 48 .2{ 24 .6
L.m.t. 2359 00.5, May 14 +185908 .6 2.8
Eq.t. 4 3851 ° © 67°18 00 (S.D.+15 517
L.ap.t. 003 00.5, May 15 + 8 47 3 Par. + 4
t = 8 00.5 h'=61 26 47
2 . 2 m s ]
t = 9 (Table27.) A,k + 32 4 Eq.t4+ 8 51.15—0.025
Ach =  3.6(Table26.) & =67°27 19”4 _ g {10
z =22 32 40 .6 N. ' .02
d =18 59 08 .6N. +351
L =41 3149 N. L ¢. — 150”7
Dip — 4 54
Ref. — 24

151. ProsrEM 41. To find the latitude from a num-
ber of altitudes observed very near the meridian, the
local times being known.

Solution. By (101) we see that very near the meridian the
altitude of a body varies very nearly as the square of its hour-
angle. Hence we cannot regard the mean of several altitudes
as corresponding to the mean of the times, since this is assum-
ing that the altitude varies as the hour-angle. Let,

hyy hg, hg, ete., be the several altitudes;
t, ty, ts, ete., the corresponding hour-angles expressed
in minutes ;

and we have as the reduction of each altitude to the meridian,
and the deduced meridian altitude,
¥'A0k }lo=hl+A1h
3.8 hy=hy+ Dy hp ete.  (102)
2.8 hete. hy=hs+ Agh

AI”’
Ag]l
Aa}l

[
R

Thus the meridian altitude may be derived from each alti-
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tude, and the mean of all these meridian altitudes taken as
the correct meridian altitude. But the following is a more
expeditious method : —

If n is the number of observations, the mean value of A,
will be

ho=’l1+ha+hs+"'hn~+élh+Az[z+ Agh 4 o+ Ak

n n
or,
ho hl+h2+:8+ n+ l+t2+t3+ nAh(los)

‘Whence the rule: ,

Take the mean of the squares of the hour-angles in min-
utes (Table 27, Bowp.) ; multiply it by the change of altitude
in 1™ from the meridian (Table 26); and add the product to
the mean of the altitudes. The result is the mean meridian
altitude required. (Bown., Art. 278.) TFrom the meridian
altitude thus found, deduce the latitude as from any other
meridian altitude. (Pros. 39.) Strictly, however, the dec-
lination to be used is that which corresponds to the mean of
the times, and the hour-angles, ¢, are intervals of apparent
time for the sun, and of sidereal time for a fixed star.

152. It is unnecessary to reduce each observed altitude
separately to a true altitude; as the reductions, excepting
slight changes of refraction and parallax, are the same for
all, and may be computed for the mean of the observed
altitudes, and applied to this mean with the reduction to
the meridian.

153. Should it be desirable to compare the several obser-
vations with each other, and test their agreement, it will be
sufficient to compute the several reductions to the meridian,.
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Ay hy Ay hy Agh, ete., and apply them separately to the read-
ings of the instrument; or to the Aalf-readings when the
altitudes are observed with an artificial horizon: applying,
also, the semidiameter when both limbs of the body are
observed.

154. If the altitudes are taken on both sides of the me-
ridian, and at nearly corresponding intervals, a small error
in the local time will but slightly affect the result; for such
error will make the estimated hour-angles and the corre-
sponding reductions on one side of the meridian too large,
and on the other side too small.

155. This method is rarely used at sea, as a single alti-
tude on or near the meridian suffices. No increase of the
number of observations will diminish at all the error of the
dip, which affects alike each observation and the mean of
all* But on land it is preferable to measure a number
of altitudes at the same culmination of the body, and thus
diminish the “error of observation.” Altitudes of the sun
are used, but the best determinations are from the altitudes
of a bright star. To facilitate the operations, and avoid
mistaking one star for another, it is well to compute the
altitude approximately beforehand. (Art. 144.)

If an artificial horizon is employed, the error of the roof
is partially eliminated by making two sets of observations
with the roof in reversed positions.

156. If two stars are observed which culminate at nearly
the same altitude, one north, the other south of the zenith,

# Such an error is called constant; those which affect the several
observations differently are called variable.
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‘the error of the instrument is nearly eliminated; for such
. error (except accidental error of graduation) will make the
latitude from one of the stars too great, and that from the
other too small by very nearly the same amount; the more
nearly, the less the difference of the altitudes. The error
peculiar to the observer is also elimpinated.

If the observations are made with an artificial horizon,
the error of the roof is eliminated if the same end is toward
the observer in both sets of observations.

157. Bowpirce’s Table 26 extends only to d = 24°. If a
star is used whose declination is beyond this limit, or if
greater precision than the table affords is required, A/
may be computed for the star and place by (100).

b= 17.9635 cos L cos d
sin (L — d)

.Ao

158. If the observations are made at the lower.culmina-
tion of the star, we have only to use in the formulas 180° — d
instead of d. (Art. 140.)

The altitudes observed at the same culmination are very
nearly the same. To render the measurements independent,
after each observation move slightly the tangent screw of the
instrument. With the sextant, it is best to make the final
motion of the tangent screw at each observation always in
the same direction; for example, in advance.

Examrre. (Pros. 41.)

1898, May 22, 9%, circum-meridian altitudes of « Virginis

- (Spica) at lighthouse on St. George’s Island, Apalachicola Bay,
Florida, lat. 29° 37" N., long. 85° 5 15” W.
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T.BY CH. SEXT. No.1. ART. HOR.No.1.

A m s o a7
3 28 56 2 alt. 99 22 50 A. end. In. cor. — 3 0”
3124 26 50 Bar. 30.04, Ther. 73°
33 36 30 00 Chro. cor. (L.m.t.) + 5*37™ 142,55
34 56 32 40 Long. + 5 40 21
37 8 32 40
38 58 385600 B. end.
42 45 34 30 %’s R. A. 13% 19m 525,23
44 33 3110 -8, —4 00 32.19
48 21 25 50 —Red. for ) —55.91
51 25 22 50 Sid. int. from 0* 9 18 24.13
99 20 26 Red. —1 381.48
W =49 44 43 (3 In. cor. —1°30” L.m.t. of trans. 9 16 52 .65
—219{ Ref. — 49 — Chro. cor. —5 37 14.55
h=4942 24 Chro. t. of trans. 3 39 38.1
MEAN 81D, )
[4 [4 3
—104 —1044 115.2 17.9635 log 0.2930
814 815 68.1 L =+429° 37 lL.cos 9.9391
6 2 6 3 36.6 d=-—10 38 L. cos 9.9925
442 443 22.2 L—d =440 16 1. cosec 0.1897
230 230 6.2 Aok = 27.596 log  0.4143
040 040 0.4 t, = 49 .86 log 1.6979
+3 7T +3717 9.7 Ah= +2 .10 log 2.1122
4 55 4 56 24.3 h = 49° 42’ 24"
843 8 44 76.3 hy= 49 44 34
11 47 1149 139.6 2z, =440 15 26
49.86 d =—10 38 05
L =429 37 21

159. ProBLEM 42. To find the latitude from two alti-
tudes near the meridian when the time is not known.
Chauvenet’s Method.*

The method of reducing circum-meridian altitudes to the
meridian, when the time is known, has already been given
(ProB. 41). At sea, however, the local time is frequently un-
certain, while altitudes near the meridian are resorted to as

* Astronomy, I, 296.
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next in importance to meridian altitudes for finding the lati-
tude.
As in Pros. 41, let /4, represent the meridian altitude,

”
1 96;:’:{)( zos l(li)c 08 d, the change of altitude in 1™

from the meridian (Table 26, Bowp.), and as before,

Bk =

h and ¥/, the true altitudes,
T and 7", the corresponding hour-angles (in minutes of
time),
t= T’ — T, the difference of the hour-angles,
Ty =4% (T’ + T), the middle hour-angle.

By (99),
hy=h + 8k T, (104)
ho=H 4 A2 T”.%
The mean of these equations is
- ho=3h+ )+ 3(T'2+ T Ak (105)
u

yret = (T (B — a4z

which, substituted in (105), gives
ho=4 (h+ F) + (4174 T A,k (108)
The difference of the two equations of (104) gives
h—=K=(T"%=T%Ah=2TytAA

1GR—=H) LGR—F) '
Bo= " ah =yl (o)

Substituting this in (106), we have

hh=3%R+ 1)+ G0 Ak +

Hence,

[} (h— BT

GO an - 109
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The reduction to the meridian, then, is effected “ by adding
to the mean of the two altitudes two corrections; 1st, the
quantity (} £)? Ag/k, which is nothing more than the, common
reduction to the meridian (101), computed with the half-
elapsed time as the hour-angle; 2d, the square of one-fourth
the difference of the altitudes divided by the first correction.”
Several pairs of altitudes can be thus combined, and the mean
of the meridian altitudes taken, from which the latitude can
be obtained as from an observed meridian altitude.

160. The restriction of the method corresponds with that
of reduction to the meridian (Art. 150).* Quite accurate re-
sults can be obtained with hour-angles limited to 5» when the
altitude is 80°, to 256m when the altitude is only 10°. If the
interval ¢, however, exceed 10™, Ay~ should be computed to
two or three places of decimals, as it is given in Table 26
(Bowb.) only to the nearest 0”.1.

The accuracy of the method depends mainly upon the ac-
curacy of the second correction, and therefore upon the pre-
cision with which the difference of altitudes has been obtained.
The altitudes, then, should be observed with great care. Errors
of the tabulated dip and refraction, and a constant error of
the instrument, will affect both altitudes nearly alike. If the
altitudes are equal, this second correction becomes 0. The
most favorable condition is, therefore, that of equal altitudes
observed on each side of the meridian.

At sea, the method is especially useful for altitudes of the
sun observed with a clear, distinet horizon. A long interval
between the observations is to be avoided on account of the

* Table 26 (BowD.) gives A, h only to the nearest 0”.1; if, then,
it is taken from this table, A,k t2 may be in error 17, if t>4m If,

however, A,h is computed to the nearest 0*.001, the error of using
A k12 will not exceed 17, unless ¢ > 20™ and h > 60°.



LATITUDE. 187

uncertainty of the reduction of one of the altitudes for the
run of the ship.

161. The hour-angle of either altitnde may also be ob-
tained approximately; for we have from (107), in minutes,

7 tG=8)
- W) (109)
T=T,—1%¢ T"=T,+ %t
(Art. 299, Bowp.)
ExXAMPLE.

Sept. 3, 1898, in lat. 37° 30’ N., long. 5* W., by account,
observed two altitudes, near noon, for latitude.

C. time 10* 30™ 21%; observed alt. © 59° 43’ 40” (South).

(13 13 loh 35" 36‘; ‘" " 13 590 38/ 40”
I. c. —0730”; ht. eye, 18 ft.
o 4 W Aom o @’s dec.
b =504340 c.t, 103021 o
K = 5938840 C.t;, 103526 +727123.8 —55.15
":—" = 115 t = 0515  —04358+ 5
’-";—" = 504110 % = 0237156 + 72248
t 2
L e — 030 (2) = 089
$. D. + 1554
Dip — 400 Ach = 3.06 log 0.48572
Par.and Ref. — 030 t\2
h = 595155 (2) 6.89 log 0.83822
1st cor. = 21.08 log 1.32394
—Nh’\3
1st cor. 21.1 (” 4") = 56.26 log 8.75012
2d cor. 4268 2d cor. =266.80 log 2.42618
hy 60 56 43
2, 30 03 17 N.
d T2248N.

Lat. 37 26 05 N.
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162. ProBLEM 43. To find the latitude from an ob
served altitude of Polaris or the North Pole-star.

Solution. The formulas (91) of Pros. 40.

tan ¢ = cot d cos ¢
cos ¢ = cos ¢ sin A
sin d
90°—L=¢L4¢
can be greatly simplified in the case of the Pole-star, since its
polar distance is only 1° 25'.

Putting d=90°—p and ¢’ = 90° — ¢”,
we have
tan ¢ = tan p cos ¢
or ¢ = p cos ¢ (within 0”.5)
sin ¢” =sin A % (110)
L= ‘ﬁH —

the 2d value of L, or (180° — ¢” — ¢), being excluded, as it
exceeds 90°. p and ¢ are so small, that the cosine of each is
nearly 1, and consequently

sin ¢”" =sinh and ¢” = A, nearly.
¢ = p cos t} (111)
L=~h—¢

If ¢ is more than 6* or less than 18* cos ¢ is negative, and
e have numericall
w nu Yo _a ta

Let S represent the sidereal time, and @ the right ascen-
sion of the star, then

t=8—a and ¢ =pcos (S§S— a).

Thus we have

If we consider the right ascension and polar distance of the
star to be constant, ¢ may be computed and tabulated for dif-
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ferent hour-angles of the star, as in Table 4, Appendix, in the
Nautical Almanac. Owing to the change of right ascension
and declination, such a table requires correction for each year.
It will furnish an approximate value of the latitude; but it is
more accurate to take the apparent right ascension and decli-
nation from the Almanac, and compute ¢ and ¢.

¢ may be found approximately in the traverse table (Table
2) in the Lat. col., by entering the table with ¢ as a course,
and p as a distance.

Formulas (111) may be derived N
from Fig. 34, by regarding P M m
as a plane triangle,and Z m = Z M. M ,l.".
The first produces no error greater
than 0”.5. The error of the sec- z

ond is evidently greater the greater
the altitude, or the latitude. This
error, however, will not be more
than 0”.5 in latitudes less than 20°,
nor more than 2’ in latitudes less
than 60°.

s
Fig. 34.

163. We may use (110) with more exactness, but these
formulas may be modified so as to facilitate computation.
Put ¢ =h+Ah
then, changing the 2d of (110) to a logarithmic form, we have
log sin (k + A %) = log sin A + log cos ¢ — log cos p,
_or
log sin (A 4 A A) — log sin A = log sec p — log sec ¢.
But A /% being very small, representing by D, the change of
log sin 4 for 1”7, we have, with A A in seconds,

log sin (h+ Ak)—-logsin kA=Al X D,;

/.

whence, by substituting in the preceding, we obtain
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Ah= log sec p — log sec ¢ _ log cos ¢ — log cos p. (112)
4 'DII
The difference of the log secants, or log cosines, of p and ¢
is readily taken from the table by inspection. D, for log sin
 is usually given in tables of 7 decimal places, and hence A A
is readily found.
We have then ¢ =pcost

L=h+Ah—¢
If D, is the change of log sin 4 for 1/, then in minutes

(113)

log sec p — log sec ¢
D

4 -

Ah= (119)

164. Bowditch * contains four tables (28 A, B, C, D) for
the reduction of altitudes of Polaris, from which they may be
found to the nearest second. (Art. 287, Bowp.)

Altitudes of Polaris may often be observed at sea, with
some degree of precision, during twilight, when the horizon
is well defined, and the latitude found from them within
3 or 4.

ExamprLe. (Pros. 43.)

1. At sea, 1898, March 31, 7* 15™ 19%, mean time in long.
160° 15’ E.; obs'd alt. of Polaris 38° 18’; index cor. 4 3';
height of eye, 17 feet: what is the latitude ? (113.)

L. m. t., Mar. 81, 'T» 15m 19¢ Long. — 10+ 41m
So 03 31.3 k= 38° 18" 00" Le +9
Red. for long. —1 45.3 — 2167 Dip — 4027
Red. of L.m.t. +1 11.6 h=288 16 44 Ref. —1 14 -
L. sid. t. 7 50 16.6
%x’'s R. A. 1 20 47.8

t=6 29 28.7 t = 97° 22 117 1. cos 9.10813 n

p= 73.9 log 1.86864

L=h—¢+38°26'.2 ¢= —9.56 log 0.97677n

* Chauvenet’s Astronomy, I, 256.
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By Table IV, NauT. ALm., App.

L. sid. t. 7* 50™.3 h= 38 15.7
Less 121.8 Cor. per Table IV. + 9.9
H. a. 6 28 .5 L=+38 25.6

1—2‘2 x385=11 88+11=299

141
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CHAPTER VIII
THE CHRONOMETER.—LONGITUDE.

165. AsTroNOMICALLY the longitude of a place is the dif-
ference of the local and Greenwich times of the same instant.
It is west or east, according as the Greenwich time is greater
or less than the local time. (Art. 73.)

The mean solar, the apparent, or the sidereal times of the
two places may be thus compared.

166. A chronometer is simply a correct time-measurer, but
the name is technically applied to instruments adapted to use
on board ship. It is here used more generally, as including
clocks which are compensated for changes of temperature.

A mean time chronometer is one regulated to mean time;
that is, so as to gain or lose daily but a few seconds on mean
time.

A sidereal chronometer is one regulated to sidereal time.

167. A chronometer is said to be regulated to the local
time of any place when it is known how much it is too fast,
or too slow, of that local time, and how much it gains or loses
daily. The first is the error (on local time); the second is
the daily rate. Both are 4 if the chronometer is jfast and
gaining.

It is preferable, however, to use the correction of the chro-
nometer, which is the quantity to be applied to the chronom-
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eter time to reduce it to the true time, and its daily change.
Both are + when the chronometer is slow and losing.

They will be designated by cand A c.

A chronometer is said to be regulated to Greenwich time
when its corrections on Greenwich time and its daily change
are known.

If ¢, is the chro. cor. to reduce to Greenwich time, and ¢
the chro. cor. to reduce to the time of a place whose longitude
is A (4 if west).

CGG=C+ A Or ¢c=¢ —A; (115)

so that the one can readily be converted into the other.

168. If the correction of the chronometer at a given date,
and its daily change, are known, the correction at another
date can easily be found. For let

¢ be the given correction at the date 7,
¢, the required correction at the date 7
t = T'— T, expressed in days,

A ¢, the daily change;

then d=c+tAc (116)

t is negative if the date for which the correction is re-
quired is before that for which it is given.

If Ac is large, ¢ must include the parts of a day in the
elapsed time.

A ¢ may be given for two different dates, and vary in
value. It may then be interpolated for the middle date be-
tween the two of this problem.

Thus, if A’c be a second value determined n days after
the first, the daily variation of A ¢, regarded as uniform, will
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be Ac—Ac,

. a17)

Representing this by A, ¢, we have for the mean daily change
of the chronometer correction during the period ¢, or that at
the middle date,

Ac+}thage
and the required chronometer correction,
d=c+tAc+ 0 Ac (118)

When the chronometer is in daily use, it is convenient to
form a table of its correction for each day at a particular hour.
For a stationary chronometer, the most convenient hour is 0*
of local time; for a Greenwich chronometer, 0* of Greenwich
time.

ExAMPLES.

1. Chro. 1675, regulated to Greenwich mean time; 1898,
Jan. 15, 0*; correction 4 1*16m25%0; daily change — 7465
required the correction, Jan. 26, 6

Jan. 15, 04, Chro. cor. + 1216™25.0
— 7965 x 11.26=— 1 26.1
Jan. 26, 64. Chrocor. +1 14 58.9

This chronometer is slow and gaining.
2. To find the chro. cor. to reduce to local time, Jan. 26,
0% in long. 85°16’ E.
Chro. cor. (Jan. 2662 G. t.) + 1414m582.9
— Long. + 6 +5 41 4
Red. for —12 + 3.8
Chro. cor. (Jan. 26 0 L. t.) + 6 56 6.7 or — 5*3m 533

3. To form a table of chronometer correction for each day
from Jan. 26, 6% to Feb. 6, 6
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G.M.T. CHRO. COR. G. M. T. CHRO. COR.
Jan. 26 64 + 12 14m 5849 Feb. 1 64 + 1414m 1320
27 6 14 51.3 26 14 5.4

28 6 14 43.6 36 13 7.7

29 6 14 36.0 46 13 50.1

30 6 14 28.3 b6 13 42 .4
316 +1 14 20.7 66 +113 34.8

169. To find the rate, or daily change, of a chronometer,
it is necessary to find the correction of the chronometer on
two different days, either from observations, or by comparison
with a chronometer whose correction is known. Let ¢, and
¢, be the two corrections, ¢ the interval expressed in days;
then we have for the daily change,

Cg — G,

Ac==""; (119)

that is, the daily change is equal to the difference of the two
chronometer corrections divided by the number of days and
parts in the interval. If attention is paid to the signs, +
will indicate that the chronometer is losing, — that it is gain-

ing.

ExAMPLES.
CHRO. 1615. CHRO. 4872. CHRO. 796.
] B m & A m s Am s
Chro. cor. April 15 0 + 018 16.2 —11527.6 +00 16.6
“ ¢ 278 + 018 29.6 —1 14 58.6 —00 5.3
Change in 12.3 days, + 134 + 28.9 —21.9
Daily change of cor. +1.00 + 2.35 —2.71

At fixed observatories an interval of one day may suffice.
For rating sea-chronometers by observations made with a sex-
tant and artificial horizon, an interval of from 5 to 15 days is
desirable.

The sea-rate of a chronometer is sometimes different from

—
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its rate on shore, or even from its rate while on board ship in
port. Some chronometers are affected by magnetic influences,
so that their rates are varied by changing the direction of the
XII. hour-mark to different points of the horizon. All are
slightly affected by changes of temperature, as perfect com-
pensation is rarely attainable, The excellence of a chronom-
eter depends upon the permanence of its rate. The rate may
be large, but if its variations are small the chronometer is
good.

170. A watch is often used for noting the time of an ob-
servation. It is compared with the chronometer by noting
the time of each at the same instant. The most favorable
instant is when the watch shows 02

Let €' and W be these noted times; then A W= (C— W)
is the reduction of the watch time to the chronometer time for
C=W4(C-W).

Comparisons should be made before and after the observa-
tion, and the results interpolated to the time of observation.

A practised observer may, by looking at the watch and
counting the beats of the chronometer, make the comparison
to the nearest 0°.25. It is better to take the mean of several
comparisons than to trust to a single one.

A mean time and a sidereal chronometer may be compared
within 0°.03 by watching for the coincidence of beats, which
occurs at intervals of 3™ for chronometers, which beat half-
seconds.

ExAMPLES. #
CHRO. 476. CHRO. 4072. CHRO. 1976. CHRO. 1976.
M m s h m s A m s A m s
Chro. 4 16 56.2 315 17.5 11 48 18.2 1 0285
Watch 15 0 7 35 30 316 0 428 0

C—W. +3 11 56.2 —4 20 12.5 —3 27 41.8 —3 27316
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The last two are comparisons of the watch with the same
chronometer. Suppose the time of an observation as noted
by the watch to be 3* 37 17*; for finding the corresponding
time by the chronometer we have,

The change of ¢'— W in 1*.2, +10.3;
whence the change in 1> is4+ 8.6,
and the change in 21™.3 = 0435, the interval between the
1st comparison and the observation, 4 3.0;
or, by proportion, we have

72m:21"3 = 4 1023 : 4 340

Then, Time by watch = 337 175
C—W=— 327 888
Time by chro. = 0 9 382

171. ProBLEM 44. To find the correction of a chronom-
eter at a place whose latitude and longitude are given.

Ist Method. (By single altitudes.)

Observe an altitude, or set of altitudes, of the sun or a
star, noting the time by the chronometer, or a watch compared
with it.

Find from the altitude (Pros. 87) the local mean. or si-
dereal, time, as may he required.

The “local time’” — the ¢chronometer time,” or

c=7T7-0C

(Art. 135), is the correction of the chronometer on local time.
Applying to this the known longitude of the place of observa-
tion, gives the correction on Greenwich time.

172. 1If an artificial horizon is used, as it should be when
practicable, it is best to make two sets of observations with
the roof in reversed positions. In A.m. observations of the
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sun with a sextant and artificial horizon, the lower limb of
the sun and the upper limb of its image in the horizon are
made to lap, and the instant of separation is watched for;
while in p.M. observations the limbs are separated and ap-
proaching, and the instant of contact is noted. In observa-
tions of the upper limb this is reversed. Even a good observer
may estimate the contact of two disks differently when they
are separating and when they are approaching. Both limbs,
then, should be observed.

In observing altitudes which change rapldly it is better,
when circumstances permit, to set the instrument so as to
read exact divisions at regular intervals, and watch the in-
stant of contact. A good observer, with a sextant and arti-
ficial horizon, can observe the double altitudes at regular
intervals of 10’.

178. On a subsequent day repeat this observation, and
find again the correction of the chronometer. The difference
between these two corrections divided by the number of days
and parts in the interval is the daily change, as in Art. 169.

It is important that both the observations thus compared
should be at nearly the same altitude and on the same side of
the meridian (when the sun is observed, both in the forenoon,
or both in the afternoon), and in general, that they should be
made with the same instruments, and as nearly as practicable
under the same circumstances. Thus, an error in the assumed
latitude and constant errors of the instruments or the observer
will affect the two chronometer corrections nearly alike, but
will very slightly affect their difference, and, consequently, the
rate determined from it will be nearly exact. The chronome-
ter correction, derived from single altitudes, may be erroneous
a few seconds. But for sea chronometers this is of less im-
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portance than an erroneous determination of the rate. For
instance, suppose the determined chronometer correction in
error 4, and the daily change in error 1*; in 20 days (Art.
168) the computed change of the correction will be in error
20% and in 30 days will be in error 30*.

174. 2d Method. (By double altitudes.)

It is better to observe altitudes of the body on both sides
of the meridian, and as nearly at the same altitude as practi-
cable, either on the same day or on two consecutive days.

Altitudes of two stars also may be used, one east, the other
west of the meridian.

The mean of the two results is better than a determination
from either alone; for constant errors of the latitude, the in-
strument, or the observer, affect the two results in opposite
directions; that is, if one result is too large, the other is too
small, and by nearly the same amount.

ExAMPLES (Pros. 44.)

1. Chronometer Correction.

Pensacola Navy-Yard, 30° 20’ 30” N., 87° 15 21”7 W.
1898, May 30, 21*; Chro. 1876.

T. BY CHRO. SEXTANT No. 2. ART. HOR. No. 1.
m 8 8 [<] ’
3141 227 20 9950 4.end. Chro. cor. (G. m. t)—4226 }
32 8.7 233 100 0 Daily change — 3.8
32 27 24 100 10
32 51 23 100 20 ©'s diam. off arc + 32 8.3 }
33 14 23.7 100 30 on arc — 30 59.2
33 37.7 100 40
34 75 283 2Q 9950 B. end. In cor. + 845
3430.5 23 100 0
345356 23.3 100 10
3516.8 23 100 20 Bar. 30.14
8539.8 23.2 100 30
36 3 100 40 Ther. 76°
3 32 39.07 20100 15
835 b5.18 2 © 100 15
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Computation.
Am s
T. by Chro. 3 32 39.07 @©’s dec. Eq. of t.
o A7 ” m s
Chro.cor.  —4226 42157471 421.02 +233.3¢ —0.360
42.04 L7120
G.m.t. May31,2 50 11 +59.6 1682 —1.02 .288
.63 .011
2.837 + 21 58 46.7 15 +23232 | .002
© 650°07°30”(I. c. + 177.8 Ref. —46
— 16 11 | S.D. — 1548”5 Par. +06
A m o v ”
L.ap. t., May 30, 2103 51.75 h= 49 51 19
— Eq. t. — 2 32.32 L= 302030 1. sec  0.06398
L. m. t., May 30, 21 01 19.43 p= 680113 1. cosec 0.03277
T. by Chro. 3 82 39.07 28 = 148 13 02
O Ch. cor. (L.m.t.) — 6 31 19.64 8= 740631 1l cos 9.43745
- h= 241512 lsin 9.61360

-
|

A m s 9.14780
t =903 51.75 1. sin  9.57390

Am e ©'s dec. Eq. of t.
T.by Chro. 8 35 05.18 . ma
Chro. cor. — 42 26 + 21 58 46.74+21.02 42 32.32—0.360
G.m.t., May 31, 2 52 41 in0%041 + 0.9 — ot

2.878 + 21 58 47.6 +2 32.31

® 50°07” 30~ Le +1738 Ref. — 46
+ 15 26 S.D.+15 48 .5 Par. + 06

A m [
L. ap. t., May 30, 2106 18 h = 50 22 56
— Eq. t. —2 32.31 L= 302030 Il sec 0.06398
L. m. t., May 30, 21 03 45.69 p= 680112 1. cosec0.08277
T. by Chro. 335 05.18 23=1484438

@ Chro. cor. (L.m.t.) —6 31 19.49 8=1"T42219 1 cos 9.43039

s—h =235923 1sin 9.60914
Mean —6 31 19.57 9.13628
Red. for 3* —.48 t = 9% (06m 18° 1. sin 9.56814
Chro. cor. (L. m.t.) —6 31 20.05 May 31, 0%,
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T. BY CHRO.
hm s s

024 2.7 oo
24255 5o ¢
24485 5, o
25125 40 4
25 34.8 59 4
25 58.2
28335 50 ¢
2857 o35
20205 5o
248 939
30 6 o35

30205

925 0.37
9 29 31.58

T. by Chro.
Chro. cor.

G.m. t., May 31, 84233

L.ap.t., May 81, 256 11.75 2

— Eq. t.

L.m. t., May31, 25341.56 s—

T. by Chro.

® Ch.c.,L.m.t.—6 31 18.81

2. Chronometer Correction.

Pensacola Navy-Yard, 30° 20’ 30” N., 87° 15’ 21”7 W.
1898, May 31, 3%

SEXTANT No 2.

o ’
20 10040 A end.

ART. HoR. No. 1.

m s
Chro. cor. (G. m. t.)—42 27 }

100 30 Daily change - 3.8
10020 QO's di ff + 312 llé 51
s diam. off arc 5
100 10 onarc — 3059.2
100 00
99 50 In cor. + 36.6
20 9740 B end. Bar. 30.14
97 30 Ther. 76°
9720
97 10
97 00
96 50
20 100 15
20 9715
Computation.
hm s ©’3 dec. Eq. of t.
9 25 00.37 ° ,, ” m s s
— 4227 + 215747.1 +20.91 +233.3¢ —0.362
167.28 2.896
+ 3021 { 14.64 —8.15 { 253
8.709 + 22 00 49.2 19 +230.19 U .003
o ’ e ’o” ’”
(O] 500730 Ic.+ 18.3 Ref.—46
— 1610 S.D.—1548.5 Par.400
h = 495120
L = 302030 1. sec. 0.06398
hm s p= 675911 1. cosec 0.03288
8 = 148 11 01
—230.19 8= 740530 L cos 9.43790
h= 241410 l. sin  9.61331
9 25 00.37 9.14807
t = 2k 56m 112.75 0.57403
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Am e 's dec.
T. by Chro. 9 29 31.58 o @ " ..]fq' o t',
Chro. cor. — 42.27 + 22 00 49.2 +20.91 + 230.19 —0.362
G.m.t., May31,8 4705 ino0ko76 + 1.6 — .03

8.785 + 22 00 50.8 + 23016

©48°3730” Le + 18738 Ref. — 48~
+ 167257  S.d. +15” 48”6 Par. + 06”.

A m s o s w

L. ap. t., May 31, 3 00 42.67 h = 4852 55
— Eq. t. — 230.16 L= 302030 l.sec 0.06398
L. m. t. 2 58 12.51 p= 675911 1. cosec. 0.03288

T. by Chro. 9 29 31.58 28 = 14712 36
Q@ Ch. cor. L. m. t.— 6 31 19.07 s= 733618 1l cos 9.45064
s—h = 244323 lsin 9.62142
Mean — 631 18.94 9.16892
Red. for — 3* + .48 t =3"00m42:.67 1l.sin 9.58446

Chro. cor. L.m. t. — 6 31 18.46 May 31, 0%,

May 31, 0%, Chro. cor. (L. m t.) — 6*31m 19%.25, by A.M. and P. M. obs.
Long. +5 49 01.4

May 31, 6%, Chro. cor. (G.m.t.) — 42 17.85

8. Table of Chronometer Corrections.

Chro. of 1876 ; fast of Greenwich mean time and gaining.

G.M.T. CHRo. COR. D&’“"Y REMARKS,
k hm s
1898, May 13 | — 0 40 20.5 . ©, A. M., Key West Light-
—4.14 House.
173 41 26.8 ©, A. M., Key West Light-
3.88 House.
256 41 58.3 ®, A.M. & P. M., Pensacola
3.75 Navy-Yard.
316 42 17.8 ®, A.M. & P. M., Pensacola
Navy-Yard.

Long.* of Key West Light-House, 81° 48" 40” W.
Long. of Pensacola Navy-Yard, 87° 15’ 21” W.

* The assumed longitude of places where the chronometer is rated
should be stated.

e e —avar
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4. Comparisons and Corrections of Chronometers.
1898, May 31, 6* G. mean time.

CHRO. 4375. CHRoO. 9163. CHRO. 789. CHRO. 5165.
A m [ A m s A m A m s
Chro. 6 50 16.3 5 3 29.7 215 27.6 11 659 16.8
(1876) 630 0 631 0 6 32 10 6 33 30
(1876)—Chro. —0 20 16.3 +1 27 30.3 +4 16 42.6 —5 25 46.8
Cor. of (1876) —42 17.8 —42 17.8 —42 17.8 —42 17.8
Chro. cor. —1 2341 —045 125 +3 34 24.7 —6 18 4.6
or +5 41 55.4

175. 3d Method. (By equal altitudes.)

A heavenly body which does not change its declination is
at the same altitude east and west of the meridian at the same
interval of time from its meridian passage.

If, then, such equal altitudes are observed and the times
noted by the chronometer, or by a watch and reduced to the
chronometer (Art. 170), the mean of these times, or the middle
time, is the chronometer time of the star’s meridian transit.

The corresponding sidereal time is the star’s right ascen-
sion, when the first observation is east of the meridian; 12* 4
the right ascension when the first observation is west of the
meridian.

This, for a mean time chronometer, may be converted into
local mean time (ProB. 26); and for a Greenwich chronome-
ter into the corresponding Greenwich time.

Subtracting the chronometer time, we have the correction
of the chronometer.

ExAMPLE.

1898, Jan. 14, at Washington, in longitude 77° 2’ 48” W.,
equal altitudes of a Canis Minoris were observed, and the
times noted by a chronometer regulated to Greenwich mean
time; from which were obtained :
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Mean of Chro. times (* east) 2k 16m 35%.65
Mean of Chro. times (% west) 7 59 16.38

Chro. time of *’s transit 5 07 56.01
L. sid. t. = %'s R. A. Th 34m 00%.34
Long. +5 08 11.2
G. sid. t. 12 42 11 .54
-8, (Jan. 14) —19 35 53.18
Sid. int. from Jan. 14 0* 17 06 18 .36
Red. to m. t. int. 2 48 .14
G. mean time (Jan. 14) 17 03 30 .22
Chro. time 17 07 56 .01
Chro. cor. —4 25.79

176. If equal altitudes of the sun are observed in the fore-
noon and afternoon of the same day, the mean of the noted
times would be the chronometer time of apparent noon, were
it not for the change of the sun’s declination between the
observations.

ProBLEM 45. In equal altitudes of the sun, to find
the correction of the middle time for the change of the
sun’s declination in the interval between the observa-
tions.

Solution. Let

h = the sun’s true altitude at each observation,
t = half the elapsed apparent time between the observa-
tions,
T, = the mean of the chronometer times of the two obser-
vations, or the middle chronometer time,
A T, = the correction of this mean to reduce to the chronom-
eter time of apparent noon;
L = the latitude of the place,
d = the sun’s declination at local apparent noon,
A d = the change of this declination in the time ¢;
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then, when both observations are on the same day,

t + A7, will be numerically the hour-angle at the a.m. ob-
servation,

t — AT,, the hour-angle at the p.M. observation,

d — A d, the declination * at the A.M. observation,

d + A d, the declination * at the p.M. observation.

By (76), we have for the two observations,

sin A=sin L sin(d—Ad )+cos L cos (d— Ad) cos (t+AT,)
sin A=sin L sin(d+- Ad )+ cos L cos (d+Ad) cos (t—AT)

But

} a0y

sin (d L Ad) = sin d cos Ad L cos d sin Ad,
cos (d L Ad) = cos d cos Ad T sin d sin A d,
cos (@ J ATp) = cos ¢ cos AT, F sin ¢ sin AT,

Since A d, and therefore A 7}, are very small, we may put

cos Ad =1, sin Ad = Adsin 1”7,
cos ATy =1, sin A7, =15 A7, sin 1”;

A d being expressed in seconds of are, and A 7j in seconds of
time; we shall then have

sin (d L Ad) =sin d L Adsin 1” cos d,
cos (d L Ad) =cos dF Adsin 1” sin d,
eos (t L ATy) =cos ¢tF 15A 7, sin 1” sin &

Substituting these in the two equations (120), subtracting the
first from the second, and dividing by 2 sin 1”, we shall have

O0=Adsin Lcosd— Adcos Lsindcost
+ 15 AT, cos L cos d sin ¢.

* Strictly, in the one case, A d should be the change of declination
in the time ¢ + ATy; in the other, the change in the time t —A Tj,.
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Transposing and dividing by the coefticient of A7j, we find
the formula

Adtan L  Adtan d’
15 sin ¢ 15 tan ¢

ATy = — (121)
which is called the equation of equal altitudes.
Let
Ay, d = the hourly change of declination at the instant of ap-
parent noon, and express
t, which is half the elapsed apparent time, in hours,

then Ad=A,dt,
and (121) becomes
_ Apdttan L  A,dttand
S TTY 15 tans (22)
If we put ¢ ¢
A=~ 15sin¢ B= 15 tant (123)

and

C, = the chronometer time of apparent noon, we have

Ty=AA,dtan L 4+BA,dtand
AT, 2dtan L 4 » an} (124)

C=T+AT,

In these formulas, Z and d are 4 when north, A d and A, d
are 4+ when the sun is moving toward the north.

The coefficient 4 is —, since ¢ < 12%
« “ Bis 4+ when ¢ < 6* — whent¢ > 6™

The computation of the two parts of A 7 is facilitated by
tables of log A and log B. Such tables are given in Chau-
venet’s ¢ Method of Finding the Error and Rate of a Chro-
nometer,” and in Bowpirch, Table 37.

The argument of these tables is 2 ¢, or the elapsed time.
The signs of A and B are given.
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Apply the two parts of A 7, according to their signs, to
the Middle Chronometer Time, the result is the Chronometer
Time of Apparent Noon.

Apply to this the equation of time (adding, when the equa-
tion of time is additive, to mean time ; otherwise subtracting) ;
the result is the Chronometer Time of Mean Noon at the
place.

Applying to this the longitude (in time), subtracting if west,
adding if east, gives the Chronometer Time of Mearn Noon at
Greenwich.

*12% — Chro. T. at local Mean Noon will be the Chro. correc-
tion, if the chronometer is regulated to local time.
12* — Chro. T. at Greenwich Mean Noon will be the Chro.
correction, if the chronometer is regulated to Greenwich
time.

177. If a set of altitudes is observed in the afternoon of
one day, and a set of equal altitudes in the forenoon of the
next day, the middle time would correspond nearly to the in-
stant of apparent midnight; and half the elapsed time ¢ would
be nearly the hour-angle from the lower branch of the merid-
ian, or the supplement of the proper hour-angle.

In this case

180° — (¢ 4+ A T,) will be the hour-angle at the p.m. observation.

180° — (l —A 1:)) [JEETIT] 13 66 AM, [
d— Ad, the declination at the P.M. “
d+ A d’ “ « “ o« AM. “

and we have for the two observations, as in (120)

#* This is better noted as 0.
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sin A=sinL sin(d— Ad) —cos L cos(d— Ad) cos(¢+A Ty) } *(125
sin A=sinL sin(d+ Ad) —cos L cos(d+Ad) cos(t—A T) (125)

Treating these in the same way as (120) we shall have

0= Adsin Lcosd 4 Adcos Lsindcost

—15A Tycos Lcosdsint,

whence
Adtan L,  Adtand

15 sin ¢ 15 tan ¢
or, putting as before A d =4, d ¢

A2;=

14 14
A=—_%*  B=__%Y _
15 sin ¢’ 15 tan ¢’

which differs from (124) only in the sign of A. This is the
reduction of the middle time to the Chro. Time of apparent
midnight: applying the equation of time reduces it to the
Chro. Time of mean midnight.

178. d, A d, and the equation of time, are to be taken
from page I of the Almanac, and interpolated as in Art. 90
for the instant of apparent noon, or of apparent midnight,
according as the observations are made on the same day,
or on consecutive days.

2 ¢ is properly the elapsed apparent time. The elapsed

* These may be written
—8inh= —sinLsin(d — Ad)+ cosLcos(d— Ad)cos(t+ AT,
—8inh = —sinLsin(d+ A d) + cos Lcos (d+ Ad)cos(t — A Ty).

They differ from (120) in the signs of % and L, and in reckoning the
hour-angles from the lower, instead of the upper, branch of the meridian.
This would be the case, if we suppose the observations to be referred to
the latitude and meridian of the antipode. The only effect in (121) is
to change the sign of tan L, or of the first term in the equation of equal
altitudes.
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time by chronometer requires, then, not only a correction
for the rate, which is

2th, (4 when the chronometer loses); (41)

24

but also a reduction to an apparent time interval, which,
for a mean time chronometer, is the change * of the equation
of time in the time, 2¢ additive when the equation of time
is additive to mean time and increasing, or subtractive from
mean time and decreasing. For a sidereal chronometer, it
is the change in the sun’s right ascension in the time 2¢,
and subtractive.

179. Equal altitudes of the moon or a planet may be ob-
served ; but in the case of the moon admit of less precision
than of the sun, and moreover require correction for the
inequality produced by change of parallax.

If 2 A a is the increase of right ascension in the interval,
the body will arrive at its second position later than would
a fixed star, supposed coincident with it at the first posi-
tion; and the elapsed sidereal time will be greater than the
double hour-angle of the body by the quantity 2Aa. If
28 = the elapsed sidereal time, then in (122) we must take

2t=2s8—2Aa,0ort=38—Aa. (127)

If ¢,, = half the elapsed mean time (expressed in hours when
used as a coefficient), and
Apa = the tncrease of right ascension in 1% of mean time,

by (64) 8$=1t,+ 9°.8565 tn
and =ty + ty (98565 — A, a), (128)

* The maximum daily change is 30¢. The elapsed time by Chro-
nometer is usually regarded as sufficiently accurate.
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by which ¢ and 2¢ may be found from 2¢, the elapsed mean
time.
In this expression the last two terms are in seconds.
Reducing to hours we have
98565 — A, a Aya
t=1t, (1 4+ T ) = (1.002738 — =A%
" ( + 3600 > "'< 3600> (129)
If A, d = the change of declination in 1, of mean time, then
in (121)
Ad=1t,A0,d

or, substituting for #,, its value from (129),

A a
Ad=1tA,d=+(1.002 — =)
d=1tA, ( 738 3600)

Equations (128) and (124) may then be used for other
bodies than the sun, provided we give ¢ its proper value from
(127) or (128), and for A,d substitute

Ay a
nd= 0y d+ (1002738 — Ba
Mnd=btnd ( 3600)’

or, which will be sufficiently exact,

Apa — 9856

A’h d = Ah d + 3600

Ay d. (130)

180. Observing the double altitudes at regular intervals
of 10/, or 20’, especially facilitates the method of equal alti-
tudes; for, if the first set is observed at equal intervals, in
the second the observer, having set the instrument for the
last reading of the first and observed the contact, for the
subsequent observations has only to move back successively
the same intervals.

181. Tt is not requisite that the instrument should give
the true altitude; it is sufficient if the altitude is the same
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at the two corresponding observations. Hence the two obser-
vations should be made with the same instruments, without
change of adjustment, and in general as nearly as practicable
under the same circumstances.

This purpose is promoted by making the final movement
of the tangent screw in both sets always in the same direc-
tion. Thus, in reversing the movement, the screw may be
turned a little too far, and then the final contact made by
a motion in the same direction as before.

If the sun is used, both limbs should be observed.

The error arising from want of parallelism of the surfaces
of the roof-glasses of the horizon is eliminated by having the
same end of the roof toward the observer. The roof may
be tested by observing sets of altitudes with it in reversed
positions.

182. Although the readings of the instrument may be
the same in the two sets of observations, the altitudes may
be slightly different, 1st, from changes in the instrument in
the interval; 2d, from difference of refraction at the two
times.

A change in the index correction may be detected by
observation; but there may be expansion or contraction of
various parts of the instrument which may affect the
readings of the altitudes without altering the index correc-
tion,

The change of refraction may be found by noting the
barometer and thermometer at each set, and finding the re-
fraction for both sets of altitudes.

183. To correct the middle time for any small difference
of the altitudes, whether from refraction or actual change of
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readings, we may find, from the difference between two read-
ings, and the difference of the corresponding times, the change
of time for a change of 1/, or 17, of altitude. This multiplied
by half the inequality of altitudes, expressed in minutes, or
seconds, will give the correction of the middle time, to be
added when the p.m. altitude is the greater; to be subtracted
when the p.m. altitude is the less.

If twice the altitude is observed with an artificial horizon,
we may find the change of time for a change of 1/, or 1”, of
the double altitude, and multiply it by the whole inequality
of the altitudes.

ExampLE. (Pros. 45.)

1. 1898, Jan. 10, 9}* A.M. and 2}* p.M. Equal altitudes of
© at the Custom House, Key West, Florida;

24° 33/ 20” N., 81° 48’ 37" W. Chro. 1085;

Chro. cor. (G. m. t.) — 427 1840 ; daily change 4 8 3.

SEX. No. 1. T.BY CHRO. MID. TIME.
ART.HOR.N0.2.  A.M. rpy.  6*1T™ AN, P.M.
o 1 Ams Am s ]

2060 0A4.end. 3392.7 85659.7 432 (’sdiam.+32'25".0 +32'26'".7

10 39 58.8 56270 429 -3241 .9 -3243 .3

20 40 31.5 54 55.3 434 In cor. —83 -83

30 41 4.0 54220 43.0

40 41 35.7 5350.3 43.0 Bar, 30.22 30.18

50 42 9.0 53165 42.8 Ther. ™ 80°
2060 0 42 58.6 52267 42.6

10 43 31.3 51 53.6 42.4 Ref. —1'36”7 -1’ 367,

20 4 3.8 5121.0 424

30 44 375 5048.0 427

40 45 10.0 50155  42.8

50 45 43.7 49 42.0 42.8

60 25 34234.21 86251.46
hms Am s ms [

Elapsed Chro. t. 510 17.25 Long. +621 1456 FEq.t. —751.74 —0.997
Mid. Chro. t. 617 42.83 . 5.456 4.985
1st part of Eq. —2.89 od. 227 —~b44 | 399
2d part of Eq. -—1.99 050
Chro. t. of ap. noon 617 37.95 —757.18 \ .006

Eq. t. —757.18
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° ) Iz
Chro. t. of mean noon 6 09 40.77 @'s dec. —21 64464 And +2:2.78 Ch.in ld+'ll.06

Long. (W.) —527 145 +.24 212
Chro. t. of G. m.noon  04226.27 + 23.02 .021
Chro. cor. (G. m. t.) — 4226.27 22,90 007
Jan. 10, 64.5 114.50
+205.0 9.26
1.1
—215241.4 14
L=+ 24° 33’ 20" 1. tan 9.6598 d=—21"54' 46" 1. tan9.6046n
Avd= +23.02 log 1.3621 log 1.3621
4 log 9.439%6n B log 9.3315
—22.89 log 04616 n — 1899 log 02981 %

(The elapsed apparent time is 5* 10™ 12+.)

2. 1898, June 19, 4}* p.M., and 20, 7} A.M.; nearly equél
altitude of @; at Belize, S. E. pass of Mississippi River,
29° 7' 8" N., 89° 5’ 18” W., chro. 1085; chro. cor. (G. m. t.)
— 41m 28¢; daily change 4 1:.0; sextant No. 2; art. hor.
No. 1; (A. end toward observer).

P.M A. M. P.M. A.M.
Sex. REap. T.BYCHR. T.BYCHR. S8EX.Reap. In.cor. + 4178 + 4074
o ¢ A ms Am s o
26510 10 65 48 222 4.5 26530 Bar. 30 .09 30 .12
65 0 56 10.8 2221 656 20 Ther. 81° 80°
64 50 56 34.3 2134 6 0 4 Incor. + 720179 + 7202
64 40 56 67.6 2111.2 64 50 Ref. —128 -1 28
—107.1 —-107 .8
265 30 57 21.5 20 41.5 20 65 40 (P.M.—A.M.)
65 20 57 50.5 20 18 65 30 Diff, ref., etc. + 7 07
6510 58 14.3 19 54 65 20 Diff. obs. alts. —-537T 5
6 0 58 37.3 19 756 6 0 Ah=-—5 36 .8
2065 50 10 57 12.563 2 20 58.96 206516 15 For2Ah=10/, At=233
h/=32 32 30 h’=3238 75 2Ah= V, At= 238

G. ap. t., June 19, 17* 56™ 21°.2 = 19, 17%.939 = 194.747

@’s DEc. And CH. IN 14, EqQ.orF T.
+ 23° 26" 25”.4 + 1799 — 17.04 _li() — 1m 042.39 — 0°.546
13 5.46
+28 .7 — .18 { .04 3.82
01 —980 1 5o

+ 23 26 54 +1.21 -1 1419 .02
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A m s Am s

Middle chro. t. 18 39 05.75 Elap. t. by chro.* 15 23 46
Red. for A h,— 5°.61x 2.33 —13.07 —26
1st part of Eq. + .38 Ch. of Eq. t. — 8
2d part of Eq. - 13 Elap. ap. t. 15 23 12
Chro. t. of ap. 12* 18 38 52.93 o 4 w
Eq. of t. — 114.19 L =429 07 08 l.tan 9.7459
Chro. t. of mean 12* 183738.714 A,d =+1".21 log 0.0828
Long. — 556 21.2 A log 9.7542
Chro. t. of G. mean 12 12 41 17.54 +02.38 log 9.5829
Chro. cor. (G. m. t.) — 41 17.54 June 19, 18%.

d = —23°26'54” 1 tan 9.6372

log 0.0828

B log 9.3862 n
— 013 log 9.1062 n

184. 4th Method of finding the correction of a chronom-
eter. (By transits.)

On shore the most accurate method of finding the correc-
tion of a chronometer is by noting the times of transit of the
sun or a star across the threads of a well-adjusted transit
instrument. The mean of these times is taken and corrected
for the errors of the instrument, or reduced to the meridian.
In the case of the sun, the transits of both limbs may be
observed ; or only one, and the ¢“sidereal time of the semi-
diameter passing the meridian,” found on page I of each
month in the almanac, added for the limb, which transits
first ; subtracted for the second limb.

At the instant of a star’s transit of the meridian, the right
ascension of the star is the sidereal time. The instant of
transit of the sun’s centre is apparent noon.

* Twice the reduction of the middle time for the diff. of alts. is to be
added to the elapsed time when the p.M. observation is last ; subtracted
when the p.M. observation is first. This may be neglected unless the
diff. of altitudes is quite large. .
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From either of these, the local sidereal or mean time, as
may be required, can be found; and thence the chronometer .
correction by subtracting the chronometer time of transit.

The moon should not be used for finding the time, when
precision is required. Stars are preferred to the sun, either
when transits are observed, or equal altitudes with the arti-
ficial horizon ; chiefly because many stars may be observed
during the same night, and the instrument is not exposed to
the rays of the sun.

185. By repeating the transits on a subsequent day, the
chronometer correction can be again found, and from the two
corrections, the rate, as in Art. 169. If the transit instru-
ment is not well adjusted, or the instrumental corrections are
imperfectly known, the rate of the chronometer can still be
quite well determined from transits of the same star, or the
same set of stars, on different days, provided the position of
the instrument, or its adjustments, have not been disturbed in
the interval.

186. Fifth Method. (By time signals) These signals can
be obtained at the W. U. Telegraph Office in any part of the
United States, without delay, in any weather, and with abso-
late certainty as to comparisons. Since well-adjusted transit
instruments are not generally available, the electric signal
from Washington furnishes the best means of rating chro-
nometers, with the utmost simplicity of method, and a high
degree of accuracy. But if time signals, or a time-ball, be
employed, the chronometer error should be found also by
astronomical observations, as a check; for in so important a
matter, the navigator ought not to accept the unsupported or

uncorroborated work of another person. (“Notes on Naviga-
tion.” Nav. Academy, 1872.)
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LONGITUDE.
~ 187. To find the longitude of a place by astronomical ob-
servations, it is generally necessary to determine indepen-
dently the local and Greenwich times of the same instant. The
difference of these times is the longitude, which is west when
the Greenwich time is the greater, and east when the Green-
wich time is the less (Art. 165). This is expressed by (50)

A=T,—1T,
in which 7} is the Greenwich time, and
7, the corresponding local time of the same kind.

These times may be apparent, mean, or sidereal.

The apparent time is the hour-angle of the true sun; the
mean time, that of the mean sun; the sidereal time, that of
the vernal equinox. In the same way we may use the local
and Greenwich hour-angles of any other body or point of the
heavens, regarded as 4 toward the west. '

This is evident from Fig. 35;
for if P
P M is the meridian of Greenwich, '

P M/, the local meridian, M’
P S, the declination circle of a ¥
heavenly body ; S M
M P M’ will be the longitude of Fio. 3.
the place,
M P 8, the hour-angle of the body at Greenwich,
M’ P S, the local hour-angle;
and we shall have, as in Art. 74,

MPM'=MPS-MPS.
The several methods of finding the longitude differ in the

modes of finding and comparing the two times, or the two
hour-angles.
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188. ProBLEM 46. To find the longitude of a place by
a portable chronometer regulated to Greenwich time.

Solution. The correction and rate of the chronometer are
supposed to have been found by suitable observations at a
place whose longitude is known. Let the chronometer be
transported to the place whose longitude is required; and let
an observation suitable for finding the hour-angle of a heavenly
body, or the local time, be made, and the time noted by the
chronometer, or by a watch compared with it.

There are then two parts of the process to be pursued:
1st, from the noted time to find the Greenwich time (mean,
apparent, or sidereal), or the hour-angle of the body, as may
be deemed most convenient. 2d, from the observations, to
find the corresponding local time, or hour-angle. Subtracting
the local time, or hour-angle, from the Greenwich time, or
hour-angle, will give the longitude.

189. 1st. To find the Greenwich time, or hour-angle, of
the body observed, apply to the noted time the reduction of the
watch time to chronometer time, ¢'— W (if a watch has been
used) and the chronometer correction, ¢/, reduced to the date
of observation (Art. 168).

The result is, the Greenwich time; and will be mean or
sidereal, according as the chronometer is regulated to mean
or sidereal time.* If it is sidereal time, it will be necessary
to reduce it to mean time (ProB. 26), except when a fixed
star has been observed, so as to take from the Almanac the
quantities which will be required.

If, now, the Greenwich Aour-angle of the body observed is
desired :

* For observations of stars, a sidereal chronometer is most conve-
nient.
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In the case of the sun, reduce the Greenwich mean time to
apparent time, by applying the equation of time.

If some other body has been observed, reduce the Greenwich
mean time to sidereal time by adding the right ascension of
the mean sun; and thence find the hour-angle of the body by
subtracting its right ascension. Or, if a sidereal chronometer
has been used, from the Greenwich sidereal time subtract the
right ascension of the body.

Attention to the signs will give the hour-angle thus ob-
tained, - if toward the west, — if toward the east.

190. The Greenwich time, or hour-angle, is affected by the
error of the chronometer correction, which consists, 1st, of the
error in its original determination, which includes any error
of the assumed longitude of the place of rating; 2d, of the
error arising from an erroneous rate. This last error is cu-
mulative, increasing with the number of days from the date,
when the correction of the chronometer was found from obser-
vations.

191. The chronometer correction for the date of observation
can be derived from subsequent as well as from prior deter-
minations of it and its daily change. In finding the longitude
of a place on shore, or of a shoal, both values should be ob-
tained, when practicable, and combined by giving weights to
each inversely proportional to its interval of time from the
original determination. Thus, if ¢ and ¢’ are two such chro-
nometer corrections, the first brought forward ¢ days, the sec-
ond carried back ¢ days, we may take as the mean value *

* This assumes that ¢’ and ¢” are derived from two chronometer
corrections of equal weight, and consequently that the longitudes used
in finding them are equally reliable. This may not be the case if the
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'+t
t+ ]

or, in a form more convenient for computation,

v (" —{)

‘e

For example, suppose that on Jan. 17, the chronometer correc-
tion brought forward from Jan. 1, is —18™ 56%.5, and reduced
back from Jan. 25, is — 19™ 3%4; the value by the above
formula will be

— 18 5615 + 16—X24—J9 - — 197141,

Two longitudes may be combined in a similar way.

192. Reports of longitudes by chronometer are regarded as
of but little value, unless the number of chronometers, the as-
sumed longitude of the place where the chronometer is rated,
and the age of the rates, are stated. Strictly, the chronometer
merely determines the difference of longitude between the two
places where the observations are made. This may be ob-
tained by using the chronometer correction on the time of the
place of rating, instead of the Greenwich time. It is prefera-
ble to report such differences rather than absolute longitudes.

193. 2d. 7o find the hour-angle of the body, and thence
the local time.

Ist Method. (Pros. 87. By single altitudes.) Observe
in quick succession several altitudes of the heavenly body,

chronometer corrections were found from observations at two different
places.

The student is referred to Chauvenet’s ‘‘ Astronomy,” I., 317, etc.,
for the methods of allowing for changes in the rates and combining the
results of several chronometers.
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' noting the time of each by the chronometer, or by a watch
compared with it.

Take the mean of the noted times, and from it find the
Greenwich mean time; for which take from the Almanac
the declination of the body, its semidiameter and horizontal
parallax when sensible, as well as the quantities required for
finding the Greenwich hour-angle. (Art. 189.)

Take the mean of the readings of the instrument, with
which the altitudes were measured, and from it find the true
altitude of the centre of the body. (Art. 118.) With this
and the known, or assumed, latitude of the place find the
local hour-angle of the body by ProBLEM 37.

This hour angle, which for the sun is the local apparent
time, subtracted from the corresponding Greenwich hour-
angle already found, will give the longitude.

Or, the local mean time may be found from it, for the sun,
by applying the equation of time; for other bodies, by add-
ing the right ascension of the body, which will give the
local sidereal time, and subtracting the right ascension of the
mean sun (Pros. 31): and the local time subtracted from
the corresponding Greenwich time will give the longitude.

194. On shore it is best to use an artificial horizon, even
when a sea-horizon can be had, and for precise okservations,
stars in preference to the sun.

At sea the sun is most conveniently used; but altitudes
of the moon and bright stars can be employed when the
sun is not available. The chief difficulty is the obscurity of
the sea-horizon at night. During twilight, however, or in a
bright moonlight, it is often distinet and well defined.

195. The most favorable position of the body for finding
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its hour-angle from its altitude is, as previously stated, when
it is nearest the prime vertical ; provided its altitude is not
so small as to involve to too great an extent the uncertainty
of refraction; and, observed on shore, is within the limits*
of the instruments employed.

- On shore the time and circumstances most favorable for
observations can generally be selected. At sea long con-
tinuance of bad weather may render poor observations, made
under unfavorable circumstances, the only ones available.

While, then, it is not well to use for finding the time
an altitude less than 10°, or of an object whose azimuth is
less than 45° or more than 135° it may sometimes be neces-
sary to exceed these limits.

196. When the declination and latitude are nearly the
same, the body is nearest the prime vertical but a short time
before and after its meridian passage, so that a very great
altitude may be used. Thus in lat. 20° N, the sun, when its
declination is 19° 55’ N. or 20° 5" N., is nearest the prime
vertical within 22m of noon at an altitude of nearly 85°;
and the local time can be as accurately obtained from an
altitude of 89°, 4™ from noon, and about 5° in azimuth from
the prime vertical, as from an altitude of 30°, provided the
assumed latitude can be depended on within 2. Nearer
noon, the rapid change of the sun’s azimuth, averaging 10°
in 1m would make it difficult to observe the altitude with
sufficient precision.

197. The local time or hour-angle is affected by errors in
the altitude and in the assumed latitude. (Arts. 136, 138.)
When several observations have been made in rapid succession,

# For a sextant and artificial horizon, between 20° and 60°.
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the effect of a supposed error of 1’ in the altitude* may
be found by dividing the difference of two of the noted times
by the difference, in minutes, of the corresponding altitudes.

In a similar way we may find the change of altitude in
1» of time by dividing the difference of two altitudes by
the difference in minutes of the corresponding times. The
maximum change of altitude in 1™ is 15’; when L = 0 and
d=0. The more rapid the change of altitude, the less will
errors of altitude affect the result.

To ascertain the effect of an error of 1’ in the assumed
latitude, T the local times or hour-angles may be computed
separately for two latitudes differing 10, or 20’, from each
other, and the difference of these times divided by 10, or
20'. At sea the latitude by account is used, either brought
forward to the time of observation from a preceding, or car-
ried back from a subsequent, determination. It may be very
largely in error, especially in uncertain currents, or after run-
ning several days without observations.

A small error may also result from the assumption that

* Differentiating equation (76)
sin A = sin L sin d + cos L cos d cos ¢,
regarding & and ¢ as variables, we have
coshdh = —cos L cos dsin tdt
but cos d sin ¢ = cos h sin Z SpH. TRIiG. (114)
— _d h i
15 cos L sin Z
which is a minimum when Z = £+ 90° and incalculable when Z = 0°
or 180°.

whence dt=

t From (96) we find

dt=— dL

15 cos L tan Z ’
which is 0, when Z = & 90°, and also incalculable when Z = 0 or 180°.
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the mean of the instrumental readings corresponds to the
mean of the noted times. The reduction of the mean of the
altitudes to the mean of the times can be found,* but it can
be avoided by limiting the series of observations, which are
combined together, to so brief a period that the error becomes
insensible; or, when the body is near the meridian in azimuth, ’
by reducing each observation by itself. This last case, how-
ever, should be avoided in this problem.

198. At sea it is usual to reduce longitudes obtained from
day observations to noon by allowing for the run of the ship
in the interval, and for currents when known. Those from
night observations are recorded for the time of observation.

199. 2d Method. Altitudes in the forenoon and in the af-
ternoon, or on different sides of .the meridian, are preferable
to single altitudes for finding the local time, for the reasons
already stated in Article 174. The longitudes can be found
from each set separately, and then combined.

At sea the longitudes derived from each can be reduced to
noon, and the mean of the two taken as the true longitude;
or, if the difference can be regarded as due to currents, the
longitude at noon can be found by interpolating for the elapsed
time. It is desirable that the observations should be made at
nearly equal intervals from noon.

Longitudes by A.M. and P.M. observations are enjoined in
the directions of the Navy Department whenever practicable.

Exampre. (PrOB. 46.)

1. At sea, May 17, 1898, 9* 45™ a.m. ; 24° 50’ N., 82° 18’ W,
by reckoning from preceding noon ;

# Chauvenet’s ¢ Astronomy,” 1., 214.



174 NAVIGATION.

T. by Watch 9* 30™ 15%; obs’d altitude of © 58° 17/;
Chro. — Watch + 5* 12" 26¢; Chro. cor. 4 25™ 15¢;
Index cor. of sextant 4 3’ 20”; height of eye 18 feet; required

the longitude.

Am e @ ’8 dec. Eq. of t.
W.T. 93015 e . m s
C.-W. 512 26 + 19 23 51.6 + 33”.59 + 3 48.81
C.C. +2515 100”.8 —.23
G. m. t., May 17, + 145.2 { 3 4
30756 =3%13 + 19 25 37 1.0 + 348.6
Eq‘ Of t' + 3 48'6 (<] 4 W ¢ /4
G. ap. t., May17, Q 5817 Ic. 4+ 320 Dip —409
311 44.6 +1430 (S.D.+15651 R.&P.— 32
h= 583130
L= 2450 1. sec  0.04214
p= 703423 1. cosec 0.02545
238 = 153 65 53
s= 765757 1. cos 9.35321
s—h= 182626 1. sin  9.50012
L. ap. t., May 16, : 8.92092
21 45 45.3 9 45 45.3 1. sin 4 ¢ 9.46046

Long. + 525 59.3 or 81° 29 50” W.

May 17, noon, lat. by mer. alt. of ©, 25° 8 N.; run of the
ship from 93* ae.m. E. N. E. (true) 18 miles.

For EN.E. 18, 1=6'"9N,p =166 E, D = 18’4 E.

At the time of the A.M. observations, then, the latitude
carried back from noon was 25°1’ N. Using this in the com-
putation of the time, we find the L. ap. t. May 16, 21* 45™ 485.2,
and the long. 81°29’.1 W. Applying D = 184 E., we have
for the longitude,

May 17, noon, 81° 10°.7 W., from observations made at
9.45 A.m.

By p.m. observations, and reduced to noon, the longitude
was found to be,
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May 17, noon, 80° 44" W. from observations at 3.45 p.m.

As the position is in the Gulf Stream, where there is a
strong easterly current, the difference of the two longitudes is
attributed to that cause. We take, then, as the longitude at

noon,
225 x2v

o 4
81°10°.7 6

=81°00".5 W.

NoTE. — The examples under PROBLEM 45 can be adapted to this
by regarding the chronometer correction given, instead of the longitude.

200. 3d Method. (Lirrrow’s. By double altitudes of the
same body.)

When two altitudes of a body have been observed, and the
times noted by the chronometer or watch, the hour-angles and
local times can be found from each separately; and thence the
longitude for each. But we may also combine them, and find
the hour-angle for the middle instant between them.

ProBLEM 47. From two altitudes of a heavenly body,
supposing the declination to be the same for both, to find
the mean of the two hour-angles, the latitude o1 the place
and the Greenwich time being given.

Solution. Take the mean of the two noted times, and re-
duce it to Greenwich mean time; and find for it the declina-
tion of the body.

Reduce the observed altitudes to true altitudes.

Let 4 and A be the two altitudes,

T and 7", the corresponding hour-angles ;

then we have, by (76),

sin A = sin L sin d 4 cos L cos d cos 7,
sin 4" = sin L sin d + cos L cos d cos 7”5
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and by subtracting the first from the second,
sin &’ — sin A = cos L cos & (cos 7"/ — cos T").
By PL. Tr1a. (106) and (108), this reduces to

sin§ (A — Aycos y (X' + k) =
—cosLeosdsin y (I"+ T) siny (7" —-T);
whence ) - T
4 (74 D) =~ S e Loeed” O
which is the formula used in Art. 300 (Bowp.).

(T" —T) for the sun is the elapsed apparent time; for a
star, the elapsed sidereal time ; and for the moon or a planet,
the elapsed sidereal time — the increase of right ascension in
the interval ; and can be found from the difference of the two
chronometer times.

Then, by (131), } (7" + T') can be found, and, as any other
local hour-angle, subtracted from the corresponding Greenwich
hour-angle, which in this case is to be derived from the mean
of the noted times.

3 (7" 4 T) is + or — according as the second altitude is
less or greater than the first; so that it is on the same side of
the meridian as the body at the time of its less altitude.

201. The method presents no special advantages for ob-
servations on shore, except in the case of two nearly equal
altitudes of a fixed star on opposite sides of the meridian.
In the case of the sun and planets, it is necessary to take the
change of declination into consideration to obtain precise
results. :

The special case for which the method provides is at sea,
within the tropics, when the sun passes the meridian at a high
altitude. In that case, when by reason of clouds observations
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near noon only can be made, or it is desired to obtain the
longitude as near noon as practicable, let a pair of altitudes,
or several pairs, be measured, and the times noted with all the
precision practicable. The altitudes should be reduced to
true altitudes, and one of each pair for the run of the ship in
the interval * by the method given in ProB. 53, and in Bowb.,
Art. 288. From each pair the middle apparent time can be
found by (131), and the mean of these times subtracted from
the mean of the Greenwich apparent times for the longitude.

202. If the altitude changes uniformly with the time, or
nearly so, the mean of several altitudes observed in quick suc-
cession can be taken for a single altitude.

If the observations have been made with care, the errors
of instrument, refraction, and dip will affect the two altitudes
of each pair nearly alike ; and if the reduction for the run of
the ship is carefully made, the difference of altitudes in com-
parison with the difference of times will be nearly exact.

203. This method was proposed by M. Littrow, Director
of the Vienna Observatory. It should be used cautiously, and
the errors to which the result is liable in any case carefully
computed. A table showing the error of time which may
correspond to an error of one minute in each of the observed
altitudes, when ¢ = 30 min., is given in Art. 301 (Bowbp.).

Altitudes greater than 80° and an interval of more than
half an hour are recommended, but an intelligent navigator
can readily determine when he can safely depart from these
limits. This will be especially the case when the altitudes
are on both sides of the meridian.

* This may be avoided, if the course of the ship is at right angles to
the bearing of the sun.
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ExAMPLE.

1. 1898, May 16, 11.30 a.m., in lat. 25° 15’ N., long. 56°
20" \., by account ; the ship running N. E. (true) 8 knots an

hour.
T. by Chro. 2* 32m 23+ @©’s true alt., 81° 17 07,

[T 13 “ 2 53 11 “ [ 113 83 40 30;

Chronometer correction on G. mean time 4 40™ 51¢; required
the longitude.

The distance sailed in the interval is 2’.8. The sun’s
azimuth at the 1st observation is found to be N. 131° E.,
which differs 86° from the course. The reduction of the 1st
altitude to the place of the 2d is (Pros. 53),

2.8 X cos 86° = 4 0'.2 = 4 12".

hm s

1st chro. t. 28223 Q©'s dec. Eq. of t.
24« « 25311  +1910 16.7 +34.4 +350.28—0.049
Elapsed chr. t.(T'—T)= 2048 +157 (108.2 =17 (.15
Mid. ¢ ¢ 24247 +191212.7) 13.8 +350.1 .02
Chro. cor. + 4051 o 4 W
G.m.t. May16 32338 h =810112
Eq. t. + 850.1 h'=88 40 30
G.ap.t. 327281 4 (h'—h)= 11939 1. sin 8.36489
L.ap.t. 234144 3 (h+h)=822051 1. cos 9.12439

: +34544.1 L=215 1. sec 0.04361
Long. at 2d obs. 56 2602 W. d=191213 1. sec 0.02486

»
T—T = 02"(.)4‘8 1. cosec % ¢ 1.34330
3} (T'+T)=—91816 L sin 8.90105

204. 4th Method. (By equal altitudes.) Let equal altitudes
of a heavenly body be observed east and west of the meridian
(Art. 175) and the times noted as in other observations; and
the mean of the watch-times in each set, if a watch is used,
reduced to chronometer time. If both sets have been observed
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at the same place, and the declination of the body has not
changed, the mean of the two times will be the chronometer
time of its meridian transit.

If the declination has changed in the interval, as is ordi-
narily the case with the sun, moon, or a planet, the correction
for such change, found by the methods of PrRoBLEM 46, should
be applied.

Applying then the chronometer correction, we have the
corresponding Greenwich time, which will be mean or sidereal
as the time to which the chronometer is regulated.

Finding from this, by the method in Art. 189, the Green-
wich hour-angle of the body (which in the case of the sun is
the Greenwich apparent time), we have the longitude, if the
first observation was east of the meridian, as the correspond-
ing local hour-angle is then 0. But if the first observation
was west of the meridian, the local hour-angle is 12* and must
be subtracted.

This method should be used on shore, when practicable, in
preference to either of the preceding.

205. Equal altitudes of the sun can be conveniently used
at sea when the sun passes the meridian near the zenith ; that
is, when its declination and the latitude are nearly the same.
Altitudes very near noon are then available for finding the
time (Art. 196), and equal altitudes can be observed with only
a short interval. In the example of Art. 196, an interval of
eight minutes would have been sufficient.

If the ship does not changé her position in the interval,
the middle time corresponds to apparent noon; as the change
of declination may be neglected, unless the interval between
the observations is so great as to require it.
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206. If the longitude only has changed, the middle time
corresponds to apparent noon at the middle meridian, and
will give the longitude of that meridian. This will be the
longitude at noon, if the speed of the ship has been uniform.
But if it has not, subtracting half the change of longitude,
when the true course is west, or adding it when the course is
east, will give the longitude of the place where the first alti-
tude was observed. This can then be reduced to noon by
allowing for the run of the ship.

If the change of longitude is west, the sun arrives at the
corresponding altitude of the afternoon later than it would
do if observed at the same place as in the forenoon; if the
change is east, it arrives earlier; and the difference is the
time of the sun’s passing from the one meridian to the other;
that is, the difference of longitude expressed in time.

If, then, 2 ¢ is the elapsed apparent time,

A ), the change of longitude (4 when west),
the hour-angle of the sun at each observation is ¢ — } AX;
and (122) becomes

A,d¢ttan L Aydttan d

A=~ sin—3an T Ban_gan

(132)

But even when the elapsed time is so great that it is thought
necessary to correct for the change of declination, A X is never
large enough to produce a change of 12

If the latitude only has changed, the middle time requires
correction for such a change, which can be deduced in a simi-
lar way to that for a change of declination in Pros. 46. But,
as in the fundamental formula (76),

sin 4 = sin L sin d 4 cos Z cos d cos ¢,
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L and d enter with the same functions, they are interchange-

able. If, then,

A, L is the hourly change of latitude (4 toward the north
and expressed in seconds), and

A’ Ty, the required correction,

we have from (122) and (124), '

Ay Lttand A, Lttan L
15 sin ¢ 15 tan ¢

and A" T,=AALtand+ Ba,Ltan L,  (134)

A'To=—

(133)

for which Chauvenet’s tables can be used.

If both latitude and longitude have changed, for ¢ in the
denominators of (133), we may substitute ¢ — } A A: but this
at sea is a needless refinement.

The restriction of this method to a short interval between
the observations depends upon the uncertainty of the run of
the ship, and consequent imperfect determination of A, Z, the
mean hourly change of latitude in the interval. If its error
is supposed to be % A, L, the consequent error in A’ 7y is 1 A’ 7,

When equal altitudes near noon are practicable, a meridian
altitude of the sun can ordinarily be taken for latitude, so
that Z will be sufficiently exact. Moreover, the latitude and
longitude are both found for noon.

ExaMPLEs.

1. At sea, 1898, March 17, noon, lat. by mer. alt. of the
sun 3° 16’ S., long. by account 84° 58’ W.; equal altitudes of
the sun were observed at 5* 34™ 18¢ and 6* 3™ 24¢ G. mean
time; the ship running 8. 8. E. (true) 10 knots an hour; re-
quired the longitude.

For S.8.E., 10, A, L= —92, AA= —38.



182 NAVIGATION.

Am s ©’s dec. Eq.of t.
1st G. m.t.,, 53418 0 s w w m s s
2d G.m.t. 6 324 —11314+459.29 ~ —824.86 +0.73
Elapsedt. 029 6 +  544(296.5 + 423 (3.65
Mid. G.m.t. 548 51 — 107300 47.4 — 820.6 .58
— Eq.oft. —820.6 A, L=-552" log 2.742n log 2.142n
Mid. G.ap.t. 540 30.4 L =-3°16 1.tan 8.756 n
Red. for A L + 5.2 d=—107.5 1.tan8.293n
G. ap. t. of noon 5* 40™ 35%.6 log A 9.406 n log B 9.405
or Long. 85° 09" W. — 2876 0.441 2
+ 8.00 log 0.903

In this example the sun’s azimuth was 120°, and in 1™ the
altitude changed 13’. An inequality of 30” in the altitudes
would therefore affect the result only 5 of 1™, or 152. An
error of 1’ in the hourly change of latitude would affect the

53
result 93’ 02.6.

2. At sea, 1898, June 29, 0,; lat. by mer. alt. of ©, 33°25’
N., long. by account, 147° 10’ E.;

near 11 a.m., T. by Chro. 1* 55™ 54
“ lem,« « « 345 0
Chro. cor. on G. m. t.  — 36™28¢; In. cor. of sex’t 4 0’ 50" ;
height of eye, 18 feet. The ship run
from 11 A.M. to noon N. 3 p’ts W. 11’
from noon to 1 p.M. N. 2 « W, 8’}
required the longitude at noon.

f obsiaalt. of @ 74° 9107

For N.3 W. 11’ AL=+91 AN=+T74
N.2W. 8 A L=+174 Arx=+3.T
whence AVL = + 8.25 = 495"
homos ©’s dec. Eq. of t.
A.M.Chro. t. + 12% 1355 54 o 4 o w m s s
P. M. Chro. t. 15 45 0 + 23 16 50 — 7.3 — 259.8 —0.51
Elapsed time 149 6 — 144 - 12 (7.14
Mid. Chro. t. 14 50 27 + 23 15 05 - 307 A1

Chro. cor. (G.m.t.) — 3628
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h m s

Mid. G. m. t., June 28, 14 13 59 log A, L 2.695 log A, L 2.695
— Eq. of t. —307 logA 94107 logB 9.398
Mid. G. ap. t. 14 10 52 ltand 9.633 l. tan L 9.819
Red. for A L + 27 log 1.738 n  log 1.912
G. ap. t. of noon 14 11 19 — 5457 4 8157 = 4 27

. — 94841
Middle long. ; or147°10.2 E.
Red. to noon 1.8 W.
Long. at noon 147 8.4 E.

The sun’s azimuth was 127°; for A¢ =1, A A = 10", and
an inequality of 1’ in the altitudes will affect the result g; of

1™ or 3% An error of 1’ in A, L will affect the result 8;5
or 3-.3.

207. 5th Method. (By transits.)

Observe the transits of the sun or a star across the threads
of a well-adjusted transit instrument, noting the times. Re-
duce the mean of the noted times for semidiameter and errors
of the instrument as in Art. 184; and thence find the Green-
wich hour-angle of the body in the way described in Art. 189.
This will be the longitude, if the upper culmination has been
observed, as the local hour-angle is 0. If the lower culmina-
tion has been observed, the local hour-angle is 12*.

This method can be used only on shore.

ExAMPLE.

1898, May 17, 17* 16™ 20*.56 G. mean time, the meridian
transit of o« Bootis (Arcturus) was observed; required the
longitude of the place of observation.

G. mean time May 17 17* 16™ 202.5

8, 3 40 49 .40
Red. for G. m. t. +2 50.24
G. sid. t. 21 00 00.14
x's R. A. 14 11 03.73

%x’s H. angle or Long. + 6 48 56.4 or 102°14' 06”7 W,
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LONGITUDE.—LUNAR DISTANOCES,

208. ProBLEM 48. To find the longitude by the distance
of the moon from some other celestial object.

Solution. If we have given the local mean time and the
true distance of the moon from some celestial object as seen
from the centre of the earth, we may find, by interpolating
the Nautical Almanac lunar distances (Pros. 22), the Green-
wich mean time corresponding to this distance. The differ-
ence of this from the local time is the longitude.

The local time may be found for the instant of observation,
either from an altitude of a celestial object observed at the
same time, or by a chronometer regulated to the local time.

At sea the correction of the chronometer on local time can
be found from altitudes observed near the time of measuring
the lunar distance, and reduced for the change of longitude
in the interval by the formula (Art. 167),

d=c+ A

A X being in time and 4 when the change is west.

In practice the apparent distance of the moon’s bright
limb from the sun or a star is observed, and the ¢rue distance
derived by calculation, as in the next problem.

209. ProBLEM 49. Given the apparent distance of the
moon’s bright limb from a star, the centre of a planet, or
the sun’s nearest limb, to find the true distance of the
moon’s centre from the star, or the centre of the planet
or the sun.

Solution. It is necessary that the altitudes of the two
bodies should be known, either directly from observations at
the same time, or from observations before and after, and
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interpolated to the time of observation (Bowp., Art. 312);
or computed from the local time (Pros. 32), (Bowp., Art.
313).

The Greenwich time is also supposed to be known approxi-
mately, either from the local time and approximate longitude,
or, as is preferable, from the time noted by a Greenwich
chronometer.

A complete record of the observations will include the ap-
proximate latitude and longitude of the place, the local time
and chronometer correction, the index corrections of the in-
struments used, the height of the barometer and thermome-
ter, and at sea, the height of the eye above the water, as well
as the noted times of observation and the observed distances
and altitudes. Several observations may be made at brief |
intervals, and the means taken.

210. The preparation of the data embraces:

1. Finding the Greenwich mean time approximately from
the chronometer time, or from the local time.

2. Taking from the Almanac for this time the semi-diame-
ter and horizontal parallax of the moon, and of the other
body * when they are of sensible magnitude; adding to the
moon’s semi-diameter its augmentation. (Art. 59.)

At low altitudes the contractions produced by refractions
should be subtracted from the semi-diameters of the sun and
moon. Formulas for finding these are given in Art. 213.

When the spheroidal form of the earth is taken into con-
sideration, to the moon’s equatorial horizontal parallax (Art.
57), as taken from the Almanac, should be added the augmen-
tation to reduce to the latitude of the place, which is found

* The sun’s horizontal parallax may be taken as 8”.5.
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in Table 19 (Bowp.). The declinations of the two bodies to
the nearest degree are required from the Almanac for this
purpose.

3. Applying to the observed distance the index correction
of the instrument, and, when the sun is used, adding the
moon’s augmented semi-diameter and the sun’s semi-diame-
ter; when a planet or star is used, adding the moon’s aug-
mented semi-diameter if its nearest limb is observed, but
subtracting it if the farthest limb is observed.

4. Applying to the observed altitude of each body the
index correction, dip, and semi-diameter (when necessary),
s0 as to find the apparent altitude of its centre. If the true
altitude is computed, the parallax must be subtracted and the
refraction added.

In the following direct method it is necessary also to find
the ¢rue altitudes.

211. To find the true distance,

let D = the apparent distance of the centres,
I’ = the approximate true distance,
h = the apparent altitude
& = the true altitude
H = the apparent altitude
H'’= the true altitude

}of D’s centre,

}of ©'’s centre, planet, or star.

In Fig. 35, let m and S be the apparent places of the moon
and other body ; 7 and &/, their true places.

The true and apparent places of each are on the same ver-
tical circle, Z m, Z S respectively, since they differ only by
refraction and parallax, which act only in vertical circles,
except so far as a small term of the moon’s parallax is con-
cerned, which will be subsequently considered.
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Then m S = D, the apparent
distance ; Z

m' 8’ = IV, the true distance;

and in the triangle mZ S,

m S = .D { ,
Zm = 90° — h } being given,
ZS=90°— H g :

to find the angle Z, we have by F1a. 3.

Sen. Tric. (32),*

cosy (A+ H+ D)cos} (h+ H— D)
cos h cos H :

cos?} Z =

Then in the triangle m’ Z §,
Zm =90° — W and Z§ =90°— H'
being given, ' 8’ may be found by Sen. Tr1e. (17),}
sin? 4 D' =cos? 4 (W' 4 H') — cos &' cos H’ cos? § Z,

or by substituting the value of cos?  Z, and putting
s=4 (h+ H+ D), (1365)

sin?} D = cos* § (K + H') — cos A’ cos H'

= — D).
cos froos I cos 8 cos (8 )

To adapt this for logarithmic computation, put

cos A’ cos H'

sin®l m=-"—"——""-""_
3 cos h cos H

cos s cos (s — D), (136)
then .
sin? 3 IV =cos? 4 (W + H') — sin? } m,
which by Pr. Trie. (134), becomes

#costpa=tind(athbte)sing (b+c—a)
sin b sin ¢ *
1 sin?} a = sin?§ (b + ¢) —sin b sin ¢ cos?} 4.
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sin? 4 IV = cos 4 (' + H' + m) cos § (K’ + H' — m),

or, if we put

d=3 (W + H + m), (137)
we have
sin § ¥ = +/[cos & cos (¢ — m)]. (138)
The solution is effected by formulas (135), (136), (137), and
(138).

This is only one of several direct trigonometric solutions.
It is easily remembered, involving only cosines in the second
members. But in all such methods 7-place logarithms are
required for the computations.

212. If the moon’s augmented parallax has been used, the
distance obtained, 27, is not the true
distance as seen from the centre of the

" earth, but from the point ¢’ (Fig. 36),
where the vertical line of the place in-
tersects the earth’s axis.

E
Q . A reduction to the centre, C is still
¢ required, for which we have the for-
F1a. 36. mul a,*
V— A Psin L sin §, _ sin 3, 189
a s (sin D tan D)’ (139)
in which

3, is the sun’s declination,

8n, the moon’s declination,

P, the moon’s equatorial horizontal parallax, whose mean
value is 57" 30",

A, a coefficient depending on the eccentricity of the terres-

trial meridian, the mean value of which, for latitude 45°, is

.0066855, or of log A4, 7.8251,

#* Chauvenet’s ¢‘ Astronomy,” 1., 399.



LONGITUDE.— LUNAR DISTANCES. 189

4 sin Z, the distance C C’, with CE = 1.

The mean values of A4 P = 23".07, or log A P = 1.3630
may be used, unless great precision is required.

The signs of the declinations and latitude are 4 when,
north, and A I” is to be added algebraically to D.

If the augmentation of the parallax has been neglected,
the distance has been reduced to a point on the vertical line
between C’ and C” and at a distance from A equal to the
equatorial radius C E.

213. To find the corrections needed for the contraction by
refraction of the semi-diameters of the sun and moon in the
direction in which the distance is measured,’

let ¢ = the angle Z S m (Fig. 35), at the sun or star,

@ = the angle Z m S, at the moon,

A s and A’s, the contractions of the sun’s semi-diameter
respectively in the vertical direction S Z, and in the
direction of the distance S m;

A Sand A’ S, the contractions of the moon’s semi-diameter
respectively in the vertical direction m Z, and in the
direction of the distance m S.

To find ¢ and @ from the three sides of the triangle Z S m,
putting, as in (135),
N s=4 (h+ H+ D)
we have i —
sin Q=\/(cos 8 sin (s H))

sin D cos &

sin 4 ¢ = \/(cos 3 sin_(,e—_k))

sin D cos H

(140)

for which it will suffice to use a rough approximation of D,
and for the computation, logarithms to four places; as ¢ and
@ are required only within 30".
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The contractions, A s and A S, of the vertical semi-diameters,
may each be found from the refraction table, by taking the
difference of refractions for the limb and centre.

Then, for the required corrections, we have the formulas,*

A’s = A s cos? g, A'S = A §cos? Q. (141)

This contraction for either body is less than 17, if the alti-
tude is greater than 40°. TFor a very low altitude, it is best
to subtract it from the semi-diameter in the preparation of
the data, so that D will be corrected for it. But, unless quite
large, it will suffice to compute it subsequently, and subtract
it from 2’ when the nearest limb is used, or add it to 2’ when
the farthest limb is used.

214. Let A D = the reduction of the apparent distance to
the true, or 2 = D 4 A D.

A great variety of methods have been given for finding
A D, requiring 4- or, at the most, 5-place logarithms; but also
needing special tables. They generally neglect to take into
account the spheroidal form of the earth, the correction of
refraction for the barometer and thermometer, and the con-
traction of the semi-diameters of the sun and moon. These
together, at very low altitudes and in extreme cases, may
produce an error of 3™ in the calculated Greenwich time,
and do actually, in the average of cases, produce errors from
10* to 1™ :

In 1855, Professor Chauvenet gave a new form to the prob-
lem, with convenient tables, by which all these corrections are
readily introduced. It is reprinted in a pamphlet with his
method of equal altitudes, and it is also given in Bowbpircs,
Arts. 306 ez seq.

* Chauvenet’s ‘ Astronomy,” 1., 186.
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215. The moon’s mean change of longitude is 13°.17640
in a day, or 33” in 1™ of time.

An error, then, of 33" in the distance will, in the average,
produce an error of 1™ in the Greenwich time, or 15’ in the
longitude; or an error of 10” in the distance will produce
an error of about 20* in the Greenwich time, or 5’ in the
longitude. -

We may, however, readily find the effect of an error of
1”, and thence any number of seconds, in the distance, by
taking the number corresponding in a table of common log-
arithms to the “Prop. Log. of Diff.” in the Almanac; for
this prop. log. is simply the logarithm of the change of time
in seconds for a change of 1” in the distance.

216. Errors of observation are diminished by making a
number of measurements of the distance. But even with
a skilful observer a single set of distances is liable to a pos-
sible error of 10” or even 20”. :

Errors of the instrument are diminished by combining
results from distances of different magnitudes, especially
from those measured on opposite sides of the moon. This
cannot usually be done with longitudes at sea, but may be
with determinations of the chronometer correction. The
error peculiar to the observer, that is, in making the con-
tacts always too close, or always too open, is not eliminated
in this way, but will remain as a constant error of his
results.

The accuracy of the reductions of the observed to the
true distance depends more upon the precision with which
the differences of the apparent and true altitudes — that is,
the parallax and refraction — have been introduced, than
upon the accuracy of the altitudes themselves.
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217. Lunar distances are rarely used at the present day.
They are given, however, in the Nautical Almanac, and might
possibly be used for finding the Greenwich mean time, with
which to compare the chronometer. They may thus serve as
checks upon it, which in protracted voyages might be much
needed. If the chronometer correction thus determined
agrees with that derived from the original correction and
rate, thé chronometer has run well, and its rate is confirmed ;
if otherwise, more or less doubt is thrown upon the chro-
nometer, according to the degree of accuracy of the lunar
observation itself. If the discordance is not more than 207,
it is well still to trust the chronometer, as the best observed
single set of distances may give a result in error to that
extent. If it is large, then by repeated measurements of
lunar distances, differing in magnitude, and especially on
both sides of the moon, and carefully reduced, the chro-
nometer correction can be found quite satisfactorily. By
taking the rate into consideration, observations running
through a number of days can be combined.

218. Other lunar methods for finding the longitude, be-
sides that of lunar distances, are,

1. By moon culminations, or observing the meridian tran-
sits of the moon and several selected stars mear its path,
whose right ascensions are considered well determined.

2. By occultations, or noting the instant that a star dis-
appears by being eclipsed by the moon, or that it reappears
from behind the moon. The first is called an <mmersion,
the second an emersion.

3. By altitudes of the moon near the prime vertical.

4. By azimuths of the moon and stars observed near the
meridian.
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These methods, except occasionally the second, are avail-
able only on shore. They require good instruments, careful
observations and determinations of the instrument correc-
tions, and scrupulous exactness in the reductions, especially
those which involve the moon’s parallax.

By each may be found the moon’s right ascension, and
thence, by inverse interpolation in the Almanac, the corre-
sponding Greenwich mean time. Subtracting from it the
local mean time, which must also be found from good ob-
servations, gives the longitude.

If corresponding observations are made at two different
places, their difference of longitude can be found with much
less dependence on the accuracy of the Ephemeris.

When the two local times of the occultation of the same
star have been noted, they can each be reduced to the in-
stant of the geocentric conjunction of the moon’s centre and
the star in right ascension; and the difference of the reduced
times will be the longitude.

By the other methods the change of the right ascension
of the moon, in passing from one meridian to the other, may
be found. This, divided by the mean change in a unit of
time, as 1* or 1™, computed from the Ephemeris, will give the
difference of longitude in the same unit.
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CHAPTER IX.

LATITUDE AND LONGITUDE BY SUMNER-'S
METHOD.

OIRCLES OF EQUAL ALTITUDE.—(S8UMNER’'S METHOD.)

219. Surrose that at a given in-
stant the sun, or any other heavenly
body, is in the zenith of the place M
(Fig. 37), on the earth ; and let A A’A”
be a small circle described from M as
a pole. The zenith distance of the
body will be the same at all places on
this small circle, namely, the arc M A ;
for if the representation is transferred
to the celestial sphere, or projected on the celestial sphere
from the centre as the projecting point,

M will be the place of the sun, or other body, and the circle
A A’ A” will pass through the zeniths of all places on the
terrestrial circle, and

M A, M A, etc., will be equal zenith distances.

The altitude of the body will also be the same at all places
on the terrestrial circle A A’ A”; hence such a circle is called
a circle of equal altitude.

It is evident that this circle will be smaller the greater the
altitude of the body.
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220. The latitude of M is equal to the declination of the
body, and its longitude is the Greenwich hour-angle of the
body ; which, in the case of the sun, is the Greenwich appar-
ent time, or 24* — that apparent time, according as the time
is less or greater than 12%. This is evident from the dia-
gram, in which, regarded as on the celestial sphere,

P M is the celestial meridian of the place, whose zenith is
M, and its co-latitude ; and also the declination circle, and
co-declination, of the body M ;

and if P G is the celestial meridian of Greenwich, G P M is,
at the same time, the longitude of the place, and the Green-
wich hour-angle of the body. :

If, then, the Greenwich time is known, the position of M
may be found and narked on an artificial globe.

221. If, moreover, the altitude of the body is measured,
and a small circle is described on the globe about M as a pole,
with the complement of the altitude as the polar radius, the
position of the observer will be at some point of this circle.
His position, then, is just as well determined as if he knew
his latitude alone, or his longitude alone; since a knowledge
of only one of these elements simply determines his position
to be on a particular circle, without fixing upon any point of
that circle.

As, however, he may be presumed to-know his latitude
and longitude approximately, he will know that his position
is within a limited portion of this cirecle. Such portion only
he need consider. It is commonly called a line of position.

222. The direction of this line at any point is at right
angles with the direction of the body, or the &ine of bearing, as
it is called ; for the polar radius M A is perpendicular to the
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circle A A’ A” at A, A’, A”, and every other point of the
circle.

223. Artificial globes are constructed on so small a scale
that the projection of a circle of equal altitude on a globe
would give only a rough determination. But the projection
of a limited portion may be made upon a chart by finding as
many points of the curve as may be necessary, and, having
plotted them upon the chart, tracing the curve through them.
The portion required is usually so limited that, when the
altitude of the body is not very great, it may be regarded as
a straight line; and hence two points suffice. With high alti-
tudes, three points, or if the body is very near the zenith, four
may be necessary, and even the entire circle may be required.

224. ProBLEM 50. From an altitude of a heavenly body
to find the line of position of the observer, the Green-
wich time of the observation being known.

Solution. From the given altitude, and assumed latitudes
L,, L;, Ly, etc., differing but little from the supposed lati-
tude, find the corresponding local times (ProB. 37), and thence,
by the Greenwich time, the longitudes A;, Az, Ag, ete. Thus we
_ shall have the several points, whose positions are conveniently
designated as (Ly, Ay,), (L, Azy), (L3, Asy), ete.

It facilitates the computation to assume latitudes differing
10’ or 20’, as the 4 sums and remainders differ 5’ or 10’, and
only one of each need be written.

Or, from the Greenwich time and assumed longitudes, A;,
Az, Ag, ete., find the corresponding local times (Art. 77), and
thence the hour-angles of the body (Pross. 28, 29). With
these and the observed altitude, find the corresponding lati-
tudes, L,, L,, Lg, etc. (Pros. 40).
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This is more convenient than the preceding method, when
the body is near the meridian.

In either mode the computation may be arranged so that
the like quantities in the several sets shall be in the same
line, and taken out at the same opening of the tables.

The several points may then be plotted on a chart, each by
its latitude and longitude, and a line traced through them,
which will be the required Zne of position. Two points con-
nected by a straight line are sufficient, unless the altitude is
very great, or the points widely distant.

Thus in (Fig. 38), let A and B be two Bb 1,
such points plotted respectively on the P
parallels of latitude L,, L,, and each in its
proper longitude ; A B is the Zine of posi-
tion, and the place of observation is at
some point of A B, or A B produced. This
is all which can be determined from an ohserved altitude,
unless either the latitude, or the longitude, is definitely known.
And as these are both uncertain at sea, except at the time
when found directly by observation, the position of the ship
found from a single altitude, or set of altitudes, is a line, of
greater or less extent as the latitude, or the longitude, is more
or less accurately known.

In uncertain currents, or when no observations have been .
had for several days, the extent of this line may be very great.
Yet, if it is parallel to the coast, it assures the navigator of
his distance from land; if directed toward some point of the
coast, it gives the bearing of that point.

-—L

Al L

Fi16. 38.

225. If there is uncertainty in the altitude, for instance of
3, the line of position having been computed and plotted,
parallels to it on each side may be drawn at the distance of 3'.
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So, also, if there is uncertainty in the Greenwich time,
parallels may be drawn at a distance in tongituae equal to the
amount of uncertainty.

In either case the position of the ship is within the en-
closed belt.

In Fig. 38, a b is such a parallel to the line of position A B,
its perpendicular distance from it measuring a difference of
altitude ; the distance A @ on a parallel of latitude measuring
a difference of longitude.

226. Since the line of position is at right angles with
the direction of the body (Art. 222), the nearer the body is
to. the meridian in azimuth, the more nearly the line of po-
sition coincides with a parallel of latitude; and thus a posi-
tion of the body near the meridian is favorable for finding
the latitude from an observed altitude, and not the longi-
tude.

So also, the nearer the body is to the prime vertical, the
more nearly the line of position coincides with a meridian,
and the less does any error in the assumed latitude affect
the longitude computed from an observed altitude. So that,
if the body is on the prime vertical, a very large error in
the assumed latitude will not sensibly affect the result. Such
a position of the body is, then, the most favorable for find-
ing the longitude from an observed altitude.

These conclusions have been previously stated, drawn
from analytical considerations.

227. Two or more points of a line of position as (Z,, A,),
(L2, Ay), ete., having been determined by Pros. 50, if the
true latitude, Z, be subsequently found, the corresponding
longitude, A, may be obtained by interpolation.
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Or, the place of the ship may be found graphically upon
the chart, by drawing a parallel in the latitude, Z, and tak-
ing its intersection P, with the line of position A B.

So also, if the true longitude, A, is

subsequently found, the corresponding F_B L2
latitude, Z, may be obtained by interpo- P} L

lation ; or, a meridian EF may be drawn

in the longitude, A, which will intersect L,

the line of position in P, the place of A E C
the ship. Fio. .

If there is uncertainty in either of these elements, two
parallels of latitude (as in Fig. 38), or two meridians, may
be.drawn at a distance apart equal to the uncertainty.

As altitudes, latitudes, and longitudes are never found at
sea with much precision, and may under unfavorable circum-
stances be largely in error, the position of the ship on the
chart is not properly a point, but a belt, more or less limited
according to the accuracy of the elements from which it has
been formed.

228. In Fig. 39, if A is the position (Z,, A,),
B, the position (L, Ay),
both near P, the true position, whose latitude is
L, and longitude is A;
we have, by interpolation
Ay — A
Ax=AL y A )
and . A=A+ AX

(142)

as the formulas for finding A, the longitude of the true posi-
tion, when its latitude, Z, is known.
Or, we have
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AL=arta— 1L ,
AQ—AI (143)
and L=L +4AL

as the formulas for finding Z, when X\ is given. The several
differences are most conveniently expressed in minutes of
are, or, in the case of longitudes, in seconds of time. The
local times may be used instead of the longitudes and in-
terpolated in the same way.

From the first of (142) we may readily determine how
much a supposed error in an assumed latitude affects the
resulting local time, or longitude.

229. ProBLEM 51. To find from a line of position the
azimuth of the body observed.

Solution. We have the positions (Z,, \,), (Lq, As), or the
latitudes and longitudes of two points, from which the azi-
muth, or course of the line of position, can be found by middle
latitude sailing.

Adding or subtracting 90°, according as the azimuth of the
body is greater or less, gives the azimuth required.

Or, a perpendicular to the line of position may be drawn
upon the chart, and the angle which it makes with a meridian
may be measured with a protractor. The azimuth may thus
be found to the nearest 1°.

230. ProBLEM 52. To find the position of the observer
from two altitudes of the same or different bodies, the
Greenwich time being known,

Solution. Find the line of position from each. If the lines
are plotted on the chart, their intersection gives the position
required.



CIRCLES OF EQUAL ALTITUDE. 201

This intersection may also be readily found by computa-
tion, when the lines are regarded as straight.

Let

L'y Xy) (I'3 X,) be the position of two points of first line,

LX) (LX) o« “ « « «  « gecond line.

A L and A X be the run in lat. and long. between the two
observations

(LX) be the position at the time of the second observation,
the upper accents distinguishing the observations, the lower
accents distinguishing the latitude used for each point.
Then by Plane Co-ordinate Geometry, assuming (L', X';) as

the origin, we have,

y—AL:L—):;“E%l(m—A)L) (144)

(I — L) = 1;,,* = f L(z— (W —Ny) (145)
L=I,+

A=Y, +Z } e

(144) is the equation to the first line, moved for the run.

(145) is the equation to the second line.

(146) is the intersection of the first line, moved for the run,
with the second line; or the position at the time of the
second observation.

231. Directions N. and E. are to be marked 4-, and those S.
and W. with the negative sign. If both lines have been ob-
tained by simultaneous observations of two bodies, A L and
A X become 0, and if the same assumed latitudes are used in
both observations, of course L”, — L' = 0.

232. The more nearly perpendicular the lines of position
are to each other, the better is the determination of their



202 NAVIGATION.

intersection. Hence, the nearer the difference of azimuths
of the body or bodies at the two observations is to 90° the
better is the determination of position from double alti-
tudes.

If the azimuths are the same, or differ 180°, the two lines
of position coincide in direction, and there is no intersection.
In this case the great circle joining the two bodies, or the
two positions of the same body, is an azimuth circle, and
passes through the zenith. An approach to this condition is
generally to be avoided. (Bowp., Art. 292, note.) Still,
however, if the two bodies, or positions of the same body, are
near the meridian, the lines of position nearly coincide with a
parallel of latitude. The latitude is then well determined,
but not the longitude. If the two bodies, or positions of the
same body, are near the prime vertical, the lines of position
more nearly coincide with a meridian, and the longitude is
well determined ; but not the latitude.

When the difference of azimuths is small, the intersection
of the two lines may be computed with tolerable accuracy,
while it cannot be definitely found by the projection of the
lines upon a chart.

ExAMPLES.

1. 1898, Nov. 24, about 6 A.M. in lat. 38° 40’ N., long.
125° W. (approx.), obs’d alt. Sirius 15° 27’ (West); chro. t.
2% 47m 43s. Ran thence S. 58°.2 (true), 28.3 kn. when obs’d
alt. @ 14° 15, chro. t. 5 11m 24 For both observations,
the chro. cor. is — 25™ 09, i. c. 4- 2’ 30”, and height of eye
18 feet.

Required the latitude and longitude by Sumner’s Method
at the time of the second observation.
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SovruTION.
First line of Position.
hm s hm ¢ ’
Chro. t. 24743 x’'sR. A. 640 43.6 h=15°27
Chro. cor. — 25 09 >k’sdec. —16°34'30” ILec. + 230~

h h m

G.m.t Nov.2422234 =238 &, 16 13 51.564 Dip. — 4 09

Red. G. m.t. +2342 Ref. —328

8, 16 14 14.96 & =15 21 53

c s
L'y= 8830 L. sec 0.10646 L’ = 3850 1. sec 0.10848

h= 15 21 58
p=106 34 30 1. cosec 0.01843 0.01843
28=160 26 23 160 46 23
S= 80 13 12 1. cos 9.23010 8023 12 9.22271
S—h= 64 51 19 1.sin 9.95676 65 01 19 9.95735
’ hm s 9.31175 Am s 9.30697
k'st. = 885225 Il sin}¢ 9.65588 3 34 05.56 9.65348
% R.A. = 64043.6 : 6 40 43.6
L.s.t. = 1016 06.1 10 14 49.1
s, = 161415 16 14 15
L. m. t. 18 01 51.1 Nov. 23 18 00 34.1
Long. 82042.9 =125° 1.7 W. 8 21 59.9 = 125° 30/ W.

Second line of Position.

Ran 8. 58°, E. 28'.3; A lat. 15 8.; dep. = 24 E.; A long.
= 31 E. Lat. left, 38° 40’ N. ; lat. in, 38° 25’ N.

Chro. t. 5k 11m 24 © 14°15 Lec + 2807
Chro. cor. —25 09 + 10.59 S.D. 16 15
G.m.t.,Nov.24,4 46 15 =477 h =14 25.59 Par. 09
Eq. t. +13 02.1 Dip —4 09
G. ap. t. 4 59 17.1 Ref. — 8 46

©’s dec. —20°37 39”.8 — 30.02 [Eq.t + 13m 05867 — 0°.739

o 120.1 2.96
-223.2 ' —3.53 { 52

— 20 40 03 2.1 + 13 02.14 06
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L”; 88°15 L. sec  0.10496 L”g = 38° 86~ 0.10696
h 14 25 59"

p 110 40 03 1. cosec 0.02889 0.02889

2s 163 21 02 163° 41’ 02~
s 81 40 31 L. cos 9.16072 81 50 31 9.15201
s—h 67 14 32 l.sin  9.96481 67 24 32 9.96533
. 9.25938 9.25319
L. ap. t. 20* 38 09 dsin } ¢t 9.62969 204 39™ 407 9.62660
Long. 8 21 08.1=126°17"W. 8k 19m 36.4 = 124°54°.1 W,

-+ To compute: the lat. and long. of the intersection of the first
line moved for the run, with the second line.

" =889 80'N. L', —L'y = +20' &', = 125°10.TW. 2/, —¥, = —19.3

s =88 50 L'";—L'y=+20 ', =125 30 A, —a' = +22.9
L" =88 16 L" —L)=—15a",=125 17 A -2, =— 63
L"3 =38 86 AL=—16 2";=124 54.1 Ai =431

Then by substitution in (144) and (145) we have
20
19.3

from which z=+4139 and y = 4 2.7.

y+16=— 20 (@ _31) andy+l5=.232(')_9(x+6.3)

Therefore the position at the time of the second observation
is by (146)

L =38°30" 4+ 2T N. = 38° 32".T N. -

A =125°10"7T W. 4+ 13’9 E. = 124° 56’.8 W.

2. 1898, Aug. 19, at sea, making passage from Honolulu to
San Francisco: position at noon, lat. 33° 15’ N., long. 135°
40’ W. Thence ran N. 62° E. (true) 202 kn. until about 8 a.m.
Aug. 20, when obs’d alt. @ 37° 01/, chro. t., 54 37™ 37¢; chro.
cor. — 18m 17¢; i. c. — 2’ 30” ; height eye, 25 ft.

Ran thence N. 62° E. (true) 28 kn. until about 10.45 A.m.,
when obs’d alt. @ 64° 25, chro. t. 7% 16m 40¢; c. c., i. ¢, and
dip as before. -
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Made noon, Aug. 20, after running 9 kn. farther on the same
course. No meridian observation.

Required the position at noon, Aug. 20, and the set and
drift of the current.

SOLUTION.
N. E.
Noon—8A.M. N.62°E. 202" 94.8 1784 L,=34° A )\ =2153
Noon, Aug. 19, Lat. 33° 15" N. Long. 135° 40 W,
AL 1 348N. AN 3 85.3 E.
8 A. M., Aug. 20, Lat. 34 49 .8N. Long. 132 04.7 W. by D. R.

First line of position.

Chro. t. 5k 37m 372 @ s8ror S.D. + 15 51"
C.c. —18 17 +7 17" |Dip —4 54
G.m.t. 5 19 20 =5%32, h =237 08 17 < Par. 07
Eq.t. — 3 08.5 Aug. 20 Ref. —1 17
G.ap.t. 5 16 11.5 Le —230
@8 dec. +12°22'01".7 —49".64 Eq.t —3m 11063 + 0°.59
248".2 2.95
—424.1 { 4.9 +8.14 { 18
+12 17 87 .6 1 —3 08.5 .01
L) = 34°30 1.sec  0.08401 L';= 85° 1. sec 0.08664
h= 87 08 17"
p= T1 42 22 1. cosec 0.01008 0.01008
23 =149 20 39 149° 50’ 39"
s= 74 40 20  l.cos 9.42217 74 55 20  9.41520
s—h= 378203 lsin 9.78479 87 47 03 9.78124
9.30105 9.29916
l.ap.t. 20427283 1.sin}¢9.65053 20% 27m 58.3  9.64958
G.ap.t. 5 16 11.5 516 11.5
8 48 43.2 8 48 13.2
A = 182°10°.8 'y =132° 03'.3
L= 84 30 f ',_ 35 00

Second line of Position.

Ran 8 —10.45 a.m. N. 62° E. 28’; A L =131 Dep. =
24.7, AA=30'1E.
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Mean long. from 1st line 132° 07" W. at 8 a.m.
Approx. long. at 10.45 a.m. 131° 37 W. = 8" 46™ 28-.
By D. R. at 10.45 a.m. lat. 35° 029 N, long. 131° 34".6 W.

h m s o 1/ wu u AT
Chro. t. 8 16 40 ® 642500 S.D. 4+ 1551 Dip — 454
C.c. —1817 +8 03 {Par. + 4 Ref.— 28
G.m.t. 715828 = 17297, h = 643303 Ic. —230
Eq.t. —306.9Aug.20
G.ap.t. 755 16.1 ©’'s dec. Eg. of ¢.
Mean ) 8 46 28 + 12°22'01".71 —49".64 —3m11%.63 + 059
Meant. 051 11.9 347".5 45.13
—635.7{44.7 +4.70 { .53
+ 12 15 26 3.5 —3 06.9 .04
K = 64°33 03" 1. sin  9.95567
t, = 12 383 00 L sec0.01050
d = 12 15 26 1. tan 9.33696 1. cosec 0.67305
4’" = 12 32 51 1. tan 9.34746 L sin  9.33695
¢ = 22 20 1 cos. 9.96567
L, = 35°01'.9 1. sin  9.95567

13° 03' 00" 1. sec 0.01136
1. tan 9.33696 1. cosec 0.67305
¢’ =12 34 18 1. tan 9.34832 L sin  9.33778
) = 22 18 1. cos 9.96650
= 340 47[
}‘”2 =131 52 }

N =131 22 § ¢,

I

To compute the position at 10.45 A. M.

Lh =330 N. A1 =1320°108W. L2 L =+30 Mo —Ah =+ T'5
L's =35 00 N. Ag =132 03.3W. L'a—L'h=—-14.6 Alls—r'"r1=—30
L'y =3 019N, Am=13122 W. L'hn—L" =+31.9 Ah—ah =+488
L'"s =34 47 3N. A3=131 52 W.

AL = +13.1 AA=  +30.1

Then by substitution in (144) and (145)
y—131= + 30 ) @—80.0) =4 (= — 30.)

y—319= —146( _488) — 73(96—488)

whence = +329and y =+ 24.3.
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by (46) L= 34°543 N.
A=131°37.9 W.
10.45 A.M. lat. 35° 02.9 N. long. 131° 34.6 W. by D. R.

; at 10.45 a.m.

¢« 34 543 N. ¢ 131 37.9 ¢ ¢ obs.
AL 8.6 S. AX 3.3 W.dep. =2.7
Current for 22% hrs. 9 kn. S. 17° W. = .4 kn. per hour.
N 8 E W
10.45 — noon N.62°E. 9. 4.2 7.9
Current tonoon S.17 W. 05 _ 05 __ 0.2
3.TN. 117 AA=94E.
10.45 A.M. lat. 34° 54.3 N. long. 131° 37.9 W. by obs.
Run to noon A L 3.7 N. A 9.4 E.

Noon Aug. 20 lat. 34 68 N. long. 131 28.56 W.

233. The correction for the run of the ship between two
observations may be determined as follows. (Art. 288, Bown.)

ProBLEM. 53. To reduce an observed altitude for a
change of position of the observer.

Solution. Let
Z (Fig. 40) be the zenith of the place of observation;
h = 90° — Zm, the observed altitude;
Z', the zenith of the new position;
K = 90° — Z’ m, the altitude reduced to the new position, Z".
d = ZZ', the distance of the two
places, here referred to
the celestial sphere;

C =P Z Z, the course;
Z =P Z m, the azimuth of m ;
Z — C=m Z Z, the difference of the
course and azimuth.

Z Z', being small, may be regarded as
a right line,
Z 7' O as a plane right triangle, and
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O m, without material error, as equal to Z’ m; so that we

shall have
ZO0=ZZcosZ' Zm

ZZm=Zm—7Z0

or putting Ah=170,
Ah=dcos (C— 2)
4
K —=htah (147)

Ak = dcos (C'— Z) is, then, the reduction of the observed
altitude to the new position of the observer: it is additive
when C — Z < 90° numerically; subtractive when C -z >
90°. It is smaller, and can, therefore, be more accurately
computed the nearer ¢'— Z approaches 90°. It is, therefore,
better to reduce that altitude for which the difference of the
course and azimuth is nearest 90°.

If the second is the one reduced, then C'is the opposite of
the course.

In practice Z Z' does not usually exceed 30’, so that al-
though an arc of a great circle of the celestial sphere, it may
be regarded as representing the distance, d, of the two places
on the earth; or, at sea, the distance run. The azimuth, or
bearing, of the body can be observed with a compass, or be com-
puted to the nearest degree, or half-degree, from the altitude.

The assumption, Z’ m = O m, is more nearly correct, the
greater Z’ m or Z m, that is, the smaller the altitude. If we
treat Z Z’ m as a spherical triangle, d = Z Z’ being expresserl
in minutes and still very small, we shall find

Ah=dcos (C— Z)—}d?sin 1 tan A sin® (0 — Z); (148)

but the last.term is inconsiderable unless d and % are both
large. For instance, if d = 30, it will not exceed 1’ unless
h > 82°
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ExAMPLE.

The two altitudes of the sun are 36° 16’ 20, 58° 15’ 20",
the compass bearings of the sun respectively S. E. by E. } E.
and W. S. W.; the ship’s compass course, and distance made
good in the interval N. N. W. $ W. 25 miles;

S. 53 E. differs from N. 2§ W. 13 points, so that the re-
duction of the 1st altitude to the position of the 2d is

25" X cos 13 pts. = — 25’ cos 3 pts. = — 20".8 = — 20’ 48"
S. 6 W. differs from 8. 2} E. 8} points, and the reduction
of the 2d altitude to the position of the 1st is
25’ cos 8} pts. = — 25’ cos T} pts. = — 2/ 30"
or — 2’ 39", if the last term of (148) is included.

234. By (147) or (148) we may reduce one of the two
altitudes for the change of the ship’s position in the interval,
But instead of this we may put down the line of position for
each observation, and afterwards move one of them to a par-
allel position determined by the course and distance sailed in
the interval. Thus in Fig. 41, let

B 3

A B be the line of position for the first
observation, and ; ;
Aa represent in direction and length

the course and distance sailed in A\/q,
the interval ; then Fio. 41.

ab, drawn parallel to A B, is the line of position which
would have been found had the first altitude been observed
at the place of the second.
If the second observation is to be reduced to the place of the
first, then A a in direction must be the opposite of the course.
The perpendicular distance of A B and b is the reduc-
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tion of the altitude for the change of position: for that dis-
tance is Aa X cos (B Aa — 90°).

235. There are several other methods of finding the lati-
tude by two altitudes either of the same or of different
bodies ; but, with the exception of the one following, their
methods are so intricate and Sumner’s Method has proved so
valuable a substitute for them, that they are rarely if ever
used at the present time. Four methods are given in Bow-
pITCH, Arts. 288 to 292; a full discussion of the principles
upon which they are based and of a method by three alti-
tudes may be found in Chauvenet’s Astronomy.

236. ProBrLEM 54. To find the latitude by the rate of
change of altitude near the prime vertical (Prestel’s Methoa).*

In the note to Art. 197 we have, for a very brief interval of
time, and a small change of altitude,

dh
dt=——"F—
‘=15 e Zon 2’
K—h
O I —-T=t=—""°" __;
& ¢ 15 cos Lsin Z’
whence cos L=" =" cosec Z ; (149)

in which A" — A is expressed in seconds of arc and ¢ in seconds
of time, and, Z being 4 when east, — when west, cos L is always
positive. If Zis near 90°, its cosecant varies slowly. When

Z = 90° we have, p
K —h
L =""",
cos 15

If, then, two altitudes are carefully observed near the prime
vertical, and the times noted with great precision, the interval

(150)

* Chauvenet’s Astronomy, I., 303, 311.
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not exceeding 8 or 10 minutes, an approximate latitude may be
found by (150), when the altitudes are within 2° or 3° of the
prime vertical ; or by (149) when they are at a greater distance,
and Z is approximately known.

The time of passing the prime vertical can be found by (86).
Z may be roughly computed from the altitudes, or found within
2° from the bearing observed by a compass, which will suffice,
if the observations are made within 10° of the prime vertical.

As, near the prime vertical, the altitude changes uniformly
with the time, several altitudes may be observed in quick suc-
cession, and the mean taken as a single altitude.

The larger A’ — A and ¢, consistent with the supposition of
uniformity of change and the condition by which they are sub-
stituted for their trigonometric functions, the more accurate in
general will be the result.

Still the method does not admit of much precision. It is
entirely unavailable near the equator, and in latitude 45° may
give a result in error from 5 to 10 minutes, even when the
greatest care has been bestowed on the observations. It may,
however, be useful to the navigator in high latitudes, as it can
be used for altitudes of the sun, when almost exactly east or
west, and it will restrict the position of the ship to a limited
portion of the line of position found by Sumner’s Method.
There are occasions at sea, when to find the latitude only with-
in 10’ is very desirable.

ExAMPLES.

1. 1898, June 15, 7* A. m,, in lat. 60° N, long. 60° W.;

T. by Chro. 114 13m 25¢.3, obs'd alt. © 27° 00’ 23") O’s Az.
¢ e 11 19 51.0, ¢ e 427 48 42 IN.88°E.;

required the latitude.
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o] log 8.8239

h'—h = 48' 19" log 3.4622
t = 6™ 257 ar. co. log 7.4137

Z = 88° 1. cosec 0.0003

L = 59°55' N. 1. cos  9.7001

If AW —h)=10",Alog (' —h)= Al cos L= .0015,
and A L =6'. If the difference of altitudes can be depended
on within 5”, the latitude is correct within 3'.

2. 1898, July 13, 5* p.M,, in lat. 54° 20" N., long. 113° W,
by account; the altitude of the sun’s lower limb was observed
at 0»23m 34* by the chronometer, which was slow of G. mean
time 10~ 18*; and the sextant remaining clamped, the upper
limb arrived at the same altitude at 0*27™ 8+.5; the true alti-
tude of both limbs was 27° 18’ 20”; required the latitude.

The sun’s diameter, 31’ 33", is the difference of altitudes
in this case. The sun’s azimuth computed from the altitude
and supposed latitude is N. 883° W.

log 8.8239

h—h' = 381'33" log 3.2772
t = 3™ 34%5 ar. co. log 7.6686

Z = 88§° 1. cosec 0.0002

L = 58°56' N. 1. cos 9.7699

If we suppose ¢ to be in error 1¢, 1. cos L will be in error
.0020 and Z 11’. If the elapsed time can be depended on
within 0.5, the latitude is correct within 6.

The longitude obtained from the same observations is
113° 5’ W.

This method of observing the successive contacts of the
two limbs of the sum with the horizon with the sextant
clamped is recommended.
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CHAPTER X.
AZIMUTH OF A TERRESTRIAL OBJECT.

237. 1IN conducting a trigonometric survey, it is necessary
to find the azimuth, or true bearing, of one or more of its
lines, or of one station from another. Thence, by means of
the measured horizontal angles, the azimuths of other lines
or stations can be found ; and, still further, a meridian line
can be marked out upon the ground, or drawn upon the
chart.

For example, suppose at a station, 4, the angles reckoned
to the right are

Bto C,48° 15’ 35”; Cto.D,73° 37 16”; D to E, 59° 45’ 20" ;

and that the azimuth of D is N. 35° 16’ 15” E.; the azimuths
of the several lines are

A B, N. 86° 36’ 36" W. A D, N. 35° 16’ 15" E.
AC/N.38 21 1W. AE N 9 135 E.

If upon the chart a line be drawn, making with 4 B an
angle of 86° 36’ 36" to the right, or with 4 D an angle of
35° 16’ 15" to the left, it will be a meridian line.

Or, if a theodolite or compass be placed at 4 in the field,
and its line of sight, through the telescope or sight-vanes, be
directed to D, and the readings noted, and then the line of
sight be revolved to the left until the readings differ 35° 16’



214 NAVIGATION.

15” from those noted, it will be directed north. If a stake
or mark be placed in that direction, it will be a meridian
mark north from 4.

238. 1f the azimuth of a terrestrial object is known, it
may be conveniently used in finding the magnetic declina-
tion, or variation of the compass. For, let the bearing of the
object be observed with the compass ashore — the difference of
this magnetic bearing and the true bearing is the magnetic
declination, or variation, required. It is east if the true bear-
ing is to the 7ight of the magnetic bearing; but west if the
true bearing is to the Jgft of the magnetic bearing.*

239. ProBLEM b5. To find the azimuth, or true bear-
Ing of a terrestrial object.

Solution. Let
Z (Fig. 42) be the zenith, or place, of P n
the observer;
O, the terrestrial object ; PA
M, the apparent place of the sun, or
some other celestial body ; PN
Z =N Z O, the azimuth of O;
z = N Z M, the azimuth of M; S

{=Z—2=MZO, the azimuth angle Fro. 42.

between the two objects, or the difference of azimuth of
M and O.
The problem requires that z and { be found; then we have

* This has reference to the two readings. The actual direction of
the object is the same; but the true and magnetic meridians, from
which the angles are estimated, are different. When the variation is
east, the magnetic meridian is to the right of the true meridian ; when
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Z=z + t.
Or, numerically, .
Z=1z+¢ when the azimuth of the terrestrial object is
greater than that of the celestial;
Z =z — {, when it is less. The sign of ¢ should be noted in
the observations.

240. z = N Z M, the azimuth of the celestial body, may be
found from an observed altitude (ProB. 34), or from the local
time (Pros. 32). In the first case, the most favorable posi-
tion is on or nearest the prime vertical; for then the azimuth
changes most slowly with the altitude. In the latter, positions
near the meridian may also be successfully used.

241. ¢ = MZO, the azimuth angle between the two ob-
jects, may be found in one of the following ways: —

Ist Method. (By direct measurement.)

M Z O, being a horizontal angle, may be measured directly
by a theodolite or a compass, by directing the line of sight
of the instrument first to one of the objects and reading the
horizontal circle, then to the other and reading again. The
difference of the two readings is the angle required. Or, the
telescope or sight-vanes of a plane table may be directed suc-
cessively to the objects, and lines drawn upon the paper along
the edge of the ruler in its two positions, and the angle which
they form measured by a protracter.

At the instant when the observation is made of the celestial

the variation is west, the magnetic meridian is to the left of the true
meridian,

It is necessary to distinguish between the magnetic bearing and the
compass bearing. The latter is affected by the errors of the instrument
employed and by local disturbances ; the former is free from them.
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object, either its altitude should be measured, or the time noted,
so as to find its azimuth simultaneously.

The instrument should be carefully adjusted and levelled.
With the compass or plane table, it is not well to observe
objects whose altitudes are greater than 15°.

A theodolite can be used with greater precision than the
other instruments ; but the greater the altitude of the object,
the more carefully must the cross-threads be adjusted to the
axis of collimation, and the telescope be directed to the object.

The error of collimation is eliminated by making two ob-
servations with the telescope reversed either in is Vs, or by
rotation on its axis. Low altitudes are generally best.

242. If the sun is used, each limb may be observed alter-
nately ; or a separate set of observations may be made for
each.

To find the azimuth reduction for semi-diameter, when
but one limb is observed ;

Let A = 90° — Z s (Fig 51), the altitude of
the sun,
s = S s, its semi-diameter, S
¢ = 8 Z s, the reduction of the azimuth
for the semi-diameter.
We have sin§S Zs =0 S s
sinZ s
Fia. 43.
or, since s and ¢ are small,
§ = s sec A, (1561)

which is the reduction required.

The sign with which it is to be applied depends upon the
limb observed.
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243. If the observations are made at night,and the ter-
restrial object is invisible, a temporary station in a conve-
nient position may be used, and its azimuth found. The
horizontal angle between this and the terrestrial object may
be measured by daylight, and added to, or subtracted from,
this azimuth.

A board, with a vertical slit and a light behind it, forms
a convenient mark for night observations.

The place of the theodolite should be marked, that the
instrument may be replaced in the same position. But in
doing this, and selecting the temporary station, it should be
kept in mind that a change of the position of the instrument
of 5745 of the distance of the object may change the azimuth
1’; or of y555py Of the distance may change the azimuth
more than 1”.

244. 2d Method. Finding the difference of azimuths of
a celestial and a terrestrial object by a sextant, sometimes
called an “ astronomical bearing.”

Measure with a sextant the angular distance M O (Fig. 44)
of the two objects, and either note the time by a watch reg-
ulated to local time, or measure simultaneously the altitude
of the celestial object. Measure, also, the altitude of the
terrestrial object (if it is not in the horizon), either with a
theodolite which is furnished with a vertical circle, or with
a sextant above the water-line at the base of the object,
when there is one. Correct the readings of the instruments
for index errors, and when only one limb of the sun is ob-
served, for semidiameter.*

Observed altitudes of either object above the water-line

* Tt is best in measuring the distance of the sun from the terrestrial
object to use each limb alternately.
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are also to be corrected for the dip by (33) or Table 14

(Bowp.), if the horizon is free; but by (35) or Table 15

(Bown.), if the horizon is obstructed.

N The altitude of the celestial object,

when not observed simultaneously,

may be interpolated from altitudes

before and after, by means of the

z noted times. (Bowbp.,Art. 312.) Or

the true altitude may be computed

0 for the local time (Pros. 82 or 33)

_— and the refraction added and the

Fio. 4. parallax subtracted to obtain the ap-
parent altitude.

Let ¥ = 90° — Z O (Fig. 42), the apparent altitude of O,
H' = 90° — Z M, the apparent * altitude of M.
D = M O, the corrected distance.

P

We have then in the triangle M Z O the three sides from
which { =M Z O may be found by one of the following
formulas: —

1. By Sen. Tric. (164) we have

. _ Sin‘}(l)'}"_]I’—k’) sin%(D—H’+h’)
sm%z—\/ cos H' cos W
or, letting d=H' —¥, 1
sin %§=\/sin Yy D+ d)sin§(D—4d)

cos H' cos I/ (162)
2. By Seu. Trie. (165),
cos §(=\/COS%(H'+k'+D)cos } (H + ¥ —D)

cos H' cos &'

* The true altitude of M is used in finding 2, its azimuth.
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or, putting

s=}y(H +¥+ D)
cos } ¢ = ¢os 8 COS gs-—D}

cos H' cos i’ (153)

(152) is preferable when ¢ < 90°; (153), when ¢ > 90°.

245. If O is in the true horizon, or its measured altitude
above the water line equals the dip, A =0, and the right
triangle M m O gives

cos { =cosm O = cos D sec H’; (154)
or, more accurately, when ¢ is small (Sen. Tri1c., 105),
tan §¢ =V (tan § (D 4 H") tan §} D — H') . (155)

If the terrestrial object is in the water-line, A’ is negative,
and equals the dip.

246. If both objects are in the horizon, or H and % are
equal and very small, we have simply

¢{¢=D. (156)

In general, the result is more reliable the smaller the in-
clination of M O to the horizon. If M O is perpendicular to
the horizon, the problem is indeterminate by this method.

247. If the terrestrial object presents a vertical line to
which the sun’s disk is made tangent, the reduction of the
observed distance for semi-diameter is

§=238sinMOZ (167)

and not s, the semi-diameter itself. This follows from the
sun’s diameter through the point of contact, O, being per-
pendicular to the vertical circle Z O and not in the direction
of the distance O M.
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As the altitude of the terrestrial object is always very
small, we may find M O Z by the formula
sin A’

cosMOZ=sinD,

D’ being the unreduced distance.

248. When precision is requisite, the axis of the sextant
with which the angular distance is measured must be placed
at the station Z; and if the object seen direct is sufficiently
near, the parallactic correction must be added to the sextant
reading. If

A represent the distance of the object,
d, the distance of the axis from the line of sight or axis of

the telescope, this correction is

a " o__ ” _(_1_
p = 4 cosec 17 = 206265 A (1568)

It is 1/, when A = 3437.75 d.

249. If the distance of the terrestrial object and the dif-
ference of level above or below the level of the instrument
are known, we may find its angle of elevation, nearly, by the

formula
tan - —E‘,

A being the distance of the object, and
E, its elevation above the horizontal plane of the instrument.

If the object is below that plane, £ and A’ will have the
negative sign.

NoTE. — The horizontal angle between two terrestrial objects may
also be found by measuring their angular distance with a sextant, and
employing the same formulas (230 to 234) as for a celestial and terrestrial
object ; H’ and &’ representing their apparent angles of elevation. Each
of these may be found by direct measurement, or from the known dis-
tance and the elevation, or depression, from the horizontal plane of the
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observer. If the two objects are on the same level as the observer, we
have simply as in (234) 3=D.

ExAMPLE.

1898, May 16, 5» 45™ a.m. in lat. 38° 15’ N., long. 76° 16’
W.; the angular distance of the sun’s centre from the top of
a light-house measured by a sextant (® to the right of L. H.),
75° 16’ 25", index cor. — 1’ 15”; altitude of © above the sea-
horizon observed at the same time, 10° 18’ 20”, index cor. +
2 10”; observed altitude of the top of light-house above the
water-line, distant 7,300 feet, 1° 15" 20", index cor., 4+ 2’ 10”;
height of eye, 20 feet; required the true bearing of the light-
house.

G. m. t., May 15, 22 50 04 = May 16 — 1A.17

Obs'd alt. @ 10° 18' 20" ©’s dec., May 16.

Le. + 2 10 + 19°10' 15".7 + 34".4

Dip — 423 (3474

Ap. alt. @ 10 16 07 . —40 .2 { 3.4

S. D. + 16 51 + 19 09 35 .5 2.4

Ref. and Par. — b6 03

Ap. alt. ©, H'=10 31 58 Obs’d alt. L. H. 1° 15’ 20"

Tr. alt. ©, H = 10 26 66 Le. +210

Ang. dist. =175 16 10 Dip — 956 by (55)

App. alt. L.H. 1 07 34 = &’

Computation by (78) and (152).

H = 10°26'55" 1. sec 0.00726 H'= 10° 31' 58" 1. sec 0.00738
L = 38 16 1. sec 0.10496 h = 1 07 34 1. sec 0.00008
p="T0 50 25 d= 924 24
28 =119 32 20 3 (D+d) =42 19 47 1. sin 9.82827
8 =059 46 10 1. cos 9.70198 % (D—d) = 32 565 24 1. sin 9.73521
9.57094
p—s =11 04 156 1. cos 9.99184 3¢ =87°86'.2 1 sin 9.78647
9.80604 £ =" 12.4
% Z = 386° 53’ 1. cos 9.90302
®'’s Azimuth Z =N."73 46.0 E.

True bearing of L. H. (Z—{)= N. 1°24'.4 W.











